4,957 research outputs found

    Distributed Failure Restoration for Asynchronous Transfer Mode (ATM) Tactical Communication Networks

    Get PDF
    Asynchronous Transfer Mode (A TM) is an attractive choice for future military communication systems because it can provide high throughput and support multi-service applications. Furthermore its use is consistent with the 'off the shelf technology policy that is currently operated by the Defence Engineering Research Agency of Great Britain. However, A TM has been developed as a civil standard and is designed to operate in network infrastructures with very low failure rates. In contrast, tactical networks are much less reliable. Indeed tactical networks operate on the premise that failures, particularly node failures, are expected. Hence, efficient, automatic failure restoration schemes are essential if an A TM based tactical network is to remain operational. The main objective of this research is the proposal and verification of one or more new restoration algorithms that meet the specific requirements of tactical networks. The aspects of ATM networks that influence restoration algorithms' implementation are discussed. In particular, the features of A TM networks such as the concept of Virtual Paths Virtual Channels and OAM (Operation And Maintenance) mechanisms that facilitate implementation of efficient restoration techniques. The unique characteristics of tactical networks and their impact on restoration are also presented. A significant part of the research was the study and evaluation of existing approaches to failure restoration in civil networks. A critical analysis of the suitability of these approaches to the tactical environment shows no one restoration algorithm fully meets the requirements of tactical networks. Consequently, two restoration algorithms for tactical A TM networks, DRA-TN (Dynamic Restoration Algorithm for Tactical Networks) and PPR-TN (Pre-planned Restoration Algorithm for Tactical Networks), are proposed and described in detail. Since the primary concern of restoration in tactical networks is the recovery of high priority connections the proposed algorithms attempt to restore high-priority connections by disrupting low-priority calls. Also, a number of additional mechanisms are proposed to reduce the use of bandwidth, which is a scarce resource in tactical networks. It is next argued that software simulation is the most appropriate method to prove the consistency of the proposed algorithms, assess their performance and test them on different network topologies as well as traffic and failure conditions. For this reason a simulation software package was designed and built specifically to model the proposed restoration algorithms. The design of the package is presented in detail and the most important implementation issues are discussed. The proposed restoration algorithms are modelled on three network topologies under various traffic loads, and their performance compared against the performance of known algorithms proposed for civil networks. It is shown that DRA-TN and PPR-TN provide better restoration of higher priority traffic. Furthermore, as the traffic load increases the relative performance of the DRA-TN and PPR-TN algorithms increases. The DRA-TN and PPR-TN algorithms are also compared and their advantages and disadvantages noted. Also, recommendations are given about the applicability of the proposed algorithms, and some practical implementation issues are discussed. The number of problems that need further study are briefly described.Defence Engineering Research Agency of Great Britai

    Design of survivable WDM network based on pre-configured protection cycle

    Get PDF
    Wavelength Division Multiplexing (WDM) is an important technique which allows the trans- port of large quantities of data over optical networks. All optical WDM-based networks have been used to improve overall communication capacity and provide an excellent choice for the design of backbone networks. However, due to the high traffic load that each link can carry in a WDM network, survivability against failures becomes very important. Survivability in this context is the ability of the network to maintain continuity of service against failures, since a failure can lead to huge data losses. In recent years, many survivability mechanisms have been studied and their performance assessed through capacity efficiency, restoration time and restorability. Survivability mechanisms for ring and mesh topologies have received particular attention

    Single-Layer versus Multilayer Preplanned Lightpath Restoration

    Get PDF
    Special Issue on ”Optical Networks” October 200

    Rapid restoration techniques for software-defined networks

    Get PDF
    There is increasing demand in modern day business applications for communication networks to be robust and reliable due to the complexity and critical nature of such applications. As such, data delivery is expected to be reliable and secure even in the harshest of environments. Software-Defined Networking (SDN) is gaining traction as a promising approach for designing network architectures which are robust and flexible. One reason for this is that separating the data plane from the control plane, increases the controller’s ability to configure the network rapidly. When network failure events occur, the network manager may trade-off the optimality of the achieved network reconfiguration with the responsivenss of the reconfiguration process. Responsiveness may be favoured when the network resources are under stress and the failure rate is high. We contribute SDN recovery methods that leverage information about the structure of the network to expedite network restoration when a link failure occurs. They operate by detecting community-like structures in the network topology and then they find alternative paths which have low operation and installation costs using this information. Extensive simulations are conducted to evaluate the proposed SDN recovery methods using open-source simulation tools. They provide evidence that the proposed approaches lead to performance gains when an alternative path is required among a set of candidate paths

    Towards high quality and flexible future internet architectures

    Get PDF

    Survivable mesh-network design & optimization to support multiple QoP service classes

    Get PDF
    Every second, vast amounts of data are transferred over communication systems around the world, and as a result, the demands on optical infrastructures are extending beyond the traditional, ring-based architecture. The range of content and services available from the Internet is increasing, and network operations are constantly under pressure to expand their optical networks in order to keep pace with the ever increasing demand for higher speed and more reliable links

    Applications of satellite technology to broadband ISDN networks

    Get PDF
    Two satellite architectures for delivering broadband integrated services digital network (B-ISDN) service are evaluated. The first is assumed integral to an existing terrestrial network, and provides complementary services such as interconnects to remote nodes as well as high-rate multicast and broadcast service. The interconnects are at a 155 Mbs rate and are shown as being met with a nonregenerative multibeam satellite having 10-1.5 degree spots. The second satellite architecture focuses on providing private B-ISDN networks as well as acting as a gateway to the public network. This is conceived as being provided by a regenerative multibeam satellite with on-board ATM (asynchronous transfer mode) processing payload. With up to 800 Mbs offered, higher satellite EIRP is required. This is accomplished with 12-0.4 degree hopping beams, covering a total of 110 dwell positions. It is estimated the space segment capital cost for architecture one would be about 190Mwhereasthesecondarchitecturewouldbeabout190M whereas the second architecture would be about 250M. The net user cost is given for a variety of scenarios, but the cost for 155 Mbs services is shown to be about $15-22/minute for 25 percent system utilization

    Deliverable DJRA1.2. Solutions and protocols proposal for the network control, management and monitoring in a virtualized network context

    Get PDF
    This deliverable presents several research proposals for the FEDERICA network, in different subjects, such as monitoring, routing, signalling, resource discovery, and isolation. For each topic one or more possible solutions are elaborated, explaining the background, functioning and the implications of the proposed solutions.This deliverable goes further on the research aspects within FEDERICA. First of all the architecture of the control plane for the FEDERICA infrastructure will be defined. Several possibilities could be implemented, using the basic FEDERICA infrastructure as a starting point. The focus on this document is the intra-domain aspects of the control plane and their properties. Also some inter-domain aspects are addressed. The main objective of this deliverable is to lay great stress on creating and implementing the prototype/tool for the FEDERICA slice-oriented control system using the appropriate framework. This deliverable goes deeply into the definition of the containers between entities and their syntax, preparing this tool for the future implementation of any kind of algorithm related to the control plane, for both to apply UPB policies or to configure it by hand. We opt for an open solution despite the real time limitations that we could have (for instance, opening web services connexions or applying fast recovering mechanisms). The application being developed is the central element in the control plane, and additional features must be added to this application. This control plane, from the functionality point of view, is composed by several procedures that provide a reliable application and that include some mechanisms or algorithms to be able to discover and assign resources to the user. To achieve this, several topics must be researched in order to propose new protocols for the virtual infrastructure. The topics and necessary features covered in this document include resource discovery, resource allocation, signalling, routing, isolation and monitoring. All these topics must be researched in order to find a good solution for the FEDERICA network. Some of these algorithms have started to be analyzed and will be expanded in the next deliverable. Current standardization and existing solutions have been investigated in order to find a good solution for FEDERICA. Resource discovery is an important issue within the FEDERICA network, as manual resource discovery is no option, due to scalability requirement. Furthermore, no standardization exists, so knowledge must be obtained from related work. Ideally, the proposed solutions for these topics should not only be adequate specifically for this infrastructure, but could also be applied to other virtualized networks.Postprint (published version
    corecore