

Federated E-infrastructure Dedicated to European Researchers
Innovating in Computing network Architectures

Co-funded by the European Commission within the Seventh Framework
Programme. Grant Agreement No: RI-213107

Deliverable DJRA1.2
Solutions and protocols proposal for the network control,
management and monitoring in a virtualized network
context

Version DJRA1.2v2.1

Dissemination Level: Public
Contractual date of deliverable: August 31st, 2009
Actual submission date: October 30th, 2009
Editor’s Names: Cristina Cervelló-Pastor (UPC)

Robert Machado (UPC)
 Álvaro Monje (UPC)
 Ásgeir Óskarsson (UPC)

Partners who have contributed to this document:
Partner Name E-mail address

GARR Ugo Monaco ugo.monaco@garr.it

DFN

Uni Erlangen

Peter Kauffman

Monika Roesler

Susanne Naegele-Jackson

kaufmann@dfn.de

roesler@dfn.de

Susanne.Naegele-Jackson@rrze.uni-erlangen.de

GRNet Constantinos Vassilakis cvassilakis@grnet.gr

PSNC Łukasz Dolata ldolata@man.poznan.pl

i2CAT
Sergi Figuerola

Josep Pons

sergi.figuerola@i2cat.net

josep.pons@i2cat.net

KTH

Markus Hidell

Peter Sjödin

Pehr Söderman

mahidell@kth.se

psj@kth.se

pehrs@kth.se

ICCS Dimitris Kalogeras D.Kalogeras@noc.ntua.gr

UPC

Cristina Cervelló-Pastor

Roberto Machado

cristina@entel.upc.edu

robert.machado@entel.upc.edu

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 2 of 106

UPC

Álvaro Monje

Ásgeir Óskarsson

Sebastià Sallent

alvaro.monje@entel.upc.edu

asgeir.oskarsson@entel.upc.edu

sallent@entel.upc.edu

Juniper Jean-Mark Uze juze@juniper.net

Abstract
This deliverable presents several research proposals for the FEDERICA network, in different
subjects, such as monitoring, routing, signalling, resource discovery, and isolation. For each
topic one or more possible solutions are elaborated, explaining the background, functioning
and the implications of the proposed solutions.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 3 of 106

Document Revision History

Version Date Description of change Author

0.9 July 17th 2009 Changes made to all chapters UPC
1.2 July 29th 2009 Inter-domain, chapters

updated
UPC

1.4 August 26th 2009 Global revision
Resource Description updated
Resource Allocation added
Monitoring added
Implementation of OpenFlow
added
User Portal updated
Isolation updated

UPC, ICCS
i2CAT&UPC
GRNET
GARR/Juniper
DFN / Uni
Enlargen
PSNC
KTH

1.5 August 31th 2009 Implementation of OpenFlow
updated.
Global revision

DFN / Uni
Enlargen
UPC
ICCS

1.8 September 30th
2009

Global revisión
Abstract, conclusions added

UPC

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 4 of 106

Table of Contents
List of Figures...6

List of Tables ..6

1 Introduction..8

1.1 Purpose and Scope ...8
1.2 Document overview...9
1.3 List of Abbreviations ...9

2 FEDERICA Architecture..12

2.1 Control Plane Overview...12
2.2 Control Plane Application..14

3 Resource Descriptions ...21

3.1 Overview of FEDERICA resources...21
3.2 NetConf and JUNOS XML API ..22
3.3 VI API..25
3.4 Web Service Description Language...26

4 Signalling ..41

4.1 Design space and related work ..41
4.2 Proposed FEDERICA signalling mechanisms...42
4.3 Resource Discovery ...51
4.4 Resource Allocation...57

5 Routing..62

5.1 Design space and related work ..62
5.2 Proposed FEDERICA mechanisms ...62

6 Monitoring ..69

6.1 Introduction..69
6.2 (Virtualized) Building Blocks of a FEDERICA Slice70
6.3 Slice Monitoring concept...70
6.4 Tool Specifications ..71

7 Isolation...73

7.1 Design space and related work ..73
7.2 Proposed FEDERICA mechanisms ...73

8 Inter-domain implications...75

8.1 Introduction..75
8.2 Control plane Interconnection or Network Factory Interconnection...........77
8.3 Path Computation Element (PCE) across multiple domains79
8.4 Logical Connection based on proposed Network Service80

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 5 of 106

8.5 Data plane Interconnection or slice interconnection....................................83
8.6 Interconnection of virtualized infrastructures in Resource planning.84

9 User Portal..85

9.1 Overview..85
9.2 Architecture..85
9.3 Identified groups of users...88

10 Conclusions...90

Bibliography ...92

Annex 1. IETF Standards ...95

1.1. IETF Standardization Process...95
1.2. Resource Discovery ..95
1.3. Routing..96
1.4. Signalling ..99
1.5. Path Computation..101

Annex 2. Tools and Frameworks for further research...104

2.1 BLUEnet Tool..104
2.2 DRAGON ..104
2.3 IaaS Framework based Tools: Manticore, Argia. ..105
2.4 PL-VINI ...106

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 6 of 106

List of Figures

Fig. 2-1. FEDERICA Topology [1]..12

Fig. 2-2. Control Plane Overview ..13

Fig. 2-3. Multi-domain FEDERICA Overview ...14

Fig. 2-4. Network Application Overview...15

Fig. 2-5. Relationships between tables in resource database...20

Fig. 4-1. Create Sequence Diagram..44

Fig. 4-2. Find Sequence Diagram...47

Fig. 4-3. Invoke Sequence Diagram...49

Fig. 4-4. (Un)Virtualize Sequence Diagram ..51

Fig. 4-5. Resource Discovery Phase Sequence Diagram...54

Fig. 4-6. Control Phase Sequence Diagram ...55

Fig. 4-7. Refresh Phase Sequence Diagram requested by the Engine...56

Fig. 4-8. Phase Sequence Diagram requested by the Network Service...57

Fig. 5-1. Planned implementation scenario of OpenFlow at the university campus in Erlangen...........67

Fig. 8-1. Use case scenarios..75

Fig. 8-2. E-NNI hierarchical routing ..78

Fig. 8-3. PCE Architecture and PCC-PCE/Inter-PCE Communication ..79

Fig. 8-4. Depiction of physical infrastructure with two slices (separated)..81

Fig. 8-5. Depiction of physical infrastructure with two slices (connected resources)82

Fig. 8-6. Data plane interconnection between different virtualization substrates...................................83

Fig. 9-1. Architecture of the FEDERICA Web Portal ...86

Fig. 9-2. LDAP Directory Schema...87

List of Tables

Table 2-1. Ethernet Switch Resources ..17

Table 2-2. Switch_ConfigModules ...18

Table 2-3. Switch_ConfigParameters..18

Table 2-4. Ethernet Resources...18

Table 2-5. Ethernet Resources VLANs...19

Table 2-6. Ethernet Resource CrossConnected...19

Table 2-7. Ethernet Resource Extension ...19

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 7 of 106

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 8 of 106

1 Introduction

1.1 Purpose and Scope

The previous deliverable (DJRA1.1, [2]) was focused on the design of the building
blocks needed to define a virtual architecture. In that deliverable we evaluated several
tools and frameworks that could be used for tool bench development or to create
virtual slices. Four different tools were identified as most adequate for FEDERICA:
Manticore with IaaS, BLUEnet Tool, DRAGON, and PL-VINI.

This deliverable goes further on the research aspects within FEDERICA. First of all
the architecture of the control plane for the FEDERICA infrastructure will be defined.
Several possibilities could be implemented, using the basic FEDERICA infrastructure
as a starting point. The focus on this document is the intra-domain aspects of the
control plane and their properties. Also some inter-domain aspects are addressed.

The main objective of this deliverable is to lay great stress on creating and
implementing the prototype/tool for the FEDERICA slice-oriented control system
using the appropriate framework. This deliverable goes deeply into the definition of
the containers between entities and their syntax, preparing this tool for the future
implementation of any kind of algorithm related to the control plane, for both to apply
UPB policies or to configure it by hand. We opt for an open solution despite the real
time limitations that we could have (for instance, opening web services connexions or
applying fast recovering mechanisms).

The application being developed is the central element in the control plane, and
additional features must be added to this application. This control plane, from the
functionality point of view, is composed by several procedures that provide a reliable
application and that include some mechanisms or algorithms to be able to discover
and assign resources to the user.

To achieve this, several topics must be researched in order to propose new protocols
for the virtual infrastructure. The topics and necessary features covered in this
document include resource discovery, resource allocation, signalling, routing,
isolation and monitoring. All these topics must be researched in order to find a good
solution for the FEDERICA network. Some of these algorithms have started to be
analyzed and will be expanded in the next deliverable. Current standardization and
existing solutions have been investigated in order to find a good solution for
FEDERICA. Resource discovery is an important issue within the FEDERICA
network, as manual resource discovery is no option, due to scalability requirement.
Furthermore, no standardization exists, so knowledge must be obtained from related
work. Ideally, the proposed solutions for these topics should not only be adequate
specifically for this infrastructure, but could also be applied to other virtualized
networks.

This deliverable lays the foundations for the protocols proposals for network control,
management and monitoring in a virtualized network context. Eventually, these

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 9 of 106

protocol proposals should be implemented in prototypes. During the prototyping
process these proposals will be shaped and sometimes adapted, but a good basis of all
protocols is already defined. This prototyping is not included in the scope of this
deliverable, but will be for deliverable DJRA1.3.

1.2 Document overview

This document is structured as follows. First an overview of the FEDERICA
architecture is given. Both the network architecture and the control-plane specific
architecture will be discussed in Chapter 0. After the architecture is presented, all
relevant concepts are introduced bottom-up. Chapter 3 is about the resource
descriptions. In this chapter an overview of all FEDERICA resources will be given.
From chapter 4 on the document emphasizes more on theoretical research. Chapter 4
introduces resource discovery and allocation mechanisms which might be
implemented within FEDERICA. Chapter 4 also goes in the signalling implications
within FEDERICA. This chapter covers signalling messages from several network
elements. Chapter 5 introduces mechanisms which might be implemented for routing
in FEDERICA and introduces the OpenFlow implementation as a new network
architectural platform that intends to simplify network control and management.
Chapter 6 explores the monitoring aspects of the FEDERICA research. Chapter 7
presents the isolation topic. Chapter 8 deals with the inter-domain implications of the
different mechanisms presented in this document. Chapter 9 is about the User Portal,
a tool which is being developed to offer the different functionalities of the
FEDERICA control and management plane to the users. Finally, the conclusions are
presented in chapter 10.

1.3 List of Abbreviations

AAI – Authentication and Authorization Infrastructure

API – Application Programming Interface

BWCTL - Bandwidth test Controller

CLI – Command Line Interface

DRAGON - Dynamic Resource Allocation via GMPLS Optical Networks

DTD - Document Type Definition

EPR – EndPoint Reference

ESFS – Ethernet Switch Factory Service

FEDERICA – Federated E-infrastructure Dedicated to European Researchers
Innovating in Computing network Architectures

FSMS – FEDERICA Slice Monitoring System

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 10 of 106

FUP – FEDERICA User Portal

GQAP - Generalized Quadratic Assignment Problem

GUI – Graphical User Interface

HADES - HADES Active Delay Evaluation System

IaaS – Infrastructure as a Service

IETF – International Engineering Task Force

IS-IS – Intermediate System to Intermediate System

JMX – Java Management Extensions

LDAP – Lightweight Directory Access Protocol

LSP – Label Switched Path

LSR – Label Switching Router

MOPSO – Multi Objective Particle Swarm Optimization

MRGAP – Multi-Resource Generalized Assignment Problem

MR-GQAP – Multi-Resource Generalized Quadratic Assignment Problem

MTU – Maximum Transmission Unit

NDL – Network Description Language

NFS – Network File System

NIC – Network Interface Card

NOC – Network Operating Center

NSIS - Next Steps In Signalling

OSPF – Open Shortest Path First

PCE – Path Computation Element

PL-VINI – PlanetLab Virtual Network Infrastructure

PoP – Point of Presence

PSO - Particle Swarm Optimization

QoS – Quality of Service

RCP - Rich Client Platform

RFC – Request For Comments

RSVP – Resource reSerVation Protocol

SDK – Software Development Kit

SIP – Session Initiation Protocol

SNMP – Simple Network Management Protocol

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 11 of 106

SOAP – Simple Object Access Protocol

SSH – Secure Shell

TRILL – Transparent Interconnection of Lots of Links

TTL – Time To Live

UPB – User Policy Board

URI – Uniform Resource Identifier

VI – Virtual Infrastructure

VLAN – Virtual Local Area Network

VN – Virtual Network

VNE – Virtual Network Embedding

VPN – Virtual Private Network

WAN – Wide Area Network

WSDL – Web Service Description Language

WSRF – Web Service Resource Framework

XML – Extensible Mark-up Language

XORP – Extensible Open Router Platform

XSD – XML Schema Definition

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 12 of 106

2 FEDERICA Architecture

2.1 Control Plane Overview

In previous stages the FEDERICA infrastructure has been developed. The figure
below gives an overview of the overall infrastructure of the FEDERICA network.
Currently the network consists of thirteen Points of Presence (PoPs). Four of these are
core PoPs which are connected in a mesh network: GARR, DFN, PSNC, and
CESNET. These connections are depicted with red lines in the Fig. 2-1.

DFN PSNC

CESNETGARR

FCCN

I2CAT

NIIF

GRNET

NORDUNET

HEAnet

RedIRIS

SWITCH

ICCS

KTH

Fig. 2-1. FEDERICA Topology [1]

The figure above (Fig. 2-1) depicts the data plane connections between the different
PoPs. Each switch, router and/or virtual machine inside the PoPs is assigned an
Engine in the control plane, which controls the virtualization of the devices. These
Engines are placed locally at the devices and are responsible for the communication
between the devices and the Network Service. The Network Service communicates
requests for resources and specifies the ports which the slices should use. The
Resources table has all the resources stored and communicates with the Network
Service on the specific ports and resources being used for slices.

At the moment, this is the basic functionality of the control plane for the arrangement
of virtual slices. Further details on, among others, signalling have not yet been defined.
These functionalities will become clearer as the project develops. The figure below

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 13 of 106

(Error! Reference source not found.) depicts the overall functionality of the
Network Service, which is located in the control plane.

EngineMX480

EngineEX3200

EngineEX3200EngineEX3200

EngineEX3200

EngineMX480

NOC GUI
“User Plane”

Control
Plane

Data Plane

Network
Service Resources

User 1 tool User 3 toolUser 2 tool

Slice
Mgmt

Slice
Mgmt

Slice
Mgmt

DFN PSNC

CESNETGARR
Fig. 2-2. Control Plane Overview

In a multi-domain scenario the control plane will try to maintain the coherence in the
devices located along the different domains. In order to ensure the end-to-end
implementation of the virtual infrastructure, the control plane will have to be aware of
the available virtual resources along all the way in the different domains.

There are two different possibilities for the control plane architecture. On one hand, a
Network Service per domain could be implemented. The communication among the
Network Services governing each domain should be defined to achieve this multi-
domain coherence. Nevertheless, this is only one of the two possibilities to implement.

On the other hand, there is a centralized model where the resources of the different
domains are managed in a centralized way. In this situation, a unique Network

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 14 of 106

Service would manage the resources in the different domains. A centralized Network
Service is showed in the Fig. 2-3. In this case, a slice management mechanism that
maintains the configurations for the different slices is considered and each slice
management service communicates with the Network Service.

 Slice 1

 Slice 2

PD1

Slice 2
ManagementSlice 1

Management

Network
Service

PD2 PD3

VRVR

VR

VR

VR

VR

VR

VR

VRVR

VR

VR

VR

PD 1 PD 2 PD 3

Fig. 2-3. Multi-domain FEDERICA Overview

2.2 Control Plane Application

In the current application version the logic of the tool bench is stored in the GUI.
Resources must be added and modified manually, and no automated processes are
supported. The first proposition is to develop a Network Service that will take over
some of the logic and be able to automate the tasks of the GUI. To manage the slices,
slice management functionality must be added. Manticore prototype version has a
similar functionality for L3, with virtualized IP networks, but this functionality is not
yet available for L2.

The resources used to build the Federica Management Network are not based on
Federica Data Plane. Therefore, current version of the tool bench redirects the traffic
over the Internet, and does not use the FEDERICA network to connect to the
resources in the different physical domains. Another possibility would be to guide this
traffic over the FEDERICA network, but at the moment this is not the case. The
figure below (Fig. 2-4) shows the current implementation, including the proposed

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 15 of 106

Network Service and Slice Management. All components of the application will be
described briefly in this section.

Internet

NOC (KTH)

PSNC

GARR

CESNET

DFN

Network Application – Located at NOC

Resource
Service

Network
Service

Engine
S1.1

GUI
Engine
S3.1

Engine
S2.1

Resource DB

Engine
S4.1

S1.1

S2.1

S4.1

S3.1

S5.1
Slice

MGMT
3.1

Slice
MGMT

2.1

Slice
MGMT

1.1

Fig. 2-4. Network Application Overview

 GUI: The Graphical User Interface currently implements all the logic for
manual configuration of the settings for the physical and virtual resources. The
GUI calls web services to communicate with the physical resources.

 Network Service: This is the new central service which coordinates the
automatic configuration of the physical and virtual resources.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 16 of 106

 Resource Service: This web service is called by the Network Service
whenever it needs information from the resource database. Its functionality is
purely based on the storage and communication of resources in the database.

 Resource Database: A PostgreSQL database which includes all the network
resources and their configurations.

 Slice Management: The slice management communicates with the Network
Service to obtain the configurations for a slice. For each slice a new slice
management must be created.

 Engine: Network Service will be responsible for its creation. The engine
communicates via Netconf sessions with the physical resources, and
communicates the configurations to the Network Service.

Graphical User Interface

The graphical user interface (GUI) is a simple interface displaying the main actions
and capabilities of the tool. This tool is based on the Eclipse Rich Client Platform
(RCP), a set of libraries that offers the developer the possibility of managing
components to be used to form a final rich client application (similar to Eclipse). The
interface offers the view of the devices and the resources configured in each of them.
The user is able to add new devices to the tool, thanks to the wizards that will guide
him. In each one of these configured devices, the user will be able to see and
configure the VLANs and the interfaces.

This GUI presents some functionality limitations that will have to be solved. For
instance, the application is able to assign multiple interfaces to a VLAN at time, while
the user interface only allows one at time. Improving this in the graphical interface
would reduce the configuration time, because just one connection to the switch would
be necessary, instead one connection for each action.

Eclipse RCP applications can be presented as stand-alone applications or as Eclipse
Plug-in as well. In this case, due to the early stage in the development of the user
interface, the application is presented as an Eclipse plug-in.

Network Service

The network service must be the core service of the application. This part of the tool
will on one hand be responsible for the resource and device services, mapping these
into different Slice objects. The Network Service will then be responsible for the
communication with the devices engines. It will also be responsible for the
management of the virtualized resources, and the communication with the Resources
Service.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 17 of 106

The user tools may access these slice managers in order to manage the user resources
(for instance, create their own VLANs). The NOC GUI will access Network service
in order to keep its inventory updated.

Resource Service

The main functionality of the resource service is to maintain communications between
the network service and the resource database. Requests by the network service to
store, transmit or adjust configurations in the resource database will be handled by the
resource service. It is a web service that is able to communicate with the resource
database in SQL.

Resource Database

The resource database is located in the same place as the resource service and the
other services inside the network application. This is not a fixed setting, as it could
also be stored at a different location. The resource database is based on PostgreSQL,
which is an open source database, and communicates directly with the resource
service in this language. The database consists of seven tables, which shall be
explained briefly in this paragraph. The table that represents the switches,
Ethernet_switch_resources, contains the main characteristics of the FEDERICA
network switch. It has a unique resourceKey and unique name, along with some other
characteristics, which can be seen in Table 2-1.

Table 2-1. Ethernet Switch Resources

Table: Ethernet_switch_resources
Column Type Description
resourceKey String Primary Key
version Integer Version number
name String Switch name (unique)
model String Switch model
manufacturer String Switch manufacturer
destructionTime Long Switch lifetime

The resourceKey is the primary identifier for a physical switch. The version gives the
version number of the switch. The switch name must be unique for every switch, as it
is used by another table in the database. The model is the model of the switch, which
in the case of FEDERICA is EX3200. The manufacturer for the FEDERICA switches
is Juniper. At the moment no other switches but the Juniper EX3200 are supported by
the FEDERICA control plane. The destructionTime is not used for the moment, as it
does not apply to the core FEDERICA switches. If in the future other switches will be
added to the network, this option can be used to adapt to specific requirements of the
user.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 18 of 106

The primary resource key is coupled to the switch_configModules and
switch_configParameters tables, where it is a foreign key. The switch_configModules
table contains one additional field, which carries the transport and the protocol used.
At the moment, as the connections between the switch and engines use these protocols,
this field will contain SSH as Reliable transport protocol and NetConf as protocol.
This table is shown in Table 2-2.

Table 2-2. Switch_ConfigModules

Table: Switch_configModules
Column Type Description
resourceKey String Foreign Key
configModules String (1000) Transport & Protocol

The switch_configParameters contains all the parameters needed to access the switch.
Inside the field configParameters settings as IP address, username and password are
stored. The table can be seen below, in Table 2-3.

Table 2-3. Switch_ConfigParameters

Table: Switch_configParameters
Column Type Description
resourceKey String Foreign Key
Configparameters String (1000) Contains Parameters

The database also contains a table which describes all the characteristics of Ethernet
resources. This table, ethernet_resources, is linked to the ethernet_switch_resources
table by its Resource Key and the unique name of the switch table. At the moment,
the ethernet_resources table consists of all the characteristics of a port, but other
resources could also be included, such as tunnels, OSPF, etc. The table can be seen
below, in Table 2-4.

Table 2-4. Ethernet Resources

Table: Ethernet_resources
Column Type Description
resourceKey String Primary Key
version Integer Version number
owner String Username
connectedTo String Connection
ipAddressV4 String IPv4 Address
ipAddressV6 String IPv6 Address
netmaskV4 String Netmask
isTrunk Boolean Trunk or Access
Type String Port Type
MTU String Max. Transmission Unit

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 19 of 106

VCATProperties String VCAT Properties
LCASProperties String LCAS Properties
Direction String Direction
crossConnectionDescription String Cross Connection
Status String Status
Reason String Reason
Description String Description
networkElement String Network Element
physicalbinding String Linked switch resource
destructionTime Long Resource lifetime

Apart from the connection with the ethernet_switch_resources table, it is connected to
three different tables. These connections are based upon the primary resource key of
the ethernet_resources, which is coupled to the foreign resource key in the subtables
vlans, crossconnected and extension. Multiple VLANs can be connected to a single
port, where the column vlan stores the VLAN ID. This table is shown in Table 2-5.

Table 2-5. Ethernet Resources VLANs

Table: Ethernetresource_vlans
Column Type Description
resourceKey String Foreign Key
vlan String (1000) VLAN ID

 A single port can have multiple connections, which are stored in the table

ethernetresource_crossconnected. The field crossConnected contains all the
connections a port has with other ports. The table is illustrated below in table 2.6.

Table 2-6. Ethernet Resource CrossConnected

Table: Ethernetresource_crossconnected
Column Type Description
resourceKey String Foreign Key
crossConnected String (1000) Port Connections

 The last table in the resource database is the port extension table, called

ethernetresource_extension. This table allows for possible extensions of the
parameters, so at the moment is not used in the resource database. Table 2-7 illustrates
this table.

Table 2-7. Ethernet Resource Extension

Table: Ethernetresource_extension
Column Type Description
resourceKey String Foreign Key
extension String (1000) Possible extensions

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 20 of 106

The relationships between the object-oriented resource database tables are shown
below in Fig. 2-5. It becomes clear that one switch can contain multiple ports,
parameters and modules. Furthermore, one port can contain multiple cross
connections, VLANs or extensions.

switch_configParameters
resourceKey

String (1000)configParameters

Foreign keyString

Contains parameters

switch_configModules
resourceKey

String (1000)configModules

Foreign keyString

Transport & protocol

ethernetresource_extension
resourceKey

String (1000)extension

Foreign keyString

Possible extension

ethernetresource_crossconnected
resourceKey

String (1000)crossConnected

Foreign keyString

Cross connection

ethernet_switch_resources
resourceKey

version

Primary KeyString

Product version

name

Stringmodel

Resource nameString

Resource model

manufacturer

longdestructionTime

manufacturerString

Resource life time

Integer

ethernetresources_vlans
resourceKey

String (1000)vlan

Foreign keyString

Contains VLAN id

ethernet_resources

resourceKey

Integerversion

Primary KeyString

ipAddressV6 IPv6 AddressString

ipAddressV4 IPv4 AddressString

connectedTo Connected resourcesString

Version

Resource ownerowner String

owner

type TypeString

isTrunk Trunk / AccessBoolean

netmaskV4 NetmaskString

LCASProperties LCAS PropertiesString

VCATProperties VCAT PropertiesString

MTU Max. Transm. UnitString

status Resource statusString

crossconnection
Description Cross connectionString

direction directionString

networkElement Network ElementString

description Resource descriptionString

reason ReasonString

destructionTime Resource life timelong

physicalBinding Linked deviceString

1

1

0 … *

1

0 … *

1

0 … *

1

0 … *

1

0 … *

0 … *

Fig. 2-5. Relationships between tables in resource database

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 21 of 106

3 Resource Descriptions

3.1 Overview of FEDERICA resources

Since the virtualization and the sharing of network resources are two of the main
objectives of the FEDERICA deployment, the correct characterization and description
of these resources is a key issue to be specified. This would ensure an easy
implementation of the tool and the different protocols that will manage these
resources.

In order to retrieve the resource description of the various devices, a set of protocols
and languages are used. On one hand, information from switches and routers is
obtained using NetConf. On the other hand the management of V-nodes is performed
by VI-API. Both mechanisms (NetConf and VI-API) are offered by the
switches/routers and V-nodes respectively. With these mechanisms, FEDERICA can
reach an appropriate resource description of its infrastructure.

The resource description that has been followed is conditioned by the XML resource
description that the network devices offer. This description is modelled in the tool in a
very similar way, trying to the keep the devices description format. In that sense, the
description of the resources for the communication between the modules of the tool is
done in Web Service Description Language (WSDL), which is based on XML, also in
a very similar way as the switch or routers showed information. Web services must
often provide their users with the ability to access and manipulate state, i.e., data
values that persist across, and evolve as a result of, Web service interactions. And
while Web services successfully implement applications that manage state today, we
need to define conventions for managing state so that applications discover, inspect,
and interact with stateful resources in standard and interoperable ways. The WS-
Resource Framework (WSRF) defines these conventions and does so within the
context of established Web services standards (i.e. WSDL, WS-addressing etc).
Globus Toolkit is a Framework that implements WSRF mechanisms for creating Web
Service based distributed applications [3]. Because Manticore Web Services are also
based on the WSRF standard, FEDERICA’s resource description will also use these
mechanisms.

Other possibilities such as Network Description Language (NDL) have also been
studied. However, due to the compatibility inconsistency of NDL with Manticore
prototype, WSRF standard and WSDL descriptions are used to obtain Layer 2
resource information and configuration with the objective to obtain a proper resource
description.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 22 of 106

3.2 NetConf and JUNOS XML API

3.2.1 Introduction

Netconf is an API based on XML (Extensible Markup Language). Client applications
use this API to exchange information with the Netconf server running on the switch or
router. The API provides a way to display, edit and commit configuration statements.
The requests and responses sent/received using the API are equivalent as sets of
configuration commands using the command line interface (CLI).

The JUNOS XML API represents the JUNOS configuration statements and
operational mode commands in XML. The operations of the NETCONF API respond
to the JUNOS XML API tags.

Working with Netconf and JUNOS XML APIs offers some advantages. One of them
is that both are programmable interfaces, and they fully document all options for
every supported JUNOS operational request and all elements in every configuration
statement.

Other advantage is the simplicity to understand the content and structure of the XML-
tagged data sets, due to the combination of the meaningful tag names and the
structural rules in a DTD (Document type definition).

Other of the main advantages of Netconf is that it is able to get the status of the switch,
and parse it to the program in an easier way than CLI would do. In the following lines
there are some examples of configuration of the switch using Netconf.

3.2.2 Language description

To map commands to JUNOS XML Tag Elements the JUNOS API defines tag-
element equivalents for many of those commands in CLI operational mode.
Many CLI commands have options that identify the object that the command affects
or reports about, distinguishing the object from other objects of the same type.
Moreover, many commands include options that have a fixed form which specify the
amount of detail to include in the output. JUNOS XML API usually maps such an
option to an empty tag whose name is the option name.

3.2.3 Resources request

The request message sent to the devices is the following:

<rpc>
 <get-config>
 <source>

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 23 of 106

 <candidate/>
 </source>
 <filter>
 <configuration>
 <interfaces></interfaces>
 <vlans></vlans>
 </configuration>
 </filter>
 </get-config>
</rpc>

With the specification of a filter as is shown below, we limit the information asked to
the switch to the elements included within the filter. In this case, only interfaces and
VLANs information will be retrieved.

 <filter>
 <configuration>
 <interfaces></interfaces>
 <vlans></vlans>
 </configuration>
 </filter>

3.2.4 Interfaces description

Once the switch sends the configuration information, we can obtain the resources
description from the tag hierarchy as it is explained below.

The interfaces description is done as shown in the following code:
<interfaces>
 <interface>
 <name>ge-0/0/0</name>
 <unit>
 <name>0</name>
 <description></description>
 <family>
 <ethernet-switching>
 <port-mode>trunk</port-mode>
 <vlan-id>120</vlan-id>
 </ethernet-switching>
 </family>
 </unit>
 </interface>
</interfaces>

All the described interfaces are encapsulated by the <interfaces></interfaces> tags. Inside
these tags, each interface is described, surrounded by the <interface></interface> tags.
Inside these tags the interface properties are described by the following tags.
<name></name>

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 24 of 106

Inside each interface, units are described, specified among <unit></unit> tags.

The properties of each unit are described by the following tabs:
<name></name>

<description></description>

<family></family>

Inside family tabs, more family-specific properties can be described

For ethernet-switching family:
<ethernet-switching>
 <port-mode>trunk</port-mode>
 <vlan-id>120</vlan-id>
</ethernet-switching>

Where port-mode can be configured as access or trunk.

For inet family, there are some configurable properties such as the address or the
MTU.
<inet>
 <address></address>
 <mtu></mtu>
</inet>

3.2.5 VLANs descriptions

VLANs are described by the JUNOS software as is shown below:
<vlans>
 <vlan>
 <name>VLANA</name>
 <description>testing</description>
 <vlan-id>234</vlan-id>
 <interface>
 <name>ge-0/0/0.0</name>
 </interface>
 <interface>
 <name>ge-0/0/19.0</name>
 </interface>
 </vlan>
<vlans>

VLAN properties are specified among the <vlan></vlan> tags. Each one of them is
described inside the corresponding labels. The more common are:
<name> </name>
<description> </description>
<vlan-id></vlan-id>
<interface>
</interface>

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 25 of 106

3.3 VI API

3.3.1 Introduction

The management interface to be used in FEDERICA for virtual nodes (ESXi) is the
VMWare Infrastructure API (VI API). The VI API provides a complete set of
language-neutral interfaces to the VMware virtual infrastructure management
framework. This framework provides an infrastructure for instrumenting, managing
and monitoring VMware Infrastructure components, similar to the way that Java
Management Extension (JMX) provides an infrastructure for Java applications.
Examples of VMware Infrastructure components are virtual machines and host
systems, while subsystems, such as a performance manager, are also supported. The
virtual infrastructure management framework is accessed by external clients using the
VI API.

The VI API is used for the communication between the engine and the virtual
machine in the FEDERICA network. Each virtual machine has its own engine which
initiates the communication through the VI API. This is similar to the process
between a switch engine and a network switch, where a NetConf session is
established between the engine and the physical switch.

3.3.2 Language description

VI API is implemented as an industry-standard Web services, hosted on VirtualCenter
Server and ESX Server systems. The VI API complies with the Web Services
Interoperability Organisation (WS-I) Basic Profile 1.0, which includes XML Schema
1.0, SOAP 1.1, WSDL 1.1.

The Web service provides all the necessary operations, including life-cycle operations,
to monitor and manage virtual infrastructure components—compute resources, virtual
machines, networks, storage, and the like.

3.3.3 Services

The operations used in FEDERICA to create, adjust and delete virtual nodes are the
same as offered in the VMWare Infrastructure SDK. The SDK version used is 1.x,
which is different from the 2.0 version. The operations will be mentioned shortly in
this section. For further details on the operations and messages involved, we refer to
the VMWare Infrastructure SDK Porting Guide, available at www.vmware.com.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 26 of 106

Virtual nodes can be created through three operations. These are Create, Clone VM,
or CreateTemplate. Parameters in these operations include the configurations for the
virtual machine. Once the virtual machine has been created the virtual node can be
obtained through the ResolvePath operation, while to obtain the resources of the
virtual node the GetContents method is used.

Virtual nodes can be provisioned with the operation CreateHardware. This virtual
node can then be updated by the operation PutUpdates. Migrating of virtual nodes can
be done through two operations. Virtual nodes that are still powered on can be
migrated with MigrateVM. A virtual node in the powered-off state can be move with
the MoveVM operation. The first operation is also referred to as hot migration, the
latter cold migration.

Two different operations to power on and off a virtual node used for the FEDERICA
network are StartVM and StopVM. Virtual nodes can also be deleted with the Delete
operation. The same operation can also be used to delete hosts. If not an entire virtual
node but only hosts musts be connected or disconnected, the operations EnableHost
and DisableHost can be used.

3.4 Web Service Description Language

3.4.1 Introduction

In this part of the document the description of the Web Services, implemented to
communicate the administrator (or NOC) with both layer 2 and layer 3 resources and
also virtual nodes, will be presented. To achieve this, these messages are defined in a
SOAP format. The complete list is contained within Web Service Description
Language (WSDL) and XML-Schema (XSD) files. This section describes in detail the
operations, messages and elements inside these files.

3.4.2 Language description

Web Service Description Language is an XML-based language that provides a model
for describing the Web service’s public interface. This means that it defines
requirements and messages format to interact with the services listed inside its
catalogue. WSDL is usually combined with SOAP and XML-Schema: complex data
types used are embedded in the WSDL file in the form of XML-Schema. On the other
hand, clients should use SOAP to call one of the operations listed in the file.

3.4.3 Namespaces

The table below shows the namespaces referenced in this document:

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 27 of 106

Prefix Namespace

wsdl http://schemas.xmlsoap.org/wsdl/

xsd http://www.w3.org/2001/XMLSchema

wsa http://www.w3.org/2005/08/addressing

tns Reference to the file itself

3.4.4 Switch example

3.4.4.1 Operations

The following WSDL files describe the operations that are available for the NOC to
communicate with the switches via Web services. The <portType> tag defines the
Web services, the operations that can be performed and the messages needed to call
the operations. They are separated in two blocks: factory (shown in the following
table) and instance operations for the EthernetSwitchFactory and EthernetSwitch,
respectively. The first ones manage the second ones.

<portType name=”EthernetSwitchFactoryPortType”>

 <wsdl:operation name="create">

 <wsdl:input message="tns:CreateInputMessage" />

 <wsdl:output message="tns:CreateOutputMessage" />

 <wsdl:fault name="BaseFault" message="wsrf-bf:BaseFaultMessage" />

 </wsdl:operation>

 <wsdl:operation name="clone">

 <wsdl:input message="tns:CloneInputMessage" />

 <wsdl:output message="tns:CloneOutputMessage" />

 <wsdl:fault name="BaseFault" message="wsrf-bf:BaseFaultMessage" />

 </wsdl:operation>

 <wsdl:operation name="find">

 <wsdl:input message="tns:FindInputMessage" />

 <wsdl:output message="tns:FindOutputMessage" />

 <wsdl:fault name="BaseFault" message="wsrf-bf:BaseFaultMessage" />

 </wsdl:operation>

</portType>

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 28 of 106

Factory operations can create, clone and find instances of EthernetSwitch which, in
turn, have the operations defined below:

<portType name=”EthernetSwitchPortType”>

 <wsdl:operation name="invoke">

 <wsdl:input message="tns:InvokeInputMessage" />

 <wsdl:output message="tns:InvokeOutputMessage" />

 <wsdl:fault name="BaseFault" message="wsrf-bf:BaseFaultMessage" />

 </wsdl:operation>

 <wsdl:operation name="refresh">

 <wsdl:input message="tns:RefreshInputMessage" />

 <wsdl:output message="tns:RefreshOutputMessage" />

 <wsdl:fault name="BaseFault" message="wsrf-bf:BaseFaultMessage" />

 </wsdl:operation>

 <wsdl:operation name="virtualize">

 <wsdl:input message="tns:VirtualizeInputMessage" />

 <wsdl:output message="tns:VirtualizeOutputMessage" />

 <wsdl:fault name="BaseFault" message="wsrf-bf:BaseFaultMessage" />

 </wsdl:operation>

 <wsdl:operation name="unvirtualize">

 <wsdl:input message="tns:UnvirtualizeInputMessage" />

 <wsdl:output message="tns:UnvirtualizeOutputMessage" />

 <wsdl:fault name="BaseFault" message="wsrf-bf:BaseFaultMessage" />

 </wsdl:operation>

</portType>

The invoke operation sends instructions to the device. Refresh gets the configuration
of the resource and virtualize creates a new one, which will be a representation of an
interface (port) for the end-users.

3.4.4.2 Messages

The tables in this section show the operation’s message definition inside WSDL files.

EthernetSwitchFactory messages:
<wsdl:message name="CreateInputMessage">

 <wsdl:part name="request" element="tns:createReq" />

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 29 of 106

</wsdl:message>

<wsdl:message name="CreateOutputMessage">

 <wsdl:part name="response" element="tns:createResp" />

</wsdl:message>

<wsdl:message name="CloneInputMessage">

 <wsdl:part name="request" element="tns:cloneReq" />

</wsdl:message>

<wsdl:message name="CloneOutputMessage">

 <wsdl:part name="response" element="tns:cloneResp" />

</wsdl:message>

<wsdl:message name="FindInputMessage">

 <wsdl:part name="request" element="tns:findReq" />

</wsdl:message>

<wsdl:message name="FindOutputMessage">

 <wsdl:part name="response" element="tns:findResp" />

</wsdl:message>

EthernetSwitch messages:
<wsdl:message name="InvokeInputMessage">

 <wsdl:part name="request" element="tns:invokeReq" />

</wsdl:message>

<wsdl:message name="InvokeOutputMessage">

 <wsdl:part name="response" element="tns:invokeResp" />

</wsdl:message>

<wsdl:message name="RefreshInputMessage">

 <wsdl:part name="request" element="tns:refreshReq" />

</wsdl:message>

<wsdl:message name="RefreshOutputMessage">

 <wsdl:part name="response" element="tns:refreshResp" />

</wsdl:message>

<wsdl:message name="VirtualizeInputMessage">

 <wsdl:part name="request" element="tns:virtualizeReq" />

</wsdl:message>

<wsdl:message name="VirtualizeOutputMessage">

 <wsdl:part name="response" element="tns:virtualizeResp" />

</wsdl:message>

<wsdl:message name="UnvirtualizeInputMessage">

 <wsdl:part name="request" element="tns:unvirtualizeReq" />

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 30 of 106

</wsdl:message>

<wsdl:message name="UnvirtualizeOutputMessage">

 <wsdl:part name="response" element="tns:unvirtualizeResp" />

</wsdl:message>

The elements contained in the messages are defined as a XML-Schema. In other
words, they are described inside the XSD file which is imported by WSDL.

Factory service:

Create request:
<xs:element name="createReq">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="EthernetSwitchData"

 type="tns:EthernetSwitchType">

 </xs:element>

 <xs:element name="lifeTime" type="xs:long">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

createReq: Container element included in the body of a SOAP message when an
administrator is sending a create operation to the factory service.

createReq:EthernetSwitchData: Container element inside the create request that
defines all the information needed to create the switch representation.
EthernetSwitchType will be explained in the next section.

createReq:lifetime: Contains the life time of the new resource in milliseconds.

Create response:
<xs:element name="createResp" type="wsa:EndpointReferenceType" />

createResp: Contains the Endpoint Reference (EPR) of the switch recently created.
The schema of this complex component can be found at the URI presented in the
namespace table (section 3.4.3) corresponding with the wsa prefix. Basically, an

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 31 of 106

Endpoint Reference contains the destination address of a message; in this case the
address of the instance Web service.

Clone request:
<xs:element name="cloneReq">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="toClone"

 type="wsa:EndpointReferenceType">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

cloneReq: Container element included in the SOAP body of a message when a clone
operation is sent.

cloneReq:toClone: Contains the EPR to clone.

Clone response:
<xs:element name="cloneResp" type="wsa:EndpointReferenceType" />

cloneResp: Contains the Endpoint Reference (EPR) of the switch recently cloned
responding to an earlier clone request.

Find request:
<xs:element name="findReq">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="template"

 type="tns:EthernetSwitchTemplateType">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 32 of 106

findReq: Container element included in the body of a SOAP message when an
administrator is sending a find operation to the factory service.

findReq:template: Container element inside the find request that defines a template
with the information needed to find a switch. EthernetSwitchTemplate will be
explained in the next section.

Find response:
<xs:element name="findResp">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="resources"

 type="wsa:EndpointReferenceType"

 maxOccurs="unbounded">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

findResp: Contains the list of Endpoint Reference that matches with the template
given in the find request message.

Switch Service:

Invoke request:
<xs:element name="invokeReq">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="identifier" type="xs:string">

 </xs:element>

 <xs:element name="Parameters"

 type="tns:ParametersType" nillable="true">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 33 of 106

invokeReq: Container element included in the body of a SOAP message when an
administrator is sending an invoke operation over the switch. This is a generic
operation which is used to call the device instructions.

invokeReq:identifier: Contains the identifier of the command, action or operation to
invoke. Examples are createVlan or queryResources.

invokeReq:Parameters: The parameters (names and values) that the command, action,
or operation needs as an input. ParametersType will be explained in the next section.

Invoke response is empty; no information is needed. Both request and response
messages that are included in the refresh operation are empty as well.

Virtualize request:
<xs:element name="virtualizeReq">

 <xs:complexType>

 <xs:sequence>

 <xs:element name="Parameters" nillable="true"

 type="tns:ParametersType">

 </xs:element>

 </xs:sequence>

 </xs:complexType>

</xs:element>

virtualizeReq: Container element for the virtualize operation.

virtualizeReq:Parameters: Parameters needed (names and values) to carry out the
operation. It contains, to name a couple of elements, the interface name and the vlan
identifier.

Virtualize response:
<xs:element name="virtualizeResp" type="wsa:EndpointReferenceType" />

virtualizeResp: Contains the EPR of the new resource created responding to an earlier
virtualize request.

Unvirtualize request:
<xs:element name="unvirtualizeReq" type="wsa:EndpointReferenceType" />

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 34 of 106

unvirtualizeReq: Contains the EPR of the resource to destroy.

Unvirtualize response is empty.

3.4.4.3 Types and Resources

Messages above contain some complex types also defined in the XML-Schema file
that will be shown in this section. They describe the manner to get and send the
resource information.

EthernetSwitchType: Container element included in a create request message that
defines the resource information needed to connect with the device. This type is also
used to get the equipment and configuration of the devices.
<xs:complexType name="EthernetSwitchType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Model" type="xs:string" />
 <xs:element name="Manufacturer" type="xs:string" />
 <xs:element name="Configuration" type="tns:ConfigurationType" />
 <xs:element name="Equipment" nillable="true"
 type="tns:EquipmentType" />
 </xs:sequence>
</xs:complexType>

EthernetSwitchType:Name: Resource name. The string is the identifier of the Ethernet
switch device.

EthernetSwitchType:Model: Contains the model of the device.

EthernetSwitchType:Manufacturer: Contains the switch manufacturer brand.

EthernetSwitchType:Configuration: Container element with all the information
necessary to connect with the device: host name, user, password, etc.

EthernetSwitchType:Equipment: Container element with the configuration of the
virtual LANs and interfaces.

EthernetSwitchTemplateType: Container element included in a find request message
used as a pattern to find a device from its identifier or other parameters.
<xs:complexType name="EthernetSwitchTemplateType">
 <xs:sequence>
 <xs:element name="Name" nillable="true" type="xs:string" />
 <xs:element name="Status" nillable="true" type="xs:string" />
 </xs:sequence>
</xs:complexType>

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 35 of 106

EthernetSwitchTemplateType:Name: Name (identifier) of the device to find.

EthernetSwitchTemplateType:Status: Status of the device to find.

ParametersType: Container element used in different operations to insert generic
information. It can be used inside invoke messages, because this operation sends
different commands to the device.
<xs:complexType name="ParametersType">
 <xs:sequence>
 <xs:element name="Parameter" minOccurs="0"
 maxOccurs="unbounded">
 <xs:complexType>
 <xs:attribute name="name" type="xs:string" />
 <xs:attribute name="value" type="xs:string" />
 <xs:attribute name="description" type="xs:string"/>
 </xs:complexType>
 </xs:element>
 </xs:sequence>
</xs:complexType>

ParametersType:Parameter:name: Element to identify the parameter.

ParametersType:Parameter:value: Contains the value of the parameter.

ParametersType:Parameter:description: Parameter’s description.

ConfigurationType: Container element included in the EthernetSwitchType. It
defines the configuration of the device.
<xs:complexType name="ConfigurationType">
 <xs:sequence>
 <xs:element name="Module" type="tns:ParametersType">
 </xs:element>
 <xs:element name="Parameters" type="tns:ParametersType">
 </xs:element>
 </xs:sequence>
</xs:complexType>

ConfigurationType:Module: Parameters that define the transport and protocol to
connect with the Ethernet switch.

ConfigurationType:Parameters: Parameters that define, among other things, the host
name, user and password and other security values.

EquipmentType: Container element inside EthernetSwitchType with the device
configuration.
<xs:complexType name="EquipmentType">
 <xs:sequence>
 <xs:element name="VLANInventory" nillable = "true"

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 36 of 106

 type="tns:VLANType" minOccurs="0" maxOccurs="unbounded" />
 <xs:element name="PhysicalInterfacesInventory"
 type="tns:PhysicalEthernetSwitchPortType"
 minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
</xs:complexType>

EquipmentType:VLANInventory: List of virtual LANs configured in the device. This
complex type is shown below:
<xs:complexType name="VLANType">
 <xs:sequence>
 <xs:element name="VLANName" type="xsd:string"></xs:element>
 <xs:element name="VLANTag" type="xsd:string"></xs:element>
 <xs:element name="VLANDescription" nillable="true"
 type="xsd:string"></xs:element>
 <xs:element name="Units" nillable="true"
 type="tns:UnitType" minOccurs="0" maxOccurs="unbounded />
 </xs:sequence>
</xs:complexType>

VLANType:VLANName: Contains VLAN name. It must be unique.

VLANType:VLANTag: Contains VLAN id. This is a numeric identifier.

VLANType:VLANDescription: Contains a brief description of the VLAN.

VLANType:Units: List of logical interfaces belonging the VLAN.

EquipmentType:PhysicalInterfacesInventory: List of physical ports configured in
the device.
<xs:complexType name="PhysicalEthernetSwitchPortType">
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Description" nillable="true"
 type="xs:string" />
 <xs:element name="LinkSpeed" nillable="true" type="xs:string" />
 <xs:element name="LinkMode" nillable="true" type="xs:string" />
 <xs:element name="LinkState" nillable="true" type="xs:string" />
 <xs:element name="UnitsInventory" type="tns:UnitType"
 minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
</xs:complexType>

PhysicalEthernetSwitchPortType:Name: Physical port’s name.

PhysicalEthernetSwitchPortType:Description: Contains a brief description of the port.

PhysicalEthernetSwitchPortType:LinkSpeed: Defines the speed configured in the
physical port.

PhysicalEthernetSwitchPortType:LinkMode: Defines the link mode (half-duplex, full-
duplex or automatic).

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 37 of 106

PhysicalEthernetSwitchPortType:LinkState: Defines the state of the physical port
(enable, disable).

PhysicalEthernetSwitchPortType:UnitsInventory: List of logical interfaces. In a
default configuration, only unit 0 is active.

UnitType: Container element inside both VLANType and
PhysicalEthernetSwitchPortType. It contains logical interface’s configuration.
<xs:complexType name="UnitType">
 <xs:sequence>
 <xs:element name="UnitName" type="xs:string"/>
 <xs:element name="State" nillable="true" type="xs:string"/>
 <xs:element name="InterfaceName" type="xs:string" />
 <xs:element name="Family" nillable="true" type="xs:string"/>
 <xs:element name="Description" nillable="true"
 type="xs:string" />
 <xs:element name="IPAddress" nillable="true"
 type="xs:string" />
 <xs:element name="TrunkPortMode" nillable="true"
 type="xs:boolean" />
 <xs:element name="VLANs" nillable="true"
 type="tns:VLANType" minOccurs="0" maxOccurs="unbounded" />
 </xs:sequence>
</xs:complexType>

UnitType:UnitName: Contains the name of the logical interface.

UnitType:State: Defines the state of the interface (enable, disable).

UnitType:InterfaceName: Name of the physical port which the logical port belongs to.

UnitType:Family: Interface’s family. It can be Ethernet-switching or inet.

UnitType:Description: A brief units description.

UnitType:IPAddress: If family is set as is inet, this is the IP address of the interface.

UnitType:TrunkPortMode: If family is set as Ethernet-switching, this Booleans is true
if the port is trunk; false otherwise.

UnitType:VLANs: Contains the list of virtual LANs types in which the logical port
belongs to.

3.4.5 Computers (VM servers) example

3.4.5.1 Operations

As mentioned before, portType defines the operations that can be performed by the
Web services and the messages needed to call them. The same as with switch Web
services, these are divided in two blocks: factory (shown in the first table) and
instance operations for the computers.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 38 of 106

<portType name="ComputerFactoryPortType">

 <wsdl:operation name="create">

 <wsdl:input message="tns:CreateInputMessage" />

 <wsdl:output message="tns:CreateOutputMessage" />

 <wsdl:fault name="BaseFault" message="wsrf-bf:BaseFaultMessage" />

 </wsdl:operation>

 <wsdl:operation name="find">

 <wsdl:input message="tns:FindInputMessage" />

 <wsdl:output message="tns:FindOutputMessage" />

 <wsdl:fault name="BaseFault" message="wsrf-bf:BaseFaultMessage" />

 </wsdl:operation>

</portType>

Computer factory can create an instance WS and look for an already created instance
(find). Computer Web Services offer the services shown below. Some parameters
(like fault messages) have been removed in order to introduce the operation clearer.
Its messages are shown in the next table.

<portType name="ComputerPortType">

 <wsdl:operation name="invoke">
 <wsdl:input message="tns:InvokeInputMessage" />
 <wsdl:output message="tns:InvokeOutputMessage" />
 </wsdl:operation>

</portType>

Computer provides invoke operation to do all the actions over computers: get
resources (getInventory), create them, or modify its configurations.

3.4.5.2 Messages

All messages of both (factory and instance) services will be presented in this section.
Every operation has two messages, request and response:

ComputerFactory messages:
<wsdl:message name="CreateInputMessage">
 <wsdl:part name="request" element="tns:createReq" />
</wsdl:message>
<wsdl:message name="CreateOutputMessage">
 <wsdl:part name="response" element="tns:createResp" />
</wsdl:message>

<wsdl:message name="FindInputMessage">

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 39 of 106

 <wsdl:part name="request" element="tns:findReq" />
</wsdl:message>
<wsdl:message name="FindOutputMessage">
 <wsdl:part name="response" element="tns:findResp" />
</wsdl:message>

Computer messages:
<wsdl:message name="InvokeInputMessage">
 <wsdl:part name="request" element="tns:invokeReq" />
</wsdl:message>
<wsdl:message name="InvokeOutputMessage">
 <wsdl:part name="response" element="tns:invokeResp" />
</wsdl:message>

Similar to what happens with Ethernet Switch Web Services, elements defined inside
messages are described in a XSD file imported by WSDL.

Message elements (createReq/createResp, findReq/findResp, invokeReq/invokeResp)
have the same structure here as with Ethernet Switch messages. That is because they
have generic parameters. Only the createReq and findReq elements present some
differences:

Create request:
<xs:element name="createReq">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="Model" type="xs:string" />
 <xs:element name="Manufacturer" type="xs:string" />
 <xs:element name="Configuration"
 type="tns:ConfigurationType" />
 <xs:element name="Parameters"
 type="common:ParametersType" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

createReq: Container element included in the body of the SOAP message when an
administrator is sending a create operation to the factory service.

createReq:Name: Contains name of the device.

createReq:Model: Model of the device: vmwareesxi.

createReq:Manufacturer: Contains the manufacturer of the virtual machine: vmware.

createReq:Configuration: This element contains the type ConfigurationType,
explained in the next point.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 40 of 106

createReq:Parameters: This element is not used at this moment. It is a way to provide
a reservation to possible new parameters or to prevent a change of the platform (xen
or virtualbox, for example).

Find request:
<xs:element name="findReq">
 <xs:complexType>
 <xs:sequence>
 <xs:element name="Name" type="xs:string" />
 <xs:element name="searchingByKeys" type="xs:boolean" />
 </xs:sequence>
 </xs:complexType>
</xs:element>

findReq: Element contained inside find message. It contains:

findReq:Name: Name or key given to find a computer.

findReq:searchingByKeys: If this Boolean is true, findReq:Name contains a key
identification of the computer. Else, it contains the computer name.

In the next section the types of the resources that are included inside these generic
operations are presented.

3.4.5.3 Types and resources

Types used in the computer Web Service are generic and all of them are previously
explained in section 3.4.4.3. Specifically, the following types can be used:

ConfigurationType: Contained in the create request messages. Includes information
necessary to initiate a computer: IP address, hostname, password and user name.

ParametersType: Generic type composed by a name, value and description. It is used
by messages (invokeReq, invokeResp, createReq) and ConfigurationType type.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 41 of 106

4 Signalling

4.1 Design space and related work

IETF has proposed a document which defines some requirements for new signalling
solutions, which conform to the Next Steps In Signalling (NSIS) work group. The
main goals of a new solution should be that it should be applicable at a large scale and
be lightweight in implementation complexity and resource consumption. Below a
short overview is given of the IETF requirements for new signalling solutions. It is
recommended to follow these requirements when designing a signalling solution for
the FEDERICA infrastructure. Requirements have been divided in obligatory and
optional. First the mandatory requirements will be elaborated.

The new protocol must be built up modularly, so advanced features can be made
optional. This would make the protocol fit for narrowband solutions. For FEDERICA
this is not an important issue, as the protocol would not need to support narrowband
networks. However, for compatibility reasons this might be an interesting option to
implement. Another requirement is that the signalling protocol must be clearly
separated from the information being transported. Also, a new signalling protocol
must be independent of the network control mechanism. This way the protocol is able
to interoperate with multiple control mechanisms in different networks. Within the
FEDERICA-domain this is not an issue, but when connecting to other networks
interoperability issues could arise.

The IETF has also defined signalling flow requirements. For example, the placement
of signalling senders, forwarders, and receivers must be possible anywhere, and
should not be pre-defined. Another signalling flow requirement refers to path coupled
or decoupled support. Path coupled signalling, where the signalling information is on
the same path as the data, must be supported by a new protocol, due to its QoS
advantages.

More requirements can be found in the IETF RFC 3726 document, created by the
NSIS working group. Considering the scope of this document, these will not be
discussed further in this document. The next section will elaborate on the different
signalling taxonomies in existence.

Two signalling approaches can be identified: hard state and soft state [4]. In between
these two several hybrid versions exist which could also be applied within
FEDERICA. Soft state refers to approaches in which installed states are removed
when they time out, unless they are periodically refreshed by a new signalling
message. This message should indicate that the state should remain installed. Soft
state therefore does not require explicit state removal. Several existing protocols as
RSVP and SIP are soft state approaches. Hard state signalling is the exact opposite to
soft state signalling. Installed state remains installed unless explicitly removed. This
removal is done by a state removal message. If a state installer crashes or leaves

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 42 of 106

without removing installed state, orphaned states arise; installed states that should
have been removed.

The explicit installation and removal used in hard state protocols requires this type to
be reliable, where as soft state protocols can implement best effort approaches. Soft
state approaches have the advantage that they are not as complex, also leading to
shorter convergence times. Several approaches exist which use characteristics from
hard state and soft state protocols. For FEDERICA, the type of approach and
mechanisms to be applied in the signalling protocol should be decided upon. Below a
short overview of existing hybrid approaches.

Soft-state with explicit removal (SS+ER) is the first hybrid approach, and is closest to
the soft state approach. It adds an explicit state-removal message to the soft state
approach. When state is removed at the sender, the sender transmits a removal
message to the receiver.

The second approach is soft-state with reliable trigger message (SS+RT). This adds
the reliable transmission of trigger messages, instead of best effort with pure soft state
signalling. This is achieved by a trigger acknowledgement sent by the receiver.
Another feature is that the receiver sends a message to the sender when a state is
removed due to time out. False removal can then be undone by sending a new trigger
message.

The third, and last, hybrid approach is the soft-state with reliable trigger and removal
message (SS+RTR). This is similar to the previous approach, except that it adds
reliable messages (and receiver acknowledgements) for state removal as well.

In total five different approaches can be identified, each with different features. The
different features of these approaches could be implemented in the signalling protocol
to be designed by UPC for the FEDERICA project, but other features could be added
to the protocol.

4.2 Proposed FEDERICA signalling mechanisms

The proposed FEDERICA signalling mechanism is based on the technologies
described in chapter 3, NetConf and Web Services. Within FEDERICA the network
elements are not configured manually, but through different modules that manage the
element. The modules that contain elements are named engines, and each device has
its own engine. It also contains some modules that manage the engines. The signalling
process is defined as all the communication needed between these two types of
modules, with the goal of managing the resources in the network and offering to the
user an end-to-end service

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 43 of 106

Four types of signalling mechanisms can be identified: create, invoke, find and
virtualize. These mechanisms will all be described below, explained textually as well
as through a sequence diagram.

4.2.1 Create mechanism

At level 2, the signalling messages to create an engine for a switch are createReq and
createResp. The functioning of the create-mechanism is as follows. First, the Network
Service sends a createReq message to the Factory Web Service, called
ethernetSwitchFactoryService (ESFS). The Network Service includes switch
parameters such as the name, manufacturer, model, host IP address, username,
password, transport protocol, etc to the createReq message. The Factory Web Service
is responsible for creating endpoint references for the resources. Web Services are by
nature stateless, as they don’t offer possibilities of storing state information. To keep
state information, a class Resource will be added by the ESFS. This is done via the
ResourceHome, which adds the Resource classes. For each physical resource a class
Resource is added. The parameters supplied by the Network Service in the createReq
message are stored in the Resource class. This Resource class is coupled to the
EthernetSwitchService by the ESFS, to create an endpoint reference. This endpoint
reference is the address of the pair EthernetSwitchService and Resource, where the
Uniform Resource Identifier (URI) of the EthernetSwitchService and the resourceKey
of the resource are used as references.

The Resource class has an attribute Engine, which is capable of creating a new engine
for the switch. The method initEngine is called to create an engine for the physical
resource. This engine establishes a NetConf session with the physical resource. The
engine sends a query to the resource requesting the VLAN and interface properties of
the resource. The resource then returns the values of these properties to the engine. As
the web services are not able to interpret NetConf information, the engine consists of
a parser which translates the NetConf data into Java objects.

After this process is finished, the ESFS sends a createResp message back to the
Network Service. This message contains the end point reference of the specific
resource.

4.2.1.1 Sequence Diagram

The sequence diagram for the create process is shown in Fig. 4-1, entering in more
detail than the description presented in 4.2.1. The EthernetSwitchResourceHome is a
component of the EthernetSwitchService which actually receives the create petition
from the ESFS and forwards this to the EthernetSwitchResource class. The
EthernetSwitchResourceHome then confirms the addition of the resource to the ESFS.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 44 of 106

The sequence diagram also enters into more detail on the initEngine process. For the
moment this process can be done this way, but in the future could be adapted if better
solutions are found. A EthernetSwitchModel is created which includes the security,
transport, protocol, switch ID, model and manufacturer settings for the switch to be
added. After this model has been created, an EngineCore is created, on which several
queries can be invoked.

The HibernatePersistenceHelper is the component which is responsible for
translating the Java objects into SQL objects which can be interpreted by the database.

EthernetSwitchFactoryServiceNS EthernetSwitchResource EthernetSwitchModel EngineCore

HibernatePersistenceHelper

EthernetSwitchResourceHome

create(createReq)
create()

create()

ok

add()

setResourceInformation()

initEngine() create()
<<create>>

setModelInformation()

create()
<<create>>

init()

invoke(queryResources)

store()
store()

ok

makeEndpointReference()

createResp

Fig. 4-1. Create Sequence Diagram

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 45 of 106

4.2.1.2 Example case

This example case describes the process when the network service wants to create an
engine for a new switch connected to the network. The switch has the following
values for the parameters:

resourceKey 12345678
Version 1.1
Name UPC1FEDERICA
Manufacturer Juniper
Model EX3200
destructionTime 10000
Host IP Address 147.83.118.239
Username User
Password Password
Transport SSH
Protocol NetConf
Port 22

These parameters can be found in the Resource Database, in the tables:
ethernet_switch_resources, switch_configModules, and switch_configParameters.
The destruction time is not an important parameter for the moment, and is therefore
set to a very high value. In this particular use case, the NOC wants to add a Juniper
EX3200 switch, belonging to UPC, to the network. The Network Service sends a
createReq message to the ethernetSwitchFactoryService including the parameters
mentioned above in the message body. Upon receiving the createReq message, the
ESFS then creates a class Resource, naming this ResourceUPC1. All the parameters
supplied by the Network Service are stored in this particular class. The
ResourceUPC1 creates an engine for the physical switch described in the parameters,
with the method initEngine. This engine then establishes a NetConf session and
connects to the physical switch. As stated in the parameters, the protocol is NetConf;
transport is SSH; and the port used is 22. This means that the engine must connect to
port 22 of the physical switch using NetConf over SSH. It knows the IP address of the
switch, so it can locate this switch. Access to the switch is gained by introducing the
username and password. As soon as the session is established, the engine sends a
request for the switch parameters (VLANs, interfaces) to the switch. The switch
responds this request and afterwards the session is closed by the engine.

Afterwards, the ESFS creates an endpoint reference for the EthernetSwitchService of
this switch. This is done by pairing the URI of the EthernetSwitchService with the
resourceKey of the class ResourceUPC1. Since there is only one
EthernetSwitchService with 1 URI, the value for the URI is the location of the
EthernetSwitchService. In the FEDERICA case, this would be the location of the

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 46 of 106

NOC, where all the services are kept. The resourceKey is 12345678, as can be seen in
the table. Upon successful communication with the switch and creation of the
endpoint reference, the ESFS sends a createResp message to the Network Service.
This message includes the endpoint reference of the physical switch.

4.2.2 Find mechanism

The Find mechanism, initiated by the Network Service, consists of two signalling
messages: findRequest and findResponse. The findRequest is sent by the Network
Service, the findResponse by the EthernetSwitchFactoryService. Below, the
mechanism is explained in further detail and the sequence diagram is shown in Fig.
4-2.

First, the Network Service sends a findRequest message to the
EthernetSwitchFactoryService. If the Network Service is looking for a specific
resource, the name of that resource can be added to the message. The Factory Web
Service then requests all the resources from the Resource Database (created by hand
currently), communicating through the Resource Service. The Resource Service
returns all the resources in the database to the EthernetSwitchFactoryService.
Depending on if the Network Service requested a specific resource, the results are
filtered. The Network Service can only request one specific resource or a full list of
all resources. In the latter case, an empty findRequest message must be sent. If the
findRequest message contains a specific resource name, the Factory Web Service is
responsible for filtering the resource list for the specific query.

After the filter has been applied, the EthernetSwitchFactoryService sends a
findResponse containing the endpoint reference of the resource requested by the
Network Service. In case of an empty findRequest, the EthernetSwitchFactoryService
sends a findResponse containing the endpoint references of all resources found in the
database.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 47 of 106

4.2.2.1 Sequence Diagram

loop

[for each resource][for each resource]

NS EthernetSwitchFactoryService HibernatePersistenceHelper

find(findReq)
getResources()

processEthernetSwitchResource()

makeEndpointReferenceList()

This operation filters
resources with the template
given in findReq

findResp

Fig. 4-2. Find Sequence Diagram

The sequence diagram visualizes the process of the find mechanism. The process has
been described before in 4.2.2 section. What stands out in this diagram for the text
described before is the HibernatePersistenceHelper. This element is responsible for
retrieving data from the database and parsing this from SQL to Java. After this has
been done the ESFS can process the filtering on the search result, make and Endpoint
reference list of the coinciding resources and eventually send the response to the
Network Service.

4.2.3 Invoke mechanism

The Invoke mechanism is used so the Network Service can make changes to the
configuration of a specific resource in the FEDERICA network. It contains the
messages InvokeReq and InvokeResp. The InvokeReq can contain several identifiers,
depending on the action to be invoked. These actions can affect the logical interfaces,
the physical ports, or the VLANs of the resource. Below the mechanism is explained
and shown in Fig. 4-3; later a use case will be elaborated.

The first step in the invoke mechanism is initiated by the Network Service. The
Network Service communicates with the EthernetSwitchService, sending an
InvokeReq message. This InvokeReq contains an identifier, and its parameters, as
previously explained in chapter 3. The possible identifiers it can contain are:
createLogicalInterface, updateLogicalInterface, deleteLogicalInterface,

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 48 of 106

configurePhysicalPort, createVlan, deleteVlan, and updateVlan. The
EthernetSwitchService forwards this request to the engine of the resource for which to
invoke the action. The engine parses this request into NetConf, and establishes a
NetConf session with the resource. The engine invokes the action on the switch,
which applies the action by adapting its configurations. Upon successful application,
the switch sends a confirmation message to the engine. The engine closes the NetConf
session and sends a confirmation message back to the Network Service.

4.2.3.1 Sequence Diagram

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 49 of 106

loop

[for each unit][for each unit]

opt

[if operation = createVlan][if operation = createVlan]

NS EthernetSwitchService EthernetSwitchResource EngineCore

VLANType

EthernetSwitchingUnitType

Equipment

EthernetSwitchModel

invoke(invokeReq)

getEthernetSwitchResource()

parseInvokeReq()

getEngine()

getEngineModel()

create()
<<create>>

setVLANName()

setVLANTag()

setVLANDescription()

create()

setName()

setInterfaces()

getEquipment()

setRequestedVlans()

setEquipment()

setEngineModel()

invoke(createVlan)

Fig. 4-3. Invoke Sequence Diagram

The sequence diagram shown in Fig. 4-3 gives an example if the createVlan message
is invoked by the Network Service. After the resource and engine have been called,
the operation to be invoked can be executed. In this figure, a VLAN will be created.
The parameters are forwarded from the EthernetSwitchService to the VLANType,
which is a class within the EngineCore. After this each unit of the switch is created by

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 50 of 106

calling the EthernetSwitchingUnitType. A unit is a virtual interface of the switch, and
all units are created in a loop. After the units have been created, the VLANType must
be called again to set the interfaces. Equipment is a class of EthernetSwitchModel
which is the inventory that holds the VLANs and interfaces. The
EthernetSwitchService has to request the equipment from the EthernetSwitchModel,
after which it can adjust the VLANsettings at the Equipment. These settings are also
sent to the EthernetSwitchModel in the setEquipment message. The
EthernetSwitchService must also inform the EngineCore of the adjustments, this is
done in the setEngineModel message. Finally, the Engine is also adjusted with the
new VLAN settings. When this process is completely finished, the
EthernetSwitchService confirms the action to the Network Service, by sending an
empty InvokeReq message.

4.2.4 Refresh mechanism

The Refresh mechanism is used by the Network Service to update the configuration of
a specific resource in the FEDERICA network. It contains the messages refreshReq
and refreshResp. Both usually empty, but can contain extra parameters for
extensibility purposes.

The first step in the refresh mechanism is initiated by the Network Service. The
Network Service communicates with the EthernetSwitchService sending the service
operation. The EthernetSwitchService forwards this request to the engine of the
resource for which to refresh the equipment. The engine establishes a NetConf session
and sends the queryResources action to the device. Upon successful application, the
switch sends a confirmation message to the engine. The engine closes the NetConf
session, parses the switch response and updates the equipment with the new
configuration. Finally, it sends a confirmation message back to the Network Service.

4.2.5 (Un-)Virtualize mechanism

To virtualize resources, for example a port on a switch, the Virtualize mechanism is
introduced. It consists of two signalling messages, VirtualizeReq and VirtualizeResp.
These messages have been explained before in chapter 3. This paragraph will explain
the functioning of the signalling mechanism.

The virtualize mechanism is initiated by the Network Service, which sends a request
to the EthernetSwitchService. The virtualizeReq message includes the information of
the port to be virtualized. The information that must be contained is the contents of
the EthernetResource table in the database. Upon receiving this message, the
EthernetSwitchService must request the creation of a new resource by the factory. It
does this by sending a CreateReq to the Ethernet Resource Factory Web Service. The
Factory Web Service then creates a class Resource with all the information received.
It also creates an endpoint reference by pairing the EthernetResourceService URI with
his Resource (WS resource; not FEDERICA’s). Upon completion the Resource is

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 51 of 106

added to the database. A confirmation message must then follow the opposite path to
the Network Service.

The unvirtualize mechanism follows the exact same communication steps, but instead
of a createReq message, a destroy operation is applied directly over the endpoint
reference provided in the unvirtualizeReq message.

4.2.5.1 Sequence Diagram

EthernetSwitchService virtualizeReq

CreateReq

EthernetResourceWrapper

factoryResourceEPR factoryResourceLocator EthernetResourcePortType

NS

virtualize(virtualizeReq) getParameters()

setEthernetResourceData()

create(createReq)
setAddress()

EthernetResourcePortType := get(factoryResourceEPR)

create(createReq)

Same process as EthernetSwitch WS

virtualizeResp

Fig. 4-4. (Un)Virtualize Sequence Diagram

As stated before, the Network Service initiates the virtualization request by sending a
message to the EthernetSwitchService. All signalling now is mainly concentrated
around the EthernetSwitchService and the EthernetResourceWrapper. This element is
responsible for calling the services of the resource to be virtualized. After it has been
virtualized a virtualResp message is sent from the EthernetSwitchService to the
Network Service (see Fig. 4-4).

4.3 Resource Discovery

4.3.1 Design Space and related work

Resource discovery covers the location of all resources in the network, resources
being nodes, routers, and switches, but also for example services. Within resource
discovery several relevant design choices have to be made, when developing a new
method. These are listed below, also elaborating on the implications of these choices.

Resource discovery can be either provided as a third party service or as a genuinely
distributed system [5]. The first is implemented by a (collection of) server(s) that
gather the information on the available resources, and is most common. In a genuinely

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 52 of 106

distributed system the services are distributed across all resource providers and users,
without any central components. A hybrid method would also be possible.

For resource discovery an overlay network is constructed on top of the
communication layer. This overlay network can be either manually configured, self-
organizing or a hybrid version. With manual configuring a network administrator
must design the network graph, which leads to large scalability problems. Self-
organizing networks are more qualified for a large network like FEDERICA.
However, a good method must be implemented to reduce the network overhead
caused by the self-organization of the network. For FEDERICA, it would also be
possible to implement a hybrid version, manually configuring the PoPs and using self-
organization within the sub-domains. The information that a node must contain before
entrance to the system is related to the overlay structure. If manually configured, all
nodes need a list of all nodes they interact with. For self-organizing overlay models
need no such information (in case of multi- or broadcast), or just the knowledge of
one node (in WANs).

The architecture of the overlay network can take on different forms as well, each
having different characteristics. All architectures are described as graphs, and these
can be trivial, tree, regular, random, or complete. Trivial graphs are centralized
systems. Tree graphs are very scalable, but in case of a failure large parts of the
network can be affected. Redundancy could be implemented to prevent failures. With
regular graphs the nodes are structured orderly. This allows for optimal path
computation, but complex algorithms are required to create this model. Random
graphs do not have pre-defined links and nodes in the overlay network. Often, these
are more robust against failures and offer shorter path lengths, but also increase
network overhead and susceptibility to attacks.

References to resource requests must be stored somewhere in the FEDERICA
network. This can be achieved in four different manners: local registration only,
references, local server registration, or manual registration. With local registration
only, only the resource providers are aware of the shared network resources. This is
not appropriate for use in the FEDERICA network as it is not scalable, among other
disadvantages. If the architecture is a regular graph, references can be used. These are
then stored at specific nodes. Registration at local server implies that resource
information is stored at the local server (replicated or not). Manual registration is also
a possibility, but is not recommended in a dynamic network.

User queries for resources must be routed through the overlay network. For this, two
options exist: a central or local replicated server, or query forwarding. In the first case
routing is only needed from the user requesting the resource to and from the server.
For query routing three possibilities exist: flooding, backtracking, or regular structure
routing. Flooding requires limited hop-distance settings (e.g. TTL headers) and loads
the network. The main advantage of flooding is the shortest path guarantee.
Backtracking is a technique possible in tree structures which recursively and
systematically investigates the optimal solution, by rejecting unfit solutions. Regular

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 53 of 106

structure routing requires a regular graph, and uses predictable locations for the
references. User requests must be routed to these locations.

Resource naming is another issue that can be of importance to the development of a
resource discovery mechanism. Naming can be based on unique ids or hashes, strings,
directory, or attributes. Attribute naming allow for the most extensive queries with
predictable results.

For FEDERICA, it is recommended to specify these characteristics of the resource
discovery mechanism (and overlay network model) to be developed, based on the
requirements of the FEDERICA network. Similar existing technologies and
mechanisms can then be studied, broadening the insight on hiatus and development
challenges.

4.3.2 Proposed FEDERICA resource discovery mechanisms

In the proposed mechanism, the Network Service is a centralized application/service
located at the FEDERICA NOC. One of its functionalities is the discovery of new
resources in the FEDERICA network. In this case, it is assumed that only the nodes
belonging to the FEDERICA network located at the points of presence are included in
the protocol. For the moment it excludes any nodes belonging to the particular
subdomains of the institutions connected to the FEDERICA network. The resource
discovery protocol consists of three phases; the discovery phase, the control phase and
the refresh phase. The function of the first phase is to actively discover new resources
in the network. The second phase is then responsible for the control of these resources,
in order to maintain a consistent resource database. The refresh phase is responsible
for maintaining correct information in the resource database.

4.3.2.1 Discovery Phase

To discover new resources, two possibilities exist. The first is that the Network
Service sends an IP broadcast message over the FEDERICA network. As within
FEDERICA the points of presence are known, this could be a limited broadcast
directed at each point of presence. A node that receives this message and wishes to
connect to the FEDERICA network then replies to the Network Service that it wants
to connect to the network. However, this has severe complications as the Network
Service would have to place large and complex constraints on the search message.

The second option (see Fig. 4-5) is that each resource which wants to connect to the
FEDERICA network must transmit a Hello message to the Network Service.
Therefore the resource must obtain the address of the NOC Location. This reduces the
complexity of the process a lot, since the only requirement is that the resource is
aware of the NOC location. Therefore, the proposed mechanism will be developed
based on this latter option. Once the Network Service receives this hello message, it

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 54 of 106

creates an Engine specifically for this switch. This engine establishes a TCP
connection with the switch, and communicates with this switch through NetConf.
This communication includes configuration mechanisms for the switch and updates
the configuration of the switch to connect properly to the FEDERICA network. The
switch supplies the engine of information on its available resources, such as ports,
VLANs, etc. The engine also parses the resources available in the switch, described
initially in NetConf, into objects able to be managed by the program. This engine then
transmits these via a Web Service back to the Network Service. The network service
stores this information in the Resource Database, which is located at the same location.
The logic for the representation is inside the GUI. The Network Service therefore
must also send the information to the GUI. A sequence diagram of the discovery
phase can be seen below (Fig. 4-5).

Fig. 4-5. Resource Discovery Phase Sequence Diagram

4.3.2.2 Control Phase

After the resources have been discovered a mechanism must be maintained which
ensures correct and consistent information in the Resource Database and in the GUI.
In case of a crashing switch, an additional mechanism must be introduced where the
engine regularly checks the availability of the switch. The engine transmits a message

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 55 of 106

which checks the status of the resource. The switch then must reply the Engine that it
is still connected and active. In the case that the switch does not reply within the
specified time, the engine assumes that the resource has disconnected and notifies the
Network Service of this. This then updates the resource database, by removing the
objects belonging to that resource from the database. The check status message must
repeat itself every certain time period. This value should be configurable by the user.
A sequence diagram of this mechanism can be seen below (Fig. 4-6).

Fig. 4-6. Control Phase Sequence Diagram

4.3.2.3 Refresh Phase

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 56 of 106

For the refresh phase two possibilities exist, which should be studied further. One
option relies on a request from the Network Service for the mechanism to take place.
The second option requires a more complex engine which is capable of verifying if
the resources available from the switch are the same as already available in the
resource database. The engine itself initiates the request and transmits this request to
the switch. The switch then replies the engine all its resources. The engine must verify
these resources and its values with the previous values. If there are no changes, the
mechanism is finished and will repeat itself again after a certain time period. If there
are changes in the value, these are parsed and transmitted to the Network Service,
which then forwards this to the Resource Database. This option is shown in the figure
directly below (Fig. 4-7).

Network Service Juniper Switch Engine Resource DB

Request parameters

Send parameters

Update Resource Database

Parse resources, transmit objects

Check
values

T

Request parameters

Send parameters

Check
values

Fig. 4-7. Refresh Phase Sequence Diagram requested by the Engine

The other option is when the Network Service initiates the refresh mechanism, by
sending a request to the Engine of the particular switch. The engine requests the
resources from the switch, which sends back this information. In this case, the engine
is not aware of the previous values of the resource objects, and therefore is not able to
verify this data. Therefore all the data must be parsed and sent to the Network
Service. This updates the resource database with this data, replacing any objects
which might already be included in the database. The sequence diagram for this
mechanism is shown directly below (Fig. 4-8).

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 57 of 106

Fig. 4-8. Phase Sequence Diagram requested by the Network Service

4.4 Resource Allocation

4.4.1 Design space and related work

Efficient allocation of physical resources to multiple Virtual Network (VN) requests
is considered extremely important since it maximizes the service capacity of the
system; the number of coexisting VNs. A potential user of the Federica infrastructure
submits a request for a VN consisting of a set of required resources with specific
characteristics and attributes (constraints). These requirements form the user’s
demands from the system (e-infrastructure) for a time interval which may be known
in advance or most commonly not. The system in turn must make it possible to satisfy
these demands in a cost-efficient way, ideally without compromising other current or
future VNs, providing a “slice” of the infrastructure to the user.

Efficient and fair utilization of the infrastructure should be the achieved when
assigning resources to VN requests. An efficient use of the infrastructure may be
considered as the one that maximizes the acceptance ratio of VN requests; maximizes
the number of coexisting VNs. A fair use of the infrastructure may be considered to
be the one that achieves load balancing across the infrastructure in terms of utilization
of PoPs and links. Although these objectives are quite reasonable for a first approach,
there is a lot of space here to appropriately define VN pricing as well as revenue and
costs for the system according to the adopted business model [13].

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 58 of 106

Considering that VN requests are not known in advance, such an assignment of
resources to user requests requires the operation of an online algorithm. Contrary to
an offline algorithm which is considered to have knowledge of all future VN requests
and may make the right decision in assigning resources so as to accommodate the
most of them, an online algorithm must make a right assignment decision by not
having knowledge of the future. Getting as an input the VN request and the current
availability of resources the algorithm should be targeted to satisfy the objectives set
and provide the required resources to a VN request, as a slice of the infrastructure.
The problem to be solved is also known in the literature as the virtual network
embedding (VNE) problem [5] which refers to the problem of assigning physical
resources to a requested virtual network, with constraints to virtual nodes and virtual
links. The VNE problem so far has been faced for assigning nodes and links to a VN
request by considering only CPU and bandwidth as the critical resources.

Federica gives the extended capability of providing to a user’s request various slices
of different types of physical resources (physical elements) such as computing
machines, switches, routers and of course links; thus, the problem in our case takes
another more complicate form. Attempting an abstraction, we have to deal with the
assignment of different types of nodes with each type associated with different, one or
more, critical resources to be considered. Each PoP may be considered as a pool of
different types of limited resources. A VN request consisting of different types of
interconnected virtual nodes with constraints on one (or more) associated critical
resources should be efficiently embedded to the e-infrastructure.

The allocation of resources with constraints on virtual nodes and virtual links is
known to be an NP-hard problem [7, 8, 9, 10, 11] even in the offline case where all
VN requests are known in advance. Since the optimal solution to the problem may not
be provided in polynomial time we have to deal with an extremely computationally
intensive problem, especially when the number of instances is increased. The
development of efficient heuristics is required to provide a good solution in less time.

Considering the online problem makes solution even harder since the properties of
incoming VN requests are unpredictable and the developed heuristics must provide a
solution within an acceptable time interval from the submission of a VN request.
Looking at the system in time, a decision taken at a specific time about a VN
embedding may restrict the system’s capability of accepting future requests. A very
probable case is when a request may not be possible to be satisfied as is, due to lack
of resources, but instead it may be possible to be partially satisfied. A partial
mapping-assignment of a VN request may take place if the system policy followed
permits it while at the same time it is acceptable for the VN request. Such an approach
may lead to higher utilizations but it is considered that there are many types of VN
requests that it is required to be fully satisfied and a partial assignment is not
acceptable. Furthermore, as time passes by, VNs arrive and depart; thus resources are
occupied and released respectively. This dynamic process may lead in time in an
unbalanced (unfair) use of the substrate network where in some parts may be
excessively loaded while in other underutilized. Periodically reconfiguring VNs

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 59 of 106

would be a solution but interrupting the operation of a VN is not desirable or
acceptable in many cases.

4.4.1.1 Practical issues

In order to have a deployable solution this requires having in mind limitations and
abilities provided by the hypervisor. The solution to the VN embedding problem for a
VN request will provide an assignment of resources to various PoPs. One of our
considerations should be if resource allocation is going to be performed manually by
taking advice from the output of the algorithm or automatically. There are two
approaches in automated resource allocation, one is the coarse approach and the other
the fine grained. According to the coarse approach one may consider that resources
are already sliced at each PoP and each type of virtual node illustrated belongs to a
specific class. Considering virtual machines, a PoP may be ready to provide x “high
end”, y “normal” and z “low end” virtual machines which will be inactive but ready to
be instantly activated. The VN request constraints should be accordingly quantized to
the threshold values provided by the system. According to the fine grained approach
virtual elements (e.g. virtual machines) are inactive and ready to be activated after
being configured “on the fly” according to the resources assigned by the algorithm.
For example, if a virtual machine with x MHz of CPU has to be assigned, then before
providing one of the ready to be provided virtual machines it is configured
appropriately.

In any case, the critical resources to be controlled should be recognized and decided
since considering all the resources will lead to an unsolvable problem. In other works
in order to relax the problem, CPU is only considered as the critical resource for a
virtual machine and bandwidth as the critical resource for a virtual link. Furthermore,
the upper bound to the availability of each resource should be considered as well as
the units of measure of the availability of each resource.

Another consideration is if reconfiguration of the VN assignment [14] is feasible even
for some types of VN assignments. For example, stopping the operation of a virtual
machine allocated in one PoP and restarting it to another PoP in order to sustain
efficient and fair use of the infrastructure requires further considerations.

4.4.1.2 Previous work

VN assignment shares similarities with older problems such as the embedding of
Virtual Private Networks [14], with the difference that in that case there are only
bandwidth constraints, as well as with the network testbed mapping problem [15, 11].
In the VN embedding problem there are capacity and placement requirements on both
virtual nodes and virtual links while a node and a link is shared by multiple VN
requests. This makes the problem hard and even harder in our case where there are
several types of virtual nodes to be assigned. There are a few works attempting to
address the problem more generally, while the majority restricts the problem by
studying it in specific VN topologies or considering only the offline case or assuming

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 60 of 106

infinity capacities or even ignoring one part of the requirements (either for nodes or
the links).

In [15] the authors recognizing that all of previous research focused on designing
heuristic-based algorithms with clear separation between the node mapping and the
link mapping phases provide online VN embedding algorithms with a better
coordination between the two phases in order to expand the solution space. They
consider CPU as the critical resource of a node and bandwidth as the critical resource
of a link. A VN request consists of virtual nodes with CPU constraints and virtual
links with bandwidth constraints while at the same time location constraints for each
virtual node are also considered. The authors produce an augmented graph (an
extension of the physical network graph) including meta-nodes (which are the virtual
nodes requested), with meta-links (with unlimited capacity) to those physical nodes
that satisfy the constraints. This mapping facilitates their proposed solution. They
treat each virtual link with bandwidth constraints as a commodity consisting of a pair
of meta-nodes. As a result, finding an optimal flow for the commodity is equivalent to
mapping the virtual link in an optimal way.

In [9] the authors focus and provide heuristics on two versions of the VN assignment
problem, one without reconfiguration and the other with selective reconfiguration of
the most critical VNs. In [15] the authors study the design of the substrate network to
enable simpler embedding algorithms and more efficient use of resources, without
restricting the problem space. They simplify virtual link embedding by allowing the
substrate network to split a virtual link over multiple substrate paths and by
employing path migration to periodically re-optimize the utilization of the substrate
network.

4.4.2 Resource Allocation in FEDERICA

To be able to come up with a solution to the problem in the Federica case it is
required to provide a model for the substrate resources and the virtual network request,
accurately define the objectives, recognize and formulate the problem, and finally
develop efficient heuristics to provide a good solution in polynomial time.

Solving the problem of VN embedding in Federica and provide a deployable solution
requires to specify several different open issues (which is our main current task) while
it acquires the synergy of several different tasks such as resource representation,
resource discovery and advertisement, resource management. We intend to initially
solve the problem in a relaxed but meaningful form while next to consider more
complicate cases (e.g. reconfigurations and partial assignments) and elaborate
business models.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 61 of 106

So far we have attempted to discover an appropriate formulation of the problem in the
form it takes in our case. The problem is differentiated and becomes harder compared
to previously explored cases since we have to consider different types of nodes with
different associated critical resources. Our initial intuition indicates that the problem
may be formulated as a multi-resource generalized quadratic assignment problem
(MR-GQAP) [16] which is a relatively new problem and constitutes a natural
generalization of the generalized quadratic assignment problem (GQAP) [17] and the
multi-resource generalized assignment problem (MRGAP) [18]. Given n jobs, m
agents, assignment costs of jobs, a cost matrix between jobs, a cost matrix between
agents, and coefficients for resource constraints, the objective of MR-GQAP is to find
a minimum cost assignment of jobs to agents subject to cardinality constraints (lower
and upper bound to the number of jobs assigned to each agent) and multi resource
constraints (upper bound to the availability of each different resource available at each
agent) for each agent, where the following two types of costs are considered: One is
individual cost associated with each assignment, and the other is mutual cost
associated with a pair of assignments [16].

MR-GQAP is quite general and one may recognize that our problem shares many
similarities with this problem. This becomes easier to comprehend if you think jobs as
the virtual nodes to be assigned and agents as the PoPs which provide various
resources. Furthermore you may think links in terms of communication cost
(bandwidth requirements) between virtual nodes (jobs). We estimate that with an
appropriate transformation of the VN embedding problem in Federica it may be well
formulated as this known problem. The value of such an approach is obvious since we
may benefit of work done for the MR-GQAP which is the extension of the older well
studied problems GQAP and MRGAP, and build our extensions and solution over a
well studied basis.

Another approach in this resource allocation problem is the usage of the well known
genetic algorithm, especially the Particle Swarm Optimization (PSO) method. The
multi-objective with constraints (MOPSO) edition has been shown as good candidate
in the multiple resource allocation problems in Generalized Quadratic Allocation
Problems. We estimate that with a proper formulation of the problem will be able to
solve this problem. The possible solution will be valuable in offline planning
problems as the online resource allocation seems to be a quite difficult one.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 62 of 106

5 Routing

5.1 Design space and related work

The deliverable DJRA1.1 [1] provided conclusions on which tools are appropriate for further
investigation. These are BLUEnet Tool, DRAGON, IaaS Framework, and PL-VINI. For
routing, BLUEnet tool uses the link state protocol IS-IS. It is unknown in what way
extensions of IS-IS are used within BLUEnet tool. In DRAGON, Network Aware Resource
Brokers (NARBs) are implemented as agents that represent a single domain. It exchanges
information with other NARBs, which present other domains. This enables end-to-end LSP
routing. For routing, DRAGON uses a modified version of OSPF-TE. Each LSR must support
at least an intra-domain version of GMPLS-OSPF. The NARB acts as a protocol listener in
intra-domain routing, and is responsible for inter-domain routing [12].

The IaaS Framework is capable to run over OSPF (link state protocol) and RIP for internal
routing and BGP (inter-domain routing protocol); all of them implemented by Manticore.
Within PL-VINI, concerning the routing aspects, each PL-VINI node can implement a
XORP distribution. XORP implements a number of routing protocols, such as BGP,
OSPF, RIP, IGMP, and MLD. There are some issues running different routing
protocols simultaneously on the same physical interface.

Any investigation in routing for FEDERICA should preferably be involved with (one
of) the routing protocols supported by the tool-benches. All tool-benches but
BLUEnet Tool are able to support the OSPF mechanism. This tool can only support
IS-IS.

5.2 Proposed FEDERICA mechanisms

5.2.1 Router Bridges

This paragraph gives an overview of the investigation developments regarding routing
within FEDERICA. Similar to signalling and resource discovery, only intra-domain
issues are mentioned in this paragraph.

Within the IETF, the TRILL work group is developing a new protocol which
combines the main features of routing with those of bridging [19, 20]. Within this
protocol, RBridges act as hybrid routers/bridges, avoiding most of the limitations
presented by current bridged and routed networks. RBridges are backwards
compatible with current Ethernet bridges, and routers. As the routing protocol in
RBridges a link state protocol was required, narrowing down the choice to either
OSPF or IS-IS. The TRILL workgroup has chosen to implement IS-IS as its routing
protocol. Implementing RBridges as proposed by the TRILL workgroup within
FEDERICA will imply some adjustments within the selected tools, as the remaining
tools selected in JRA1.1 all implement OSPF as its main routing protocol. Therefore,

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 63 of 106

the basis for this research will be to try to design a similar concept to RBridges based
on OSPF, instead of being IS-IS based.

The RBridges protocol proposed by the IETF uses IS-IS as its main routing protocol,
discarding OSPF. To obtain a further insight in the possibilities of using OSPF within
RBridges, the main differences between IS-IS and OSPF will be given here. A
complete overview of differences and consequences of these differences can be found
in Appendix 1.

Both protocols are link state routing protocols, making them adequate for use with
RBridges. The TRILL work group chose IS-IS for two main reasons: IS-IS runs
directly at Layer 2, and IS-IS uses a TLV encoding which makes it easy to add new
fields to the header. OSPF is not that extendible, but new IETF drafts are discussing
the use of TLVs with OSPFv2. OSPF runs on top of Layer 3, resulting in the need that
all RBridges must have IP addresses for OSPF to function correctly. This feature
makes it difficult to achieve the zero-configuration requirement set by the TRILL
working group. Another difference between IS-IS and OSPF are the networks they
support. IS-IS cannot support point-to-multipoint networks, which OSPF can. Within
IS-IS such a network must be treated as a LAN or as a set of links. Especially the
latter solution requires a lot of configuration for these networks. With OSPF both a
designated router and a backup designated router are assigned. These will only lose
their functions when they drop out of the network. With IS-IS only a designated
router is assigned based on its priority, and when a new router with a higher priority
enters the network, this will become the new designated router.

Two main features of FEDERICA are the multi-domain aspect and the focus on
virtualization. Both of these aspects have not been assessed fully by the TRILL
workgroup. The original idea of TRILL is to provide a LAN-oriented solution on a
small scale. However, the concept can be translated and designed to work within
FEDERICA. This could be between the PoPs only, or even between subdomains
connected to different PoPs. This will lead to a completely new implementation of
RBridges than currently is being developed, as it involves specific multi-domain
issues. As the structure of the subdomains for the networks is unknown, no specific
implementations will be discussed for the subdomains. This will give the research a
general character, making it possible to apply to other networks as well.

For the implementation of OSPF RBridges several changes in the architecture and the
underlying protocols are required. First of all, devices must be added to the
architecture which act as routing bridges, in between routers and bridges. These
devices should be able to communicate with each other, and also with existing routers
and bridges. Because of the OSPF implementation, not only do they need to be
assigned a MAC address but also an IP address.

The second adaptation is of the protocol used. Routing bridges do neither
communicate via the Ethernet protocol, nor via the OSPF protocol. An encapsulation
method for OSPF and Ethernet packets must be designed which makes the
communication between routing bridges possible.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 64 of 106

5.2.2 Open Flow Implementation

OpenFlow is a forwarding technology developed to isolate flows and to expand the
possibilities of existing switching and routing. That is the reason we include it in the
routing section.

Nowadays, computer networks are in constant evolution and need to be flexible,
scalable and programmable to be ready for future innovations of next generation
networks. OpenFlow is a new network architectural platform that intends to simplify
network control and management and will make it easier for researchers to test
innovative network changes without disturbing existing traffic flows. Using
OpenFlow, researchers can experiment with new prototypes for alternative network
routing, congestion control or traffic engineering in parallel to a coexisting current
platform, by enabling a 'slice' based on flow-level virtualization.

5.2.2.1 Open Standard OpenFlow

The focus of the FEDERICA project lies on providing university researchers with an
infrastructure based on virtual environments where they can test new network
experiments without running the risk of severely damaging or impacting their current
campus networks. An interesting question is now if OpenFlow [21] could support
network researchers in a similar way.

The open standard OpenFlow will allow the separation of the data path function and
control path function on a switch. In other words, the packet forwarding process of the
router still occurs on the router, but high-level routing decisions are moved to a
different device, the so-called OpenFlow controller. This controller is typically a
standard server connected to the router or switch via a Secure Channel and actually
controls the flow table of the router from remote. Communication between controller
and OpenFlow switch is defined in the OpenFlow protocol.

Routing of a package can then be accomplished by the OpenFlow router in the
following way [22]: Whenever a new packet arrives at the router for which the router
cannot find a matching flow entry in its flow table, the router forwards the packet to
the OpenFlow controller. It is then up to the controller to make this routing decision,
i.e. the controller will decide if the packet should be dropped, or if a new entry must
be added to the flow table of the OpenFlow Switch. Once such an entry has been
made in the flow table of the router or switch, other packets belonging to that flow
can then be forwarded by the OpenFlow router according to the flow table entry for
that flow.

Each entry in the flow table consists of three fields: One field consists of the packet
header to identify the flow; one field defines the action that is associated with this

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 65 of 106

flow and thus describes how these packets should be handled; and a third field can be
used to collect data on the number of packets in a flow and other useful statistics such
as bytes per flow, received errors or the time of the last match for a flow.

In [23], the flow header is a 10-tuple with fields such as ingress port, Ethernet source,
Ethernet destination, Ethernet type, VLAN id, IP source, IP destination, IP protocol,
TCP/UDP source port and TCP/UDP destination port. A packet is considered a match
to a flow table entry if the values in the header fields match the corresponding header
field entries in the flow table.

By separating data path and control path between OpenFlow router and OpenFlow
controller, the following advantage can be achieved: Researchers can run their new
routing protocols or new experiments in real-world traffic settings by separating their
traffic into research flows and flows that can be attributed to regular campus
operations. Regular traffic flows can then be processed as usual and completely
isolated from experimental flows by sending them through the normal processing
pipeline of the switch, while experimental flows are subjected to new actions and
packet handling. As such, OpenFlow is capable of providing a separate environment
for network investigations, which can be compared to FEDERICA's approach of
providing a separate environment by using virtual slides for each user.

The following section now presents an overview of the current investigations of
OpenFlow within the JRA1 research activity of FEDERICA.

5.2.2.2 Introduction

As part of JRA1, the Friedrich-Alexander University of Erlangen-Nuremberg (FAU)
as subcontractor of DFN have started to investigate a hardware implementation of
OpenFlow which will lead to experiments with OpenFlow within the FEDERICA
slice-based infrastructure.

Initially, the FAU was planning to test the OpenFlow protocol on several switch types,
depending on if the appropriate OpenFlow firmware or prototype patches could be
obtained. [24] pointed to several vendors for possible switch hardware, such as a
Cisco 6509 switch, the Juniper MX-480 switch and possibly a HP ProCurve switch of
the 5400 series. All switches are part of the campus network in Erlangen and could
therefore be used in such an experiment. An exception is the Juniper MX-480 which
is not part of the campus network at FAU, but is part of the FEDERICA test bed and
is the DFN core node of FEDERICA and as such also located on the campus in
Erlangen.

The FAU’s connection to FEDERICA is currently based on 4 x 1 Gigabit/s. With the
support of both traditional campus network environments as well as innovative
research infrastructures, the campus network of the University of Erlangen-
Nuremberg can serve as a typical representative for university interconnectivity issues.
In connection with an OpenFlow infrastructure, interesting focus areas for FAU
include the studying of performance and security issues in context with global and

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 66 of 106

vendor independent access list processing. If possible, the FAU would also like to
gain insight into accumulated traffic statistics of flows coming from several switches
rather than having only statistics of one single switch at hand.

Fig. 5-1 shows a planned implementation scenario at the University of Erlangen: It
involved several Juniper, Cisco and HP switches that would connect the campus
network and FEDERICA with traffic being controlled in an OpenFlow experimental
implementation.

The planned experiments were in detail:

• Testing the OpenFlow protocol on the FEDERICA infrastructure involving the
Juniper MX-480. The experiments were to include the installation of the
required Juniper patch to allow OpenFlow processing within a network
environment involving a small number of nodes and links. Investigations were
planned to aim at performance measurements and security issues.

• The WiN-Labor of DFN at FAU planned to compare performance data of the
virtual FEDERICA infrastructure to a real measurements infrastructure, and
test the performance of the OpenFlow protocol and other new developments.
Measurements of performance data (one way delay, delay variation, packet
loss and available bandwidth) were scheduled to be performed with existing
tools like HADES (HADES Active Delay Evaluation System) and BWCTL
(Bandwidth test Controller).

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 67 of 106

Fig. 5-1. Planned implementation scenario of OpenFlow at the university campus in Erlangen

5.2.2.3 Required Hardware

In order to be able to start on any of these experiments, however, it was necessary to
obtain the required hardware patches or specialized firmware for the switches first. At
first the FAU used the presentation [24] of Prof. Nick McKeown of Stanford
University to identify a list of switch vendors that Stanford had worked with and who
already had provided the necessary patches. The listed vendors included Juniper,
Cisco, HP and NEC. Although the FAU contacted all of these vendors, the outcome at
first was very grim:

• We were informed by Stanford that the Cisco IOS image for the 6500 switches
that are used in Stanford are not publicly available.

• We were informed by Juniper that although the OpenFlow implementation
was demonstrated at the GENI conference and other places, it was still a
prototype version and that OpenFlow was not a GA feature and Juniper had no
immediate plans to productize this. We are currently still in contact with

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 68 of 106

Juniper to see if we could obtain the patch for experimental purposes, but were
advised that it would not be possible to use the patch in a complex
environment such as a FEDERICA core node, which we initially had intended
to do. Furthermore, this patch is under NDA and any publications related to it
would be strictly limited by this agreement.

• When we approached the vendor NEC for more information on a possible
hardware implementation on an NEC product, our mail was forwarded to their
research lab in Heidelberg, but there has not been any reply yet at this time.

• When we approached Hewlett Packard we were informed that there currently
are two different patch types available for the HP ProCurve product suite: The
patches support OpenFlow version 0.8.9 on the ProCurve 3500 and 5400
series of switches. With the firmware patch the performance is close to 10
Gigabit/s line rate. OpenFlow is also not a supported feature and therefore
there is only limited support, but the firmware is available under a software
license agreement. We are currently awaiting receipt of the firmware and will
then implement it on a ProCurve 3500 switch.

To keep in good contact with the OpenFlow community and all latest developments
and news, we joined the email-list openflow-discuss@mailman.stanford.edu as well
as the NOX email-list nox-dev@noxrepo.org and hope to keep updated on any
changes the vendors may make public through the discussions that can be followed
via this list.

Since the hardware implementation has proven to be much more difficult than the
literature suggested early on, and since none of the vendors fully support the
OpenFlow implementation, it is not clear at this time how much of our planned
implementation scenarios and experiments will be able to be carried out.

5.2.2.4 Testing in NOX Environments

In order to be able to experiment with OpenFlow while still waiting for a hardware
implementation we started working with the software implementation of OpenFlow
and the NOX open-source OpenFlow controller developed by the company Nicira
[25]. NOX was created to simplify software development for controlling and
monitoring networks, by providing a platform where programs written within NOX
(in C++ or Python) can control network forwarding, routing, user / host access and
flow control.

In our test we used three workstations where we installed Linux based operating
systems (Ubuntu, Debian); one of the workstations was used for hosting both the
NOX controller software and the software implementation of OpenFlow for the Linux

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 69 of 106

kernel. By using pyswitch, the Python implementation of a simple ethernet switch for
NOX, we controlled the software switch and the two remaining workstations were
used as packet generators and analyzers. With this setup it was possible to obtain a
proof of concept with a ping test. The simulation was a bit problematic, because there
was only very limited documentation that could be found in the NOX sources, the
documentation on the NOX homepage is outdated as well and we were not able to add
additional filter rules to the controller switch with the dpctl tool and its documentation.
Because we are still waiting for a hardware implementation of an OpenFlow switch
because of the higher performance, we did not investigate the mentioned issues any
further.

In another test we conducted an OpenFlow experiment in a completely virtual
environment: In this case NOX and the OpenFlow switches as well as end hosts were
all supposed to be run and simulated on one and the same host using virtual machines.
[26] provides the instructions on how to setup this virtual NOX environment and
provides some utility scripts that facilitate the setting up of virtual network topologies.
Unfortunately this software deployment was unsuccessful due to a missing debian
driver. The work was discontinued when it became clear that indeed a hardware patch
from Hewlett Packard would become available.

5.2.2.5 Continued Work

To continue the investigation of a hardware implementation of OpenFlow within the
FEDERICA slice-based infrastructure the next step will be to install the hardware
patch for the ProCurve 3500 and test its functionalities. After the successful
completion of these tests, the test environment can be moved to be integrated into a
FEDERICA slice following the FEDERICA user portal at
http://194.132.52.194/welcome.do.

6 Monitoring

6.1 Introduction

One of the main goals of the FEDERICA Project is to support research on Future
Internet by providing users a pan-European testing infrastructure. The simultaneous
access and utilization of that infrastructure is realized by leveraging virtualization
capabilities available on networking nodes (Juniper L2/L3 switches) and computing
elements (servers).

Virtual environments, named Slices, are built by composing and inter-connecting
virtual devices, i.e., virtual networking nodes or virtual computing elements. One of
the key aspect for the success of the project consist in being able to efficiently
provision, manage and monitor the whole infrastructure (physical and virtual). To this
aim, within the project, Joint Research Activities have been defined in order to

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 70 of 106

produce outcomes on these topics, in such challenging scenario. In this framework our
work is aimed at carrying out:

- Analysis of available information and existing software for slice oriented
monitoring in FEDERICA (including the work already work in G3).

- Proof of concept aimed to assess the feasibility and highlight the pros and cons
of such tool.

- This analysis represents the starting point for the development of a prototype
for the FEDERICA Slice-oriented monitoring system.

6.2 (Virtualized) Building Blocks of a FEDERICA Slice

A FEDERICA Slice is a set of resources dedicated to a specific research team. In
order to able to assign concurrently many resources to different teams and exploiting
the sharing of the FEDERICA physical infrastructure, virtualization capabilities of
physical resources are used to build user slices.

Slice building blocks:

- Virtual Switch (implemented by VMWare ESXi software)
- Virtual Machine (and Virtual NICs)
- JUNOS Logical System (Layer 3 virtual router)
- JUNOS Virtual Switches (Layer 2 routing instance)
- VLANs (i.e., logical interfaces of Juniper physical system, logical system or

virtual switch)

6.3 Slice Monitoring concept

FEDERICA Slice Monitoring System (FSMS) should provide monitoring of
resources within a Slice, that is, monitoring the building blocks of a FEDERICA Slice,
i.e., resources listed in the previous section..

In a fully virtualized and heterogeneous environment, as the one implemented in the
framework of the FEDERICA project, "flat/plain" monitoring of all available
resources, i.e., physical and virtual ones, can lead to confused and poorly intelligible
vision of the service provided by the infrastructure, i.e., slices. Furthermore,
depending on the virtualization software, specific ad-hoc information and possible
limitations on virtual resource monitoring can occur.

In this context, per-Slice monitoring represents a way to ease management and speed
troubleshooting of Slices. Moreover, even users can benefit from per-Slice monitoring
feature in the cases they have not any available tool for this purpose.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 71 of 106

FSMS will be used by:

- FEDERICA NOC for network monitoring and management of the Slice
service. The slice monitoring system should expose monitoring data and
statistics of resources grouped/organized per Slice

- FEDERICA user. The slice monitoring system will provided users a ready-to-
run way to monitor their slices.

6.4 Tool Specifications

Willing features
- Monitoring:

o Interface status monitor

o BGP session status

o Routing protocols status

- Statistics:

o Weather map

o Interface (VLAN) traffic and error statistics

o CPU load and temperature

- Authorization and authentication

o Per-Slice login credential

- Usability

o Web based GUI (for data visualization)

o Easy configuration (by configuration file)

o Flexibility and open to customization (integration with tools and
automated procedures and scripts)

Tool Requirements
- SNMP enabled device monitoring
- Software dependencies, e.g., cron, php, http server, mrtg, etc.

Known limitations
- VMware vSwitches SNMP based monitoring is not available

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 72 of 106

Specific and general information on virtual resource available in Junos
- Information useful for slice-oriented monitoring will be described here and

eventually listed in details in a dedicated annex of the deliverable. In
particular, because of the SNMP-based monitoring, detailed information on
MIBs will be reported.

Software release
- Package which requires other software and libraries (cron, php, http server,

mrtg, etc.). This release can be integrated in the system which is already
running the FEDERICA Monitoring System (G3). User access to monitoring
data will be provided by a web based GUI.

- Stand-alone virtual appliance including all the software and libraries used by
the tools. This release is mainly designed for users interested in customization
and integration with other functionalities (e.g., traps, syslog, etc.)

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 73 of 106

7 Isolation

7.1 Design space and related work

One of the main challenges with experimental network research is to gain sufficient
confidence in the experiment results. In general, networks are shared resources with
many activities going on at the same time. Those activities influence each other, and
the results of an experiment will depend on any other activities going on while the
experiment was running.

There are mainly two ways to address this issue. The first is to isolate the experiments
so that they run in a dedicated environment, where there is little interference from
external factors. However, building large-scale dedicated research networks is
expensive and they are not always representative for the type of networks where the
applications will be deployed. It is also be possible to organize the network so that
different activities are kept separated from each other through means of traffic
management, by allocating network resources such as queues, links etc., for the
experiments. This, however, requires dedicated support in the network infrastructure
and increases the network management workload.

The second way of dealing with this issue is to accept the fact that there are external
influences on the experiment results, and look for ways in which those influences can
be factored out. This is probably the most common approach, and the way in which an
experimental researcher normally deals with this problem is by repeating a
measurement many times, and aggregating the measurement value. In that way, the
researcher hopes to average out variations that depend on other activities on the
network. However, there are several problems with this approach: first, the researcher
still cannot be confident that the results are representative, and that the effects of
external activities are not visible in the measurement data. Second, this method is
time-consuming, and wastes network resources.

Instead, the approach taken here is to use calibration to minimize the systematic and
random error in the measurements. Calibration here means to obtain a measure of the
amount of external influences on the experiment results, and can be done of almost
any variable that might have an effect on the network experiment. For example, it is
important to calibrate the computer clocks when doing traffic delay measurements
[27].

7.2 Proposed FEDERICA mechanisms

We propose an approach to experimental network research based on experiment
calibration. The idea is to perform a calibration measurement in parallel with the
experiment. This measurement gives a characterization of the background activities
while the experiment is running. Calibration measurements can be compared in order
to obtain a measure of the similarity of background activity between different

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 74 of 106

experiments. If the background activities are similar, then the experiment results are
comparable.

The work consists of two main parts: the first deals with development of the
methodology, and the second is about design, implementation and evaluation of a tool.
In the first part, we will investigate background measurement techniques, and explore
how they can be used to gain statistical confidence in the experiment results. Issues
that will be investigated here include measurement metrics (throughput, delay, jitter
etc.), and measurement methods (such as active and passive measurements).
Furthermore, we will study statistical methods for comparing data sets from different
background activity measurements. Here we will primarily focus on the Kolmogorov-
Smirnov two-sample method, which seems as a promising method for this purpose,
and we will also include regular descriptive statistics.

In the second part of the activity, the methodology will be implemented in a
calibration tool for FEDERICA, which can be provided to FEDERICA's users as a
part of the experiment facilities. The tool will perform background activity
measurements, manage background measurement data sets, and analyze and compare
data sets with respect to confidence levels.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 75 of 106

8 Inter-domain implications

8.1 Introduction

This part of the report will give a first proposition for inter-domain communication.
There are two alternatives in this research. In the first alternative, the communication
between two FEDERICA slices will be regarded as inter-domain. At the moment the
FEDERICA control plane application offers no such functionalities. A research
proposition is presented to add these inter-domain functionalities to the FEDERICA
network application. This is still under development, so any functionality proposed
may vary or be extended in the definite implementation.

One of the main aspects of the interdomain use case in FEDERICA stems from the
definition of the term domain. Among the different standardization bodies the term
domain is defined differently. Even inside a single standardization body (i.e. IETF)
the issue of domain might have different semantics (i.e. DiffServ, BGP, PCE, etc).
Recently, this was defined as: “any collection of network elements within a common
sphere of address management or path computational responsibility” [29][30].

Several proposals for inter-domain communication are proposed in this chapter,
varying in functionality and in protocols the proposal is based on. The proposals are
presented in more detail in the following sections of this chapter.

In some cases a technology layer could be considered as a domain. In such cases
inter-domain would be considered as inter-layer (or cross-layer) functionality, if the
objective is to take into account the topology and resource information of these layers.
A possible answer on what a FEDERICA technology layer is stems from the
definition of Control and Data plane as candidate technology layers.

Fig. 8-1. Use case scenarios

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 76 of 106

In the above figure two possible alternatives are displayed. The first one is the case
where there is a request to connect a virtual host (i.e. VM in the VMware world) from
Federica to another virtual host from PlanetLab in PoP A. This case is the easiest one
and can be considered even in the case of connecting two slices of the same
infrastructure. A more difficult case exists when there is an already constructed slice
between B, C and D in perforated line and there is a request for a combined link and
virtual hosts on different infrastructures at PoPs E and F, connecting them to B and D
respectively.

Another proposal takes the Network Service as a basis for the research. In previous
chapters the Network Service has been introduced and explained in some detail. This
Network Service should be aware of the existing slices, by keeping them in a register
(a slice class). This slice class would not only include the resources in the slice, but
also some pre-defined inter-slice “communication nodes”. Any communication
between slices will be done through these “communication nodes”. In a first phase,
there will be studied how to implement inter-slice communication, working in both
Layer 2 and Layer 3. In a second phase, the possible implementation options for inter-
slice communication, using only Layer 2, will be studied.

An alternative in this approach is the consideration of inter-domain communication
within a hypervisor. Inter-domain communication is a well tested principle and should
be examined with respect to layer-2 or layer-3 operation.

Concerning isolation, in an inter-domain situation two possible deployment scenarios
exist. First of all, the system can be deployed as a central resource for all users of the
network. In the second scenario the system can be deployed individually, in each slice.
Individually deployed systems work as described in chapter 7. The measurements
taken by a centrally deployed system depends on whether QoS is deployed in the
network. If it is not, the centrally deployed system can replace individual deployments,
saving the users from running the measurements, as long as the slices are subsets of
the physical topology. If not methods such as [28] might provide estimated results
from a central measurement system. In a QoS-enabled network, a central deployment
can be used to monitor both the health of “empty” slices and the general efficiency of
the QoS mechanisms.

The second alternative deals with different FEDERICA physical domains. In this
approach we will explore the applicability of ideas and of the Path computation
element (PCE) working group of IETF in the area of virtualized resources. The
rational for this is based on the fact that a centralized PCE1 is aware of topology and
resources inside a domain. Analogous to this PCE functionality is the Network service
functionality. So the PCE communication protocol appears as rational choice.

1 An entity (component, application, or network node) that is capable
of computing a network path or route based on a network graph and
applying computational constraints.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 77 of 106

8.2 Control plane Interconnection or Network Factory Interconnection

In the control plane of Federica the Network Factory Service provides and controls
slices. The Network Factory Service of Federica is a GUI front-end that drives the
allocation of resources (links and nodes in general) in various PoPs via a Web service
orchestration implemented in SOA. In a SOA populated world the interconnection of
network factories is a business process in the control plane which orchestrates data
plane directives in a similar way as portrayed in Fig. 8-1. A slightly modified
alternative in this direction is the cloud computing approach, where RESTful [33]
approach is considered. A RESTful approach burrows its power by a simplistic
representation of resources as in WEB 2.0 This scheme, although not generic in use,
is a simple yet powerful for the basic user, who can invoke additional resources via
API. GoGrid, Amazon Web Service, etc. can be considered as simple use cases
driving cloud computing provisioning paradigms. Besides from a restful
representation, there is also a need for a functionality which can combine resources.

An alternative approach exists in the generalized network provisioning plane. An
extended control – provisioning plane will efficiently manage joint communication
and computing resources. In this direction, a variation of G2MPLS Error! Reference
source not found. developed for concurrent Grid and link resource advertisement /
allocation, modified to handle virtualized resources including aspects of resource
discovery, resource flooding, signalling etc. could be considered. We coin such
variation as VaGMPLS (Virtualization aware GMPLS) and the problem of resource
allocation between different virtualization infrastructures can be considered as an
Inter-AS Traffic Engineering case adopting automatic switched transport network
(ASTN) work on Hierarchical Routing [32].

In this approach and taking into account the consideration of the IETF GMPLS and
User Network Interface (UNI) and External Network Node Interface (E-NNI) of
Optical Internetworking Forum (OIF) it is possible to develop interoperable
procedures for requesting and establishing dynamic resources across heterogeneous
networks defined by the automatic switched transport network (ASTN).

Specifically, a modified UNI can be defined as a service control interface between the
user devices and the substrate network equipment. It will address the definitions of
virtual connectivity services offered by the substrate network, the signalling protocols
used to invoke the services, the mechanisms used to transport signaling messages, and
the auto-discovery procedures that aid signalling.

On this direction the OIF E-NNI Signalling as an implementation of an open inter-
domain signal protocol that enables dynamic setup and release of various services
enables end-to-end dynamic establishment of transport connections across multiple
control domains.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 78 of 106

Fig. 8-2. E-NNI hierarchical routing

In each Routing Control Domain (RCD) just one Routing Controller (RC) is defined;
the RCD is identified by its RC ID. Neighbouring RCDs are identified through their
RC ID and the related (IPv4) address.

E-NNI routing has the main purpose of flooding information about:

• Inter-domain TE links between Area Border Routers (ABR) belonging to
different Control bases

• Domains (i.e. OSPF-TE areas)
• General domain capabilities (transit or not, technology, etc.)
• Optionally, summarized intra-domain TE-links, i.e. virtual connections

abstractions between Area
• Border Routers (ABR) belonging to the same base Control Domains (i.e.

OSPF-TE areas)

In hierarchical routing the info can flow within a hierarchical level upward /
downward across routing hierarchical levels. In order to avoid possible advertisement
loops, i.e. the info learnt at level N from a higher level (N+1) can be circulated within
level N or propagated down to a lower layer. Specific OSPF-TE protocol elements
(sub-TLVs) have been defined:

• A Hierarchy List with the RC IDs of the visited levels downward
• An Ancestor RC element in TE link advertisements, specifying the level

where the referred link is an intra-domain link: lower, it is a border link,
higher than that level it is an intra-domain link.

In E-NNI routing no OSPF multi-area operations are used and the routing information
exchanged over the ENNI routing adjacency should only affect the Transport
Network topology. This implies that IP-specific LSAs (e.g. Router LSAs, Summary
Network LSAs, etc.) are forbidden and just opaque LSAs of type 10 (area-scoped) are
flooded.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 79 of 106

Unlike traditional OSPF routers that are usually physically adjacent, the E-NNI RCs
that would form adjacencies are most likely not topologically adjacent within the
control plane. In order to let them create one-hop adjacencies, a variety of methods
could be used, such as tunnelling (e.g. GRE, IP-in-IP and IPSec), Layer 2 VLANs,
and OSPF virtual links. Each method exposes its own limitations. For example,
VLANs can only be applied within SCNs consisting of a single Ethernet broadcast
domain; virtual links are an optional capability of OSPF restricted to the OSPF
backbone area, etc. OIF E-NNI promotes the use of the OSPF point-to-multipoint
method, which consists of creating adjacencies by configuration, by shutting down the
automatic OSPF Hello mechanism.

8.3 Path Computation Element (PCE) across multiple domains

In a similar way, the Path Computation Element (PCE) Working Group is chartered to
develop a standard Path Computation Element (PCE) based architecture for
computation of paths used by MPLS and GMPLS Traffic Engineering. In general the
PCE can operate either distributed or centrally depending on the operational
principles of the company. PCE Path Computation Clients (PCCs) communicate with
Path Computation Elements (PCEs) to address their needs. A PCC can be enabled to
dynamically and automatically discover a set of Path PCEs, along with some
information that can be used for PCE selection. When the PCE is a Label Switch
Router (LSR) participating to the IGP, or even a server participating passively to the
IGP, a simple and efficient way for PCE discovery relies on IGP flooding.

Fig. 8-3. PCE Architecture and PCC-PCE/Inter-PCE Communication

Computed paths could be either explicit PCE paths that list all the intermediate hops,
or strict/loose ones that mix specific and abstract hop identifiers, like a router address,
or an Autonomous System (AS) number when no detailed topology information is
available for confidentiality reasons. The PCE could perform these path computations
based on the network graph and the Traffic Engineering Database (TED). The TED
could be built by running an IGP with Traffic Engineering extensions, like OSPF-TE
or ISIS-TE, or out-of-band via configuration commands. The TED may also include
additional information as LSP routes or traffic statistics.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 80 of 106

In principle, the availability of the PCE service would enable any TE interdomain
operation involving several ASes. In the multi-domain context, it is easier to establish
a PCE per AS in order to make interdomain path computation information consistent,
facilitate path computation peering agreements and security configuration. In this
model, PCEs just need to interact with adjacent PCEs. It appears that the most suitable
model for the set up of LSPs spanning multiple domains seems to be centralized
within domains, and distributed (PCE-PCE) on a global basis. If an AS is very large,
the domain can be split into regions with communicating PCEs delivering path
computation within their regions.

In FEDERICA, a possible PCE implementation would announce not only network
resources but also computing and optionally storage resources. This will enable path
computations (i.e. LSP) with vector constraints (i.e. computing and networking
constraints). Furthermore, end-to-end primary and backup multi-constrained paths
may be computed using a distributed loose hop computation approach, in which each
PCE along a path could be fed by and use both intra-domain and aggregated
interdomain information to compute its corresponding portion of the path.

8.4 Logical Connection based on proposed Network Service

This section will explain in further detail the first alternative offered for interdomain
communication, depicting a domain as a slice and interdomain as a logical
combination of two or more slices. In order to have a complete sense of the
configuration of each slice, a model of each slice is needed. In this model each slice
would have to be characterized, including all the resources within the slice. This
model acquires special importance considering interdomain implementation. One of
the main points to remark in interdomain communication is the point of entrance or
exit of each one of the connected domains. This is the resource of the slice,
configured to communicate with the other domain edge.

When a slice wishes to connect to another slice, the origin being any node within the
slice, the v-node from which the requests originate must contact the Network Service.
As explained in previous sections, this communication is achieved through the Engine
of the physical resource to which the virtual resource belongs. The Network Service is
then responsible for identifying the destination slice and establishing the connection
between the slices. For this an additional Class must be added, the SliceClass. This
class must contain all the important parameters of the slices in the FEDERICA
network, to make inter-communication possible. An example of a parameter of this
SliceClass that must be added is the ConnectedToSlice field, which can contain the
connections between slices and their configurations. Later, this Class will be
described in more detail. Basically, the Network Service must decide a connection
point in the destination slice and assign this resource as the interconnection point. By
default the node that requests the slice intercommunication will be assigned as
interconnection point for the originating slice. This could be adapted, as a virtual

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 81 of 106

resource could be located in both slices, simplifying the establishment of
intercommunication.

Two examples of a possible slice connection are depicted in the figures below. The
resources depicted are physical resources, but the figure also includes V-nodes.
Although the routers and switches are of course also virtualized, this is not depicted in
the figure. The difference between the two figures is whether or not the slices have a
physical resource in common or not. This presence will affect the establishment of an
inter-domain connection as the unique interconnection points are different in both
situations. In the prior case, the Network Service must define the interconnection
point. This could be based on proximity to the slice, or other parameters. At the
moment this has not been contemplated, but will be in the future. In the second case,
with physical resources, the virtual resources which belong to the same physical
resource must be assigned the abilities of an interconnection point. This implies that
the Network Service must be aware of the physical location of the virtual resources. It
must gather this information from the Resource Database, previously explained in
section 2.2. The two different options will be described later with use cases.

Fig. 8-4. Depiction of physical infrastructure with two slices (separated)

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 82 of 106

Fig. 8-5. Depiction of physical infrastructure with two slices (connected resources)

In order to establish a communication between two different domains, a specific
process will have to be followed. Some of the different steps that compose this
process will be have to be done manually, and some others will be done automatically.

The first step to be done is to initiate the process of establishing an interdomain
communication. This step can be done by the NOC or by one of the domains. In the
first case, the instance will include the resource to be connected to the other domain
(the edge resource), and this will be sent to a central element (for example the
Network Service) that will send the request to the other domain, which will also have
to provide its own edge resource.

In the second case, the central element will have the edge resource information for
each one of the domains and start the establishment symmetrically.

After this, the following step in both cases is to establish the communication path
between both domains. Two situations are foreseen. The first situation presents two
domains without a common physical resource, or with the edge resources in separated
physical devices. In this situation, a path will have to be created to join both domains.
In the second situation the edge resources of both domains are located in the same
physical resource.

In both cases, Q-in-Q may be needed to encapsulate the slice VLAN of each domain
adding a second level of labels in the path between both domains. An option would be
to use C-VLAN IDs for each logical domain, and adding additional S-VLAN IDs for
interdomain communication.

Applying this option, the user would not be able to create his or her own VLANs in a
multidomain scenario.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 83 of 106

8.5 Data plane Interconnection or slice interconnection

In the Federica environment, the data plane is a slice. The slice is where the end-user
resides. So a possible inter-domain case exists when there is a demand of connecting
two different virtualization substrates which are based on different technology. For
instance, assume the case of connecting Planetlab/Onelab and Federica. The issue of
connecting them adheres either in the data-link case where we just want to connect
two virtual wires or to connect two VMs. Virtual wire in Federica is an Ethernet
segment which could be implemented as a two port Virtualized switch. The
interconnection of VMs between Planetlab and Federica adheres to the different
technology layer of Virtual ports in the Federica and PlanetLab. A virtual port is a
vNIC implemented by host OS (VMWARE in Federica), while this is a tun/tap driver
of a UML in the Planetlab. So candidate inter-domain use cases may reside in the data
plane as:

• Interconnection of VM between different virtualization substrates
• Interconnection of links

A possible implementation of those connectivity scenarios is shown in the following
figure:

Fig. 8-6. Data plane interconnection between different virtualization substrates

In the above scheme the interconnection is achieved via an auxiliary component such
as a vSwitch or a vRouter. In general, a vRouter sometimes requires to be augmented
with NAT or Application Level gateway when there is overlap of address space of the
connecting slices. The VRouter and/or vSwitch resides in the control plane of the
virtualization substrate. The provisioning and operation of this block is beyond the
reach of the end user (i.e. slice) similar to that an end user (i.e. application) on Internet
can not perceive the operation (i.e. routing) and provisioning of control plane.
Furthermore an indicative list of necessary actions in order to achieve the connectivity
is displayed.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 84 of 106

8.6 Interconnection of virtualized infrastructures in Resource planning.

Resource monitoring remains essential as a preliminary step of any traffic engineering
algorithm and is a mandatory step for network design when the resource allocation
task is performed. It is typical to employ offline techniques for scheduled requests of
combined networking, computation and storage requests. This is referred as Virtual
Network Embedding [34], where for a given set of nodes (V) and edges (E) G(V,E)
(i.e. the virtualization substrate), requests for allocating resources for slices G’(V’,E’)
are processed. In general this is an NP hard problem which can be tackled with a more
flexible (capabilities) substrate, namely: allowing substrate path splitting and
migration.

If the substrate supports mapping a virtual link to multiple physical links/paths, this
would essentially relax that constraint. From the user's perspective, he still has one
virtual link. But in the substrate, we actually split the packets on the virtual link into a
group of substrate paths. Allowing flexible path splitting in the substrate can make it
possible to solve the link-embedding problem. Also, with this flexibility, we can get
better utilization of the substrate resources than restricting path splitting. In a
multidomain environment path splitting could be implemented in a way that links are
requested by other neighbour domains thus relaxing the constraints.

The online embedding problem would be much easier to solve if we could migrate an
already-running virtual network to another substrate to make room for the new
coming ones. In this way, we may attain a more efficient utilization of the substrate
resources by accepting more requests. Sometimes, migrating nodes is also necessary
for better resource utilization. In general, with ample warning, the migration could be
done at a less disruptive and with prior planning.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 85 of 106

9 User Portal

9.1 Overview

The procedures for requesting and accessing slice by FEDERICA` users are a subject
for investigation, but some general ideas are already available. Thus an effort was
taken in order to enable users to use the FEDERICA infrastructure in most convenient
and flexible way. The following basic requirements were taken into consideration, as
conclusions from several discussions and UPB recommendations:

• User can request of an own private account.

• User can request a new slice by providing information:

o When the slice should be created

o When the slice should be removed

o About slice description

o About slice topology

o Upload operating system images files to be started at V-nodes

• User should be informed when the slice is accepted or rejected

• User should be informed when the slice configuration process is completed.

• User should be informed how he can access the created slice.

• User Policy Board Representative can enable, disable or remove User Account

• User Policy Board Representative can approve, reject requested slices

• FEDERICA Network Operating Centre administrator can get information and

configure requested slices.

There was decided that the best solution to fulfill all requirements would be a web
portal, called the FEDERICA User Portal (FUP). This service is a common web
application, which can be accessed from any browser, in respect to FEDERICA
security policy. It runs on public IP Address to allow access for all users. Portal
prototype has been already deployed at FEDERICA User Access Server.

9.2 Architecture

Main modules of FEDERICA User Portal are shown in Fig. 9-1.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 86 of 106

Fig. 9-1. Architecture of the FEDERICA Web Portal

9.2.1 User Database

The User Database should provide users identities for authentication and authorisation
in the FEDERICA User Portal or the FTP server. To fulfil these requirements users
database was based on a LDAP directory database. The solution provides easy
manageable hierarchical structure of AAI information. It allows to group users by
country, organisation and to store different authorization attributes. The main
advantage of the LDAP directory is possibility to provide access credentials to slices`
access servers, with small modification of configuration. User can be authenticated
via ssh by using the same password and username provided during registration to
FEDRICA User portal. Fig. 9-2 shows the structure of LDAP directory design for the
FEDERICA User Portal purposes.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 87 of 106

Fig. 9-2. LDAP Directory Schema

The FEDERICA User Portal provides interfaces to add, remove and enable user
accounts, without knowing LDAP technology. Each FEDERICA Policy Board
Representative can block, at any time access, for users to FEDERICA infrastructure,
especially for those who performs negative action against system. This will help to
keep FEDERICA environment stable and ready for possible user` attacks.

9.2.2 Slice Information Database

Each FEDERICA user who wants to use the FEDERICA environment in his
experiments needs to provide some minimal set of information related to requested
slice configuration. These data are stored in dedicated database called Slice
Information Database. Information consists of:

• The time when the slice should be configured.

• The time when the slice should be remove.

• Short description of purpose and subject of the experiment.

• The Slice topology information (node, routers, switches configuration and location,

connection between elements)

• The Slice files information (virtual appliances files which should be deployed on

Vnodes machines)

This information allows a Policy Board Representative to analyse, approve or reject
the slice request. After approving slice request, FEDERICA Administrator configures
experiment environment and provide configuration information to the user of the slice.
All information about slice state change and people involve in approving process also
is stored in the Slice Information Database.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 88 of 106

9.2.3 Slice files repository

The Slice Files Repository module allows storing slices’ files and serving them for V-
nodes in FEDERICA infrastructure. It allows user which request a slice to upload
needed files by HTTP or FTP protocol. The files are served for V-nodes by Linux
Network File System. Each V-node should have configured an NFS repository, to
access files from the Slice Files Repository. During slice configuration process
administrator needs to copy files from remote NFS data store to local one. After this
process the user operating image will be run on the V-node.

9.3 Identified groups of users

Access to the FEDERICA User Portal is restricted only for authorized users. Each
user is identified in the system by own private account. This account provides
information about personal user data and granted system privileges. It allows a user to
log in by typing their user name and password. Authentication and authorization is
provided by the FEDERICA LDAP server. After login to the system user can perform
new actions and view history of performed ones. List of possible actions depend on a
user type. In the first version of the FEDERICA User Portal there are envisaged three
kinds of users.

9.3.1 FEDERICA infrastructure User

FEDERICA User is a real user of the FEDERICA Infrastructure. He requests the slice,
provides all needed information. After approving process (done by one of User Policy
Board Representative) user will use the configured slice` environment slice for his
experiments. The slice access information is gained from FEDERICA User Portal.

Each person who wishes to gain access as FEDERICA User to the FEDERICA User
Portal needs to provide a registration request. This request is analysed by the User
Policy Board Representative and if possible the user account is enabled.

9.3.2 FEDERICA Policy Board Representative

FEDERICA Policy Board Representative is a member of the main decision group in
FEDERICA system. This group of users analyses, approves/rejects requested slices
and finally requests the slice configuration at NOC or automatic system in the future.
This group verifies all slice information and assures that creating slice will not have
impact on performance of other slices.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 89 of 106

A FEDERICA Policy Board Representative is able to enable or disable user accounts
and create account for other FEDERICA Policy Board Representative.

9.3.3 FEDERICA Network Operating Centre Administrator

A FEDERICA Network Operating Centre Administrator is responsible for creating
slice in the FEDERICA infrastructure. He allocates all needed resources, copies user
files from the Network File System data store to local data store of the V-node. He
starts operating systems. After whole configuration process administrator inputs
needed information for user to access slice.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 90 of 106

10 Conclusions

This deliverable has elaborated further on the research aspects to define the
architecture of the control plane for the FEDERICA infrastructure. The focus has
been on the intra-domain aspects of the control plane and their properties, and also
some inter-domain aspects. The intra-domain aspect has been divided into several
topics, which have been researched in order to propose new protocols for the virtual
infrastructure. The topics and necessary features covered in this document include
resource descriptions, signalling, routing, isolation and monitoring. Another feature
that has been studied is the FEDERICA User Portal. Current standardization and
existing solutions have been investigated in order to find a good solution for
FEDERICA.

The proposal for the control plane introduces a centralized Network Service that will
take over some of the logic and be able to automate the tasks of the GUI. To manage
the slices, a slice management functionality must be added. The Resource Service
needed to support the slices has been elaborated in Chapter 2. The resource
description language proposed for FEDERICA is WSDL. Thorough investigation and
implementation of this topic has been presented.

Concerning resource allocation, efficient allocation of physical resources to multiple
Virtual Network (VN) requests is considered extremely important since it improves
the service capacity of the system. FEDERICA gives the extended capability of
providing to a user’s request various slices of different types of physical resources,
making the problem of resource allocation even more complicate in our case
compared to other previously studied cases. An optimal solution to the problem may
not be provided in polynomial time, thus we have to deal with an extremely
computationally intensive problem, especially when the number of instances is
increased. The development of efficient heuristics is required to provide online a good
solution within an acceptable time interval. In this document we have set the
necessary basis in order to be able to come up with an efficient solution to the
problem of resource allocation in the FEDERICA case.

As part of the investigation of new routing mechanisms, the possibility and feasibility
of a hardware implementation of Open Standard OpenFlow has been researched,
which enables 'slices' based on flow-level virtualization. After a thorough market
research of switch vendors supporting OpenFlow, a first hardware patch for an HP
ProCurve switch could be obtained and installed. The hardware will be used for
simulating the virtualization concept of FEDERICA by separating user traffic and
making high-level routing decisions via the OpenFlow controller device.

Another investigation on routing has been regarding the possible implementation of
RBridges within the FEDERICA network. The proposed protocol would make use of

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 91 of 106

OSPF instead of IS-IS as the routing protocol. A drawback for this solution is that it
requires major hardware changes in the infrastructure.

To summarize, this deliverable lays the foundations for the solutions and protocols
proposals for the network control, management and monitoring in a virtualized
network context. Next steps will lead to shape these proposals and implement them
onto a prototype.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 92 of 106

Bibliography

[1] FEDERICA Deliverable SA1.1: “FEDERICA Infrastructure”

[2] FEDERICA Deliverable DJRA1.1: “Evaluation of current network control and

management plane for multi-domain network infrastructure”.

[3] The Globus Alliance, www.globus.org

[4] P. Ji, Z. Ge, J. Kurose, and D. Towsley, “A Comparison of Hard-State and Soft-

State Signaling Protocols”, IEEE/ACM Transactions on Networking, vol. 15, no.
2, pp. 281-294, Apr. 2007

[5] K. Vanthournout, G. Deconinck, R.Belmans, “A taxonomy for resource

discovery”, Personal and Ubiquitous Computing, Vol. 9, No. 2, pp 81-89,
March 2005.

[6] N. M. Mosharaf Kabir Chowdhury, M. R. “Network Virtualization: State of the

Art and Reserach Challenges,” IEEE Communications Magazine, vol. 47, no. 7,
pp. 20 – 26, IEEE ComSoc, Jul. 2009.

[7] N. M. Mosharaf Kabir Chowdhury, M. R. “Virtual Network Embedding with

Coordinated Node and Link Mapping,” in Proceedings of the 28th IEEE
INFOCOM. Rio de Janeiro, Brazil, pp. 783 – 791, Apr. 2009.

[8] Albrecht, J., Oppenheimer, D., Vahdat, A., and Patterson, “Design and

implementation trade-offs for wide-area resource discovery,” ACM Transactions
on Internet Technology. vol. 8, no. 4, pp 1-44, Sep. 2008.

[9] Y. Zhu and M. Ammar, ”Algorithms for assigning substrate network resources to

virtual network components,” in Proceedings of 25th IEEE INFOCOM,
Barcelona, Spain, pp. 1-12, Apr. 2006.

[10] M. Yu, Y. Yi, J. Rexford, and M. Chiang, “Rethinking virtual network

embedding: Substrate support for path splitting and migration,” ACM SIGCOMM
Computer Communication Review, vol. 38, no. 2, pp. 17– 29, April 2008.

[11] D. Andersen, “Theoretical approaches to node assignment,” Unpublished

Manuscript, http://www.cs.cmu.edu/ dga/papers/andersen-assign.ps, 2002.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 93 of 106

[12] NARB and RCE Architecture, University of Southern California and
Information Sciences Institute, August 2007.

[13] FEDERICA Deliverable DJRA2.1: “Architectures for virtual infrastructures,

new internet paradigms and business models”.

[14] A. Gupta, J. M. Kleinberg, A. Kumar, R. Rastogi, and B. Yener, “Provisioning a

virtual private network: A network design problem for multicommodity flow,” in
Proceedings of ACM STOC, pp. 389–398, Oct. 2001.

[15] R. Ricci, C. Alfeld, and J. Lepreau, “A solver for the network testbed mapping

problem,” ACM SIGCOMM Computer Communication Review, vol. 33, no. 2,
pp. 65–81, April 2003.

[16] Mutsunori Yagiura, Akira Komiya, Kenya Kojima, Koji Nonobe, Hiroshi

Nagamochi, Toshihide Ibaraki, Fred Glover: “A Path Relinking Approach for
the Multi-Resource Generalized Quadratic Assignment Problem, ” in SLS 2007,
pp. 121-135. SLS 2007, LNCS 4638, Aug. 2007.

[17] C. Lee , Z. Ma, “The generalized quadratic assignment problem,” Technical

Report. Department of Mechanical and Industrial Engineering, University of
Toronto, Toronto, Ontario, Canada, 2003.

[18] B. Gavish, H. Pirkul, “Algorithms for the multi-resource generalized assignment

Problem,” Management Science 37, 695–713, 1991.

[19] Transparent Interconnection of Lots of Links (trill)

http://www.ietf.org/dyn/wg/charter/trill-charter.html .

[20] R. Pelrman et al. “RBridges: Base Protocol Specification”, June 2009. draft-ietf-

trill-rbridge-protocol-13.txt

[21] N. McKeown et al., “OpenFlow: Enabling Innovation in Campus Networks”,

available from http://www.openflowswitch.org//documents/openflow-wp-
latest.pdf

[22] http://www.openflowswitch.org/wp/learnmore/

[23] B. Heller, OpenFlow Switch Specification v0.8.9, available from

http://www.openflowswitch.org/documents/openflow-spec-v0.8.9.pdf

[24] N. McKeown, “Standofr Clean Slate Program”, available from

http://www.csee.umkc.edu/us-japan-fnw/presentations/mckeown-nsf-nict-us-
japan-fnw-08.pdf

[25] http://noxrepo.org/wp/

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 94 of 106

[26] http://noxrepo.org/manual/vm_environment.html

[27] V. Paxson, “On calibrating measurements of packet transit times,”

SIGMETRICS Perform. Eval. Rev., vol. 26, pp. 11-21, Mar. 1998.

[28] M. Demirci, S. Lo, S. Seetharaman, and M. Ammar, “Multi-layer Monitoring of

Overlay Networks,” International Conference on Passive and Active Network
Measurement, pp. 77-86, April 2009.

[29] RFC 4726, A Framework for Inter-Domain Multiprotocol Label Switching

Traffic Engineering, http://www.rfc-archive.org/getrfc.php?rfc=4726

[30] RFC 4655,A Path Computation Element (PCE)-Based Architecture,

http://www.rfc-archive.org/getrfc.php?rfc=4655

[31] www.ist-phosphorus.eu/pic/activities/wp1_wp2.pdf

[32] http://www.rfc-editor.org/internet-drafts/draft-ietf-ccamp-gmpls-ason-routing-

ospf-9.txt

[33] http://en.wikipedia.org/wiki/Representational_State_Transfer

[34] M. Yu, Y. Yi, J. Rexford, M. Chiang,Flexible Substrate Network to Support

Virtual Network Embedding,
 http://cabernet.cs.princeton.edu/presto07/statements/yu.pdf

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 95 of 106

Annex 1. IETF Standards

1.1. IETF Standardization Process

The Internet Engineering Task Force is one of the organs that have been active in the
standardization process of new technologies. Many thousands of Requests for
Comments (RFC) have been published over the years, with some of them ending up
being standardized. This section will give a short overview of the standardization
process, to explain the difference between an RFC and an Internet Standard.

Each RFC has a status, relative to its step in the Internet standardization process. The
RFCs can be divided in standards track and non-standards track documents. An RFC
which is not in the standards track can be informational, experimental, or historic.
Informational publications are intended to provide general information, which are
coordinated adequately to the standards process. Experimental publications are
specifications of certain development efforts. Publications that have become obsolete
by a newer specification are given the label historic.

A publication in the internet standardization process undergoes the following steps:
proposed standard, draft standard, internet standard. A proposed standard is stable,
well-understood and is considered valuable within the community. However, it needs
further experience before it advances to being a draft standard. As proposed standards
may still be modified, implementation of these specifications is only desirable to gain
experience or validate the specification. For a proposed standard to become a draft
standard, it requires to have at least two independent and interoperable
implementations, and sufficient operational experience must be achieved. Draft
standards will most likely not undergo any changes, and these can be implemented
without problems. A draft standard can become an internet standard, when significant
implementation and successful operational experience has been obtained. An internet
standard is highly mature and provides significant benefit to the Internet community.
Internet standards are assigned STD numbers, alongside their RFC number.

For all IETF documents used as a reference, the type of RFC document has been
mentioned behind the RFC number. The topics to be handled by the UPC are resource
discovery, routing, signalling, and path computation. In the following sections the
existing standards related to these topics will be introduced. The next chapter (chapter
2) will provide the comparison between the functionalities of the tools and the
proposed standards.

1.2. Resource Discovery

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 96 of 106

Regarding resource discovery, neither inter-domain nor intra-domain standards are in
existence. Standardization for topology discovery is proprietary. An example of a
proprietary standard is the Link Layer Topology Discovery protocol developed by
Microsoft. It is included in all Windows Vista versions, and exists also for Linux, but
will require a non-free license if it is to be used.

1.3. Routing

 1.3.1. OSPF

OSPF is a link state routing protocol, based on hop-by-hop routing communication.
OSPF is specifically designed for intra-domain (AS) routing. OSPF, like all link state
protocols, requires information about the link cost and has to be able to advertise this
link state throughout the network. To calculate the link costs in the network, OSPF
uses the Dijkstra algorithm, so the best path through the network can be calculated.

OSPF was the first widely deployed protocol that offered very fast network-wide
convergence. One of the main features of OSPF is that it provides the functionality of
dividing an intro-domain network into different sub-domains. This allows for a
hierarchical setup of the network, which can reduce signalling overhead. Another
important feature is that OSPF is capable of supporting several network types; point-
to-point, broadcast, non-broadcast multi-access, point-to-multipoint, and virtual links.
With OSPF, each router maintains a database that describes the AS topology. This
database is used to calculate a routing table by constructing a shortest path three.

OSPF was first put forward as a standard in 1989. Version 2 of OSPF was developed
in 1998 (RFC 2328), introducing adjustments to e.g. the flooding mechanism, to
external path preferences (to avoid routing loops), and the routing table lookup
algorithm. To improve the protocol even more, a third version has also been
developed, which supports IPv6 addressing (RFC 5340). A fourth version has yet to
be developed, but many extensions to OSPF have been developed within the IETF.
RFC 4203 describes encoding of extensions for the support of GMPLS. Traffic
engineering support within OSPF was first developed in 1999, in RFC 2676. Further
developments regarding TE have been TE extensions for version 3 (RFC 5329), and
the support of GMPLS-TE (RFC 5392). The last request for comments also
introduces the first support for inter-domain (inter-AS) GMPLS. Also, this RFC
includes extensions for inter-domain path computation and flooding between inter-
domain links.

IETF documents regarding OSPF:
OSPF version 2 (RFC 2328, STD 54)
OSPF-TE (RFC 2676, experimental)
OSPF extensions in support of GMPLS (RFC 4203, Proposed Standard)

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 97 of 106

OSPF extensions in support of inter-AS MPLS and GMPLS-TE (RFC 5392, Proposed
Standard)
TE Extensions to OSPF Version 3 (RFC 5329, Proposed Standard)
OSPF for IPv6 (RFC 5340, Proposed Standard)

 1.3.2 BGP

The Border Gateway Protocol (BGP) is an inter-domain routing protocol. Whereas
RIP is a distance vector protocol, BGP is a path vector protocol. The main differences
are that BGP avoids looping through path tagging, and that reliable sessions are used
for information exchange. Within BGP terminology, autonomous systems are used.
These are large network entities, which contain one or more IP-prefix defined
networks. All BGP autonomous systems have a unique 16-bit AS number, which is
used to determine a path between two autonomous systems. Within each autonomous
system, specific entities are BGP speakers, which can communicate with
neighbouring autonomous systems. The BGP protocol can also be used as an intra-
domain protocol, called IBGP. This allows for two BGP speakers within the same
autonomous system to communicate with each other. Currently, BGP is in its fourth
version (RFC 4271).

Exchange of network information is done by setting up a communication session
between neighbouring autonomous systems. For reliable packet delivery, TCP is used
for this communication. This session is used as a virtual link between two
autonomous systems. Regarding the virtual links, mechanisms are implemented that
offer link preference, ensure link connectivity, and react to link break-downs. The
first action after setup of a session is the exchange of all BGP routes. After this the
only messages that are exchanged are messages regarding network or path changes.

A critical part of BGP is the route advertisement. This contains specific information
about a route at a (set of) IP-prefix network(s), which is called a path attribute. The
path attributes are used within the routing decision process. This process consists of
two sub-processes; route dissemination and path selection. Both processes are policy
based. Route dissemination consists of the export policy and the route aggregation
process. Route aggregation is the process of combining IP address blocks from
multiple autonomous systems through supernetting. Path selection is based on an
import policy, calculating the best route possible.

BGP currently is the accepted standard for Internet routing. Several extensions have
been added to BGP. One of the developments has been the support of multiple
Network Layer protocols. RFC 4760 describes extensions to carry routing information
from IPv6, Layer 3 VPNs, etc. Typically, BGP speakers within a single domain must
be fully meshed. This introduces scalability problems, which could be solved using
route reflectors, as described in RFC 4456. This technique eliminates the need for full
mesh BGP communication, implementing higher-level route reflectors which pass on
information to BGP speakers. This can be implemented recursively for larger

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 98 of 106

networks, to maintain scalability. Currently, the IETF is working on adding an
additional attribute to BGP, which allows support of Traffic Engineering. This is still
in its draft version, but might be interesting for the FEDERICA infrastructure.

IETF Documents regarding BGP:
A Border Gateway Protocol 4 (RFC 4271, Draft Standard)
BGP-4 Protocol Analysis (RFC 4274, Informational)
Multiprotocol Extensions for BGP-4 (RFC 4760, Draft Standard)
BGP OSPF Interaction (RFC 1403)
BGP Route Reflection (RFC 4456, Draft Standard)
BGP TE Attribute (Draft Version)

 1.3.3. IS-IS

IS-IS, which stands for Intermediate System to Intermediate System, is an interior
routing protocol that is defined in ISO/IEC 10589:2002 as an OSI standard. IS-IS did
not support the Internet Protocol, which the IETF developed OSPF did. An extension
has been made to support IP, which is called Integrated IS-IS and is defined in RFC
1195.
Like OSPF, IS-IS also provides a network hierarchy using different areas. The main
difference is that with OSPF a router can be placed on the edge of an area, while with
IS-IS connections between areas are only through links. IS-IS is also capable of
support different network types, such as broadcast and point-to-point networks. An
advantage of IS-IS over OSPF is that IS-IS runs directly over Layer 2 links, as IS-IS
packets are encapsulated in Layer 2 frames. This means that IS-IS is more secure than
OSPF.
IS-IS has been undergoing some developments in 2008, with several extensions being
proposed in RFCs. Support of Traffic Engineering is described in RFC 5305, by
specifying new types of information that a router can implement. Support of GMPLS
has been described in RFC 5307, and the support of IPv6 is described in RFC5308.
For this, two new Type-Length-Values have been added to the protocol.

IETF Documents regarding IS-IS:
Use of OSI IS-IS for Routing in TCP/IP and Dual Environments (RFC 1195,
Proposed Standard)
IGP Routing Protocol Extensions for Discovery of Traffic Engineering Node
Capabilities (RFC 5073, Proposed Standard)
IS-IS Extensions for TE (RFC 5305, Proposed Standard)
IS-IS Extensions in support of GMPLS (RFC 5307, Proposed Standard)
Routing IPv6 with IS-IS (RFC 5308, Proposed Standard)
IPv6 TE with IS-IS (Draft, as of January 2009)

 1.3.4. RIP

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 99 of 106

Routing Information Protocol, or RIP, was the first protocol used in an intra-domain
environment for IP networks. RIP exists in two versions, described in RFC 1058 and
RFC 2453, where version 2 extends the first version in several ways. With RIPv1
communication of routing information is always done between two neighbouring
routes. As RIPv1 is a distance vector protocol, distance vector information must
always be obtained from the neighbouring router. The major drawback of RIP is that
the protocol is UDP-based. Since UDP does not guarantee delivery, there is no
guarantee that a RIP message is received by a router. Another drawback of RIP is the
limited scalability, as the destination cannot be further than 15 hops away. RIPv1
would therefore be good to use in small networks, but does not seem adequate for use
in FEDERICA.

RIPv2 extends some of the capabilities of RIPv1. RIPv2 allows for subnet masking
and introduces authentication to the protocol. For the subnet masking, variable length
subnet masking is supported. To support authentication a first entry block of 20 Bytes
can be allocated. Authentication does limit the routing capabilities of a message, as
authentication uses one of the twenty-five routing table entries. Another development
of RIPv2 is the support of IPv6, described in RFC 2080.

IETF Documents regarding RIP:
RIPng for IPv6 (RFC 2080, Proposed Standard)
RIP Version 2 (RFC 2453, STD 56)
RIP Version 2 Protocol Applicability Statement (RFC 1722, STD 57)

1.4. Signalling

Two main signalling protocols have been under development by the IETF. These are
constraint-based LSP setup using LDP (CR-LDP), and Resource Reservation Protocol
(RSVP). RFC3468 describes the decision of the IETF to undertake no further action
on the development of CR-LDP and focus all its activities on development of the
RSVP-TE protocol. However, a short overview of CR-LDP and its RFCs will be
given in this document.

CR-LDP contains extensions for the prior Label Distribution Protocol (described in
RFC 3036). It introduces the ability to LDP to setup Label Switched Paths based on
explicit constraints, such as QoS constraints or route constraints. Because of these
developments, Traffic Engineering requirements are supported by the CR-LDP. CR-
LDP is described in RFC 3212, and the applicability of CR-LDP has been described
in RFC 3213. RFC3214 describes the functionalities of modifying several parameters
of a pre-established CR-LSP using CR-LDP. This is to support varying requirements,
such as bandwidth reservation, etc. As CR-LDP has been discarded for further
development by the IETF, this document will not go into further detail of the existing
RFCs. It has been removed from the IETF Standard Track, and therefore research on
CR-LDP developments is not interesting within the FEDERICA project.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 100 of 106

The RSVP protocol (RFC 2205) is used by a host to request specific qualities of
service from the network for particular application data streams or flows. RSVP is
also used by routers to deliver QoS requests to all nodes along the path(s) of the flows
and to establish and maintain state to provide the requested service. RSVP requests
will generally result in resources being reserved in each node along the data path.
RSVP defines how applications place reservations and how they can release the
reserved resources once the need for them has ended. RSVP operation will generally
result in resources being reserved in each node along a path. RSVP was designed to
interoperate with current and future routing protocols.

The RSVP-Traffic Engineering Protocol (RFC 3209) is an extension of the RSVP
protocol for traffic engineering. It is used as a general facility for creating and
maintaining distributed forwarding and reservation state across a mesh of delivery
paths. Applications running on IP end systems can use RSVP to indicate to other
nodes the nature (bandwidth, jitter, maximum burst, etc.) of the packet streams they
want to receive. The extended RSVP protocol supports the instantiation of explicitly
routed LSPs, with or without resource reservations. It also supports smooth rerouting
of LSPs, pre-emption, and loop detection. The LSPs created with RSVP can be used
to carry "Traffic Trunks". The LSP that carries a traffic trunk and the traffic trunk by
itself are different but related concepts. For example, two LSPs between the same
source and destination could be load shared to carry a single traffic trunk. LSPs can be
treated as tunnels, because the traffic that flows along one of these LSPs is defined by
the label applied at the ingress node of the LSP. When an LSP is used in this way we
refer to it as an LSP tunnel. LSP tunnels allow the implementation of different
network performance optimization policies. LSP tunnels can be automatically or
manually routed away from network failures, congestion, and bottlenecks. Multiple
parallel LSP tunnels can be established between two nodes, and traffic between the
two nodes can be mapped onto the LSP tunnels according to local policy.

Several extensions to RSVP-TE have been proposed as standards. RFC 3473
describes the extensions to RSVP-TE to support GMPLS. Specific formats and
mechanisms are introduced to support the GMPLS classes of interface and switches.
Regarding GMPLS, RFC 5151 describes the extensions for RSVP-TE needed for
inter-domain MPLS and GMPLS. The main feature introduced is the establishment
and maintenance of LSPs that cross domain boundaries. Last, RFC 4872 introduces
extensions to GMPLS RSVP-TE for recovery (protection and restoration) of end-to-
end LSPs.

For point to multipoint links one standard has been proposed. RFC 4875 describes a
solution which does not require a multicast routing protocol in the SP core network,
and is able to set up point to multipoint LSPs in GMPLS networks. This does not
include inter-domain solutions, a document for inter-domain point to multipoint LSPs
is currently still in its draft version.

IETF Documents regarding CR-LDP:

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 101 of 106

CR-LDP (RFC 3212, Proposed Standard)
Applicability Statement for CR-LDP (RFC 3213, informational)
LSP Modification using CR-LDP (RFC 3214, Proposed Standard)
MPLS Working Group Decision on MPLS signalling protocols (RFC 3468,
informational)

IETF Documents regarding RSVP:
RSVP (RFC 2205, Proposed Standard)
RSVP-TE (RFC 3209, Proposed Standard)
GMPLS Signalling RSVP-TE Extensions (RFC 3473, Proposed Standard)
Procedures for modifying RSVP (RFC 3936, BCP 96)
RSVP-TE Extensions in support of End-to-end GMPLS Recovery (RFC 4872,
Proposed Standard)
Extensions to RSVP-TE for P2MP TE LSPs (RFC 4875, Proposed Standard)
Inter-domain MPLS and GMPLS TE extensions for RSVP-TE (RFC 5151, Proposed
Standard)
Signalling RSVP-TE P2MP LSPs in an inter-domain environment (Draft as of March
2009)

1.5. Path Computation

Constraint-based path computation is a fundamental building block for traffic
engineering systems such as Multiprotocol Label Switching (MPLS) and Generalized
Multiprotocol Label Switching (GMPLS) networks. It is used to determine the path
through the network that traffic should follow, and provides the route for each Label
Switched Path (LSP) that is set up.

Thus, a PCE is an entity capable of computing complex paths for a single or set of
services. A PCE might be a network node, network management station, or dedicated
computational platform which is aware of the network resources and has the ability to
consider multiple constraints for sophisticated path computation.

Nowadays, the model of the Internet is to distribute network functionality (e.g.,
routing) within the network. PCE is not intended to contradict this model and can be
used to match the model exactly, for example, when the PCE functionality coexists
with each Label Switching Router (LSR) in the network. PCE is also able to augment
functionality in the network where the Internet model cannot supply adequate
solutions, for example, where traffic engineering information is not exchanged
between network domains.

Path computation in large, multi-domain, multi-region, or multi-layer networks is
complex and may require special computational components and cooperation between
the different network domains. These standards try to solve this kind of problems and
it is important to see in what way they can contribute to the FEDERICA requirements.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 102 of 106

Path Computation Element-based architecture (RFC 4655) specifies the architecture
for a Path Computation Element (PCE)-based model to address the problem space. It
describes a set of building blocks for the PCE architecture from which solutions may
be constructed. For example, it discusses PCE-based implementations including
composite, external, and multiple PCE path computation. Furthermore, it describes
architectural considerations including centralized computation, distributed
computation, synchronization, PCE discovery and load balancing, detection of PCE
liveness, communication between Path Computation Clients (PCCs) and the PCE
(PCC-PCE communication) and PCE-PCE communication, Traffic Engineering
Database (TED) synchronization, stateful and stateless PCEs, monitoring, policy and
confidentiality, and evaluation metrics.

The communication protocol between PCCs and PCEs (both elements described in
the RFC 4655), and also between PCEs, are explained in the RFC 4657 (PCE Protocol
Generic Requirements) Subsequent documents of this one will describe application-
specific requirements for the PCE communication protocol.

RFC 4674 presents a set of requirements for a Path Computation Element (PCE)
discovery mechanism that would allow a Path Computation Client (PCC) to discover
dynamically and automatically a set of PCEs along with certain information relevant
for PCE selection. It is intended that solutions that specify procedures and protocols
or extensions to existing protocols for such PCE discovery satisfy these requirements.

PCE Communication Protocol (PCECP, RFC 5440) is an important issue inside Path
Computation for communication between a Path Computation Client (PCC) and a
PCE, or between two PCEs. Specific requirements for PCRCP are standardized: inter-
area MPLS and GMPLS TE (RFC 4927) and inter-AS (RFC 5376).

When the PCE is a Label Switching Router (LSR) participating in the Interior
Gateway Protocol (IGP), or even a server participating passively in the IGP, a simple
and efficient way to announce PCEs consists of using IGP flooding. For that purpose,
it defines extensions to the Open Shortest Path First (OSPF) routing protocol
(explained above inside the routing section) for the advertisement of PCE Discovery
information within an OSPF area or within the entire OSPF routing domain (RFC
5088). Also defines extensions to the IS-IS Protocol Extensions for PCE Discovery
(RFC 5089).

Besides, the concept of policy was introduced in the context of path computation
(RFC 5394). The document provides additional details on policy within the PCE
architecture and also provides context for the support of PCE Policy.

Finally, RFC 5152 specifies a per-domain path computation technique for establishing
inter-domain Traffic Engineering (TE) Multiprotocol Label Switching (MPLS) and
Generalized MPLS (GMPLS) Label Switched Paths (LSPs). In this document, a
domain refers to a collection of network elements within a common sphere of address

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 103 of 106

management or path computational responsibility such as Interior Gateway Protocol
(IGP) areas and Autonomous Systems.

IETF Documents regarding path computation:
A Path Computation Element-based architecture (RFC 4655, Informational)
PCE Protocol Generic Requirements (RFC 4657, Informational)
OSPF Protocol Extensions for PCE Discovery (RFC 5088, Proposed Standard)
Requirements for PCE discovery (RFC 4674, Informational)
PCECP specific requirements for inter-area MPLS and GMPLS TE (RFC 4927,
Informational)
IS-IS Protocol Extensions for PCE Discovery (RFC 5089, Proposed Standard)
Inter-AS requirements for the PCECP (RFC 5376, Informational)
Policy-enabled Path Computation Framework (RFC 5394, Informational)
PCE Communication Protocol (PCECP) (RFC 5440, Proposed Standard)
Per-domain path computation for establishing inter-domain TE LSP setup (RFC 5152,
Proposed Standard)

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 104 of 106

Annex 2. Tools and Frameworks for further research

The deliverable JRA1.1 provides conclusions on which tools are appropriate for
further investigation. These are BLUEnet Tool, DRAGON, IaaS Framework, and PL-
VINI. This chapter will describe for each of the related topics, its relation to the
standards mentioned in chapter 2.

2.1 BLUEnet Tool

Since topology discovery has not been standardized in the Internet community,
BLUEnet tool can use any mechanism possible to include this feature in the tool. It
uses two Perl scripts that run periodically every hour. These scripts discover routers
(including adjacent links and connected switches), switches (including adjacencies,
STP information, VLAN information, etc.). The script then logs on to the Topology
Database and stores the obtained information in this database.

For routing, BLUEnet tool uses the link state protocol IS-IS. It is unknown in what
way extensions of IS-IS are used within BLUEnet tool. This should be researched
further.

For signalling, BLUEnet tool uses the Label Distribution Protocol. This means that it
does not traffic engineering with signalling. Preferably, the tool should use at least
constraint-based routing LDP (CR-LDP) or RSVP-TE. Since CR-LDP has been
discarded by the IETF for further research, the signalling protocol used should be
RSVP-TE.

The BLUEnet tool does not use the PCE architecture for path computation.
Provisioning of Layer 2 links is done automatically, where the user only has to set two
end points and the type of circuit (port mode or VLAN mode) required.

2.2 DRAGON

Topology discovery in DRAGON is done by listening to the OSPF-TE protocol. How
this is done specifically should be investigated further. One approach could be the use
of LSA reflectors and LSA aggregators, where adjacencies with routers are created to
obtain a view of the topology. Inter-domain topology exchange can be based on the
actual topology as obtained by listening to the OSPF-TE protocol, or based on an n
abstracted view of the domain topology. This abstraction can be generated by a
configuration file or by automatic synthesis of the link state database. This way, a
simplified view of the topology can be seen at other domains.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 105 of 106

In DRAGON, Network Aware Resource Brokers (NARBs) are implemented as agents
that represent a single domain. It exchanges information with other NARBs, which
present other domains. This enables end-to-end LSP routing. For routing, DRAGON
uses a modified version of OSPF-TE. Each LSR must support at least an intra-domain
version of GMPLS-OSPF. The NARB acts as a protocol listener in intra-domain
routing, and is responsible for inter-domain routing.

The NARB also includes advanced algorithms which allow path computation with
multiple constraints, such as the standard GMPLS-TE parameters, AAA constraints,
scheduling, or vendor specific constraints. To implement TE, AAA, and scheduling
constraints into path computation, DRAGON uses a 3D Resource Computation
Element (3D RCE), which is located inside the NARB. The output of the path
computation is an Explicit Route Object. Thus, for path computation DRAGON does
not implement the PCE architecture as proposed by the IETF.

Each LSR must run an intra-domain GMPLS signalling protocol. This could be for
example RSVP-TE or GMPLS UNI. In what way the extensions could be
implemented must be further investigated.

2.3 IaaS Framework based Tools: Manticore, Argia.

Tools based on IaaS Framework are not able to discover automatically network
topology. The physical administrator must introduce it manually using the
management plane (through the graphical interface).

Regarding routing, Manticore, based on IaaS Framework, is capable to configure
OSPF (link state protocol) and RIP for internal routing and BGP (inter-domain
routing protocol). In which way Manticore is able to handle OSPF extensions must be
researched further.

IaaS Framework has a Web Service based architecture. WS keeps connection between
the different distributed components.

For path computation, Argia uses two algorithms for point-to-point paths. These are
the Dijkstra shortest path algorithm, or an algorithm that computes all possible routes
and gives the user the opportunity to choice the preferred path. Point-to-multipoint
paths can also be found using two algorithms: a Dijkstra shortest path equivalent
algorithm, or an algorithm that computes all possible routes and lets the user choose.

DJRA1.2 Solutions and protocols proposal
for the network control, management and
monitoring in a virtualized network
control

 Page 106 of 106

2.4 PL-VINI

In terms of network topology discovery this tool is not able to sense any underlying
network changes. A solution must be found to add this functionality to the tool.

Concerning the routing aspects, each PL-VINI node can implement a XORP
distribution. XORP implements a number of routing protocols, such as BGP, OSPF,
RIP, IGMP, and MLD. There are some issues running different routing protocols
simultaneously on the same physical interface. This possibility should be investigated
further when defining the scope.

The signalling functionalities of PL-VINI are not clear, as they are not provided in
any documentation available. This should be researched further by contacting the
PlanetLab consortium.

PL-VINI does offer three methods for path finding. The first method is based on the
locally available BGP table, which corresponds with the number of AS hops from the
local node to the remote node. Counting AS hops is weakly correlated to actual
latency, but might also be appropriate for applications that want to minimize the
number of peering points that are traversed. The second method is that the local node
runs traceroute to the target node and reports the number of router hops. As the router
hop count is stronger correlated to the latency than the AS hop count, this method is
more valuable for the computation. In the third method the local node can ping the
target node and return the corresponding round-trip time.

