156 research outputs found

    A comparison of fuzzy approaches for training a humanoid robotic football player

    Get PDF
    © 2017 IEEE. Fuzzy Systems are an efficient instrument to create efficient and transparent models of the behavior of complex dynamic systems such as autonomous humanoid robots. The human interpretability of these models is particularly significant when it is applied to the cognitive robotics research, in which the models are designed to study the behaviors and produce a better understanding of the underlying processes of the cognitive development. From this research point of view, this paper presents a comparative study on training fuzzy based system to control the autonomous navigation and task execution of a humanoid robot controlled in a soccer scenario. Examples of sensor data are collected via a computer simulation, then we compare the performance of several fuzzy algorithms able to learn and optimize the humanoid robot's actions from the data

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man

    Legged Robots for Object Manipulation: A Review

    Get PDF
    Legged robots can have a unique role in manipulating objects in dynamic, human-centric, or otherwise inaccessible environments. Although most legged robotics research to date typically focuses on traversing these challenging environments, many legged platform demonstrations have also included "moving an object" as a way of doing tangible work. Legged robots can be designed to manipulate a particular type of object (e.g., a cardboard box, a soccer ball, or a larger piece of furniture), by themselves or collaboratively. The objective of this review is to collect and learn from these examples, to both organize the work done so far in the community and highlight interesting open avenues for future work. This review categorizes existing works into four main manipulation methods: object interactions without grasping, manipulation with walking legs, dedicated non-locomotive arms, and legged teams. Each method has different design and autonomy features, which are illustrated by available examples in the literature. Based on a few simplifying assumptions, we further provide quantitative comparisons for the range of possible relative sizes of the manipulated object with respect to the robot. Taken together, these examples suggest new directions for research in legged robot manipulation, such as multifunctional limbs, terrain modeling, or learning-based control, to support a number of new deployments in challenging indoor/outdoor scenarios in warehouses/construction sites, preserved natural areas, and especially for home robotics.Comment: Preprint of the paper submitted to Frontiers in Mechanical Engineerin

    Generic coordination methodologies applied to the robocup simulation leagues

    Get PDF
    Tese de mestrado integrado. Engenharia Informática e Computação. Faculdade de Engenharia. Universidade do Porto. 201

    Artificial Vision in the Nao Humanoid Robot

    Get PDF
    Projecte Final de Màster UPC realitzat en col.laboració amb l'Universitat Rovira i Virgili. Departament d'Enginyeria Informàtica i MatemàtiquesRobocup is an international robotic soccer competition held yearly to promote innovative research and application in robotic intelligence. Nao humanoid robot is the new RoboCup Standard Platform robot. This platform is the new Nao robot designed and manufactured by the french company Aldebaran Robotics. The new robot is an advanced platform for developing new computer vision and robotics methods. This Master Thesis is oriented to the study of some fundamental issues for the artificial vision in the Nao humanoid robots. In particular, color representation models, real-time segmentation techniques, object detection and visual sonar approaches are the computer vision techniques applied to Nao robot in this Master Thesis. Also, Nao’s camera model, mathematical robot kinematic and stereo-vision techniques are studied and developed. This thesis also studies the integration between kinematic model and robot perception model to perform RoboCup soccer games and RoboCup technical challenges. This work is focused in the RoboCup environment but all computer vision and robotics algorithms can be easily extended to another robotics fields

    Robot Games for Elderly:A Case-Based Approach

    Get PDF

    A bibliography experiment on research within the scope of industry 4.0 application areas in sports: Sporda endüstri 4.0 uygulama alanları kapsamında yapılan araştırmalar üzerine bir bibliyografya denemesi

    Get PDF
    Developed countries develop their production sites within the scope of industry 4.0 technology components and experience constant change and transformation to establish economic superiority. This situation allows them to produce more in various fields and thus to rise to a more advantageous position economically. Industry 4.0 technology affects areas within the scope of the sports industry such as sports tourism, athlete performance, athlete health, sports publishing, sports textile products, sports education and training, sports management and human resources, and creates an international competition environment in terms of production and performance. In this study, it is aimed to examine the researches about the usage areas of industry 4.0 in sports. From this point on, researches in the context of the subject have been presented with bibliographic method. In the conclusion section, the weaknesses and possibilities of youth sociology were discussed, and efforts were made to present a projection on what to do about the field. In this respect, a youth sociology evaluation has been tried to be made on the prominent topics, forgotten aspects and themes left incomplete in youth sociology studies. ​Extended English summary is in the end of Full Text PDF (TURKISH) file.   Özet Gelişmiş ülkeler endüstri 4.0 teknolojisi bileşenleri kapsamında üretim sahalarını geliştirmekte ve ekonomik üstünlük kurmak amacıyla sürekli değişim ve dönüşüm yaşamaktadır. Bu durum onların çeşitli alanlarda daha fazla üretmelerine dolayısıyla ekonomik yönden daha avantajlı konuma yükselmelerine olanak sağlamaktadır. Endüstri 4.0 teknolojisi spor turizmi, sporcu performansı, sporcu sağlığı, spor yayıncılığı, spor tekstil ürünleri, spor eğitimi ve öğretimi, spor yönetimi ve insan kaynakları gibi spor endüstrisi kapsamındaki alanları etkilemekte üretim ve performans yönünden ülkeler arası bir rekabet ortamı oluşturmaktadır. Bu çalışmada endüstri 4.0’ın sporda kullanım alanları ile ilgili araştırmaların incelenmesi hedeflenmektedir. Bu noktadan hareketle konu bağlamındaki araştırmalar bibliyografik metodla ortaya konmuştur. Sonuç bölümünde ise sporda endüstri 4.0 kullanım alanları tartışılmış, alana olan katkıları ve olumuz etkilerinin değerlendirilmesi yapılmıştır. &nbsp

    Abstracting Multidimensional Concepts for Multilevel Decision Making in Multirobot Systems

    Get PDF
    Multirobot control architectures often require robotic tasks to be well defined before allocation. In complex missions, it is often difficult to decompose an objective into a set of well defined tasks; human operators generate a simplified representation based on experience and estimation. The result is a set of robot roles, which are not best suited to accomplishing those objectives. This thesis presents an alternative approach to generating multirobot control algorithms using task abstraction. By carefully analysing data recorded from similar systems a multidimensional and multilevel representation of the mission can be abstracted, which can be subsequently converted into a robotic controller. This work, which focuses on the control of a team of robots to play the complex game of football, is divided into three sections: In the first section we investigate the use of spatial structures in team games. Experimental results show that cooperative teams beat groups of individuals when competing for space and that controlling space is important in the game of robot football. In the second section, we generate a multilevel representation of robot football based on spatial structures measured in recorded matches. By differentiating between spatial configurations appearing in desirable and undesirable situations, we can abstract a strategy composed of the more desirable structures. In the third section, five partial strategies are generated, based on the abstracted structures, and a suitable controller is devised. A set of experiments shows the success of the method in reproducing those key structures in a multirobot system. Finally, we compile our methods into a formal architecture for task abstraction and control. The thesis concludes that generating multirobot control algorithms using task abstraction is appropriate for problems which are complex, weakly-defined, multilevel, dynamic, competitive, unpredictable, and which display emergent properties
    corecore