1,067 research outputs found

    A Review on Energy Consumption Optimization Techniques in IoT Based Smart Building Environments

    Get PDF
    In recent years, due to the unnecessary wastage of electrical energy in residential buildings, the requirement of energy optimization and user comfort has gained vital importance. In the literature, various techniques have been proposed addressing the energy optimization problem. The goal of each technique was to maintain a balance between user comfort and energy requirements such that the user can achieve the desired comfort level with the minimum amount of energy consumption. Researchers have addressed the issue with the help of different optimization algorithms and variations in the parameters to reduce energy consumption. To the best of our knowledge, this problem is not solved yet due to its challenging nature. The gap in the literature is due to the advancements in the technology and drawbacks of the optimization algorithms and the introduction of different new optimization algorithms. Further, many newly proposed optimization algorithms which have produced better accuracy on the benchmark instances but have not been applied yet for the optimization of energy consumption in smart homes. In this paper, we have carried out a detailed literature review of the techniques used for the optimization of energy consumption and scheduling in smart homes. The detailed discussion has been carried out on different factors contributing towards thermal comfort, visual comfort, and air quality comfort. We have also reviewed the fog and edge computing techniques used in smart homes

    A multi-objective genetic type-2 fuzzy logic based system for mobile field workforce area optimization

    Get PDF
    In industries which employ large numbers of mobile field engineers (resources), there is a need to optimize the task allocation process. This particularly applies to utility companies such as electricity, gas and water suppliers as well as telecommunications. The process of allocating tasks to engineers involves finding the optimum area for each engineer to operate within where the locations available to the engineers depends on the work area she/he is assigned to. This particular process is termed as work area optimization and it is a sub-domain of workforce optimization. The optimization of resource scheduling, specifically the work area in this instance, in large businesses can have a noticeable impact on business costs, revenues and customer satisfaction. In previous attempts to tackle workforce optimization in real world scenarios, single objective optimization algorithms employing crisp logic were employed. The problem is that there are usually many objectives that need to be satisfied and hence multi-objective based optimization methods will be more suitable. Type-2 fuzzy logic systems could also be employed as they are able to handle the high level of uncertainties associated with the dynamic and changing real world workforce optimization and scheduling problems. This paper presents a novel multi-objective genetic type-2 fuzzy logic based system for mobile field workforce area optimization, which was employed in real world scheduling problems. This system had to overcome challenges, like how working areas were constructed, how teams were generated for each new area and how to realistically evaluate the newly suggested working areas. These problems were overcome by a novel neighborhood based clustering algorithm, sorting team members by skill, location and effect, and by creating an evaluation simulation that could accurately assess working areas by simulating one day's worth of work, for each engineer in the working area, while taking into account uncertainties. The results show strong improvements when the proposed system was applied to the work area optimization problem, compared to the heuristic or type-1 single objective optimization of the work area. Such optimization improvements of the working areas will result in better utilization of the mobile field workforce in utilities and telecommunications companies

    Many-Objective Genetic Type-2 Fuzzy Logic Based Workforce Optimisation Strategies for Large Scale Organisational Design

    Get PDF
    Workforce optimisation aims to maximise the productivity of a workforce and is a crucial practice for large organisations. The more effective these workforce optimisation strategies are, the better placed the organisation is to meet their objectives. Usually, the focus of workforce optimisation is scheduling, routing and planning. These strategies are particularly relevant to organisations with large mobile workforces, such as utility companies. There has been much research focused on these areas. One aspect of workforce optimisation that gets overlooked is organisational design. Organisational design aims to maximise the potential utilisation of all resources while minimising costs. If done correctly, other systems (scheduling, routing and planning) will be more effective. This thesis looks at organisational design, from geographical structures and team structures to skilling and resource management. A many-objective optimisation system to tackle large-scale optimisation problems will be presented. The system will employ interval type-2 fuzzy logic to handle the uncertainties with the real-world data, such as travel times and task completion times. The proposed system was developed with data from British Telecom (BT) and was deployed within the organisation. The techniques presented at the end of this thesis led to a very significant improvement over the standard NSGA-II algorithm by 31.07% with a P-Value of 1.86-10. The system has delivered an increase in productivity in BT of 0.5%, saving an estimated £1million a year, cut fuel consumption by 2.9%, resulting in an additional saving of over £200k a year. Due to less fuel consumption Carbon Dioxide (CO2) emissions have been reduced by 2,500 metric tonnes. Furthermore, a report by the United Kingdom’s (UK’s) Department of Transport found that for every billion vehicle miles travelled, there were 15,409 serious injuries or deaths. The system saved an estimated 7.7 million miles, equating to preventing more than 115 serious casualties and fatalities

    A Comprehensive Survey on Particle Swarm Optimization Algorithm and Its Applications

    Get PDF
    Particle swarm optimization (PSO) is a heuristic global optimization method, proposed originally by Kennedy and Eberhart in 1995. It is now one of the most commonly used optimization techniques. This survey presented a comprehensive investigation of PSO. On one hand, we provided advances with PSO, including its modifications (including quantum-behaved PSO, bare-bones PSO, chaotic PSO, and fuzzy PSO), population topology (as fully connected, von Neumann, ring, star, random, etc.), hybridization (with genetic algorithm, simulated annealing, Tabu search, artificial immune system, ant colony algorithm, artificial bee colony, differential evolution, harmonic search, and biogeography-based optimization), extensions (to multiobjective, constrained, discrete, and binary optimization), theoretical analysis (parameter selection and tuning, and convergence analysis), and parallel implementation (in multicore, multiprocessor, GPU, and cloud computing forms). On the other hand, we offered a survey on applications of PSO to the following eight fields: electrical and electronic engineering, automation control systems, communication theory, operations research, mechanical engineering, fuel and energy, medicine, chemistry, and biology. It is hoped that this survey would be beneficial for the researchers studying PSO algorithms

    Bio-inspired computation for big data fusion, storage, processing, learning and visualization: state of the art and future directions

    Get PDF
    This overview gravitates on research achievements that have recently emerged from the confluence between Big Data technologies and bio-inspired computation. A manifold of reasons can be identified for the profitable synergy between these two paradigms, all rooted on the adaptability, intelligence and robustness that biologically inspired principles can provide to technologies aimed to manage, retrieve, fuse and process Big Data efficiently. We delve into this research field by first analyzing in depth the existing literature, with a focus on advances reported in the last few years. This prior literature analysis is complemented by an identification of the new trends and open challenges in Big Data that remain unsolved to date, and that can be effectively addressed by bio-inspired algorithms. As a second contribution, this work elaborates on how bio-inspired algorithms need to be adapted for their use in a Big Data context, in which data fusion becomes crucial as a previous step to allow processing and mining several and potentially heterogeneous data sources. This analysis allows exploring and comparing the scope and efficiency of existing approaches across different problems and domains, with the purpose of identifying new potential applications and research niches. Finally, this survey highlights open issues that remain unsolved to date in this research avenue, alongside a prescription of recommendations for future research.This work has received funding support from the Basque Government (Eusko Jaurlaritza) through the Consolidated Research Group MATHMODE (IT1294-19), EMAITEK and ELK ARTEK programs. D. Camacho also acknowledges support from the Spanish Ministry of Science and Education under PID2020-117263GB-100 grant (FightDIS), the Comunidad Autonoma de Madrid under S2018/TCS-4566 grant (CYNAMON), and the CHIST ERA 2017 BDSI PACMEL Project (PCI2019-103623, Spain)

    Design of Multivariate PID Controller for Power Networks Using GEA and PSO

    Get PDF
    The issue of proper modeling and control for industrial systems is one of the challenging issues in the industry. In addition, in recent years, PID controller design for linear systems has been widely considered. The topic discussed in some of the articles is mostly speed control in the field of electric machines, where various algorithms have been used to optimize the considered controller, and always one of the most important challenges in this field is designing a controller with a high degree of freedom. In these researches, the focus is more on searching for an algorithm with more optimal results than others in order to estimate the parameters in a more appropriate way. There are many techniques for designing a PID controller. Among these methods, meta-innovative methods have been widely studied. In addition, the effectiveness of these methods in controlling systems has been proven. In this paper, a new method for grid control is discussed. In this method, the PID controller is used to control the power systems, which can be controlled more effectively, so that this controller has four parameters, and to determine these parameters, the optimization method and evolutionary algorithms of genetics (EGA) and PSO are used.  One of the most important advantages of these algorithms is their high speed and accuracy. In this article, these algorithms have been tested on a single-machine system, so that the single-machine system model is presented first, then the PID controller components will be examined. In the following, according to the transformation function matrix and the relative gain matrix, suitable inputs for each of the outputs are determined. At the end, an algorithm for designing PID controller for multivariable MIMO systems is presented. To show the effectiveness of the proposed controller, a simulation was performed in the MATLAB environment and the results of the simulations show the effectiveness of the proposed controller

    Swarm Robotics: An Extensive Research Review

    Get PDF

    Learning automata and sigma imperialist competitive algorithm for optimization of single and multi-objective functions

    Get PDF
    Evolutionary Algorithms (EA) consist of several heuristics which are able to solve optimisation tasks by imitating some aspects of natural evolution. Two widely-used EAs, namely Harmony Search (HS) and Imperialist Competitive Algorithm (ICA), are considered for improving single objective EA and Multi Objective EA (MOEA), respectively. HS is popular because of its speed and ICA has the ability for escaping local optima, which is an important criterion for a MOEA. In contrast, both algorithms have suffered some shortages. The HS algorithm could be trapped in local optima if its parameters are not tuned properly. This shortage causes low convergence rate and high computational time. In ICA, there is big obstacle that impedes ICA from becoming MOEA. ICA cannot be matched with crowded distance method which produces qualitative value for MOEAs, while ICA needs quantitative value to determine power of each solution. This research proposes a learnable EA, named learning automata harmony search (LAHS). The EA employs a learning automata (LA) based approach to ensure that HS parameters are learnable. This research also proposes a new MOEA based on ICA and Sigma method, named Sigma Imperialist Competitive Algorithm (SICA). Sigma method provides a mechanism to measure the solutions power based on their quantity value. The proposed LAHS and SICA algorithms are tested on wellknown single objective and multi objective benchmark, respectively. Both LAHS and MOICA show improvements in convergence rate and computational time in comparison to the well-known single EAs and MOEAs
    corecore