3,374 research outputs found

    Power processor design considerations for a solar electric propulsion spacecraft

    Get PDF
    Propulsion power processor design options are described. The propulsion power processor generated the regulated dc voltages and currents from a solar array source of a solar electric propelled spacecraft. The power processor consisted of 12 power supplies that provide the regulated voltages and currents necessary to power a 30-cm mercury ion thruster. The design options for processing unregulated solar array power and for generating the regulated power required by each supply are studied. The technical approaches utilized in the developed design and the technological limitation of the identified design options are discussed. Alternate approaches for delivering power to a number of mercury ion thrusters and methods of optimizing are described. It was concluded that this power processor design should be considered for application in solar electric propulsion missions of the future

    A complex multi-state k-out-of-n: G system with preventive maintenance and loss of units

    Get PDF
    In this study, a multi-state k-out-of-n: G system subject to multiple events is modeled through a Markovian Arrival Process with marked arrivals. The system is composed initially of n units and is active when at least k units are operational. Each unit is multi-state, each of which is classified as minor or major according to the level of degradation presented. Each operational unit may undergo internal repairable or non-repairable failures, external shocks and/or random inspections. An external shock can provoke extreme failure, while cumulative external damage can deteriorate internal performance. This situation can produce repairable and non-repairable failures. When a repairable failure occurs the unit is sent to a repair facility for corrective repair. If the failure is non-repairable, the unit is removed. When the system has insufficient units with which to operate, it is restarted. Preventive maintenance is employed in response to random inspection. The system is modeled in an algorithmic and computational form. Several interesting measures of performance are considered. Costs and rewards are included in the system. All measures are obtained for transient and stationary regimes. A numerical example is analyzed to determine whether preventive maintenance is profitable, financially and in terms of performance.Junta de Andalucía (Spain) FQM-307Ministerio de Economía y Competitividad (España) MTM2017-88708-PEuropean Regional Development Fund (ERDF

    Specifications for modelling fuel cell and combustion-based residential cogeneration device within whole-building simulation programs

    Get PDF
    This document contains the specifications for a series of residential cogeneration device models developed within IEA/ECBCS Annex 42. The devices covered are: solid oxide and polymer exchange membrane fuel cells (SOFC and PEM), and internal combustion and Stirling engine units (ICE and SE). These models have been developed for use within whole-building simulation programs and one or more of the models described herein have been integrated into the following simulation packages: ESP-r, EnergyPlus, TRNSYS and IDA-ICE. The models have been designed to predict the energy performance of cogeneration devices when integrated into a residential building (dwelling). The models account for thermal performance (dynamic thermal performance in the case of the combustion engine models), electrochemical and combustion reactions where appropriate, along with electrical power output. All of the devices are modelled at levels of detail appropriate for whole-building simulation tools

    Optimizing a Multi-State Cold-Standby System with Multiple Vacations in the Repair and Loss of Units

    Get PDF
    A complex multi-state redundant system with preventive maintenance subject to multiple events is considered. The online unit can undergo several types of failure: both internal and those provoked by external shocks. Multiple degradation levels are assumed as both internal and external. Degradation levels are observed by random inspections and, if they are major, the unit goes to a repair facility where preventive maintenance is carried out. This repair facility is composed of a single repairperson governed by a multiple vacation policy. This policy is set up according to the operational number of units. Two types of task can be performed by the repairperson, corrective repair and preventive maintenance. The times embedded in the system are phase type distributed and the model is built by using Markovian Arrival Processes with marked arrivals. Multiple performance measures besides the transient and stationary distribution are worked out through matrix-analytic methods. This methodology enables us to express the main results and the global development in a matrix-algorithmic form. To optimize the model, costs and rewards are included. A numerical example shows the versatility of the model

    The development of cryogenic storage systems for space flight

    Get PDF
    Development of cryogenic storage systems for manned space fligh

    Availability Modeling of Generalized k-out-of-n: G Warm Standby Systems with PEPA

    Get PDF

    Energy efficiency in discrete-manufacturing systems: insights, trends, and control strategies

    Get PDF
    Since the depletion of fossil energy sources, rising energy prices, and governmental regulation restrictions, the current manufacturing industry is shifting towards more efficient and sustainable systems. This transformation has promoted the identification of energy saving opportunities and the development of new technologies and strategies oriented to improve the energy efficiency of such systems. This paper outlines and discusses most of the research reported during the last decade regarding energy efficiency in manufacturing systems, the current technologies and strategies to improve that efficiency, identifying and remarking those related to the design of management/control strategies. Based on this fact, this paper aims to provide a review of strategies for reducing energy consumption and optimizing the use of resources within a plant into the context of discrete manufacturing. The review performed concerning the current context of manufacturing systems, control systems implemented, and their transformation towards Industry 4.0 might be useful in both the academic and industrial dimension to identify trends and critical points and suggest further research lines.Peer ReviewedPreprin

    A complex multi-state system with vacations in the repair

    Get PDF
    A complex multi-state system subject to wear failure and given preventive maintenance is considered. Various internal levels of degradation are assumed. The repair facility is composed of a repairperson, who may take one or more vacations during the period considered. A policy is established for the repairperson’s vacation time. Two types of task may be performed by the repairperson: corrective repair and preventive maintenance. All embedded times in the system are phase type distributed. The transient and stationary distributions are determined and several reliability measures are developed in a matrix-algorithmic form. Costs and rewards are included in the model. The results are implemented computationally with Matlab. A numerical example shows that the distribution of vacation time can be optimised according to the net reward established.Junta de Andalucía, Spain, FQM-307Ministerio de Economía y Competitividad, España, under Grant MTM2017−88708−PEuropean Regional Development Fund (ERDF

    Performability Evaluation of Voice Services in Converged Networks

    Get PDF
    In the last years, the transmission of voice services in converged networks has experienced a huge growth. However, there are still some questions considering the ability of these networks to deliver voice services with acceptable quality. In this paper, we applied analytical modeling and simulation to analyze the quality of voice services using a new index, called MOS a , which considers jointly the MOS index and the availability of the subjacent infrastructure. We consider the influence of different CODECs (G.711 and G.729), queuing policies (Priority Queuing and Custom Queuing), and the warm standby redundancy mechanism. Our goal is to analyze the quality of these services by taking into account overloading conditions in different  architectures/scenarios. These scenarios were constructed using the modeling mechanisms Reliability Block Diagram and Stochastic Petri Nets in addition to a discrete event simulator. Experimental results indicate that the G.711 CODEC has a higher sensitivity both in terms of data traffic volume and allocated network resources in relation to the G.729 CODEC
    corecore