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Abstract: A complex multi-state system subject to wear failure and given 

preventive maintenance is considered. Various internal levels of degradation 

are assumed. The repair facility is composed of a repairperson, who may take 

one or more vacations during the period considered. A policy is established 

for the repairperson’s vacation time. Two types of task may be performed by 

the repairperson: corrective repair and preventive maintenance. All 

embedded times in the system are phase type distributed. The transient and 

stationary distributions are determined and several reliability measures are 

developed in a matrix-algorithmic form. Costs and rewards are included in 

the model. The results are implemented computationally with Matlab. A 

numerical example shows that the distribution of vacation time can be 

optimised according to the net reward established. 
 
Keywords: Phase-Type Distribution, Preventive Maintenance, Optimal 

Vacation Time 

 

Introduction 

In reliability literature, the system in which a unit 
performs is usually considered in terms of traditional 
binary models: the up state (performing) vs. the down 
state (failure). However, many real life systems are 
composed of different performance levels and 
incorporate multiple events. To reflect this reality, 
binary systems have been extended to create multi-state 
systems, a concept introduced by Murchland (1975). 
These systems are of particular importance in ensuring 
reliability and have a finite number of 
performance/degradation stages. Several methods have 
been considered to study this approach, including Markov 
and semi-Markov models, generating functions, Lz-
transform and Monte Carlo simulations (Lisnianski et al., 
2018). Lisnianski and Frenkel (2012) included Markov 
processes in an analysis of multi-state systems, 
highlighting the benefits of their application and Ruiz-
Castro and Dawabsha (2018) recently modelled a 
complex multi-state system subject to multiple events, 
namely Markovian Arrival Processes. 

In order to improve system reliability and to increase 

profits, preventive maintenance is often incorporated 

into a multi-state system. Nakagawa (1977) reviewed and 

summarised his own initial studies in this regard and later 

examined standard and advanced maintenance policies for 

system reliability in Nakagawa (2005). Preventive 

maintenance has also been included in complex systems, 

such as the cold standby two-component system based on 

semi-Markovian processes that was discussed by Zhong 

and Jin (2014). In other approaches, complex redundant 

systems maintained by one or more repairpersons have 

been considered (Ruiz-Castro and Dawabsha (2018; Ruiz-

Castro, 2018; 2016a; 2016b)). 
Intractable expressions of difficult interpretation may 

appear when complex systems are modelled, but they 
can be analysed in a well structured way, with a matrix-
algebraic form, using a phase-type distribution. These 
distributions were first proposed by Neuts (1975; 1981), 
who highlighted their useful algorithmic properties. 
Phase type distributions and Markov processes have 
been applied in fields such as queuing theory, survival 
and reliability, where real-life problems have been 
modelled in an algorithmic form by Ruiz-Castro and 
Fernández-Villodre (2012). 

Sometimes, when repairable reliability systems are 
considered, the fact of limited maintenance resources 
may conflict with the need for maintenance. To address 
this situation, Takagi (1991) introduced the theory of a 
repairperson taking multiple vacations. Under this theory, 
a repairperson can take a vacation and enter the next 
vacation immediately if the system functions normally, or 
under different situations. The term vacation means that 
sometimes the system will not be repaired immediately 
after it fails. In this respect, Arulmozhi and Nadarajan 
(1994) (among others) studied a parallel system with 
multiple repairpersons taking multiple vacations. 
Vacations models are given in Tian and Zhang (2006). 

In the present paper, we model a discrete multi-state 

system subject to wear failure and receiving preventive 

maintenance from a repairperson taking multiple 
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vacations. Random vacation time is introduced in this 

paper to maximize the profit of a system. Two different 

tasks can be carried out by the repairperson: corrective 

repair and preventive maintenance. All embedded time 

distributions are phase type distributed. Costs and 

rewards are introduced and various measures are 

obtained, both in a transient and in a stationary regime. 

The vacation time distribution is optimised according to 

net reward and a numerical example is given. 

The rest of this paper is organised as follows. Section 

2 outlines the system, after which it is modelled in detail 

using a vector Markov process in Section 3. In Section 4, 

the transient and stationary distributions are calculated by 

matrix-analytics methods. Section 5 is focused on 

calculating the reliability measures in transient and 

stationary regimes. Cost and rewards are defined in 

Section 6 and then, in Section 7, two numerical examples 

are provided to show the versatility of the model, in which 

the vacation time distribution is optimised. Finally, the 

main conclusions drawn are summarised in Section 8. 

The System
 

We assume a multi-state system with multiple phases 

which are partitioned into three operational stages 

according to the damage sustained: minor, moderate or 

major damage. This system is subject to repairable failures 

and undergoes preventive maintenance. The repair facility 

is composed of a single repairperson who at any time may 

be observing the system or may be on vacation. The 

following policy is adopted with respect to vacations: 

initially, when the system is new, the repairperson is on 

vacation. Subsequently, any one of the four following cases 

may occur when the repairpeson arrives: 
 

1. The system suffers minor damage and the 

repairperson begins vacations again. 

2. The system suffers moderate damage and then the 

repairperson remains in place, waiting to see if a 

transition to major damage occurs or if the system 

fails. In the former case, preventive maintenance 

begins and if a failure occurs, the repairperson 

begins the corrective repair. 

3. The system suffers major damage and preventive 

maintenance begins. 

4. The system fails and corrective repair begins. 
 

After repairing the repairperson goes on vacations. 

We assume that the embedded times in the system are 

phase type distributed. Thus, the operational time has the 

representation (α, T) with n phases, the vacations time 

distribution (υ, V), with w phases, the corrective repair time 

(β
1
, S

1), with order z1 and the preventive maintenance time 

distribution (β
2
, S

2), with order z2. 

The number of phases for each damage level is n
1
, n2 

and n
3 for minor, middle and major damage respectively. 

The operational time is partitioned into three 
damage levels and the corresponding matrix T and initial 
distribution α is partitioned as follows: 
 

0

0

21 22 23 2

0

31 32 33 3

11 12 13 1

;

   
   

= =   
   
   

0

T T T T

T T T T T T

T T T T

 

 
Given a matrix A, throughout this paper A

0
 will 

denote the column vector e − Ae, where e is a column 

vector of ones with appropriate order. 

The Modeling 

The system is governed by a vector Markov process 

with a state-space composed of the following macro-states: 
 

1 2 2 3
1 2 3 4

5 6 7

WR R WR

WR

O O O O
S

PM F CR

, , , ,

, ,

 = = = = 
=  

= = =  
 

 
The macro-states denote the following situation: 

 
O

1  = The system is working at a minor damage level 

2

WR
O  = The system is working at a moderate damage 

level and the repairperson is on vacation 

2

R
O  = The system is working at a moderate damage 

level and the repairperson is in the workspace 

3

WR
O  = The system is working at a major damage level 

and the repairperson is on vacation 

PM = The repairperson is engaged in preventive 

maintenance 
WR

F  = The system is broken and the repairperson is on 

vacation 

CR = The repairperson in engaged in corrective repair 
 

These macro-states are partitioned into operational 

states: 
 

{ }1 2 2 3
1 ,2 ,3 ,4 ,

WR R WR
W O O O O= = = = =  

 
and failure states: 
 

{ }5 ,6 ,7 .
WR

F PM F CR= = = =  

 
Therefore, S = W∪F . 

The transition probability matrix is a block-matrix 

whose structure is described as follows: 
 

1 1 1 2 1 2 1 3 1 1

1

2 2 2 2 2 3 2 2 2

2 2 2 2

3 3 3 3 3

1

, , , , , , ,

, , , , , ,

, , ,

, , , ,

,

,
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WR WR WR R WR WR WR WR WR WR

R R R R

WR WR WR WR WR WR

WR WR

O O O O O O O O O PM O F O CR

O O O O O O O PM O F O CR

O O O PM O CR

O O O PM O F O CR

PM PMPM O

F ,F

0

0 0 0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

=

C C C C C C C

C C C C C C

C C C

P C C C C

C C

C C

1
,

,

0

WR
F ,CR

CR CRCR O
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
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









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Here, we proceed in explaining in detail three of the 

matrix blocks as regards the transitions 

1 1 3

WR
O O O PM,→ →  and CR → O1 and then the rest of 

the matrix blocks are briefly presented. 

The transition O1 → O1 is governed by the matrix 

CO1, O1. This matrix contains the phases from the macro-

state to that when the system is operational after 

undergoing minor damage (T
11
) and then returns to the 

macro-state. This situation arises when the system 

continues working after minor damage occurs and the 

repairperson remains on vacation (V) or otherwise returns 

and then begins another vacation (V
0 υ). Therefore: 

 

( )
1 1

0

11,
.

O O
= ⊗ + υC T V V  

 

In the transition 
3

WR
O PM→ , the system initially 

continues working after undergoing major damage and 

the repairperson is on vacation. In the next step, the 

system does not fail ( 0

3
e T-

 ) and the repairperson’s 

vacation ends (V
0
). The repairperson observes that the 

system has undergone major damage and begins the 

preventive maintenance (β 
2
). Therefore: 

 

( )
3

0 0 2

3,
.WR

O PM
= − ⊗ ⊗C e T V β  

 
In the transition CR → O1, the system is receiving 

corrective repair. In the next step, the repair concludes 

( 0

1
S ), the system begins working (α

1
) and the 

repairperson begins a new vacation (υ ). Therefore, the 

matrix block is given by: 

 

1

0

, 1 1
.

CR O
= ⊗ ⊗C Sα υ  

 

The rest of the matrix blocks are given by the 

following expressions: 

 

1 2 1 2

1 3 1

1 1

2 2 2 2

2 3 2

2 2

2 2

12 12

2

13 13

0 0 1

1 1

22 22

2

23 23

0 0 1

2 2

WR R
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WR WR WR R
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R

0

O O O O

0

O O O PM

0

O F O CR

0

O O O O

0

O O O PM

0

O F O CR

O O

C
, ,

,

, ,

, ,

, ,

, ,

,

;

;

;

;

;

;

β

β

β

β

= ⊗ = ⊗

= ⊗ = ⊗ ⊗

= ⊗ = ⊗ ⊗

= ⊗ = ⊗

= ⊗ = ⊗ ⊗

= ⊗ = ⊗ ⊗

T V C T V

C T V C T e V

C T V C T V

C T V C T V

C T V C T e V

C T V C T V

C
2

2 3 3

3 3

1

2

22 23

0 1

2 33

0 0 1

3 3

0

1 2 2

0 1

1

R R

R WR WR

WR WR WR

WR WR WR

O PM

O CR O O

0

O F O CR

PM PMPM O

F F F CR

CR CR

S

,

, ,

, ,

,
,

, ,

,

;

;

;

;

;

.

β

β

β

α υ

β

= = ⊗

= ⊗ = ⊗

= ⊗ = ⊗ ⊗

= ⊗ =

= = ⊗

=

T C T e

C T C T V

C T V C T V

C C S

C V C V

C S

 

Transient and Stationary Distribution 

The transient and the stationary distribution are 

calculated in this section. 

The Transient Distribution 

Initially, the system is new and the repairperson 

begins a vacation. For this reason, the initial distribution 

for the system is θ = (α ⊗ υ, 0). The transient 

distribution probability of being in state i at time υ is 

given by the i − th element of pυ = θ Pυ. This vector can 

be partitioned according to the macro-states as 
i

υ

p  for i = 

1,· · ·, 7. 

The Stationary Distribution 

The stationary distribution has been worked out by 

using matrix-algorithmic methods. The stationary 

distribution π  is partitioned according to the macro-state 

space, π= {π1 ,  π2 , π3  , π4  , π5  , π6  , π7 }. This vector 

verifies the balance matrix equation π  P = π  . If the 

transition probability matrix is expressed as: 

 

11 12 13 14 15 16 17

22 23 24 25 26 27

33 35 37

44 45 46 47

51 55

66 67

71 77

0 0

0

0 0

0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

 
 
 
 
 

=  
 
 
 
 
 

C C C C C C C

C C C C C C

C C C

P C C C C

C C

C C

C C

 (1) 

 

The equations can be expressed jointly with the 

normalization equation by matrix blocks as: 

 

1 1 11 5 51 7 71

2 1 12 2 22

3 1 13 2 23 3 33

4 1 14 2 24 7 44

5 1 15 2 25 3 35 4 45 5 55

6 1 16 2 26 4 46 6 66

7 1 17 2 27 4 47 6 67 7 77

,

,

,

,

,

,

,

= + +

= +

= + +

= + +

= + + + +

= + + +

= + + + +

C C C

C C

C C C

C C C

C C C C C

C C C C

C C C C C

π π π π

π π π

π π π π

π π π π

π π π π π π

π π π π π

π π π π π π

 

 

and 
7

1
1

ii=
=∑ eπ . 

 

The solution in a matrix form has been worked out 

by using matrix-analytics methods and it is given by: 

 

1
1 7

i
i; ,..., ,= =

i
Rπ π  

 

where: 
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1

1 12 2 2

2 12 2

5 5 3 3 35 4 4 45 5

6 6 4 4 46 6

7 7 3 3 37 4 4 47

6 6 67 4 4 46 6 67 7

2 7

2 7

3 4

i ii

i i i

i i i

I i

i

i

( ) ; ,..., ,

; , ..., ,

,

; , ,

( ) ,

( )

(

)

−

= − =

= + =

=

= =

= + +

= +

= + +

+ +

G C

H C C G C

R C G

R H G

R H H G C H G G G

R H H G C G

R H H G C H G C

H G C H G C G C G

 

 
The vector π1 is given by: 

 
1

7

1 2 11 5 51 7 71

2

1 | ( + + - ) *
i

( ,0) C R C R C I ,

−

=

 
= + 

 
∑e R eπ  

 
where, ∗ denotes the removing of the first column of the 

matrix. 
 

Measures 

Several interesting reliability measures are calculated 

in this section. 

Availability 

It is the probability that the system is operational. It is 

given by: 
 

4

1

v

i

A v( )
=

=∑ i
p e  

 
In the steady-state case, the availability is the 

proportional time that the system is operational, 
4

1 ii
A

=

=∑ eπ . 

Reliability 

The time up to the first time that the system is not 

operational is phase-type distributed with representation 

((α ⊗ υ ,0) , P
’
) where: 

 

1 1 1 2 1 2 1 3

2 2 1 2 2 3

2 2

3 3

WR R WR

WR WR WR R WR WR

R R

WR WR

O O O O O O O O

O O O O O O

O O

O O

, , , ,

, , ,

,

,

0
'

0 0 0

0 0 0

 
 
 
 =
 
 
 
 

C C C C

C C C
P

C

C

 

 
Therefore, the probability of being operational the 

system at time ν is given by (α ⊗ υ , 0) (I – P’)
−1 
P
v 
e. 

The mean time that the system is operational up to first 

failure is (α⊗ υ , 0) (I – P’)
−1
e. 

Conditional Probability of Failure 

The conditional probability of failure is the 

probability of failing at a certain time ν . It is given by: 

1 0 1 0

1 1 2 2

1 0 1 0

3 2 3 3

v v

w w

v v

w

F v( ) ( ) ( )

( ).

− −

− −

= ⊗ + ⊗

+ + ⊗

p T e p T e

p T p T e
 

 
This probability in steady-state is given by: 

 
0 0 0

1 1 2 2 3 2

0

3 3

w w

w

F ( ) ( )

( ).

= ⊗ + ⊗ +

+ ⊗

T e T e T

T e

π π π

π

 

 
Mean operational time, mean non-operational time, 

mean time that the repairperson is on-line and in 

vacations. 

The mean time that the system is in state i is given by 

the i-th element of the matrix 
 

0

v
n

n

M v( )
=

= ∑P eθ  

 
From this result, the following measures are defined 

in transient and stationary regime. 

Mean Operational Time 

Mean time that the system is operational up to time ν . 

It is given by: 
 

1 2 2 3
1 2 3 4

0

.
p

v
n n n n

O n w n w n n w
n

M v( ) ( )
=

= + + +∑ p e p e p e p e  

 
The steady-state case is the operational time rate 

1 2 2 3
1 2 3 4

.

p
O n w n w n n w

M = + + +e e e eπ π π π  

Mean Non-Operational Time 

Mean time that the system is non-operational up to 

time v. It is given by: 
 

5 2 6 7

0

.

v
n n n

NOp z w z1

n

M v( ) ( )
=

= + +∑ p e p e p e  

 
The long-run case is the non-operational time rate 

2 1
5 6 7NOp wz z

M .= + +e e eπ π π  

Mean Time that the Repairperson is on-Line 

Mean time that the repairperson is not on vacations 

up to time v. It is given by: 
 

2 1
3 5 7

0

.

v

n n n

On line wn z

n

M v( ) ( )
−

=

= + +∑ p e p e p e  

 
The rate of time that the repairperson is not on 

vacations is 
2 1

3 5 7On line wn z
M .

−

= + +e e eπ π π  

Mean Time that the Repairperson is on Vacations 

Mean time that the repairperson is on vacations up to 

time v. It is given by: 
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1 2 3
1 2 4 6

0

.

v
n n n n

vacation wn w n w n w
n

M v( ) ( )
=

= + + +∑ p e p e p e p e  

 
The proportional vacations time is 

.

1 2 3
vacation 1 n 2 n 4 n 6 ww w w

M e e e e= + + +π π π π . 

Costs and Rewards 

The system described in Section 1 is subject to 

different costs and rewards according to whether it is 

working or not. 

Each time that the system is operational, a reward 

equal to B is achieved. The system works in macro estate 

1, 2 or 3 and a cost determined by the respective state is 

produced. These costs are given by the column vectors 

c1, c2 and c3 respectively. 

Each time that the system is not operational, a loss 

equal to A is produced. The repairperson produces a cost 

depending on the work being performed. If the repairperson 

is on-line but idle, a cost equal to rS per unit of time is 

produced. If the repairperson is working on preventive 

maintenance, a cost depending on the phase of preventive 

maintenance is given by the column vector rPM. If the 

repairperson is engaged in corrective repair, the column 

vector cost, depending on the repair phase, is given by rCR. 

The net rewards according to the macro-states are 

given by the expressions: 

 

1 1 2 2

2 3 3

1

1 2

2 3

2

.

WR

R WR

WR

w wO n w O n w

s wO O n w

PM z PM wF

CR z CR

r

;

( ) ;

;

= − = −

= − − = −

= − − = −

= − −

nr Be c e nr Be c e

nr B c nr Be c e

nr Ae r nr Ae

nr Ae r

 

 

Therefore, the net reward vector by considering the 

phases of the system is given by: 

 

1

2

2

3

WR

R

WR

WR

O

O

O

O

PM

F

CR

 
 
 
 
 
 

=  
 
 
 
 
 
 

nr

nr

nr

nr
nr

nr

nr

nr

 

 
The mean net reward function per unit of time up to 

time v is given by: 

 

0

1

1

v

n

MNR v
v

( )
=

=
+
∑ p nr  

This value in the stationary case is: 

 

MNR = π⋅nr. (2) 

 

Numerical Example: An Optimization 

Problem 

A system as described in this paper is assumed. This 

general system is composed of multiple internal stages 

and they are partitioned into minor, moderate and major 

depending on the damage. There are 11 states which are 

partitioned as follows: 1-3, the system has undergone 

minor damage; 4-8, the system has undergone moderate 

damage (if it is observed, the repairperson remains in 

the workspace); 9-11, the system has undergone major 

damage (if it is observed, the repairperson sends it to 

preventive maintenance). The repair facility is 

composed of one repairperson. This repairperson can 

take vacations (the vacation time is random in this 

general case). When the system is in moderate state or 

it fails and is observed by the repairperson (he is in the 

workplace), the preventive maintenance or corrective 

repair begins respectively. The operational, preventive 

maintenance and corrective repair time are phase type 

distributed with representation given in Table 1. 

Rewards and cost are introduced in the problem. A 

profit per unit of time equal to B = 50 occurs whereas the 

system is operational (this will be the lost when the 

system is not operational, A = 50). While the system is 

operational a cost is produced depending on the 

operational phase in the following way c1 = (5, 6, 7)’, c2 

= (8, 9, 10, 11, 12)’ and c3 = (30, 31, 40)’. Each time unit 

that the repairperson is the workspace waiting for major 

damage or failure to occur, a cost equal to rS = 80 is 

produced. This amount increases when the repairperson 

is working. If the repairperson is engaged in preventive 

maintenance, the cost increases by 0, 5 and 10 monetary 

units depending on the preventive maintenance state, 

respectively. For corrective repair, the amount increases 

by 20, 30 and 40 monetary units, respectively. In the 

following, we examine how the repairperson’s vacation 

time should be distributed to optimise net rewards. To do 

so, two situations are considered. First, the situation in 

which vacation time is distributed geometrically, 

whereby the probability of the system failing at any time 

is equal to 1−p. And second, the situation in which the 

distribution of the vacation time is phase type (discrete 

gamma distribution) with representation: 

 

1 1

2

1
1,0 , .

0

p p

p
( )
  −
    

  
 (3) 
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Table 1: Operational, corrective repair and preventive maintenance time distributions 

Operational Time 

1

0 7 0 2 0 08 0 003 0 002 0 001 0 005 0 001 0 001 0 002 0 002

0 35 0 25 0 35 0 01 0 003 0 015 0 003 0 002 0 01 0 003 0 002

0 5 0 3 0 15 0 003 0 0 005 0 001 0 02 0 014 0 002 0 003

0 0 0 0 5 0 1 0 1 0 1 0 15 0 025 0 01 0 01

0 0 0 0 6 0 25 0 05

( ,0)

. . . . . . . . . . .

. . . . . . . . . . .

. . . . . . . . . .

. . . . . . . .

. . .

=

=

T

α

0 02 0 03 0 03 0 0015 0 002

0 0 0 0 02 0 3 0 1 0 2 0 155 0 01 0 02 0 01

0 0 0 0 3 0 2 0 253 0 15 0 05 0 02 0 01 0 015
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Mean Preventive Maintenance Time:2:5u.t. 
 
Table 2: Main stationary regime measures for case I 

  Rate time that Rate time that the 

Rate Operational Time Rate non-operational time the repairperson is on-line repairperson is on vacations 

M
O p = 0.9287 M

NO p = 0.0713 Mon−line = 0.3236 Mvacat ion = 0.6764 
 
Table 3: Main stationary regime measures for case II 

  Rate time that the Rate time that the 

Rate Operational Time Rate non-operational time repairperson is on-line repairperson is on vacations 

M
O p = 0.9280 M

NO p = 0.0720 Mon−line = 0.3217 Mvacat ion = 0.6783 

 

Case I: The Geometric Case for the Vacations Time 

We assume that the repairperson keeps on 

vacations with probability equal to p at any time. The 

optimum operational time occurs when the 

repairperson has not vacations whether costs are not 

considered, obviously. For this case, the rate 

operational time is 0:9338 and the system provides a 

profit equal to 9:7102 monetary units per unit of time. 

But, the system has to be optimized by considering 

costs and rewards. For this, the net reward function in 

the stationary regime, given in Section 5, is 

considered. Figure 1 shows this function.  

The optimum value is reached for p = 0:4525 and it is 

equal 9:7613 monetary units per unit of time. For this 

case the main steady-state measures calculated in Section 

4 are given in Table 2. 

Case II: The Discrete Gamma Case for the 

Vacations Time 

We assume that the repairperson keeps on vacations 
according to a probability distribution phase type with 
representation (3). The optimum operational time 
occurs when p1 = 0 and p2 = 0. For this case the rate 

operational time is 0:6726 and the system provides a 
profit equal to 9:7789 monetary units per unit of time. 
But, again the system has to be optimized by 
considering costs and rewards. For this, the net reward 
function in the stationary regime, given in (2), is 
considered. Figure 2 shows this function.  
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Fig. 1: Net reward versus p 

 

 
 

 
Fig. 2: Net reward versus p

1 and p2 

 

The optimum value is reached for p1 = 0:2386 and p2 

= 0:2386 and the net reward is equal 9:7924 monetary 

units per unit of time. For this case the main steady-state 

measures calculated in Section 4 are given in Table 3. 

Conclusion 

In this paper, a multi-state system subject to repairable 

failure and which receives preventive maintenance is 

modelled. This multi-state system can pass through any of 

three damage levels (composed of multiple states): minor, 

moderate and major. The repair facility is composed of a 

single repairperson. To optimise the model from an 

economic standpoint, the repairperson begins 

randomly-timed vacations after each repair. When the 

repairperson returns, four possible situations can 

occur; the system is at the first damage level (the 

repairperson begins a new randomly-timed vacation), 

the system is at the second damage level (the 

repairperson remains in the workspace waiting for a 

fatal transition to occur), the system is at the third 

damage level (the repairperson begins preventive 
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maintenance) and finally, the system is broken (the 

repairperson begins corrective repair). 

The system is modelled in an algorithmic and 

computational form and the main results can be treated 

computationally. All times embedded in the system are 

phase-type distributed. This fact enables to express the 

transient and stationary distributions and measures in a 

well structured way. Given that any discrete time 

distribution with finite support is a phase type distribution, 

the modelling can be considered general for this case. 

Cost and rewards are included in the model and 

several associated measures are worked out. One 

interesting measure, the net reward function, is built 

and it is considered to optimize a system according to 

the vacation time distribution. 
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