16,848 research outputs found

    Performance of direct-oversampling correlator-type receivers in chaos-based DS-CDMA systems over frequency non-selective fading channels

    Get PDF
    In this paper, we present a study on the performance of direct-oversampling correlator-type receivers in chaos-based direct-sequence code division multiple access systems over frequency non-selective fading channels. At the input, the received signal is sampled at a sampling rate higher than the chip rate. This oversampling step is used to precisely determine the delayed-signal components from multipath fading channels, which can be combined together by a correlator for the sake of increasing the SNR at its output. The main advantage of using direct-oversampling correlator-type receivers is not only their low energy consumption due to their simple structure, but also their ability to exploit the non-selective fading characteristic of multipath channels to improve the overall system performance in scenarios with limited data speeds and low energy requirements, such as low-rate wireless personal area networks. Mathematical models in discrete-time domain for the conventional transmitting side with multiple access operation, the generalized non-selective Rayleigh fading channel, and the proposed receiver are provided and described. A rough theoretical bit-error-rate (BER) expression is first derived by means of Gaussian approximation. We then define the main component in the expression and build its probability mass function through numerical computation. The final BER estimation is carried out by integrating the rough expression over possible discrete values of the PFM. In order to validate our findings, PC simulation is performed and simulated performance is compared with the corresponding estimated one. Obtained results show that the system performance get better with the increment of the number of paths in the channel.Peer ReviewedPostprint (author's final draft

    PPF - A Parallel Particle Filtering Library

    Full text link
    We present the parallel particle filtering (PPF) software library, which enables hybrid shared-memory/distributed-memory parallelization of particle filtering (PF) algorithms combining the Message Passing Interface (MPI) with multithreading for multi-level parallelism. The library is implemented in Java and relies on OpenMPI's Java bindings for inter-process communication. It includes dynamic load balancing, multi-thread balancing, and several algorithmic improvements for PF, such as input-space domain decomposition. The PPF library hides the difficulties of efficient parallel programming of PF algorithms and provides application developers with the necessary tools for parallel implementation of PF methods. We demonstrate the capabilities of the PPF library using two distributed PF algorithms in two scenarios with different numbers of particles. The PPF library runs a 38 million particle problem, corresponding to more than 1.86 GB of particle data, on 192 cores with 67% parallel efficiency. To the best of our knowledge, the PPF library is the first open-source software that offers a parallel framework for PF applications.Comment: 8 pages, 8 figures; will appear in the proceedings of the IET Data Fusion & Target Tracking Conference 201

    Parameterized partial element equivalent circuit method for sensitivity analysis of multiport systems

    Get PDF
    This paper presents a new technique to perform parameterized sensitivity analyses of systems that depend on multiple design parameters, such as layout and substrate features. It uses the electromagnetic (EM) method called partial element equivalent circuit to compute state space matrices at a set of design space points. These EM matrices are interpolated as functions of the design parameters. The proposed interpolation scheme allows the computation of the derivatives of the matrices, which are needed to perform the sensitivity analysis. An extensive study of the required stability and passivity properties of the system involved in the parameterized sensitivity analysis is presented. Pertinent numerical results demonstrate the robustness, accuracy, and efficiency of the proposed methodology

    Benchmarking CPUs and GPUs on embedded platforms for software receiver usage

    Get PDF
    Smartphones containing multi-core central processing units (CPUs) and powerful many-core graphics processing units (GPUs) bring supercomputing technology into your pocket (or into our embedded devices). This can be exploited to produce power-efficient, customized receivers with flexible correlation schemes and more advanced positioning techniques. For example, promising techniques such as the Direct Position Estimation paradigm or usage of tracking solutions based on particle filtering, seem to be very appealing in challenging environments but are likewise computationally quite demanding. This article sheds some light onto recent embedded processor developments, benchmarks Fast Fourier Transform (FFT) and correlation algorithms on representative embedded platforms and relates the results to the use in GNSS software radios. The use of embedded CPUs for signal tracking seems to be straight forward, but more research is required to fully achieve the nominal peak performance of an embedded GPU for FFT computation. Also the electrical power consumption is measured in certain load levels.Peer ReviewedPostprint (published version

    A comparison of digital transmission techniques under multichannel conditions at 2.4 GHz in the ISM BAND

    Get PDF
    In order to meet the observation quality criteria of micro-UAVs, and particularly in the context of the « Trophée Micro-Drones », ISAE/SUPAERO is studying technical solutions to transmit a high data rate from a video payload onboard a micro-UAV. The laboratory has to consider the impact of multipath and shadowing effects on the emitted signal. Therefore fading resistant transmission techniques are considered. This techniques paper have to reveal an optimum trade-off between three parameters, namely: the characteristics of the video stream, the complexity of the modulation and coding scheme, and the efficiency of the transmission, in term of BER

    Discrete-Time receivers for software-defined radio: challenges and solutions

    Get PDF
    Abstract—CMOS radio receiver architectures, based on radio frequency (RF) sampling followed by discrete-time (DT) signal processing via switched-capacitor circuits, have recently been proposed for dedicated radio standards. This paper explores the suitability of such DT receivers for highly flexible softwaredefined radio (SDR) receivers. Via symbolic analysis and simulations we analyze the properties of DT receivers, and show that at least three challenges exist to make a DT receiver work for SDR: 1) the sampling clock frequency is related to the radio frequency, complicating baseband filter design; 2) a frequencydependent phase shift is introduced by pseudo-quadrature and pseudo-differential sampling; 3) the conversion gain of a charge sampling front-end is strongly frequency-dependent. Some potential solutions are also suggested for each challenge. Compared to a mixer based radio receiver, extra costs are needed to solve these problems

    A system architecture for a planetary rover

    Get PDF
    Each planetary mission requires a complex space vehicle which integrates several functions to accomplish the mission and science objectives. A Mars Rover is one of these vehicles, and extends the normal spacecraft functionality with two additional functions: surface mobility and sample acquisition. All functions are assembled into a hierarchical and structured format to understand the complexities of interactions between functions during different mission times. It can graphically show data flow between functions, and most importantly, the necessary control flow to avoid unambiguous results. Diagrams are presented organizing the functions into a structured, block format where each block represents a major function at the system level. As such, there are six blocks representing telecomm, power, thermal, science, mobility and sampling under a supervisory block called Data Management/Executive. Each block is a simple collection of state machines arranged into a hierarchical order very close to the NASREM model for Telerobotics. Each layer within a block represents a level of control for a set of state machines that do the three primary interface functions: command, telemetry, and fault protection. This latter function is expanded to include automatic reactions to the environment as well as internal faults. Lastly, diagrams are presented that trace the system operations involved in moving from site to site after site selection. The diagrams clearly illustrate both the data and control flows. They also illustrate inter-block data transfers and a hierarchical approach to fault protection. This systems architecture can be used to determine functional requirements, interface specifications and be used as a mechanism for grouping subsystems (i.e., collecting groups of machines, or blocks consistent with good and testable implementations)

    MIMO signal processing in offset-QAM based filter bank multicarrier systems

    Get PDF
    Next-generation communication systems have to comply with very strict requirements for increased flexibility in heterogeneous environments, high spectral efficiency, and agility of carrier aggregation. This fact motivates research in advanced multicarrier modulation (MCM) schemes, such as filter bank-based multicarrier (FBMC) modulation. This paper focuses on the offset quadrature amplitude modulation (OQAM)-based FBMC variant, known as FBMC/OQAM, which presents outstanding spectral efficiency and confinement in a number of channels and applications. Its special nature, however, generates a number of new signal processing challenges that are not present in other MCM schemes, notably, in orthogonal-frequency-division multiplexing (OFDM). In multiple-input multiple-output (MIMO) architectures, which are expected to play a primary role in future communication systems, these challenges are intensified, creating new interesting research problems and calling for new ideas and methods that are adapted to the particularities of the MIMO-FBMC/OQAM system. The goal of this paper is to focus on these signal processing problems and provide a concise yet comprehensive overview of the recent advances in this area. Open problems and associated directions for future research are also discussed.Peer ReviewedPostprint (author's final draft
    • …
    corecore