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ABSTRACT

Every second, vast amounts of data are transferred over communication systems around

the world, and as a result, the demands on optical infrastructures are extending beyond

the traditional, ring-based architecture. The range of content and services available from

the Internet is increasing, and network operations are constantly under pressure to expand

their optical networks in order to keep pace with the ever increasing demand for higher

speed and more reliable links.

Disruptions to communication networks cause major service problems that affect busi-

nesses, governments and consumers alike. Sustainability of infrastructure with continued

quality of service is a key requirement of optical network design and development. Build-

ing sustainable networks is a vital in minimizing both the risk and impact of any disrup-

tions. Currently, optical mesh networks are the topology of choice, as they use much less

resources in comparison to ring networks, while still satisfying the growth of demand. A

variety of protection and restoration methods are available for optical transport networks

and these include Automatic Protection Switching (APS), dedicated span and path pro-

tection and Shared Backup Path Protection (SBPP). These schemes vary in complexity,

spare capacity usage and restoration speed; with each scheme presenting different advan-

tages and disadvantages. The implementation of these schemes in the logical topology of

a network is dependent on the network structure and the available capacity of the physical

topology.

In this thesis, the interaction between networks’ physical and logical topologies and

iii



the efficiency of various protection schemes is investigated using new, improved mathe-

matical models which are developed in this thesis. A new approach for establishing physi-

cal survivability of networks is proposed which has much faster computational speed than

other techniques reported in the literature.

A new optimization model is developed for SBPP which reduces the number of con-

straints in the solution at the cost of extra variables. This model has particular advan-

tages when dealing with large size networks. This thesis also considers the application

of p-cycles to network topology design. A new definition for the fundamental cycles is

proposed and applied to developing a new ILP model which reduces the complexity of

the problem and arrives at the optimal solution more efficiently.

In practice, depending on the service requests, the communication demands can have

various level of protection. By integrating multiple protection schemes into a network for-

mulation, network operators can take advantage of the characteristics of different demand

categories to further utilize the resources available, while still maintaining the quality of

service. In addition, with the joint design of physical and logical topology in the formu-

lation, the network design model proposed in this thesis facilitates better solutions than

when these topologies are designed separately.

The last contribution of this thesis is the development new and novel formulation mod-

els to support the design and optimization of optical networks. These models are based on

mixed-protection schemes that support Multiple Quality of Protection Service (MQoPS)

classes of communication demands. It is shown that these models bring significant im-

provements to network physical topology design, as well as significantly improving the

efficiency of resource allocation in the logical topology design for achieving sustainable

optical mesh networks.
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Chapter 1

Introduction

In this day and age, information and technology are so ingrained in day to day life that

many people do not even realize how large a part they actually play. Most people carry

various advanced communication devices that support data and multimedia exchange over

both wired and wireless networks. The constant demands for more bandwidth and a faster

exchange of information around the globe is growing increasingly evident [3, 6, 7, 8].

This need has become a driving force that is pushing network technologies to new levels,

requiring both flexibility and a greatly increased capacity to satisfy these world demands.

The advancement and evolution of optical technologies has placed the Wavelength

Division Multiplexing (WDM) transmission system at the front end of research interest

in the field of data communications and networking. The large range of content and

services available from the internet is increasing globally. Table 1.1 shows the statistical

data of internet usage against the population in different world areas. The average growth

of world internet usage over a seven year period starting from 2000 was 208.7%; some

regions, such as the Middle East, Africa and Latin America have increased their usage

over 400%. Dense Wavelength Division Multiplexed (DWDM) mesh networks that

route optical connections using optical cross-connects (OXCs) have been proposed in [1,

9, 10], as well as a variety of optical switching systems capable of exchanging information
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Table 1.1: Internet Usage (Source: Yahoo case analysis 9/2007)

WORLD INTERNET USAGE AND POPULATION STATISTICS

World
Region

Population
(2007
EST.)

Population
% of World

Internet
Usage

% Popu-
lation (
penetra-
tion
)

Usage
% of
World

Usage
Grow
(2000-
2007)

Africa 933,448,292 14.2% 33,334,800 3.6% 3/0% 638.4%

Asia 3,712,527,624 56.5% 398,709,065 10.7% 35.8% 248.8%

Europe 809,624,686 12.4% 314,792,225 38.9% 28.3% 199.5%

Middle East 193,452,727 2.9% 19,424,700 10.0% 1.7% 491.4%

North American 334,538,018 5.1% 233,188,086 69.7% 20.9% 115.7

Latin
American
/Carribean

556,606,627 8.5% 96,386,009 17.3% 8.7% 433.4%

Aceania /
Australia

34,468,443 0.5% 18,439,541 53.5% 1.7% 142%

World Total 6,74,666,417 100% 1,114,274,426 16.9% 100% 208.7%
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at several terabits per second. With the existence of so many data channels over a fiber

infrastructure, serious problems may occur if a failure were to occur, since the amount

of bandwidth lost by a single resource failure is a great deal larger than what would have

been lost using traditional networks. The disruption of communication networks is easily

capable of causing major service problems and more serious damage than ever before.

For example, an earthquake near Taiwan in December 2006 affected more than 75% of

the available network capacity; in October 2007, a network disruption occurred during

business hours at Sacramento’s VAs hospital regional data processing center, and this

disruption severely interfered with normal hospital operation, particularly with inpatient

and outpatient care [11]; in 2008, R. Brad [8] reported the alarming incident of a cable

being cut in the Middle East - undersea cable lines were cut or damaged and as a result,

disrupted service in Egypt, the Middle East and India. About 75% of the capacity between

Europe and the Middle East was severed, and over half of India’s bandwidth was cut due

to the disruption, according to a report from Reuters that cited local officials [8]. Even

today, network users could experience service disruptions such as network congestion,

slow data transfer and some services simply being unavailable. Therefore, today’s optical

networks are required not only to perform the data transfer, but also provide reliable,

efficient routing with fast recovery from any failures.

Protecting networks against service disruptions has become more important than ever

before, and is a crucial task in network development and design. Network operators are

increasing their focus on the reliability of networks which can continue to provide service

under some common network failures, such as cable cuts, power outage, etc; this topic

has also attracted many researchers around the world.

Mesh-based networks are considered an attractive alternative to the ring-based net-

works for the future of optical communications, based on dense wavelength division mul-

tiplexe (DWDM) technology [12, 13]. One of the main reasons for this technology being

seen in a favorable light is that mesh-based restoration networks offer much less capac-

ity redundancy than ring-based networks while maintaining the same restorability against
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any single span failure. A network with more complex mesh topologies and using a larger

number of wavelengths usually consists of OXCs, arranged in some arbitrary topology

and providing interconnection to a number of different client networks, e.g., sub-networks

that support Multi-Protocol Label Switching (MPLS)/ Multi-Protocol Lambda Switching

(MPS). Each OXC can switch the optical signal coming in from an input fiber link on a

wavelength to an output fiber link with the same wavelength, or can be equipped with a

converter if transfer to a different wavelength output fibre is required. An optical com-

munication channel established over a network of OXCs is the lightpath (in some papers

referred to as the λ -channel), which may span over a number of fiber links (physical

hops). In the case of no converter being available within the network, a lightpath can be

associated with the same wavelength on each hop (this situation was formerly known as

the wavelength continuity constraint). If converters are available, different wavelengths

may be used on each hop to create a lightpath.

Survivability techniques can be classified into three categories: 1) prevention, 2) net-

work design, and 3) traffic management and restoration [14]. Prevention techniques focus

on improving component and system reliability (such as fault tolerance in hardware archi-

tecture) while the purpose of a careful network design is to minimise the effects of system

level failures. Lastly, traffic management and restoration procedures aim to manage the

network load in such a way that the failure has minimum impact and connections can be

re-established around the failure. In multilayer network design, each layer can have its

own protection mechanism and recovery procedures to deal with failures. This research

focuses mainly on the survivability of the optical transport layer. In practice, optical

transport networks are mostly based on ring topology. Ring networks use simple switch-

ing mechanisms, which permit fast restoration time after failure (about 50ms- 60ms), but

they require at least 100% capacity redundancy. Furthermore, in complete multi-ring net-

works, the working fiber/channel groups are usually not fully utilizable, and thus the ratio

of installed to working capacity can be 200-300%. In contrast, mesh based networks use

much less resources, but have the drawback of complicated protection mechanisms. The

protection for mesh networks is usually based on paths (end-to-end) or on spans, but the
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restoration time is much longer than in the case of ring networks.

A variety of protection and restoration methods have been designed and implemented

for optical transport mesh networks [15, 16, 17, 18, 2], these include automatic protection

switching (APS), mesh span restoration, mesh path restoration, shared backup path pro-

tection (SBPP), and their variations in terms of complexity, spare capacity usage, restora-

tion speed, and some other aspects. Thus, each method has its own advantages and dis-

advantages. For example, a network employing APS can achieve a restoration time less

than 60 ms but must use more than 100% capacity redundancy. In contrast, with SBPP the

restoration time after a failure can be as large as 200ms and in some cases the total redun-

dancies as low as 21% [19, 4]. Multiple methods can be integrated into the same network

providing different qualities of protection service to different connections and this has also

been suggested by W. Grover [4], but thus far, not many researchers have addressed this

issue. In October 2003, F. J. Blouin et al. [20] reported some research results on the mixed

protection techniques applied to the optical layer. Although, the results do not highlight

the benefit very well,they show that significant capacity savings can be achieved with rel-

atively well connected networks. However, the interaction between network topology and

capacity efficiency of various survivability schemes are still unclear.

1.1 Motivation and Research Objectives

Network survivability has been extensively researched, and a large range of protection

methods are available that allow service providers to choose the schemes that meet their

restoration time requirements with optimum spare capacity. A combination of protection

schemes always provides for a solution with the smallest cost of network design. In

addition, there are four different policies for the treatment of different network demands

[4] known as Multiple Quality of Protection (MQoP) service classes: Demands that are

guaranteed to be protected, demands that are protected with the best effort possible at the

time, demands that are not protected, and lastly, demands that are not protected but can

5



be pre-empted. Significant reduction in the spare capacity requirements can be achieved

under these service class categories as not all services need to be restored in the case of a

failure. Thus, designing a mesh-restorable network with mixed service classes will allow

the network to perform with enhanced operation and provide more user options. Thus, the

motivation of this research was to discern which combination of service classes together

with various protection schemes would give the best capacity efficiency.

It is commonly understood that logical topology design is very much dependent on

the physical architecture of the network. However, not many researches address the phys-

ical network design or optimise the problems of network architecture with respect to the

survivability of networks under multiple QoP service classes.

The main goals of this research were:

• To study topology design and optimisation of mesh network survivability based on

a combination of a distributed restoration mechanism and a pre-planed protection

mechanism, which are embedded in an optical transport network layer.

• To achieve a fundamental understanding of the interaction between topology and

capacity efficiency with respect to various protection schemes, and develop new

models for network design that can support MQoP service classes . The new models

effectively utilise the networks’ resources by integrating various protection schemes

into one mathematical formulation.

1.2 Contributions

This study presents comprehensive views of the interaction between topology and ca-

pacity efficiency with respect to various protection schemes in mesh network design and

implementation. It further provides insight for future research on the design and operation

bases for shared risk link groups with different of service classes in the given networks.

The main contributions of this thesis include:
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1. A new method of verifying physical network survivability based on the theory of

the 2-connected graph. This is an important requirement of protection schemes for

each network, and it guarantees that the routing of the main path can be diverted to

an alternative path in the case of a failure.

2. Proofs that all p-cycle components can be constructed from the network’s funda-

mental cycles, which are the main element for formulating the p-cycle model. An

algorithm for finding a set of a network’s fundamental cycles is introduced. The use

of fundamental cycles to formulate the Integer Linear Programming (ILP) model

significantly reduces the model’s complexity when compared to the conventional

model when dealing with large networks.

3. The unification of mathematical formulations for span protection, path protection,

shared backup path protection and the p-cycle base of static traffic demands. This

offers a significant improvement in terms of the complexity of the ILP formulation.

4. Two new proposed ILP models for SBPP at the optical layer of mesh networks.

The first proposed model is a Variable-Based Model (VBM). This model has a

smaller number of constraints, but a larger number of variables, which are sets of

Disjointed-Primary and Joint Backup (DPJB) candidates created in the pre-processing

stage. Simulation shows that the multi-level optimisation technique reduces the

number of variables in the VBM significantly; however, this model is still only

suitable for small networks and a small amount of traffic demand. The VBM can

be further developed to produce optimal solutions by balancing its number of con-

straints and variables.

5. A new model for network design to support MQoP using various protection schemes

is developed. This type of network can respond to different quality of service de-

mands with optimum resource usage.

6. Providing further insight for future research on the shared risk link groups network

design and opimisation to support multiple QoP service classes.
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1.3 Thesis outline

The remainder of this thesis is presented as follows:

Chapter 2 Backgound: This chapter provides an overview of the development of optical

networks and network protection techniques. The advantages and disadvantages

of different protection schemes with respect to the economic effects in network

planning and capacity design are also highlighted. An overview of some topology

design methods and tools for network design and optimisation such as ILP, heuristic

methods of optimisation, graph theory etc..

Chapter 3 Connectivity of Physical Networks: The focus of this chapter is presenting a

new approach to establishing the physical survivability of networks. The algorithm

proposed by this study provides all the distinct fundamental cycles of the network,

if required, with only a small change in Algorithm 1. The technique applied is

capable of identifying node-bridges, something not previously considered in related

literature, as well as link-bridges.

Chapter 4 Span Protection: In this chapter, the most common form of network protection

is examined in depth, as well as the related mathematical formulation. This chapter

also presents the relationship between the efficiency in capacity design and network

congestion.

Chapter 5 Path Protection: This chapter details the development of path protection schemes

for dedicated protection and SBPP. A new mathematical formulation with improved

complexity for SBPP is introduced. Also in this chapter, the development of a

heuristic model for multi-level optimisation for SBPP is explained.

Chapter 6 p-cycles: Outlined in this chapter is the concept and development of the p-

cycle protection scheme. A new mathematical formulation designed for this model

is introduced. The new model also covers ”non-simple p-cycles”, which are usually

not taken into account by the conventional model due to the exponential increase in
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the number of variables as network size increases.

Chapter 7 Network Survivability with MQoP Service Classes: This chapter presents the

integration of various protection schemes, previously incorporated into one formu-

lation, to serve various types of demands in a network. Various combinations of

different capacity planning problems for each scenario are considered and simu-

lated.

Chapter 8 Case Study: The focus of this chapter is to present and discuss a case study

involving the analysis and design of metro optical networks in the cases of ring

and mesh topologies. This case study originated from [5], which was designed

mainly for the multi-service metro optical SONET/SDH network of the downtown

metro area of a large U.S. city. The chapter mainly focuses on capacity planning

and logical design of optical networks, and compares these ring and mesh networks

based on their resource efficiency.
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Chapter 2

Background

This chapter provides a review of optical transport networks, and in particular, examines a

specific type of optical network known as an optical mesh network. In the review of opti-

cal transport networks, it is important to stress the significance of network survivability in

today’s data communication, and focus on some milestones in the design and development

of survivable mesh networks for both physical and logical topologies while the advantages

and disadvantages of different protection schemes with respect to the economic effects in

network planning and capacity design are also highlighted. A mathematical optimisation

of ILP problems is also presented in depth. The ILPs are special cases of linear program-

ming problems, or more generally combinatorial optimisation problems, and will be used

extensively throughout this thesis.

2.1 Communication Networks

During the 1980s, data networks only played a minor role in the definition of network

architectures and Internet Protocol (IP) traffic was just an academic phenomena, which

was limited to the research and development network called the ‘Internet’. The exchange

of data over networks was within individual enterprises via specific protocols. The de-
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velopment of browsers, web servers, HTML, and opening the Internet to commercial

applications in the early 1990s have created another market where data traffic doubled

every six months. The demand for high bandwidth has been increasing at an exceptional

rate and has become the driving force behind the development of communication tech-

nology. Figure. 2.1 shows the evolution of the optical network with the advent of Multi

Protocol Label Switching (MPLS) providing more efficient means of provisioning re-

sources within OXCs and Table 2.1 presents the development in optical technologies.

Figure 2.1: Evolution of Data Network

Optical fiber has become the transmission medium of choice because it provides large

bandwidth {approximately 24 TeraHertz (THz)}, low attenuation, and low Bit Error Rate

(BER). In order to share this bandwidth, various multiplexing techniques have been pro-

posed for optical networks. These techniques include Wavelength Division Multiplexing

(WDM), Optical Time Division Multiplexing (OTDM), and Optical Code Division Mul-

tiplexing (OCDM).

In WDM networks, a number of optical channels (having different wavelengths) are

combined and simultaneously transmitted in the same direction over an optical fiber.

”WDM is a rate and format independent technology, and it can support any combina-

tion of interface rates including synchronous or asynchronous Optical Channel (OC) such

as OC3, OC12, OC48, or OC192 on the same fiber at the same time” [21]. There are

three variations of WDM: Narrowband WDM (NWDM), Wideband WDM (WWDM) and
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Table 2.1: Photonic Technology Timeline (Source:Photonic Network Architecture [3])

1995 - 1997 1998 - 2000 2000 - 2005 2005 - 2010

Wavelength per
fiber

4 - 16 32 - 128 128 - 512 Greater than 1024

Optical
amplification
bandwidth

40nm 80nm-120nm 200nm No prediction

Wavelength
spacing

3.2nm - 1.6nm 0.8nm - 0.4nm 0.8nm - 0.4nm 0.2nm

Capacity per
fiber

40Gbps 320Gbps 1Tbps 2Tbps - 5Tbps

Equipment DWDM and
Static
OADM

Dynamic OADM OXC Optical switching

Optical devices
DWDM and
EDFA

Acoustic-optic
tunable filter,
tunable laser
devices

Optical
switches

Optical packet
routers
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Dense WDM (DWDM). Typically, NWDM is implemented by using two wavelengths:

1533 and 1577 nanometers (nm). WWDM is implemented by combining a 1310 nm

wavelength with another wavelength into the low-loss window of an optical fiber cable be-

tween 1528 nm and 1560 nm. The difference between WDM and DWDM is that DWDM

supports many more wavelengths. As illustrated in Figure. 2.2, optical signals having

wavelengths λ1,λ2,λ3,λ4, and λ5 are multiplexed and simultaneously transmitted in

the same direction over a single optical fiber cable. The number of wavelengths that a

Figure 2.2: Wavelength Division Multiplex

DWDM system can support depends on the ability of the network to filter and separate

them. However, current DWDM systems are capable of supporting 32 or 40 wavelengths,

while recent DWDM systems capable of supporting as many as 80 and 128 wavelengths

have been announced. More details and information related to these techniques can be

found in [21, 15, 1].

2.1.1 Transport Networks

Transport networks are essentially the physical facility networks of providers. These fa-

cilities can be produced and implemented with various technologies such as WDM, syn-

chronous optical networks, and with different equipment such as OXCs, wavelength con-

verters etc. Different service demands are multiplexed together and routed all over a com-

mon infrastructure from their origin, to their final destination of a logical, multi-channel

point-to-point transmission system.

14



Today, all networks operate logically as if they had their own dedicated transmission

systems, but each of them is just one of several virtual service-layer networks supported

by one underlying physical network, which is the transport network. This allows the

transport network to utilise the resources available by controlling the traffic flow, balanc-

ing network load and improving throughput. As a transport network can be implemented

with various types of protection schemes and techniques, the network reliability can be

more readily enhanced.

Each communication network consists of a set of nodes connected by a set of links.

In the case of a telephone network, the nodes are referred to as switches, and links are

referred to as trunks. The trunks are cables comprising of twisted wire pairs and the

switches are metallic connections between wire pairs in the trunk’s cables. In the case of

data communication services such as the Internet, nodes are routers and links sometimes

referred to as spans. Trunks or links, and other transmission mediums may consist of a

series of networks, which are administered by different providers.

Each network provider is responsible for the design and operation of their own net-

works. These network providers are referred to as backbone networks. The backbone net-

work is an important architectural element for building enterprise networks. It provides

a path for the exchange of information between different local area networks (LANs) or

subnetworks. A backbone network can tie together diverse networks in the same build-

ing, in different buildings in a campus environment, or over wide areas. Generally, the

capacity of the backbone network is greater than the capacity of the individual networks

connected to it. Thus, a backbone network is one with a central cabling scheme to which

other networks are attached. A node in one network communicates with different nodes

in other networks by sending packets across the backbone network.

The different types of transport networks can be categorised into three main groups:

access networks, metropolitan networks and long-haul networks, as shown in Figure. 2.3.

The access network is responsible for connecting local customer premises to nearby cen-

tral offices. The access networks attached to the backbone network may require a gate-
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Figure 2.3: Transport Networks
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way or router. These are also referred to as local-area networks (LANs). The networks

that span a campus or metropolitan areas are called metropolitan-area networks (MANs).

These networks typically span relatively short distances of about 50 km. The long-haul

networks, or inter-exchange networks, interconnect cities and major traffic hubs.

2.1.2 WDM Architectures and Technologies

Most of today’s metropolitan area and local area networks consist of ring or bus topolo-

gies. Thus, all nodes in these networks share a single wavelength channel for transceiving

data. Long-haul networks use a mesh-type topology. The transmission and reception

of data is handled by optical cross connects (OXCs) provided at each node. The cost

of links and the OXCs is high, and therefore, these networks are usually sparsely con-

nected [15, 1].

Network data can consist of either broadcast and select or wavelength routing ar-

chitectures. In the broadcast and select architecture WDM networks, data signals are

broadcast by a passive device in the center of the network to all other nodes. A tune-

able optical filter is attached at each node to select the desired wavelength. The size of

this type of network is limited as the wavelength cannot be reused and the transmitted

power must be divided between all receivers in the network (from a node). Typical ex-

amples of networks that employ this architecture are the bus topology and star topology

networks Figure. 2.4(a), Figure. 2.4(b).

In bus topologies, all nodes are connected to a single bus or to two unidirectional

buses. The disadvantages of the bus topology are power loss and tapping loss within the

bus. Thus, it limits the number of nodes that can be attached to the bus without optical

amplifiers.

In the star topology, each node is connected to a star coupler via two-way fibers. A

node transmits its information stream to the star coupler on one available wavelength. A

collision will occur when two or more nodes transmit optical information streams on the
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(a) (b)

(c)

Figure 2.4: An example of (a) Bus,(b) Start and (c) Ring Topology Networks. (Source:

Wavelength Division Multiplexing Networks [1])
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same wavelength, simultaneously. Each node in the star topology is connected to an Add

Drop Multiplexer.

Each Add Drop Multiplexer can drop a single fixed wavelength, and can add any

wavelength or any number of wavelengths simultaneously. A node can send data to any

other node on the ring by transmitting on the wavelength that has dropped data to the

same destination simultaneously [1]. In wavelength routing architectures, each node in

the network is capable of routing various wavelengths from an input port to different

output ports Figure. 2.5. Thus, the network can have many simultaneous lightpaths of

the same wavelength, and have better resource utilisation. In addition, this does not use

power to transmit signals to unwanted destinations as happens in the broadcast and select

architecture networks.

Figure 2.5: Routing Network

Optical Channel Layer Network

Optical networks are complicated and have a variety of different functions that are handled

by different network components. These functions include point-to-point connections and

add/drop functions (where part of the traffic is dropped at a desired node and the rest

passed through to other nodes). In addition, network functions handle the equipment and

link failures to maintain continuity of service.

The networks comprise multiple layers Figure. 2.6 that perform similar functions as
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Figure 2.6: Network Layer

discussed earlier. A network layer is a collection of transmission and/or switching equip-

ment that provides a collection of communication services, possibly with the assistance

of a sublayer. A sublayer is a network layer which provides services to another layer [22].

The existence of these layers helps to reduce equipment costs. This is because different

network layers perform different functions at different bit rates. For example, it would be

expensive for the SONET (Synchronous Optical Network) layer to process 10x2.5 Gb/s

streams of data coming from the WDM layer, and it would not be suitable to use the

WDM layer to transfer data streams at a lower granularity, eg. a few hundred megabits

per second.

The Optical Channel Layer Network provides end-to-end networking of optical chan-

nels for transparently conveying client information in varying formats, such as Synchronous

Digital Hierarchy (SDH), Plesiochronous Digital Hierarchy (PDH) and Asynchronous

Transfer Mode (ATM). To provide end-to-end networking, the following capabilities are

included in the optical channel layer network:

1. Optical channel connection rearrangement for flexible network routing;

2. Optical channel overhead processes to ensure integrity of the optical channel adapted

information; and

3. Optical channel supervisory functions to enable network level operations and man-

agement functions such as connection provisioning, Quality of Service (QoS) pa-

rameter exchange, and network survivability.
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Optical Multiplex Section Layer Network

Optical Multiplex Section Layer Networks provide functionality for networking of a

multi-wavelength optical signal. The following networking capabilities are included in

an optical multiplex section layer network:

1. Optical multiplex section connection rearrangement for flexible multi-wavelength

network routing;

2. Optical multiplex section overhead processes to ensure integrity of the multi-wavelength

optical multiplex section adapted information; and

3. Optical multiplex section supervisory functions to enable section level operations

and management functions such as multiplex section connection provisioning and

network survivability.

Optical Transmission Section Layer Network

The Optical Transmission Section Layer Network provides functionality for transmission

of optical signals via optical medias of various types such as single-mode optical fibers

and multi-mode optical fibers. This functionality also includes capabilities for supervision

of optical amplifiers or repeaters when present in the optical transmission section layer

network.

The optical transport network (OTN) employs various components. Within these,

there are a few main devices that define the characteristics of the OTN: optical cross

connects (OXC), optical add and-drop multiplexers (OADM) and wavelength converters.

Optical Cross Connects (OXC)

OXCs Figure. 2.7 are used to route wavelengths between inputs and outputs while adding

and dropping local traffic. The OXCs can be any of free space type optical switching
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devices, optical solid-state devices or electromechanical mirror-based devices including

technology that enables the control of miniature mechanical devices such as very small

mirrors called MEMS.

Figure 2.7: A Logical Diagram of an OXC

An OXC consists of amplifiers, multiplexers/demultiplexers, a switch fabric, and a

CPU. The CPU is used to control the switch fabric and to run communications related

software, such as routing, signaling, and network management. There are N input and N

output optical fibers, where each fiber carries W wavelengths λ1,λ2, . . . ,λw. The optical

signal from each input fiber is pre-amplified and then it is demultiplexed into W wave-

lengths. Each wavelength enters the switch fabric through an input port and the switch

fabric then directs each wavelength to an output fiber. The W wavelengths switched to the

same output fiber are multiplexed onto the same output fiber, and the multiplexed signal is

amplified before it is propagated out onto the link. The switch fabric has NW input ports

(one per incoming wavelength) and NW output ports (one per outgoing wavelength).
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Optical Add and Drop Multiplexer (OADM)

Optical Add-Drop Multiplexers (OADM) are responsible for adding or removing individ-

ual signals (wavelengths) at individual points along the optical transport channel. OADMs

function fully in the optical domain without performing an OEO conversion. OADMs op-

erate as peripherals to the OXCs, providing the OXCs with the appropriate signals to

direct Figure. 2.8.

Figure 2.8: A logical diagram of an OADM

Wavelength Converter

Wavelength converters convert data on an input wavelength onto a different output wave-

length. Wavelength converters improve the efficiency of the network by resolving wave-

length conflicts in the lightpath. Wavelength converters employ one of several available

techniques for wavelength conversion. These techniques can be broadly classified into

two types: opto-electronic wavelength conversion and all-optical wavelength conversion.

In opto-electronic wavelength conversion the optical signal is first converted into an elec-

tronic signal while in all-optical wavelength conversions the signal remains optical.
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2.1.3 Ring Networks vs. Mesh Networks

Optical networks can be configured as point-to-point, linear, ring, or mesh. Currently, op-

tical networks are primarily rings, although point-to-point and linear networks are utilised

for certain applications.

A point-to-point network is simply a network of one optical link, with terminating

multiplexers (TMs) at each end. A linear network is similar to a point-to-point network,

but contains intermediate nodes, called add/drop multiplexers (ADMs). In practice, the

TMs are the same as the ADMs but have only one optical connection. A ring is a linear

network which folds back on itself.

Mesh-based networks are being widely considered as an alternative to ring-based net-

works for future optical communications based on Dense Wavelength Division Multiplex-

ing (DWDM) technology [12]. One of the main reasons is that mesh-based restoration

networks offer much less capacity redundancy than ring-based networks to obtain the

same restorability against any single span failure.

The optimisation in design of mesh-restorable networks on a given topology with

respect to resource utilisation and cost of the service have been attractive subjects for re-

searchers around the world in recent years [2, 23, 4, 24, 25, 12, 26, 27, 28]. It has been

recognized that the efficiency in capacity usage of mesh-restorable networks is highly

dependent on the physical topology. There has been little research published about phys-

ical topology design for mesh-based networks with respect to the survivability, and par-

ticularly for multiple QoP service classes. One of the reasons for this is that topology

extension is extremely expensive and topology changes will affect service and network

operations. Hence, upgrading existing networks would be carried out on a case by case

basis depending on demand, rather than as part of the overall design. In addition, current

ILP formulations for survivable mesh networks require large number of input variables,

even when dealing with moderate size networks. This causes the time complexity of the

model to be increased exponentially and to take a significant amount of time to obtain the
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optimal solution.

2.1.4 Optical Network Survivability & Protection Techniques

Survivable networks can be defined as networks which can continue to provide service

even during some network element failures such as, cable cuts and power outage, etc.

Such networks are implemented with some survivability technology, which can be classi-

fied into three categories: 1) prevention, 2) network design, and 3) traffic management and

restoration [14]. Prevention techniques focus on improving component and system relia-

bility (such as fault tolerance in hardware architecture). The purpose of network design

is to minimise the effects of system level failures. Traffic management and restoration

procedures manage the network load in such a way that the failure has minimum impact

and connections are re-established around the failure.

The approaches to the solution of network survivability involve a range of tradeoffs

between network resource utilisation and service interruption time. J.B Slevinsky et al.

proposed the decomposition of mesh-network into multiple self healing rings (SHR). In

this approach, a set of rings, such that each link in the network is traversed by two rings

(one in each direction) is found, and the fibers of one ring are backed up by the fibers on

the other [24, 29].

Since a single failure can cause the simultaneous loss of service on several optical

channels, a design algorithm called the disjoint alternate path (DAP) is presented by

Crochat et al. [6, 21, 22]. The purpose of DAP is to maintain connectivity between

all port pairs under single failure scenarios, and to minimise the impact of a WDM layer

failure on the higher layers. The results from tests on ARPA2 physical networks show

that the number of affected node pairs could be made zero by using the DAP algorithm,

while it ranges from 3 to 37 for the shortest path routing (SPR) algorithm [30, 26].

Ramamurthy et al. compare different protection schemes in mesh networks under a

single failure scenario [31, 32]. In this study, dedicated path protection, shared path pro-
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tection, and shared link protection schemes were examined in a 15 node network under the

assumption of no wavelength conversion and static demand. The results show that shared

backup path protection has significant capacity efficiency over the other two schemes.

The number of wavelengths required in a dedicated path, a shared path protection, and a

shared link protection scheme are 163, 99, and 189 respectively.

The search for improving recovery switching time and reducing capacity redundancy

leads to the discovery of preconfigured protection cycle (p-cycle), introduced by Grover

et al. [33, 34, 20, 35]. Mauz has shown that it is important to do the wavelength assign-

ment and the p-cycle search jointly to achieve the most capacity saving p-cycle on WP

networks. He also emphasized the use of wavelength conversion to give a significant

spare capacity saving due to the better sharing of protection resources [19, 36]. Recently,

a new, promising concept to support dynamic demand environments has been introduced

by Grover [20, 37] namely, self-organizing strategies for continual adaptation of a set of

network protecting p-cycles, and the distributed cycle pre-configuration (DCPC) protocol,

which is an adaptation of the processing rule of the self-healing network (SHN).

2.1.5 Network Protection and Recovery Time

In practice, optical transport networks are mostly based on a ring topology. Ring net-

works use simple switching mechanisms, which permit fast restoration time after failure

(about 50ms- 60ms), but they require at least 100% capacity redundancy. Furthermore,

in complete multi-ring networks, the working fiber/channel groups are usually not fully

utilizable, thus the ratio of installed to working capacity can be 200-300%. In contrast,

mesh based networks use fewer resources, but have the drawback of complicated protec-

tion mechanisms. Mesh network protection is usually based on paths (end-to-end) or on

spans, but the restoration time is much longer than in the case of ring networks [31, 32].
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2.1.6 Resource Allocation

A variety of protection and restoration methods have been designed and implemented

for optical transport mesh networks [38, 23, 24, 24, 39, 40] , including automatic pro-

tection switching (APS), mesh span restoration, mesh path restoration, shared backup

path protection (SBPP), and their variations in terms of complexity, spare capacity usage,

restoration speed, and some other aspects. Thus, each method has its own advantages and

disadvantages. For example, a network employing APS can achieve a restoration time less

than 60 ms but must use more than 100% capacity redundancy. In contrast, with SBPP,

the restoration time after a failure can be as large as 200ms [41, 40]. Multiple methods can

be integrated into the same network providing different qualities of protection services to

different connections and this has also been suggested by Grover in [20], but not many

research publications have addressed this issue. Although the results in [20] show that

significant capacity savings can be achieved with relatively well connected networks, the

interaction between network topology and the capacity efficiency of various survivability

schemes is still unclear.

2.1.7 Survivability Schemes at the Optical Layer

The survivability at the optical layer in WDM optical networks is based on two paradigms:

path protection/restoration and link protection/restoration.

Link protection : all connections that traverse the failed link are rerouted around that

link through alternate paths. The alternate paths and wavelength channels must be

configured in advance for protection. Link protection can be dedicated or shared.

In dedicated link protection, for each link of the working path, backup capacity is

reserved around that link, depending on whether the signal is sent over the backup

path during normal operation or not. In shared link protection, for each link of the

working path, a backup path is reserved around that link. However, the backup

wavelength on the links of the backup path may be shared with other backup paths,
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thus the backup channels are multiplexed among different failure scenarios. For

instance, automatic protection switching (APS) is a typical technique used for pro-

tecting link failures. APS has three main configurations: 1+1, 1:1, and 1:N. The

differences between these are the way that they assign resources, 1+1 denotes a

dedicated standby arrangement, the source node transmits the information on both

working and protection links. The signal which arrives at the receiver with better

quality is chosen. In the case of one link failure, the signal can still be transmitted

on the operational link. In the case of 1:1 APS, every working link has it protection,

but the source and destination nodes switch to the protection link only in cases of

failure detection on the working link. 1:N APS refers to N number of working links

that share a single protection link, but this configuration is not intended to protect

against cable cuts. An extended version of this type of configuration is m:N, where

for every N units of working capacity, there will be m units of spare capacity used

for protection in the network on average.

Path protection: the source and destination nodes of each connection reserve backup

paths on an end-to-end basis. Path protection can also be dedicated or shared. In

the case of dedicated path protection, a (1:1) configuration is used, and the backup

wavelength on the protection path is reserved only for a specific working connec-

tion. This implies that if there are two overlapping protection paths, different wave-

lengths must be used. Dedicated path protection therefore requires a larger amount

of spare capacity for protection purposes, but is able to provide recovery from mul-

tiple link failures. In contrast, shared backup path protection uses the same wave-

length on a link for two different protection paths provided that the corresponding

working paths are link disjointed.

Restoration Schemes

In mesh based networks, the restoration issue can be further classified based on: the route

computation and execution mechanism (as centralised or distributed), the re-routing (as
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path/ link based), the computation timing (as pre-computed/ real-time), and the capacity

sharing (as dedicated or shared) Figure. 2.9.

Figure 2.9: Restoration Architectures for Survivable WDM Networks [2]

Link based restoration methods re-route the disrupted traffic around the failed link. A

new path is dynamically discovered and established between the end nodes of the failed

link. In case of a new route being found for the broken connection, that connection is

blocked. This approach requires the ability to identify the failed link at both ends and

makes restoration more difficult when there is a node failure. The choice of restoration

path is limited and may use more capacity.

Path based restoration re-routing replaces the whole path between the source and the

destination of a demand.

Pre-computed methods calculate restoration paths before a failure occurs, and the real

time approach does so after the failure occurs.

Centralised restoration methods compute primary restoration paths for all demands

at a central controller, where the current status of a network is assumed to be available.

A Distributed method may involve pre-computed tables and discovered capacities,

and routes in real-time. However, real time capacity discovery is slow and may not be

efficient. Thus, distributed pre-computation of restoration routes is a more attractive ap-

proach.
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Capacity sharing is among the primary methods used for restoration paths and can be

dedicated or shared - The dedicated method uses (1+1) or (1:1) protection, where each

primary path has a corresponding restoration path. In the shared case, several primaries

can share the same backup path as long as the primaries are node and link disjoint. This

is called the backup multiplex technique.

In the bidirectional line-switched ring (BLSR) system, the most commonly used tech-

nique is the bidirectional line-switched protection mechanism. The ring network can be

implemented either by using two-fiber or four-fiber systems.

In the two-fiber BLSRs network, each fiber carries working and protection channels.

If a fiber is cut, the working channel targeted for a node beyond the failure will switch

to the protection bandwidth available on the second fiber. The traffic now travels in the

opposite direction on the protection bandwidth until it gets to its destination node. This

can be seen in Figure. 2.10.

Figure 2.10: Two-Fiber BLSR Protection

Four-fiber BLSRs have double the bandwidth of the two-fiber BLSRs. With this type
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of protection, two fibers are dedicated to working traffic and the other two fibers are

dedicated to signal protection. The four-fiber BLSR allows both span switching and ring

switching. The span switching occurs when there is a span failure. In this case, traffic

is switched to the protection fibers between the nodes and then put back to the working

fibers. In the case of ring switching, if the span switch cannot recover from failure (both

the working and protection fibers fail on the same span), the traffic is routed over the

protection fibers through the full ring as shown in Figure. 2.11.

Figure 2.11: Four-Fiber BLSR Protection

2.1.8 Multilayer Network Survivability

WDM optical networks can be modeled as four sub-layers at which survivability tech-

niques can be employed, namely: the service layer, logical layer, system layer and physi-

cal layer. Each lower layer has its own type of demand unit, which it provides to the next

higher layer, and each layer can have its own protection mechanism and recovery proce-

dures to deal with failures. However, it is not necessary to apply one or more methods

on top of each other, e.g. if survivability for a ring network has been implemented at the

31



system layer, there may be no need to implement it at the logical layer and vice versa.

Additionally, some service layers can operate directly over the physical layer, providing

their own survivability through adaptive routing.

2.1.9 Service Layer Survivability

Service layer protection techniques are the last safeguards before physical failure becomes

apparent to a clients applications. Service layer survivability is usually software based im-

plementation that attempts rerouting within the working capacity. However, this consists

only of partly utilised capacity that is visible to the service layer. If the response rerouting

at a service layer is incomplete it can be complemented with a lower layer response by

logical reconfiguration of its paths, thereby reducing delay or packet loss.

Typically at the service layer, under failure, blocking or congestion, delay levels may

rise, but basic functionality will be maintained. Thus, except for special cases, service

layer schemes tend to prevent outage, trading for performance degradation instead.

2.1.10 Physical Layer Survivability

The physical layer is the infrastructure of physical resources on which a network is based,

for example, cable ducts, cables, buildings, etc. The survivability of this layer is mainly

concerned with physical protection and ensuring that the layer topology has a basic spatial

diversity, which allows higher layer survivability techniques to function.

2.1.11 System Layer Survivability

At the system layer, almost all the protection techniques react against single channel fail-

ure or span failure. These can consist of techniques such as linear APS schemes, ring

schemes, and p-cycle techniques. In addition, the survivability techniques at the system

layer also include the design of basic equipment redundancy to support the survivability
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Table 2.2: Layered View of Networks for Survivability.(Mesh Based Survivable Network
[4])

Layer Elements Service and
Functions

Demand
units
generated

Capacity
units
provided

Generic
survivability
techniques

Service

IP routers,LSRs
telephone
switch, ATM
switch, smart
channel banks

Circuit-switch
telephony and
data, Internet,
BISDN private
networks,
Multimedia

OC-3
OC-12
STS-1s
DS-1s
DS-3s
GbE, etc...

NA

Adaptive
routing,
demand
splitting,
application
reattempt

Logical
OXC, DCS,
ATM, VP
Xconnects

Services
grooming,
Logical
transport
configuration,
bandwidth
allocation and
management

OC-48,
OC-192,
wavelength
channels,
wavebands

OC-3
OC-12
STS-1s
DS-1s
DS-3s
GbE, etc

Mesh
protection or
restoration.
DCS-based ring
P-cycles

System

SONET OC-n
TM, LTE,
ADMs,
OADMs, WDM
transmission
systems

Point-to point
bit-transmission
at 10 to 40
Gb/s.
Point-to-point
fiber or
wavelengths

Fibers,
cables

OC-48,
OC-192,
wave-
length
channels,
wavebands

1:N APS 1+1
DP APS rings

Physical

Right-of way,
conduits,
polelines, huts,
cables, ducts

Physical
medium of
transmission
connectivity

NA
Fibers,
cables

Physical
encasement,
physical
diversity

33



methods applied.

In general, survivability techniques that can be applied at this level are referred to as

protection schemes. The main characteristic of protection schemes is that the protection

routes and spare capacities are pre-defined, and the mechanism is self-contained within

the layer itself.

System layer protection schemes rely on fixed transmission and protection structures,

which have the advantage that once installed and tested, their operation is relatively sim-

ple. Their operation in general does not involve any reaction over the network, and the

restoration path taken for any failure is clearly defined in advance. However, protection

implementations at this layer are essentially static, and hence are not easy to re-configure

if the designed topology turns out to be unsuitable for demand. Furthermore, when a fail-

ure occurs, the network cannot withstand a second failure during the period of physical

repair.

2.1.12 Logical Layer Survivability

The flexibility of a logical layer allows the development of techniques to create paths

on demand between designed end points. This becomes the natural domain of a num-

ber of survivability schemes (also referred to as mesh-restoration schemes) with features

that are not provided by the techniques used at the system layer. Another considera-

tion is the higher capacity efficiency through the sharing of protection capacity over non-

simultaneous failure scenarios. However, minimizing the number of un-severed demands,

and reducing restoration speeds still remain major goals for research at this level of pro-

tection.
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Figure 2.12: Optical Mesh Network
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2.1.13 Topology Design

“Topology design is the art of combining network infrastructure and operation strategies

to satisfy certain traffic demands” [23]. The traffic demands in network design can be

either static or dynamic. In a dynamic traffic environment, the traffic demands arrive at a

network in a random manner. Once a demand is honored, the objective is to increase the

acceptance ratio. In the case of static traffic demand, the set of demands is given in ad-

vance. Thus the objective in this case is to assign lightpaths with the restoration capability

to minimise resource placement but still satisfing the restorability requested, while mini-

mizing total network cost, or maximizing resource utilisation [4, 15, 25, 28, 42]. Accord-

ing to Yufeng [43], the topology design problem can be divided into two sub-problems:

network design and routing and wavelength assignment (RWA). Network design is con-

cerned with physical topology design and configuration design, while RWA involves the

mapping of lightpaths onto the given physical topology and assigning wavelengths to

these lightpaths, also referred to as the logical (or virtual) topology problem.

Physical topology design

Almost all research on the physical topology design of mesh-restorable networks has so

far been based on the assumptions that node positions are known, and the number of OXCs

within N nodes have unbounded switching capacity. On that basis, the physical topology

design is reduced to forecast the demand and deciding on a topology between OXCs, how

to connect client sub-networks through OXCs, and the placement of other resources such

as amplifiers, converters, and power splitters.

In practice, if the physical topology has to be designed from scratch, many providers

will take a cautious approach by initially building a skeleton network and then adding new

resources if necessary, depending on the actual user demands - as a way to minimise the

additional capacity [12]. Physical topology design problems have been studied in [43]. In

this, the author aimed to minimise the number of OXCs and wavelengths used for a given
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number of label switching routers (LSRs) and to create a set of lightpaths which would

be setup amongst pairs of OXCs. This text dealt with a combination of physical and

logical topology design problems, where the routing and wavelength assignment for the

lightpaths had already been determined. In [43], Y. Xin has shown that physical topology

design problems can be formulated as an integer program (IP). An iteration approach

was developed for this problem, whereby a genetic algorithm (GA) was used to generate

feasible physical topologies, and heuristic techniques were employed for RWA on a given

physical topology, which generated the fitness reference value for GA solutions. Some

other studies regarding physical topology design have focused on different aspects such

as placement of converters, connectivity, nodal degrees, and average hop distance [4, 15,

43, 18, 44].

The economic attractiveness of mesh-restorable networks depends on how the capac-

ity is shared for restoration. This has a strong dependency on topology, and the next step

in research on mesh-restorable networks design is to bring the graph of physical topology

into the optimisation problem as a variable [12, 4]. A. J. Glenstrup [14] has researched

the optimisation of the link cost based on different protection scenarios and treated them

as green-field network planning. In this work, Glenstrup has also proposed a way of

minimizing the node cost by grouping the wavelengths that share a common sub-path and

employing multi-granular switch components, thus effectively reducing both switch ports

and link costs. In [4], W.D. Grover has summarized the factors that interact with mesh

survivable topology design as:

1. Spare capacity for restorability: For protecting working flows on one span (path),

the topology must support spare capacity rerouting over diverse surviving spans

(paths).

2. Edge establishment costs: Every new span added to the topology has some possible

significant one-time cost. The total of new spans established is proportional to the

number of spans and their distances.

3. Working path routing cost: This factor favors a greater number of spans. Every
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span added permits a shortened routing for some number of working paths. Total

working capacity is reduced as working routes shorten, and generally the network

as a whole becomes less redundant as the average nodal degree increases. In mesh

restoration, the spare capacity is desirable between 40%−60% of working capacity.

Thus a fixed charge routing (FCR)1 solution for the working flows and edges is still

an important part of good overall topology.

4. Modularity and economy of scale effects: This is another factor with high connec-

tivity. Strong economy of scale can be less expensive as it tends to group many

flows together and takes a longer route than if there were extra edges that make

shorter routes possible. However, only the large volume of modularity contributes

to sparseness, and that depends on the volume of demand relative to the available

capacity modules.

5. Two-connected (or preferably a bi-connectivity) requirement: This is a requirement

for a mesh network to be survivable. The average nodal degree must greater than

or equal to two.

6. Access to demand sources: this involves to the topology extension problem.

The physical topology design problem is quite complex because the interdependence be-

tween physical and logical architectures, such as the link, OXCs capacities, location of

optical devices (amplifiers and converters) is dependent on the routing of lightpaths and

the wavelength assignment strategy, and vice versa [4, 44, 45].

Logical or Virtual Topology Design

In an optical network, where there is no wavelength conversion or limited conversion abil-

ity, logical design encounters the RWA problem. Thus blocking can occur either through

1The FCR problem is to select a subset of all possible edges and routes working flows over them at

minimum total cost for flows and edges.
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capacity blocking or wavelength mismatch blocking. RWA problems can be either on-

line (dynamic) or off-line (static). An off-line RWA assumes all lightpath requirements

are known and seeks a single overall solution for the assignment of routes and wavelengths

to meet lightpath requirements. It creates a logical topology among the edge nodes. The

typical objective of RWA is to satisfy all the requirements with a minimum number of

wavelength usage, and to minimise the number of un-severed demands. The wavelength

assigned to each path must be free on at least one fiber pair on each hop of the route

assigned to the same demand [4]. The type of logical topology that can be created is

usually constrained by the underlying physical topology. Generally, the RWA problem

is specified by providing the physical topology of the network and traffic requirements.

RWA is considered as an optimisation problem that can be readily solved using an inte-

ger programming (ILP) formulation. Usually, the objective is to minimise the maximum

congestion level in the network that is subject to network resource constraints [46]. The

ILP formulation has a very large number of variables, and becomes intractable for large

networks. This has led to the development of heuristic approaches for finding feasible

solutions to large scale network problems [4, 15] [14]. Static RWA can be decomposed

into four sub-problems [15]. Solving these subproblems may not give the optimal solu-

tion, but according to Rouskas [46], the decomposition provides insight into the structure

of the RWA problem and is a first step to achieve the design of effective heuristics. The

sub-problems are as follows (assume no WC): The sub-problems can be typically defined

as follows by Rouskas:

Topology subproblem: Determines the logical topology to be imposed on the given

physical topology, that is, determines the lightpaths in terms of their source and destina-

tion edge nodes.

Lightpath Routing subproblem: Determines the physical links which each lightpath

consists of, that is, routes the lightpaths over the physical topology.

Wavelength Assignment subproblem: Determines the wavelength each lightpath uses,

that is, assigns a wavelength to each lightpath in the virtual topology so that wavelength
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restrictions are obeyed for each physical link.

Traffic Routing subproblem: Routes packet traffic between source and destination

nodes over the virtual topology obtained.

There have been a number of heuristic algorithms targeting the general static RWA

problems. Overall, they can be classified into three broad categories: (1) Algorithms

which solve the overall ILP problem optimally. (2) Algorithms which target only a sub-set

of the above mentioned four sub-problems. (3) Algorithms which address the problem of

embedding regular logical topologies onto the physical topology. Optimal solution can be

achieved by using LP-relaxation followed by rounding [15]. The integer constraints in this

case are relaxed creating non-integral problems that can be solved by linear programming

techniques, then a rounding algorithm can be applied to obtain a new solution with respect

to the design constraints. However, LP-relaxation may lead to solutions which are difficult

to apply the rounding algorithm. Other methods such as a genetic algorithm or simulated

annealing [23] can be applied to obtain optimal solutions locally, but the main drawback

of these approaches is that it is difficult to control the quality of the final solution for large

size networks.

2.1.14 Concept of Multiple Quality of Protection Service Classes

Studies of capacity-design for transport networks assume that all the service classes must

be restorable against failures of network components. However, in reality, there are at

least four different policies for the treatment of different demands in mesh-restorable net-

works [4]. The combination of these different network demands are called Multiple Qual-

ity of Protection (MQoP) service classes. The definitions of the service classes, order

form high grade to low grade based on the complexity of implementation at the optical

layer and the level of availability that they can provide are as follows:

1. Lightpaths that are guaranteed to be protected by the optical layer with specific

restoration time requirement.
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2. Lightpaths that are protected by best efforts, and should be restored if possible

following the full restoration of any of the higher class service capacities.

3. Lightpaths that are not protected, and do not receive any restoration effort, but are

not subject to be preempted.

4. Low priority lightpaths that under normal conditions utilise protection bandwidth.

These are channels that do not receive any protection, and are preempted when

other lightpaths need to being protected.

The research results in [47] show a significant reduction in the spare capacity require-

ments, because not all services require restoration. Thus, design and optimisation of the

mesh-restorable network with mix-service classes allows the network to enhance opera-

tion and provide more customer options.

The study of Clouquer et al in [47], however, was based on span protection only.

This type of protection scheme requires a high level of resource redundancy. In this

study, network design and optimisation with a mix of three different protection schemes

is examined. These schemes are: dedicated path protection, SBPP and p-cycles. The

p-cycle scheme is a new span protection technique, which takes advantage of the existing

straddling links, and, in some cases, the efficiency can be as high as that of SBPP.

2.1.15 Issues in Integer Linear Programming Models for Survivable Net-

work Design with Multiple Quality of Protection Service Classes.

In [41, 32], the authors have examined the resource requirements for routing and the wave-

length assignment of primary and backup paths in both path based and link based protec-

tion. This study also examines the protection-switching time and the restoration time for

each of these schemes. The path protection scheme provides significant capacity savings

over link protection, and shared protection provides significant savings over dedicated

protection. However, the recovery time after failures is much greater. Conversely, path
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protection is more susceptible to multiple link failures than link protection, and shared

protection is more susceptible to multiple link failures than dedicated protection.

Rather than providing the networks with one type of protection scheme as in [47], the

path protection (dedicated and SBPP), link protection , and p-cycle schemes can all be

integrated into one formulation such as in [20]. Integrating multiple protection schemes

into one formulation to serve multiple demands of quality service is a complicated task.

In addition, due to the high number of constraints and variables involved in the formu-

lation, such as in SBPP and p-cycles (particularly when one includes all the non-simple

p-cycle in the set of candidates) the complexity of the ILP model increases exponentially.

Therefore, before putting all these schemes together into one final mathematical form, it

is necessary to find a way to reduce the the complexity of the individual case as much as

possible.

2.2 Integer Linear Programming

Integer programming problems are special cases of linear programming problems, or more

generally combinatorial optimisation problems. In these, the unknown variables are inte-

gers. One well known classical network design problem is the Traveling Salesman Prob-

lem. This problem has been proved as being Nondeterministic Polynomial-time (NP)

Complete. Solving an NP Complete problem is difficult , especially for large numbers of

unknown variables. So far there is no efficient algorithm to solve NP Complete problems.

The process of formulating an optimal design for network routing and resource allo-

cation leads to the creation of ILP problems. The ILP programs consist of an objective

and a list of constraints, and all are parameterized by the decision variables eg. xi which

are free variables whose optimal values are to be determined. The ILP solvers take the

inputs of the ILP model and produce outputs as optimal values of the objective function.

Network design problems are subject to variants of the multi-commodity flow prob-
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lem, where input and output flows are balanced for all nodes, or link-path formulation,

and each traffic flow has be to satisfied with some degree of constraints. This may limit

the optimality of the solution [23]. Cheng-Shong Wu et al.(1999) introduced detailed al-

gorithms for solving some ILP programs based on Lagrangian relaxation and sub-gradient

optimisation techniques [48]. Jan et al. (1993) developed a branch and bound algorithm

just for backup capacity [14]. By removing the integer constraints, the ILP problems

can be simplified down to the LP problems, but the solution then no longer provides an

optimal value. The ILP formulation typically has the following form:

minimise/ Maximize : c1x1 + c2x2 + · · ·+ cnxn (Ob jective)

Subject to

c1x1 + c2x2 + · · ·+ cnxn {≤ |= | ≥} b1

. . .

. . .

cmx1 + cmx2 + · · ·+ cmxn {≤ |= | ≥} bm





(Constraints)

x j ≥ 0, j = 1 . . .n
}

(Bounds)

x : integer

For larger sized networks, solving ILP problems is not possible within a reasonable

time. Thus, either the problems must be broken down and refined or a suitable heuristic

approach must be considered and applied. Heuristics are a method of finding a solution

close to the optimal solution through evaluating a number of feasible solutions, but this

technique does not assure optimal results. Heuristic algorithms can be developed with

respect to the ILP model if the problem has an objective function with no other depen-

dency. Meta-heuristic approaches can also be considered. There are three well devel-

oped meta-heuristic methods: simulated annealing (SA), a genetic algorithm, and tabu

search [49, 50, 51] (more details are in Appendices).

There are two common approaches to solving an ILP problem. The first method is

based on cutting planes, where constraints are added to force integrality. The second
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technique is based on dividing the problem into a number of smaller problems. This

method is called branch and bound, and will be illustrated in the following example.

Solving Linear Integer Programs

The first step in the branch-and-bound method is to solve the linear program. This is

called the LP-relaxation of the ILP. The optimal solution is one where all the variables

have taken on integer values. The branch-and-bound process is as follows:

Maximize : S = 17x1 +12x2 (Ob jective)

Subject to
10x1 +7x2 ≤ 40

x1 + x2 ≤ 5



(Constraints)

x j ≥ 0, j = 1,2
}

x1,x2 : integer

The first linear relaxation solution is: x1 = 1.67, x2 = 3.33 and S0 = 68.33. As x1, x2

are not both integers, and thus S0 is not the integer solution. The value of S0 provides the

upper bound on the optimal solution. Therefore, there won’t be any integer solution that

is greater than 68.33.

Figure 2.13: First LP solution

Either x1 or x2 may be selected to continue the process. With x1, two cases result:

x1 ≤ 1 and x1 ≥ 2.

Solve the LP with x1 = 1. and therefore: x1 = 1, x2 = 4 and S1 = 65.

Solve the LP with x1 = 2. and therefore: x1 = 2, x2 = 2.86 and S2 = 68.29.

Both of the solutions can be illustrated as follows:
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Figure 2.14: 1st level branching

The final step gives a feasible solution of S = 65. There is no further branching nec-

essary in this instance, however, there may be a value greater than 65 on another branch.

There are two cases that need to be evaluated: x2 ≤ 2 and x2 ≥ 3.

Solve the LP with x2 = 2. The results here are: x1 = 2.6, x2 = 2 and S1 = 68.2. S4 with

x2 ≥ 3 will be dealt with later in the ILP solving process.

Figure 2.15: 2nd level branching

Continue branching, for x1 ≤ 2 and x1 ≥ 3. and therefore:

Solve the LP with x1 = 2. and therefore: x1 = 2, x2 = 2 and S5 = 58. This is feasible, thus

no need for further branching in this case.

Solve the LP with x1 = 3. and therefore: x1 = 3, x2 = 1.43 and S6 = 68.14. Continue

branching, for x2 ≤ 1 and x2 ≥ 2. Solve the LP with x2 = 1. and therefore: x1 = 3.3,
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Figure 2.16: 3rd level branching

x2 = 1 and S7 = 68.1. S8 with x2 ≥ 2 are left for consideration later in this process.
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Figure 2.17: 4th level branching
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Remaining now are two other cases, which are x1 ≤ 3 and x1 ≥ 4.

Solve the LP with x1 = 3. and therefore: x1 = 3, x2 = 1 and S5 = 63. This is feasible,

thus there no need for further branching in this case.

Solve the LP with x1 = 4. and therefore: x1 = 4, x2 = 0 and S10 = 68. This is feasible,

thus there no need for further branching in this instance.

To complete the process, the previously unsolved branches are considered and solved

for S4 and S8: With x2 ≥ 3, S4 is infeasible, and with x2 ≥ 2, S8 is also infeasible.

Figure 2.18: 5th level branching
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There are three integer solutions S1 = 65, S5 = 58, S9 = 63 and S10 = 68. The optimal

solution is then S10 = 68 with x1 = 4, x2 = 0.

2.3 Brief Review of Graph Theory

Graph theory is a natural way of representing the transport network which implies an

abstraction of the reality by a set of nodes and connections between them. Graph theory

is a well established, and has been used for network design and optimisation since the

early days of network design, and many basic algorithms such as, finding shortest path,

k-shortest path and shortest two-disjoint path for routing and protection, graph coloring

for wavelength assignment, min-cut max-flow theorem for finding the maximum flow

between two nodes . . . etc. have been developed.

A network’s physical topology can be modeled as an undirected graph G(V,E), where

V = {v1,v2, . . . ,vN} is a set of N vertices and E = {e1,e2, . . . ,eM} is a set of M network

edges. In communications networks, the terms vertex and edge are used interchangeably

with node and span respectively. For a span e = {x,y}, nodes x and y are end nodes of

e. x and y are called adjacent nodes and jointed by the span e. Figure. 2.21 is a graph

representing an arbitrary network with N = 9 and M = 14. The nodal degree, denotes

deg(v), is the number of edges incident to v; and the average nodal degree is denoted

d̃ = 2M
N . Note that, throughout this study, span is used to imply the physical connection

between two end nodes, and link refers to a logical connection between the two end nodes.

Table 2.3 shows the degree of nodes in the network in Figure. 2.21.

Table 2.3: Nodal Degree of Network in Figure. 2.21

Node v 1 2 3 4 5 6 7 8 9
deg(v) 2 3 4 3 4 4 3 3 2

A graph can be represented by a matrix called an adjacency matrix. An adjacency
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Figure 2.19: An Example of a Network Represented as a Graph




1 2 3 4 5 6 7 8 9

1 0 1 1 0 0 0 0 0 0

2 1 0 1 0 0 1 0 0 0

3 1 1 0 1 0 0 0 1 0

4 0 0 1 0 1 0 0 1 0

5 0 0 0 1 0 1 1 0 1

6 0 1 0 0 1 0 1 1 0

7 0 0 0 0 1 1 0 0 1

8 0 0 1 1 0 1 0 0 0

9 0 0 0 0 1 0 1 0 0




Figure 2.20: adjacency Matrix of Network in Figure. 2.21

matrix of a graph G is defined as: Ai, j = 1 if i and j are adjacent, 0 otherwise; where

i, j ∈V . Figure. 2.3 presents the adjacency matrix of the example.

A network configuration matrix that contains information relates to the link, nodes

and also the cost of each network’s link. The configuration matrix is as in Table 2.4. The

cost of each link and the nodes that are incident to the link are easily obtained by using

the link index.

Given a graph G(V,E), a chain W is a sequence of nodes and links. For example,

{v1e1v2e4v6e12v7}. It is also possible to represent the walk by splitting it into two closely
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Table 2.4: Network Configuration

Link index Node i Node j Cost

1 1 2 1

2 1 3 1

3 2 3 1

4 2 6 1

5 3 4 1

6 3 8 1

7 4 5 1

8 4 8 1

9 5 6 1

10 5 7 1

11 5 9 1

12 6 7 1

13 6 8 1

14 7 9 1

51



related forms, which are node forms or link forms as below:

Node form {v1− v2− v6− v7}

Link form {e1− e4− e12}

In graph theory, a trail is a walk with no repeated edges, and a path is a walk with no

repeated vertices. The length of a walk is the total number of its links (this is often known

as hop length in communication network).

(a)

(b)

Figure 2.21: An Example of (a) a Tree and (b) a Spanning Tree (dark lines)

A cycle is a trail with the same star and end nodes, where all other nodes are distinct.

Another way to describe this is that a cycle is a closed path.
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A cycle crossing all edges in a graph is an Eulerian cycle, and a graph containing at least

one Eulerian cycle is called an Eulerian graph.

A cycle traversing all vertices of a graph is called a Hamiltonian cycle, and a graph

containing at least one is called a Hamiltonian graph.

A graph is said to be connected if, for every pair of nodes i, j, there is a walk from i

and j and vice versa.

A graph that contains no cycles is called an acyclic graph or f orest

A connected graph that has no cycle is called a tree.

A subgraph H = (V (H),E(H)) of a graph G is a graph with the set of nodes V (H)⊆
V (G) and the set of edges E(H)⊆ E(G). Both ends at every edges of H are nodes of H.

An acyclic subgraph G′ ⊆ G that contains every vertex in G is called a spanning tree.

A graph is called two-connected if there are at least two edge-disjoint paths between

every pair of its vertices, and called bi-connected if there are at least two vertex-disjointed

paths between every pair of its vertices. Thus a bi-connected graph is also a two-connected

graph but a two-connected graph is not a bi-connected graph.

2.4 Summary

Optical networks have enabled significant contributions to the development of the world

today. The concepts of layering, transport demands, working and spare capacities, plus

network topologies designs with regards to survivability, and resource efficiency are im-

portant ones. Routing behaviors between protection schemes such as span and path based

protection have been discussed in this chapter with general comments on their relative

recovery times and resource efficiencies. The mathematical formulations known as ILPs,

which are used for modeling of the network topologies against the demand forecast were

introduced. A relevant portion of ”Graph theory”, which is a natural way of representing
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the transport network implies an abstraction of the reality by a set of nodes and connec-

tions between them is useful in network modeling, was also presented.
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Chapter 3

Connectivity of Physical Networks

Establishing the physical survivability of large networks is not a trivial task. Some tech-

niques for assessing physical survivability such as the cutset method cannot deal with

large size networks [52, 53, 54]. A fast technique for finding biconnected components

of a graph and testing the network for node/ link-bridges, presented in [55, 4], does not

provide any further information, such as identifying the fundamental cycles within the

network, which would significantly benefit the next phase of network design for pro-

tection using such techniques as shared backup path protection (SBPP), p-cycle, or ring

protection [4]. This chapter presents an alternative technique, based on graph theory, for

evaluating the physical survivability of networks. This technique deals with network sizes

of many thousands of nodes whilst providing more information about the susceptibility

of a network in relation to individual link and node failures, and preparation for the next

phase of network protection design.

3.1 Background

Design of survivable communication networks is a challenging problem. Without es-

tablishing network survivability at the physical layer, there can be severe consequences
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when a physical link fails. Network failures which may be caused by dig-ups, vehicle

crashes, human errors, malfunctional systems, fire, rodents, sabotage, natural disaster (eg.

floods, earthquakes, lightning storms), and some other factors, occur quite frequently and

sometimes with unpredictable consequences. To tackle these, survivability measures can

be implemented at the service layer, the logical layer, the system layer, and the physical

layer. The physical layer is obviously the base resource infrastructure of the network, and

to be able to protect it, it is necessary to ensure that the physical topology of the network

has sufficient link and node diversity. Without this, protection at higher layers will not be

feasible. With the implementation of Dense Wavelength Division Multiplexing (DWDM)

in the optical backbone of networks, greater flexibility can be achieved in providing alter-

nate routes for lightpath connections. However, the survivability problem at the physical

layer remains the same. In fact, it becomes even more critical because, being a backbone

network, there is a huge amount of traffic exchanged on any link of the network at any one

time, hence the failure of an optical component, such as a fiber cut or a node failure, may

cause a very serious problem in terms of loss of data and profit. For instance, the direct

voice-calling revenue loss from the failure of a major trunk group is frequently quoted at

$100,000 per minute or more [56, 57, 58]. Network survivability, therefore, is becoming

a critical and imperative problem in telecommunication networks today, particularly in

optical networks.

A network is considered to be survivable if its physical topology can cope with any

single failure of network components by rerouting the connections affected through an

alternative path. However, this requires some redundancies in the network. Hence, a sur-

vivable network must be a two-connected graph or a biconnected graph [4]. Menger’s

theorem gives the necessary and sufficient condition for survivability of networks at the

physical layer. This relates the network connectivity to its cut-sets [28]. However, it is

impractical to use cut-sets to determine the survivability of the network due to compu-

tational complexity increasing exponentially with the network size, eg. a network of N

nodes would yield 2N − 2 cutsets. Testing for survivability of large size networks can

be done using biconnected components of a graph introduced by W.D. Grover [4]. This
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technique can determine vulnerable links and nodes in the network. However, verifying

network survivability is just the first step in network planning, after which it is necessary

to apply appropriate protection routing schemes using such techniques as Shared Backup

Path Protection (SBPP), p-cycle, or ring topology [32, 41, 59, 60]. It is therefore very

helpful if the algorithm used for determining the physical survivability of the network can

also provide additional information which is of benefit to protection design. Figure. 3.1

shows a typical network consists of a link bridge e and a node bridge v.

The following sections introduce a new method for examining the physical survivabil-

ity of networks using properties of 2-connected graphs. This technique also determines

all simple distinct cycles in the network which is useful for the protection design.

Figure 3.1: A network with a link bridge (e) and a node-bridge (v)

3.2 Survivability Verification Framework

In this section, it is necessary to first outline some notations and definitions related to

graph theory. This assists in the understanding of the theorems and techniques for estab-

lishing the physical survivability of the network that are next presented.

3.2.1 Definitions

The following definitions are from [54] and [53].
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• Graph: A graph G is a pair of sets V and E satisfying E ⊆ [V ]2, where V is a set of

vertices (or nodes) and E is the set of edges connecting two distinct vertices in V .

• Connected graph: a non-empty graph G is connected if any two of its vertices are

linked by a path in G, and is k-connected if any two of its vertices can be joined by

k independent paths.

• Subgraph: a graph G′(V ′,E ′) is called a subgraph of a graph G(V,E), denoted by

G′ ⊆ G, if V ′ ⊆V and E ′ ⊆ E.

• Component: a maximum connected subgraph of G is called a component of G.

• Cutvertex and Bridge: a vertex v ∈ V of graph G(V,E) is called a cutvertex if it

separates two other vertices of the same component. An edge e∈E is called cutedge

(bridge) if it separates its ends.

• H-path: a path P is called H-path if P is non-trivial, and meets a graph H exactly in

its ends.

• Block: A block in a graph G will either be a maximal 2-connected sub-graph, a

bridge, or an isolated vertex. Conversely, every such sub-graph is a block. Different

blocks of G overlap in at most one vertex, which is then a cutvertex of G. Thus,

every edge of G lies in a unique block, and G is the union of its blocks. This is

demonstrated in Figure. 3.2.

Based on the above definitions, the two existing techniques for determining the physical

survivability of networks will be defined in detail.

3.2.2 Survivability via Cut-Sets

A cut divides the graph which represents the network into two subgraphs, referred to as a

cut-set, and the size of a cut-set is the number of edges connecting these two subgraphs.

If, for all possible cut-sets, there are two or more links between the two subgraphs in a
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Figure 3.2: A graph and its blocks

cut-set, then the network is survivable. Menger’s theorem [54], given below, determines

the connectivity of a network by examining its cut-sets.

Theorem 3.2.1 A topology with the set of nodes N and the set of edges E is 2-connected

if and only if every non-trivial cut 〈S,N− S〉 has a corresponding size of cut-set greater

than or equal to 2 [28].

Network survivability can be verified using Menger’s theorem. However, as discussed

earlier, the complexity of the algorithm increases exponentially with the number of nodes

and it cannot deal with large networks.

3.2.3 Survivability via 2-Connected Graphs

From Theorem 3.2.1, it can be seen that a cycle always has cut-set of size equal to 2. Fur-

thermore, a 2-connected graph can easily be constructed from simple cycles Figure. 3.3.

The following proposition implies a method to construct such graphs:
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Proposition 1 A graph is 2-connected if and only if it can be constructed from a cycle by

successively adding H-paths to graphs H already constructed.

Proof: Clearly, every graph constructed as proposed is 2-connected. Conversely, let

G be a 2-connected graph, then G contains a cycle, and a subgraph H is constructible. Any

edge x,y ∈ E(G)\E(H) with x,y ∈ H defines a H-path. Then, H is an induced sub-graph

of G. If H 6= G, then by the connectedness of G, there is an edge vw with v ∈ G−H and

w ∈ H . As G is 2-connected, G−w has a v−H path P. Then wvP is a H-path in G, and

H ∪wvP is a constructible sub-graph of G.

Figure 3.3: 2-connected graphs

3.3 Proposed Technique

From Proposition 1, it is possible to deduce the relation between the two 2-connected

graph presented by two blocks G′ and G′′ resulting in a graph G, to hold the following

cases:

1. G′ and G” have at least 2 common vertices: G is a 2-connected graph with no node

or link bridge.

2. G′ and G” have one common vertex: G is a 2-connected graph with a cut vertex or

called node bridge.
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3. G′ and G” are separated by a cutedge: G is not a 2-connected graph, and the cutedge

is called link bridge, and has no survivability.

4. G′ and G” have no relation: G is not a 2-connected graph, and has no survivability.

Based on the above discussion, it is possible to use the relation between network cycles

or 2-connected graphs to verify the survivability of its physical topology. An undirected

graph thus is seen as the combination of all the fundamental cycles. These fundamental

cycles can be found from a spanning tree {V,T} of a graph G = {V,E} (represented as

thick lines on the Figure. 3.4). All the fundamental cycles in the graph, however, may

Algorithm 1 Finding cycle
Input : A tree T and an edge e whose end-nodes are in T ;

Output: A cycle P formed by T and e;

(s,d)← end-nodes of e;

queue← [node.s,node.d];check ← 0;

while check == 0&queue 6= /0 do

[v]← head(queue); queue← queue−{head(queue)};

if v.s == d then

check = 1; P← v.P

else

for all vk is neighbour of v.s; do

node.s← vk; node.P← P∪ vk;

push node into queue;

end for

end if

end while

not be easily picked. For instance, Figure. 3.4 shows that any edge e ∈ E but e /∈ T (the

remaining links) forms a unique cycle with the tree branch when added to the tree, and

those cycles are not always fundamental cycles. However, fundamental cycles can be

identified by evaluating the length of cycles resulting from a spanning tree of the graph
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by connecting paths in the spanning tree with the remain links. The next step is to create

a substitution list of links for the cycles which are not fundamental. Another efficient

method for finding fundamental cycles of a graph, referred to as Paton′s algorithm, is

represented in [61]. This is, however, outside the scope of this work. Any set of cycles

found from the spanning tree can be used to verify the survivability of the topology that

it is generated from. An algorithm for finding a set of cycles through spanning tree of a

graph is represented in Algorithm 1. Algorithm 1 results in a set of cycles on which any

Figure 3.4: Spanning tree on an arbitrary graph

vertex in the graph is contained in at least one cycle when the graph is 2-connected. Hence,

this set of cycles is sufficient to verify the survivability of the graph. Next introduced is

an algorithm which is used not only to verify the survivability of a graph, but also to

determine the weaknesses of the graph such as cutvertices and link-bridges if they exist.

This is presented in Algorithm 2

3.4 Illustration and Simulation

In this section, an example of how the approach works over an arbitrary physical topology

G as shown in Figure. 3.5, with the set of nodes V and edges E is provided.

The Algorithm 1 and Algorithm 2 produce a tree T , being a subgraph of G, and an

unconnected node 13, shown in Figure. 3.5(b). T is a subgraph of the set of nodes VT

and edges ET , where VT = V −{13}, and ET = E −{(2,4),(2,5),(8,9),(11,12)} (The

spanning tree can be determined using Prim’s algorithm or Kruskal’s algorithm [50, 51]).
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Algorithm 2 Survivability verification
Input : cycles :list of cycles; deep = 1; back = 1; m = number of cycles; E : Network

links

Output: Nodebridges, 2-connected subgraphs, linkbridge

init

currentCycle← f irstcycle

while newcycles 6= cycles do

for i = size(back) : m−1 do

|loc|= cycles(i+1)
⋂

currentCycle

case |loc|> 1 // joined at more than 2 vertices

newcycle =
⋃

currentCycle,cycles(i+1)

cycles = {cycles\{cycles(1),cycles(i+1)}}
cycles =

⋃{cycles,newcycles}
currentCycle← f irstcycle

case |loc|= 1 // possible cut vertex at loc

push i into queue;

possibBridge← loc // add loc to possibBridge

back← back−1

deep← deep+1

if i = m−1 & length(deep) > 1 then

Nodebridges =
⋃{Nodebridges, possibBridge(last)}

2-connected=
⋃ {2-connected, cycles(deep(last))}

end if

end for

end while

for i = 1 to |E| do

if E(i) intersect two distinct blocks ( 2-connected or single node subgraphs) then

linkbridges =
⋃{linkbridges, E(i)}

end if

end for
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Algorithm 1 also generate a set of cycles {c1,c2,c3,c4} shown in Figure. 3.5(c). The

configuration of the resulting spanning tree found allows us to conclude that G is an

unconnected topology. However, further analysis of the physical topology is necessary to

identify if there is any other unprotect able link. Algorithm 2 creates 3 possible survivable-

bases using the set of cycles found previously, namely as S1 = {c1}, S2 = {c2,c3}, and

S3 = {c4}. S1 and S2 share node 2 in graph G, hence node 2 is a node-bridge. There are 3

link-bridges exist which are (5−6),(6−7) and (9−10). Nodes 6,10,13 are referred as

single nodes. The network verifying process gives the following remarks:

• Graph G is unconnected graph with unconnected node 13.

• Graph G contains three node-survivable subnetworks.

• Graph G contains one link-survivable subnetwork that is S1∪S2.

• Graph G contains at least one link bridge.

To demonstrate the computational efficiency of the proposed algorithm, it was necessary

to utilise randomly generated networks of various sizes. Figure. 3.6 represents the simu-

lated results of 10 randomly generated networks with the number of nodes varying from

15 to 375 nodes. The graph shows that the verification time increases almost linearly with

the increasing of network nodes. The proposed technique can be used to verifying the sur-

vivability of a given network as well as using biconnected components in [4]. In addition,

this technique can be used to determine the weak nodes or links of a given network, and

also provides all the distinct cycles for the next phase of network planning.

3.5 Summary

This chapter presented a new approach to establishing the physical survivability of net-

works. The proposed algorithm proved to be many orders of magnitude, whilst providing

all the distinct fundamental cycles of the networks if required with only a small change
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Figure 3.5: Illustration of an arbitrary network and its spanning tree
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Figure 3.6: Simulated results for 10 randomly generated networks

in Algorithm 1. The proposed technique is capable of identifying both node-bridges and

link-bridges not previously considered in the literature.
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Chapter 4

Cost vs. Congestion in Capacity

Allocation for Span Protection

Networking

This chapter presents the most common form of network protection and its mathematical

formulations, which is called span protection. Cost and maximum network congestion

are also presented and discussed in detail. The methods and importance of controlling of

congestion levels should be taken into account in network design to avoid the unbalancing

of a network’s load and assuring the continuation of service while maintaining reasonable

cost.

4.1 Background

Link survivability is based on two paradigms: link protection and link restoration. In

link protection, all connections that traverse the failed link are rerouted around that link

through alternate paths. The alternate paths and wavelength channels must be configured

in advance for protection. Link protection can also be further divided into dedicated or
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shared protection. In dedicated link protection (1+1) or (1:1), for each link of the working

path, backup capacity is reserved around that link, depending on whether the signal is sent

over the backup path during normal operation or not. In shared link protection, for each

link of working path, a backup path is reserved around that link. However, the backup

wavelength on the links of the backup path may be shared with other backup paths, thus

the backup channels are multiplexed among different failure scenarios. Link protection

capacity design based on static traffic, thus the back up paths are known in advance.

Link restoration techniques, on the other hand, re-route the disrupted traffic around

the failed link. A new path is dynamically discovered and established between the end

nodes of the failed link. When a new path is discovered, it replaces the broken connection,

and the broken connection is blocked. This approach requires the ability to identify the

failed link at both ends and makes restoration more difficult when there is a node failure.

The choice of the restoration path can be limited in number of hop-length and may use

more capacity.

(a) Dedicated link protection. (b) Shared link protection.

Figure 4.1: Link based protection

In Figure. 4.1(a), λ1 on path 5-2-6 (dotted line) is the protection path for link 5-6,

and protection path 1-5-2 for link 1-2. Different wavelength must be used for protection

path 2, as there is overlapping on link 5-2. In shared link protection Figure. 4.1(b), for

each link of the working path, a backup path is reserved around that link. However, the

backup wavelength on the links of the backup path may be shared with other backup paths
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providing that the corresponding working channels are on different links, thus the backup

channels are multiplexed among different failure scenarios.

“Distributed automation” span restoration was first proposed by D.W. Grover in 1987,

which is also known as “Self-Healing ring” diverse route protection [62], a partial form

of automatic span restoration has been built into most transmission systems. The capacity

design problem was established and carried out by many researchers, and a typical study

published in “Design and dimensioning of survivable SDH/SONET Networks” by P. So-

riano et al [63]. In recent years, various studies on span protection for mesh networks

that have been done focus mainly on the capacity design problem and recovery time after

failure(s). Within these studies, there were major contributions such as:

• The study on economic scale effect, which lead to the design of “Modularity” of

span restorable and capacity design [64]. The approach here is that the authors

combined both capacity modularity and the economies of scale effects in the design

optimisation model. The capacity design using this can achieve up to 15% cost

improvement depending on network topologies and demand patterns.

• The design of multiple qualities of protection capacity for span restoration inte-

grated with the modularity concept. This is an important achievement in span

restoration capacity design. It not only improves the resource efficiency, but opens

a new view about network design issues for the service oriented capacity optimisa-

tion [4, 47]. The needs for these improvements was driven by the modern business

environment where there is considerable interest in the ability to deliver different

ranges of service and at various level and subject to various charges accordingly

depended on the service. This study also indicates the potential to design and oper-

ate mesh-based restorable networks which have no spare capacity at all in the sense

that all the capacity is bearing some type of paying service.

• An in-depth review on survival of WDM optical networks by S. Ramamurthy et

al [41, 32, 40]. This study examines the wavelength capacity requirements for

routing and wavelength assignment of primary and backup paths in both path and
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link based protection. The authors propose distributed protocols for path and link

restoration. This study also examines the protection-switching time and the restora-

tion time for each of these schemes. The numerical results have shown that there

is a tradeoff between the capacity utilisation and the susceptibility to multiple link

failures. The study pointed out that path protection provides significant capacity

savings over link protection, and shared protection provides significant savings over

dedicated protection; while on the other hand, path protection is more susceptible to

multiple link failures than link protection, and shared protection is more susceptible

to multiple link failures than dedicated protection.

• An extension to span-based restoration or protection namely “Node-Inclusive Span

Survivability In An Optical Mesh Transport Network” was introduced in [65] by

J. Doucette. In this study, the author allowed the original technique to cover node

failure, as well as span failure, while retaining the span restoration characteristics.

This study was based on the concept of operating between custodial node regions,

instead of between the two traditional custodial nodes. These regions are defined as

one hop removed from the node or span failure [65].

4.2 Mathematical Formulations for Span Protection

In this section, two basic ILP formulations for link protection SCA problems are reviewed,

namely: Link-Node and Link-Path formulations. Due to the complication of the Link-

Node technique, this section only introduces the general model for routing for referencing

purposes. The basic routing for the Link-Path model is also introduced before the pro-

tection model in order to make the work easier to follow. These models are based on the

examples in [49].

General Network Notation

A network physical topology can be modeled as an undirected graph G(V,E), where V is

a set of network nodes and E is a set of physical spans. V = {v1,v2, . . . ,vN}, where N is
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the number of network nodes. E = {e1,e2, . . . ,eM}, where M is the number of network

spans.

4.2.1 Link-Path Model

Model 1 Basic Link-Path routing model.

Notation

D = {d1,d2, . . . ,dD} Set of demands,

and D is the number of demands

P = {pi
1, p j

2, . . . , pk
P} Set of path candidates between end nodes of demands; i, j,k ∈ D

Constants

δed p = 1, if path pth of demand d cross span e; 0, otherwise.

hd volume of demand d.

ξe unit cost of link e.

ce upper bound on the capacity of span e.

Variables

xd p flow variable allocated to path pth of demand d.

we capacity allocated on span e.

• ILP Model

– Objective

minimise : : ∑
e

ξewe (4.1)
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– Constraints

1) Demand constraints:

∑
p

xd p = hd , d ∈ D (4.2)

2) Working capacity allocated on span e:

∑
d

∑
p

xd pδed p = we , e ∈ E (4.3)

3) Congestion constraints:

we ≤ ce , e ∈ E (4.4)

4) Flow variables are non-negative:

xd p ≥ 0 , ∀d, p (4.5)

In Model 1, the main objective is to minimise the total cost of the working capacity

allocated for a given set of demands Equation 4.1. Equation 4.2 asserts that for every de-

mand, the total working flow assignments to the eligible routes must be equal to the total

demand. This implies that, for a given demand volume, each demand can be assigned

with the same route or split up over several possible different routes. This helps to reduce

the maximum congestion of the routing process. The given candidate paths are usually

the k-shortest paths, and this way of modelling is referred to as shortest-path routing,

which is different from another popular method of modelling known as shortest-path al-

location1. Equation 4.3 gives the working capacity we by intercepting all the assignments

of working flow to eligible routes that cross span e. Equation 4.4 makes sure that the total

working capacity allocated on each physical span e cannot be greater than the available

capacity of that span.

In the following example, the link-path model for a simple 3-node network as illus-

trated in Figure. 4.2, and its possible path candidates presented in Figure. 4.3, are consid-
1In shortest-path allocation, for each demand, the entire demand volume is allocated to the shortest path.

In the case there is more than one shortest path for a demand with respect to the link unit costs, then the

demand volume can be arbitrarily split among the shortest paths. On the other hand, shortest-path routing,

the selection is based on the given system link-weights
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ered.

Figure 4.2: 3-node network

Figure 4.3: All possible candidate paths for 3-node network of Figure. 4.2

Given a set of demand D=1,2,3, with the volume and connection details as follows:

h1 = 4 for the connection (1-2), h2 = 3 for the connection (1-3) and h3 = 7 for the con-

nection (2-3).

For demand d = 1, there are 2 candidate paths that can be used to establish the connection:

{(1−2),(1−3−2)} , and how much demand volume will be routed over each path de-

pends on the objective of the model. Thus, for this demand, Equation 4.2 can be presented

as:

x1,1 + x1,2 = h1 = 4.
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Similarly, it is possible to have for demand 2 and 3:

x2,1 + x2,2 = h2 = 3;

x3,1 + x3,2 = h3 = 7.

(4.6)

where x2,1 is path (1-3), x2,2 is path (1-2-3), x3,1 is path (2-3), and x3,2 is path (2-1-3).

Also, for each demand:

d=1: δ1,1,1 = 1 as the path p1 of demand d1 crosses span e1, δ2,1,2 = 1 as the path p2

of demand d1 crosses span e2, and δ3,1,2 = 1 as the path p2 of demand d1 crosses span e3.

d=2: δ2,2,1 = 1, δ1,2,2 = 1, and δ3,2,2 = 1.

d=3: δ3,3,1 = 1, δ1,3,2 = 1, and δ2,3,2 = 1.

The result is as follows:

δ1,1,1 δ1,1,2 δ1,2,1 δ1,2,2 δ1,3,1 δ1,3,2 ≡ 1 0 0 1 0 1

δ2,1,1 δ2,1,2 δ2,2,1 δ2,2,2 δ2,3,1 δ2,3,2 ≡ 0 1 1 0 0 1

δ3,1,1 δ3,1,2 δ3,2,1 δ3,2,2 δ3,3,1 δ3,3,2 ≡ 0 1 0 1 1 0

Each equation represents the span with path candidates crossing it. Thus, its sum would

equal to the total capacity allocated to that corresponding span. Assume, each physical

span is assigned with the same available capacity ce = 20. Put together, the routing model

will be:

x1,1 x1,2 0 0 0 0 = 4

0 0 x2,1 x2,2 0 0 = 3

0 0 0 0 x3,1 x3,2 = 7

1 0 0 1 0 1 ≤ 20

0 1 1 0 0 1 ≤ 20

0 1 0 1 1 0 ≤ 20

(4.7)

Assume that the cost of service routing across all network spans is the same and equal 1.

Hence, the cost for each candidate path is just equal to its length. Let F be the optimisation
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function, and it can be represented as:

F = x1,1 + 2x1,2 + x2,1 + 2x2,2 + x3,1 + 2x3,2 (4.8)

The solution for the above objective is F = 14, with x1,1 = 4, x2,1 = 3, x3,1 = 7. It is easy

to see that this is the optimal solution as these paths are the shortest.

The following is an extension of the link-path model for networks with span protec-

tion. This model uses an extra set of candidates known as the set of restoration candidates.

Each candidate represents a restoration path corresponding to the eth span failure. Thus,

this model contains two different sets of candidate paths: one set is for routing primary

paths and the other is for protection of the associated primary paths.

Model 2 Basic Link-Path Model for Span protection.

• Notation

– Network Notation

As in Model 1

– Indices

d = 1,2, . . . ,D demands.

p = 1,2, . . . ,Pd candidate paths between end nodes of demand d.

q = 1,2, . . . ,Qe candidate restoration flow for the eth span failure.

e = 1,2, . . . ,M links.

– Constants
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δed p = 1, if path pth of demand d cross span e; 0, otherwise.

ζ q
e j = 1, if route qth for failure on span e cross span j; 0, otherwise.

hd: volume of demand d.

ξe: unit cost of link e.

ce: upper bound on the capacity of span e.

– Variables

xd p: working flow variable allocated to path pth of demand d.

we: capacity allocated on span e.

se: spare capacity allocated on span e.

yq
e : restoration flow allocated to the qth for restoration of link e.

• ILP model

– Objective

minimise : ∑
e

ξe(we + se) (4.9)

76



– Constraints

1) Demand constraints:

∑
p

xd p = hd , d = 1,2, . . . ,D (4.10)

2) Working capacity allocated on span e:

∑
d

∑
p

xd pδed p = we , e = 1,2, . . . ,E (4.11)

3) protection capacity allocated for span e to support

all the flows imposed on it:

∑
q∈Qe

yq
eζ q

e j = se (4.12)

4) Total restoration flow for span e meet 100% requirement for protection:

∑
q∈Qe

ζ q
e j = we (4.13)

5) Congestion constraints:

we + se ≤ ce , e = 1,2, . . . ,E (4.14)

6) Flow variables are non-negative:

xd p ≥ 0 , ∀d, p

yq
e ≥ 0 , ∀e,q (4.15)

Equation 4.10 ensures that for every demand, the total working flow assignments to

the eligible routes must be equal to the total demand. Equation 4.11 gives the working

capacity we by intercepting all the assignments of working flow to eligible routes that cross

span e. Equation 4.12 is the total protection capacity allocated to each span e to support all

the working flows imposed on it. Equation 4.13 ensures that each of the eligible working

capacity of span e must be protected by a backup route. Equation 4.14 makes sure that

the total working capacity allocated on each physical span e cannot be greater than the

available capacity of that span.
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4.2.2 Link-Node Model

Model 3 Basic Link-Node routing model.

• Notation

– Network notation

As in Model 2

– Indices

d = 1,2, . . . ,D demands.

e = 1,2, . . . ,M links.

– Constants

hs̃d : volume of demand originating at node s

and is destined for node d.

ξi j: unit cost of link i j.

ci j: upper bound on the capacity of span i j.

– Variables

xs̃d
i j : flow on link i j for demand pair s̃d.

bi j: = 1, if the design virtual topology uses link i j.

wi j: number of working capacity units allocated to span i j.

• ILP model

– Objective

minimise : ∑
i

∑
j

ξi jwi j (4.16)
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– Constraints

1) Flow conservation:

∑
j

xs̃d
i j bi j−∑

j
xs̃d

ji b ji =





hs̃d if s=i,

−hs̃d if d=i, ∀ s,d, i.

0 otherwise.

(4.17)

2) Total traffic from all sd pairs that is routed over link i j:

∑̃
sd

xs̃d
i j = wi j, (4.18)

3) Capacity constraints:

wi j ≤ ci j, (4.19)

4) Flow variables are non-negative:

xi j ≥ 0 , ∀i, j

wi j ≥ 0 , ∀i, j (4.20)

Equation 4.17 is the conservation constraint, and at node i in the network computers

the total flows out of node i for each commodity sd. The net flow is equal but different

in sign between the outgoing and incoming flow. The net flow is 0 if the node is neither

source nor the destination for that commodity sd, which i 6= s,d. Equation 4.18 gives the

working capacity wi j by intercepting all the assignment of working flow to eligible routes

that cross span i j. Equation 4.31 ensures that the total working capacity allocated to each

span i j is always less than or equal to the allowable capacity assigned for it.

In the following example, the same network and demand as in the previous example

is used. The given set of demands is D=1,2,3, with the volume and connection details as

follows: h1̃2 = 4 for the connection (1-2), h1̃3 = 3 for the connection (1-3) and h2̃3 = 7 for

the connection (2-3).

According to Equation 4.17, the set of flow conservation for each demand is as fol-

lows:
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For d=1:

x1̃2
12 + x1̃2

13 = h1̃2

−x1̃2
13 + x1̃2

32 = 0

−x1̃2
12− x1̃2

32 =−h1̃2

For d=2:

x1̃3
12 + x1̃3

13 = h1̃3

− x1̃3
12 + x1̃3

23 = 0

−x1̃3
13− x1̃3

23 =−h1̃3

For d=3:

x2̃3
21 + x2̃3

23 = h2̃3

−x2̃3
21 + x2̃3

13 = 0

−x2̃3
13− x2̃3

23 =−h2̃3

In the above system equation, there are three cases that have to be considered for each

demand. With the first demand, sd = 1−2 has the source node s is 1, and the destination

node d is 2. The flows out of the a node have positive signs, and have negative signs if

they are flowing into a node.

In the first case, the flow out of the source node s = 1 must be considered. There

are two ways that the flow of this demand can leave node 1: x1̃3
12 (link 1-2 for demand

sd = 13), and x1̃3
13 (link 1-3 for demand sd = 13). The total of the flows out of the source

node s is equal to the volume of demand 1. Thus, (x2̃3
21 + x2̃3

23 = h2̃3)

In the second case, it is necessary to take into account the intermediate node, which

now is node 3. As the total flows in and out of each intermediate node, it must be equal

to 0. Thus in this case, −x1̃3
12 is the flow into node 3 from the source node s and x1̃3

23 is the

flow out of node 3 to destination node d. In this case, −x1̃2
13 + x1̃2

32 = 0.
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For the third case, the destination node d = 2 is considered. All the flows must be now

going into, rather than out of the node. Therefore, it is expected that all the flow will be

negative. The first flow is −x1̃2
12, which is the flow into node 2 from node 1. The second is

−x1̃2
32, which is the flow into node 2 from node 3. The total number of flows going into d

must be equal to the volume of the demand. Therefore, the following equation holds true:

−x1̃3
13− x1̃3

23 =−h1̃3.

The sum of all flows for each span should be within its capacity according to Equa-

tion 4.18, Equation 4.31. Thus the capacity constrain for each network’s span is as fol-

lows:

For span 1:

x1̃2
12 + x1̃3

12 ≤ c12

For span 2:

x1̃2
13 + x1̃3

13 + x2̃3
13 ≤ c13

For span 3:

x1̃3
23 + x2̃3

23A≤ c23

x1̃2
32 ≤ c32
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Putting together, the following flow model results:

x1̃2
12 x1̃2

13 0 0 0 0 0 0 0 = h1̃2

0 −x1̃2
13 x1̃2

32 0 0 0 0 0 0 = 0

−x1̃2
12 0 −x1̃2

32 0 0 0 0 0 0 =−h1̃2

0 0 0 x1̃3
12 x1̃3

13 0 0 0 0 = h1̃3

0 0 0 −x1̃3
12 0 x1̃3

23 0 0 0 = 0

0 0 0 0 −x1̃3
13 −x1̃3

23 0 0 0 =−h1̃3

0 0 0 0 0 0 x2̃3
21 x2̃3

23 0 = h2̃3

0 0 0 0 0 0 −x2̃3
21 0 x2̃3

13 = 0

0 0 0 0 0 0 0 −x2̃3
23 −x2̃3

13 =−h2̃3

x1̃2
12 0 0 x1̃3

12 0 0 0 0 0 ≤ c12

0 x1̃2
13 0 0 x1̃3

13 0 0 0 x2̃3
13 ≤ c13

0 0 0 0 0 x1̃3
23 0 x2̃3

23 0 ≤ c23

0 0 x1̃2
32 0 0 0 0 0 0 ≤ c32

(4.21)

4.3 Effect of Load Balancing on Capacity Redundancy

Most network optimisation functions are subject to minimising the total cost of capacity

usage or capacity redundancy. However, minimising the cost may not guarantee good or

continued service, which is the main goal of a network designer. This is because in this

case, the model will be optimised using shortest paths as long as the allocated capacity

to each span does not exceed the available capacity desired. The result of this is high

congestion in some spans and less in others. This is known as load unbalancing.

Optimisation models for wavelength routing can have objective functions aimed at

reducing either the network congestion level (referred to as CongMin) or the total wave-

length channels used (referred to as CapMin) [66]. The purpose of the CongMin scheme

is balancing the network load, thus lowering the number of wavelength channels needed

and reducing the blocking probability for future connections. However, the total cost

(total capacity) used by CongMin is usually higher compared to the CapMin scheme. In
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contrast, when the objective function has employed the CapMin scheme, the total network

capacities used may be reduced, but the utilised wavelength channels on some links in the

network can reach their upper limit, thus no future demands can be served via those links.

By combining the above two schemes into the objective function of the ILP model,

it is possible to control and balance the capacity utilisation and congestion level of the

network. To do this, it is necessary to introduce some identities for congestion control

into Model 2 as follows:

• Variables

α max congestion of the network

Defining fsum and fmax as fsum = Σeξe(we + se) and fmax = kα , where k is the con-

trolling factor, then it follows that:

• Objective

minimise fsum + fmax (4.22)

The constraint Equation 4.14 becomes:

• Constraints

we + se ≤ α , e = 1,2, . . . ,E (4.23)

α ≤ cmin , cmin = min{ce : e = 1,2, ...,M} (4.24)

Equation 4.24 has an entity cmin, which is the minimum capacity available on a single net-

work’s span. This implies that, in the case of load balancing and controlling of congestion

levels, each span on the network is likely to have the same amount of available capacity.

The relation between cost and congestion is illustrated in the following simulations: The

first network has 9 nodes 14 physical links “NetN9L14” ( Figure. 4.4) arbitrary network.

The second network is the NFSNET with 21 physical links. Each network is simulated

with 10 randomly generated traffic demands and applied to both scenarios: “Total cost

optimisation” and “ Cost optimisation under congestion control”.
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Figure. 4.5 and Figure. 4.7 show the simulation results of the two scenarios: cost

optimisation without congestion control (the first blue column of each case) and with

congestion control (the second maroon column of each case). The total routing cost in the

case of non congestion control is usually less than when there is congestion control. There

are few cases the congestion are equal in both scenarios. In most cases, the maximum

congestion will be lower when being controlled (the second dark purple column of each

case) than just simply optimising routing cost. This is particularly important when the

connection demand volumes are high, which in practice is often the case. The maximum

congestion will be significantly reduced. Thus, congestion level control should be taken

into account to avoid the unbalancing of a network’s load and to ensure the continuation

of service.

Figure 4.4: NetN9L14

Figure 4.5: Cost vs. congestion control optimisation for span protection of NetN9L14
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Figure 4.6: NSFNET

Figure 4.7: Cost vs Congestion control optimisation for span protection of NFSNET
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4.4 Multiple Quality of Protection Capacity Design

It is possible for different service requests to exist for any different group of demands in

a communication network. According to M. Clouquer et al. [47], the communication de-

mands can be categorised into four groups with respect to the level of priority as follows:

1. Gold (assured restoration): these are working channels that must be restored and

are guaranteed to be protected by the optical layer.

2. Silver (best efforts restoration): these are channels that are protected with best ef-

fort, and are working channels that should be restored if possible following the full

restoration of any of the higher classes of service capacity.

3. Bronze (non-protected): these are channels that are not protected, and are working

channels that do not receive any restoration effort, but are not subject to being pre-

empted.

4. Economy (pre-emptible): these are channels that utilise protection bandwidth under

normal conditions, and which do not receive any protection. These are pre-empted

when other lightpaths need to be protected.
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Model 4 Span Protection Model for MULTI-QoP.

• Network notation as in Model 1

• Indices

DG = {dG
1 ,dG

2 , . . . ,dG
D} set of gold demands.

DS,B = {dS,B
1 ,dS,B

2 , . . . ,dS,B
D } set of gold demands.

DE = {dE
1 ,dE

2 , . . . ,dE
D} set of gold demands.

Pd = {pd
1 , pd

2 , . . . , pd
P} set of candidate paths between end nodes for demand d.

Qe = {qe
1,q

e
2, . . . ,q

e
Q} set of candidate restoration paths for the eth span failure.

E= {e1,e2, . . . ,eM} set of network spans.

• Constants

δed p = 1, if path pth of demand d cross span e; 0, otherwise.

ζ q
e j = 1, if route qth for failure on span e cross span j; 0, otherwise.

hd volume of demand d.

ξe unit cost of link e.

ce upper bound on the capacity of span e.

• Variables

xd p working flow variable allocated to path pth of demand d.

we capacity allocated on span e.

wB,S
e capacity allocated on span e for Silver and Bronze demands.

wE
e capacity allocated on span e for Economic demands.

wG
e capacity allocated on span e for Gold demands.

se spare capacity allocated on span for e.

yq
e restoration flow allocated to the qth for restoration of link e.

ILP model
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• Objective

minimise : ∑
e

ξe(we + se) (4.25)

• Constraints

1) Demand constraints:

∑
p∈Pd

xd p = hd , ∀d ∈ DG∪DS,B∪DE (4.26)

2) Working capacity allocated on span e:

∑
d∈DG

∑
p

xd pδed p = wG
e , e = 1,2, . . . ,E (4.27)

∑
d∈DS,B

∑
p

xd pδed p = wS,B
e , e = 1,2, . . . ,E (4.28)

∑
d∈DE

∑
p

xd pδed p = wE
e , e = 1,2, . . . ,E (4.29)

(4.30)

3) protection capacity allocated on span e to support

all the flows imposed on it:

∑
q∈Qe

yq
eζ q

e j−wE
e = se (4.31)

4) Total flow for span e:

∑
q∈Qe

ζ q
e j = we (4.32)

5) Congestion constraints:

wG
e +wS,B

e +we + se ≤ ce , e = 1,2, . . . ,E (4.33)

6) Flow variables are non-negative:

xd p ≥ 0 , ∀d, p

we ≥ 0 , ∀e (4.34)

The above model has combinations of four different protection service classes. The

test case shows that the most efficient service classes for the design is the combination
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of the gold and economy classes. The idea is that the gold restorability can be provided

through pre-emption of economy-class services. With high levels of best-efforts restora-

bility, it would give lowest total capacity requirements. This is because this service does

not require any reserve spare capacity, and the service would be restored from a failure

if there is any capacity available or by pre-emption of economy-class services. Thus,

the lowest resource usage in this case does not necessarily equate to being the best, but,

rather that this provides an insight into the relationship between classes of services and

the allocating of resources.

4.5 Summary

This chapter presents the mathematical formulations for optimal network routing and pro-

tection in the most common form: span protection. Basic techniques of network optimi-

sation models known as “link-path” and “link-node” are also discussed in depth [55, 22,

4, 49].

The “link-path” technique introduces less variables into the model than the “link-

node” model, and thus is preferable. Cost and maximum network congestion are also

presented and discussed in details.

Controlling of congestion level should be taken into account in network design to

avoid the imbalance of network’s load and assuring the continuation of service while

maintaining reasonably cost.

89



90



Chapter 5

Optimising the Integer Linear

Programming Model for Path-Based

Protection

Path protection at the optical layer of WDM networks is simple to implement. But in

order to do this, each connection requires two disjointed paths: one is the main working

path and other is the protection path for the main working path Figure. 5.1(a).

Path protection can be either dedicated or shared. This chapter gives an overview of

both schemes and presents them using a link-path formulation. In addition, there are two

alternative ILP models proposed for shared backup path protection (SBPP) in optical mesh

networks. The first model is a variable-based model (VBM), which has a small number

of constraints. The variables of this model are sets of disjointed-primary and joint-backup

(DPJB) candidates.

Since there may be a great number of variables involved, the number of candidates

is limited by generating only those that have DPJB paths. Thus, the solution of the this

model is near optimal value. New entities are introduced into this model that enable
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(a) Dedicated path protection.

(b) Shared backup path protection.

Figure 5.1: Dedicated and shared backup path protection schemes
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us to control the load balancing and congestion levels of the network for optimisation

purposes. In contrast, the second ILP model is a constraint-based model (CBM), and has

the disjointed path pair candidates as variables. The CBM is an improvement of the joint

SBPP model [29] in terms of constraint optimisation, and can provide optimal solutions

quicker as the complexity is much less than that of the VBM. For large networks with

fewer connection demands, the CBM has a small number of constraints, and can thus be

an attractive approach for dynamic routing. The new CBM model is later used in the

mixed protection method design.

5.1 Background

Several capacity design models for SBPP networks have been extensively studied in the

literature [67, 40, 68, 69]. For the link-path formulation, there are typically three different

approaches to the design model known as non-joint SBPP design, joint SBPP and joint

SBPP with wavelength assignment [4, 40, 70].

• In the first approach, the non-joint SBPP, the backup paths are allocated based on

the given primary paths, and here there is a high probability of not being able to

allocate the backup routes for the given primary routes.

• The second approach is the joint SBPP, which defines the eligible primary and

backup pairs directly, and makes a decision as to which pair is selected for a corre-

sponding demand.

In the joint SBPP with wavelength assignment, primary paths, backup paths and the task

of assigning the wavelength to the selected paths are formulated together and solved from

a single ILP model. In [67, 4], the authors show that capacity design using joint SBPP can

have more than 20% capacity reduction compared with the non-joint SBPP. The last ap-

proach proposed by Ramamurthy et al. [40], combines the non-joint SBPP with the wave-

length assignment problem in the model. However, this model contains a larger number
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of variables and constraints compared to the others, and therefore it is only applicable to

small networks with no more than 10 nodes [40].

This chapter outlines a proposal for utilising DPJB paths to implement an ILP model

for SBPP. Introduced here are two implementations of this model. The first ILP model is

the VBM, which favours the minimisation of the number of constraints, but has a large

number of variables. The variables of this model are sets of DPJB paths for the given

connection demands and each set, if selected, holds solutions for a group of corresponding

demands. The second model is the CBM, which is an improvement of the joint-SBPP

discussed above. This model takes a given set of candidate path pairs as its variables, but

has a larger number of constraints compared to the VBM.

It should be noted that in traditional joint-SBPP models, there is one set of constraints

generated for working capacity allocation, and another set of constraints for the backup

capacity allocation. These two sets are generated independently of each other. However,

in many cases, there will be dependencies between some constraints of the two sets, which

unnecessarily increase the size of the model. The improvement of CBM is to remove these

redundancies, thus reducing the size of the model. For the sake of simplicity, throughout

this dissertation, it is assumed that the networks have enough wavelength channels or are

fully equipped with wavelength converters. Hence, the wavelength continuity constraint

will not be considered.

5.2 Dedicated Backup Path Protection

Dedicated path protection can be modeled in two ways: non-joint optimisation or joint

optimisation. In the non-joint case, the working paths are given, and one just has to find

the backup path to protect the given working routes. The following model is the un-

capacitated joint optimisation for dedicated path protection. In some circumstances such

as when the number of wavelength channels is bounded, capacitated optimisation may be

required.
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Model 5 Dedicated path protection

Indices

D = {d1,d2, . . . ,dD} set of demands, and D is the number of demands.

Bd = {b1,b2, . . . ,bk} set of distinct candidate primary-backup paths pair

between end nodes of demand d.

Constants

θ d,b
i = 1 if the primary route part of the bth eligible path pair for demand d cross

span i; and 0, otherwise.

hd: volume of demand d.

ξ d,b
j = 1 if the backup route part of the bth eligible path pair for relation d cross

span j, and 0, otherwise.

c j: cost of link j.

Variables

ρb,d = 1 if the bth eligible path pair is chosen to serve demand d, and 0, otherwise.

wi: working capacity on span i to support the routing of working paths.

s j: spare capacity on span j to support the routing of working paths.

• ILP model

– Objective

minimise ∑
j∈E

c j(w j + s j) (5.1)
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– Constraints

∑
d∈D

∑
b∈Bd

hdθ r,b
i = w j , ∀ j ∈ E (5.2)

∑
b∈Bd

ρb,d = 1 , ∀d ∈ D (5.3)

∑
d∈D

∑
b∈Bd

ξ d,b
j ρb,dhd ≤ s j ,∀ j ∈ E (5.4)

w j ≥ 0 , ∀ j ∈ E (5.5)

s j ≥ 0 , ∀ j ∈ E (5.6)

Constraints ( Equation 5.2) ensures that the working capacity on each span is sufficient

to support the routing of all the working paths that cross it. Constraint ( Equation 5.3)

indicates that there is one backup route for each working demand or demand bundle.

The spare capacity requested to support the working capacity on each span is defined by

constraint ( Equation 5.4).

5.3 Shared Backup Path Protection

Model 6 Conventional model (joint SBPP) [67, 4]

Indices

D = {d1,d2, . . . ,dD} set of demands, and D is the number of demands.

Bd = {b1,b2, . . . ,bk} set of distinct candidate primary-backup paths pair

between end nodes of demand d.
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Constants

θ d,b
i = 1 if the primary route part of the bth eligible path pair for demand d cross

span i; and 0, otherwise.

hd: volume of demand d.

ξ d,b
j = 1 if the backup route part of the bth eligible path pair for relation d cross

span j, and 0, otherwise.

c j: cost of link j.

Variables

ρb,d = 1 if the bth eligible path pair is chosen to serve demand d, and 0, otherwise.

wi: working capacity on span i to support the routing of working paths.

s j: spare capacity on span j to support the routing of working paths.

• ILP model

– Objective

minimise ∑
j∈E

c j(w j + s j) (5.7)

– Constraints

∑
d∈D

∑
b∈Bd

hdθ r,b
i ρb,d = w j , ∀ j ∈ E (5.8)

∑
b∈Bd

ρb,d = 1 , ∀d ∈ D (5.9)

∑
d∈D

∑
b∈Bd

θ d,b
i ξ d,b

j ρb,dhd ≤ s j ,∀i, j ∈ E|i 6= j (5.10)

w j ≥ 0 , ∀ j ∈ E (5.11)

s j ≥ 0 , ∀ j ∈ E (5.12)

For the above model, the number of variables and constraints are (P̄D +M)× (D + M2),

where P̄ is the average of candidate paths, D is the number of demands and M is the

number of network links.
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Table 5.1: Number of Variables & Constraints in Conventional Model

Number of Variables Number of Constraints

P̄D+M D+M2

5.3.1 Developing a Variable Based Model for Shared Backup Path Protec-

tion with Disjointed Primary and Joint Backup Path Sets

The ILP models based on link-path formulation require pre-processing of data to generate

candidate paths. In path protection routing, for each connection, two disjoint paths must

be provided between the source and the destination nodes. The primary path is provi-

sioned to serve the connection under normal operation; while the backup path is reserved

in case of failure of the corresponding primary path. There are various well developed

techniques for finding disjoint path pairs [71, 72, 55, 73].

The proposed VBM utilises a larger number of candidate path pairs (i.e. larger value

of K), which obviously increases the number of variables in the model. However, it is

necessary to compensate for this increase by reducing the number of constraints, which in

the case of the proposed model will be only the sum of the number of demands (used for

the selection constraints) and the number of network links (used for the capacity allocation

constraints). After assessing the performance of the VBM, it is possible to further reduce

its computational complexity using multi-level optimisation techniques.

Let us first provide some definitions necessary for the VBM model.

Definition 1 Let S(P,R) be the set of candidate path-pairs, where:

P = {P1, . . . ,PD} is the set of candidate primary paths.

R = {R1, . . . ,RD} is the set of candidate backup paths.
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Pd = {p1
d , p2

d , . . . , pK
d } is the set of K candidate primary paths for connection d, where

pK
d denotes the pK primary path of connection d.

Rd = {r1
d ,r

2
d , . . . ,r

K
d } is the set of K candidate backup paths for connection d, where

rK
d denotes the rK backup path of connection d, disjoint with pK

d .

g is the group of demands that have DPJB paths, g⊆ D.

The set of DPJB path-pairs of group demands is denoted as H = {H l
d,g,k}, where H l

d,g,k

is the set of DPJB paths of the kth candidate primary of demand d in group demand g at

share level l, with H l
d,g,k = {S′(P′,R′)|S′ ⊆ S(P,R)} satisfying the following conditions:

a) ∀p′i, p′j ∈ P′, p′i
⋂

p′j = /0, i 6= j : primary paths disjoint.

b) ∀r′i,r
′
j ∈ R′,r′i

⋂
r′j 6= /0, i 6= j : backup paths joint.

c) ∃ei ∈ E,∑p∈P′ ei = l : shared level.

Figure. 5.2 shows a number of candidate paths belonging to the set of DPJB candidates

for connections 2−5, 2−3 and 8−9. The backup paths of the three connections have 3

different shared levels; level 1 is at links e8,e9 and e11, level 2 is at e1 and e6, and level 3

is at e2. Note that the solid lines indicate primary routes for the connections and they must

be disjoint from each other; the dashed lines are the backup routes for these connection

and they are common at some arbitrary links. The maximum number of joints between

backup paths at one link defines the share level of the corresponding candidate.
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5.3.2 Multi Level Optimisation

Model 7 Proposed VBM for SBPP

Indices

H: set of DPJB path-pair candidates.

D = {d1,d2, . . . ,dD} Set of demands, and D is the number of demands.

p = 1,2, ...,n p ∈ H.

Constants

δedb = 1 if link e belongs to path b of demand d; 0, otherwise.

σegp = Σb∈pδedb if path-pair bth in S uses link e belongs to set p of

group demand g = {di}; 0, otherwise.

hd : volume of demand d.

ξe: unit cost of link e.

W : upper bound on the amount of capacity of link e.

Variables

xdgp flow variable allocated to set p of demand d of group g.

ye capacity of link e.

• ILP model

– Objective

minimise ∑
e∈E

ξeye (5.13)
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– Constraints

∑
p

xdgp = hd , d ∈ D; p ∈ H;g⊆ D (5.14)

∑
d

∑
p

∑
egp

xdgp ≤ ye , d ∈ D;e ∈ E; p ∈ H

xdgp ≥ 0 , d ∈ D; p ∈ H;g⊆ D (5.15)

Table 5.2: Number of variables & constraints in VBM

Number of Variables Number of Constraints

P̄D+M D+M

The number of variables and constraints that are introduced in the model are (P̄D+M)×
(D+M), and illustrated in the simulation section (Table 5.4).

Routing Cost vs. Network Congestion

Optimisation models for wavelength routing can have objective functions aimed at reduc-

ing either the network congestion level (referred to as CongMin) or the total wavelength

channels used (referred to as CapMin) as outlined in one of the published works [74].

The purpose of the CongMin scheme is balancing the network load, thus lowering the

number of wavelength channels needed and reducing the blocking probability for future

connections. However, the total cost (total capacity) used by CongMin is usually higher

compared to the CapMin scheme. In contrast, when the objective function employs the

CapMin scheme, the total network capacities used may be reduced, and the utilised wave-

length channels on some links in the network can reach their upper limit, thus no future

demands can be served via those links. By combining the above two schemes into the

objective function of the ILP model, it is possible to control and balance the capacity util-

isation and congestion level of the network. To do that, it is necessary to introduce some

new identities into the model as follows:
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(a) Path candidates for shared level 1.

(b) Path candidates for shared level 2.

(c) Path candidates for shared level 3.

Figure 5.2: Typical path candidates for connection 2−5
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• Constants

fp = ∑p ∑egp total capacity used by set p,

p ∈ H;g⊆ D;e ∈ E.

• Variables

α: max congestion of the network.

Defining fsum = ∑p fp and fmax = kα , where k is the controlling factor, then:

• Objective

minimise fsum + fmax (5.16)

• Constraints

∑
p

xdgp = 1, d ∈ D; p ∈ H;g j D (5.17)

∑
d

∑
p

∑
egp

xdgp ≤ α,

d ∈ D; e ∈ E; p ∈ H;g j D

(5.18)

α ≤W (5.19)

xdgp ≥ 0 , d ∈ D; p ∈ H;g⊆ D (5.20)

Effect of Load Balancing on the Solution of VBM model

The introduction of k to control the maximum congestion α , and balancing the network

load, may push the congestion at individual links toward α . Thus, it is expected that the

cost of the final solution may be larger than the case without fmax. In order to reduce

the effect of k on the final solution, link congestion control variables are introduced into

the model, notated as ψe =−1. The link congestion controls ψe work as slack variables,

controlled by the objective function of the model. Defining Ψsum = k ∑e ψe then it follows

that the ILP model becomes:

• Objective

minimise fsum +Ψsum + fmax (5.21)
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• Constraints

∑
p

xdgp = 1, d ∈ D; p ∈ H;g j D (5.22)

∑
d

∑
p

∑
egp

xdgp ≤ α +ψe,

d ∈ D;e ∈ E; p ∈ H;g j D

(5.23)

α ≤W (5.24)

xdgp ≥ 0 , d ∈ D; p ∈ H;g⊆ D (5.25)

Further improvements in VBM model using multi-level optimisation

The number of variables introduced in VBM increases significantly when dealing with

large size networks and large demand sets, as it depends on the actual number of DPJB

candidates. This section presents s proposal for a multi-level optimisation technique with

the aim of reducing the number of variables and constraints introduced into the model.

The proposed model is reduced into a sub-model that has a lower level of sharing between

path pair candidates. The next step is to attempt to solve this sub-model. If the sub-model

yields a partial solution to some of the demands, then a new sub-model must be created

- with the next lower level of sharing, and iterate in this fashion until all demands are

satisfied. If a sub-model, at a given share level, does not yield a solution to any of the

demands, then it is necessary to reduce the share level and solve it again. Thus, each sub-

model contains only a portion of the original model at a different share level, resulting

in a significant reduction in the model’s complexity compared to the original model. It

should be noted that the lowest level of sharing will be equivalent to the dedicated path

protection scheme, which is guaranteed to provide a solution, if one exists (ie. if the given

demands are within the capacity bounds of the network).

Proposition 2 Consider that, given an undirected graph G(V,E), a finite set of DPJB

candidates of demands denoted by H, a set of connection demands D = d1,d2, . . . ,dm

and a family F = Hg1,Hg2, . . . ,Hgn of subsets of H, where gi ⊆ D is group demands and
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Hgi is the set of DPJB candidates of group gi. Due to the selection constraint, each

demand di can appear in the solution only once. The set H is said to provide sufficient

solution to the ILP model if and only if there exists at least a set H ′ ⊆ H and a family

F ′ = H ′
g1,H

′
g2, . . . ,H

′
gK

,K ≤ n such that
⋂

k∈K gk = /0, and
⋃

k∈K gk = D.

Proof: The set of candidates H satisfying the above condition contains the solution

for the ILP model. Conversely, assume that there exists a set H ′ ⊆ H and a family F ′ =

H ′
g1,H

′
g2, . . . ,H

′
gK

,K ≤ n. The demand d ∈ D must be in one of the following cases:

• d ∈ gi,d ∈ g j, or

• d /∈ gi,d ∈ g j, or

• d ∈ gi,d /∈ g j

If the connection demands are in the first case, either the subset H ′
gi

or H ′
g j

can be selected

by the ILP solver to satisfy the routing demands, thus
⋃

k∈K gk = D, and as each demand

can only appear in the solution once, it requires
⋂

k∈K gk = /0.

The algorithm for performing multi shared level optimisation is presented in Appendix A.0.2.

In practice, the sets of DPJB candidates in H usually do not satisfy the condition in Pro. 2.

Thus, in order to obtain the solution, the K-shortest path pairs need to be included in the

candidate paths of the model. This will allow demands that cannot share backup paths to

select these path-pairs for dedicated protection.

5.4 Proposed Constraint Based Model for Shared Backup Path

Protection

The VBM contains less constraints than the conventional model, but the number of vari-

ables in the model will increase greatly when increasing the number of path-pairs or in-

creasing numbers of connection demands. This model can actually obtain the optimal
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solution if it be can provided with all the path candidates, but this is impractical to solve

as the number of variables in the model turns out to be very large.

In this section, a new alternative constraint-based model (CBM) is presented; one that

takes advantage of the information of DPJB candidates and attempts to reduce the number

of constraints in the model. In contrast with the VBM model, this model does not take

any more variables than the given path pairs, but focuses on managing the constraints

of the link failure scenarios. The difference of this model compared to the conventional

model is that rather than considering all the spare capacity of the network links in one

single equation (Equation 5.23), it divides the network links into two groups: sharable

and non-sharable links.

A sharable link is used by more than one backup path to protect different links of

the corresponding primary paths. A non-sharable link is also used by more than one

backup path but it protects the same link of the corresponding primary paths. The math-

ematical expression of this is presented in Definition 2. The CBM has three separate

constraints. Equation 5.27 is the selection constraint, which allows the solver to select

suitable candidates for the final solution. Equation 5.28 combines the working capacity

and the non-sharable spare capacity allocation. The constraints for sharable spare capacity

allocation are presented in Equation 5.29.

Definition 2 Let S = {s1
d,s

2
d, ...,s

I
d} be the set of candidate path-pairs, where I is the index

set, and si
d = (pi

d,r
i
d), i ∈ I,d ∈D; pi

d is the ith primary path candidate for demand d; and

ri
d is the ith backup path candidate for demand d.

Let Hk = {sk
di
,H ′

d j,l|i 6= j;di,d j ∈ D;k, l ∈ I} contain the list of DPJB path pairs between

the kth candidate of demand di and the lth candidate of demand d j with

H ′
d,l = {S′|S′ ⊂ S} satisfying the following conditions:

a) ∀pl
d j
∈ S′, pk

di

⋂
pl

d j
= /0, i 6= j : primary paths disjoint.

b) ∀rl
d j
∈ S′,rk

di

⋂
rl

d j
6= /0, i 6= j : backup paths joint.

c) ei = sk
di

⋂
H ′

d j,l,ei 6= /0,ei ∈ e, i ∈ I : set of shared links of ith candidates.
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From the above condition, it is possible to define the set containing all the links that

can be shared, denoted by e′ as
⋂

ei = {e′|, i ∈ I,e′ j e}.

Model 8 Proposed CBM for SBPP

• Notations

– Indices

d = 1,2, . . . ,D demands.

b = 1,2, . . . ,Bd candidate path pair between end nodes of demand d.

e = 1,2, . . . ,M network links.

e′ j e: sharable links.

– Constants

θ d,b
i = 1 if the primary route part of the bth eligible path pair for demand d

crosses span i; and 0, otherwise.

hd: volume of demand d.

ξ d,b
j = 1 if the backup route part of the bth eligible path pair for relation d

crosses span j, and 0, otherwise.

c j: cost of link j.

– Variables

ρb,r = 1 if the bth eligible path pair is chosen to serve demand d, and 0, other-

wise.

wi: working capacity on span i to support the routing of working paths

s j: spare capacity on span j to support the routing of working paths.

• ILP model

– Objective

minimise ∑
j∈E

c j(w j + s j) (5.26)
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– Constraints

∑
b∈Bd

ρb,d = 1 , ∀d ∈ D (5.27)

∑
d∈D

∑
b∈Bd

(hdθ r,b
j )+ξ d,b

i = w j + si,

∀ j ∈ e,∀i ∈ {e \e′} (5.28)

∑
d∈D

∑
b∈Bd

(θ d,b
i ξ d,b

j ρb,dhd)≤ s j ,∀i, j ∈ e′|i 6= j (5.29)

w j ≥ 0 , ∀ j ∈ E

s j ≥ 0 , ∀ j ∈ E

Table 5.3: Nunmber of variables & constraints in CBM

Number of Variables Number of Constraints

P̄D+M D+MS

The number of variables and constraints that are introduced in the model are (P̄D+M)×
(D + MS), where P̄ is the average of candidate paths, D is the number of demands and

M is the number of network links, and S is the number of links that can be shared among

candidates.

5.5 Model Comparison

This section presents a comparison between the ILP models introduced in this paper based

on a few key factors, including the number of constraints & variables and the amount of

data pre-processing involved.

Number of constraints and variables:

The VBM model is only concerned with the total cost of candidates instead of all the link

failure scenarios, this allows the model to have a smaller number of constraints. How-

ever, it contains a very large number of variables because an enormous combination of
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sets of DPJB can be generated from the pre-processing stage. This limitation of the VBM

makes it less favourable compared to other models, therefore, a better criteria for select-

ing candidates, or other techniques, may need to be employed to reduce the number of

variables. Figure. 5.4 illustrates the change in the number of variables of the VBM versus

the number of connection demands.

The CBM has the same number of variables as the conventional model, but the num-

ber of constraints are less, and gradually increasing with the number of demands. For

example, with the NFSNET network, the number of constraints in the CBM model was

gradually increased from 183 to 466 while this value varied from 443 to 466 in the con-

ventional model. This is because the shared and the non-shared links are considered

separately rather than combining them together in the ILP formulation and this is also the

trade off with the CBM compared to the conventional model.

Data pre-processing:

Pre-processing of path candidates is recognized as a convenient way for controlling the

properties of allowable paths such that the designer can select path candidates within the

limited number of hops or maximum allowable path costs [75]. Theoretically, the VBM

offers more control to the designer compared to other models via the pre-processing of

data to generate DPJB candidates. This allows us to evaluate the cost of candidates, hop

lengths, share limits,or to determine which candidates are allowed to be shared before

introducing them into model. However, the number of candidates becomes significantly

larger with the increase of path-pairs, or the amount of traffic demands, which makes

VBM unsuitable for large size networks.

Model 8, when compared to the conventional model, only requires an extra simple

process for finding all the links that can be shared between candidates. In the case of low

traffic demands this figure is usually less than the total number of network links, hence this

model usually has smaller constraints. This becomes particularly obvious when dealing

with large size networks with moderate demands.
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5.6 Simulation and Discussion

In this section, a number of random traffic patterns over different network topologies using

the conventional model are considered, the VBM, and the CBM. The size and the quality

of solutions of the models are then analyzed and compared.

The simulated networks are denoted by NSFNET-14 (National Science Foundation

Network), EON (European Optical Network), and a random network: N25-L54 (25 nodes,

54 links network). The number of connection demands are generated randomly, ranging

from 5 to 30, with the volume of each demand also set randomly between 1 and 5. The

simulation results and size of models versus the number of connection demands are rep-

resented in Table 5.4 for the NFSNET, EON and the arbitrary N25L54 network. The first

two columns of the tables show the number of connection demands and volume of de-

mands respectively for each simulation, and the other columns contain the size of each

model (given as number of constraints × number of variables) and routing results.

In Figure. 5.4, a comparison of the number of constraints of each model as a function

of the total volume of demands is provided, and, in Table 5.6, the number of variables are

compared as a function of the total number of connection demands.
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Figure 5.3: Simulation networks
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The solutions obtained from the conventional model and CBM are very close with

differences of less than 3%. This may be caused by the tolerance of the solver itself, and

it is possible to narrow that down to less than 1% if the number of candidate path-pairs

is increased, eg. from 3 to 4, or if the tolerance of the solver is improved. However, for

the VBM, the differences may be up to 20%, and are proportional to the increase in the

number of demands.

It is interesting to compare the size of the CBM and the conventional model. The total

number of variables of the two models is actually the same, but the number of constraints

in CBM is usually less, and this increases with the increase of total volume demands to its

upper limit, which is the number of constraints of the conventional model. For instance

for the NSFNET case as shown in Figure. 5.4a, the number of constraints in Model 8

is 183 and gradually increases with the increase of the volume of demands while this

was approximately 450 in Model 6. The difference in size between these models becomes

very obvious when the size of the network is particularly large as illustrated in Figure. 5.4a

with N25-L54 model. The difference between the number of constraints in the two models

can be up to 50 times more (56 constraints under CBM and constraints 2918 under the

conventional model with the same number of connection demand). This suggests that

it is possible to obtain the results from the CBM faster, which is the main advantage of

this model; there are a few fluctuation segments in Figure. 5.4. These are caused by the

variation in the number of links that can be shared among candidates.

With static routing, the number of demands is usually large. Hence, the size of the

CBM could end up being the same as in the conventional model. In contrast, however,

dynamic routing only has a small number of demands to be routed at any time, giving

CBM an advantage over other models in this context.

Table 5.6 shows a comparison between the original heuristic model and its alias model

using the multi-level optimisation technique. Recall that, in the integer programming, the

number of variables is the main contribution to the complexity of the model and pro-

portional to 2N , where N is the number of variables. In Table 5.6, for the multilevel
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optimisation and at column 6, the number of variables has the format: 844+25, meaning

that 2 consecutive optimisation processes have been done: the first model has 844 vari-

ables and the second model has 25 variables. If a comparison of the complexity of the

multilevel optimisation is performed - which is for example (2844+ 225) with 21710 of the

full optimisation process, the computation complexity is greatly reduced. With the multi-

level optimisation, the number of variables of the ILP model is significantly reduced after

each iteration. In this simulation, the number of variables is reduced by about half in the

first iteration and by only 2% in the second. The total capacity allocated for the demands,

resulting from the multi level optimisation, is close to that of the full model. In addition,

the simulation results show that it is possible to control the congestion of individual net-

work links as well as the maximum congestion of the network by adding control entities.

However, this is a heuristic technique to solve integer programming problems. The con-

sistency and maximum deviation of this result from the optimal solution require further

verification for different scenarios and network topologies.

5.7 Summary

This chapter presented two new ILP models for SBPP at the optical layer of mesh net-

works. The first proposed model was a VBM (variable-based model). This model has a

small number of constraints but a larger number of variables, which are sets of DPJB can-

didates created from the pre-processing stage. It has been shown through simulation that

the multi-level optimisation technique reduces the number of variables in the VBM signif-

icantly. However, this model is still only suitable for small networks and a small number

of traffic demands. The VBM can be further developed to produce optimal solutions by

balancing its number of constraints and variables.

The CBM proposed in this thesis uses the DPJB path pairs as candidates in order to

reduce the number of constraints in the model. The proposed ILP model has the same

number of variables as the reference model, but has a lower number of constraints. In
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the worst case, when the traffic demand is large, the size of these two models will be the

same. The CBM has an advantage when dealing with large size networks and reasonable

traffic demands, which suggests that the model is a good candidate for dynamic routing.
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Chapter 6

p-Cycles Modeling Using a

Network’s Fundamental Cycles

This chapter addresses the issues related to the design of network survivability with p-

cycles and propose a novel ILP formulation for capacity design based on a network’s

fundamental cycles and the straddling links. Concepts of visible and hidden straddling

links, which are essential components of the model, are also introduced. The proposed

model caters for the case of joint optimisation of a p-cycle network that can be solved

without enumerating p-cycle candidates. In addition, the complexity of the proposed

model is much less than any conventional model dealing with large size networks and

suitable for the design of networks having multiple quality of protection (MQoP) service

classes using mixed protection techniques.

6.1 Introduction and Motivation

The introduction of p-cycles in 1998 by W. D. Grover et al. [33] has advanced network

protection to a new level and fills the gap between the mesh and ring networks in terms

of resource efficiency and recovery time. p-cycles can be seen as the most efficient pre-
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configured protection for networks with the restoration speed like ring networks, and ca-

pacity efficiency like mesh networks. This is because the network is of mesh type, but

the protection scheme is implemented based on the virtual ring structures. In addition,

p-cycle takes advantage of the straddling link to achieve further resource utilisation.

Figure. 6.1 is an example of a p-cycle. Here, the thick solid lines contain spare chan-

nels to protect the working channels passing through them, and the dashed lines indicate

straddling spans which have no spare capacity but can protect twice the number of work-

ing channels passing through them. Although, a p-cycle is an advanced pre-configured

protection scheme, its capacity allocation model (known as pure ILP model) [76] employs

all possible p-cycle candidates. The number of p-cycle candidates increases exponentially

with the network size, and also with the complexity of the ILP model.

There are cycles known as “non-simple p-cycle”. The non-simple p-cycle contains

extra straddling links compared to the simple p-cycle. In order to reduce the complexity,

pure ILP model usually does not include the non-simple p-cycle, and in this case, the

result obtained from this model is not always optimum as all the possible solutions are not

considered.

This study aims to support the design of networks that provide MQoP service classes [47]

and applying mixed protection techniques in one model [20]. For this purpose, various

protection techniques are integrated into one ILP formulation, giving due consideration

to the advantages and disadvantages of each technique in terms of resource usage and

recovery time after failure, etc. It is important to note, that in practical situations, network

demands do not all have the same requirements. For instance, one group of demands may

require protection, but others may not need it, or, one group may need fast recovery time

while for others this may not be critical and delays of a couple of seconds may be ac-

ceptable. By considering MQoP class demands, network resources can be allocated much

more efficiently. However, conventional protection scheme designs take many different

implementation approaches and nearly all of them contain a very large number of vari-

ables; for example, the pure ILP model for p-cycles. This makes the process of integrating
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these into one model a very difficult task, potentially yielding a highly complex model.

In this chapter, the complexity problem of the pure ILP model is solved by proposing a

new ILP formulation using the network’s fundamental cycles. Thus, it is proved that the

formulation presented in this paper can achieve the optimal solution. It is also important

to note that, in reducing the model complexity, there is no guarantee of a shorter time

frame resulting in a satisfactory solution when compared with other models. However, it

does guarantee to improve on the worst case scenarios within the conventional model. It

is not the purpose of this study to compare the run-times of various models.

6.2 Related Works and Preliminary Theory on p-Cycle Mod-

eling

Figure 6.1: Typical p-cycle on an arbitrary network

This section presents some major developments in p-cycle design, and define a num-

ber of important terms that are used in the proposed model.

The research on p-cycle design can be categorised into three main areas:

• Application - In this category, authors try to implement p-cycles in networks with

different design scenarios such as multi-failures [77], node protection [78, 36], path

protection [78, 79], wavelength converter placement [35, 80, 81], etc.
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• Capacity design & modeling - Research in this category concentrates on resource

allocation, p-cycle placement and model formulation [82, 34, 83, 84, 37].

• Evaluation - Here the focus is on evaluating the reliability of networks with p-

cycles [36, 85].

In the first category, researchers attempt to discover all the potential benefits of the p-

cycle for network survivability. An investigation into the network’s survivability with

p-cycles under multiple failures is performed by Schupke [77], and his report shows that

the main factors which contribute to the restorability of the network are the number of p-

cycles allocated and the number of protected working capacities. Increasing the number

of cycles, and minimizing the maximum working capacity coverage of selected p-cycles

will increase the restorability of the network [83]. In general, p-cycles are also known

as ‘span-protecting’ p-cycles, and can partially protect the network against node fail-

ures [78, 86]. Please note, throughout this chapter, the term p-cycle(s) alone implies the

‘span-protecting’ p-cycle(s). A variation of p-cycles called ‘encircling’ p-cycles is pro-

posed by Stamatelakis et al [87]. Although the encircling p-cycles can protect a network

from node failures, the p-cycle capacity is high when there are larger numbers of transit-

ing traffic [36]. ‘Path segment-protecting p-cycles’ or ‘flow-p-cycles’ is another concept

introduced by Shen et al. [78]. In this context, flow-p-cycles can be more efficient than

p-cycles and can protect the network against both link and node failures. According

to [78, 36], ‘flow-p-cycles’ have a limitation as they do not have the “simplicity of failure

detection and protection switching by the node adjacent to the failure”, thus switching

nodes are required [36]. In the study of p-cycle configuration with partial wavelength

converter by Tianjian Li et al. [81], both joint and non-joint optimisation cases1 show

promising results by taking into account the full advantages of wavelength converter shar-

ing.

Due to the larger number of variables involved in the pure ILP model, it takes a sig-

1In joint optimisation, the working channels are found at the same time as the spare channels. In non-joint

optimisation, the working channels are assigned in advance.
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nificant amount of computation time in network design to obtain the optimal solution.

Therefore, to reduce the computational complexity, several methods of preselecting a re-

duced number of candidate p-cycles is proposed. A cycle generation algorithm is used to

find a good set of candidates based on a combination of high efficiency cycles and short

cycles so that working capacities can be efficiently protected by the candidate cycles [84].

Heuristic algorithms for finding the optimal p-cycles to protect a given working capacity

distribution is introduced in [34], where two pre-selection criteria known as topological

score (TS) and priori efficiency (AE) of p-cycles are used to obtain the set of candidates.

The work in [76] involves the identification of primary p-cycles using the straddling link

algorithm (SLA), followed by a search for better cycle candidates using various algo-

rithms to produce the final set of candidates with highest efficiency. The maximum de-

viation of the results from the pure ILP model can be up to 14% and vary with network

topology. The complexity of this model is greatly reduced compared to the pure ILP

model, e.g. 270 vs. 7321 for USA network.

Dominic A. Schupke [83] introduces a different approach to formulate a non-joint

optimisation without enumeration of candidates before optimisation. However, the pro-

posed model is very complex, and the author suggests a four-step heuristic which makes

the calculation tractable and achieves a near-optimal solution.

Except for the use of heuristic programs to search for suitable p-cycles to protect

the working capacities, all ILP formulations for p-cycle network design require a set

of candidates. By using network fundamental cycles and establishing the set of possible

straddling links constructed from those fundamental cycles, the formulation of the p-cycle

network design is less complex then the conventional models, but still able to achieve the

optimum solutions. The number of input variables is significantly reduced, since the

number of the network’s fundamental cycles is much less than the number of p-cycle

candidates.
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6.2.1 Necessity of Obtaining all Cycle Candidates for Optimal Solutions

Conceptually, a p-cycle in a network G can be considered as a logical cycle c embedded

on G. The p-cycle provides one pre-configured protection path against any failure of on-

cycle links and two protection paths against failures of straddling links. Fig. 6.2(a) shows

an example in which p-cycle c contains 5 on-cycle links and 1 straddling link l. In the

‘pure’ ILP model, all cycles in a network have to be included in the set of candidates.

(a) (b) (c)

Figure 6.2: Constructing p-cycles

In fact, p-cycle c can be constructed by merging two smaller cycles c1 and c2 and

then removing the common link l as in Fig. 6.2(b). Generally, any cycle in the network

can be constructed from a number of fundamental cycles which contain no straddling

links. Fig. 6.2.1 shows an example in which a cycle is constructed by merging three

fundamental cycles c1, c2 and c3. Therefore, in principle, the set of all fundamental cycles

in the network is sufficient for obtaining optimal solutions in survivable network p-cycles

design.

6.2.2 Preliminary Theory

In this part, the preliminary theory relating to the proposed model is discussed. Mathe-

matical and technical concepts used in this chapter are defined and explained.

• A network physical topology is represented as an undirected graph G(V,E), where

V is a set of network nodes and E is a set of network spans. The term ‘span’ implies
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Figure 6.3: Typical planar network 9N14S

the direct physical connection between two end nodes and ‘link’ refers to the direct

logical connection between two end nodes.

• A cycle in an undirected graph is fundamental if it contains no straddling link. Fig-

ure. 6.3 shows an arbitrary network with 9 nodes and 14 spans, which has the fol-

lowing set of fundamental cycles: c1={1 2 3}, c2={3 4 8}, c3={5 6 7}, c4={5 7 9},

c5={2 3 8 6}, c6={4 5 6 8}, c7={2 3 4 5 6} (c7 contains no straddling link, thus it

is valid).

• A straddling link is called a visible straddling link if it can be created by merging

two different fundamental cycles, and is the only common link that exists between

them. Figure. 6.3 shows a typical visible straddling link e3, which is the common

link between two fundamental cycles c1, c5.

• A straddling link is called a hidden straddling link if it can be created by merg-

ing two or more fundamental cycles together, but it is not part of any of those

cycles. Note that, the number of fundamental cycles that are used to generate the

hidden straddling links yields the trade off between resource efficiency and mini-

mum restoration time in case of failure. Longer recovery paths may result if the

hidden straddling link is formed by many fundamental cycles. Figure. 6.3 shows a
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typical hidden straddling link e12, which is formed by the two fundamental cycles

c4 and c6.

• A non-shareable set Λ: The purpose of finding the non-shareable set Λ is to prevent

the construction of the encircling p-cycle(s) at every single node on the selected

p-cycle. There must be two non-straddling spans at each node of the cycle that can

carry the spare capacity. Each Λ contains groups of straddling links. Each group

in the set consists of straddling links that have at least one common fundamental

cycle component. However, if merging these fundamental cycles into a subgraph

causes the straddling links to disappear, the group is non-shareable. For example,

in Figure. 6.3, straddling link e6 is formed by cycles c2 and c5, straddling link e8 is

formed by cycles c2 and c6, and straddling link e13 is formed by cycles c5 and c6.

When cycle c2 is shared between straddling links, the relevant straddling links will

vanish, i.e. the sharing of cycles will create a new subgraph {2 3 4 5 6 8} with no

straddling links. Therefore, this group is non-shareable.

6.2.3 Non-Shareable Cycles Between Straddling Spans

Figure 6.4: Illustration of a non-shareable cycle

The non-shareable set contains a number of subsets λi,{i = 1,2...,n} corresponding to

the straddling span indices. In each subset λi, there may be more than one non-shareable

group of straddling spans. For example, λ4 of the straddling span index 4 has the follow-
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ing non-shareable groups: g1 = {2−3−8−4−5−6} and g2 = {3−4−5−6−8}. It

becomes invalid cycle if the two groups join together as shown in Figure. 6.4. For a given

graph with K straddling spans (K is an arbitrary number), there will be K subsets contain-

ing the non-shareable groups. The number of straddling spans is very much dependant on

the graph topology, and is proportional to the network nodal degree.

Table 6.1: Straddling Link Details

Straddling index Cycles Physical span

Visible straddling span

1 1-7 e3

2 1-5 e3

3 3-7 e9

4 2-5 e6

5 5-6 e13

6 2-6 e8

7 3-6 e9

8 3-4 e10

Hidden straddling span

9 5-6 e5

6.2.4 Finding a Network’s Fundamental Cycles

Fundamental cycles play an important role in the proposed model as all the construction

of straddling spans is based on the relation between these cycles, and these cycles are later

used to obtain the p-cycles from the ILP solution.

The algorithm for finding the fundamental cycles is given in Algorithm 4, which is

a simple process of looking for all the simple cycles that are passing though the source

nodes of the network tree. The branches of the spanning tree for the given network are

127



more concentrated on the left hand side of the tree starting from the second level. The

fundamental cycle can be found if a link exists between two branches of a tree with at

least one branch containing just the neighbor node of the source node. Figure. 6.5 is a

typical example of a tree generated from the network shown in Figure. 6.3 with the source

at node 2. The simple cycles crossing the source node are {2 1 3}, {2 3 8 6} and {2 3 4 5

6}.

Algorithm 3 : Finding Fundamental Cycles
Input : An undirected graph G(V,E).

Output: set of fundamental cycles.

for i = 1 to N do

cycles⇐ cycles∪get cycle(Net,i)

E ⇐{E \ i}
end for

Figure 6.5: A tree with the source at node 2 of network 9N14S( Figure. 6.3)

• Analysis of algorithm: For each value of i in the algorithm, the inner instruc-

tions get cycle is executed T(i) time. The number of execution times is therefore
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function get cycle(Net,source) return Cycles

neighbors⇐ neighbors of source

N neighbor ⇐ length of neighbors

if N neighbor < 2 then

return

end if

for i = 1 to N neighbor−1 do

for j = i+1 to N neighbor do

if e = {neighbors(i),neighbors( j)} ⊂ E then

cycle⇐{source,neighbors(i),neighbors( j)}
Cycles⇐Cycles∪ cycle

else

push queue.node⇐ neighbor(i)

push queue.branch⇐ neighbor(i)

end if

Cycles⇐Cycles∪(processNode(Net,queue,

source,neighbors( j)))

end for

end for
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function processNode(Net, queue,source,neighbors( j)) return Cycles

while queue.node 6= /0 do

pop node⇐ queue(end).node

pop branch⇐ queue(end).branch

S1⇐ neighbors of node

V 1⇐{branch,source,neighbors( j)}
S1⇐{S1\V 1}
if S1 6= /0 then

N ⇐ length of S1

for k = 1 to N do

S2⇐ neighbors of node S1(k)

S2⇐{{S2
⋂{branch,source}}\node}

if S2 = /0 then

continue

end if

if e = {S1(k),neighbors( j)} ⊂ E then

cycle⇐{S1(k),neighbors( j)},branch(1 : end−1)

Cycles⇐Cycles∪ cycle

else

push queue.node⇐ S1(k)

push queue.branch⇐{branchS1(k)}
end if

end for

end if

end while
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∑n
i=1 T(i) = s times. For the control of the outer loop, the inner loop is initialised

n times, therefore n is added to the execution time of the algorithm. The total time

taken by the above algorithm is now Θ(n+ s).

6.3 Proposed Integer Linear Programming Formulation for p-

Cycle Networks

6.3.1 Non-Joint Optimisation Model

This section proposes the non-joint optimisation model. Recall that all the fundamental

cycles and straddling link details for the given network, have been pre-processed.
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Model 9 Non-joint ILP model for p-cycle network design

• Notation

– Network notation

E = {e1,e2, . . . ,eM} Set of M network spans.

V = {v1,v2, . . . ,vN} Set of N network nodes.

– Indices

C = {c1,c2, ...,cJ} Set of network fundamental cycles.

S = {s1,s2, ...,sK} Set of visible straddling links.

I = {i1, i2, ..., iL} Set of hidden straddling links.

Λ = {λ1,λ2, ...λn} Set of non-sharable straddling links.

– Constants

δc, j = 1 if cycle c includes span j, 0 otherwise.

ξ j
s,c = 1 if visible straddling link s at span j can be created by cycle c,

0 otherwise.

π j
i,c = 1 if hidden straddling link i at span j can be created by cycle c,

0 otherwise.

υi, j = 2 is the number of useful paths provided by hidden straddling link i

to restore span j.

w j: is the number of working channels on span j.

α j: is the cost per channel on span j.

– Variables
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y j: is the capacity on span j that can support the cycle that crosses it.

nc: is the number of unit capacity copies of the cycle c in the design.

mi,c: is the number of unit capacity copies of the hidden straddling i

using cycle c in the design.

ui,c: is the number of unit capacity copies of the visible straddling i

using cycle c in the design.

• ILP model

– Objective

minimise : ∑
j∈E

α j(y j−2ξ j
i,c),

i ∈ S;c ∈C (6.1)

– Constraints

1. Spare capacity on span j is sufficient to support all cycles that cross it.

∑
c∈C

δc, jnc = y j, ∀ j ∈ E (6.2)

2. The number of unit cycle nc is sufficient to create straddling links.

∑
i∈S

ξ k
i,cui,c−nc ≤ 0, (6.3)

∑
j∈I

πk
j,cm j,c−nc ≤ 0, (6.4)

∀c ∈C;k ∈ E

3. The number of useful paths for each span j (provided by selected hid-

den straddling links) plus capacity of selected cycles that support 100 %

restorability.

∑
i∈I

vi, jmi,c + y j ≤ w j, ∀ j ∈ E;c ∈C (6.5)
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4. The total number of useful paths provided by the visible straddling i at

span j must be less than or equal to the total number of spare capacities

provided by the corresponding span.

∑
i∈S

2ξ j
i,cui,c− y j ≤ 0, ∀ j ∈ E;c ∈C (6.6)

5. The constraint for non-shareable straddling links i, j ensures that the

identical cycle of the straddling links in the group will not become the

common cycle between them.
(

∑
i∈S

ξ m
i,cui,c + ∑

j∈I
πn

j,cm j,c

)
−nc ≤ 0,

∀{ξ m
i,cπk,c} ⊆ Λ;

∀c ∈C;m,n ∈ E (6.7)

The number of variables and constraints that are introduced in the model are shown

in Table 6.2, where v̄ is the average number of cycles forming a straddling link.

Table 6.2: Number of Variables & Constraints

Number of Variables Number of Constraints

|C|+ |S|+ |I|+M v̄(|S|+ |I|)+3M

6.3.2 Joint Optimisation Model

In this section, it is assumed that all the fundamental cycles and available straddling links

of the network under consideration have been pre-processed or given. In addition, the

network is assumed to have sufficient wavelength channels or wavelength converters to

support the routing of connection demands. Thus, wavelength continuity is not an issue

in this context.
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Joint optimisation models usually provide better solutions than the non-joint opti-

misation models. In the following section, the joint optimisation model is introduced.

However, this model can be easily converted to the non-joint model by just a few simple

modifications to the existing model.

Model 10 Joint ILP model for p-cycle network design

Notation:

E = {e1,e2, . . . ,eM} Set of M network spans.

V = {v1,v2, . . . ,vN} Set of N network nodes.

C = {c1,c2, ...,cC} Set of C fundamental cycles.

S = {s1,s2, ...,sS} Set of S visible straddling links.

I = {i1, i2, ..., iI} Set of I hidden straddling links.

Λ = {λ1,λ2, ...λn} Set of non-sharable straddling links.

D = {d1,d2, . . . ,dD} Set of D demands.

P = {pi
1, p j

2, . . . , pk
P} Set of path candidates between end nodes of demands; d ∈

D.
Constants:

δx, j =





1, if cycle x includes span j;

j ∈ E;x ∈ C

0, otherwise.

ξ j
s,c =





1, if c = {x,y|x⋂
y = j;x,y ∈ C};

j ∈ E;c⊂ C;s ∈ S

0, otherwise.

s is the straddling link formed by

cycles x,y.
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π j
i,θ =





1, if s
⋂

E(θ) = /0 and

V (s)⊆V (θ);

j ∈ E;θ ⊆ C; i ∈ I

0, otherwise.

i is the straddling link formed by

set of cycles θ .

τd
i, j =





1, if candidate path ith of demand d ∈D

crosses span j;

0, otherwise.

χi, j =





1, if the p-cycle passes through node i

span j; i ∈V ; j ∈ E

0, otherwise.

ϕi,s =





1, if the visible straddling s passes through

node i; i ∈V ;s ∈ S

0, otherwise.

ωi, j =





1, if the spare capacity used span j and passes

through node i; i ∈V ; j ∈ E

0, otherwise.

υs, j = 2: the number of useful paths provided by hidden straddling

link s to restore span j ∈ E;s ∈ S.

α j: the cost per channel on span j ∈ E.

hd: volume of demand d; d ∈ D.

φ j: maximum capacity provided by span j ∈ E.
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Variables:

y j: the capacity on span j that can support the cycle that cross

it; j ∈ E.

nx: the number of unit capacity copies of the cycle x in the

design; x ∈ C.

mi,x: the number of unit capacity copies of the hidden straddling

i using cycle x in the design; i ∈ I;x ∈ C.

ui,x: the number of unit capacity copies of the visible straddling

i using cycle x in the design; i ∈ S;x ∈ C.

w j: the working capacity on span j to support the routing of

working paths; j ∈ E.

pd
i : the number of unit capacity copies of the ith path candidate

chosen to serve demand d; i ∈ P;d ∈ D.

zi: the number of unit p-cycles passing through node i; i ∈V .

ILP model

• Objective

minimise : ∑
j∈E

α j(y j +w j)−∑
i∈S

∑
j∈E

2ξ j
i,cui,x,

x ∈ c;c⊂ C (6.8)

• Constraints

1. Capacity on each span is sufficient to support all cycles that cross it.

∑
x∈C

δx, jnx = y j, ∀ j ∈ E (6.9)
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2. Number of cycles must be sufficient to support the chosen straddling links.

∑
i∈S

ξ k
i,cui,x−nx ≤ 0, (6.10a)

∑
j∈I

πk
j,cm j,x−nx ≤ 0, (6.10b)

∀c⊂ C;x ∈ c;k ∈ E

3. The working capacity allocated to each span.

∑
i∈P

∑
d∈D

pd
i τd

i, j = w j, ∀ j ∈ E (6.11)

4. Spare capacity allocated on links must be sufficient to support 100% restora-

bility.

∑
i∈I

vi, jmi,x + y j ≥ w j, ∀ j ∈ E;x ∈ C (6.12)

5. The total amount of useful capacity provided by the ith visible straddling link

at span j must be less than or equal to the total amount of capacity of that

span formed by the corresponding cycles.

∑
i∈S

2ξ j
i,cui,x− y j ≤ 0, ∀ j ∈ E;x ∈ c;c⊂ C (6.13)

6. The common cycle cannot be shared between straddling links.
(

∑
i∈S

ξ k
i,cui,x + ∑

j∈I
π l

j,cm j,x

)
−nx ≤ 0,

∀{ξ k
i,cπ l

k,c} ⊆ Λ;

x ∈ c;c⊂ C;k, l ∈ E (6.14)

7. Path selection constraint: each demand connection requires to be assigned to

one candidate path.

∑
i∈P

pd
i = hd , ∀d ∈ D (6.15)
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8. The total capacity assigned for each span (working plus spare capacity) must

be less than or equal to the maximum capacity that can be provided by the

corresponding span

∑
i∈S
−2ξ j

i,cui,x + y j +w j ≤ φ j,

∀ j ∈ E;x ∈ C;c⊂ C (6.16)

9. The number of selected visible straddling spans s through node i must be less

than or equal to the number of p-cycles passing through it.

∑
i∈V

ϕi,sus,x−∑
i∈V

χ i < 0,

∀s ∈ S;x ∈ C; (6.17)

10. The total number of links through a node v must be equal to the total number

of useful paths provided by the visible straddling links plus twice the number

of p-cycles through that node. In other words, at every p-cycle node, there are

always two links that are not straddling links.

∑
s∈S

2ϕi,sus,x +2 ∑
i∈V

χ i−∑
i∈V

y jωi, j = 0,

∀i ∈V ; j ∈ E;x ∈ C (6.18)

The objective of the above model given by Equation 6.8 has a constant number 2 (after

the minus sign). This is because as in the model, when merging 2 cycles to create a

straddling link (the visible straddling link), the total number of links is equal to the sum

of the number of links on these cycles. As there is no working capacity required for the

straddling link, 2 is subtracted from the total for each chosen straddling link.

Equation 7.14 guarantees that each network span has enough spare capacity to support

all the working channels through it. The total spare capacity required for each span is

equal to the total number of virtual fundamental cycles selected which pass through the

corresponding span. This needs to be considered for each j = {1,2, ...,M| j ∈ E}.
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In Equation 6.10a and Equation 6.10b, for each chosen straddling link i or j (i and

j belong to two different sets: visible and hidden), the fundamental cycles for which

the straddling link is formed must also be selected. The straddling link i, j represents

the logical link(s), which is different from the physical connection, span represented as

k = 1,2, ...,M. Each physical link can have various straddling links formed by different

sets of fundamental cycles.

Equation 6.11 describes the working capacity allocated to each span of the network.

This is equal to the sum of all the candidate path with index i = 1,2, ...,P and demand

d = 1,2, ...,D passing through span j for every j = {1,2, ...,M| j ∈ E}.

Equation 6.12 guarantees that the resources allocated on each span must be equal to

or greater than the sum of the total working capacity and the total spare capacity required

to protect the network from failure. This is crucial as the useful paths provided by the

hidden straddling links are not yet included in y j.

According to Equation 6.13, the total amount of useful capacity provided by the visi-

ble straddling link(s) at span j must be less than or equal to the total amount of cycles that

cross it. It can be seen that each straddling link provides two useful capacities, and there

must be at least two cycles crossing the corresponding span. The straddling links do not

need any spare resource, but they cannot be removed directly from the model.

Equation 6.14 is used mainly for preventing the selection of node-encircling p-

cycle(s). If node protection is desired, this constraint will be removed from the model.

The total number of cycles c will be equal to the total number of those selected straddling

links.

Equation 6.15 indicates that the total number of paths selected for each demand must

satisfy the volume demands.

Equation 6.16 ensures that the total capacity allocated for each span always less than

or equal to the maximum capacity assigned for each span.
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In Equation 6.17 as each individual visible straddling link is formed by two funda-

mental cycles crossing the corresponding span, this ensures that the number of selected

straddling links is always less than the total number of cycles crossing it.

Equation 6.18 prevents the over selecting of straddling links compared to the number

of selected p-cycle(s). This is based on the characteristic of p-cycle. At every node v on

the p-cycle, there are always two links with assigned spare capacity.

The number of variables and constraints that are introduced in the model are shown in

Table 6.3, where v̄ is the average of number of cycles forming a straddling link.

Table 6.3: Number of Variables & Constraints

Number of Variables Number of Constraints

C +S + I +2M + kD+N v̄(2S +2I)+C +D+5M +N

6.4 Obtaining p-Cycles from the Solution

The solution of the ILP model contains only the unique capacity of cycles, the relevant

straddling spans, and the spare capacity allocated on each span of the network. Thus, to

obtain a complete solution, which is the set of p-cycles required to protect all the working

channels, it is necessary to translate the solution obtained from the model. This can be

done in two different ways: one is based on the details given from the ILP results, where

the set cover theorem can be used to search for the matching patterns, eg. the number

of selected fundamental cycles, straddling spans, total cost etc... Another technique is

to generate p-cycle candidates from a set of cycles and the straddling spans selected by

the ILP; then formulating an ILP to select the set of p-cycles that satisfies the solution

obtained previously. This technique is preferable as most of the data used for the formu-

lation can be reused from the previous model, and the number of candidates that can be

generated from the set of selected cycles is small and does not effect the complexity of the
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ILP model. The ILP formulation for obtaining the required set of p-cycles is presented

in Model 11.

Model 11 ILP model for p-cycle selection

Notation:

Z = {z1,z2, . . . ,zZ} Set of p-cycle candidates ob-

tained from the previous solution.
Constants:

λ z
c =





1, if candidate z includes cycle c;

z ∈ P;c ∈ C;

0, otherwise.
Variables:

nz: the number of unit capacity copies of the p-cycle z

in the design; z ∈ Z.

mc: the number of unit capacity copies of cycle c in the

design used by the p-cycles; c ∈ C.

kc: the number of unit capacity copies of cycle c in the

design not used by the p-cycles; c ∈ C.

ILP model

• Objective

minimise : ∑
z∈Z

nz + ∑
c∈C

kc (6.19)

• Constraints

1. The number of fundamental cycles must be sufficient to construct the candi-

date p-cycles.

∑
z∈z

nzλ z
c −mc = 0,

∀c ∈ C (6.20)
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2. The number of fundamental cycles must be equal to those obtained from the Model 10.

∑
c∈C

(mc + kc)− vc = 0,

∀c ∈ C (6.21)

3. Integer constraints:

nz,mc,kc ∈ N (6.22)

6.5 Simulation

This section presents the simulation and evaluates the performance of the proposed model

with the network shown in Figure. 6.3. The proposed model is then compared with a con-

ventional ILP model, which uses all candidate cycles. The model comparisons are based

on the worst case scenario, as the number of input variables is the main factor contributing

to the model’s complexity. This is due to the time nondeterministic characteristics of the

ILP.

1. Simulation results of the of 9N14S network

The simulation has shown that the optimum p-cycles required to protect the net-

work can be obtained by using the network’s fundamental cycles. Table 6.4 shows

the routing optimisation results from the proposed model, where (a) gives the work-

ing channels that need to be protected, and are in indexing order; (b) gives the spare

channels that are required for each span to guarantee 100% protection of the work-

ing channels, and (d) is the total of network spare channels. (f), (g) are the total

straddling links required. The details of fundamental cycles that make the corre-

sponding p-cycles are shown in (j) with the following format [cycles indices×volume]

(e.g., [1 5 6]×2 implies that there are 2 p-cycles, which are formed by fundamental

cycles c1, c5, and c6). The size of the model is 291× 81 (291 constraints and 81

variables as shown in (h)). The number of fundamental cycles required to achieve

143



the optimal solution is shows in (i). In this case 3 units of cycle are indexed 1, 1

unit of cycle indexed 2, 0 unit of cycle indexed 3, and so on.

Table 6.4: Simulation Results for the 9N14S Network

a) Working capacity on each link [3 2 4 3 5 3 1 1 1 0 0 0 0 0]
b) Spare capacity on each link [3 3 0 3 1 2 2 3 2 0 0 0 1 0]
c) Total link capacity [6 5 4 6 6 5 3 4 3 0 0

0 1 0]
d) Total Spare capacity requested 20
e) Total Network capacity 43
f) Number of visible straddling links used [6]
g) Number of hidden straddling link used [2]
h) Model size (291×81)
i) Cycles used [3 1 0 0 3 2 0]
j) The network p-cycles are

[1 2 5]
[1 5 6] × 2

2. Model comparison In order to achieve the optimal solution, the pure ILP model

needs to use a complete set of possible eligible cycles in the network [76]. Thus the

complexity of the model greatly increases with the size of the network. Although

the complexity of the model proposed in this chapter is dependent on the network

size, the complexity increases at a much slower rate than compared to that of the

pure ILP model.

Figure. 6.6 shows the comparison of the number of variables between the pure ILP and

the proposed model over a number of well known test networks. The difference in the

number of variables between the two models becomes significant when the size of the

network increases. The size of the first four networks is relatively small as there are

not many candidate p-cycles existing in these networks. However, when the size of the

networks is increased, the number of candidate p-cycles increases significantly. This is

however not the case in the new proposed model, where the number of fundamental cycles

only increases slightly with the size of the network.
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Figure 6.6: Models comparison

Additionally, none of the ILP formulations can include the extra straddling relation-

ships with non-simple p-cycles without increasing the number of candidates by including

the non-simple p-cycles.

Therefore, when compared to other conventional ILP models, regardless of how the

candidates are generated, the proposed model always outperforms them with the truly op-

timal solution because the formulation is built from the network’s fundamental entities

(the fundamental cycles and straddling links construction information). In some cases,

the complexity of the proposed model when used for small non-planar networks, may

be higher than the pure ILP model. This is because a large number of hidden strad-

dling links may exist. The NFSNet network in Figure. 6.6 represents the case of a small

non-planar network. Furthermore, through a larger number of simulations performed on

different network topologies, it was found that when some extra links are added to the

existing network, this can significantly increase the model’s variables. For example, be-

tween the Net-9N14S and Net-9N15S there is no difference, but between Net-9N15S and

Net-9N16S the difference is 51 units by adding just a single link. Figure. 6.6 shows the
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comparison between the total number of all cycles, and the total number of fundamental

cycles existing in randomly generated networks with different average nodal degrees. The

difference between the two candidates becomes significant with the increase of network

nodes and average nodal degree.

Figure 6.7: p-cycles allocation result with non-simple p-cycles

Figure 6.8: p-cycles allocation result without using non-simple p-cycles
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Figure. 6.7 and Figure. 6.8 are snapshots of the simulation program with different

demands. In these, the red cycles are the p-cycles and the green lines are the straddling

links. Figure. 6.7 shows the result of the p-cycles allocated to protect the network using

the “non-simple p-cycle”. In this, there is only one non-simple p-cycle required, which

is the p-cycle: c1
⋃

(c2
⋃

c6). The total cost of the capacity usage is 20, the maximum

congestion is 2, and the total capacity redundancy is 8.

For the same traffic demands and working capacity on each span, Figure. 6.8 shows the

allocation of p-cycles. In this case, the “non-simple p-cycle” cannot be constructed. There

are two p-cycles allocated to protect the network: c2
⋃

c5 and c1
⋃

(c5
⋃

c6). The total

cost of the capacity in this case is 24, the maximum congestion is 4, and the total capacity

redundancy is 12.

In the proposed model it is clear that “non-simple p-cycles” can give better results,

than the conventional model without significantly increasing the number of variables.

6.6 Summary

This chapter examines the network design with p-cycles and proposed a new ILP formu-

lation for the p-cycle network design using the set of network fundamental cycles and the

straddling links formed by the fundamental cycles. The fundamental cycle of the network

is defined as a cycle that contains no straddling link.

The proposed model can obtain the optimal solution by getting all the extra straddling

relationships with non-simple p-cycles if available, which has never been formulated be-

fore. The reduced complexity of the proposed model has the advantage over the pure ILP

model when dealing with large size networks. In planar networks, the number of con-

straints is small due to a smaller number of relations between cycles, and thus a smaller

number of hidden straddling links that can be formed by the fundamental cycles. This

implies that, the proposed model is highly suitable for designing shared risk link group

p-cycles protection networks or backbone networks where the cross spans are limited.
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Chapter 7

Network Survivability with Multiple

Quality of Service Classes

This chapter presents a new network design and optimisation model with mixed protection

techniques and supporting multiple quality of protection (QoP) service classes. By inte-

grating mixed methods of protection and service classes, the proposed model minimises

both the cost of working and the spare capacity of routing from a given set of demand.

Maximised resource usage with minimum design cost are achieved for network design or

network upgrades using suitable set of network span candidates. In addition, this study

provides an insight into the relation between the physical and logical topologies, and the

advanced step of studying joint topology design and optimisation with mixed protection

schemes and multiple QoP classes.

7.1 Related Works and Background Theories

A variety of protection and restoration methods have been studied and implemented for

the mesh topology, such as automatic protection switching (APS), dedicated path protec-

tion, shared backup path protection (SBPP), p-cycles... [28, 32, 41, 88, 89, 34]. These
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protection techniques have variations in terms of complexity, spare capacity usage and

restoration speed. Thus, from the network designer’s perspective, each method has its

own advantages and disadvantages. For example, a network employing 1 + 1 APS can

achieve a restoration time of less than 60 ms, but must use more than 100% capacity re-

dundancy. In contrast, with SBPP, the restoration time after a failure can be as large as

200ms and but the tradeoff is that in some cases, the total redundancies can be as low as

21%.

Studies of capacity-design for transport networks assume that all the service classes

must be restorable against failures of network components. However, in reality, they

can be categorised into four different policies for the treatment of different demands in a

mesh-restorable network [4], which is called multiple Quality of Protection (QoP) service-

classes.

Following are the definition of the service classes, ordered from high grade to low

grade based on the complexity of implementation at the optical layer and the level of

protection they can provide:

1. Gold class: Lightpaths that are guaranteed to be protected by the optical layer.

2. Silver class: Lightpaths that are protected by best effort, being working channels

that should be restored, if possible, following the full restoration of any of the higher

service classes.

3. Bronze class: Lightpaths that are not protected, being working channels that do not

receive any restoration effort, but are not subject to pre-emption.

4. Economy class: Low priority lightpaths that utilise protection bandwidth under

normal conditions, which are channels that do not receive any protection, and are

pre-empted when other lightpaths need to be protected.

The study of Clouquer et al [47] shows a significant reduction in the spare capacity re-

quirements as not all services need restoration. Thus, design and optimisation of the
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mesh-restorable network with mixed-service classes will allow the network to enhance

the operation and provide more customer options. However, this study was based on span

protection in conjunction with this type of protection scheme only, which requires high

level of resource redundancy.

Figure 7.1: Typical network design flow

With regards to the physical network design of mesh-restorable networks, most studies

are based on the assumption that node positions are known in advance, and the number

of OXCs in the N nodes have unbounded switching capacity. Therefore, the physical

topology design is reduced to forecasting the demand and deciding on a topology be-

tween OXCs, how to connect client sub-networks through OXCs, and placement of other
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resources such as amplifiers, converters, and power splitters. In practice, if the physical

topology must be designed from scratch, many providers take a cautious approach by ini-

tially building a skeleton network and then adding new resources, if necessary, depending

on the actual user demands as a way to minimise the additional capacity [12].

These physical topology design problems have been studied in [43], for a given num-

ber of label switching routers (LSRs) and a set of lightpaths to be setup among pairs

of OXCs, with the objectives being minimising number of OXCs and minimising the

number of wavelengths used. This was a combination of physical and logical topology

design problem, where the routing and wavelength assignment for the lightpaths was also

determined. Y. Xin [43] has shown that the physical topology design problem can be

formulated as an integer programming (IP) problem. An iterative approach was devel-

oped for this problem, whereby a genetic algorithm (GA) was used to generate feasible

physical topologies, and heuristic techniques were employed for RWA on a given physical

topology, which generated the fitness reference value for GA solutions.

Some other physical topology design studies have focused on various aspects, such as

placement of converters, connectivity, nodal degrees, and average hope distance [15, 43,

4, 46]. The economic attractiveness of mesh-restorable networks depends on the extent to

which and how the capacity is shared for restoration, and is dependent on topology. The

next step in this research is to introduce the graph physical topology into the optimisation

problem as a variable [4, 12].

Glenstrup [23] has researched the optimisation of the link cost based on different pro-

tection scenarios and is treated as green-field network planning. In this work, the author

has also proposed a way of minimising the node cost by grouping the wavelengths that

share a common sub-path and employing multi-granular switch component, thereby effec-

tively reducing both switch ports and link costs. The physical topology design problem

is quite complex because of the interdependencies between physical and logical archi-

tectures, such as the links, OXCs capacities, location of optical devices (amplifier, con-

verters) all are dependent on the routing of lightpaths and the wavelengths assignment
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strategy, and vice versa.

Growing demand, economic changes and the need to optimise the networks have lead

to a new approach of topology evolution, this is single span addition to existing networks.

For a given network with N nodes and S existing spans, the number of single spans that

can be considered for addition is described as follows:

Y =
N(N−1)

2
−S (7.1)

As an example, a degree 2.5 network with 100 nodes would typically have 125 spans;

there would be about 48,025 single span addition possibilities for testing. The considera-

tion is which one of those will be the most suitable candidate. Two heuristic algorithms

namely Partial Express Flows and Frequency & Remoteness Metrics are used to identify

the new span additions based on the considerations of routing & topology in the existing

network. More details about these heuristic algorithms can be found in Chapter 2 and [4].

The studies of Grover et al. in [47] have shown that there would always be benefit

in spare capacity allocation when designing networks to support multiple QoP service

classes. In other words, more resource efficiency will be gained if there are economic

classes present, as the restoration paths of the protected demand can be partially or com-

pletely provided via pre-emption of the economic class services. The non-protected and

best-effort classes, however, will not have any effect or make any contribution on saving

of the spare resources.

In this chapter, the study of the ILP formulation for the network design, optimisation

and integrating mix-protection schemes (dedicated path protection, SBPP and p-cycle)

into optical transport layer to respond to different quality of service demands with op-

timum resources usage is presented. As each protection scheme has different recovery

time and capacity usage, the selection of these protection techniques is based on their

restoration time and the requirement of resources. In addition, for simplicity purpose, the

Silver and Bronze classes of demand are removed from the model. The ILP formulation is

implemented with two types of service classes known as gold and economic classes, and

focus on the joint capacity optimisation and design with mixed protection schemes. This
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is because with the Silver class, the connections can be restored only if the resources are

available and with the Bronze class, the connections do not require protection. Thus, the

capacity usage for these demand classes mainly affects the working capacity. The mixed-

protection schemes introduced in the formulation will be under the Gold class demand.

The networks physical topology can also be considered, together with the logical routing

allocation of resources, in the same model.

7.2 Integer Linear Programming Formulation for Network Sur-

vivability with Multiple Quality of Service Classes

This section presents an Integer Linear Programming optimisation model. This model is

based on the previous study of the SBPP design in [90] and p-cycle optimisation [91]. The

optimisation models in theses studies were particularly designed for this purpose. They

have a minimum number of constraints and variables, and therefore, they will not cause

significant increases in the complexity of the model for joint protection schemes. The

model complexity mentioned here is not the practical running time of the model. They

are two different aspects that cannot be compared. In addition, ILP is known as a non-

polynomial time algorithm, and large models do not always have greater running times

and vice versa.

Figure. 7.2 presents the general view of the network design for the joint optimisation

model. Given a set of traffic demands, a trial physical network with N nodes with a

set of M span candidates will be generated and formulated into the ILP model. In the

ILP formulation, demands will be presented as the percentage of the service classes and

assigned according to the quality of protection requested. In the proposed model, each

variable representing the physical span has the value of ‘1’ if the link is considered a

candidate. For new network design, all the new spans must be assigned with the value of

‘1’ and for all the existing spans in the upgrading network, the the corresponding variables

must be assigned with ‘0’. The unused physical span(s) will take the ‘0’ value in the
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Figure 7.2: Typical network design flow
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solution and will be removed from the physical network.

The final solution is the protected physical network with all the capacities allocated

for routing demands with various QoP service classes.

Model 12 ILP model

Set

M: Set of restoration methods, indexed by m.

E: Set of network spans, indexed by i or j.

V: Set of network nodes, indexed by v.

D: Set of demand relation, indexed by r.

Pr: Set of candidate path pairs for the relation r, indexed by p.

E′: Set of sharable span of the backup paths, indexed by i or j. E′ ⊆ E.

C: Set of network fundamental cycles, indexed by c.

S: Set of visible straddling links, indexed by s.

H: Set of hidden straddling links, indexed by h.

Gr: Set of shortest path candidates between two end nodes of relation r, indexed by g.

Λ: Set of non-sharable straddling links.

Constants

c j: cost of a unit capacity of span j.

Fj: cost for establishment of physical span j.

(Note that, Fj have negative value if their present the profits given by the establishment

of physical span j).

K: is an arbitrary large positive constant.

This value must larger than any expected accumulation of capacity required on any span j.
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hm,r: volume of demand for relation r, method m.

τm,r
g, j = 1 if span j is on path g of relation r; 0 otherwise.

θ r
p,i: = 1 if the primary route of the pth eligible path pair for demand relation r

cross span i; 0 otherwise.

φ r
p, j = 1 if the backup route of the pth eligible path pair for relation r

cross span j; 0 otherwise.

δc,i = 1 if span i is on cycle c; 0 otherwise.

ξ j
α,s = 1 if α = {x,y|x⋂

y = j,x,y ∈C};

0 otherwise. j ∈ E,α ⊂C,s ∈ S,

s is the sth straddling link formed by cycles {x,y}.

π j
α,h = 1 if the set of cycles α do not cross span j,

0 otherwise. α ⊆C, V ( j) ∈V (α).

h: is the hth hidden straddling link formed by the set of cycles α .

χv = 1 if the p-cycle passes through node v;

0 otherwise.

γ j: max capacity provided by span j.

ϑh, j = 2, is the number of useful paths provided

by the hidden straddling link h to restore

span j.

ϕv,s = = 1 if the visible straddling s passes through

node i; 0 otherwise. v ∈V,s ∈ S.

ωv, j = = 1 if the spare capacity used span j passing

through node v; 0 otherwise. v ∈V, j ∈ E.

ωi = 1 if the physical span i is considered as a

physical candidate; 0 otherwise.
Variables
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ρr,m
p : number of unit capacity copies of the pth

eligible path to serve demand relation r.

w j: working capacity on span j.

b j: spare capacity on span j.

wm
j : working capacity on span j for method m.

bm
j : spare capacity on span j for method m.

nc: number of unit capacity copies of the cycle c.

mh,c: number of unit capacity copies of the hidden

straddling link h using cycle c.

us,c: number of unit capacity copies of the visible

straddling link s using cycle c.

dm,r: number of demand units for relation r,

method m.

• ILP model

– Objective:

minimise ∑
j∈E

c j(w j +b j)−∑
s∈S

∑
j∈E

2ξ j
c,sus + ∑

j∈E
Fjω j (7.2)

– Subject to constraints:

1. For every span, the total working capacity must be equal to the sum of

working capacities for all protection methods:

∑
m∈M

wm
i = wi ,∀i ∈ E (7.3)

2. For every span, the total spare capacity must be equal to the sum of spare

capacities for all protection methods:

∑
m∈M

bm
j −w1

j = b j ,∀ j ∈ E (7.4)
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3. The total demand must be equal to the sum of all demand relations as-

signed to all protection methods:

∑
m∈M

dm,r = ∑
m∈M

hm,r (7.5)

4. Working capacity assigned for APS scheme:

∑
r∈D

∑
p∈Pr

d2,rθ r
p,iρr,2

p = w2
i , ∀i ∈ E (7.6)

5. Spare capacity required for APS scheme:

∑
r∈D

∑
p∈Pr

d2,rφ r
p, jρr,2

p = b2
j , ∀ j ∈ E (7.7)

6. Working capacity assigned for SBPP scheme:

∑
r∈D

∑
p∈Pr

d3,rθ r
p,iρr,3

p = w3
i , ∀i ∈ E (7.8)

7. Spare capacity required for SBPP scheme:

∑
r∈D

∑
p∈Pr

θ r
p,iφ r

p, jρr,3
p d3,r ≤ b3

j ,∀i, j ∈ E|i 6= j (7.9)

8. One backup route assigned to each working demand of SBPP:

∑
p∈Pr

ρr,3
p = 1 , ∀d ∈ D (7.10)

9. Capacity of each span must be sufficient to support all cycles that cross

it:

∑
c∈C

δc, jnc = b4
j , ∀ j ∈ E (7.11)

10. Number of cycles must be sufficient to support the chosen straddling links.

∑
s∈S

ξ j
α ,sus,c−nc ≤ 0, (7.12)

∑
h∈H

π j
α,hmh,c−nc ≤ 0, (7.13)

∀c ∈ α;α ⊂C; j ∈ E
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11. Working capacity allocated to each span must be protected by p-cycles:

∑
g∈G

∑
r∈D

ρr,4
g τ4,r

g, j = w4
j , ∀ j ∈ E (7.14)

12. Spare capacity allocated to each span must be sufficient to support 100%

restorability:

∑
h∈H

ϑh, jmh,c +b4
j ≥ w4

j , ∀ j ∈ E;c ∈C (7.15)

13. The total number of useful capacity units provided by the sth visible strad-

dling link at span j must be less than or equal to the total number of spare

capacities of that span formed by the corresponding cycles.

∑
s∈S

2ξ j
α,sus,c−b4

j ≤ 0, ∀ j ∈ E;c ∈ α;α ⊂C (7.16)

14. The constraint for non-shareable straddling links. This is for preventing

the selection of node-encircling p-cycle(s). If node protection is desired,

this constraint will be removed from the model. If it exists two straddling

links have the same fundamental cycle c, but cannot be shared. The total

number of cycles c will be equal to the total number of those selected

straddling links.
(

∑
s∈S

ξ i
α,sus,c + ∑

h∈H
π j

α ,hmh,c

)
−nc ≤ 0,

∀{ξ j
α,sπ

j
α ,h} ⊆ Λ;

c ∈ α;α ⊂C; i, j ∈ E, i 6= j (7.17)

15. Path selection constraint: each demand connection requires to be as-

signed to one candidate path.

∑
p∈P

ρr,m
p + ∑

g∈G
ρr,m

g = hm,r, ∀r ∈ D (7.18)

16. Total capacity assigned for each span (working plus spare capacity) must

be less than or equal to the maximum capacity that can be provided by
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the corresponding span.

∑
s∈S
−2ξ j

α,cus,c +b j +w j ≤ γ j,

∀ j ∈ E;c ∈ α;α ⊂C (7.19)

17. Number of selected visible straddling span s through node i must be less

than or equal to the number of p-cycles passing through it.

∑
s∈S

ϕv,sus,c−∑
s∈S

χv ≤ 0,

∀v ∈ V;c ∈C; (7.20)

18. Total number of links through a node v must equal to the total of useful

paths provided by the visible straddling links plus twice the number of

p-cycles through that node. Therefore, at every p-cycle node, there are

always two spans that are not straddling spans.

∑
∀v∈V

(2ϕv,sus,c +2χv−b4
jωv, j) = 0,

s ∈ S; j ∈ E;c ∈C (7.21)

19. Working capacity assigned for pre-emptible demand.

∑
r∈D

∑
p∈Pr

d1,rθ r
p,iρr,1

p = w1
i , ∀i ∈ E (7.22)

20. Physical span e must be selected if either a primary path or backup path

is crossing it:

∑
∀i∈E

(wi +bi−Kωi)≤ 0 (7.23)

The objective function of the above model Eqn. 7.2 has a constant number 2 in its second

term. This is because, as in the model, when merging 2 cycles to create a straddling link
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(the visible straddling link), the total number of links is equal to the sum of the number

of links on these cycles. As there is no working capacity required for the straddling link,

thus 2 is subtracted from the total for each chosen straddling link.

Note that in this model, there is no consideration of the self-selected method pro-

tection as in [20]. This is because in the self-selected model, the connections will be

automatically assigned differently with each protection method. However, this may not

be practical as each connection’s demand can randomly request any method of protec-

tions, and is therefore uncontrollable by the network manager. Reader can refer to [20]

for more information about the self-selected protection method.

7.3 Simulation & Discussion

This section presents the test and analytical results of the proposed model over the fol-

lowing networks: NFSNet-N14-S21, NFSNet-N14-S18, N9S14, N9S16, N9S17. The

NFSNet-N14-S18 network is a variation of the NFSNet-N14-S21 network. The N9S16,

N9S17 networks are variations of the N9S14 network. Firstly, it is necessary to compare

the capacity utilisation of networks with mixed protection schemes and their capacity ef-

ficiency when integrated with multiple QoP service classes. Secondly, the effects of the

proposed model over the physical networks, when used as a joint optimisation model to

design new or upgrade existing networks will be shown.

The use of pre-emptible connections in multiple QoS always gives better capacity ef-

ficiency compared to the network without multiple QoS. Figure. 7.4 shows the test results

for the routing of demands at various ratios of service classes over the NFSNet-N14-S18

and the NFSNet-N14-S21 networks. The demand ratio in each test case is presented as

the percentage of classes and requires protection techniques. The mix of service classes

and protection schemes are denoted by (a:b:c:d), where a, b, c and d are the percentages

of demand relations: pre-emptible (economic class), dedicated protection (gold class),

SBPP (gold class) and p-cycles (gold class) respectively. In Figure. 7.4, there are two
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Figure 7.3: NFSNET and an arbitrary N9S14 network.
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Figure 7.4: Effects of capacity utilisation at various demand ratios on NFSNET-N14-S18

and NFSNET-N14-S21
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Figure 7.5: Effects of capacity utilisation on different network sizes at various demand

ratios
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test scenarios: without pre-emptible and with pre-emptible connections. In the first sce-

nario, without the pre-emptible connection, the total capacity usage can be increased from

10% to 20% compared to the second scenario which considers pre-emptible demands in

the optimisation. Although, the results vary with different physical networks and different

sets of demands, there is always capacity saving by considering the pre-emptible connec-

tions in the model. Figure. 7.5 shows the test results for routing of various demands over

different arbitrary networks.

Figure 7.6: Capacity effects on different network size

The network topologies are also an important factor that affect the results, as shown

in Figure. 7.4 when the two networks are assigned the same demand in each scenario. The

total capacities allocated on the NFSNet-N14-S21 are always less than when assigned over

NFSNet-N14-S18 networks. Similar results can be seen on Figure. 7.5 and Figure. 7.6

and also in Table 7.1. This is because, for larger networks, there are more possible routes

for each connection than can be chosen by the model. Thus in most cases, for the same
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demand, it is possible to have better capacity efficiency in larger networks which have a

higher number of physical links.

The joint design of physical and logical routing in the same model gives better re-

source utilisation than when designed them separately. This is because, in principle, there

would be a way of routing demands over certain sets of physical spans that would min-

imise design costs.

For a given set of demands, the design or upgrade of an existing network is done by

assigning the unit cost for each corresponding physical link in the objective function (Eq.

1). For network spans, the value of ωi in the last constraint (Eq. 20) must be equal to 1

if the corresponding span is to be selected by the model or it must equal to 0 for all other

network spans. Table 7.1 shows the details of selected physical links chosen by the model.

7.4 Summary

This study is an advanced step in network design and optimisation, and introduce further

research on network design with multiple QoP service classes and the mixed protection

schemes conducted by W.D. Grover etal. in [47], [20]. The proposed model for network

design and optimisation with multiple QoP service classes is integrated with mixed pro-

tection techniques in order to improve the resource efficiency by satisfying the demand of

recovery times after failures have occurred. The proposed model shows the advantages of

using mixed protection schemes and is able to serve various classes of demand while opti-

mising resources. In addition, this study provides an insight into the relationship between

the physical and logical topologies, and forms a basic tool for studying “joint topologies”

design and optimisation using mixed protection schemes and multiple QoP classes.

168



Chapter 8

Case study: Optical Network Design

This chapter presents a case study involving the analysis and design of a metropolitan

optical network. The design results compare the resource usage of ring and mesh net-

works. The mesh network was designed using Model 12 - introduced in Chapter 7 - and

the SONET/SDH ring network follows on from the work found in [5]. This case study

was adopted from [5], which was designed mainly for the multi-service metro optical

SONET/SDH network of the downtown metro area of a large U.S. city. In this chapter,

the focus is on the capacity planning and physical topology design of an optical network;

factors such as network operating costs and return on investment are excluded from this

study.

8.1 Optical Network Design Strategies

The design process of an optical network is often based on some common key business

considerations. According to [5], some of these key considerations that influence the

network design are as follows:
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• Low capital expense (CAPEX): Refers to the investment on network resources and

infrastructure. The cost of a network is proportional to its complexity.

• Low operating cost (OPEX): Refers to the expense of network management and

other operational costs.

• Minimizing the cost of ownership (TCO): This can be seen as the lifespan of the net-

work before any major upgrade takes place, and is the sum of CAPEX and OPEX.

• Quick return from investment (ROI).

Network design aims to reduce the TCO. This can be done in two ways, these could be

by either minimising the CAPEX (disregarding both the consideration of minimizing the

network operation and management cost) or optimising of CAPEX and OPEX. In this

chapter, we focuse on minimizing the CAPEX model over both ring and mesh networks.

Optical network design requires detailed analysis in order to achieve end-to-end solu-

tions. For example, the following parameters have a strong influence on the final design

results [5], and must be adhered to by the network designer:

• Customer service: This parameter covers the services that the network can provide

to the consumer, such as transmission of voice, video and data over the network.

This has a significant influence on the technology selected to be used in the imple-

mentation of the network.

• Capacity planning: Provides for the network capacity requirement based on the

demographic and population models of the area; the area’s customers could range

from medium to large business or small business to residential users. The required

bandwidth and port density are subsequently calculated from the classification of

predicted network traffic and applications for specific services received from cus-

tomers.

• Quality of service classes: Each service level represents a contract that exists be-

tween a network provider and its customers. The service classes can mean the latent
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percentage available. These factors in turn are involved in the consideration of the

network elements and redundant of network capacity.

• Fiber plan: One of the main elements of capital expenditure. The type and number

of fibers in each span of the network define the type and number of ports required.

Fiber plans are also dependent on the method of network routing and protection

mechanisms.

• Technology selection: there are various technologies available such as: multi-

service SONET/SDH, ATM, Gigabit Ethernet and pure IP services. The selected

technology is considered on the basis of the core services available and customer

service model required.

8.2 Design of a Multi-Service Metro Optical Network: a Case

Study

The aim of the case study included in this thesis is to explore the design process of an

optical network for a metropolitan area with the following requirements:

“A service provider has just been granted right of way to and the irrevocable right

to use (IRU) of 30 miles (48km) of two-strand fiber in the downtown metropolitan area

of Washington, D.C.. It is the intention of this new, competitive local exchange carrier

to offer data, voice, and broadband video services to the market. The network operator

(service provider) has access to adequate technical, financial, and human resources.

The service provider has performed a user survey and has determined that there is

a potential market for up to 10,000 business customers in the downtown area. Of these

customers, 8,000 can be classified as small businesses with up to 10 employees, and 1,800

of these customers can be classified as medium-size business with up to 100 employees.

There is also potential for up to 200 large business customers having up to 500 employ-

ees on average. Customer applications include voice, VPN and pure Internet access.
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There are 300 customers (the 200 large business and at least 100 medium-size business)

that need connectivity with their out-of-state branches and headquarters. There are also

about 5,000 potential residential and small home office customers that need voice and

broadband Internet access. There are 250 buildings that need to be lit up by the service

provider to provide service to all potential customers. The service provider intends to

provide 99.99% availability with highly competitive pricing to capture a market share.

The service provider has performed a site survey of the downtown area and has de-

cided on several fiber routing options with diverse ingress from various buildings. The

service provider intends to light up the first seven buildings in a pilot run. Each of these

seven buildings are multi-tenant units (MTU), housing up to 35 small business and 5

medium-size business in each building. The pilot run will provide voice and Internet ac-

cess services to the seven buildings” [5].

8.3 Case Study Solutions

Optical network design covers a variety of tasks such as: capacity planning, cable and

delay analysis, technology analysis, and logical and physical topology design. Table 8.1

provides a summary of customer requirements. In practice, requirement documents must

be established data (not predictions) that detail customer requirements.

8.3.1 Capacity Planning for the Multi-Service SONET/SDH

Capacity planning for the Multi-service SONET/SDH network requires an estimation

of bandwidth to be used by the network. It is assumed that 64kbps per user for non-

normalized voice bandwidth, and 128kbps of non-normalized data bandwidth. The nor-

malized bandwidth is obtained using a ratio of 1:10 oversubscription. Dupont Circle is

chosen to be the service provider data center and network operation center (Figure. 8.1).

The site was chosen because the location of the Dupont Circle node can be a matching
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(a)

(b)

Figure 8.1: Fiber routing plan
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Table 8.1: Network requirements (source: Optical network design and implementation [5]

Unit Number Factor User count

Residential 5000 1 5000
Small business 8000 10 80000
Medium business 1800 100 180000
Large business 200 500 100000

Requirement Specification

Building 250
Network availability 99.999%
End-to end latency 25ms
QoS 4 classes of protection service
Services Voice, VPN, and IP internet access

node for the core ring, which includes the Adams Morgan, California Street, and Florida

Avenue buildings. The remaining nodes form an access ring covering 34th Street, 30th

Street, and the 35th Street. Based on the survey, Table 8.5 shows the total normalized

bandwidth required for the 7 buildings. In the worst case scenario, if the symmetrical link

is taken into account, the bidirectional traffic matrix plan must be constructed as presented

in Table 8.3. The bandwidth calculation is as follows:

Firstly, assuming the traffic flow is unidirectional, in a clockwise direction. For the

ring Dupont Circle - 24th St - 30th st - 35th St, the bandwidth between 30th St - 35th

St is 16.3Mbps added from 24th St node with 16.3Mbps from the 30th St node, giving a

total of 32.6Mbps.

Secondly, with the bidirectional case, the bandwidth on the span 30th St - 35th St is

equal 32.6Mbps +16.3Mbps (added by node 35th St), which rises to 48.9Mps. The same

technique is used to calculate other network’s spans.

Table 8.3 shows the bidirectional traffic matrix of the network based on the survey

data of just 7 out of 300 buildings. It is not required to have information about the distri-

bution for the remaining buildings. Therefore, it is assumed that the core ring can have

multiple nodes, and each of them is a matching node that interfaces with the collector
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rings having an even bandwidth distribution. The upgrade bidirectional traffic matrix is

shown in Table 8.4.

The total normalized bandwidth is the sum of the normalized voice and data band-

widths of each individual in the entire network. The details of these bandwidths are shown

in Table 8.5. In addition, an estimate of the network growth of 15% and 25% per annum

is presented in Table 8.6.

The traffic matrix shows that for the access ring, the bandwidth required at each span

is 48.9Mbps, and for the core ring, each span requies an bandwidth of 7.008Gbps. Thus

the OC-3/STM-1 (155.52Mbps) and the OC-192/STM-64 (9.953Gbps) could be used for

the access and core rings respectively.

8.3.2 Fiber Plant

Fiber plant needs to establish the optical transmitter power and the receiver sensitivity

for a selected fiber. The fiber plant consists of two components, they are the inside and

outside plants. Described in [5], inside the fiber cable there are two fusion splice points

that form the connection with either the ingress or egress conduits of the building. The

termination of a fiber that enters or exits the building is known as the ‘fiber patch panel.’

This is attached to the Optical-electronics-optical (OEO) equipment. The cable extends

from the building exit conduit on two sides of the building, for example, the East and West

run conduits. There are also two splice points that connect the building to the East and

West runs. From an end-to-end between two active OENs, there are eight splice points,

two are within the inside plant, and two splice points on the outside plant at each side of

the premise.

The fiber loss estimation is shown in Table 8.7 was based on the operation of the

system over 5 km SMF cable between buildings, and assumes that there are two patch

panels in the path and eight fusion splices.
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Table 8.5: Normalized Bandwidth Calculation

Location User count
Voice
Bandwidth
per user

Voice
bandwidth

Normalized voice
bandwidth(1:10)

Residential 5000 64kbps 320Mbps 32Mbps
Small business 80000 64kbs 5.12Gbps 512Mbps
Medium business 180000 64kbps 11.52Gbps 1.152Gbps
Large business 100000 64kbps 6.4Gbps 640Mbps

Location User count Internet
bandwidth
per user

Internet
bandwidth

Normalized
internet
bandwidth

Residential 5000 128kbps 640Mbps 64Mbps
Small business 80000 128kbps 10.24Gbps 1.024Gbps
Medium business 180000 128kbps 23.04Gbps 2.304Gbps
Large business 100000 128kbps 12.8Gbps 1.28Gbps

Total Normalized bandwidth 7.008Gbps

Table 8.6: Total Normalized Bandwidth

Compounded grow 15 % 25 %

Year 1 8.509Gbps 8.760Gbps
Year 2 9.268Gbps 10.950Gbps
Year 3 10.658Gbps 13.687Gbps
Year 4 12.257Gbps 17.10Gbps

Table 8.7: Total Normalized Bandwidth (source: Optical network design and implemen-
tation [5])

Component dB Loss

SMF 1550 nm cable (5 km * 0.25dB/km) 1.25
FC connectors (4 * 0.5 dB/connector) 2.00
Fusion splices (8 * 0.1 dB/splice) 0.80
Patch panels (2 * 2 dB/panel) 4.00
Optical safety margin 3.00
Total Span Loss 11.05
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8.3.3 Delay Analysis

Network delays are generally caused by three specific issues within a network service:

serialization delays, propagation delays and network element delays. Serialization delay is

mainly affected by the frame sizes and transmission rates provided, whereas propagation

delay occurs due to the finite speed of light and the laws of physics. The nominal velocity

of light (NVP) that propagates is defined as the ratio of speed of light (C=300,000 km/sec)

and the refractive index of the medium. The refractive index of SMF is 1.5, thus giving

the NVP = (300,000km/sec)/1.5 = 200,000km/sec), and the propagation delay of the

SMF in one millisecond per kilometer is 0.005. Finally, network element delay refers to

the time taken for the signal to enter a network element and exit to its destination and is

equal to 0.45 ms specified by ITU-T [5].

Thus, the normal total delay is:

Total delay = Serialization delay + Propagation delay + NE processing delay. (Where NE

processing delay refers to network element delays)

In ring networks,the network designer aims to limit the number of end-to-end rings to

three. Thus the traffic demand can be routed from a collector ring node and terminated at

another collector node. For a maximum of 16 nodes per ring, the signal would traverse a

maximum distance of 8 * 3 = 24 nodes. It is assumed that the signal would not traverse

more than 15 km over a single ring (each ring has a maximum of 30 km circumference).

Therefore, the maximum distance the signal can reach is 15 km * 3 = 45km. Refer to [5],

the slowest speed the network service can provide to the customers is via the DS1 interface

(Appendix C) with a maximum transfer unit of 1500 bytes/frame. The requirement here

is that the network delay must satisfy the following equation:

Total delay ¡ serialization delay + Propagation delay + NE processing delay

or

Total delay ¡ [(1500 * 8 bit/byte)/Bandwidth of lowest speed service interface)] +

[Fiber length (km) * 0.005 km/s] +[Total number of NEs on the path * 0.45 ms]
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Substituting the values given above into the equation: Total delay ¡ [(1500 * 8)/1,536,000]

+ [45 * 0.005] + [24 * 0.45]= 18.825 ms

The above total delay satisfies the 25 ms delay of the design specification.

8.3.4 Ring Network Design

The network was designed according to the requirements determined in previous sections

and the ONS 15454 multi-service provision platform was selected for implementation.

The network consists of a 2-ring topology, and has been designed according to the traffic

matrix given in Table 8.4 with the OC-192/STM-64 being implemented for the core ring,

and the OC-3/STM-1 being used for the collector ring. Figure. 8.2 shows the logical

design of the Multiservice metro optical SONET/SDH network.

The network protection mechanism can be chosen from either two-fiber or four-fiber

BLSR/MSSPRING. In the case of the two-fiber option, the BLSR/MSSPRING would

provide (OC-N/2)∗(Number of spans) of bandwidth for full optimisation for add and drop

traffic at the adjacent nodes of the network. For the core ring, the required bandwidth is

4.976Gbps ∗ 4 spans = 19.9Gbps, and for the tributary ring, the required bandwidth is

77.6Mbps∗4 spans = 310.4Mbps.

Should the four-fiber option be selected, the number of bandwidths would be double

those in the two-fiber case. Therefore, four-fiber protection systems are used for rings

spanning large geographic areas, or where critical traffic being carried. Other rings can

still be implemented with the two-fiber BLSR/MS-SPRING. For example, in this case,

the tributary ring would use two-fiber BLSR/MS-SPRING = 310.4Mbps and the core

ring uses = 39.8Gbps.

The deployment of the pilot tributary ring, however, cannot represent the full solution

for the entire network. Indeed, this is currently a sample test case of an attached access

ring. The required network should consist of 2-ring topology with two OC-192/STM-64.

The required bandwidth is be = 39.8Gbps for the case of two-fiber BLSR/MSSPRING,
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and = 79.6Gbps for the four-fiber protection systems.

The net bandwidth required for the two-fiber BLSR/MSSPRING and four-fiber BLSR/MSSPRING

are = 39.8Gbps+39.8Gbps = 79.6Gbps and = 79.6Gbps+39.8Gbps = 119.4Gbps re-

spectively Figure. 8.2.

Figure 8.2: Logical design of Multiservice SONET/SDH network.eps
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8.3.5 Mesh Network Design to Support Multiple Quality of Service classes

Logical Design

The traffic matrix in mesh topology requires more details in the consideration, calculation

and design compared to that of ring topology. It does not need to involve the traffic at

the intermediate nodes. Therefore, the network demands are equal to the total number

of connections between the source and destination nodes. It is assumed that each node

distributes traffic evenly to all other remaining network nodes and has the same bandwidth

requirement. From the given case study, the optimisation of a possible network was run

with an average nodal degree of d̃ ≈ 3.7 as shown in Figure. 8.3. It should be noted that,

the higher the network’s nodal degree - combined with a larger number of path candidates

- could give a better result, but may have significantly larger running time.

The network connections are calculated as follows: the total user count given is

about 365,000, which gives an average of 53,000 users per node (365,000(usercount)÷
7(nodes) ≈ 53,000(user/node)) (see Table 8.5 for more details). Each user is assigned

an equivalent bandwidth of 19.397kps.

The demand distribution from each source node to every destination node in the net-

work is approximately 53,000÷6≈ 8,835. In addition, these connections are further di-

vided into smaller portions according to the service classes required, eg, in this test case,

the demand is divided as follows: 40% for Economic class, 20% for Dedicated protection,

20% for SBPP, and 20% for p-cycle protection Table 8.8. Thus, at each source node, there

are about 21,000 connections using economy class, and for dedicated SBPP p-cycles,

each technique has 11,000 connections flowing into various destination nodes. Figure. 8.4

shows the bidirectional flow of traffic on the network under consideration.

The above network’s data is formulated into the ILP using Model 12 introduced in

Chapter 7. From the routing results, two physical spans have been removed from the

original network Figure. 8.3, and eleven spans are used for carrying both working and the
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Figure 8.3: Network Under optimisation

N2 N3 N4 N5 N6 N7N1

N2 N3 N4 N5 N6 N7N1

Figure 8.4: Connection Flow between Network Nodes
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Table 8.8: Distribution of Demand from Single Source Node over Various QoP Service
Classes

% of demand distributed from source node to destination nodes

Economic class Dedicated protection SBPP p-cycle

40 20 20 20

redundance capacity for network protection purposes. Figure. 8.5 shows the optimised

network with the shortest path candidates factor k=2. In this figure, at each span, there

are three distinct values: ei represents the span index, the middle number (in blue) is the

routed capacity (unit=1000), and the last number (in red) is the bandwidth required at the

corresponding span to guarantee normal service of the network as planned.

Table 8.9: Network Capacity Allocation

Link index Requires bandwidth (Gbps)

35th ST 30th ST 24th ST
Dupont
Cycle

California
ST

Florida
Ave

Adam
Morgan

1 2.754 2.754 - - - - -
2 1.377 - - 1.377 - - -
3 1.667 - - - 1.667 - -
4 1.415 - - - - - 1.415
5 - 1.629 1.629 - - - -
6 - 1.415 - 1.415 - - -
7 - - 1.222 1.222 - - -
8 - - - 1.512 - 1.512 -
9 - - - 1.086 1.086 - -

10 - - - - 1.066 - 1.066
11 - - - - - 0.543 0.543

Total 7.214 5.800 2.854 6.616 3.824 2.061 3.031

Table 8.9 shows the bandwidth required to be installed for each physical span of the

network. The maximum bandwidth is 7.2Gps at 35th St and the minimum is 2.06Gbps

at Florida Avenue. The bandwidth allocated for each span here includes the network

protection bandwidth. Various OC-X cards can be used to achieve the design bandwidth,
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Figure 8.5: Network optimised with KSP=2
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such as OC-192/STM64 for the nodes at 35th St, Dupont Cycle, 30th St; a combination

of OC-48/STM16, OC-12/STM4 can be used for other remaining nodes.

8.4 Discussion

From the design results, the maximum bandwidth required by the ring network is ap-

proximately 79.6 Gbps in the case of two-fiber BLSR/MSSPRING and 119.4 Gbps for

four-fiber protection. In contrast, the capacity allocated for the mesh network is only

31.216 Gbps, which is just 39.2% of the two-fiber BLSR/MSSPRING case, and 26.14%

of the four-fiber BLSR/MSSPRIN case.

In a ring network, every node that belongs to a ring must be installed with the same

OC-X card. However, this is not the case for mesh networks, where a variety of OC-X

cards can be installed at each node. This is because the bandwidth requirements can be

different at individual nodes within the mesh network.

Depending on the geological condition of the area, the total geographical ground

length required to be dug for fiber installation may exceed that of the ring network. How-

ever, the signal that traverses between two end nodes can still be kept well within the

24 nodes as planned. In practice, shared-risk link groups would be a better choice for

deploying the fiber cable network, thereby reducing fiber installation costs.

Optical ring networks are restricted by fiber length and the number of nodes allowed

to be attached to it [92]. The purpose of this is to minimise protection switching delay,

and avoiding transmission impairment within the ring. However, the ring protection al-

lows protection switching to be invoked within 50ms as no complex signaling is required.

The advantage of using pre-configured protection such as Dedicated or p-cycle is that

the demand under these schemes can be recovered in approximately 50ms. The demand

protected by SBPP takes a much longer time to recover after a failure.

The schedule for upgrading an existing network usually takes place every few years,

sometimes as often as every 5 years. During that time, the ring network may experience
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bandwidth problems due to fast growing communication demands, resulting in the slow-

ing of service speeds. In contrast with the ring network, a mesh network can be easily

upgraded; extra capacity can be added to the corresponding nodes/ spans to satisfy the

growing demand without causing any disruption of network services.

8.5 Summary

The case study presented in this chapter shows an analysis and the design of a metropolitan

optical network providing service to about 350,000 users. Two types of networks, known

as ring and mesh topologies were considered with focus on capacity allocation, logical and

physical design. This chapter also covered a variety of designing tasks such as analysis,

capacity planning, cable and delay analysis, logical and physical topology design.

The mesh type network is designed based on Model 12 introduced in Chapter 7,

while the SONET/SDH ring network was designed by following the guidelines in [5].

Both ring and mesh networks required different design methods. The results showed

that the mesh network supporting multiple QoP service classes had significant resource

efficiency. The maximum bandwidth required for the mesh network was 31.216 Gbps

compared to 79.6 Gbps for the two-fiber BLSR/MSSPRING and 119.4 Gbps for four-

fiber BLSR/MSSPRING protection. In this topology, only the demands being protected

by p-cycles can be recovered as quickly as in the ring network (the average recovery

time of ring is approximate 50ms), some other demands protected by non pre-configured

protection schemes such as SBPP would take up to 250ms to recover from failure.

In [92], the authors stated that the design of the ring networks is cheaper than the mesh

networks due to the low cost of OADMs. However, this is no longer the case. By pro-

viding 100 times the bandwidth of traditional equipment and facilitating easier operation

and maintenance, the network with OXC systems and integrated with WDM technologies

would dramatically reduce capital and operational expenses, and also increase network

manageability.
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This study proves the efficiency of using multiple QoP service classes in network

design and analysis. Model 12 is an excellent design tool that can be used in analysis

of the interaction between network topologies which have a variety of quality of services

classes of traffic demands.
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Chapter 9

Closing Discussion

Communications networking is one of the most important elements of communications

and data transfer infrastructure in the 21th century. A wide range of services and ap-

plications rely heavily on these networks from the most basic functions, such as voice

communication and email to more complicated services such as security, social virtual

networking and many multimedia applications. Huge amounts of data are transmitted and

received over various networks in every second of the day, around the globe. A trans-

port network therefore must be protected and able to cope with failures such as cable cuts,

faulty network elements etc.. A communications network is also required to provide intel-

ligent services; such as fast recovery from failures and high routing efficiency. Therefore,

the design of reliable networks has become a topic studied intensely by researchers, ser-

vice providers and enterprizes in recent years, all with the aim of providing highly reliable

networks. This trend is almost certain to continue in the future.

The aim of this thesis has been to study the optical transport mesh network design

issues involving survivability and routing efficiency. This thesis provides an in depth ex-

amination of network design concepts and presents novel ideas and models for network

topology design. The works in this study cover both the simple forms of network protec-

tion schemes known as span protection, path protection through to the more complicated

forms such as shared backup path protection, p-cycle and, finally, the mixed-protection
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scheme model to service multiple quality of demand service classes. The proposed mod-

els provide joint design and optimisation of both working and backup paths of demand,

and particularly, network physical topology design is also implemented in the model for-

mulation. Therefore, a complete solution of physical network design, or the upgrading of

existing networks with protected routing can be achieved. From the results obtained from

the calculations and models this thesis presents, it has been found that the joint network

topology design of the proposed model provides the best resource efficiency for designing

a protected mesh network.

This thesis initially presented an overview of communication networks, transport net-

works, key enabling technologies and design issues regarding network protection and

network routing. A review of relevant set theory, graph theory and integer linear pro-

gramming methods for the developed the mathematical formulations of the corresponding

network design models and operations research were also presented in Chapter 2.

Chapter 3 presented a new approach to establishing the physical survivability of net-

works. The proposed algorithm has proven to be comparable, by many orders of magni-

tude, to the biconnected technique when dealing with larger networks, whilst providing all

the distinct fundamental cycles of the network, if required, with a small change in the Al-

gorithm 1. The proposed technique is capable of identifying network protection problems

such as node-bridges and link-bridges.

Chapter 4 showed the mathematical formulations used for optimising network routing

and protection in the most common form - span protection. The basic techniques of net-

work optimisation modeling, known as “link-path” and “link-node” were also discussed

in depth. In this chapter, the routing cost and maximum network congestion were dis-

cussed in the context of being applied to network modeling. Control of congestion level

is found to be of great importance, and should be taken into account in network design to

avoid the unbalancing of a network’s load and assuring the continuatity of service while

still maintaining a reasonable routing cost.

Chapter 5 proposed two new ILP models for SBPP at the optical layer of mesh net-
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works. The first proposed model is a VBM and has a small number of constraints, but

a large number of variables, which are the sets of DPJB candidates created in the pre-

processing stage. From the results, by applying the multi-level optimisation technique,

this helps to reduce the number of variables in the VBM significantly; however, this model

is still only suitable for small networks and a small number of traffic demands. The VBM

can be further developed to produce optimal solutions by balancing the number of con-

straints and variables.

The second model was called CBM model. The CBM uses the DPJB path pairs as candi-

dates in order to reduce the number of constraints in the model. The proposed CBM model

has the same quantity of variables as the conventional model, but has less constraints. The

CBM has advantage over the conventional model when dealing with large size networks.

Chapter 6 gave a comprehensive review of related works on network design using

p-cycles and proposed a new ILP formulation. The new model is formulated using the

fundamental set of network cycles and the straddling links formed by these fundamental

cycles. The network fundamental cycle is defined as a cycle that contains no straddling

link. The proposed model can obtain the optimal solution by obtaining all the extra strad-

dling relationships with non-simple p-cycles, which is something that no other previously

proposed model has been capable of. The reduced complexity of the proposed model

provides a great advantage over the pure ILP model when dealing with large networks.

The proposed model is suitable for designing shared risk link group p-cycle protection

networks, or backbone networks where the cross spans are usually limited.

Chapter 7 introduced a novel ILP model for network design and optimisation with

multiple QoP services classes. The model is integrated with mixed protection techniques

in order to improve the resource efficiency while still satisfying demand requests. The

proposed model proves the advantages of using mixed protection schemes to serve various

classes of demands in optimisation of routing. In addition, this study is a step forward in

network design and optimisation, as it provides an insight into the relation between the

physical and logical topologies, and is an excellent tool for the study of network topology
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design and optimisation with mixed protection schemes to serve multiple QoP service

classes.

Chapter 8 considers the analysis and design of two types of optical networks known

as ring and mesh topologies. This is done through a simple case study of metropolitan net-

work design. This chapter focuses on the capacity planning, logical and physical design

of the optical networks. The mesh type network is designed based on Model 12, intro-

duced in previous chapters, and the SONET/SDH ring network is designed following the

traditional technique [5]. The comparison between both topologies shows that the mesh

network with support for multiple QoP service classes provides a significant increase in

resource efficiency over the ring network. The maximum bandwidth required for the mesh

network is 7.2Gbps, compared to 19Gbps for the two-fiber BLSR/MSSPRING or 40Gbps

for four-fiber protection. This study proves the efficiency of using multiple QoP service

classes in network design and analysis. Model 12 is an excellent design tool that can

be used in analysis of the interaction between network topologies that have a variety of

quality protection services of traffic demands.

9.1 Future Works

The new proposed model Model 12 provides the best efficiency in mesh network design

when compared to ring networks. In practice, the physical layers are built in such a way

that two or more spans can be placed together, and thus logically distinct spans share

common-mode failure structures and are called shared-risk span groups, which are rec-

ognized generally as shared-risk link groups (SRLGs). SRLGs provide better economical

ways to design and deploy optical communication networks. However, when a failure oc-

curs, all wavelength channels are assumed to fail together in a span. Network protection

schemes see them as a single total amount of capacity that must be restored. The span

SRLGs require a vastly different design to maintain survivability. The proposed model

can be implemented to support the SRLG network by additional constrain for each related

protection scheme in the model. More study on the failures that affect SRLG networks
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under mixed protection schemes and the relationship between resource requirements and

allocation in various scenarios is required.
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Appendix A

Algorithms

A.0.1 Finding K disjoint path pairs

Algorithm 4 : K disjoint-path pairs
Input : An indirected graph G(V,E), a pair of source and destination nodes (s,d), and

the number of shortest disjoint-path pairs required.
Output: A set of K-shortest disjoint-path pairs.

1: Take a shortest path between the source s and destination d, using one of the shortest
path algorithms, eg. modified Dijkstra or BFS [55, 75]. Denote this as p.

2: Define the direction of each link traversed in p from s toward d as positive.
3: Remove all directed links on the shortest path p and replace them with reverse direc-

tion and negative weight of each such link (eg. by multiplying the original link’s cost
with −1).

4: Find K least cost paths from s to d in the modified graph using the algorithm in [93].
Denote these as the set of paths S = {s1,s2 . . . ,sK}.

5: For each pair of paths (p,si), remove any link of the original graph traversed by both
p and si. These are called interlacing links. Identify all path segments by the link
removal from path p and si. Such path-pairs form the K-disjoint path pairs (Ppairs) =
{(w1,r1),(w2,r2), . . . ,(wK ,rK)}.
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A.0.2 Multilevel optimization algorithm

Algorithm 5 : Multilevel optimization
Input : An undirected graph G(V,E); a set H containing disjoint-joint path-pair candi-

dates for a given set of demands D; a set K of k-shortest disjoint path pair candidates
of demands D; and l, the maximum allowable number of shared dependencies on spare
capacity between backup paths.

Output: Routing paths for demands D.
Set the final solution S f ← /0, current solution Sc ← /0.
while l > 1 do

Create a new set of candidate KH l = K
⋃

H l;
Solve the SBPP at level l with the new candidates using Model 7;
Obtain the model’s solution Sc = {K′

di}
⋃{H l

dgk}
∀di ∈ dg from the solution set Sc, update all demands;
if l > 2 then D = D\di;
endif
∀H l

dgk ∈ S, {S f }= {S f }⋃{Sc\K′};
l ← l−1;

end while
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A.0.3 Finding DPJB candidate paths

Algorithm 6 Finding DPJB candidate paths
Input : An undirected graph G(V,E); the set T = {t1, t2, . . . , tD} of connection demands

D over the network, where ti denotes the connection between node pair {si,di} required
for each demand d; a set of candidate disjoint path-pairs S = (P,R) as given in Defini-
tion 1.

Output: The set of Joint-Disjoint path pairs H of demand D at different share levels.
1: Finding primary disjoint path of K shortest path-pair for each demand d ∈ D:
init. i← 1
for every pi

d do
dPi

d ←{pi
d}

end for
while i < D do

for j = 1→ K do
for t = i+1→ D do

for s = 1→ K do
if p j

i
⋂

ps
t = /0∧b j

i
⋂

bs
t 6= /0

dP j
i ← dP j

i +{ps
t}

end if
end for

end for
end for
i← i+1

end while
2: Generate H
α ← Share f actor
for d = 1→ D do

for i = 1→ K do
for j = 2→ α do

N ←C j
{dPi

d}
if ∀n ∈ N, ∃e ∈ E,∑b eb = i then

H j
{d},i ←{n}

end if
end for

end for
end for
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Appendix B

Network configurations

1. NSFNET ( Table B.1)

Table B.1: The NSFNET Physical Configuration
Link index end nodes capacity cost

1 1 - 2 12 1
2 1 - 3 12 1
3 1 - 8 12 1
4 2 - 3 12 1
5 2 - 4 12 1
6 3 - 6 12 1
7 4 - 5 12 1
8 4 - 10 12 1
9 5 - 6 12 1

10 5 - 7 12 1
11 6 - 9 12 1
12 6 - 12 12 1
13 7 - 8 12 1
14 8 - 11 12 1
15 9 - 11 12 1
16 10 - 13 12 1
17 10 - 14 12 1
18 11 - 13 12 1
19 11 - 14 12 1
20 12 - 13 12 1
21 12 - 14 12 1
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2. EU network( Table B.2)

Table B.2: The EON Physical Configuration
Link index end nodes capacity cost

1 1 - 2 12 1
2 1 - 3 12 1
3 1 - 25 12 1
4 1 - 9 12 1
5 1 - 14 12 1
6 1 - 15 12 1
7 1 - 16 12 1
8 2 - 3 12 1
9 2 - 6 12 1
10 2 - 7 12 1
11 2 - 13 12 1
12 2 - 15 12 1
13 3 - 4 12 1
14 3 - 5 12 1
15 3 - 6 12 1
16 4 - 5 12 1
17 4 - 8 12 1
18 4 - 9 12 1
19 4 - 17 12 1
20 5 - 6 12 1
21 5 - 8 12 1
22 6 - 7 12 1
23 6 - 8 12 1
24 7 - 8 12 1
25 7 - 9 12 1
26 7 - 11 12 1
27 7 - 12 12 1
28 8 - 9 12 1
29 9 - 10 12 1
30 9 - 18 12 1
31 9 - 19 12 1
32 10 - 11 12 1
33 11 - 12 12 1
34 13 - 14 12 1

3. N25-L54 Network ( Table B.3)
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Link index end nodes capacity cost
35 16 - 17 12 1
36 16 - 18 12 1

Table B.3: The N25-L54 Physical Configuration
Link index end nodes capacity cost

1 1 - 20 12 1
2 1 - 21 12 1
3 1 - 23 12 1
4 2 - 15 12 1
5 2 - 20 12 1
6 2 - 21 12 1
7 2 - 25 12 1
8 3 - 7 12 1
9 3 - 11 12 1

10 4 - 20 12 1
11 4 - 23 12 1
12 5 - 8 12 1
13 5 - 15 12 1
14 6 - 15 12 1
15 6 - 18 12 1
16 6 - 20 12 1
17 7 - 14 12 1
18 7 - 17 12 1
19 7 - 21 12 1
20 7 - 22 12 1
21 7 - 24 12 1
22 8 - 16 12 1
23 8 - 19 12 1
24 8 - 24 12 1
25 8 - 25 12 1
26 9 - 15 12 1
27 9 - 16 12 1
28 9 - 20 12 1
29 9 - 25 12 1
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Link index end nodes capacity cost
30 10 - 11 12 1
31 10 - 15 12 1
32 10 - 19 12 1
33 10 - 21 12 1
34 10 - 23 12 1
35 11 - 15 12 1
36 11 - 19 12 1
37 11 - 23 12 1
38 12 - 13 12 1
39 12 - 17 12 1
40 13 - 19 12 1
41 13 - 22 12 1
42 14 - 20 12 1
43 14 - 22 12 1
44 15 - 16 12 1
45 16 - 17 12 1
46 16 - 18 12 1
47 16 - 23 12 1
48 17 - 18 12 1
49 17 - 25 12 1
50 18 - 22 12 1
51 19 - 21 12 1
51 19 - 25 12 1
53 23 - 25 12 1
54 24 - 25 12 1
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Appendix C

Network technical notes

• TCC2 - Control the main processing functions of the ONSCC2s. The TCC2 pro-

vides the following functions: timing, control and switching functions which in-

clude system initialization, provisioning, alarm reporting, maintenance, diagnostic,

IP address detection and resolution, timing, SONET/SDH DCC termination, and

system fault detection.

• OC-192/STM64 1-Port card (OC192IR/STM64) - The port operates at 9.95328Gbps

over unamplified distances up to 40km with SMF-28 fiber (with the 1550nm wave-

length range) limited by loss and/or dispersion.

• OC3IR/STM1 SH card (OC3IR/STM1) - The card provides 8 intermediate or

short range 1310nm OC-3/STM-1 port. The port operates at 155.52Mbps.

• MS-SPRING - MS-SPRING function is to provide the switching of ring or span

between nodes. The traffic can be transmitted in both direction, and the protection

traffic can also be used to serve extra demand. There are two type of MS-SPRING

known as 2-fiber MS-SPRING and 4-fiber MS-SPRING. They are physically dif-

ferent as the name implies, and also the way of assigning working/protection band-

width in the optical fibers.
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