
Open Research Online
The Open University’s repository of research publications
and other research outputs

Abstracting multidimensional concepts for multilevel
decision making in multorobot systems
Thesis
How to cite:

Law, James A (2008). Abstracting multidimensional concepts for multilevel decision making in multorobot
systems. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 2007 James A. Law

https://creativecommons.org/licenses/by-nc-nd/4.0/

Version: Version of Record

Link(s) to article on publisher’s website:
http://dx.doi.org/doi:10.21954/ou.ro.0000fd81

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
https://creativecommons.org/licenses/by-nc-nd/4.0/
http://dx.doi.org/doi:10.21954/ou.ro.0000fd81
http://oro.open.ac.uk/policies.html


Abstracting Multidimensional Concepts for 

Multilevel Decision Making in Multirobot Systems

James A. Law MEng

Submitted in accordance with the requirements for the degree of 

Doctor of Philosophy

The Open University 

Department of Design and Innovation 

Faculty of Technology

September 2007

The candidate confirms that the work submitted is his own and that appropriate 

credit has been given where reference has been made to the work of others.

This copy has been supplied on the understanding that it is copyright material and 

that no quotation from the thesis may be published without proper

acknowledgement.

OtPfTE oP

oP  ^u/fv£& 2 .3  Z o c S



ProQuest Number: 13889938

All rights reserved

INFORMATION TO ALL USERS 
The quality of this reproduction is dependent upon the quality of the copy submitted.

In the unlikely event that the author did not send a com p le te  manuscript 
and there are missing pages, these will be noted. Also, if material had to be removed,

a note will indicate the deletion.

uest
ProQuest 13889938

Published by ProQuest LLC(2019). Copyright of the Dissertation is held by the Author.

All rights reserved.
This work is protected against unauthorized copying under Title 17, United States C ode

Microform Edition © ProQuest LLC.

ProQuest LLC.
789 East Eisenhower Parkway 

P.O. Box 1346 
Ann Arbor, Ml 48106- 1346



Abstract

Multirobot control architectures often require robotic tasks to be well defined before 
allocation. In complex missions, it is often difficult to decompose an objective into 
a set of well defined tasks; human operators generate a simplified representation 
based on experience and estimation. The result is a set of robot rqles, which are not 
best suited to accomplishing those objectives. This thesis presents an alternative 
approach to generating multirobot control algorithms using task abstraction. By 
carefully analysing data recorded from similar systems a multidimensional and 
multilevel representation of the mission can be abstracted, which can be 
subsequently converted into a robotic controller.

This work, which focuses on the control of a team of robots to play the 
complex game of football, is divided into three sections: In the first section we 
investigate the use of spatial structures in team games. Experimental results show 
that cooperative teams beat groups of individuals when competing for space and that 
controlling space is important in the game of robot football. In the second section, 
we generate a multilevel representation of robot football based on spatial structures 
measured in recorded matches. By differentiating between spatial configurations 
appearing in desirable and undesirable situations, we can abstract a strategy 
composed of the more desirable structures. In the third section, five partial 
strategies are generated, based on the abstracted structures, and a suitable controller 
is devised. A set of experiments shows the success of the method in reproducing 
those key structures in a multirobot system. Finally, we compile our methods into a 
formal architecture for task abstraction and control.

The thesis concludes that generating multirobot control algorithms using task 
abstraction is appropriate for problems which are complex, weakly-defined, 
multilevel, dynamic, competitive, unpredictable, and which display emergent 
properties.



Acknowledgements

Firstly, I would like to thank my supervisors, Jeff Johnson and Anthony Lucas- 
Smith, for their input and encouragement during the course of this research. Also to 
Richard, George, Charlie, and Angie for their technical and secretarial support. 
These are the people who helped make things happen, and without whom this 
research would not have been possible.

I would also like to thank the UK Mirosot community for the opportunities I 
have had during this work, above all to John, for all his assistance in getting the 
Mirosot system up and running. John was invaluable in enabling the practical 
experiments in this work.

On a more personal note, I would like to thank all my friends and family for 
their support during the course of this work. To Lindsey, Stacey and Kat, for the 
friendship they have provided, and to Christina for proof reading this thesis and all 
her support over the past months.



Contents

Abstract  ...................            ii

Acknowledgements  ......         iii

Contents ..................         iv

List of Figures  ........          viii

List of Tables.......................................      xi

Listings.......................................          xiii

Chapter 1 Introduction .....          1

1.1 Problem Definition....................... .............................................   3

1.2 Research Questions  ....................       4

1.3 Research Strategy...  .......           5

1.4 Overview of Chapters....................         7

Chapter 2 Background  ........       10

2.1 Control Issues.....           10

2.1.1 Deliberative and Reactive Control  .......       10

2.1.2 Centralised and Distributed Control  ...... ............................. 13

2.1.3 Dynamic Environments .... ....................... ....... .................. 15

2.1.4 Cooperation and Competition....................................  15

2.1.5 Degree of Coordination ....      16

2.1.6 Weakly-Defined Tasks and Machine Learning .......  ....17

2.1.7 Emergence... .............           ....18

2.1.8 Prediction  ...........................     19

2.1.9 Complexity ............        19

2.2 Multirobot Systems and Architectures ............................. ....................21

2.2.1 ACTRESS  ................       21

2.2.2 GOFER.............      24

2.2.3 Swarm Robotics.........................   26

2.2.4 ALLIANCE.. ...........   27



2.2.6 Leader-Follower............................................................................ 32

2.2.7 MURDOCH................................................................................... 34

2.2.8 CAMPOUT................................................................................... 36

2.2.9 TraderBots..................................................................................... 38

2.2.10 Architecture Comparison............................................................. 41

2.3 Robot Football........................................................................................... 43

2.3.1 Football Platforms......................................................................... 45

2.3.1.1 Mirosot.............................................................................. 46

2.3.1.2 Simurosot........................................................................... 47

2.3.1.3 RoboCup Simulation League.............................................47

2.3.2 Strategies, Roles, and Plays............................................................48

2.3.3 Alternative Control Approaches.....................................................52

2.4 Complexity Theory.................................................................................... 57

2.4.1 Multidimensional Representation...................................................57

2.4.2 Multilevel Representation..............................................................61

2.4.3 Concepts and Concept Generation.................................................64

2.4.4 Summary........................................................................   67

2.5 Summary.................................................................................................... 68

Chapter 3 Spatial Structures in Autonomous Goal Seeking Systems................71

3.1 Complexity in Competitive AI Games.......................................................71

3.2 Competing for Space..................................................................................76

3.2.1 Teamwork and the Space-Time Possession Game......................... 78

3.2.2 Experimental Results......................................................................81

3.3 Voronoi Games.............................................................................   87

3.3.1 Spatial Structures............................................................................90

  3.3.2 Spatial Tactics................................................................................94

3.3.3 Experimental Results......................................................................96

3.4 Space in Football......................................................................................102

3.4.1 Analysis of Team Space............................................................... 102

3.4.2 Movement on the Ball.................................................................. 105

v



3.5 Summary.................................................................................................AU/

Chapter 4 Task Abstraction using Concept Generation.................................... 110

4.1 An Architecture for Abstraction...............................................................110

4.1.1 Primitive Generation...............................   112

4.1.2 Variable and Primitive Classification........................................... 114

4.1.3 Hub Generation............................................................................117

4.2 Multilevel Structure in Robot Football.................................................... 119

4.3 Architecture Implementation....................................................................126

4.3.1 Primitive Generation....................................................................126

4.3.2 Variable and Primitive Classification........................................... 130

4.3.3 Hub Generation............................................................................136

4.3.4 Significance of Analysis...............................................................139

4.3.5 A Comparison to Earlier Work..................................................... 145

4.4 Strategy Generation..................................................................................146

4.5 Play Generation by Goal Difference......................................................... 155

4.5.1 Example: IN HOME....................................................................156

4.6 Play Generation by Comparison............................................................... 158

4.7 Tactic Generation.....................................................................................161

4.8 Statistical Analysis of Hub Occurrence.................................................... 164

4.9 Propagation of Variables and Hubs across Levels................................... 167

4.9.1 Experiment...................................................................................169

4.9.2 Results and Discussion.................................................................170

4.10 Applicability of Variables and Hubs across Leagues............................. 174

4.10.1 Experiment.................................................................................177

4.10.2 Results and Discussion............................................................... 178

4.11 Computational Efficiency....................................................................... 182

 4.12 Summary................................................................................................184

Chapter 5 Strategy Generation and Performance Evaluation on Real
Robots............................................................................................   190

5.1 Control Architecture.................................................................................191

5.2 Strategy Generation.................................................................................. 193

5.3 Controller Implementation....................................................................... 197
vi



5.3.1 Controller Example......................................................................199

5.4 Performance Evaluation.......................................................................... 208

5.5 An Architecture for Analysis and Control................................................216

5.5.1 Implementation Flexibility...........................................................218

5.6 Summary.................................................................................................. 219

Chapter 6 Conclusions......................................................................................... 222

6.1 Answers to the Research Questions.........................................................223

6.2 Contributions to Knowledge.................................................................... 228

6.3 Further Work........................................................................................... 230

6.4 Closing Statement.....................................................................  233

Appendix A Benchmarking the Performance of Real Robots...........................234

A.l Static Vision Calibration........................................................................ 235

A.2 Dynamic Vision Calibration....................................................................238

A.3 Velocity Testing...................................................................................... 241

A.4 Acceleration Testing............................................................................... 243

A.4.1 Tangential Acceleration...............................................  243

A.4.2 Centripetal Acceleration..............................................................245

A.4.3 Acceleration Constraints..............................................................249

A.5 Motion Accuracy.................................................................................... 250

A.6 Striking a Static Ball............................................................................... 254

A .l  Striking a Moving Ball............................................................................256

A.8 Ball Passing in a Triangle........................................................  259

A.9 Summary................................................................................................. 260

References............................................................................................................. 261

vii



List of Figures

2.1 A Deliberative Control Architecture................................................................. 11

2.2 A Reactive Control Architecture....................................................................... 12

2.3 A Hybrid Architecture Containing both Deliberative and Reactive
Elements...........................................................................................................12

2.4 Representation of a Centralised Architecture.................................................... 13

2.5 Representation of a Distributed Architecture.................................................... 14

2.6 Cooperative Task Processing in ACTRESS......................................................23

2.7 Architecture of a Single GOFER Robot..........................................   25

2.8 Architecture of a Simple Robot Swarm.............................................................26

2.9 The ALLIANCE Architecture...........................................................................28

2.10 An Instance of the M+ Architecture................................................................30

2.11 The Leader-F olio wer Architecture..................................................................32

2.12 A Simplified Representation of the MURDOCH Architecture....................... 35

2.13 The CAMPOUT Architecture........................................................  37

2.14 Architecture of a TraderBots Robot................................................................39

2.15 Mirosot System Diagram.................................................................................46

2.16 Typical Task Decomposition in Multirobot Systems...................................... 50

2.17 Some n-ary Relations in Football....................................................................58

2.18 Hypemetworks of q-Near Simplices.............................................   58

2.19 Chains of q-Connected Simplices ....................................  59

2.20 A Star-Hub Configuration...............................................................................60

2.21 Mapping of Elements into Named Structures................................................. 61

2.22 A Set of Elements Mapped into Two Distinct Structures............................... 62

2.23 A Possible Football Structure..........................................................................63

2.24 OR-Aggregation between Levels in a Multilevel Structure............................ 63

2.25 Multilevel Concept Generation.....................................................  66

2.26 Relation between Concept Generation and Hypemetworks............................ 67

3.1 Structures in Chess...........................................................................................72

viii



3.2 The Two-on-One Set Piece in Football........................................................... 76

3.3 Spatial Ownership of a Football Pitch............................................................. 77

3.4 Team Space in the Space-Time Possession Game...........................................79

3.5 Cell Ownership in the Space-Time Possession Game.......................................80

3.6 ID Voronoi Line and Circle Games................................................................. 88

3.7 Grid Positioning Strategies in the Voronoi Game, Showing the Best 
Opponent Move................................................................................................89

3.8 Constructing the Voronoi Diagram..................................................................90

3.9 Localised Effect of Point Placement on the Voronoi Diagram.........................91

3.10 Creating a Voronoi Cell to Neighbour Specific Points...................................92

3.11 Capturing Coordinates in the 2D Voronoi Game............................................93

3.12 Separating Neighbouring Cells by Point Placement........................................93

3.13 Tree Diagrams................................................................................................ 94

3.14 Capturing Cells by Placing a Single Player.....................................................95

3.15 Cell Takeover by Two Players, hi and /h ........................................................96

3.16 Strategy Results for the One-Round Voronoi Game..................................... 100

3.17 Possession Frequencies during a Robot Football Match............................... 104

3.18 Comparison of Ball Position and Controlled Area in a Robot Football 
Match, Highlighting Similar Features............................................................ 105

3.19 Defensive and Attacking Structures in Robot Football................. ...............107

4.1 Block Diagram of the Proposed Abstraction Architecture.............................. I l l

4.2 Block Diagram of the Primitive Generation Component................................ 112

4.3 Block Diagram of the Classification Component............................................ 115

4.4 Block Diagram of the Hub Generation Component........................................ 117

4.5 Robot Football Control Decomposition into Strategies, Plays, Tactics and 
Skills...............................................................................................................120

4.6 An Example of Robot Football Decomposition into Strategies, Plays,
Tactics and Skills...............   121

4.7 A Multilevel Football Strategy Structure Consisting of Plays, Tactics and 
Skills...............................................................................................................122

4.8 A Multilevel Strategy Structure Showing the Aggregation of Concepts........ 125

4.9 Classification of Variables by Average........................................................... 133

4.10 Occurrences of Variables in Measured Passes..............................  140

ix



4.11 Illustration of a Successful Classifier Variable.............................................142

4.12 Illustration of another Successful Classifier Variable................................... 142

4.13 Occurrences of 2 Variable Hubs in Measured Passes................................... 143

4.14 Occurrences of 3 Variable Hubs in Measured Passes................................... 144

4.15 Mapping of Variables into a Strategy Concept..............................................147

4.16 Probability of Hubs Occurring Naturally................ ......................................166

4.17 Venn Diagram Showing the Relation between Variables and Concepts
in the Football Structure.................................................................................168

4.18 Mapping of Robot Football Leagues into a General Robot Football 
Concept...........................................................................................................175

4.19 Tractability of Subsets...................................................................................182

5.1 Block Diagram of the Proposed Control Architecture.................................. 191

5.2 Pitch Segmentation Diagram.........................................................................202

5.3 Comparison of Ball Position and Controlled Tearn Area................................216

5.4 An Architecture for Analysis and Control.......................................  217

A.l Parallax Error................................................................................................ 236

A.2 Static Vision Calibration Results...................................................................237

A.3 Effect of Motion on Patch Identification.......................................................239

A.4 Velocity Profile of a Mirosot Robot ............................................................242

A.5 Tangential Acceleration Characteristics of a Mirosot Robot........................244

A.6 Centripetal Acceleration Characteristics of a Mirosot Robot ..............246

A.7 Motion Trajectory under Centripetal Acceleration........................................247

A.8 Mirosot Robot Wheelbase............................................................................ 248

A.9 Effect of Motion on Centre of Effort............................................................ 249

A. 10 Acceleration Limits of a Mirosot Robot.......................................................250

A. 11 GoT o Algorithm Traj ectory Results.............................................................252

A. 12 GoTo Algorithm Speed Performance...........................................  253

A. 13 Experimental Setup for Striking a Static Ball..............................................254

A. 14 Results for Striking a Static Ball..................................................................255

A. 15 Experimental Setup for Striking a Moving Ball...........................................257

A. 16 Results for Striking a Moving Ball 1............................................................. 258

A. 17 Results for Striking a Moving Ball II ...........................................................258

x



List of Tables

2.1 Comparison of Multirobot Architectures..........................................................42

2.2 Incidence Matrix for Figure 2.20...................................................................... 60

2.3 Comparison of Concept Generation and Hypemetwork Terminology..............67

3.1 Estimated Game Tree Complexity for some Standard Games .......................73

3.2 Ability of AI Game Programs Compared to Human Players............................75

3.3 Scores for Strategies in the Space-Time Possession Game...............................83

3.4 Average Areas Held by Strategies in the Space-Time Possession Game..........84

3.5 Mean and Median Scores for Positioning Strategies in the One-Round 
Voronoi Game................................................................................................101

3.6 Scores and Area Possessions Measured in RoboCup Simulation League 
Matches...........................................................................................................103

4.1 Play Concept Descriptions..............................................................................124

4.2 A Selection of Arbitrarily Chosen Variables................................................... 128

4.3 RoboCup Team Ranking by Goal Difference................................................. 131

4.4 Variables Selected for Concept Generation..................................................... 148

4.5 Average Variable Values Measured in Strategy Primitives............................ 150

4.6 Common Variables in Strategy Primitives...................................................... 151

4.7 Significant Variables and Values for Strategy Generation..............  152

4.8 Incidence Matrix for the Winning Strategy Primitives.................................... 153

4.9 Maximal Strategy Hubs...................................................................................154

4.10 Common Variables in Play Primitives.......................................................... 157

4.11 Maximal Hubs for Plays Analysed by Goal Difference............................... 157

4.12 Maximal Hubs for Plays Analysed by Comparison...................................... 160

4.13 Maximal Pass Hubs  ..........................................................  163

4.14 Variables Selected for Pass Generation......................................................... 163

4.15 Mapping of Variables through the Multilevel Structure.............................. 171

4.16 Accuracy of Measured Aggregate Hubs....................................................... 172

4.17 Accuracy of Refined Aggregate Hubs........................................................... 173

xi



4.18 Common Defensive Play Hubs across Football Leagues.............................. 178

4.19 Common Defensive Variables and Values across Football Leagues............ 179

4.20 Common Offensive Play Hubs across Football Leagues............................... 180

4.21 Common Offensive Variables and Values across Football Leagues............. 181

5.1 Play Representatives Selected for Strategy Generation................................... 195

5.2 Variable Descriptions and Values for Strategy Generation............................. 196

5.3 Modified Variable Values for Controller Generation......................................198

5.4 Mapping of Variables to Named Pitch Segments............................................204

5.5 Selection of Segments for Target Generation..................................................208

5.6 Results for Reproduced Representatives.........................................................210

5.7 Results for Defensive Play Primitives.............................................................211

5.8 Results for Offensive Play Primitives.............................................................212

A. 1 Positional Errors Measured in the Vision System..........................................238

A.2 Measured GoTo Algorithm Durations............................................  252

A.3 Results for Stationary Striker Performance....................................................256

xii



Listings

2.1 Pseudo Code Role Based Strategy....................................................................51

4.1 Pseudo Code for Identifying Primitives..........................................................129

4.2 Pseudo Code for Measuring Variables............................................................130

4.3 Pseudo Code for Extracting the Primitive Desirability Criteria...................... 131

4.4 Pseudo Code for Classifying Primitives..........................................................132

4.5 Pseudo Code for Calculating Variable Averages............................................ 132

4.6 Pseudo Code for Classifying Variables...........................................  135

4.7 Pseudo Code for Creating the Incidence Matrix............................................. 136

4.8 Pseudo Code for Performing the Star-Hub analysis........................................ 137

5.1 Pseudo Code for Representative Selection......................................................199

5.2 Pseudo Code for Action Generation...............................................   201

5.3 Pseudo Code for Action Effect Calculation....................................................203

5.4 Pseudo Code for Action Selection...................................................  206

xiii



Chapter 1 

Introduction

Coordinating teams of robots to cooperate in dynamic environments is an important 

research problem in the robotics community. Many target applications have been 

generated and are awaiting the arrival of a suitable implementation of the 

technology. However, as of yet, there has been no definitive solution to creating an 

architecture capable of satisfying the general needs of such a system. Most 

architectures are focused on a particular domain, whether it be a specific application 

or a particular control issue; such as task allocation. In this thesis we will 

demonstrate a novel approach, developed from fundamental principles, which 

should be applicable to a wide range of problems, both inside and out of the field of 

multirobot research.

Our interest stems from the problem of describing, analysing and simulating 

complex systems. A definition of what makes a system complex will be left until 

the following chapter, but for now consider it as a system with many interacting 

variables where the link between cause and effect is not clearly understood. Such 

systems exist in multidimensional and multilevel problem space. In a multirobot 

system, for example, the number of possible interactions is enormous. These can be 

inter-robot, robot-environment, or even inter-environment. To consider every 

possible option and plan for the best outcome using traditional deliberative control 

methods is impractical, if not impossible; there is a combinatorial explosion of 

decisions to be made by the control architecture at every step. To overcome the need



to search such vast spaces, many multirobot approaches rely on very simplified 

representations of the environment and task. Such systems are limited by the 

programmer’s ability to identify and plan for specific events. If an event occurs 

which is unexpected, then the behaviour of the robotic system can be unpredictable, 

or even terminal.

The behaviour of such complex systems emerges from the interactions of the 

system at lower levels. For example, consider an orchestra playing a symphony. We 

know that the resulting audible music has been designed by instructing each 

individual musician to play a different sequence of notes. Each part, when played on 

its own, may be of little significance, but when played together the symphony 

emerges. Now consider that we know what the symphony should sound like, but we 

have no manuscript. In this case each musician would need to work out their own 

score. If we had vague ideas about melodies some of the musicians had at different 

times we could get them to play these, but the result would not be an accurate 

reproduction of the symphony. This is similar to the way in which many complex 

robotic problems are currently tackled. Engineers use their experience to estimate 

the sequence of robotic tasks required to complete an objective, and the outcome is a 

sub-optimal generalisation of the required solution. In our orchestral example, a 

better solution would be for each musician to try and work out their score by 

listening for their instruments in the full symphony. This is analogous to the method 

of analysis and control we present in this work. The problem lies in trying to 

distinguish the different parts and instruments from the finished piece, or identifying 

and reconstructing the actions of each robot required to generate an emergent 

behaviour sufficient for completing the objective.

2



1.1 Problem Definition

Our work will focus on a set of multirobot problems which are complex, weakly- 

defined, multilevel, dynamic, competitive, unpredictable, and which display 

emergent properties. We briefly define these terms below:

• Multirobot -  A system comprising of more than one robot.

• Complex -  Being dependent on many interacting variables.

• Weakly-defined -  Having only limited information on how to achieve an 

objective.

• Multilevel -  Being represented by a vertically graduated structure of 

elements, with abstraction occurring between levels.

• Dynamic -  In an environment which is constantly changing, irrespective of 

whether a robot is performing an action.

• Competitive -  Where forces are constantly in action to oppose the 

objective of the robots.

• Unpredictable -  Where the future state of the system depends on factors 

which are unknown or unmodelable.

• Emergent -  High level behaviour of the system is not directly controlled, 

but arises from the interaction of elements at a much lower level.

3



1.2 Research Questions

With regard to the problem set out above, we aim to provide an answer to the 

question:

How can we control a team o f robots to perform a weakly-defined 

cooperative task in a complex, dynamic, unpredictable and competitive 

environment?

We will pursue the answer to this question by answering the following:

1. Can we identify and construct useful representations of complex, dynamic, 

unpredictable and competitive environments in ways which facilitate the 

use of robots?

2. Can we extract useful information on how to control a team of robots by 

recognising the occurrence of key structures in different teams operating in 

similar situations?

3. Can we use the same techniques to extract information about tasks in the 

environment at varying levels of representation?

4. Can we identify relations between interacting levels of representation?

5. Can we build our own representation of a set of tasks of varying 

complexity by combining information from different levels of analysis?

6. By combining information in this way, can we create an emergent strategy 

for controlling robots in the environment?

7. Can a team of robots, built upon these principles, function effectively in 

the given environment?

4



8. Can these ideas be combined to form an architecture whereby a robotic 

system can learn to perform in a given environment?

The following sections will lay out our argument for answering these 

questions. After introducing some fundamental ideas in robotics, as well as 

reviewing current architectures in chapter 2, chapters 3-5 will cover our 

experimental work, with conclusions drawn in chapter 6.

Published material arising from this thesis can be found in (Law, 2005; Law & 

Johnson, 2004, 2006, 2008; Robinson et al., 2004).

1.3 Research Strategy

This thesis is primarily concerned with the structural representation of complex 

systems. These systems have many elements, which interact on many levels, and 

through which the behaviour of the system emerges. Typically, these interactions 

are unknown, and control of the system is difficult, if not impossible. The approach 

described here is a novel technique for task abstraction and control. If the elements 

and their interactions, corresponding to specific behaviours (which we term 

concepts), can be identified, a detailed system description can be built. By 

reconstructing these interactions using a controller, the desired system level 

behaviour can be created. Listed below are the approaches which shall be used to 

tackle the questions given above.

1. We argue that there exists a set of measurable structures (spatial, temporal,

multilevel, etc.), which are related to any given task. We focus on the

game of robot football, in which the formational structures between groups

of players, and relationships between individual players, the ball and the
5



goalposts, represent the state of the system. Using experimental evidence, 

we will show how spatial structures are integral to the success of teams, 

and how these structures can be identified by a robotic system.

2. By examining recorded data we will show that some structures appear 

frequently in robot football matches, and that these structures are 

descriptions of how to play the game. We will also show that there are 

structures which appear more often within winning teams than within 

losing teams, and that these structures describe how to play the game well. 

Similarly there will be structures which appear more often in losing teams, 

which will describe how to play poorly.

3. We shall describe robot football as a multilevel system and introduce a 

series of interacting layers which we will term skills, tactics, plays and 

strategies. We will abstract representations for key structures at each of 

these levels, which describe emergent behaviours in terms of interacting 

elements. This will show how the same analysis techniques can be used to 

describe the system from macro through to micro levels.

4. Emergence occurs when elements of a system at a lower level affect 

behaviour at a higher level. Examining our abstracted representations, we 

show how sets of elements map to a low level behaviour, and how these 

sets are also evident in higher level behaviours which subsume those lower 

level behaviours.

5. A robot football strategy, like other complex systems, contains a multilevel 

structure of behaviours, or subsystems. By abstracting a set of 

representations which match each of these subsystems, we can build an



entire system representation across multiple levels. We focus on 

generating a football strategy as a multilevel structure of skills, tactics, and 

plays.

6. Since each level of representation describes an emergent behaviour in 

terms of a set of interacting elements, and since sets of elements are shown 

to propagate across levels, the resulting strategy will be emergent. The 

entire strategy will be represented by sets of interacting low-level elements.

7. We build a controller to reconstruct the individual elements measured in 

our analysis. By generating the sets used to represent each behaviour, we 

aim to reproduce that behaviour. We reproduce the upper levels of a 

football strategy to show how a high level positional football behaviour 

emerges from the interaction of low level elements.

8. The task abstraction process is a learning mechanism, which robots can use 

to learn emergent behaviours. Although initially performed on a finite set 

of data, new data can be included, and the process repeated, to enable the 

robots to continue to develop. The controller described enables the robots 

to reproduce these learnt skills, and generate new data by playing other 

teams. By combining these two techniques, we generate an architecture 

which satisfies the problem, using a closed loop learning mechanism to 

generate desirable emergent solutions to complex problems.

1.4 Overview of Chapters

We begin in chapter 2 by introducing some important themes in robotic control,

followed by a brief summary of the most popular multirobot control architectures to
7



date. We summarise the strengths and weaknesses of these systems and evaluate 

them in terms of our problem definition, highlighting the need for an alternative 

method of control. Chapter 2 continues with an introduction to robot football, the 

problems, typical controllers, and an explanation of the three types of robot football 

we will focus on in this thesis. It concludes with an introduction to some complexity 

theory, which will be used to develop the analysis method.

Chapter 3 examines spatial structures and their importance in robot football. It 

begins by comparing robot football to some traditional AI turn-based games, and 

showing that its complexity prevents it from being solved in a similar manner. 

Following the examples of chess and Go algorithms, we investigate the use of set 

pieces, and spatial structure, to confront this complexity.

Using cellular automata we examine simple strategies in a game to capture 

space. This leads into an analysis, using Voronoi diagrams, of how players can 

configure themselves to control useful areas on a football pitch. Further Voronoi 

analysis of robot football data shows how these areas are important in the game. 

Since areas are of importance, so are the configurations of players; this is the 

Voronoi-Delaunay dual property.

Having verified the importance of spatial structure in football, chapter 4 

undertakes to abstract emergent behaviours from low level spatial configurations. 

We introduce our architecture for abstracting the properties which generate emergent 

behaviours. Our implementation requires identifying a multilevel structure of 

concepts (behaviours), which together describe a complete robot football strategy. 

Taking each concept in turn we search for commonly occurring relations of 

variables. Some relations appear (or do not appear) in many football matches.



These are likely to signify general conditions for playing the game. Some spatial 

structures appear more frequently in winning teams than in losing teams (and vice- 

versa), and these may describe why some teams perform better than others.

Chapter 4 also shows that relations of variables migrate between levels in the 

multilevel structure. By combining sets using logical operators, we can generate sets 

(or set fragments) on higher or lower levels of the structure. We illustrate these 

relations using Venn and cone diagrams. Common sets are also shown to exist 

between different types of robot football.

In chapter 5 we introduce an architecture for emergent control based on the 

reconstruction of representatives. We reconstruct the higher levels of a robot 

football strategy from results obtained in chapter 4. To support our thesis, five 

emergent strategies are tested experimentally: performance is measured for the 

controller alone, followed by implementation on simulated robots, and finally on the 

real robots. Desired behaviour and shortcomings are observed and commented 

upon. We combine the architectures for task abstraction and control into a single 

arrangement and describe its application to alternative systems.

Finally, in chapter 6, we draw our conclusions, and reflect back on the 

problems and questions posed in chapter 1. We close by considering ways to further 

the research presented in this thesis.

Appendix A describes benchmark experiments performed on our Mirosot 

robots. These benchmarks provide us with information on the limitations of our 

robots, and give a measurable comparison to other robotic systems. They are carried 

out prior to the work in chapter 5 to distinguish between failures in our abstracted 

controller, and failures in low level robot handling.



Chapter 2 

Background

Before embarking on our investigation, we will introduce some important themes 

and ideas in robotics. We will define some common control-related topics, review 

relevant control architectures, establish our robotic task, and introduce some general 

complexity theory.

2.1 Control Issues

The following issues are all important to the field of multirobot coordination, and of 

particular relevance to the work undertaken in this thesis.

2.1.1 Deliberative and Reactive Control

These are the two main styles of decision making in robotics. Deliberative 

architectures follow the symbolic AI approach, using the sense, plan, act model 

(figure 2.1). In the sense operation, a robot begins by observing its environment and 

constructing symbols to represent its state. It then plans a sequence of actions using 

these symbols and its understanding of the task. Finally, in the act stage, it executes 

the plan. Deliberative architectures can be slow and ineffective in highly dynamic 

environments, when the computation time for the sense, plan, act cycle becomes 

significant. Such systems also fare poorly when encountering unexpected events. 

For a robot to work reliably in an environment, it must be programmed to handle 

information about every possible stimulus.

10



Environment

Sense

Plan

Act

Figure 2.1 A Deliberative Control Architecture

Reactive architectures, including the well known branches of subsumption 

(Brooks, 1986) and behaviour based control (Arkin, 1987), remove the need for 

generating symbols by using stimuli to directly influence the robots actions. This 

follows the philosophy that “the world is its own best model” (Brooks, 1990). 

Walter (1953) and Braitenberg (1984) produced robots where the sensors were hard 

wired to the actuators, producing simple behaviours such as light following or 

avoidance. Due to the lack of deliberative decision making, these architectures 

respond quickly in dynamic environments. They also respond well to unexpected 

events, since they have no model of how the environment should be behaving, so no 

conflicts with their expectations occur. Due to this, they are well suited to complex 

and unpredictable environments. An extension of these ideas added behaviours, 

where sets of stimuli were mapped to sets of responses (Brooks, 1989). By building 

a number of behaviours, then switching between them, more complex actions can be 

performed. The subsumption architecture consisted of a number of behaviours built 

into a hierarchy (figure 2.2). Simple behaviours at the lower level are subsumed into 

more complex behaviours at higher levels. A major drawback of reactive 

architectures is their inability to plan and modify their goals, making them unsuitable 

for many applications.

11



Sensors

Reason

Wander

Build Maps

Avoid Objects

Explore

Actuators

Figure 2.2 A Reactive Control Architecture

To address the dynamic requirements, reliability, and need for planning, hybrid 

architectures containing both decision making processes have been implemented 

(Arkin, 1990; Gat, 1992). These systems usually consist of three layers (figure 2.3). 

At the lowest level are the reactive behaviours, which deal with time-critical 

responses. At the uppermost level is the deliberative function, which handles 

forward planning. In between is a mediator layer, which handles the interaction 

between deliberative and reactive aspects of the architecture.

Deliberative Layer

Mediator Layer

Reactive Layer

Environment

Figure 2.3 A Hybrid Architecture Containing both Deliberative and Reactive

Elements

12



2.1.2 Centralised and Distributed Control

This refers to whether the decision making process is carried out in one place, or 

whether it is spread amongst the robots. In centralised systems, the team of robots 

can be considered as a single system with many degrees of freedom. The 

information provided by the sensors is fed back to a single robot, or computer (figure 

2.4). With all the information at hand, the controller then calculates all the relevant 

actions and sends these out to all the corresponding robots, which then carry out 

these actions. This type of architecture includes leader-follower systems, where a 

single leader robot coordinates the actions of its followers, such as (Chaimowicz, 

Sugar, Kumar, & Campos, 2001).

In a centralised system, passing all the relevant information to one processor 

allows for optimal plans to be made, provided the options are limited, and the 

environment is relatively static. However, in large, dynamic systems, the time taken 

to collate and process all the information can be significant. Furthermore, the

>  Communication

Agent

Figure 2.4 Representation of a Centralised Architecture

All agents communicate through a central node.

13



complexity of calculating the optimal response increases dramatically as more 

robots, stimuli, or action options are introduced. Having all decision making 

processes at a single point also affects the robustness to failure of the system. If the 

lead robot malfunctions, then the whole system is disabled.

In a distributed system, the planning element is decentralised and spread 

amongst the members of the team (figure 2.5). Usually this means each robot uses 

information from its own sensors to calculate its own set of actions. In this way, the 

communication requirements at a single point are reduced, the complexity of 

calculations is significantly diminished, and thus the system is able to respond much 

faster to changes in the environment. Also, since there is no single leader, the 

system is more robust to failures. The main drawback is that the limited information 

available to each robot may prevent optimal solutions from being found.

In distributed systems teams are sometimes given the ability to form sub­

groups, in which information is passed between robots to give them a better 

understanding of the situation, allowing them to form more optimal solutions (Dias,

Communication

Agent

Figure 2.5 Representation of a Distributed Architecture

Agents communicate directly with one another.

14



2004). Similarly, centralised systems can incorporate distributed elements to reduce 

communication requirements and speed up response times (Caloud, Choi, Latombe, 

Le Pape, & Yim, 1990).

2.1.3 Dynamic Environments

We define a dynamic environment as one which may change without any interaction 

from a robot. This is important as it defines the level of dexterity and the 

computation speed required of a robot and its control architecture. Clearly, a robot 

which takes a minute to move ten meters is going to be of no use as a football player, 

but may be suitable for cleaning work. Correspondingly, there is a range in the rate 

of change within a dynamic system. The faster changes occur, the faster the 

response of a robotic system will need to be. Many multirobot systems have been 

generated to perform in environments which are not dynamic, or which have very 

little in the way of dynamic requirements. Applications such as box pushing 

(Mataric, Nilsson, & Simsarin, 1995; Stilwell & Bay, 1993) are not dynamic, 

whereas pursuit-evasion systems (Buason & Ziemke, 2003; Vidal, Shakemia, Kim, 

Shim, & Sastry, 2002) are. In this thesis we focus on highly dynamic systems, where 

robots are required to work in real time with strict limitations on the time allocated 

to decision making.

2.1.4 Cooperation and Competition

The majority of multirobot systems are designed to work as a team, with robots 

working together cooperatively to perform a task. By working together, a group of 

robots can achieve tasks which a single robot alone would be incapable of, such as 

the movement of large objects (Kube & Bonabeau, 2000; Sugar & Kumar, 1999), or

15



assisted cliff descent (Pirjanian et al., 2002). Groups of robots can also achieve 

some tasks faster than a single robot. Examples include collective construction 

(Wawerla, Sukhatme, & Mataric, 2002), site clearance (Parker & Hong, 2002), 

foraging (Sugawara, Sano, Yoshihara, Abe, & Watanabe, 1999), and exploration and 

mapping (Simmons et al., 2000). The opposite are tasks where robots compete 

against one another. Such systems have been demonstrated in predator-prey systems 

(Buason & Ziemke, 2003; Floreano & Nolfi, 1997). We are particularly interested in 

systems which display both, where a team of robots works together in competition 

against an opponent robot, or team of robots. These exemplify team games, or 

pursuit and evasion style security applications (Parker, 2002; Vidal et al., 2002).

2.1.5 Degree of Coordination

A recent interesting development in the field of team robotics has been the focus 

upon the degree of coordination required between team members. Consider a swarm 

of robots tasked with clearing an area (Brooks, Maes, Mataric, & More, 1990). Each 

robot moves around within a given area until it finds a rock. When it does so, it 

picks it up and carries it to the edge of the area where it is deposited. In this system 

the robots do not require any explicit coordination to achieve their task, although 

they are acting together to fulfil the same objective. In an alternative system, two 

robots are tasked with carrying a large object (Barnes, Ghanea-Hercock, Aylett, & 

Coddington, 1997; Sugar & Kumar, 2002). In this example, the two robots must 

closely coordinate their actions to ensure the load is not dropped, twisted, or broken. 

Emery et al. (2002) distinguish between the two types of teamwork by defining them 

separately as collaboration and coordination; “Collaboration occurs when multiple 

robots are working towards the same goal but do not explicitly coordinate their

16



actions”, whereas “coordination involves more explicit protocols for deciding which 

robot will do what when”.

Chaimowicz et al. (2001) introduce the concept of tightly coupled cooperation 

for tasks that cannot be completed by a single robot, and require real-time 

coordinated control between robots. Such problems are commonly ascribed to 

collective box pushing (Kube & Zhang, 1992; Rus, Donald, & Jennings, 1995), 

material handling (Sugar & Kumar, 2002), and coordinated security patrols (Kalra & 

Stentz, 2003). A problem with this description, is that the environments are not 

usually highly dynamic; robots are allowed time to consider and communicate their 

actions. For example, in the case of box pushing, the activities of robots do not need 

to be closely orchestrated as satisfactory results can be obtained through turn taking 

schemes, or even uncoordinated collective behaviours. Huntsberger et al. (2003) 

refine the definition to exclude such cooperation where there is time to consider and 

communicate actions. Their work emphasises “tasks that inherently require tight 

coordination under strict physical constraints” which are “characterized by 

constraints imposed on the activities of one robot as a function of the state of the 

others”.

2.1.6 Weakly-Defined Tasks and Machine Learning

In the previous chapter we introduced our concept of a weakly-defined task as one in 

which we had little information on how to achieve the objective. In these situations, 

or those in which the optimal solution is not known, machine learning algorithms 

can be employed to try and solve the task, or improve the performance of the system.

An agent is said to learn from experience with respect to some task or

performance measure, if its performance measure for the task improves with
17



experience (Mitchell, 2006). Therefore, it is necessary to define measurement 

criteria by which to asses the performance of the system. Learning systems usually 

consist of a skill to be leamt, a mathematical representation of that skill within the 

robot, an algorithm to tune the representation toward the actual skill, and some 

learning data. In the case of robot systems, this learning data is usually acquired by 

the robot repeating the skill with minor permutations. By sequentially selecting the 

best attempt, and modifying the representation, the robot is driven toward obtaining 

the required skill. This is known as reinforcement learning. Some multirobot 

learning systems are detailed in (Arkin, Endo, Lee, MacKenzie, & Martinson, 2003; 

Balch, 1999; Liu, Wang, Zhiqiang, & Zengqi, 2004; Stone & Veloso, 2000).

2.1.7 Emergence

Goldstein (1999), defines emergence as “the arising of novel and coherent structures, 

patterns and properties during the process of self-organization in complex systems”. 

In a team of robots, the emergent behaviour of the system is that which is evident at 

a macro-level, but is not explicitly stated within the control structure. It arises from 

the interaction of elements of the control architecture at the micro-level. Hence the 

resulting behaviour is not programmed, but emerges.

Emergence is commonly seen in distributed systems, where robots have limited

information, and act according to their local environment. When viewed on a global

scale the interactions of the robots produce an emergent system behaviour, which is

different to those exhibited and programmed into each robot. Examples of

emergence in distributed systems are in swarm applications such as foraging

(Sugawara et al., 1999) and aggregation (Gamier et al., 2005). A problem with

emergent behaviours arises when trying to tailor them to a specific requirement.

18



Creating a ‘useful’ emergent system response can be difficult, especially for 

complicated tasks.

2.1.8 Prediction

Often, when discussing prediction in robot teams, we are interested in the effect 

actions will have on events far in the future. We want to be able to predict how 

decisions in the system, or changes in the environment, will affect our ability to 

reach our objective. Such prediction is not viable in the robot football systems 

described in this thesis. Instead, we are limited to short term prediction of some 

modelable physical properties. We can, for example, extrapolate the motion of 

bodies with some accuracy over short periods, but we cannot predict where opponent 

defenders are going to be after the time taken to conduct three passes.

2.1.9 Complexity

Complex systems are high-dimensional, non-linear, non-deterministic systems. The 

behaviour of such systems is emergent, usually due to the effect of self organisation. 

Although there is no agreed definition of what makes a system complex, there are a 

number of properties which tend to be evident in such systems. For example, they 

often have multilevel representations, with abstraction occurring between elements 

on adjacent levels. They contain large numbers of interdependent variables, or 

agents, which interact within the multilevel structure, to generate a combinatorial 

explosion in the space of possible interactions. These interactions give rise to an 

emergent behaviour, which is difficult to link to the underlying variables and agents. 

Such systems cannot be represented by systems of computationally reducible 

equations, or they may not have well specified boundaries.

19



An example of a complex system is that of a transport network. Consider a 

town where the inhabitants are the autonomous agents within the system. Each 

person behaves differently, and although each has a simple destination, the 

interactions between them, and the variables affecting their journey, give rise to 

endless possibilities in traffic flow. The times people start their journey, the 

weather, whether they take a car, bus, train, cycle or walk, whether they stop to meet 

people, and their destination, all affect how the system responds; a minor change in 

any of these variables will affect its emergent behaviour. Such behaviour may, for 

example, be the appearance of a traffic jam. If we are interested in resolving traffic 

jams in a particular area of the town, we need to try and understand the low level 

interactions that cause them before we can design a solution. The science of 

investigating such systems is that of complexity science.

A difficulty when dealing with complex systems is in trying to recreate, or 

change, the behaviour of the system in a desired way. Without a full understanding 

of the system, which is impossible, the outcome of any changes can never be fully 

known. In our example, building a new road may alleviate the congestion in our 

area of interest, but may have undesirable knock on effects. Simulations are often 

used to test the impact of such changes, but since they too contain limited 

information, they are not completely reliable. When trying to control complex 

systems to give a desired response, it is usual to attempt to simplify the 

representation of the problem. However, if the representation is over simplified, it 

loses its meaning, and any generated controller will fail to function as desired.

20



2.2 Multirobot Systems and Architectures

We now come to examine existing work in the field of multirobot research. Many 

tasks and solutions have been generated and demonstrated. Some of these are 

explicit solutions to particular problems, whilst others provide more general 

approaches to solving a variety of problems. The following is a brief overview of 

some of the most well known architectures for tackling general multirobot problems.

2.2.1 ACTRESS

Asama et al. (1989) introduce ACTRESS, an architecture aimed at distributed 

control of a heterogeneous robotic team. It is based on the Universal Modular 

ACTOR Formalism (Hewitt, Bishop, & Steiger, 1973) for information processing, in 

which the units for information processing are termed actors. In ACTRESS, robots 

are one subset of units called robotors, which are robotic forms of actors. Robotors 

are defined as autonomous components with the ability to make decisions, 

understand tasks, recognise their environment and communicate with other 

components. Examples of possible robotors are given as robots, computer systems 

(including simulators), and intelligent sensors. The architecture is said to be 

reliable, extensible, flexible, efficient, and adaptable, though this is stated in a way 

as to be applicable to any multirobot system. Stricter compliance to these values is 

considered in later architectures.

ACTRESS focuses on the organisation of communication, which is split into 

two layers. Communication protocol is the method of establishing communication 

between devices and guaranteeing data transmission, and is based on the hardware 

used. Message protocol is the method for understanding these communications, and

21



is split into five levels of abstraction from sensor and control data up to task 

descriptions.

Collaboration between robots, and a formal organisation of teams, is 

introduced in (Asama et al., 1994). Each robot initially selects a subtask from a 

human generated mission. Execution is then split into three parts: task planning, 

team organisation, and motion planning (figure 2.6). In the planning stage the robot 

refers to a knowledge base to divide the task into a set of actions. In the organisation 

phase it consults another knowledge base to obtain functions to undertake each 

action. If the robot has the required functionality it proceeds to undertake the task; if 

not, it becomes a coordinator and attempts to form a team to conduct the task. In the 

motion planning stage, the coordinator plans the motions for all the members of the 

team.

Team formation is conducted through a bidding process, using the contract net 

protocol (Smith, 1980). Free robots bid to become part of the team based on their 

ability to perform the tasks. A learning algorithm is included, which monitors the 

bidding process, and stores the results in knowledge base 3 (Figure 2.6). This speeds 

up subsequent rounds of bidding by enabling the coordinator to tailor the auction to 

the most suitable cooperators.

In (Asama et al., 1989), ACTRESS is used to control two simulated agents 

pushing boxes in a static environment. Further investigation covers efficient 

communication with an environment manager (Asama, Ozaki, Ishida et al., 1991), 

and collision avoidance (Asama, Ozaki, Itakura et al., 1991).

ACTRESS relies on strongly defined tasks and functions, as represented by the

knowledge bases. It is demonstrated for movement and box pushing tasks.

22



Task planning C Task 1

Knowledge base 1
(  S te p 1

Team organization

Knowledge base 2
Required Function 

for Step 1

Knowledge base 3 Team for Steo 1

(̂ ^ordinatoT^>

Cooperator A11

Motion planning

Knowledge base 4 Motion plan for Step 1 

Motion plan for Coordinator 
Motion plan for Cooperator At 1 
Motion plan for Cooperator At 2

Motion plan for Co operator A1 mi

Evaluation of 
anned motion

Figure 2.6 Cooperative Task Processing in ACTRESS 

Task execution is split into three layers. A robot that fails to complete a task 

becomes a coordinator and organises a team to undertake it. The architecture makes 

extensive use of knowledge bases to describe the required procedures at each level. 

Diagram reproduced from (Asama et al., 1994).

23



2.2.2 GOFER

GOFER is a multilevel architecture for coordinating mobile robots in a mainly static 

indoor environment, with emphasis on the transportation of small objects (Caloud et 

al., 1990). It is comprised of four layers: task planning, task allocation, motion 

planning, and execution. Although distributed in its ability to perform tasks, 

GOFER utilises a centralised task processing system (CTPS), which has a global 

view of all tasks to be performed, and of the availability of robots.

In the planning stage, sequences of actions which are required to fulfil the 

mission are determined. Although put forward as a system that will generate a plan 

from a high level objective, without being told how to achieve it, there is little 

discussion of how this might work. Proposed methods include retrieving plans from 

a library, or using an unexplained constraint-based planner. Results show that on 

average it takes 7.3 seconds to create a plan, making it unsuitable for dynamic 

environments.

In the task allocation stage, the CTPS broadcasts a plan structure as a utility 

function to all available robots, devoid of values relating to robot properties. Each 

robot adds its corresponding values and returns the result to the CTPS, which then 

allocates the task to the best robot. Since robots will reply at different times, the 

CTPS can choose to wait for further responses before allocating a task if no robots 

are deemed suitable enough. Only robots which are waiting, and within 

communication of the CTPS, can request a task.

Once a robot receives a task, it leaves to perform it under its own initiative. 

Robots which are inactive, or finish a task, automatically seek work by broadcasting

24



their situation. It is stated that robots can also seek tasks from other robots, rather 

than the CTPS, but this is not demonstrated.

In the motion planning stage, robots generate a trajectory to follow based on a 

pre-compiled road map of possible routes in the environment. Execution of motion 

incorporates well defined rules on how to behave when encountering other robots 

using the same sections of the road map. Potential field techniques are used to avoid 

collisions with obstacles.

Le Pape (1990) explores the ability of individual robots to generate and 

prioritise their own goals and plans for execution. This ability is designed to 

generate a more distributed system, where robots can work independently as well as 

connect to the CTPS. Further discussion of the task allocation protocol explains 

how the CTPS can decide to wait, rather than allocate a task to the first available 

robot, based on utility functions measured for similar actions in the past. Maigret 

(1991) describes the hardware implementation, and low level control of individual 

robots.

r REASONING A
Data Management }— (State Information]

C Goals

Plans

[ Low-Level Control — Actions

Goal
Generation

Planning

Execution 
I Monitoring

Figure 2.7 Architecture of a Single GOFER Robot 

Diagram reproduced from (Le Pape, 1990).

GOFER is limited in its application to movement tasks, such as box pushing,

item transport, and following, in static environments.

25



2.2.3 Swarm Robotics

Swarm robotics is an approach to multirobot systems which differs greatly from the 

other systems reviewed here. Although encompassing a large body of research, 

swarms are grouped together here as a comparison to the other architectures. As we 

will show in section 2.2.10, swarm robotics provides unique solutions to some of our 

listed problems.

Swarms, as investigated by Kai (1994), are distributed systems comprising of 

many simple, autonomous, usually homogenous, agents. They exhibit self- 

organising, emergent behaviour, which arises from simple interactions between 

agents and the environment. These agents are usually indistinguishable from one 

another, containing identical control structures, and acting solely in reaction to the 

state of their nearest neighbours.

Figure 2.8 Architecture of a Simple Robot Swarm 

System behaviour emerges from the interactions of nearby robots.

The simple behaviours and local interactions make the approach scalable to 

very large numbers of robots. This is beneficial in situations which require large 

area coverage, such as distributed sensing (Hackwood & Wang, 1988). The often

Control-*

Actuator

(a) An individual swarm robot (b) Interactions in a robot swarm

26



simple mechanisms also make them ideal for miniaturisation; they are suited to 

microrobotic and nanorobotic applications (Flynn, 1987). The low cost and 

redundancy of such systems also makes them ideal for hazardous applications, such 

as mining or exploration (Buckland & Johnson, 1999).

Swarms are often used to generate or investigate spatial and temporal 

structures, such as flocking behaviour (Reynolds, 1987). The simple control 

schemes and lack of explicit communication make them ideal for highly dynamic 

and unknown environments, but also limits their application. Swarms display 

emergent behaviour, and designing and reliably predicting the behaviour of even 

simple systems can be difficult. This makes them inappropriate to many problems.

2.2.4 ALLIANCE

Parker (1994) introduces ALLIANCE, a distributed, fault tolerant architecture for 

multirobot control, based upon motivational behaviours. Each robot decides 

whether to perform a task based on internal measures of impatience and 

acquiescence.

Within the architecture, lower level behaviours handle survival tasks such as 

obstacle avoidance, whilst higher level behaviours handle goal oriented tasks such as 

map building and exploring. Contrary to other behaviour based approaches, 

ALLIANCE includes several behaviour sets which are either active as a group, or 

hibernating. Each behaviour set corresponds to a particular task, with only one set 

active at a time. Motivational behaviours select a behaviour set to be active, and 

suppress the output of other sets (Figure 2.9). Lower level behaviours, however, 

remain active at all times.

27



cross-inhibition

Inter-Robot
Communi-

cation

Actuators

Sensors

Layer 1

Layer 0

Layer 2

Motivational
Behavior

Motivational
Behavior

Motivational
Behavior

Behavior
SetO

Behavior 
Set 1

Behavior 
Set 2

Figure 2.9 The ALLIANCE Architecture

Motivational behaviours enable or disable the output of task-achieving behaviour 

sets. Diagram reproduced from (Parker, 1998).

Robots routinely broadcast their actions so that other members can monitor 

their performance. Whilst a task is incomplete, a measure of impatience increases 

within each robot. If a task remains incomplete for a significant period, the 

impatience of a robot will grow to a level which causes its motivational behaviour to 

trigger the associated behaviour set. At this point, the impatient robot will take over 

the task.

A corresponding measure of acquiescence enables robots to measure their own 

performance. This enables robots to abandon tasks which they fail to complete. The 

combination of motivators enables robots to overcome failure in team mates, and 

prevent themselves from becoming a wasted resource.

The main downside to this architecture is that there is no potential for 

dynamically introducing new tasks into the system. All the robots have the tasks 

programmed into their behaviours from the outset. Robots can sit inactive between

28



tasks, and the time taken for impatience and acquiescence to operate means robots 

cannot dynamically respond to changes in the environment.

An extension in the form of L-ALLIANCE (Parker, 1997) implements 

reinforcement learning to improve behaviour set activation. In this incarnation, 

robots monitor the performance of their team mates, and evaluate their performance 

with relation to the task completion time, in either training or live scenarios. In 

training, robots are maximally patient and minimally acquiescent, giving them the 

maximum time to undertake a task. In live missions, robots update their motivation 

functions based on the perceived success of the robot performing the task. This 

allows them to take over or abandon tasks much more efficiently. During active 

missions, robots are still capable of learning, allowing them to change their 

perceptions, and respond dynamically to any changes in team mate performance.

ALLIANCE is demonstrated on heterogeneous teams for tasks including box 

pushing (Parker, 1994) and foraging (Parker, 1998).

2.2.5 M+

M+ (Botelho & Alami, 1999) is a distributed task allocation and coordination 

architecture based on the contract net protocol (Smith, 1980). It is used in 

conjunction with a mission planner as shown in figure 2.10. Embedded in the 

architecture is the ability to re-plan and re-allocate tasks. Each robot in the system is 

an autonomous agent with reasoning, decision and reactive capabilities.

29



Centralized

The Generic Architecture
Mission

Mission Decomposition
Planner Supervisor

JJ Tasks J  ^

Task Allocation
.Problems?)** Planner Supervisor

 ̂Allocated Task

Task Achievement
Problems?/*"* Planner Supervisor

Action

An Instance...: M+
Mission

High Level 
Decomposition

/  \
[M+NTA] (M+NTA]

ft U
[m+cta ] M+CTAj

*3-

R1 R2

Figure 2.10 An Instance of the M+ Architecture 

NTA stands for “Negotiation for Task Allocation”, and CTA stands for 

“Cooperative Task Achievement”. Diagram reproduced from (Alami, 2005).

Each level within the architecture consists of a reactive (supervisor) and 

deliberative (planner) element. Robots communicate with each other at all levels 

through corresponding elements. Reactive elements exchange signals or protocols, 

whilst deliberative elements communicate plans, goals, and data.

At the highest level, a mission is inputted to the system by a user. The mission 

is then split into a set of partially ordered tasks, which can each be performed by a 

robot. Each task is further described in terms of a set of goals to be achieved. 

Mission planning and decomposition is not handled by M+, but either by a dedicated 

centralised planner, or by hand.

At the allocation level, the mission is communicated to the robots in terms of

the required tasks and goals. Using their knowledge of the state of the environment,

each robot generates a sequence of actions, the execution of which satisfies the
30



goals. Tasks are then allocated to the robots using a negotiation process: Any robot 

can make a first offer to undertake a task, and in doing so takes responsibility for 

handling all communication related to the task. Until the moment at which the robot 

starts to perform the task, any robot can make a counter bid for the task. The robot 

with the best bid will be selected to undertake the task, although the robot making 

the first offer remains in charge of the communications. Any robot not bidding on a 

task remains idle until there is a change in the set of executable tasks.

The task achievement layer handles resource conflicts and efficiency issues, 

and is the only stage at which explicit cooperation between robots is evident. A 

novel contribution of M+ is the ability of robots to ask for assistance when they find 

they cannot complete a task: If a robot fails to fulfil its task, then it attempts to re­

plan an alternative set of actions. However, if it cannot find a new plan, then the 

robot can call for assistance. Other robots then calculate whether they can assist, 

whilst still carrying out their current missions.

This functionality is implemented through a plan merging protocol. Robots 

can identify goals which conflict, are duplicated, or with which they can assist. By 

switching goals with other robots, or adding and removing goals from their own 

task, robots can coordinate to improve efficiency.

M+ is used within the LAAS architecture (Alami, Fleury, Herrb, Ingrand, & 

Robert, 1998), which includes tools for mission generation, planning, plan merging, 

navigation and manipulation. The architecture is extended to include coordinated 

navigation (Gravot & Alami, 2001), and improved efficiency through allowing 

multiple robots to undertake a single task (Alami & Botelho, 2002; Botelho & 

Alami, 2000). The plan merging operation is detailed in (Alami, 2005).



2.2.6 Leader-Follower

Chaimowicz et al. (2001) present an architecture for a team of heterogeneous robots 

performing a tightly coupled object manipulation task. The architecture is described 

as distributed, yet relies on a robotic leader being present at all times. The other 

robots in the team respond to the actions of, and orders from, the lead robot.

The demonstrated task is that of two robots carrying a large object. First, the 

leader generates a plan for the task, selecting a route to take. The leader then 

continuously broadcasts its position and velocity to the followers, which attempt to 

follow using their own trajectory controllers. This communication is shown by the 

data messages in figure 2.11. Control messages are also sent between robots. These 

handle role reassignment, task initialisation and task completion.

Coatrol
messages

Data
messages

Planner

Low level 
controller

Low level 
controller

Trajectory
controller

Coordination Coordination

Leader Followers (1..n)

Figure 2.11 The Leader-Follower Architecture

Diagram reproduced from (Chaimowicz et al., 2001).

The architecture contains a role switching mechanism that enables robots to 

request and relinquish the leadership at any time. This enables the robot that is best 

suited to the role to take control as circumstances change. A change in leadership

32



can be instigated by either the current leader or by a follower: If a follower

encounters a problem, such as an obstacle, it can request to take over leadership until 

the problem has passed, then return command to the original leader. Alternatively, a 

leader that encounters a problem can relinquish the role in the hope that another 

robot can find a solution.

The dynamic role selection algorithm is not robust; conflicts, such as no robot 

taking up the leadership role, or a robot failing to relinquish control at the request of 

a follower, can occur. These conflicts are resolved using a priority based approach, 

with intervention by a human operator to resolve deadlocks. There is also the 

possibility that a state of oscillation in leadership can occur. In these situations it is 

suggested that a set of negotiations may be required.

It is stated that a number of leaders can exist, operating in a hierarchy, with one 

overall leader. For example, a follower could be leader to another follower. 

However, this not demonstrated.

The architecture is demonstrated with two robots carrying a large box, in an 

unstructured environment. A third robot is introduced, acting as a remote sensor. In 

(Sugar & Kumar, 2002) all three robots are involved in the physical carrying 

operation.

33



2.2.7 MURDOCH

MURDOCH (figure 2.12) is an architecture based on intentional cooperation, 

with robots coordinating with one another explicitly using task related 

communication (Gerkey & Mataric, 2001). It is a distributed multirobot task 

allocation architecture, for a heterogeneous team, based upon the contract net 

protocol (Smith, 1980).

The notable difference of MURDOCH over other negotiation based 

architectures is its use of a publish/subscribe communication model. Messages are 

addressed in terms of their content, rather than their destination. A message is 

published by a broadcaster, labelled with a description of its content. Only robots 

that are interested in that content type, and who have subscribed to it, receive the 

message. In MURDOCH, task requests are published in terms of their requirements, 

such as the sensors and actuators required to achieve them. Only robots with those 

resources available will receive the task request. Handling communication in this 

manner promotes efficiency in the system.

34



Objective (as a set o f tasks)

Task list

Auction Contracts
Auctioneer

Message
publisherCommunications Direct

Auction broadcast 
and bidding

Contract allocation 
and task monitoring

Communications Subscription Direct

Planning 
and bidding

Robot
Robot
controlActuators

Sensors

Figure 2.12 A Simplified Representation of the MURDOCH Architecture

An objective, described as a set of well defined tasks, is programmed into the 

system by the designer. Although capable of allocating a task tree, the structure 

must be defined by the designer, as must the tasks themselves. These tasks are then 

auctioned off to available robots.

An agent working on behalf of the user auctions each task, through its

requirements, to the set of subscribing robots. The fitness of a particular robot to a

task is measured in terms of one or more metrics. These may be evaluated

individually, or as a function, and enable each candidate to provide a bid based on its

chances of successfully completing the task. After a preset amount of time, the
35



auctioneer closes the auction and notifies the winning bidder, and issues it with a 

time limited contract. This contract is used to build fault tolerance into the system, 

with the auctioneer routinely contacting the winning robot to monitor its progress. If 

the task is not completed in the required time, the auctioneer re-auctions the task. 

Losing robots return to waiting for tasks.

The distributed nature is compromised by the use of an auctioneer, and 

problems may occur if failure occurs in that agent. Furthermore, auctions are limited 

to a single round of bidding and are given a fixed period in which to run (Gerkey & 

Mataric, 2002). The architecture is demonstrated on a loosely coupled set of tasks, 

as well as the more cooperative task of box pushing.

2.2.8 CAMPOUT

CAMPOUT (Control Architecture for Multirobot Planetary Outposts) is a 

distributed, behaviour-based architecture for executing tightly coupled tasks 

(Huntsberger et al., 2003). It provides both task allocation and execution 

mechanisms for use in complex environments.

36



| | Robot

O  Behavior

allocation, and monitoringHierarchical task plai

Supporting
tools

Task
description
language

Cooperation/Coordination 
• Q  Behaviors Q

| Behavior 
i Composition 
| Lang. (BCL) < 2 0

\  \ Commhi)i'cation Behaviors

0 0  Ni
Robot -i

Hardware Interface 

Device I aver

actuatorssensors

Figure 2.13 The CAMPOUT Architecture

Diagram reproduced from (Schenker et al., 2000).

The architecture contains mechanisms for representing behaviours as mappings 

of sensor data to actions in a preferential hierarchy, using finite state machines. 

High level functionality is achieved by combining and managing these low-level 

behaviours within the context of the higher level objectives. This is achieved 

through a behaviour coordination mechanism using two methods: arbitration and 

command fusion. Arbitration mechanisms select a single behaviour to take control 

of the system, for one control cycle, for use in situations where system resources are 

scarce. This arbitration is either priority based, where high priority behaviours 

overrule lower priority ones, or state-based, for behaviour sequencing. Command 

fusion mechanisms combine behaviours, allowing them to take control of the system 

in a cooperative, rather than competitive manner, and are used to control tightly 

coupled actions. They include voting mechanisms, fuzzy logic, and best trade-off

3 7



action selection, which aims to select the action that most closely satisfies the 

current objective.

The main attraction of CAMPOUT is its ability to share behaviours between 

robots to enable this tightly coupled coordination. These group behaviours are 

managed explicitly through communication behaviours, or implicitly through 

shadow behaviours. Explicit communication allows robots to share sensor data and 

whole functions based on the multi-valued output from behaviours. Implicit 

communication is achieved through the environment by shared attributes, such as the 

objects being interacted with, enabling robots to infer the state of other members of 

the team.

The downside of such a comprehensive and complex system comes in the 

difficulty of designing the behavioural hierarchy, and specification of the necessary 

interactions.

CAMPOUT is demonstrated for large object carrying (Huntsberger, Piijanian, 

& Schenker, 2001) and cooperative cliff descent (Piijanian et al., 2002).

2.2.9 TraderBots

Dias (2004) presents TraderBots, another distributed task allocation architecture 

built on the contract net protocol. A market economy is established using ideas of 

cost, revenue, and profit, with each robot acting to increase their own individual 

profit by undertaking lucrative tasks. Revenue is derived from achieving the team’s 

objectives; by acting in a greedy manner, individual robots are actually contributing 

to the team in useful ways.

38



Multi-robot
Communication

Autonomous
Navigation

Hardware
Abstraction

Hardware

Figure 2.14 Architecture of a TraderBots Robot

Diagram reproduced from (Dias, Zlot, Zinck, Gonzalez, & Stentz, 2004).

Negotiation is a key factor within the architecture. Robots compete against one 

another to sell their services, whilst traders seek to sell tasks for the lowest prices. If 

costs are measured in terms of resources, then this negotiation helps optimise the 

response of the system.

A unique factor of the TraderBots approach is the ability for agents to act as 

consultants, and to contract out tasks and form work groups. For example, a robot 

with the ability to plan can buy a task, divide it into parts, and sell on those parts to 

other robots. In doing so, it may be able to reduce costs by enabling robots with less 

functionality to complete a task instead of it being undertaken by the most capable 

robot.

Robot failure is handled by reassigning tasks held by that robot to the

remaining robots. In the case of a partial robot malfunction, measured as a problem

with resource availability or an unexpected rise in cost, the robot attempts to sell off

39

Other Robots

map/position

StatusTasks

requestposition

other robots’position
wheel 

velocity 
command ,

position

 reguestj

(x.v.0. time, range)

X7T

Laser Motor GyroEncoder

Trader

robotCntl

Comm. 
Relay <-

TaskExec
Data

Server



its incomplete tasks. It will sell off all of its remaining tasks, even if it incurs a loss 

in profit. If a robot is incapable of trading, it is considered dead. In this case, the 

robot cannot sell off any of its remaining tasks. To overcome this, each trader keeps 

track of all awards it makes or receives. Once a robot death is identified, all traders 

which awarded tasks to the dead robot communicate with the remaining robots to 

find out if the tasks were sub-contracted. If so, the two robots renegotiate costs for 

the task. If not, the entire task is re-auctioned.

Coordinated task decomposition is introduced by Zlot and Stentz (2003). A 

mission is inputted into the system as a task tree. The tree is auctioned off, with 

robots able to bid on individual tasks (primitive tasks), or complete branches 

(abstract tasks). Some abstract tasks require all subtasks to be performed (AND 

tasks) whilst others only require one of several alternative subtasks to be performed 

(OR tasks). Bids for primitive tasks are made using the expected cost of the task, 

bids for abstract AND tasks are made using the minimum estimated cost for 

completing all of the subtasks, and bids for abstract OR tasks are made using the 

minimum estimated cost for the cheapest subtask. It is also possible that robots can 

come up with their own plans for completing an abstract task, in which case they can 

bid using an estimated cost based on their own plan. Although allocating a complex 

task in a more distributed way, there is no mention of how the task is initially 

decomposed into subtasks.

Coordinated task execution is studied by Kalra and Stentz (2003). This work 

examines the application of the architecture to a finer granularity of interactions. 

This extension is implemented by enabling robots to make shorter duration plans and 

hold more frequent auctions. A robot that identifies a coordinated set of actions,

40



which may be more profitable than the standard behavioural approach, can set up an 

auction to sell its plan. Although this enables plans to be changed more 

dynamically, and thus allows robots to be more responsive to each others actions, it 

does not solve the tightly coupled class of problems detailed in section 2.1.5.

TraderBots is demonstrated for distributed sensing (Dias, Zlot et al., 2004), the 

multi-depot travelling salesman problem (Dias, Zinck, Zlot, & Stentz, 2004), and 

perimeter sweeping (Stentz, Dias, Zlot, & Kalra, 2004).

For other multirobot architectures, see: overviews (Cao, Fukunaga, & Kahng, 

1997; Parker, 2003), market architectures (Lemaire, Alami, & Lacroix, 2004; Stentz 

& Dias, 1999), voting (Sorbello, Chella, & Arkin, 2004), computational 

requirements (Gerkey & Mataric, 2003).

2.2.10 Architecture Comparison

For the problem stated in chapter 1, table 2.1 shows which of the above architectures 

are capable of tackling, or demonstrating, the associated characteristics (indicated by 

a ‘1’ in the table). We have added an extra column headed constant tasks. This 

shows which architectures ensure robots are always active and productive, even 

between performing allocated tasks. Architectures which do not have constant tasks 

allow robots to become idle and unproductive. We also distinguish against 

architectures which only describe a single mission, and allow robots to simply carry 

on performing the same action, or stop, after the mission has been completed. 

Although this is not part of our problem, it is an issue which will distinguish our 

architecture from the rest.

41



Table 2.1 Comparison of Multirobot Architectures

Ar
ch

ite
ct

ur
e

re
fe

re
nc

e

Co
ns

ta
nt

 t
as

k

Co
m

pl
ex

 
ta

sk

W
ea

kl
y-

de
fin

ed
ta

sk

M
ul

til
ev

el
in

te
ra

ct
io

ns

D
yn

am
ic

en
vi

ro
nm

en
t

Co
m

pe
tit

iv
e 

I 
en

vi
ro

nm
en

t 
|

U
np

re
di

ct
ab

le
en

vi
ro

nm
en

t

Em
er

ge
nt

be
ha

vi
ou

r

ACTRESS 0 0 0 0 0 0 0 0

GOFER 0 0 0 0 0 0 0 0

Swarms 1 0 0 0 1 0 1 1

ALLIANCE 0 0 0 0 1 1 1 0

M+ 0 0 0 1 0 0 0 0

Leader-
Follower 0 1 0 1 1 0 1 0

MURDOCH 0 0 0 0 0 0 1 0

CAMPOUT 0 1 0 1 1 0 1 0

TraderBots 0 1 0 1 1 0 1 0

All of the architectures require tasks to be explicitly stated. In architectures 

that allow for high level missions to be specified, precompiled libraries, knowledge 

bases, and task trees are used as references to look up the sequence of achievable 

robotic tasks required to complete the mission. A key problem is how to decompose 

a high level, or complex, mission into a set of achievable tasks.

The approach outlined in this thesis decomposes a high level emergent 

behaviour into its constituent sub-behaviours using a learning mechanism. If the 

behaviours at the lowest level are each achievable, in their own right, by a robot, 

then the high level behaviour has been sufficiently decomposed. If by reproducing 

the low level behaviours, we can reproduce the desired system level behaviour, then 

the decomposition is successful.

42



2.3 Robot Football

Robot football (or soccer) was devised by Mackworth (1993), and gained popularity 

through the RoboCup initiative started by Kitano et al. (1997). It is a domain which 

encompasses all the requirements and attributes listed in table 2.1, giving us an ideal 

platform for undertaking this research. Robot football is the focus of a large and 

successful research community and, following the climax of Deep Blue beating Gary 

Kasparov at chess in 1997 (Campbell, Hoane, & Hsu, 2002), has been proposed as 

the new benchmark challenge for Artificial Intelligence (Kitano & Asada, 1998).

In essence similar to human football, robot football is a game played by two 

teams of simulated or physical robot agents on a rectangular pitch, whereby the aim 

is to transfer a ball into the opposing team’s goal area. Many different leagues exist, 

each played in competition at international level, with research institutions battling it 

out to show their systems are the most advanced. These leagues range from one-on- 

one humanoid games, through large, distributed, 5-a-side wheeled teams, to small, 

fast, centralised, 11-a-side robot games, and simulated games.

Of these leagues, we focus on the highly dynamic, autonomous, centralised, 5- 

a-side and 11-a-side games. These leagues in particular exhibit the following 

qualities, which are central to our research:

• The game is weakly-defined -  The objective, of scoring more goals than 

the opponent team, is a simple enough concept (subject to the constraints 

of the rules). However, the actions required to achieve that objective are 

not clearly defined.

43



Controllers need to have a multilevel structure -  A complete solution to 

playing the game requires precise control of robot movement and skills at a 

low level. At a higher level, robots must be able to work together, pass the 

ball, and set up opportunities for passing and shooting. At an even higher 

level, teams must be able to make plans, generate formations, and adapt to 

changing opponent strategies.

The game is highly dynamic -  The state of the environment is always 

changing, irrespective of the actions of the robots under our control. In the 

leagues studied in this thesis, controllers must act in time frames of 

milliseconds.

The game is competitive -  The opposing team will always be acting to 

disrupt play and prevent the home team from achieving its objective of 

scoring goals.

Robot football is unpredictable -  The number of factors affecting the state 

of the game, its sensitivity to them, and its high dynamicity, makes 

accurately predicting future states impossible.

Controllers show emergent properties -  Although they may be designed to 

perform in a specific manner, the complex nature of the game makes it 

impossible to design a solution for every possible event. Correspondingly, 

the low level interactions of the robots often generate interesting, and 

unintended behaviours.

Robot football is complex -  It has a multilevel structure, is non- 

deterministic, non-linear, and shows emergent properties. There are many



interacting variables ranging from the position, velocity, and acceleration 

of the ball and robots, to the structures and formations generated on the 

pitch.

Our interest in such systems stems from our involvement with the competitions 

of Mirosot (Robinson et al., 2004) and the RoboCup Simulation League (Iravani, 

2005b).

2.3.1 Football Platforms

There are many robot football leagues, focusing on different technologies and 

aspects of the game. Each league has its own platform, which is often defined by the 

league rules. These may regard the form the robot, the number of players on a team, 

the types of sensors and actuators, or the control structure; whether it is centralised 

or distributed, for example. Much work has been focussed on the supporting 

technologies, such as machine vision (Lee, Hwang, Kim, Chung, & Kuc, 2005; 

Messom, Sen Gupta, & Sng, 2001; Weiss & Hildebrand, 2004; Yu et al., 2003), 

hardware (Aun, Lin, Quiang, & Seng, 2005; Novak, 2004), and control (de la Rosa, 

Oiler, Vehi, & Puyol, 1996; Messom, 1998; Nitschke, 2006; Sole & Honzik, 2002).

In this thesis we shall be concerned with just three of the leagues: Mirosot, 

Simurosot, and the RoboCup Simulation League. All three of the above use teams 

of fast-moving, small, wheeled robots (or simulated equivalents), controlled from a 

centralised location. We propose that the games played in these leagues utilise 

space, and can be controlled, in similar ways. The following sections describe the 

platforms for each of these leagues in more detail, and highlight any additional 

information specific to their use in this thesis.

45



2.3.1.1 Mirosot

A Mirosot game consists of two teams of five robots, each managed by a centralised 

controller running on a host computer. The majority of feedback is provided by a 

downward pointing camera located over the centre of the pitch. Autonomous 

software analyses the image, locates positions of the robots and ball then passes this 

information to the controller, which determines the desired movements of the robots, 

sending commands to them over a wireless link. Secondary sensing is provided by 

encoders on the motors of each robot, and is used for velocity control. The robots 

are no larger than 7.5 cm x 7.5 cm x 7.5 cm, and usually have no mechanism for 

controlling the ball. Rather than ‘kick’, robots push the ball in front of them. The 

game is played over two 5 minute halves using a golf ball on a 1.7 m x 2.3 m pitch. 

A diagram of the system is given in figure 2.15.

Figure 2.15 Mirosot System Diagram 

Each team of robots is controlled by commands sent over a wireless link from a 

central computer. Information is gathered from an overhead camera. Diagram 

reproduced from the Mirost class rules (FIRA, 2002).

46



It is usual for a separate camera and computer to be used for each team, with 

unique software running on each. In our experiments we run both teams off one 

computer and vision system to remove the discriminatory effects of using separate 

equipment. Each team will, however, use a unique controller. Our Mirosot system 

has been developed over the course of this research in collaboration with the 

University of Warwick and the University of Plymouth. Details of the collaboration 

are given in (Robinson et al., 2004).

2.3.1.2 Simurosot

Simurosot is a simulation of Mirosot. Like Mirosot it is an international competition 

standard. Simurosot removes the image capture and processing issues of Mirosot, 

and passes simulated positions directly to the controller. Likewise, communication 

and noise are also removed from the system. We have designed our Mirosot 

software to be compatible with Simurosot so that controllers can be run on both 

platforms without any modification. This allows us to easily test controllers before 

running them on the real robots, and also to test the effect of noise and other real 

world influences on the system.

The Simurosot simulator, and consequently the Mirosot system, uses imperial 

units for its coordinate system. We will endeavour to use metric units for most 

measurements in this thesis, though it should be noted that this conversion will often 

result in peculiar ranges and accuracies.

2.3.1.3 RoboCup Simulation League

This is a simulated competition comparable to Simurosot but using eleven players on 

a team, rather than five. Teams are controlled in a centralised manner and use

47



similar rules to those used in Mirosot and Simurosot. The RoboCup simulation is 

more elaborate in that players are omnidirectional and can hold or kick the ball. 

This allows teams to use more intricate controllers, incorporating passing and 

dribbling, which are not possible in Simurosot or Mirosot. The RoboCup simulation 

also includes other features such as energy levels, meaning players tire out if they are 

particularly active.

Log files containing position information from competition matches are 

available for download from the internet, and have been used in previous work by 

Iravani and Johnson (2005). These files are used as a basis for our initial work 

examining structures in team games, and typically contain 6000-6500 frames worth 

of data. Conversely, the Mirosot and Simurosot platforms give us systems on which 

we can implement the controllers developed in this thesis.

2.3.2 Strategies, Roles, and Plays

The part of the robot football controller that handles the behaviours for playing 

football is called the strategy. In the case of Mirosot, Simurosot, and the RoboCup 

Simulation League, each strategy typically takes in the game state as a set of 

arguments, and returns wheel velocities or target positions to control movement of 

the robots. The strategy is responsible for making all the decisions regarding game 

play, and can be seen as the means for completing the objective; scoring goals. It is 

the parallel of the plans used in section 2.2 to achieve an objective. Strategies are 

usually compiled into a single file, and can be loaded into the robot football system. 

In this way, teams can prepare a number of different strategies and select the most 

appropriate based on the perceived weaknesses of their opponent.

48



Just as plans are decomposed into tasks, strategies are typically decomposed 

into roles. These roles contain achievable actions for each robot, such as 

positioning, movement, area boundaries, passing and shooting (Alvaro, Freedman, & 

Gonzalo, 2006; Fassi, Scarpettini, & Santos, 2003; Han, Lee, Moon, Lee, & Kim, 

2002; Klancar & Matko, 2005; Veloso, Bowling, Achim, Han, & Stone, 1999). 

They are usually based on functional concepts relating to human football, such as 

goalkeeper, defender, or striker. Roles can be defined for the duration of a match, or 

be switched or assigned temporarily to extend functionality (Gerkey & Mataric, 

2004; Kim, Kim, Kim, Kim, & Vadakkepat, 1998; McMillen & Veloso, 2006; Sng, 

Sen Gupta, & Messom, 2002). An example would be for a kick-off, where robots 

might be given a sequence of specific movements to perform before defaulting into 

their main roles. We call this approach to control a role based strategy.

An extension of these ideas by Bowling, Browning, Chang, and Veloso (2004) 

introduces an intermediate layer based on the idea of plays. A play is a plan for 

coordinating a set of robots in response to a particular game state. If a strategy is the 

plan for achieving the objective of scoring goals, then plays are plans for achieving 

sub-goals. These might be defending the home goal, attacking the opponent goal, 

promoting the position of the ball, taking a penalty or free kick, etc. Each play 

contains information regarding the validity period for that play, and the roles of any 

robots included in that play. Additionally the play might contain additional 

information regarding predefined action sequences, additional specific role 

information, and any sequencing or rules for switching roles.

A typical role based robot football controller uses three layers of abstraction 

based on the ideas of roles, plays and strategies. Figure 2.16 shows the relation

49



between roles plays and strategies in a robot football architecture, and highlights the 

links with tasks, plans and objectives in a typical task decomposition process.

Task decomposition in a robot 
football control architecture

Task decomposition in a multirobot 
control architecture

Objective - score goals 

a c h ie v e ^ \^

Strategy Strategy 
“Aggressive” “Defensive”

achieves 
/ /  strategy> 

/ /  T v objective/  5fC/CĈSf  ̂f

Play Play 
“Attack” “Defend”

/ /  1 achieves

jr / ,  I  objective/  K  selects *  I J

Role Role 
“Goalkeeper” “Sweeper”

Objective

a c h ie v e s^ \^

High level High level 
plan 1 plan 2

1 0  /  A
/ /  achieves

/ /  plan
/ /  r , objective /  selects  ̂f

Low level Low level 
plan 1 plan 2

J0 /  A
/  /  achieves 

/  /  plan
/ /  selects 1  °hJectivej§l£ 'sH?

Robot Robot 
task 1 task 2

Figure 2.16 Typical Task Decomposition in Multirobot Systems 

The number of roles plays and strategies depicted has been limited for clarity. Each 

play in a robot football architecture will usually consist of the same number of roles

as there are players on the team.

At the highest level is the strategy layer, which contains a method for selecting 

between plays, based on the game state. Most team strategies utilise static play 

selection, whereby only one play is valid for any game state, though, as we will see

50



later, there are exceptions. At the intermediate level is the play layer (or play book), 

which holds all of the plays contained within the strategy. The two-play approach is 

common, which consists of a defensive play, for when the ball is in the home half, 

and an attacking play, for when the ball is in the opponent’s half. Each play contains 

a set of roles which are allocated to the players when it is activated. Typically a 

defensive play will consist of roles which make robots take up positions around the 

home goal, attempting to block the movement of the ball. Attacking plays on the 

other hand will consist of roles causing robots taking positions further up the field, 

trying to push the ball closer to the opponent goal. Simple role, play and strategy 

structures are given in listing 2.1.

1: Role: Goalkeeper
2 : X_target = goal_X_position
3 : If ball_y_position > goal_top
4: Y_target = goal_top
5: Else If ball_y_position < goal_bottom
6: Y_target = goal_bottom
7: Else Y_target = ball_y_position
8: End
9: GoTo(X_target, Y_target)

10 Play: Defensive
11 Priorityl = nearest_robot_to_goal
12 Priority3:Priority5 = available_robot_IDl:available_robot_ID3
13 Role(Priorityl) = Goalkeeper
14 Role(Priority2) = Arc_Defender(origin, offset_anglel, radius)
15 Role(Priority3) = Arc_Defender(origin, offset_angle2, radius)
16 Role(Priority4) = Line_Defender(pointl, point2)
17 Role(Priority5) = Sweeper

18 : Strategy: Basic
19 : If user_event = centre_kick
20 : Play = Kickoff
21 Else If ball_X_position < centreline
22 : Play = Defensive
23 : Else
24 : Play = Attacking
25 : End

Listing 2.1 Pseudo Code Role Based Strategy 

The strategy component selects appropriate plays from the playbook depending on 

the state of the game. The play then assigns roles to each robot.



Although sufficient for 5-a-side matches, this approach is not scalable, and 

deteriorates when additional players are incorporated. A team with 11 robots 

requires a much wider variety of roles and more complex plays. Implementing this 

many roles in a coordinated fashion is very difficult, and so roles tend to be 

replicated. Furthermore, this type of architecture is limited in its ability to adapt, and 

tends not to incorporate true cooperation. Any apparent cooperation is usually short 

lived and the effect of a pre-programmed set piece, such as a kick-off, where robots 

might be issued with a set sequence of passes and moves. At other times, players 

tend to work collaboratively, working toward the same goal, and supporting one 

another, but there is often little explicit cooperation between them. Finally, the 

generation of roles, plays, and strategies are themselves a concern; this is done by 

hand, as were the plan decompositions in section 2.2, and relies heavily on the 

experience of the designer.

2.3.3 Alternative Control Approaches

Machine learning is often used to improve the effectiveness of role based strategies. 

Typically these approaches focus on a single function, such as movement 

(0stergaard & Lund, 2003), or passing, and shooting behaviours (Hu, Kostiadis, & 

Liu, 1999; Wang, Yao, Wang, & Luo, 2005). Of particular note is the work 

undertaken by Bowling et al. (2004), which provides an investigation of using on­

line learning algorithms to modify the high level strategy layer during competitions.

The architecture utilises a playbook holding a collection of traditional plays. 

For each conceivable situation there is a variety of applicable plays to choose from, 

each comprising of a set of robot roles, and rules for implementation. These rules

52



convey when the play is applicable, when it should be terminated, and special 

information regarding its execution.

Robot roles are dynamically assigned, and listed in a schedule. When a play is 

selected for implementation, the primary role is assigned first to the best qualified 

robot, followed by the remaining roles and robots. The roles contain a set of tasks to 

be undertaken in sequence, which are synchronised by the actions of the lead robot: 

when the lead robot completes its initial task, all robots in the play move to 

undertake the next action in their role.

The main contribution of this work is its ability to evaluate its own 

performance and dynamically adapt to an unknown opponent. Plays are initially 

selected at random, and assigned weightings based on their outcome. Subsequently, 

a selection algorithm ensures that successful plays, with higher weightings, will be 

selected more often, whilst unsuccessful plays are ignored. However, plays which 

do not get chosen also receive a weighting factor to maintain their chances of being 

selected in future situations.

The downside to this approach is that it is essentially a role based strategy, and 

the individual plays and roles still need to be generated by hand.

An alternative approach based on layered learning is introduced by Stone and

Veloso (1998a). In this work, simulated agents first learn to perform low level tasks,

using neural networks, which are then combined into higher level behaviours, learnt

using decision trees. At the lower level, robots learn the task of intercepting a ball

kicked with constant velocity toward a goal, by modifying a basic tum-and-run

behaviour. Once learnt, this behaviour is then used in the higher level passing

behaviour. In training, the ball is kicked to a randomly placed team mate, which

53



then attempts to intercept and return the ball. The positions of kicker and receiver in 

each test are then used to build a decision tree giving the probability of a successful 

pass based on these measurements. During testing, this decision tree is used to 

identify which, out of a set of possible team-mates, is most likely to intercept a pass. 

The two behaviours are combined in a carefully selected scenario to show how a 

sequence of passes might occur, although no experimental results are given.

Stone and Veloso (1998b) extended the work to include the low level 

behaviour of striking a moving ball at the opponent goal. In this example, the ball 

speed, trajectory, goal location, and position of striker are all incorporated into the 

learnt skill, making it much more applicable than the simple intercept behaviour.

The downside to this approach is that different learning methods are used for 

each layer, each requiring its own set of training data, leading to a long process for 

learning complete strategies. The procedure is not demonstrated on real robots.

Despite the novel approaches, both of the previous sets of work have relied on 

a hand coded decomposition of the football strategy. An alternative is provided by 

Luke et al. (1998), who use a genetic algorithm to evolve 11-a-side strategies from a 

set of basic functions including kicking and moving. In their approach, simplified 

game trees are constructed using if-then-else logic, whereby each measurable event 

on the pitch leads to a particular controllable robot action. To simplify the game 

strategy, two trees are created, one for moving and one for kicking. If a robot is in a 

position to kick the ball, the kick tree is called; otherwise the move tree is called. 

Beginning with randomly generated game trees, matches would be played between 

two teams and strategies evaluated using criteria including number of goals scored,

54



number of successful passes, and time spent in possession. At each evolution, 

sections of the trees were randomly replaced.

Two types of team were created: homogenous and pseudo-heterogeneous. In 

the first type, all players on a team used the same game tree. In the second type, 

teams were split into squads, with each having a unique game tree. This enabled 

single teams to develop specialised sub-groups such as attackers and defenders. An 

interesting aspect of the evolution of these pseudo-heterogeneous teams is the ability 

to swap whole game trees, and thus effectively trade good players and plays between 

teams.

Teams were co-evolved during this work, meaning that progress was only 

measured against other emergent strategies. No direct comparison to traditional 

strategies was made, so there is no measure of actual ability. Due to the complexity 

of the problem a number of constraints had to be made to increase the evolution 

speed. These included shortening game time and reducing the function set by hand.

A recurrent problem was the tendency for teams to evolve toward clustering 

strategies, when all players moved toward the ball. These were difficult to evolve 

from due to their success against other basic strategies. Such behaviour has also 

been seen in other evolutionary strategies, such as (Kobrin & Sinyavsky, 2006), in 

which neural networks were used to evolve team formations.

In summary, strategies built on roles require hand coded decompositions, based

on the designer’s experience. Those using a variety of learning algorithms to build

behaviours from the ground up are development intensive, requiring many different

skills to be identified and leamt using separate techniques. Those built using single

methods to generate emergent strategies do not contain enough information to

55



produce competitive strategies, and doing so would require massive evolutionary 

processes.

Given these issues, is it possible to create a method of automatically 

decomposing the robot football task, using a single learning technique, which can be 

used to generate a competitive, emergent strategy?

This is a specific case of our problem. More generally, we are interested in 

generating an architecture that is capable of decomposing any complex system using 

a learning method, such that the resultant decomposition can be used to generate an 

emergent behaviour at the system level. By this, we mean that given a set of sensor 

data corresponding to a complex system, can we abstract a set of sense-response 

actions, which, when performed in a given sequence, cause the desired system level 

behaviour to emerge? Furthermore, can the abstracted actions be improved by 

analysing additional data as it becomes available?

We see the problem as largely one of representation. How can we represent 

the intricate requirements imposed upon a robot team undertaking a complex 

mission? Can we abstract structures which decompose the overall objective into 

comprehensible tasks? Can we generate these representations at a variety of levels 

of abstraction using a single technique?

56



2.4 Complexity Theory

A method for analysis and representation which has proved itself for such complex 

systems is that of Q-analysis (Atkin, 1974). It is a multidimensional generalisation 

of network theory, which can be used to model relational structures between 

variables in a set. We base our work on extensions to this theory made by Johnson 

(2006) and Iravani (2005b). A very brief outline of some of the concepts we will use 

is given in the following sections.

2.4.1 Multidimensional Representation

The game of football has a multidimensional structure, which is one of the reasons it 

is so complex. To play the game requires a good understanding of some, if not all, 

of the relationships within its structure. Some relationships are global, existing in 

every game, such as are governed by the rules, whilst others may only appear in a 

single game or moment, being a trait of a particular team, or tactic. Some typical 

factors in these multidimensional structures may be the position of players, velocity 

of the ball, kick-off events, pitch edges, fouls and game time. To represent the 

relationships we will use the hypemetwork notation introduced by Johnson (2006).

A hypernetwork represents structure between sets of nodes, a natural 

progression from a standard network, which represents structure between a pair of 

nodes. A network consists of agents related by lines, a 2-ary relation, whereas a 

hypemetwork can consists of agents related by lines, triangles, or any other 

polyhedron. A polyhedron with n vertices represents an «-ary relation and a 

polyhedron with (p+1) vertices is called a p-simplex. Consequently, a set of 

simplices form a hypemetwork, with each simplex being an edge of the hypergraph.

57



Figure 2.17 shows some simplices representing possible structures in football, whilst 

figure 2.18 shows hypemetworks of connected simplices.

Mark Pass Two-on-one 

Figure 2.17 Some n-ary Relations in Football

Formation

1 Shared Vertex 
(0-near)

2 Shared Vertices 
(1-near)

3 Shared Vertices 
(2-near)

Figure 2.18 Hypemetworks of q-Near Simplices

Higher dimensional simplices can be decomposed into a set of lower 

dimensional simplices, called their faces. If two simplices share a set of (#+1) 

nodes, then they will share a ^-dimensional face, and are said to be q-near. 

Simplices sharing a single node are 0-near, while simplices sharing an edge are 1- 

near, and a triangle, 2-near (figure 2.18). Furthermore, two sets of simplices are said 

to be q-connected if there is a chain of q-near simplices joining the two. For 

example, figure 2.19 shows a hypemetwork of 5 simplices. Simplices 1 and 4 are 1- 

connected via simplices 2 and 3, but simplices 1 and 5 are O-connected due to 

simplices 4 and 5 only sharing one common vertex. A set of connected simplices 

form a simplical complex, and mutually q-connected simplices are called q- 

connected components.

58



O-Connected 1 -Connected

Figure 2.19 Chains of q-Connected Simplices

Simplices S1.4 are 1-connected, each sharing 2 vertices. S5 is only connected to the 

chain by a single vertex, making the whole chain O-connected.

The connectivity described above is based on shared faces of pairs of 

simplices. We can further this concept by considering shared faces between many 

simplices. Figure 2.20 shows four simplices < a, b, c, d >, < a, b, c, e >, < a, b, <?,/>, 

and < a, b, c, g >, which all share the face < a, b ,c  >. The set of simplices is called a 

star, and the largest shared face is referred to as the hub. In this way, a hub signifies 

a strong correlation between the simplices. The more vertices contained in the hub, 

the stronger the link between simplices. Similarly, the more simplices forming a 

star, the more relevant the hub becomes in classifying those simplices. Therefore, 

hubs and stars can be used to identify strong links between sets of data.

59



g
(b) Star of the simplices 

(a) Simplices with shared faces showing the common hub

Figure 2.20 A Star-Hub Configuration

We can tabulate the data given in a hypemetwork using an incidence matrix 

(table 2.2). By rearranging the rows and columns of this matrix, we can group the 

occurrences into blocks, or maximal rectangles, which correspond to the hubs of the 

hypemetwork. The rectangle number is the area of the maximal rectangle, and gives 

a value to the associated correlation. The larger the rectangle, the closer the 

correlation between simplices.

Table 2.2 Incidence Matrix for Figure 2.20

Simplex
a b c

Vertices

d e f g

1
1

1 1 1
#®fc:

0 0 0

2 1 1 1 0 1 0 0

3 1 1 1 0 0 1 0

4 1 1 1 0 0 0 1

= Maximal rectangle

60



2.4.2 Multilevel Representation

As well as having a multidimensional structure, robot football is multilevel. We 

have already shown that traditional role based strategies for robot football use a 

multilevel structure of roles, plays and strategies, and this will be explored further in 

chapter 4.

In figure 2.17 we gave names to the simplices to identify what they 

represented. We can say that the simplex maps the set of nodes at one level to the 

named structure, which is a higher level of representation. These named structures 

are themselves elements in even higher level structures.

The conical structure shown in figure 2.21 represents the Fundamental 

Diagram o f Multilevel Systems. The base of the cone represents a particular set of 

variables, whilst the sides of the cone represent a relation, which maps the set to a 

particular structure at the apex. If the set of variables lies at level A, the structure 

described by the relation lies at level N+l. In this way, the multilevel structure is 

closely linked to the idea of emergence. By applying a relation to a set of 

unstructured variables at level N, a structure emerges at level N+l.

Level N + l
Pass

Level N

Figure 2.21 Mapping of Elements into Named Structures
61



The relationship described by the simplex is crucial. A set of elements 

configured in two distinct ways can have completely different meanings. Consider 

the sets shown in figure 2.22. Both show three players and a ball, {wi, W2, bn B}, 

though each has a different relationship, denoted R] and R2. The relationship Ri 

gives rise to the significant structure named defenders dilemma, whereas R2 gives a 

separate configuration, which has no significant meaning, and has not been named. 

To distinguish between sets and structures, we use the notation < wj, W2, bn B\ Ri > to 

represent the structure created by imposing the relation Ri on the set of elements 

{wn w2, bn B}.

Figure 2.22 A Set of Elements Mapped into Two Distinct Structures

Figure 2.23 shows one possible multilevel representation of a role based robot 

football architecture. It depicts three distinct levels of a multilevel structure, with 

linking relationships. It can be seen that bases of cones can fully or partially overlap, 

but that when mapped to different relationships give rise to separate structures.

Level N  + 1

Defender’s Dilemma Unnamed Structure

Level N

62



Strategy Strategy.

DEFENDATTACKDEFENDATTACK

Attacker2 (Goalie J  De f enderDe fender 2Attacker.

Figure 2.23 A Possible Football Structure

Strategies 
Level N  + 2

Plays 
Level N  + 1

Roles 
Level N

There are two varieties of aggregatory relationship, AND-aggregation and OR- 

aggregation. The majority of relationships we will consider in this thesis are AND- 

aggregated: the entire set occupying the base of a cone is required to generate the 

structure at its apex. Such a relation is shown in figure 2.21, where all the players 

AND the ball are required to generate the structure PASS. For the OR-aggregation, 

only one of the set is required to represent the apex structure. In figure 2.24 this is 

shown by the grouping of a set of plays into the structure playbook.

Playbook Level N +  1

P lay 1 Play2  Play Play

OR-aggregation

Level N

Figure 2.24 OR-Aggregation between Levels in a Multilevel Structure

63



2.4.3 Concepts and Concept Generation

Having defined notation to describe the multidimensional and multilevel structure of 

robot football, we now require a method for identifying the features which describe 

the game. Our work follows on from research conducted by Iravani (2005a), so will 

continue to use the foundations built on concept generation.

A concept is defined as “An abstract or generic idea generalised from 

particular instances” (Merriam-Webster, 2007). In this work a concept is an idea 

abstracted from a set of primitives. If a system is measured in terms of a set of 

variables or properties, then a primitive is a relation on a set of variables that 

describes some event or object. Primitives associated with similar events or objects 

will contain similar structures of variables.

We use simplices to represent primitives in this work. The primitive is drawn 

as a simplex, which depicts the relation between a set of measured variables. This 

structure of variables forms the primitive at level N , which can then be mapped onto 

the named concept, which appears at level N+l, as shown in figure 2.21.

Our approach is to take a set of primitives (simplices) associated with a 

concept and find their intersections. If the sets of simplices overlap to form a star, 

then the hub of this star gives us a possible hypothesis for relating the primitives. 

The hypothesis is that any simplex that contains that hub will be associated to the 

concept. For example, in figure 2.20, the simplices are all associated with some 

concept and share the face < a, b, c >. We can, therefore, form the hypothesis that 

any primitive containing the structure < a, b, c > will also be associated the same 

concept.

64



If a set of simplices do not share a hub, then the associated primitives are 

members of separate concepts. Similarly, if stars form more than one hub, then the 

primitives involved are members of more than one concept. A hub that can be used 

to distinguish between two distinct concepts is called a classifier hub.

Iravani (2005a) distinguishes between two distinct varieties of concept. 

Generalisation concepts are described as concepts that represent a class of 

primitives. For example, three different ball passes in football can all be generalised 

to the concept PASS. A single pass is sufficient to be classed as part of the concept. 

The second concept is called a relational concept; relating a set of distinct primitives 

via some structure. In this case, the concept PASS could be made up of a ball, a 

passing player, and a receiving player, in a certain configuration. In this example all 

three primitives, and the structure, are required to generate the concept. Johnson 

(1983) defines generalisation concepts as being an OR-aggregation of primitives, 

whereas relational concepts are the result of an AND-aggregation.

To enable us to use concepts to drive behaviours in our footballers, we also 

have to link them with representatives, which are hubs characteristic of a particular 

set of simplices. These are representations of the concept, which can be used to 

generate command information for controlling the robots.

In a multilevel structure, the concept generation is performed at each level. In 

this way, concepts at one level become variables at a higher level of abstraction. 

This is shown in figure 2.25.

65



Concept,
Level N +  1

Concept2
Concept;

Level N  + 1

Level N

Key:

Levels

Variable

Aggregation

Primitives

t
Transmission o f  
variables

Concept Named concept

Figure 2.25 Multilevel Concept Generation 

A structure of variables common to a number of primitives aggregate to a concept, 

which itself is a variable at a higher level.

Our objective in this thesis is to generate concepts relating to the many aspects 

of a complex system, measure the variables of associated primitives, and form 

hypotheses about their connections. By performing this analysis at various levels in 

the system, we can build a set of representatives of key concepts, which can then be 

used to control a set of robots to perform the complex task. Moreover, by 

identifying and programming individual concepts in this way, the resulting 

behaviour will be emergent, a function of the interactions of the individual concepts.

66



2.4.4 Summary

In the previous sections we have introduced a large number of ideas from 

complexity science. Table 2.3 and figure 2.26 summarise those which are integral to 

the work described later in this thesis.

Table 2.3 Comparison of Concept Generation and Hypemetwork Terminology 

Concept generation terminology Hypemetwork terminology

Concept -  An abstract object generalised from a 
set of primitives bound together by a hypothesis

Primitive -  A measured relation of variables 
corresponding to a concept

Variable -  A measureable property of a system

Hub -  The largest face shared by a set of 
simplices. It represents a relation on a set of 
elements common to a number of simplices

Simplex -  A structure formed by mapping a 
relation onto a set of elements

Element -  an object used to describe a system

Concept generation 
method

Hypemetwork
notation

Concept 

aggregation I
Primitive set

grouping

Primitive

I
relation 

Variables

I

Hub

aggregation I
Star of simplices

grouping 

*■ Simplex

I
relation 

Elements

1

Figure 2.26 Relation between Concept Generation and Hypemetworks 

Showing how the hypemetwork notation will be used to describe the process of

concept generation.



2.5 Summary

This chapter has introduced some important themes in robotic control. It began with 

an introduction to some common control issues and problems relevant to the work in 

this thesis. This was followed by a brief summary of the most popular multirobot 

control architectures to date, including their strengths and weaknesses. Evaluating 

each of these architectures showed that they were not suited to our particular set of 

problems. Moreover, the majority of these architectures required well defined task 

descriptions; high level missions entered into these systems are inputted as a set of 

robot achievable tasks, which together fulfil that mission. None of the architectures 

showed the ability to autonomously decompose a complex mission into achievable 

tasks.

The third section introduced robot football as a complex system incorporating 

all of the problems highlighted in chapter 1. Three types of robot football: Mirosot, 

Simurosot, and the RoboCup Simulation League, were described, which will be used 

as experimental platforms in the later stages of this thesis. The traditional role based 

approach to robot football was discussed, showing how a strategy is composed of a 

set of plays and roles, which are described as follows:

• Strategy -  A high level plan describing how to score goals against an 

opponent. It typically selects a play for implementation based on the state 

of the match.

• Play -  An intermediate level plan, describing how to achieve a particular 

sub goal. It is only valid for a certain game state, and describes a set of 

roles to be implemented.

68



• Role -  A low level behaviour assigned to a robot. It describes a set of 

tasks for the robot to undertake, usually parallels of human football player 

positions.

Problems with the approach are highlighted regarding its scalability, the lack of 

inherent cooperation, and a reliance on task decomposition by hand.

A set of alternative approaches to strategy generation, using learning 

techniques, are discussed. Those focusing on improving the performance of 

individual roles, or adapting play and role selection, still rely on roles and plays 

being defined by hand coded decompositions, and are greatly influenced by the 

experience of the designer. Where strategies are learnt from the ground up, by first 

learning individual behaviours, then mapping these into plays, a multitude of 

methods are required, making the process development intensive. Those strategies 

built using single evolutionary processes to generate emergent strategies do not 

contain enough information to produce competitive strategies, and doing so would 

require massive evolutionary processes. In keeping with our ideas, we suggest using 

a single learning technique to automatically decompose the robot football task, in 

such a way that the decomposition can be used to generate competitive, emergent 

strategies.

In the last section of this chapter we introduced some themes of complexity 

science, which will be used to develop the analysis method in chapter 5. It began 

with an introduction to multidimensional representation, describing how sets of 

related elements, and their structure, could be described by a simplex. A number of 

simplices form a hypemetwork, which describes connectivity in a multidimensional 

structure. Simplices in a hypemetwork can be disjoint, or connected through shared

69



faces. This leads to an important definition: that a hub is the largest shared face 

between a number of simplices, and represents a common relation between a set of 

elements. We also showed how simplices and hubs could be described using 

incidence matrices and maximal rectangles.

The idea of multilevel representation was introduced using cone diagrams. We 

showed that by applying a relation to a set of unstructured elements at level N, a 

structure emerges at level N  + 1. We also showed how this could be represented in 

terms of simplices, and how two separate relations on the same set of variables 

generated two separate structures. Two types of aggregation were introduced, with 

OR-aggregation occurring when a structure can be described by a single element 

from a set, and AND-aggregation occurring when a set of elements is required to 

describe a structure.

Finally, we introduced the theory of concept generation. A concept was 

defined as an abstract object generalised from a set of primitives bound together by a 

hypothesis. These primitives are measured relations on sets of variables, which are 

themselves measurable properties of a system. Furthermore, a representative is the 

relation of variables used to represent the concept. The difference between 

generalisation and relational concepts was established as that between a concept 

representing a class of similar primitives, and a concept relating a set of distinct 

primitives via some structure. We also showed how concept generation could be 

performed using simplices and shared faces (stars and hubs), or by incidence 

matrices and maximal rectangles.

70



Chapter 3 

Spatial Structures in Autonomous Goal Seeking Systems

In a complex multiagent system there often exist a number of observable spatial 

relationships between agents which can be linked to the objectives of that system. 

Frequently these relationships are secondary by-products of many complex 

interacting rules which define a task, although they can also be governing rules 

themselves. For example, in a traffic system, drivers of vehicles maintain spaces 

between each other which are loosely based on the concepts of speed, thinking, and 

braking distances. These change whether the vehicles are following each other along 

a road, or emerging from a junction. On the other hand, figure skaters must 

coordinate to perform set moves and holds, which are the focus of their routines.

We are interested in these types of relationship, and suggest that they can be 

used to create powerful multiagent control strategies for use in complex and dynamic 

environments. The objective in this chapter is to examine the importance of spatial 

structures in competitive games, particularly in relation to robot football.

3.1 Complexity in Competitive AI Games

The research begins by considering the classical AI benchmark of computer chess, 

which is quintessential^ concerned with structuring space (Atkin, Hartston, & 

Witten, 1976). This is illustrated in figure 3.1(a) where we give names to 

configurations of squares on the chess board. In figure 3.1(b) the spatial structure of 

the three pieces forms a structure called the knight fork, in which the knight checks

71



the opponent’s king, and threatens the more valuable rook. These structures were 

known long before the invention of electronic computers, and the way that humans 

understand and manipulate them has long been held as an indicator of human 

intelligence.

Diagonal

File

(a) Structured space in chess (b) The knight fork

Figure 3.1 Structures in Chess

From the perspective of today, it can be seen that one of the very attractive 

features of chess for testing machine intelligence is the simplicity of its form and its 

rules. A grid of sixty four squares and thirty two pieces is a ‘small’ system. The 

rules of the system are also relatively straightforward, determining how the pieces 

can move, and what constitutes a win or draw. Crucially, the dynamics of chess are 

very simple from a modem viewpoint: (i) time in chess is governed by simple 

alternate move events (although human players are constrained to another time 

governed by the clock, bringing in an element of psychology), and, (ii) when a chess 

game is started from the same position, and the same moves are played, the same 

outcome will be observed as on previous occasions. On a higher level of 

complexity, and with more obvious reliance on spatial structures, is the game of Go. 

In Go, players take turns to place coloured stones on a 19 x 19 position grid until 

both players pass. The objective is to surround the opponent’s stones, or to surround

72



contiguous sets of the opponent’s stones, and to end owning the majority of territory 

once captured stones are accounted for.

Artificially Intelligent programmes have been generated to tackle both chess 

(Campbell et al., 2002; Hsu, Anantharaman, Campbell, & Nowatzyk, 1990) and Go 

(Churchill, Cant, & Al-Dabass, 2001; Muller, 2002) as well as the simpler games of 

checkers (Samuel, 1959; Schaeffer et al., 1992), othello (Buro, 1993) and nine men’s 

morris (Gasser, 1996). All of these are goal seeking competitive systems played out 

with multiple pieces on a grid of squares, with turns taken in discrete periods of 

time. Robot football can be considered in a similar way, with the robots becoming 

pieces on a board divided up into pixels of the overhead camera, with turns taken in 

discrete portions of time divided up by the sampling rate of the camera.

The traditional approach to solving this type of problem using computational 

methods is to generate a game tree of all foreseeable moves, then search the entire 

space to find the sequence with the best chance of success. The size of the complete 

game tree is A", where X  is the number of possible moves during any turn, and n is 

the total number of turns. Table 3.1 (adapted from (Bouzy & Chaslot, 2006)) gives 

estimated sizes of the search spaces for the above games.

Table 3.1 Estimated Game Tree Complexity for some Standard Games

Estimated game tree size 

Checkers Othello Chess Go

1032 1058 10123 10360

If the pixels of the vision system are seen as squares on the playing field, with 

turns measured as frames, the complexity of robot football can be calculated in a

73



similar way: At each turn, a robot can move anywhere within a circle, with radius 

proportional to its velocity. For a camera with a resolution of 640 x 480 pixels 

capturing a 180 x 220 cm pitch at 30 frames per second, a robot moving at 1 m s’1 

can move to any of approximately 600 squares. Therefore, with 10 robots on the 

pitch, 6000 possible moves can be made each turn. If a game lasts for two 5-minute 

halves, there are 18,000 turns, meaning the total complexity can theoretically reach 

6OOO18,000. This is an estimate, as a number of factors, such as acceleration limits, 

obstructions and periods of inactivity, reduce the effective complexity of the game. 

A key difference between robot football described in this manner, and the board 

games described above is its non-deterministic nature. Due to noise in the sensing 

system, and the physical interactions of the robots and pitch, two sets of matches 

played by two identical sets of teams from the same start positions will never play 

out in exactly the same way. This makes predicting future states in the game 

extremely difficult.

For smaller games, such as noughts and crosses, nine man’s morris, or othello, 

intelligent strategies can be successfully created based on brute force approaches to 

searching the game tree. In more complex games, such as chess and Go, the entire 

game tree is too large to generate, and techniques have to be employed to reduce the 

number or length of branches (Bouzy & Cazenave, 2001). Both of the latter have 

recognised set-piece openings, end games, and gambits, which can be used to this 

end. Even considering these set-pieces, the complexity of games such as Go can be 

too great, requiring game trees to be reduced to a limited number of turns in 

duration. Table 3.2 (adapted from (Bouzy & Cazenave, 2001)) indicates the success

74



with which some of the leading algorithms perform when compared to human 

players.

Table 3.2 Ability of AI Game Programs Compared to Human Players

Game Relative skill levels

Checkers Chinook (Schaeffer et al., 1992) > Human

Othello Logistello (Buro, 1993) > Human

Chess Deep Blue (Campbell et al., 2002) >= Human

19 x 19 Go Strongest Go Program «  Human

Football also contains many set-pieces that will help to reduce the substantial 

complexity of our representation. For example, human footballers are experts at 

mastering space. They demonstrate remarkable skills in movement and perception, 

well beyond the current state of the art in robotics. They base their game on the 

skills and set pieces they practice before a match, though the successful 

implementation of these tactics depends on the players’ abilities to control space, to 

identify predefined plays from the positions of players around them, and create 

formations on the pitch to enable these plays. Players do not even need to touch the 

ball to be able to make a great contribution to their team.

Consider the well-known set piece described in figure 3.2. Players A and B are

attackers from the same team. Player C is an opponent defender, who threatens to

tackle player A for the ball. If player A feigns a pass to player B, player C must

move to intercept that pass. In doing so, player C moves out of position, and player

A can slip past. We say that player B has drawn player C out of position. Human

players find it relatively easy to spot these spatial structures, which enable players to

cooperate in useful ways. In contrast, these spatial configurations are difficult to

75



spot, and so, for the most part, overlooked in robot football. Many such structures 

occur frequently during human football matches, and they can be considered as 

building blocks of a strategy. In this work we shall endeavour to identify some of

3.2 Competing for Space

We have established that structuring and controlling space is a key concern in chess. 

Similarly, we believe that structuring and controlling space is an underlying theme in 

football. Ownership of the ball, and opportunities to make plays, depends on the 

ability of players to control space through which that ball passes, or will pass.

Consider a pitch divided up into N  distinct areas as shown in figure 3.3, where 

N  is the total number of players. Each player controls an associated area defined by 

perimeters formed at points equidistant from the player and its closest neighbours. If 

all players can move at the same rate, then each region defines a set of points which 

the occupying player can reach before any opponent. We will call each area a

these structures, which can then be used to tackle the substantial complexity of robot

football in a similar way to those used in computer chess and computer Go.

B B

4
(a) Player C threatens player A, 
who feigns a pass.

(b) Player C moves to intercept 
the pass, allowing player A to 
slip past.

Figure 3.2 The Two-on-One Set Piece in Football

76



player’s space. The combined area controlled by a set of players on one team shall 

be referred to as team space.

Figure 3.3 Spatial Ownership of a Football Pitch

Players control areas closer to themselves than any other player.

Now consider a static ball placed in this environment. If the ball lies within 

the perimeter of one of these areas, then the player occupying that area can reach the 

ball before any other player. If the ball lies on a perimeter or vertex, then two or 

more players will be able to reach it in the same time. To take control of a randomly 

placed ball it is advantageous to control a large area. Specifically, the player 

occupying the greatest area will have the highest probability of being able to reach a 

randomly placed ball first. By extension, the team with the largest combined area, or

team space, will be the most likely to take control of the ball.
77



Contiguous areas of team space identify a ‘safe passage’ through which a 

sequence of ball passes can travel, so that it is always closer to home players than it 

is to opponents. By generating large and contiguous blocks of team space, players 

improve their prospects for generating sequences of passes. These ideas build on 

previous work to create a strategy as a string of tactics, such as ball passes (Johnson 

& Sugisaka, 2000).

This is a simplified view of spatial competition. Players will not always have 

equal movement characteristics, and will not be able to move in all directions with 

equivalent speed. The ball will also be moving, and will not do so in a random 

fashion. These factors will all affect the ability of players to control and interact 

with the ball, and a more complex definition of a player’s controllable space will be 

required. However, initially a simple understanding of the concept is sufficient.

Our preliminary experiments use a cellular automaton. Such systems have 

been previously used in related work on path planning in robot football (Behring, 

Bracho, Castro, & Moreno, 2000; Bracho, Castro, & Moreno, 2001) and multiagent 

coordination (Barfoot & D'Eleuterio, 2001; Thangavelauthma, Barfoot, & 

D'Eleuterio, 2003).

3.2.1 Teamwork and the Space-Time Possession Game

In our initial experiment we desired to distance ourselves from the details of robot 

football, specifically tactics regarding moving the ball around in order to score goals, 

and focus on structuring space in useful ways. This led us to define the Space-Time 

Possession Game described below.

78



Let G be a grid of cells. For simplicity we’ll assume G is composed of 

squares, although other planar tessellations are possible. A and B are two sets of 

players positioned on the grid such that each player occupies a single cell at any 

given time. The system has a discrete clock, and at each time frame any player can 

move to an adjacent unoccupied cell.

A player’s claimed area is a function of distance. Each player possesses all the 

squares which are closer to it than any other player, such that the whole grid is 

owned by one or both teams (figure 3.4). Squares equidistant from either team are 

considered shared, with distances measured using chessboard distances.

Team A space  
Neutral space  
Team B space  

|  Players
m-mm-

444*44*44444

4*44444*44444* 
*  44***444444«4*4

* m m t m t m *
4*44 ►*** W *  k v i t
*44*# *»»»»» »* »» *» 4> »» »
/4  >':*!*- If' • i  r  #« r.'v &
4444444*4444tWs444*44444444 
44«44»4» «t» »«t f  »« *» *» 44 «t44«4 • 
*44444*4 ijt<l 44 44*444444 4444* 
44*4

4*44*44nmhMh|hM»444'&I*****
44*44 #*4-4*4®

4*4*-Ĵ 4#44*i4*44*444**$*4*44*444 ■ 
# # » * # # * * «  
4 4 * 4 4 4 4 4 
4**4**4

s.*.

*4**4«4**
* * *-Jt

•»*44*44*4 444®

44*#
r' y f' • ‘ - ̂

4® 4® Hi it 
- s #**444* MM 

$ I* 44 4444 
*44444*444*4

«###■#####
'« **#**44*4

- s a t ev.v.Â v̂.-*»**###
Si - - ,4

SMS

#> v i 44 ■ y . s ®.. m
$  ft * 44® 44444444•’ 44444NhN®4-44ii > *44 },T ; i

4# v **»»44»**#4

44 Is-^ltS -S S S S  t t
44t W$*#4 44444*444

*4444444444444444444 
444S#*SNt*444444*4444 
4 444#*44#44* 4444 4* »4 
»4444444*4® W H jH iH »*444 
*44#444»4*#44444444#

4 **#****4***4***4»»# 
4 ♦♦ * 4 »» 4 4 4 4* ♦♦ »* * 4  *4 
»44444444*444444»44^- 
®-4444*4®444444444444 
- "44 4 * 4 * * 4 4 *  *4444»-*4

Figure 3.4 Team Space in the Space-Time Possession Game

Figure 3.5 shows the convention for pitch ownership. The two squares marked 

‘A’ are players from one team and control areas of the grid marked ‘a’. ‘FT is an 

opposition member, and its controlled area is notated ‘b \  Furthermore, cells marked 

‘c’ are equidistant from both teams, and so jointly claimed by both sides.

7 9



a A t ,a -
C l

lijlllll

c c I88i»
1 "

a

■ a 1 a

V&'/i i i i i

llilrall 
> >„:** "■ a A

% C a a

Figure 3.5 Cell Ownership in the Space-Time Possession Game 

Team A players, marked ‘A’, control cells marked ‘a’. The team B player, marked 

‘B’, controls cells marked ‘b \  Cells marked ‘c’ are in contention.

The objective of the game is to control strategic areas of pitch by 

outmanoeuvring the opposition. Initially, each team starts in an opposing half of the 

pitch, with players able to take up any position in their team’s half. At every time 

step, the players are free to move a distance of one square in any direction, unless it 

is already occupied by another player. Player movements are controlled by a team 

strategy, in the same way as in robot football, with two strategy programmes playing 

against one another. There are a number of possible winning conditions, listed 

below, though only one will be applicable to each game:

i. The team that holds the largest distributed area after A  clock ticks.

ii. The team that holds the largest contiguous area after A  clock ticks.

iii. The first team to hold M  distributed grid squares.

iv. The first team to hold M  contiguous grid squares.

V . The first team to hold M  distributed grid squares for A  clock ticks.

vi. The first team to hold M  contiguous grid squares for A  clock ticks.

vii. The first team to link either end of the pitch with one contiguous set of

claimed grid squares.

80



We will begin by focusing on developing control strategies for the first 

winning condition.

3.2.2 Experimental Results

We have programmed the Space-Time Possession Game in MATLAB, and 

implemented ten simple strategies. In previous work, teams took turns to move 

players, which gave an advantage to the team that moved last, resulting in limit 

cycles of possession (Law & Johnson, 2004). In the following results, players move 

in a randomly determined order. Each team consists of five players, controlled by a 

strategy, which runs run once at every time frame. The strategies are:

1. Stationary -  The players remain stationary in their starting positions.

2. Random -  The moving player is assigned a random direction to move in. 

This can be into any of its 8-neighbours, or it can remain stationary.

3. Avoid -  Players move away from neighbours and pitch edges.

4. Mark -  Each player moves toward an opponent player.

5. Advanced Mark -  As Mark, but the players move to the position adjacent 

to their opponent which results in the largest possession score.

6. Reinforce -  Players move toward the closest contended cell.

7. Grow -  Players move to capture the maximum number of contended cells 

on the perimeter of their own area.

8. Greedy -  The player’s pitch possession is calculated for its current 

position, and for moves to every available 8-neighbour. The move which

81



results in the player owning the largest area is taken. If there will be no 

change, the player remains stationary.

9. Team Grow -  As for Grow, but cells shared between players on the same 

team are ignored.

10. Cooperative -  For each of the nine moves a player can make, the effect on 

the global team area is calculated. The player moves to the cell which 

gives maximum benefit to the team. If there will be no change, the player 

remains stationary.

We have experimented with playing each strategy against one another, using 

each combination of strategies to play ten games. There are forty five game 

combinations with each team adopting one of the ten strategies. Each match began 

with the players in the same symmetrical opening positions. Table 3.3 shows the 

number of games won in each set by the home team. Reading across the rows gives 

the scores for the home strategy against each opponent strategy.

82



Table 3.3 Scores for Strategies in the Space-Time Possession Game

Away strategy

ISJO  ̂ 3»

0>
CD

This table shows that the Cooperative team strategy wins most matches, with a 

success ratio of 80 out of 90. The Stationary strategy comes out bottom, winning 

only 2 out of its 90 games. However, the distribution of winning scores does not 

accurately represent the ability of each strategy. Table 3.4 gives the average area 

held by each home strategy.

Stationary

Random

A void

M ark

Advanced 1

Reinforce

Grow

Greedy

0 0

10 9 I 4 6 10 1

10 5 6 7 10 5

10 6 4 3 10 1

10 5 0 0 0 2

10 9 9 5 9 8

10 7 7 5 7 9 9

10 10 10 6 7 8 7

10 9 10 10 8 9 8



Table 3.4 Average Areas Held by Strategies in the Space-Time Possession Game

Away strategy

%a

G
re

ed
y

S
1

1

6 A
ve

ra
ge

Stationary

Random

A void

M ark

cS A dvanced M ark

S Reinforce oa
Grow  

Greedy 

Team Grow  

Cooperative

28.10 34.5747.74 28.1022.39 25.98 42.74 

35.92 31.92 42.06 

39.99 67.18 45.41 

.68 66.88 37.29 

59.55 34.52 

22.85 37.87

45.43 47.33 

52.05 49.88 53.52 

57.48 48.63 53.60 

60.38 52.86 54.43

45.22 22.68 

41.73 37.09 

38.69

39.34 

38.09 40.18 

25.52 13.27 

52.44 42.81 

51.05 50.16 

70.43 56.81 

69.59 67.00

48.20

19.73 36.3643.18 25.34

17.08 42.5447.60 17.7053.41 55.

29.31 46.6045.56 40.1070.02 42.19

36.25 44.9843.51 39.1071.39 42.23

31.73 36.2965.21 55.78 39.12 35.25

35.21 46.24.45 37.4654.88 56.12

30.76 47.2151.56 55.25

.84 60.4870.05 70.68

66.96 48.18 62.7070.05 74.85

This second table shows that the difference in ability of the top two teams is 

much smaller than table 3.3 indicates. Although there is a difference of eight wins 

between the Cooperative and Team Grow strategies, on average there is only a 2.2% 

difference in the areas each controls. Similarly, there is a much smaller difference in 

controlled area between the worst teams. This shows the fickle nature of the game, 

and the difficulty in generating a winning team; two teams can be very evenly 

matched in their ability to control space, but will play to much wider degrees of 

success.

Although some of the strategies were developed with the aim of capturing 

space, others were based on simple structures; their ability to play the game emerged

84



from their interactions with other players. The following paragraphs highlight some 

of the more interesting behaviours noticed during the games.

Herding behaviours emerged in some of the matches. This was noticed 

between the strategy combinations Cooperative and Random, Grow and Avoid, Mark 

and Reinforce, and Advanced Mark and Reinforce. In each of these pairings, the 

former herds the latter into one or more small pockets at either the edge, or the 

centre of the pitch. This behaviour has different causes in each case. In the first 

instance, Cooperative players move adjacent to Random players and block one of 

their possible moves. The Random players then have a greater likelihood of moving 

away from the Cooperative players, and are eventually forced to the edge of the 

pitch. In the second instance, Avoid players are repulsed by their opponents, team 

mates, and pitch edges. As Grow players move to enlarge their areas, Avoid players 

are repelled toward the centre of the pitch. In the final two pairings, the movement 

of the opponent team toward the Reinforce players removes contended cells between 

the two teams on every other turn. Consequently, the Reinforce team makes more 

moves away from their opponents, in the direction of the pitch edges.

A second interesting emergent property was the result of players competing for 

space within their own team. Both the Greedy and Grow strategies foster this kind 

of competition, which has dramatically different effectiveness against different 

opposing teams. Against teams such as Avoid, where players remain at a distance 

from their opponents, the home team competes against itself for area; team mates 

pair up against each other and try to capture each others space. This leaves their 

opponents free to occupy the majority of pitch unopposed. Against teams such as 

Cooperative, Mark, or Advanced Mark, where players actively seek out their

85



opponents, they fare much better. In these situations, the opponent players seek out 

the competing pairs on the home team and split them apart; each Greedy or Grow 

player is now competing against one opponent, rather than a team mate. In this 

situation, Greedy and Grow teams are at their most successful.

Our final point relates to the stability of captured space. There was a tendency 

for the areas to fluctuate rapidly in games where opponent players occupied adjacent 

cells. In this configuration a single move can result in a shift to or from ownership 

of a number of contended cells, occasionally being significant enough to affect 

which team wins. We call this space weakly controlled. The player that moves last 

is often able to make significant gains, and, as the movement order is randomised, 

this could be either team. The spaces occupied in these games are, therefore, very 

unstable and liable to change to a great degree. Conversely, opposing players which 

are spaced apart hold much more stable areas. We call these strongly controlled. In 

these games contended cells are much fewer in number, meaning dramatic shifts in 

control are unlikely within the space of one turn.

The top two strategies both use strong marking approaches, whereby players 

move closely adjacent to opponents. As we will show later, this is one of the best 

methods for capturing large areas from the opponent. However, it is also risky, in 

that the areas are not stable. From the previous results, we can see that although they 

control much larger areas on average, they can be beaten by weaker strategies which 

are lucky in their final turn. This was evident in one match between the Cooperative 

and Random strategies, in which the latter won by moving last.

In this section we have introduced the idea behind controlling space, and 

separated ourselves from the confines of football. We have shown several general

86



strategies (both emergent and deliberative) for playing a space-capturing game, and 

in doing so, have shown that cooperation within teams is, as would be expected, the 

best method for playing competitive games. We have introduced the idea of strongly 

and weakly controlled space as those which are stable and unstable respectively, and 

have shown that the winning strategies appear to be those that take risks by weakly 

controlling space. We will now look for specific configurations of players, rather 

than strategies, which exhibit strong and weak control of areas.

3.3 Voronoi Games

In the previous experiments we used a cellular automaton to segment areas on the 

pitch. In (Law, 2005) we showed that the processing time for the analysis of our 

cellular automata increased dramatically with pitch size. Specifically, that to use the 

same techniques on an image provided by our robot football camera would be 

impractical given the strict speed requirements of football. Our research to find an 

improved method for calculating areas in our possession game introduced us to the 

Voronoi diagram (Voronoi, 1907), and a similar set of problems called the Voronoi 

games.

A standard 2-dimensional Voronoi diagram is composed of n tessellating 

convex hulls, or Voronoi cells, which are defined as follows: Consider a set of 

points in a plane, P = {pi, p 2, ..., pn}. For any point pi there exists a locus of points 

(x, y) in the plane that are closer to pi than any other point in the set P. These loci 

form the Voronoi cells, which we have referred to previously as a player’s space. In 

ordinary Voronoi diagrams, boundaries between external points in P  stretch off to

87



infinity, and have infinite area. However, it is straightforward to implement a 

boundary to produce an enclosed Voronoi diagram as was shown in figure 3.3.

The 1-dimensional Voronoi game was introduced by Ahn et al.(2001) as a 

variation of the hotelling process (Okabe, Boots, Sugihara, & Chiu, 2000). In this 

work, where the game is used as a model for competitively placing facilities along a 

road, players take turns to place n facilities on a line or circle (figure 3.6). This 

game is composed of n rounds, each player placing one site in each turn. At the end 

of the game, the arena is subdivided into sections according to the nearest neighbour 

rule, and the player with the largest area wins. Ahn et al. provide a set of rules for 

placing sites, which enables the second player to force a win in every game.

Turn I

Turn III
9 0  O -90-

Tum III Turn VTurn V Tumi

(a) Line game (b) Circle game

Figure 3.6 ID Voronoi Line and Circle Games

A modification to the line game is also introduced, whereby players are given 

one turn each to place their n sites on the circumference of a circle. A tactic is 

devised which enables the first player to win every game.

The one-round Voronoi game is extended by Cheong et al. (2002) to two or 

more dimensions. In this game, which is similar to our Space-Time Possession 

Game, a piece controls the area of pitch P  closer to it than any other piece. Player 

one, white, places a set of pieces W, followed by player two, black, placing a set of 

pieces B. When all pieces are placed, the Voronoi diagram of A u  B is constructed, 

and the player which owns the largest area of P is declared the winner. Cheong et al.



show that given certain criteria, the second player can always steal at least half of the 

pitch. This proof is extended by Fekete and Meijer (2003) to show that for a 

rectangular pitch of aspect ratio p , black has a winning strategy for n > 3 and

p  > \[2fn , and for n = 2 and p  > V3/2 . White can win in all remaining cases. It 

should be noted that these strategies all require white to place its pieces on a 

rectangular grid (figure 3.7).

0.75 0.75

0.25 0.25

"0 0.25 0.5 0.75

Figure 3.7 Grid Positioning Strategies in the Voronoi Game, Showing the Best

Opponent Move

It follows that our space-time game can be considered as an extension to the 2- 

dimensional Voronoi game, with the introduction of multiple turns. Our multi-round 

Voronoi game has some additional constraints: players place pieces simultaneously, 

with only knowledge of their opponents’ previous positions, and pieces have a 

limited movement between turns; they must remain within moving distance of their 

last position. Although there are some solutions to the games described above, none 

are applicable to our space-time possession game. We will instead undertake an 

experimental approach to attempt to find some simple structures which give 

appropriate solutions.

89



Based on our previous work, and ideas taken from the Voronoi games, we 

propose some useful spatial formations, and examine their application to the one- 

round Voronoi game. Movement of pieces across multiple rounds will be examined 

in chapter 5.

3.3.1 Spatial Structures

At this point we introduce some useful spatial structures, and introduce Voronoi 

diagrams in more detail, specifically how they are constructed and how they can be 

altered by the addition of new points, or players. We will not conduct a full 

mathematical examination, but briefly outline concepts and relationships which will 

be useful in understanding the forthcoming work. A more formal introduction can 

be found in (Okabe et al., 2000).

Consider three points in a plane, P = { pi, p 2, ps }, as shown in figure 3.8(a). 

They are related by a Delaunay triangle, 7>, as shown. A Delaunay triangle exists 

wherever three points describe an empty circle, which contains no other points in the 

plane. The centre of such a circumcircle defines a Voronoi vertex. As such, any 

points lying on an empty circle will create neighbouring Voronoi cells. The Voronoi 

diagram for the three points is shown in figure 3.8(b).

(a) Delaunay diagram (b) Voronoi diagram (c) Construction of the four
of three points of three points point Voronoi diagram

Figure 3.8 Constructing the Voronoi Diagram

90



If a new point is placed within the empty circle, it will split the existing 

Delaunay triangle in two. There will now be two circumcircles, and the Voronoi 

diagram will change accordingly, as shown in figure 3.8(c). By definition, the new 

point will neighbour each of the points on the original circle.

If two empty circles overlap (figure 3.9(a)), a point placed in the overlapping 

segment will neighbour all points on both of the original circles, as shown in figure 

3.9(b). It should also be noted that placing a new point only alters the existing 

Voronoi cells of neighbouring points, not those elsewhere in the plane.

(a) Four points creating (b) Effect of placing a point
an overlapping segment in the overlapping segment

Figure 3.9 Localised Effect of Point Placement on the Voronoi Diagram

Consider a set of points P = {pi...pw, q i^qs  }, and a subset S = {pi...ps }• If 

we wish to place a further point r which will create a Voronoi cell neighbouring only 

points in S, then we must ensure it is placed in an empty circle described by all 

points in S, but not P £ S  (figure 3.10).

91



q2

Figure 3.10 Creating a Voronoi Cell to Neighbour Specific Points

A point placed in a shaded segment will neighbour points in S

If we desire to place a new point such that its Voronoi cell will enclose a 

coordinate (x, y) in the plane, we must place it within the circle defined by the 

coordinate and the nearest existing point, or opponent player, as shown in figure 

3.11(a). Similarly, we can form a Voronoi cell to enclose a number of distinct 

coordinates, provided the largest empty circles described by these coordinates 

intersect to form a common segment (figure 3.11 (b)). Our point must then be placed 

within this segment.

92



(a) To capture c„ a 
point must be placed 
inside the circle

(b) To capture c,_p a 
point must be placed 
within the shaded segment

Figure 3.11 Capturing Coordinates in the 2D Voronoi Game

To separate existing neighbouring cells, a point can be inserted directly 

between those forming the existing cells. If the three points are collinear, they 

describe a circle of infinite radius, thus the outer cells will never meet (figure 

3.12(a)). However, in the space-time possession game this configuration will be 

unstable. If the inserted point is offset slightly, as shown in figure 3.12(b), the two 

outer cells will converge. To prevent this, a second point should be added such that 

a second empty circle is created, with the two new points describing the overlapping 

segment (figure 3.12(c)).

Cell
boundary

(a) Separation of two opponent 
cells by placement of a single 
collinear point,/?,

(b) Poor separation of two (c) Separation of t wo
opponent cells by placement opponent cells by placement
of a non-collinear point, p, of two points, p , and p :

Figure 3.12 Separating Neighbouring Cells by Point Placement



The final structure which will be of use to us is the concept of minimum 

spanning trees (MST). The MST is the shortest path between points, and is 

composed of the edges of the Delaunay graph for these points (figure 3.13(a)). We 

introduce a variant we shall call a team tree, which will map how players of one 

team neighbour each other along edges of the Delaunay graph (figure 3.13(b)). This 

gives us useful information on the linkage of team areas, as well as how pockets of 

players are surrounded and separated from their team mates. Similar ideas have 

previously been suggested by Johnson and Price (2003).

Figure 3.13 Tree Diagrams

3.3.2 Spatial Tactics

If all opponent pieces have been placed in a Voronoi Game, we can capture the 

largest area by stealing more than half of each opponent player’s space. Figure 

3.14(a) shows the Voronoi cell of an opponent piece, (9, with area A and centroid P. 

In figure 3.14(b), h is the home piece we desire to position. The contrasting regions 

show how the existing cell will be divided by placement of h.

p,

(a) The minimum spanning 
tree for a set of points

(b) Team trees for 
two sets of points

94



(a) Voronoi cell of opponent (b) Placement of h to capture
O with centre P and area A majority of A

Figure 3.14 Capturing Cells by Placing a Single Player

If P  and O are coincident, then there is no position for which the portion of A 

closer to h is greater than that closer to O. However, if P and O are not coincident, 

then placing h on the line between P and O will cause h to capture to a larger 

proportion of A, as shown. This can be considered as a strong marking strategy, 

whereby players are placed closely next to individual opponent pieces. Provided 

opponents do not lie on the centre of their Voronoi polygons, then it is always 

possible to steal a slightly greater area of the pitch from the opponent team using this 

technique.

This is called a takeover and a variation is proposed by Cheong et al. (2002), 

whereby two home pieces are allocated to the nil opponent pieces holding the 

largest areas. By placing two pieces close to, and on opposite sides of, O, the home 

player captures almost the entire area of A (figure 3.15). Provided the areas of all the 

opponent pieces are not similar, a strategy based on this principle will capture at 

least half of the playing field.

95



Figure 3.15 Cell Takeover by Two Players, hi and h2

These strong marking strategies are suitable for marking n opponents with m 

pieces if m > n. However, if m < n  (say we have already allocated two home pieces 

to the largest opponent cell), the best strategy for the remaining m players may be to 

weakly mark multiple opponents. By this we mean placing a player between 

opponents, in such a way that it can capture area from a number of cells. In general, 

the more circumcircles enclosing a point, the more neighbouring cells that point will 

have. Also, the larger the radius of those circles, the further away the neighbours 

will be, and the larger the Voronoi cell associated with those neighbours. We 

propose that placing players in segments caused by many overlapping circumcircles 

may capture significant space.

3.3.3 Experimental Results

We generate ten strategies (described below) based on the structures described in the 

previous section. Each was played second in 100 one-round Voronoi games, using 

teams of 5 players on a 64 x 48 unit arena, against 5 randomly positioned opponents. 

The seeds for the random position generator were reproduced for each set of games, 

ensuring all strategies were played against the same set of random opponents. As a 

benchmark, games were also played using a random strategy, and a brute force best-

96



position search algorithm. A brief description of each strategy and its outcome is 

given below, with the statistical results shown in figure 3.16. Tabulated results for 

the mean and median scores are given in table 3.5.

1. Random - Pieces are placed at random. As would be expected, there is a 

normal distribution of area captured over 100 games, with a mean of 

51.9%.

2. Optimal - A brute force search of all integer coordinates for positions 

which give the greatest returns. This strategy always wins in our tests, 

with a confident margin over the opponent. However, the lengthy 

computation makes it impractical for real-time applications or large pitch 

sizes. It is included as a benchmark for our other strategies.

3. One-on-one - A strong marking strategy with each piece paired with a 

single opponent. This is a very competitive strategy, giving results with a 

mean within 0.7% of our optimal benchmark strategy, yet using a much 

simpler algorithm. The spatial structures employed here are very different 

from those observed in the optimal strategy, but produce very similar 

outcomes. The drawback is the instability of captured space. These 

particular structures perform most competitively in situations where each 

opponent piece controls a similar sized area.

4. Two-on-one - A strong marking strategy, using two pieces to mark each of

the strongest opponents. The remaining piece is allocated to the 3rd

strongest opponent using a one-on-one strong marking style. Again, this is

a strong strategy, consistently winning all 100 games, and with a mean

falling within 4.2% of that of our optimal benchmark strategy. These

97



structures perform best against opponents where space is not evenly 

distributed between players.

5. Radius - A weak marking strategy. Pieces are placed in overlapping 

segments of Delaunay circumcircles with the largest cumulative radius. 

Effectively pieces are placed in large but highly neighboured spaces. This 

strategy does not perform as well as the strong marking strategies but, with 

a mean area of 60.3%, out performs the other weak marking strategies. A 

main benefit of this structure is its flexibility. The two strong marking 

strategies require pieces to be very close to the opponents at all times. To 

change between the one and two marker strategies requires single pieces to 

make relatively large movements, which will take time to perform. In 

comparison this, and the other weak marking configurations, place pieces 

are well distributed amongst the opponents, allowing an easy switch 

between strategies.

6. Overlap - Another weak marking strategy. Pieces are placed at the centre 

of the most overlapped circumcircle segments. Effectively these 

configurations place pieces to neighbour the maximum possible number of 

opponents. Although not as competitive as the strong marking strategies, 

this approach still wins in 81 of the games.

7. Exclusive Radius - This is similar to the standard radius strategy, with one 

key difference. As more pieces are placed, radii of circles used in previous 

placements are discarded from any new placement calculations to avoid 

overly populating one area of pitch. Despite this, it is less successful, 

winning 10 fewer games.

98



8. Exclusive Overlap - This is similar to the standard overlap strategy, with 

one key difference. As more pieces are placed, circles used in previous 

placements are discarded from any new placement calculations to avoid 

overly populating one area of pitch. Again this is less successful than its 

counterpart, winning 9 fewer games.

9. Vertices - Players are placed at the furthest points from all opponent 

pieces, i.e. on the most remote Voronoi vertices. This is a control 

experiment to demonstrate a poorly abstracted spatial structure. Intuition 

may suggest that by simply moving pieces far from their neighbours, they 

will occupy large empty spaces. Loosing 95 of the games indicates that 

this is not the case.

10. Grid - The first player strategy proposed by Fekete and Meijer (2003) for 

n > 3. It is indicated that positioning pieces on regular grids minimises 

the gains of an opponent. Here we implement the 1 x n grid, and 

demonstrate its performance on a pitch of aspect ratio p  > y/2/n (it is

proposed as a winning strategy only if p<yjl /n).  The outcome is much 

worse than our strong marking strategies, with only 73 wins and an average 

possession of 53.9%, making it more comparable to our weak marking 

strategies. A drawback of this style of play when applied to an TV-round 

game is its inability to adapt to the changing configurations on the pitch.

99



Fr
eq

ue
nc

y 
Fr

eq
ue

nc
y 

Fr
eq

ue
nc

y 
Fr

eq
ue

nc
y 

Fr
eq

ue
nc

y 30
20
10

0
0

Random

50 
Area (%)

100

Optimal

>, 30 
1 20
1  io

;
n  1 ^ I J

rr 1”' ■-----  . ■ -------- Fi o

50 
Area (%)

100

30
20
10
0

0

Radius

r
50 

Area (%)
100

Overlap

50 
Area (%)

100

Exclusive R adius

50 
Area (%)

100

Exclusive O verlap

50 
Area (%)

100

Vertices

50 
Area (%)

100

>>oC<DS3
<DV-«

Grid
30
20
10
0

10050
Area (%)

Figure 3.16 Strategy Results for the One-Round Voronoi Game 

Bars show the number of games concluding with the named team occupying the

given area.

100



Table 3.5 Mean and Median Scores for Positioning Strategies in the One-Round
Voronoi Game

Strategy Number of wins Mean score (%) Median score (%)

Random 57 51.9 51.1

Optimal 100 78.1 77.9

One-on-one 100 77.4 77.7

Two-on-one 100 73.9 73.6

Radius 88 60.3 59.5

Overlap 81 58.6 59.7

Exclusive Radius 78 56.3 54.9

Exclusive Overlap 72 55.2 54.2

Vertices 5 36.6 35.9

Grid 73 53.9 53.2

In accordance with our results from section 3.2.2 we have again shown that 

closely marking the opponent can be a successful strategy. Although close to the 

optimal solution in terms of score, the positions occupied by each are very different; 

the optimal solution places players further from the opposition, resulting in a more 

secure area ownership than that of the strong marking strategies. The brute force 

computation required to find such positions is not feasible in the real-time world of 

robot football, and we can see by the scores that there is only minor benefit in 

implementing more sophisticated algorithms over our simple marking strategies. 

Another interesting feature is the favourable results of the standard, over exclusive, 

weak marking strategies. These indicate that, in general, it is better to focus more 

resources on larger opponent areas than spreading them over a wider region.

Both the strong and weak approaches to marking have their advantages. 

Though the former excels in its ability to capture space, the latter has benefits in its

101



flexibility and stability. We expect that both types of structure will appear in 

football games.

3.4 Space in Football

Having investigated some spatial structures and strategies, we now return to the 

game of football to investigate the structure of team space during a match. Our aim 

is to find whether a relationship exists between the distribution of team space and 

the states of play during a football match. Similar work undertaken by Kim (2004) 

examined player space with relation to victory conditions in a simulation of real 

football. It was concluded that to win a team did not necessarily have to control the 

largest area on average during a match, but in order to score a goal a team did need 

to be in control of a larger area of pitch at that moment. Our experiments differ in 

that we are not only examining victory conditions, but searching for relationships 

which exist throughout a match.

We based our own tests on data from the RoboCup Simulation League. Using 

our possession game we examined ten different matches, representing a variety of 

winning conditions, and observed the changes in team space, player space, the goals 

scored, and the position of the ball during play.

3.4.1 Analysis of Team Space

We began by measuring the amount of pitch owned by either team in each of the ten 

matches, and compared their average ownership to the number of goals scored. The 

results are shown in table 3.6. In match 5, we observed the third largest goal 

difference of any match, and the largest average margin in pitch possession by the

102



winning team. However, matches 2 and 9, which have the largest goal differences, 

also have 2 of the smallest average possession margins. Examining relations 

between the goal difference and pitch margin for the remaining matches, it is 

difficult to suggest that controlling the majority of the pitch is sufficient to win a 

match. Neither is there a significant relationship between goals scored and the 

maximum team possession scores.

Table 3.6 Scores and Area Possessions Measured in RoboCup Simulation League
Matches

c Average team possession A Maximum team possession
X / ' A f a  w  X A  t  7A f*Q  r r p  A

, ,  . , as % of pitch Average
Match y  possession ^

(A -B ) . „  difference _A B A B

1 0 1 o 44.89 55.11 10.22 74.42 78.50

2 10 - 0 51.73 48.27 3.46 71.54 78.59

3 1 - 2 48.39 51.61 3.22 75.41 75.86

4

o1o

54.48 45.52 8.96 74.95 79.13

5 0 - 6 42.14 57.86 15.72 76.01 79.07

6 4 - 3 54.23 45.77 8.46 80.36 74.68

7

o1m

51.28 48.72 2.56 76.76 74.81

8 4 - 3 44.68 55.32 10.65 65.82 78.70

9 1 -8 50.68 49.32 1.35 76.87 77.64

10 2 - 0 44.29 55.71 11.43 86.29 84.24

We furthered this research by analysing the change in possession throughout 

game 5. By monitoring the changes in ball possession, and the variation between 

attacking and defending plays, we formed relationships between our definition of 

team space and the constantly changing state of the game. Figure 3.17 shows how 

often team A controlled specific quantities of pitch.

103



 Team A
i >. am B

Controlled Area (%)

Figure 3.17 Possession Frequencies during a Robot Football Match 

Each team controls the specified area of pitch for the indicated number of frames.

The total area of the pitch is 7140 units. Team A mainly controls only a 

fraction of this, around 35%. This low ownership is due to team B being in 

possession of the ball for 78% of the match, with team A playing defensively. It 

should be noted that the feature relating to a possession score of 50% is an effect of 

the time spent in the kick-off position after each goal is scored, and is not a 

proportional representation of either team’s influence during standard play.

From the simulations, we observe that larger team spaces are usually linked to 

attacking plays, and smaller ones to defensive plays. In terms of spatial 

configurations, a large team space facilitates easier passing and movement to 

intercept stray balls, which is desirable in an attacking formation. In contrast, small 

team and player spaces indicate tight configurations of players, which are better for 

protecting a small area and intercepting passes and shots within that region.

104



However, as concluded earlier, it is not sufficient to state that by controlling 

more space a team is more likely to score goals. Neither is it appropriate to state that 

a team in control of a larger area will be on the attack. For either of these to hold 

any merit, the team in question must be in possession of the ball.

3.4.2 Movement on the Ball

We continue by examining the relationships between team space and ball position. 

Figure 3.18 shows ball position data and space distribution from a portion of match 

5. The area plot is taken from the perspective of team A, with the x-axis for ball 

position defined as the line drawn the length of the pitch, passing through the centre 

of both goal mouths.

- -  Ball 
—  Area

-10

-30

-40

4700 . 480(5°100 4200 4300 4400 4500
Time (frames)

4600

Figure 3.18 Comparison of Ball Position and Controlled Area in a Robot Football 

Match, Highlighting Similar Features

105



A relationship can be seen between the two plots, both having similar major 

features. These features appear in close phase to one another, with the lag varying 

between 20 and 50 frames. The area owned by team A roughly follows the same 

trend as the position of the ball, supporting our observations about spatial 

configurations in attacking and defending plays. As the ball moves along the length 

of the pitch, each team expands, or contracts, its area accordingly to control more 

pitch, or defend key areas. This relationship between ball position and team space is 

also evident throughout each of the other simulated matches.

We speculate that once a team has possession of the ball it adopts a broad 

spatial configuration, which facilitates passing and safe movement about the pitch. 

At the same time, the opposition forms a much tighter spatial configuration to 

protect specific areas of pitch, or block opponent players. As the ball is moved 

further toward the goal, the attacking players increase their control over the pitch, 

whilst their opponents form tighter, more defensive structures around their home 

goal. The phase lag between the signals in figure 3.18 is due to the reaction times of 

the robot football system.

An example of this spatial structuring is shown in figure 3.19. Here, team B 

(controlling the area in grey) has the ball (black dot) and is attempting to shoot at 

team A’s goal, on the left hand edge of the image. Team A (controlling the area in 

white) has responded by forming a tight defensive structure around the goal. In this 

configuration they control the majority of pitch between the ball and goal, whilst 

also blocking shots from the most threatening opponent players. In contrast, the 

spatial configuration of team B, although controlling more area overall, has much 

less influence in this crucial region.

106



Figure 3.19 Defensive and Attacking Structures in Robot Football

From these results we can see how controlling space is important in robot 

football. Although we cannot give strict relationships regarding how to structure this 

space, we have shown some more general connections. Due to the duality of the 

Voronoi and Delaunay graphs for a set of points, we can also state that the structure 

between players is an important part of football.

3.5 Summary

Spatial structuring is an essential part of football. In human football games, players

try to structure the pitch by taking up positions to improve their team’s chances of

success. Although players take up these positions without explicitly communicating

their intentions to their team mates, extensive training allows the players to

recognise tactical opportunities based on these positions alone (Johnson, 2000).
107



Furthermore, players can use their positions to weaken their opponent’s by using 

feints, just as in the game of chess.

We have established a connection between the digital representation of robot 

football and some more traditional board games which are concerned with 

structuring space. We have briefly discussed the Al techniques used to solve these 

games, and have shown that the complexity of robot football is too great to rely on 

this standard approach.

Through our knowledge of football, we have identified the significance of 

controlling areas of pitch, and have created an abstracted generalisation of football in 

the form of an TV-round Voronoi game we call the Space-Time Possession Game. 

Results from this work showed that a team in which agents cooperated outperformed 

a team composed of non-cooperating individuals. We also showed how some 

combinations of simple strategies evolved interesting emergent behaviours.

From our knowledge of human football, strategies for the one-round Voronoi 

game, and analysis of Delaunay and Voronoi structures, we have identified a set of 

spatial structures which correspond to ideas we consider to be useful in spatial 

competition. Using the one-round Voronoi game as an experiment, we show how 

our spatial configurations respond to a set of opponent positions. The results 

indicate that the structures we have identified are, at best, near-optimal, at worst, 

above average, and all more competitive that some arbitrarily chosen configurations. 

We hypothesise that while our strong marking strategies perform best in these 

games, a combination of the strong and weak marking configurations will be more 

appropriate for the TV-round game and, by extension, robot football.

108



We continued in our analysis of spatial competition by using a bounded 

Voronoi diagram to analyse the change in team space during a simulated robot 

football game. The results showed a correlation between the motion of the ball and 

the overall area each team controlled on the pitch. From these findings, we conclude 

that robot football can be represented as a game of spatial competition. Furthermore, 

the duality of the Voronoi and Delaunay transforms provides evidence that 

positional structure between players is fundamental to the game of football.

In all these experiments, we assumed that every player was omnidirectional 

and could move with the same velocity and acceleration. In real systems this is not 

the case, and so a weighted Voronoi diagram is required. However, the principles 

under investigation relate to both types of diagram, and so we examine the more 

general case. Having identified the relevance of spatial possession and positional 

structure in robot football, we continue by searching for specific structures to form 

the basis of an abstracted team strategy.

109



Chapter 4

Task Abstraction using Concept Generation

In the previous chapter we highlighted the importance of area possession and hence 

spatial structure in robot football. This work also identified some structures and 

playing styles which facilitated competitive spatial ownership. In continuation, we 

will now attempt to formalise a set of explicit rules, based upon this new knowledge, 

which describe the game of football, and how it should be played by a team of 

coordinated robots.

In this chapter we shall focus on generating an abstracted definition of the 

robot football objective using the techniques outlined in section 2.4. Although we 

only demonstrate the methods on our robot football data, it should be recognised that 

the same methods could be implemented to abstract task descriptions for other 

complex systems.

4.1 An Architecture for Abstraction

Figure 4.1 depicts our analysis architecture. This describes the process of 

decomposing a complex task from sets of available data. We input data 

corresponding to the system we desire to abstract, a list of concepts, which we 

suppose are sub-structures within the system, and a list of variables, which we will 

use to describe these concepts. The analysis produces a list of hubs, which are 

measured structures of the variables, which appear frequently in the related concepts. 

From these hubs, we generate hypotheses and representatives, which can be used

110



respectively to classify further data, or recreate the concepts. The following sections 

describe the core parts of the architecture.

Data

Concepts to generate
PRIMITIVE
GENERATION

Arbitrarily/experience 
selected variables

Primitives

VARIABLE AND
PRIMITIVE
CLASSIFICATION

Significant variables Common variablesDesirable primitives

HUB GENERATION

Hypotheses

Representatives

Hubs

Generate hypothesis

Generate representative

Add common variables

Incidence matrix/build stars

Find maximal rectangles/hubs

Extract desirability 
criteria

Measure variables within sections

Classify variables by comparing averages

Identify sections o f  data relevant to the concept

Desirable Undesirable Indifferent

Classify primitives

Desirable Undesirable Global 
averages averages averages

Measure averages and ranges 
for each variable

Ranges

Figure 4.1 Block Diagram of the Proposed Abstraction Architecture

111



4.1.1 Primitive Generation

The section of the architecture relating to primitive generation is reproduced in 

figure 4.2. Recall the definition of a primitive in section 2.4.4, where we stated that 

it was a measured relation on a set of variables relating to a concept. This block 

takes in a set of data, a set of concepts to be generated, and a set of variables. The 

output is a set of primitives for each concept. Each primitive contains the value of 

each variable in the data over a period relating to the concept.

Data

PRIMITIVE
GENERATION

T
Primitives

Figure 4.2 Block Diagram of the Primitive Generation Component

We begin with a set of recorded data from systems of, or similar to, the type 

we are interested in. In the case of our robot football problem, we use log files 

recorded from simulated matches. These files contain data on the positions and 

orientations of the robots and ball at every frame taken during the match. We 

consider these to contain sufficient data to describe strategies for playing football. 

Multiple data sets are required to improve the accuracy of the concept generation. 

This may require whole sets of data, though in the case of low level concepts, which 

are evident multiple times in one data set, a single set of data may be sufficient.

The data does not necessarily need to be from a system identical to the one of 

interest, provided it displays the same properties which we desire to conceptualise.

112

Concepts to generate

JL
Identify sections o f  data relevant to the concept

Arbitrarily/experience 
selected variables

Measure variables within sections



In this way, we can build a representation of a complex system by examining 

properties in from a variety of different systems. For example, we could examine a 

movement task from one set of data, and pick up and put down tasks from another. 

We could then combine these together to build a representation of an object 

transportation system. In this work we will examine data from simulated robot 

football games, but use it to control real robot footballers.

The primitive generator also requires a set of concepts to generate, and a set of 

variables with which to measure them. These are both currently generated by hand, 

although it would be preferential if these could be automated in later instances of the 

architecture. The concepts to be generated are the tasks we wish to abstract from the 

data. These can be at any level, and relate to any measurable feature in the data. For 

example, we could choose the overall objective of the system as our concept to 

generate, or we could choose some minor low level task, such as moving between 

two points. In practice, we chose concepts relating to all the tasks within a system, 

to generate the most accurate task decomposition of the objective. It does not matter 

if these tasks are irrelevant to the objective, as this will be discovered when 

performing the analysis at a higher level. We will give some examples of how to 

choose concepts for generation in section 4.2, when we select concepts relating to 

robot football.

The variables to use in the concept generation can be any measurable property 

of the system. These could be simple descriptors, such as distance, or the 

achievement of some related subtask. Recall that lower level concepts may be used 

as variables for higher level concepts. The more variables, the more accurate the 

concept generation becomes. Even variables which we may not consider to be

113



important may have some unseen effect on the concept, and this will be highlighted 

in the measured hubs.

The primitive generation begins by identifying sections of the data relevant to 

each concept. For example, if we were interested in generating a concept relating to 

the task of moving an object from point A to point B, a primitive would be described 

by a subset of the data where an object is in transit between those two points. Each 

transit would be recorded in a separate primitive, starting from the time the object 

left point A, and ending at the time the object arrived at point B.

The variables are then measured for the duration of each primitive. A powerful 

ability of the concept generation method is the ability to examine structures through 

time. For example, in our transport example, the transit itself may be made up of the 

event sequence pick up, move, put down. The alternative sequence of the same 

events pick up, put down, move, would not accomplish the task. To simplify 

matters, we will generally focus on structures which exist through the entirety of a 

concept, and not their dynamics.

The output of the primitive generation block is a set of primitives for each 

concept. Each primitive is made up of the values of the measured variables over a 

portion of the data relevant to the concept. Attached to each primitive is a relation, 

stating how the variables are associated. In our example, the variables in each 

primitive are related through the undertaking of the transport task.

4.1.2 Variable and Primitive Classification

In this block, desirable sets of primitives and variables are identified. The block 

diagram is reproduced in figure 4.3. It takes in the measured primitives and the list

114



of concepts to be generated, and outputs sets of primitives and variables which 

correspond to the desirable instances of the concept. It also outputs those variables 

which are common to both desirable and undesirable versions of the concept.

Primitives

Concepts to generate Extract desirability 
criteria

Classify variables by comparing averages

Desirable Undesirable Indifferent

Classify primitives

Desirable Undesirable Global 
averages averages averages

Measure averages and ranges 
for each variable

Ranges

VARIABLE A ND
PRIMITIVE
CLASSIFICATION

Desirable primitives Significant variables Common variables

Figure 4.3 Block Diagram of the Classification Component

The process begins by extracting the criteria for classifying the primitives; 

some will be more desirable than others. For example, in our transport task, it may 

be that we are only interested in the fastest transfers. In this case the transfer 

duration would be the measure of desirability. This is used to classify the primitives 

into desirable and undesirable sets. For some concepts we may also be able to 

classify a set of indifferent primitives, which are neither desirable nor undesirable. 

The relations attached to each primitive are modified to reflect this classification. In 

our example, the relation for the desirable primitive associates its variables through 

the undertaking of a desirable transport task. Hence, all the desirable primitives will 

carry the same measured relation, based on the contained variables being part of a 

fast transport task.

115



In the next stage we classify the variables themselves. This begins by taking 

three averages for each variable: average over desirable instances, average over 

undesirable instances, and the global average over all instances. The actual 

classification compares these three values for each variable. If there is a significant 

difference between the average value for the desirable instances and the average for 

the undesirable instances, and if these averages are on opposite sides of the global 

average, then the variable is classed as significant. This means it is likely to be a 

good classifier for differentiating between desirable and undesirable primitives. If 

the separation of the desirable and undesirable averages is negligible, in terms of the 

range of values, then the variable is classed as common. This means a variable is 

common to both sets of primitives, and may contain useful information to describe 

the general system. The actual significance of this method of classification is 

calculated in section 4.3.4.

For an example of this classification, consider again the transportation task. If 

we classify the task in terms of the duration of transit, then we split our primitives 

into two sets: the desirable set for fast transits taking less than t seconds, and the 

undesirable set for slow transits taking more than t seconds. Now consider one of 

our variables relates to passing through a point C at some distant location away from 

both A and B. The variable is true if the object in transit passes through C, and false 

if it does not. In all of our fast primitives this variable is false, as it takes longer than 

t seconds to get from A to C and back to B. In some (but not necessarily all) of the 

slow primitives, the variable is true. Assigning values to truth and falsehood allows 

us to take averages for the variables across the fast and slow transits. There will be a 

distinct difference between the averages over each set of primitives. Whether this



difference is deemed significant will depend on the implementation of the 

classification. We discuss this further in section 4.3.

The outputs from the classification block are the set of desirable primitives, the 

set of significant variables, and the set of common variables. The significant 

variables output also contains the global average for each variable, and an indication 

of whether the desired value is greater than, or less than, this value.

4.1.3 Hub Generation

In this block, reproduced in figure 4.4, we measure the hubs relating to the concepts. 

These are structures of variables which are common occurrences in our desirable 

primitives. We also generate hypotheses and representatives based on this 

information.

Desirable primitives Significant variables Common variables

HUB GENERATION

Hypotheses

Representatives

Hubs

Generate hypothesis

Generate representative

Incidence matrix/build stars

Add common variables

Find maximal rectangles/hubs

Figure 4.4 Block Diagram of the Hub Generation Component

The hub generation begins by compiling the desirable primitives into simplices 

of significant variables, from which stars can be formed, and the hubs extracted. In

117



practice, we use an incidence matrix with each row representing a primitive, and 

each column representing a significant variable. Any insignificant variables are 

stripped from the primitives. Each cell is labelled true if the variable in the primitive 

has a value occurring on the same side of the global mean as the desired value.

The next stage is to find the hubs of the stars. This can be done by finding the 

intersections of all the primitives with every other primitive, or by finding all the 

unique maximal rectangles. By this we mean rearranging the rows and columns of 

the matrix to find the largest rectangles which are not contained within any other.

Since all of the desirable primitives carried the same measured relation, this 

relation is attached to the incidence matrix as a whole. Every hub also carries this 

relation, which indicates how we have measured the variables to be associated. For 

example, a hub measured for our fast transport task will contain variables which are 

related through all being present during a transport task, of duration less than t 

seconds. Furthermore, the relation will also now state that these variables occur to a 

greater or lesser degree than the given global mean.

To generate hypotheses and representatives we can either select a single hub, 

or generate some kind of average of a number of hubs. In this example, the 

hypothesis could simply be that a transport task is desirable if the duration is less 

than t. However, the power of the technique is in being able to classify primitives 

which are less obviously related. In this case we would use a sample of primitives 

classified into desirable and undesirable sets by hand. A hypothesis distinguishing 

the sets could then be used to classify further primitives. In this work we select the 

largest and most frequently occurring hubs to be our representatives. The 

representatives and hypothesis may also contain the common variables.

118



Recall that a hypothesis is a generalisation of a set of primitives into an 

associated concept, and a representative is a relation on a set of variables which can 

be used to represent a concept. A hypothesis is used to classify future data. For 

instance, in our transport example, we could use the hypothesis to identify fast 

transits in other data without having to identify the start and end conditions, or 

measure the time. This is particularly powerful when the concept is something that 

is difficult to automatically identify in a set of data. In this situation, the primitives 

in the initial analysis must be identified by hand. The hypothesis can then be used to 

automatically identify the concept in further data. An example of this is given in 

(Iravani, 2005a). The representative, on the other hand, is used to create an instance 

of the concept. For example, in our transport task, rather than generate the subtasks 

(pickup, carry, drop, etc.) by hand to build the controller, we would endeavour to 

create a representative complete enough to identify these tasks for us. The power of 

the representative is in creating a list of required subtasks to fulfil some complex 

mission.

4.2 Multilevel Structure in Robot Football

Robot football is, as we have already stated, a complex multilevel and 

multidimensional system. In the last chapter we showed that the areas controlled by 

players, and hence the structures between them, are significant aspects of the game. 

We also showed a number of specific player configurations which had significant 

meanings. Based on this knowledge, we will now attempt to identify a set of 

concepts to input into our abstraction architecture.

119



Recall figure 2.16. Here we showed how a typical robot football controller has 

a multilevel structure, consisting of low level roles and mid level plays, combined to 

form a high level strategy. Figure 4.5 shows our own alternative decomposition of 

the robot football task based on these ideas.

Objective

^  Achieves 

Strategy eg. basic

Selects ^  ^  Achieves 

Play eg. defensive

I f
Selects I I Achieves 

Tactic eg. pass 

Selects ^  ^  Achieves 

Skill eg. kick

Selects 11 Achieves

Sensors/actuators eg. kicking device

Figure 4.5 Robot Football Control Decomposition into Strategies, Plays, Tactics and

Skills

To achieve the objective of scoring goals we implement a strategy. This 

strategy is a sequence of plays, with some kind of trigger to select plays according to 

the state of the match. Each play aims to achieve some objective, which in turn 

promotes the state of the strategy toward scoring a goal. Furthermore, each play is 

composed of a string of events, consisting of interactions between players or 

between a player and the ball. The actions causing these events we term tactics. At 

an even lower level, the abilities by which players perform these tactics we shall call

120



skills, which are themselves sets of sensor-actuator mappings. An example of this 

decomposition is given in figure 4.6.

Strategy: Basic Level N  +3
SetUpGoal Kick •Home 

Kick Off Attack

Objective:
GoalPenaltyAway 

Kick Off x Defend

Level N  + 2Play: Defend
0  Clearance KickTackle

Assume 
Defensive •  
Formation

+> • Objective: 
Clear BallDribble

Wall Pass

Level N  + 1Tactic: Pass
Calculate TrajectoryReceiver Identify Passer • Objective: 

Ball PassedMove To Receive

TurnPasser

Identify Receiver Calculate Trajectory

Skill: Kick
\

d Level N

H  .... w _ _p. 0 Objective:
Sense Kick Criteria

* •
Actuate Kick Mechanism Ball Kicked

Figure 4.6 An Example of Robot Football Decomposition into Strategies, Plays,

Tactics and Skills

Although we use the ideas of strategies and plays in a similar way to traditional 

architectures, we remove the restricting roles, and replace them with more flexible 

sets of tactics and skills. These allow us to focus on extracting emergent structures 

from the lowest level sensor and actuator combinations, all the way up to the high

121



level strategy. Roles may still exist in some form, but in our architecture they will 

be emergent structures formed by skills, tactics, and other variables. A diagram 

showing these ideas, using the multilevel abstraction notation, is shown in figure 4.7.

Strategy Strategy
Level N  + 3

Plays 
Level N  + 2

Tactics 
Level N + 1

Skills 
Level N

Figure 4.7 A Multilevel Football Strategy Structure Consisting of Plays, Tactics and

Skills

A robot football team using these ideas may have three different strategies at 

its disposal, each of which has its own benefits. One might be stronger against a fast 

moving inaccurate opponent, one may be better suited to counter a slow but 

deliberate opponent, and one may work well against an opponent who uses brute 

force. Each strategy will be made up of a number of plays. There might be 

attacking plays, defending plays, midfield plays, kick-off plays, or formational plays. 

These are then subdivided into tactics: a pass, pass sequence, shot on goal, tackle, or 

some positional gambit, such as the 2-on-l. The skills we referred to are a player’s 

ability to kick or dribble the ball, or simply to move into a new position. Obviously 

we could deconstruct this further to look at the physical characteristics of the robot, 

or even the signals sent to actuators.
122

DEFENDATTACK

Support BlockShoot

MoveDribble



If we compare these ideas back to the game of chess, we can say that plays are 

the duals of the set pieces we referred to in section 3.1, and each represents a 

sequence of tactical moves. For example, a particular defensive sequence might 

include castling to protect the king. This would be seen as a tactical move, requiring 

the movement skills of both the king and the rook. Robot footballers are less 

constrained than pieces on a chess board, so there are much greater possibilities for 

combining skills, tactics and plays.

The named structures („Dribble, Kick, Pass, Shoot, Kick Off, Attack, Strategy, 

etc.) in figure 4.7 are all concepts; they each represent some idea which we desire to 

abstract from the recorded data. Although these concepts, like the problematic task 

decompositions it robot architectures, are generated by hand from experience, they 

do not suffer the permanent effects of poor choice. If some concepts are poorly 

chosen, they will simply not appear as part of the concept on the level above when 

the analysis is performed.

We are interested in robot, rather than human, football. Therefore, the 

structures we will use in our analysis will be tailored so that they can be easily 

represented in mathematical terms. For example, it is common for a traditional 

robot football strategy to comprise of two plays: ATTACK and DEFEND. The 

switch to activate one or other play is the position of the ball. If the ball is in the 

opponent’s half, the strategy switches to the attacking play. If the ball is in the home 

half, then the defending play is activated. The position of the ball relative to the half 

way line is straightforward to calculate.

Other possible plays and switches could be activated by certain areas of pitch, 

or whether a home or opponent robot is closest to the ball. There are also specialist

123



plays for kick-offs, goal kicks, free balls and penalties. In this work, we will focus 

on a simple set of plays: IN HOME, IN AWAY, IN POSSESSION, and OUT OF 

POSSESSION The switches to activate these plays are respectively: ball in home 

half, ball in away half, home player in possession of the ball, ball not possessed by a 

home player. We will assume a player has possession of the ball if it is within a 

kickable distance.

It is probable, given these play descriptions, that two plays may come into 

conflict, with both equally suitable to the state of the game. From our list, both of 

the two possession plays will conflict with both of the attacking and defending plays. 

For example, if the ball is in the opponent half, and is controlled by a .home player, 

then either IN AWAY, or IN POSSESSION could be selected. We avoid this conflict 

by generating additional plays to cover these joint possibilities. In this case, the new 

play has characteristics of both the existing plays, as shown in table 4.1. We see this 

as just another level in our multilevel structure, as shown in figure 4.8.

Table 4.1 Play Concept Descriptions

Concept Description

INHOME Play active when the ball is in the home half of the pitch

INAWAY Play active when the ball is in the opponents half

INPOSSESSION Play active when a home team player is in control of the ball

OUT OF POSSESSION Play active when the opposition controls the ball

IHIP Ball in home half and in possession

IAIP Ball in away half and in possession

IHOP Ball in home half and out of possession

IAOP Ball in away half and out of possession

124



Strategy 
Level N + 4

WINNING STRATEGY

Plays 
Level N  + 3

OUT OF 
POSSESSIONPOSSESSIONINHOME INAWAY

Sub-Plays 
Level N +  2

LHPIHIP IHOP

Tactics 
Level N  + 1

PASS

Skills 
Level N

Key:

Transmission o f  
variables

AggregationLevels

Named conceptVariable

Figure 4.8 A Multilevel Strategy Structure Showing the Aggregation of Concepts

125



Each named structure in figure 4.8 is a concept which we will attempt to 

abstract in the following work. Skills become variables aggregated into tactical 

concepts; tactics become variables aggregated into sub-play concepts; sub-plays 

become variables aggregated into play concepts; and plays become variables 

aggregated into strategy concepts. It should be noted that the emphasis in this work 

is not on the concepts themselves. Robot football undoubtedly has a much more 

complex structure than the one described above, and far surpasses the few simple 

concepts we will examine. What is important is that there is a structure, and that it 

can be explained and analysed using the techniques described in section 2.4. The 

concepts we will generate are simply used as examples to prove the theory.

4.3 Architecture Implementation

In this section we shall introduce the particulars regarding applying our new 

architecture to the problem of abstracting the emergent properties of robot football 

strategies.

4.3.1 Primitive Generation

Our input data consists of log files from ten RoboCup simulation league matches. 

With each file describing the strategies of two teams, this gives us twenty team 

strategies to analyse.

In section 4.2 we identified possible concepts to analyse. These were named 

WINNING STRATEGY, IN HOME, IN AWAY, IN POSSESSION, OUT OF 

POSSESSION, IHIP, IHOP, IAIP, IAOP, and PASS. Later in this chapter we will 

take each in turn to show how our method is applicable on multiple levels, and to see

126



how concepts on different levels relate to one another, in reflection of the 

relationships shown in figure 4.8.

In this work we are focussing on generating representatives of robot football 

strategies, in an attempt to reconstruct a strategic controller. Because of this, the 

concepts used here have been chosen to enable easy definition and measurement of 

primitives. Consider the concept of the play IN AWAY. This play is described by 

any set of variables including the property ball in away half. The hypothesis could 

simply be that the primitive describes the INAWAY play if it contains the property 

ball in away half. However, for the purposes of describing the play, we also want 

information on the positions and actions of the players. By analysing all the 

primitives containing ball in away half we may also find other common 

configurations or activities, which we can also use to describe the concept INAWAY. 

The architecture can, alternatively, be used to generate hypotheses to classify 

primitives which are not so clearly defined. In this case, the initial primitives would 

be classified by hand, and the architecture would generate hypotheses to classify 

future primitives.

Aside from the concepts and recorded data, the method also requires a list of 

variables that will be used to describe the primitives and concepts. These should be 

properties which can be easily described mathematically, such as distances between 

players, or frequencies of occurrences of events. We generate a large set of arbitrary 

variables, which will contain both useful and useless structures, from which we will 

extract the most relevant to describe our concepts. A selection of these is described 

in table 4.2.

127



Table 4.2 A Selection of Arbitrarily Chosen Variables

Variable description___________________________________________________________

Duration of primitive in frames

Percentage of primitive spent in possession of the ball

Number of passes made in the duration of the primitive

Average area owned by the home team

Number of shots taken at the opponent goal

Average number opponents controlling areas neighbouring that of player X

Number of players on the longest team tree

Number of players closer to the ball than player X

Number of opponents marking player X

Number of players directly between the ball and the home goal

These variables could be any measurable property of the system, from the 

distances between objects, to the occurrences of higher level concepts. The variables 

chosen can be different for each concept, or each level, with lower level concepts 

becoming variables in higher level concepts. We will often reuse the same set of 

low level variables to show how they migrate through the multilevel structure. 

These variables have been intentionally chosen to include structures which 

experience decrees are significant, as well as those which are more obscure, in an 

attempt to find the cause of the emergent behaviours. We could focus on measuring 

only variables relating to structures we know exist, for example by measuring 

variables relating to the role of each player, but then we would only be recreating the 

original strategy.

The first process is to identify primitives relating to the concept. We find

primitives relating to both desirable and undesirable features. For example, a pass

that reaches a team mate is a good pass, whereas a pass that reaches an opponent is a

bad pass; a strategy that wins a match is a good strategy, whereas a strategy that
128



loses a match is a bad strategy. By logging both types of pass, or strategy, then 

distinguishing between them, we can later identify those variables which specifically 

generate a desirable version of the concept. Pseudo code relating to this process is 

given in listing 4.1.

I d e n t i f y  s e c t i o n s  o f  da ta  r e l e v a n t  t o  the  co n c e p t  
1: i n p u t  d a t a
2: i n p u t  t h e  v a l i d i t y  c r i t e r i a  f o r  each  p r i m i t i v e  
3: f o r  e a c h  fram e i n  t h e  i n p u t  d a t a
4: i f  t h e  c r i t e r i a  a p p e a r s  i n  t h e  c u r r e n t  fram e and  was n o t

p r e s e n t  i n  t h e  l a s t  frame 
5: c r e a t e  new empty p r i m i t i v e
6: s t o r e  t h i s  fram e number a s  t h e  s t a r t  o f  t h e  p r i m i t i v e
7: end
8: i f  t h e  c r i t e r i a  i s  n o t  p r e s e n t  i n  t h e  c u r r e n t  fram e b u t

was p r e s e n t  i n  t h e  l a s t  fram e 
9: s t o r e  t h e  l a s t  fram e number a s  t h e  end o f  t h e  a c t i v e

p r i m i t i v e
10: end
11: end
12: o u t p u t  p r i m i t i v e s

Listing 4.1 Pseudo Code for Identifying Primitives

Finally, we measuring the set of primitives. These are composed of the set of 

variables measured over a period of significant frames. For example, for the concept 

PASS, each primitive will be a string of values relating to the average of each 

variable over the set of frames during which the ball is being passed. When we look 

at the concept of an entire strategy, the primitives will be strings of values 

corresponding to the average of the variables over an entire match, i.e. the whole 

period over which the concept is valid. Pseudo code relating to this process is given 

in listing 4.2.

129



Measure v a r i a b l e s  w i t h i n  s e c t i o n s
1 i n p u t  p r i m i t i v e s
2 l o a d  f u n c t i o n s  f o r  m e a su r in g  d e s i r e d v a r i a b l e s
3 f o r  e a ch  p r i m i t i v e
4 f o r  e a ch  v a r i a b l e
5 m easu re  v a r i a b l e  and  s t o r e i n  t h e  p r i m i t i v e
6 end
7 end
8 o u t p u t  p r i m i t i v e s

Listing 4.2 Pseudo Code for Measuring Variables

4.3.2 Variable and Primitive Classification

Variables and primitives are desirable or undesirable depending on how they relate 

to the concept. Primitives that are neither desirable nor undesirable are indifferent, 

and variables that appear in both desirable and undesirable primitives are common. 

For example, consider a WINNING STRATEGY concept; a strategy primitive which 

results in a win is classed as desirable, a loss is undesirable, and a draw is 

indifferent. In this case, by distinguishing between variables in the desirable and 

undesirable sets, we find the structures that influence whether a strategy wins or 

loses.

To classify the primitives, we first need to extract the desirability criteria from 

the concept. In the majority of cases we will classify desirable and undesirable 

primitives based on whether or not the strategy in which they occur won or lost. 

Ranking our twenty RoboCup teams by goal difference, as shown in table 4.3, we 

can see that there are 8 winning, and 8 losing teams, with the remaining 4 scoring 

draws. In this work we hard coded the desirability criteria for each concept as 

shown in listing 4.3.

130



Table 4.3 RoboCup Team Ranking by Goal Difference

Team ranking Goal difference Team ranking Goal difference

1 +10 11 0

2 +7 12 0

3 +6 13 -1

4 +3 14 -1

5 +2 15 -1

6 +1 16 -2

7 +1 17 -3

8 +1 18 -6

9 0 19 -7

10 0 20 -10

E x t r a c t  d e s i r a b i l i t y  c r i t e r i a  
1: d e s i r a b l e  c r i t e r i a  = g o a l  d i f f e r e n c e  > 0
2: u n d e s i r a b l e  c r i t e r i a  = g o a l  d i f f e r e n c e  < 0
3 : o u t p u t  d e s i r a b l e  c r i t e r i a
4: o u t p u t  u n d e s i r a b l e  c r i t e r i a

Listing 4.3 Pseudo Code for Extracting the Primitive Desirability Criteria

Primitives measured in data relating to teams 1-8 are classified as desirable, 9- 

12 as indifferent, and 13-20 as undesirable. Pseudo code relating to this process is 

given in listing 4.4.

131



Classify primitives
1: i n p u t  p r i m i t i v e s
2: i n p u t  d e s i r a b l e  c r i t e r i a
3: i n p u t  u n d e s i r a b l e  c r i t e r i a
4: c r e a t e  an empty l i s t  o f  d e s i r a b l e  p r i m i t i v e s
5: c r e a t e  an  empty l i s t  o f  u n d e s i r a b l e  p r i m i t i v e s
6: c r e a t e  an  empty l i s t  o f  i n d i f f e r e n t  p r i m i t i v e s
7: f o r  e a c h  p r i m i t i v e
8: i f  p r i m i t i v e  m atches  d e s i r a b l e  c r i t e r i a
9: add p r i m i t i v e  t o  l i s t  o f  d e s i r a b l e  p r i m i t i v e s
10: e l s e  i f  p r i m i t i v e  m atches  u n d e s i r a b l e  c r i t e r i a
11: add p r i m i t i v e  t o  l i s t  o f  u n d e s i r a b l e  p r i m i t i v e s
12: e l s e
13: add p r i m i t i v e  t o  l i s t  o f  i n d i f f e r e n t  p r i m i t i v e s
14: end
15: end
16: o u t p u t  d e s i r a b l e  p r i m i t i v e s  
17: o u t p u t  u n d e s i r a b l e  p r i m i t i v e s  
18: o u t p u t  i n d i f f e r e n t  p r i m i t i v e s

Listing 4.4 Pseudo Code for Classifying Primitives

The next stage is to measure variable averages. Three averages are generated 

for each variable within the primitives: average over all primitives, average over 

desirable primitives, and average over undesirable primitives, as shown in listing 

4.5. We also measure the range of values each variable takes.

Measure a v e r a g e s  f o r  each v a r i a b l e  
1: i n p u t  d e s i r a b l e  p r i m i t i v e s
2: i n p u t  u n d e s i r a b l e  p r i m i t i v e s
3: i n p u t  i n d i f f e r e n t  p r i m i t i v e s
4: f o r  e a c h  v a r i a b l e
5: d e s i r a b l e  a v e ra g e  = a v e ra g e  v a lu e  a c r o s s  t h e  d e s i r a b l e

p r i m i t i v e s
6: u n d e s i r a b l e  a v e ra g e  = a v e ra g e  v a lu e  a c r o s s  t h e

u n d e s i r a b l e  p r i m i t i v e s  
7: g l o b a l  a v e ra g e  = a v e ra g e  v a lu e  a c r o s s  a l l  p r i m i t i v e s
8: v a r i a b l e  r a n g e  = ra n g e  o f  v a lu e s  a c r o s s  a l l  p r i m i t i v e s
9: end
10: o u t p u t  d e s i r a b l e  a v e ra g e s  
11: o u t p u t  u n d e s i r a b l e  a v e ra g e s  
12: o u t p u t  g l o b a l  a v e ra g e s  
13: o u t p u t  v a r i a b l e  r a n g e s

Listing 4.5 Pseudo Code for Calculating Variable Averages

132



These averages are then compared to determine whether the variable is 

important to the related concept. If the average values for a variable recorded for the 

desirable and undesirable primitives are on opposite sides of the global average, then 

we define the variable as being significant; it is a possible classifier for 

differentiating between the two types of primitive. If the two averages fall on the 

same side of the global mean, then the variable is insignificant. This is possible, 

since indifferent primitives are used in calculating the global mean. An example, 

based on data from RoboCup matches, is shown in figure 4.9. The significance of 

these variables will be examined in section 4.3.4.

o 200
§u,y3
oo
S 150
•s

Successfull pass frequency 
Successfull pass density \ 4
Unsuccessful! pass frequency 
Unsuccessful! pass density j
Global average I

1

0 0.5 1 1.5 2 2.5 3
Average number of players closer to the ball than the nearest opponent

Figure 4.9 Classification of Variables by Average 

In this example, the variable is used to differentiate between successful and 

unsuccessful passes. Out of 2036 passes, it correctly classifies 629 successful 

passes, and misclassifies 161 unsuccessful passes.

133



We denote the global average for variable i as Mat, the average of the desirable 

primitives as Gau and the average of the undesirable primitives as Bat. The value of 

variable i is denoted xt. Any insignificant variables (for which Gat < Mai > Bat OR 

Gat > Mai < Bai) are discarded from further analysis; they provide no useful data for 

analysing our concepts, as they appear in both the desirable and undesirable 

primitives. Correspondingly, significant variables (for which Gat > Mat > Bat OR 

Gat < Mat < Bai) are retained for analysis, as they are important to our analysis. Any 

variables for which the difference between Gat and Bat is less than 5% of the entire 

range are retained separately. Whereas the significant variables can be used to 

classify desirable and undesirable primitives, these common variables describe 

structures which are prevalent in both. In terms of a football strategy primitive, the 

significant variables give us information on how to play well, or play badly, whilst 

the common variables give us information on the fundamental aspects of the game. 

Pseudo code for variable averaging and classification is given in listing 4.6.

134



C l a s s i f y  v a r i a b l e s  b y  comparing a v e r a g e s  
1: i n p u t  d e s i r a b l e  a v e ra g e s
2: i n p u t  u n d e s i r a b l e  a v e ra g e s
3: i n p u t  g l o b a l  a v e ra g e s  
4: i n p u t  v a r i a b l e  r a n g e s

Find common v a r i a b l e s
5: s e t  t h r e s h o l d  v a lu e  f o r  s e p a r a t i o n  o f  v a r i a b l e  a v e r a g e s  be low

w hich  v a r i a b l e s  a r e  c o n s id e r e d  common 
6: g e n e r a t e  an  a r r a y  t o  h o ld  t h e  l i s t  o f  common v a r i a b l e s
7: f o r  e a ch  v a r i a b l e
8: i f  t h e  r a n g e  i s  l e s s  th a n  th e  t h r e s h o l d
9: add th e  v a r i a b l e  t o  t h e  l i s t  o f  common v a r i a b l e s

a lo n g  w i t h  i t s  a v e ra g e  v a lu e
10: end
11: end
12: o u t p u t  t h e  l i s t  o f  common v a r i a b l e s  

Find s i g n i f i c a n t  v a r i a b l e s
13: c r e a t e  an  empty l i s t  f o r  h o ld in g  s i g n i f i c a n t  v a r i a b l e s  
14: f o r  e a ch  v a r i a b l e

i f  ( d e s i r a b l e  a v e ra g e  > g l o b a l  a v e ra g e  and 
u n d e s i r a b l e  a v e ra g e  < g l o b a l  a v e ra g e )

add [ v a r i a b l e  i d e n t i f i e r ,  g r e a t e r  th a n ,  g l o b a l  
a v e ra g e ]  i n t o  s i g n i f i c a n t  v a r i a b l e  l i s t

end
i f  ( d e s i r a b l e  a v e ra g e  < g l o b a l  a v e ra g e  and 

u n d e s i r a b l e  a v e ra g e  > g l o b a l  a v e ra g e )
add [ v a r i a b l e  i d e n t i f i e r ,  l e s s  t h a n ,  g l o b a l  a v e ra g e ]  

i n t o  s i g n i f i c a n t  v a r i a b l e  l i s t
end 

21: end
22: o u t p u t  l i s t  o f  s i g n i f i c a n t  v a r i a b l e s

Listing 4.6 Pseudo Code for Classifying Variables

Our analytical method based on comparison of averages does have a possible 

drawback. During the course of this work, it was considered that each variable may 

only be useful over a particular range. For example, it may be that having one robot 

close to the ball is a better strategy than having none near the ball, but having five is 

worse than both. In future work upper and lower bounds should be imposed to limit 

the range of useful variables.

15 :

16:

17:
18:

19:

2 0 :

135



4.3.3 Hub Generation

In the next stage of the analysis, we generate an incidence matrix of the significant 

variables and desirable primitives. If the primitives are entered as rows, and the 

variables as columns, then for each primitive the variables will be valued as ‘ 1 ’ if  ( x,- 

< Mai AND Gat < Mai AND Bat > Mai) OR ( x,* > Mai AND Gai > Mat AND Bat < 

Mai), i.e. if the variable in that primitive occurs on the same side of the global 

average as the desirable average. This is shown in listing 4.7.

I n c i d e n c e  m a t r i x / b u i l d  s t a r s  
1: i n p u t  d e s i r a b l e  p r i m i t i v e s
2: i n p u t  s i g n i f i c a n t  v a r i a b l e s
3: c r e a t e  an empty in c id e n c e  m a t r ix  w i th  one row f o r  e a ch

p r i m i t i v e  and one column f o r  e a ch  s i g n i f i c a n t  v a r i a b l e  
4: s e t  e v e ry  e le m en t  i n  t h e  m a t r ix  to  0 ;
5: f o r  e a ch  p r i m i t i v e  ( i )
6: f o r  e a c h  s i g n i f i c a n t  v a r i a b l e  ( j )
7: i f  (b o th  t h e  s i g n i f i c a n t  v a r i a b l e  and

th e  c o r r e s p o n d in g  v a r i a b l e  i n  t h e  p r i m i t i v e  
a r e  g r e a t e r  th a n  th e  g l o b a l  a v e ra g e )  
o r  (b o th  t h e  s i g n i f i c a n t  v a r i a b l e  and 
th e  c o r r e s p o n d in g  v a r i a b l e  i n  t h e  p r i m i t i v e  
a r e  l e s s  th a n  th e  g l o b a l  a v e ra g e )

8: s e t  t h e  i n c id e n c e  m a t r ix  e le m e n t  ( i , j )  t o  1
9:  end
10: end
11: end
12: o u t p u t  i n c i d e n c e  m a t r ix

Listing 4.7 Pseudo Code for Creating the Incidence Matrix

The next stage of the process is to perform the star-hub analysis. From the 

incidence matrix, we can form the stars relating to the set of primitives. A number 

of hypotheses, and possible representatives of the concept, can be generated by 

finding the hubs of the stars. We achieve this by first finding the intersections of all 

stars with one another, to give the hubs between pairs of simplices. If a hub of 

dimension n is a hub containing n + 1 vertices, then we will term a hub of m + 1 

intersecting simplices an intersection of dimension m. We then iteratively repeat the

136



process finding the intersections of these hubs with one another. At each iteration 

we remove any intersections which contain no variables, as these represent disjoint 

stars. The outcome of this process is a list of hubs occurring in the star 

combinations. Generally hubs with large m will have small n, and vice-versa. 

Listing 4.8 details the recursive algorithm we use for performing the star-hub 

analysis.

Find maximal r e c t a n g l e s / h u b s
1: i n p u t  i n c i d e n c e  m a t r ix
2: c a l l  r e d u c t i o n  f u n c t i o n  on in c i d e n c e  m a t r ix
3: c a l l  r e c u r s i v e  f u n c t i o n  on re d u c e d  i n c i d e n c e  m a t r ix
4: r e t u r n  r e s u l t i n g  m a t r ix

R e c u r s i v e  f u n c t i o n  
5: i n p u t  m a t r ix
6: i f  t h e r e  i s  more th a n  one row i n  t h e  m a t r ix  
7: c r e a t e  an  empty m a t r ix  t o  h o ld  t h e  row i n t e r s e c t i o n s
8: f o r  e a ch  row i n  t u r n
9: g e n e r a t e  t h e  i n t e r s e c t i o n  o f  t h e  row w i th  e v e ry

re m a in in g  row i n  t h e  i n p u t  m a t r ix  and s a v e  i n  a 
tem p o ra ry  m a t r ix

10: c a l l  t h e  r e d u c t i o n  f u n c t i o n  on t h e  te m p o ra ry  m a t r i x
11: add  th e  r e d u c e d  m a t r ix  i n t o  t h e  i n t e r s e c t i o n  m a t r i x
12: end
13: i f  t h e  i n t e r s e c t i o n  m a t r ix  i s  n o t  empty
14: c a l l  t h e  r e c u r s i v e  f u n c t i o n  on t h e  i n t e r s e c t i o n

m a t r ix
15: e l s e
16: r e t u r n  n o th in g
17: end
18: add  t h e  r e t u r n e d  m a t r ix  t o  t h e  end o f  t h e  i n p u t  m a t r i x
19: r e t u r n  t h e  i n p u t  m a t r ix
20: e l s e
21: r e t u r n  t h e  row
22: end

R e d u c t io n  f u n c t i o n
23: i n p u t  m a t r ix
24: f o r  e a c h  row i n  t h e  m a t r ix
25: ch eck  r e m a in in g  rows f o r  d u p l i c a t e s
26: remove d u p l i c a t e  rows
27: i f  row i s  empty
28: remove row
29: end
3 0: end

Listing 4.8 Pseudo Code for Performing the Star-Hub analysis

137



The process begins on line 1 by taking in the incidence matrix constructed in 

listing 4.7. Line 2 calls the reduction function on line 23, which removes any 

repeated or empty rows from the matrix. Line 3 calls the recursive function on the 

reduced matrix, and line 4 returns the list of hubs in a matrix form. Each row in the 

output matrix is a hub, and details which variables are present within it.

The recursive function, which begins on line 5, finds the hubs common across 

rows in the input matrix. On the first call, the function finds the intersection 

between every pair of rows, and stores the resulting hubs in a matrix on line 11. 

This matrix of hubs in then passed back into the recursive function on line 14. On 

each subsequent call, the intersections between hubs are found. As more calls are 

made, the dimension of intersection of the hubs increases. Eventually the hubs being 

passed back into the function on line 14 will be disjoint, and the list of intersections 

will be empty. This occurs at the deepest call to the recursive function, and causes it 

to return on line 15. Each function call then returns, adding the intersections it 

found to a single list. This is the list of hubs, which is then returned to the calling 

function. The return statement on line 21 handles the case when all the hubs in the 

deepest function call intersect fully. In this instance, there is only one intersection, 

and no more calls to the function are required.

It should be noted that this method does not generate all the possible hubs; that 

would require finding the intersection of every combination of simplices with every 

other combination of simplices. By finding the intersection of hubs, we dramatically 

reduce the search space, and uncover just the maximal hubs. By this we mean the 

largest dimension of hub joining a set of simplices.

138



In this work, we construct the relation described by a hub by hand, based on 

the concept, the primitive classification criteria, and the output of the variable 

classification.

In general, large numbers of hubs are produced. We count the number of 

desirable primitives in which each hub occurs (the dimension of intersection), and 

the number of variables contained within it (the hub dimension). For the purpose of 

displaying measured hubs, we tabulate only the hub with the largest dimension for 

each order of intersection.

These measures are also useful in selecting representatives and hypotheses. 

Although these are products of the abstraction architecture, we will leave a 

description of how they are formed until chapter 5, when we deal with generating 

representatives to form a controller. For the remainder of this chapter we will focus 

on finding and examining the hubs relating to our concepts.

4.3.4 Significance of Analysis

Hubs measured using the aforementioned methods indicate structures which are 

likely to be more prevalent in desirable situations. These can be used to identify, for 

example, when a pass is likely to succeed or fail. An earlier statistical examination 

of the ability of star-hub analysis to classify data is given in (Iravani, 2005a).

Here, we analyse the significance of our method of classifying variables by 

comparing averages. Once we have identified variables which occur more 

frequently in desirable situations, we can begin to examine the occurrence of 

combinations of these variables. By using these combinations to classify desirable 

and undesirable situations, we increase the chances of a successful classification

139



over using a single variable alone. We illustrate this by demonstrating how multiple 

variables combine to improve the chances of identifying a good pass situation.

From our RoboCup data, we randomly select a training set of 25 successful and 

25 unsuccessful passes. A pass is defined as the sequence of a ball leaving one 

player and arriving at another. It is successful if the receiving player is on the same 

team as the passer, and unsuccessful if it is on the opposing team. This training set 

is then used to identify possible classifiers from a set of 100 variables relating to 

spatial structures. The occurrences of these possible classifiers are then measured in 

a randomly selected set of 1018 successful and 1018 unsuccessful passes. The 

results are shown in figure 4.10.

1000

900

800

700
++ ++y + +..A-

500

400

g  300

200

100

200 400 600
Number o f unsuccessful passes

800 1000

Figure 4.10 Occurrences of Variables in Measured Passes

140



Performing the analysis on the training data identifies 85 possible classifier 

variables. When measured in the full data set, 73 occur more often in successful 

passes, 11 occur more often in unsuccessful passes, and 1 occurs equally in both. 

These 11 poor classifiers all occur in similar numbers of successful and unsuccessful 

passes, with the worst only misclassifying a pass on 52% of occasions. Conversely, 

the 73 good classifiers have a much wider spread, with the best correctly classifying 

a pass on 80% of occasions. The statistical significance of these results is verified 

using the sign test.

If the method for classifying variables did not provide valid results, we would 

expect to measure their occurrence in the same number of successful and 

unsuccessful passes. This forms the null hypothesis; that the probability of a 

variable occurring is equal in both successful and unsuccessful passes. From our 

data in figure 4.10, we measured 11 variables which occurred more often in 

unsuccessful passes out of a total of 84 (ignoring the 1 variable which occurred with 

equal frequency in both types of pass). Using the one-sided sign test on our null 

hypothesis, we calculate the probability of 11 or fewer variables, out of 84, occurring 

more often in unsuccessful passes as 1.12x1 O'12. This is a minute probability, which 

rejects the null hypothesis, and validates the classification technique.

The best classifier variable, labelled ‘1’ in figure 4.10, corresponds to the 

number of home players closer to the ball than the nearest opponent during the 

course of the pass. The analysis indicates that in successful passes, there is, on 

average, always more than 0.87 home players closer to the ball than the nearest 

opponent. This is illustrated in figure 4.11. Notice that it is therefore possible for 

the ball to be closer to an opponent for part of the pass, whilst still being successful.

141



4 ©

4 4
(a) A predominantly successful pass (b) A predominantly unsuccessful pass
configuration with one home player configuration with opponent players
always closer to the ball than the nearest closer to the ball for the majority of the 
opponent pass

Figure 4.11 Illustration of a Successful Classifier Variable

The second best classifier from figure 4.10, labelled ‘2’, corresponds to the 

number of opponent players in spaces neighbouring the receiver. It correctly 

classifies a successful pass on 70% of occasions. The analysis indicates that in 

successful passes there is, on average, fewer than 1.33 opponent players in spaces 

neighbouring the receiver. This is shown in figure 4.12.

* 4

4 4 4
(a) A predominantly successful pass 
configuration with only one opponent 
player adjacent to the receiver

(b) A predominantly unsuccessful pass 
configuration with two opponent players 
adjacent to the receiver

Figure 4.12 Illustration of another Successful Classifier Variable

We now examine the effect of using pairs of variables to classify the passes. 

The 85 classifier variables can be combined to form 3570 unique pairs. Each of 

these forms a hub of dimension 1. The occurrence of each hub in both successful

142



and unsuccessful passes is measured, and the results shown in figure 4.13. Those 

hubs containing the variables described above have been highlighted.

2 600

y 500

400

□ Hub containing variable 1 
O Hub containing variable 2

200 400 600 800
Number of unsuccessful passes

1000

Figure 4.13 Occurrences of 2 Variable Hubs in Measured Passes

3344 hubs appear more frequently in successful passes, whilst 211 hubs appear 

more frequently in unsuccessful passes. The best classifier hub in figure 4.13 is 

marked ‘A’, and is a combination of the two best classifier variables from figure 

4.10. By combining the two variables, the chance of successful classification of the 

pass data has risen to 90.7%.

Continuing on to hubs of dimension 2, there are 98770 unique combinations of 

3 variables. Figure 4.14 shows the number of passes in which these structures occur.

143



Those hubs including the best variable pair from the previous analysis are 

highlighted.

1000

900

800

700

2 500

u 400

300

200

100
□ Pair containing hub A

800400
Number of unsuccessful passes

600
of unsuccessful

200

Figure 4.14 Occurrences of 3 Variable Hubs in Measured Passes

94794 hubs appear more often in successful passes, whereas 3596 appear in 

unsuccessful passes. The best classifier hub contains the ‘A’ pair, and can now be 

used to classify the passes with a 93.9% chance of success.

As we increase the number of variables in the hub, they become more 

descriptive. Therefore, the chance of the hub correctly classifying a primitive 

increases, provided the variables have been well chosen. However, the consequence 

is that the hub becomes more specific, and excludes more of the successful passes.

144



Iravani (2005a) uses measures of specificity and broadness to measure the hub 

significance. The specificity is the maximum probability that a primitive will be 

classified as type C when it contains hub H. For example, the probability of a pass 

being successful if it exhibits the ‘A’ hub is 437/482, because the hub is shared by 

482 passes, of which 437 are successful. The broadness is the maximum probability 

that a primitive will contain hub H. In the case of hub ‘A’, the broadness is 

482/2036, since the hub is shared by 482 primitives out of a possible 2036.

4.3.5 A Comparison to Earlier Work

The techniques introduced in the previous sections are a modification of those used 

in (Iravani, 2005a). In that work, variables took logical values, and all variables 

were used within the hub generation. This has three drawbacks:

Firstly, allowing all variables to be used in the hub generation creates a very 

large search space. As we shall show in section 4.11, computation time increases 

dramatically with the number of variables included.

Secondly, logical variables are less accurate in terms of their meaning. 

Consider the distance measured between two players. Iravani and Johnson (2005) 

use 4 binary variables to represent a single distance. Each variable is assigned an 

arbitrary range, so that together they cover all values between 0 and infinity. The 

variable containing the measurement is given the value ‘1’. The boundary values 

may have no significance in robot football, and it may be more appropriate to use a 

different range. The technique proposed here has the benefit of having much greater 

meaning. The average, Mat, is a measure of a valid separation between desirable and 

undesirable primitives, rather than an arbitrary value.

145



Thirdly, using multiple binary variables to segment a single continuous one 

results in redundancy. Iravani (2005a) examines primitives consisting of 50 binary 

variables. 44 of these relate to 8 quantitative measurements: angle, direction, 

position, and 5 distances, which could be represented by just 8 variables using the 

method described in the previous sections.

4.4 Strategy Generation

In this section we will use our architecture to search for hubs to relate structures and 

events on a football pitch to our concept of WINNING STRATEGY (figure 4.15). 

Considering our structural diagram shown in figure 4.8, this may seem strange, since 

we are mapping variables at the lowest level directly to the highest level concept, 

bypassing the intermediate levels. Given that our choice of multilevel structure is 

arbitrary, it is possible to choose as many or few levels as we like. The more levels 

and concepts we insert into our structure (provided they are well chosen), the more 

accurate our representation of robot football will become. However, there may still 

be some direct relationship that can be drawn between these two levels. We will 

examine later, in section 4.9, how these relationships map across multiple levels.

146



WINNING STRATEGY Strategy 
Level N + 1

ball position 
player positions 
controlled area 

pitch areas

Variables 
Level N

Figure 4.15 Mapping of Variables into a Strategy Concept

For this concept we will measure 66 arbitrarily chosen variables, which are 

briefly described in table 4.4. The variables may themselves appear at different 

levels of the multilevel structure, with some deserving their own concepts, such as 

the number o f passes. Some have obvious significance to the game, whereas others 

may seem entirely irrelevant.

147



Table 4.4 Variables Selected for Concept Generation

Variable Description

X] Match duration in frames

x2 Duration of primitive in frames

x3 Percentage of primitive spent in possession of the ball

X4 Number of passes made in the duration of the primitive

X5 Percentage of home ball ownership time spent passing

X6 Percentage of the primitive played with the ball in the home half

x 7 Percentage of player turns spent closer to the home goal than the ball

x8 Percentage of player turns spent further from the away goal than the ball

X9 Percentage of player turns spent inside the triangle formed by the ball and home goal posts

X10 Average area owned by the home team

Xu Standard deviation of player areas as a percentage of total area

X]2 Standard deviation in number of neighbours

X}3 Percentage of passes which were successful

X14 Percentage of opponent passes which were unsuccessful

Xis Number of home passes

Xl6 Number of shots at the opponent’s goal

Xl? Percentage of shots becoming goals

Xl8 Standard deviation of number of neighbours on the opposing team

X19 Average number of neighbours

X20 Average number of opponent neighbours

X21 Number of players on the largest segment of the team tree

X22-32 Number of players closer to the ball than each opponent player

X33-43 Number of players closer to the home goal than each opponent player

X44 - 54 Number of players closer to the opponent goal than each opponent player

X55 Percentage of player turns spent unmarked

X56-66 Percentage of player turns spent in a one-on-one to eleven-on-one marking configuration

148



We will attempt to extract information relating to our WINNING STRATEGY 

concept from the RoboCup log files. In section 4.3.2 we showed how these could be 

grouped into winning losing and drawing strategy sets. This classification is ideal 

for examining our WINNING STRATEGY concept, in which the objective is to score 

more goals than the opponent.

It should be noted that although we have chosen to rate strategies on their goal 

difference, there may be other acceptable criteria by which to rate the primitives. In 

this example, it may also be acceptable to rate strategies by the number of goals 

scored, which would give a slightly different set of results.

For our 20 primitives, the average primitives Ma, Ga, and Ba are shown in 

table 4.5.

149



Table 4.5 Average Variable Values Measured in Strategy Primitives

Variable Ma Ga Ba

Xj 6349.00 6413.50 6413.50

x 2 5650.40 5620.00 5620.00

x3 50.00 52.72 47.27

x4 353.40 342.00 342.00

*5 57.73 57.99 56.32

X6 49.58 39.67 59.33

x7 63.14 67.96 57.75

X8 57.26 62.31 51.78

Xg 13.32 14.14 12.55

XlO 50.00 50.72 49.28

Xu 4.68 5.04 4.41

Xl2 1.28 1.27 1.28

X]3 68.60 72.16 66.17

Xl4 31.35 33.73 27.82

X]5 176.85 186.00 156.38

Xl6 5.70 8.50 4.75

X]7 31.09 63.05 14.69

XJ8 0.76 0.75 0.77

Xl9 4.82 4.82 4.82

X 20 0.87 0.84 0.91

X21 9.09 8.88 9.36

X 22 0.69 0.69 0.71

X23 1.63 1.53 1.71

X24 2.64 2.52 2.74

X25 3.63 3.47 3.73

X26 4.63 4.41 4.81

X27 5.53 5.33 5.70

X 28 6.63 6.41 6.91

X29 7.42 7.24 7.67

X30 8.33 8.17 8.53

X31 9.13 8.96 9.34

X 32 10.24 10.06 10.38

X33 3.10 3.04 3.00

Variable M a  Ga Ba_

X34 4.06 3.97 3.95

X35 4.90 4.78 4.86

x36 5.91 5.80 5.81

X37 6.48 6.37 6.40

X38 7.23 7.20 7.12

X39 9.10 9.08 9.00

X40 9.58 9.57 9.52

x4i 10.00 10.02 9.96

x42 10.45 10.48 10.46

X43 10.98 10.98 10.99

X44 0.01 0.01 0.00

X45 0.22 0.24 0.22

X 46 0.57 0.60 0.67

X47 1.10 1.20 1.18

X48 1.74 1.89 1.83

X49 3.49 3.56 3.64

X 50 4.50 4.62 4.62

X 51 5.21 5.29 5.30

X52 6.52 6.63 6.45

X53 7.39 7.45 7.33

X54 8.45 8.46 8.49

X55 57.97 55.48 55.47

X56 38.74 40.98 40.97

X57 3.11 3.35 3.38

XS8 0.16 0.18 0.17

X59 0.01 0.01 0.00

X 60 0.00 0.00 0.00

X 61 0.00 0.00 0.00

X 62 0.00 0.00 0.00

X 63 0.00 0.00 0.00

X (34 0.00 0.00 0.00

X 65 0.00 0.00 0.00

X 66 0.00 0.00 0.00

150



Using our analysis technique, we find that 8 of the variables are common 

across all the primitives. These are shown in table 4.6, along with their respective 

values. Variables X6o -  x66 are all valued at zero, indicating that the structures they 

represent do not turn up in any of the team strategies. These are therefore structures 

which should be avoided. Variable X43 turns up on every team with a value of 

approximately 11. This represents the number of home players that are closer to the 

home goal than the furthest opponent. In descriptive terms, this means that home 

players should never venture further out than the opponent goal keeper. These 8 

common variables all give useful information on fundamental structures relating to 

robot football and are therefore all part of the WINNING STRATEGY concept.

Table 4.6 Common Variables in Strategy Primitives

Variable Value

X43 10.98

X60-66 0

Of the remaining 58 variables, we identify 34 significant variables using our 

selection method. For our concept, we are interested in the variables which occur in 

winning strategies. We therefore need to know the average values for the variables 

over all the primitives, and whether they occur more, or less in winning primitives. 

This is shown in table 4.7.

151



Table 4.7 Significant Variables and Values for Strategy Generation

Variable Relation Ma Variable Relation Ma

> 50.00 X23 < 1.63

> 57.73 x24 < 2.64

x6 < 49.58 X25 < 3.63

x7 > 63.14 X26 < 4.63

x8 > 57.26 X 27 < 5.53

Xp > 13.32 X 28 < 6.63

Xjo > 50.00 X 29 < 7.42

X J] > 4.68 X 30 < 8.33

X]3 > 68.60 X 31 < 9.13

X 14 > 31.35 X32 < 10.24

X i s > 176.85 X41 > 10.00

X l6 > 5.70 X43 < 10.98

X j 7 > 31.09 X44 > 0.01

X l8 < 0.76 X45 > 0.22

X20 < 0.87 X52 > 6.52

X 2l < 9.09 X53 > 7.39

X 22 < 0.69 X59 > 0.01

We now build the incidence matrix for the 8 winning strategies. This is shown 

in table 4.8. Each entry in the matrix is a ‘ V if and only if the variable it represents 

falls the desired side of the global mean as shown in table 4.7 above.

152



Table 4.8 Incidence Matrix for the Winning Strategy Primitives

Primitives Primitives
Variables Variables

1 2 3 4 5 6 7 8  1 2 3 4 5 6 7 8

3 1 0 1 1 0 0 1 1 23 0 1 1 1 0 1 1 0

5 0 0 1 1 0 1 0 0 24 0 1 1 1 0 1 1 0

6 0 1 1 1 1 1 1 1 25 1 1 1 1 0 1 1 0

7 0 1 1 1 1 1 1 0 26 1 1 1 1 0 1 1 0

8 1 1 1 1 1 1 0 0 27 1 1 1 1 0 1 1 0

9 0 1 1 1 1 1 0 1 28 1 1 1 1 0 1 1 0

10 1 0 1 1 0 1 1 0 29 1 1 1 1 0 1 1 0

11 1 1 1 1 1 0 1 0 30 1 1 1 1 0 1 1 0

13 1 0 1 1 0 1 1 1 31 1 0 1 1 0 1 1 0

14 1 0 0 1 1 0 0 0 32 1 0 1 1 0 1 1 0

15 1 0 1 1 0 1 1 0 41 0 1 1 0 1 0 0 1

16 1 1 1 0 0 0 1 0 43 0 1 0 0 1 1 1 1

17 1 1 1 1 1 1 0 1 44 1 1 1 0 1 0 1 1

18 1 1 1 1 1 0 1 0 45 1 1 0 1 0 1 0 0

20 0 1 1 0 1 0 1 0 52 0 0 0 0 1 1 0 1

21 1 0 1 1 0 1 1 0 53 0 1 0 0 1 1 0 1

22 0 1 1 1 1 1 0 0 59 0 0 0 0 1 0 1 0

Performing the star-hub analysis on this data set produced 91 unique maximal 

hubs. Table 4.9 shows a selection of the maximal hubs ordered by size and 

frequency of occurrence. Measures of specificity and broadness have been included 

to show the significance of each hub. There is no hub which occurs across all 8 

desirable primitives.

153



Table 4.9 Maximal Strategy Hubs

Hub Spec. Broad.

<X]7;R> 7/9 9/16

< x 2 5 ,  x 2 6 ,  x 27> x 28> x 2 9 ,  x 3 0  R  > 6/8 8/16

< x 1 0 ,  x I 3 ,  x 1 5 i x 21> x 2 5 ,  x 2 6 i  x 2 7 ,  x 28> x 2 9 , x 30> x 3 h  x 3 2  j R  > 5/6 6/16

< X g ,  X 7 ,  X J 0 ,  X j 3 ,  X j s ,  X 2 1 ,  X 2 3 ,  X 2 4 ,  X 2 5 ,  x 2 6 ,  x 27->x 28> x 2 9 , x 3 0 i  x 3 h  x 3 2  > R  > 4/4 4/16

< x 5> X g ,  X 7,  X s ,  X p ,  X ] 0 , X7 3 , X7 5 , X ] 7 ,  X 2 1 ,  X 2 2 ,  x 2 3 i  x 24-> x 2S-> x 26-> x 2 7 i  x 2 8 ,  x 29> x 30i> x 3 h  x 3 2

;R>
3/3 3/16

< Xj, X5 , X({, X 7,  X s ,  x p ,  X ] Q , X ] ] ,  X ] 3 , X7 5 , X/7 , X/§, x 2 I i  x 2 2 i  x 23n x 24-> x 25> x 2 6 i  x 2 7 i  x 2 8 i  x 29> 

x 30-> x 3 h  x 3 2 ' , R >

2/2 2/16

< Xj, X5 , X<5, X 7} X g ,  X p ,  X j q ,  X j j ,  X j 3 ,  X 1 3 ,  X j $ ,  X j 7 ,  X j g ,  X 2 0 ,  X 2 1 ,  X 2 2 ,  x 23> x 24> x 25> x 2 6 i  x 2 7 i  

x 2 8 i  x 2 9 i  x 3 0 5 x 3 h  x 3 2 ,  x 4 h  x 4 4  \ R  >

h i 1/16

The relationship R is the same for every hub. In this case, it represents each 

variable occurring in a winning strategy with an appropriate average value over the 

duration of the match. In this instance, a hub containing 15 variables can be used to 

perfectly classify half of the winning strategies. From the specificity, we can see that 

as the hub size increases, the hub represents a higher proportion of desirable to 

undesirable primitives. Furthermore, we can add the 8 variables common to all 

teams to each hub, giving greater definition to the representatives of our concept. 

Given the small number of primitives used in this example, it is inappropriate to 

suggest how significant these hubs may be when measured in a larger number of 

matches. The significance to a larger population will be shown in section 4.7.

Exploring these results in more depth we find that variable x77, which appears 

in 7 of the 8 winning strategies, relates to the percentage of shots on the opponent 

goal which are successful. Our analysis shows that in winning teams x ]7  > 31.09. 

This seems logical, since it relates directly to the score of each team. In the only 

winning primitive, p 7, where x ]7  < 31.09, 10 shots were taken, with only 2 being



successful. In this case, the high number of attempts was sufficient to score a win. 

Variable x& also occurs in 7 of the 8 winning strategies with a value of < 49.58, and 

is the most common variable, occurring in 58 of the 91 hubs. This is the percentage 

of time the ball spends in the home players half, and indicates that these winning 

strategies spend more time on the offensive, which is a sensible assumption. 

Conversely, variable x59 > 0.01 only appears in 2 of the winning strategies. This 

represents the number of instances 4 home players team up to mark an opponent 

player. This is obviously a rare occurrence, but its appearance in winning teams only 

suggests it could be a useful tactic. However, it is not the occurrence of the 

variables on their own that is of interest to us, but their occurrence in the emergent 

combinations.

4.5 Play Generation by Goal Difference

Having identified structures of variables to define the concept of a winning strategy, 

we now move on to show how the same technique can be applied to concepts at a 

lower level in the multilevel structure.

Recalling table 4.1, we identified eight possible play concepts based on ball 

position and possession. These concepts span levels N  + 2 and N  + 3 of the 

proposed multilevel structure given in figure 4.8. In this section we shall generate 

representatives for all eight plays using the method shown in the previous section. 

We have discussed how primitives can be classed as desirable or undesirable, based 

on a variety of criteria. Here, we shall use the same classification as used in the 

previous section, i.e. plays are deemed desirable if they are part of a strategy that

155



wins. We will examine the effect of using a different classification criterion in 

section 4.6.

Using the same 66 variables from section 4.4, we identify primitives relating to 

the above concepts in the following way. For every play concept described above, 

we search each of our 20 recorded strategies for the frames which satisfy the 

concept. We then measure all the variables over these sets of frames and take an 

average. This gives us 20 primitives for each concept. We then classify the 

primitives as before by goals scored, into 8 winning, 8 losing, and 4 drawn.

Using the method shown in section 4.4, we generate the variables common to 

desirable and undesirable primitives, as well as the maximal hubs. Those for the IN  

HOME concept are detailed in the following section. The remaining 7 play concepts 

have also been analysed, and the results will be summarised later in this thesis.

4.5.1 Example: IN HOME

For the IN HOME play concept we will again classify primitives as desirable or 

undesirable based on the goal difference of the strategy they are measured from. In 

this way we are finding the similarities in plays performed by winning teams.

The 12 variables common to both desirable and undesirable primitives formed 

under this concept are shown in table 4.10. Variable xe is the percentage of time the 

ball spent in the home half. This is the criteria for this concept, and so is justifiably 

100% for every primitive measured. Variable xn  is the percentage of shots taken on 

the opponent goal. Although shots were taken, none were successful in any 

primitive. Variables X32, and X43, are the number of home players closer to the ball, 

and to the home goal, than the opponent goalkeeper. Variable X 44  is the number of

156



home players closer to the opponent goal than their goalkeeper, and variables X60 - 66 

are uncommon marking configurations.

Table 4.10 Common Variables in Play Primitives

Variable Value

x6 100

Xn 0

X32 10.97

X43 11

X44 0

X60-66 0

Of the remaining variables, 33 were found to be significant to the concept, 

generating 73 maximal hubs. A selection of these is given in table 4.11.

Table 4.11 Maximal Hubs for Plays Analysed by Goal Difference

Hub Spec. Broad.

< x 4 ; R > 8/10 10/16

< x 2 ,  x 4 ,  x J5 ; R > 7/9 9/16

< x2i x4, x7, x8, xI5 ;R> 6/7 7/16

< x 2 i  x 4 ,  x 7 ,  x 8 ,  x 1 5 ,  x 2 8 ; R > 5/6 6/16

< X 2 ,  X 4 ,  X 7,  X 8 ,  X p ,  X j $ ,  X j g ,  X 2 q ,  X j ]  ,  R > 4/4 4/16

< x 2 ,  X 4 ,  x 7 ,  x 8 ,  x p ,  x j s ,  X ] $ ,  x2o, X 3 4 , X3 5 , x 3 g ,  X 31 ;R> 3/3 3/16

 ̂x 2 ,  X 4 ,  x 7 ,  x 8 ,  X p ,  X j q ,  X ] g ,  X j g ,  x 2 q ,  x 2 2 ,  X 3 0 ,  X 3 1 ,  x 3 8 ,  x 3 p ,  X 4 1 ,  X 4 6 ,  x 3 j ,  R y 2/2 2/16

i  X 2 ,  X 4 ,  X 7,  X 8 , X p ,  X j q ,  X j $ ,  X j g ,  X j 8 ,  X 2 q ,  X 2 2 ,  X 3 q ,  X 3 j ,  X 3 2 ,  X 3 4 ,  X 3 3 ,  X 3 g ,  X 3 7 ,  X 3 8 ,  X 3 p ,  

X 4 1 ,  X 4 g ,  X g j ,  X 3 3 ,  X 3 4  ,  R }
1/1 1/16

157



Variable x# is a strong classifier, occurring in all 8 of the desirable primitives, 

and consequently all 73 hubs. It relates to the number of passes made by the home 

team, and has a value of < 176.25. This shows that winning teams pass the ball 

fewer times in their own half. This may be important in itself, or may indicate that 

winning teams spend less time in their own half, or that too much passing is a bad 

defensive strategy.

Here, a hub containing 9 variables can be used to perfectly classify half of the 

desirable primitives.

4.6 Play Generation by Comparison

We will now describe an alternative approach to play generation. In the previous 

section we were interested in how to generate concepts relating to desirable plays, 

based on the overall success of a strategy according to the goal difference. Another 

possible approach would have been to rate each play individually based on whether 

it resulted in a goal, a loss of possession, a clearance, or some other event. In this 

section we shall examine play concepts when considered against their bipolar 

opposite.

We have already collated primitives relating to the times when the ball is in the 

home half, the away half, when it has been in possession, and out of possession. 

Consider an alternative IN  HOME concept. We still desire to find how our variables 

perform when the ball is in the home half of the pitch, but instead of comparing 

configurations between good and bad plays, we will compare them to the 

configurations recorded when the ball is in the away half.

158



Using the same 66 variables, we form a new classification between the 

primitives measured with the ball in the home and away halves. In this instance we 

have 20 desirable and 20 undesirable primitives: one of each from every team. 

There are no ‘drawn’ or indifferent primitives since the ball is always in the home or 

away half.

Focussing on the concept play of IN HOME, we find 8 variables common to 

both the ball in home half and ball in away half primitives. These exactly match 

those in table 4.10 above. This is expected since variables common to both sets of 

primitives in section 4.5.1 must be part of the encompassing STRATEGY concept, 

and therefore part of both primitives here.

Continuing the analysis we find there are 56 significant variables, forming 

2951 maximal hubs. The largest and most frequently occurring are given in table 

4.12.

159



Table 4.12 Maximal Hubs for Plays Analysed by Comparison

Hub Spec. Broad.

< X q, X j j ,  X j j , X25,  X26 5 X2 95 Xjo> X3J ,  X32,  X43,  X44 t R ^ 20/20 20/40

< X Q, X j j ,  x j j ,  X j j ,  x 26i x 27i x 28> x 29i x jQ, X 31» x 32, X43, x 44 \ R > 19/19 19/40

< X q ,  X j q ,  x n ,  X j j ,  X j j ,  x 26i x 27,  x 28> x 29,  x 30> x 31,  x 32> x 43> X44 ; R  y 18/18 18/40

{ X q ,  X j q ,  X j j ,  X j j ,  X24, X j j ,  x 26i X j j ,  x 28n x 29> x 30> X j j ,  x 325 X43,  x 44 5 R ^ 17/17 17/40

< X Q, x 10i x l l ,  x 17t x 23i x 24i x 25i XjQ, X 2J,  X j j ,  x 29, x 30> x 31, X j j ,  x 43, x 44 '■> R > 15/15 15/40

< X q ,  JCjo, X j j ,  x 12, x J 7,  x 24, x 25, x 26,  x 27,  x 28, x 29, x 30, x 31,  x 32,  x 43, x 44 , R ^ 14/14 14/40

< X 3 ,  X q,  X jo , X j j , X j j ,  X jq, X j j , X25,  X 2Q, X 2J, X2 8 , X29,  X30,  X j j ,  X32,  X43,  X44 , R  ) 13/13 13/40

i. X j ,  X q ,  X j o ,  X j j ,  X j q ,  X j q ,  X j j ,  X24,  X25,  X 2Q, X27 , x 28, X29, X j o ,  X j j ,  X32,  X43,  X4 4  , R  7 12/12 12/40

< x q, X jo , X j j ,  X j 2 ,  X jq, X jq, X j j ,  X24,  X25,  X 2Q, X 2J,  X28 ,  X29 ,  X30 ,  X j j ,  X32 ,  X43 ,  X44  ; R  > 11/11 11/40

{ X q,  X jo ,  X j j ,  X j 2 ,  X jq ,  X jq ,  X j j ,  X2 J ,  X24, x 2 j ,  X 2Q, X 2J ,  X28,  X29,  X30, X j j ,  X32 , X43, X44 , R  ) 10/10 10/40

< X q, X jo , X j j , X j j , X J9 ,  X2 J ,  X24 ,  X25,  X2Q, X 2J, X28, X29,  X30 ,  X j j ,  X32, X39, X43 , X44, X45, X / j j ,

x4 8 ;R>
9/9 9/40

< X j ,  X q ,  X j o ,  X j j ,  X ] 2 ,  X j j ,  X j 9 ,  X21,  X24,  X2 5 , X 2Q, X j j ,  X j 8, x 29, XjO,  X j j ,  X32, X39, X43 ,  X44,  

X45 , X47, X 48 ‘, R >

8/8 8/40

i  X j ,  X q, X jo , X j j , X j 2 ,  X jq, X jq , X j j ,  X j 9, X j j ,  X24,  X j j ,  X2Q, X j j ,  X28,  X29, X30, X j j ,  X32 , X39,  

X43,  X44 ,  X 4 j ,  X 4 J ,  X 4 8 ,  R y

7/7 7/40

i  X j ,  X q, X jo,  X j j , X j 2 ,  X j j ,  X jq,  X j j , X j 9 ,  X j j ,  X j j ,  X24,  X j j ,  X2Q, X j j ,  X28, X29 ,  XjQ, X j j ,  X32,

Xj9, X43,  X44,  X 4 j ,  X 4J ,  X 4 8 ; R >
6/6 6/40

< X j ,  X q, X 9 ,  X jo ,  X j j ,  X j 2 ,  X j j ,  X jq,  X j j , X j 9 ,  X j j , X j j ,  X24, X j j ,  X jq , X2J ,  X j j ,  X j 9 , X j q,  X j j ,  

X32 , X39 , X43 , X44, X43, x 47, X 4 8 ; R >
5/5 5/40

< X j ,  X q, X jo , X j j ,  X j 2 ,  X j j ,  X jq , X j j ,  X j 9 ,  X j j ,  X24,  X j j ,  X2Q, X j j ,  X j j , X29, X30, X j j ,  X32 , X j j ,  

X381X43,  X44 ,  X 4 J ,  X48,  X49,  X j o ,  X j j ,  X j j ,  R  y

4/4 4/40

( X j ,  X q,  X j ,  X j ,  X jo , X j j , X j 2 ,  X j j ,  X jq , X j j , X j 9 ,  X j j , X24,  X j j ,  X2Q, X j j ,  X j j ,  X29,  X30 ,  X j j ,  

X j 2 t  X34, X j j ,  X jQ , X j j ,  X39, X43, X44 , X 4 j ,  X 4J ,  X48,  X j 2 ,  X j Q , R  y

3/3 3/40

< X j ,  X j ,  X q,  X j , X j ,  X jo ,  X j j ,  X j 2 ,  X j j ,  X j q ,  X j j ,  X j 8, X j 9 ,  X j j ,  X24,  X j j ,  X j q ,  X j j ,  X28 ,  X29,  

XjO,  X j j ,  X32 , X34, X j j ,  XjQ, X j j ,  X39,  X43, X44,  X43,  X 4 J ,  X48,  X j j ,  X j j ,  X34, X jQ  j R >
2/2 2/40

< X j ,  X q,  X j ,  X j ,  X jo ,  X j j ,  X j 2 ,  X j j ,  X j j ,  X jq ,  X j j ,  X j 9 ,  X 2 0 ,  X j j ,  X 2 4 ,  X j j ,  X 2 Q, X j j ,  X 2 8 ,  X 2 9 ,  

x 3 0 > X j j ,  X 3 2 ,  X j j ,  X j j ,  X j j ,  X 4 0 ,  X 4 J ,  X 4 2 ,  X 4 3 ,  X 4 4 ,  X 4 J ,  X 4 8 ,  X 4 9 ,  X j o ,  X j j ,  X j j ,  X jQ ,  X j j ,  X j j ,

x 5 9 ; R y

1/1 1/40

Eleven variables exist as strong classifiers in this example, being present in all 

20 of the home half primitives. An interesting inclusion is that of xn, which is the 

standard deviation in home players’ areas. This is greater in plays where the ball is 

in the away half, and bigger changes in area occur.

160



Examining these hubs, and comparing them to those in table 4.11, we can see 

there is little correlation between the two, even though they both correspond to play 

structures appearing when the ball is in the home half of the pitch. The difference is 

due to the alternative ways we have chosen to describe what makes a desirable 

primitive. This affects the relation R, and results in two different concepts.

The high specificity and broadness recorded for these hubs indicates a much 

stronger relational structure than that given in section 4.5.1. This reflects the reality 

that there is a much greater difference between attacking and defending plays than 

there is between good and bad examples of the same play. The strongest link 

between the two play concepts comes via variables x/j and x/<j. This pair occurs in at 

least half of the primitives measured in each.

4.7 Tactic Generation

So far we have measured each primitive over the whole course of a match, but have 

also suggested measuring over the duration of specific play instances, and classing 

their success by the individual outcomes, rather the general goal difference. We will 

now demonstrate this method on an even lower level in the multilevel structure, that 

of tactics, and passing in particular.

For this analysis we extended our list of variables to 100 to include additional 

parameters which may be relevant specifically to passing events. These incorporate 

structures which directly relate to the passing and receiving players, and to the pass 

itself. Rather than list all 100 variables, we will reveal a shortened of the most 

significant variables list later on.

161



We analyse 2036 passes randomly selected from across the ten matches: 1018 

successful and 1018 unsuccessful. These form our two sets of primitives. Each pass 

has a duration beginning when the ball leaves the passing player, and ending when it 

is received by another player. We define a successful pass as one in which the 

passer and receiver are on the same team. An unsuccessful pass is one in which the 

passer and receiver are on opposing teams. Some variables are measured and 

averaged over the pass duration, whilst others are measured purely at the moment the 

ball is kicked, or received.

By increasing the number of primitives and variables, we drastically increase 

the number of possible hubs and stars. The size of the search space is too great for 

our algorithms, and highlights what is possibly the main drawback in the analysis 

technique. The more primitives used to generate each concept, the more reliable the 

representation will become; however, given the number of possibilities for variables 

in concepts as complex as those studied here, the search spaces can easily become 

unmanageable. In this thesis we have used very simple analysis techniques to 

demonstrate the principles. It would not be unrealistic to assume that with optimised 

algorithms, and more resources, larger problems could be tackled in this way. It 

should also be noted that the size of this search space is still much smaller than that 

of the game tree described in section 3.1.

Rather than try to generate all the possible hubs for this set of data, we use a 

training set to generate a shortened list of hubs, and then search the primitives to find 

their significance. In our experiment, we initially analysed 25 primitives chosen at 

random from each of the desirable and undesirable sets. These produced 9240 hubs, 

which we then compared to all 2036 primitives. The specificity and broadness

162



relating to a selection of these hubs is given in table 4.14. Descriptions of the 

variables forming these hubs is given in table 4.14.

Table 4.13 Maximal Pass Hubs

Hub Spec. Broad.

<x7 3 ;R> 681/971 971/2036

< xj, x2 7 ;R> 483/561 561/2036

< X], x27, x8 9 ;R> 376/422 422/2036

< X ] ,  X 27, X 76, Xgg  ; R > 325/356 356/2036

< X j ,  X 27, X 4o, X 76 , X 7s ' , R > 118/126 126/2036

< X j ,  X 27, X 4o, X 46, x 47, x 7$  ; R > 79/83 83/2036

< X j ,  X 27, X 4o, X 4j ,  X 47, X 32, X 78 R > 28/28 28/2036

Table 4.14 Variables Selected for Pass Generation

Variable Description

Xj Duration (in frames) of the pass

X27 Number of players closer to the ball than the closest opponent

x40 Number of players closer to the home goal than the 3rd closest opponent

x41 Number of players closer to the home goal than the 4th closest opponent

x47 Number of players closer to the home goal than the 10th closest opponent

x73 Number of opponent players in spaces neighbouring the receiving player

x76 Area controlled by the receiving player

x89 Number of players closer to the receiving player than the 10th closest opponent

The variable x 73 is particularly significant in the results, being able to 

differentiate between successful and unsuccessful passes on 70% of the occasions 

where it occurs. It corresponds to the number of opponent players in spaces 

neighbouring the receiving player, and has a value of < 1.26. Interestingly, x 73 does 

not appear in the other significant hubs. It occurs in hubs with a slightly lower

163



specificity for every size of hub than those listed. In all hubs of dimension > 0 the 

pair < xi, X27 > predominates with a combined specificity of 86%. In comparison, the 

pair < X 73, X 74  > has a specificity of 75%.

In this case, the small training set did not generate some of the more significant 

hub combinations. However, the method has still identified combinations which 

give similar specificity and broadness, by adding extra variables to the hub.

As the specificity of a hub increases, its broadness decreases. The hub 

becomes more detailed and less representative of the general case. Hubs begin to 

describe particular instances of the concept, which may be distinct from one another. 

For example, there might be passes which are used to promote position, passes 

which are used to set up particular events, passes that are forced, or passes used to 

move a ball away from a dangerous position. Each will have its own hub with both 

high specificity and broadness. This, in effect, identifies further concepts.

4.8 Statistical Analysis of Hub Occurrence

As we have stated, hubs tend to arise in relatively small frequency or size. One 

concern is that some or all of the results may appear at random. Can we rely upon 

the results obtained via this method to contain useful data?

In an attempt to answer this question, we will endeavour to determine the 

statistical likelihood of the hubs obtained in the pass concept analysis occurring at 

random. A major problem with this is that many of the variables are linked to one 

another, and it is difficult to assess the probability of their occurrence in isolation, let 

alone in sets. Hubs also appear with many permutations of variables, and it is

164



unlikely that two dissimilar hubs of equal dimension will have similar probabilities 

of occurring.

To tackle this, we estimate the probability of each variable occurring by 

measuring its appearance in the desired amount, over 90 pass primitives. Where 

there is obvious reliance between variables, we measure the probability of each set 

of linked variables occurring together.

Searching through the list of abstracted hubs we find the most frequently 

occurring, and use these to represent the most probable variable combinations for 

each size of hub.

Using our estimates for the probability of each variable, and set of variables, 

occurring, we then generate a probability for each of our most likely hubs. For the 

most common hubs of dimension 0-39, we have estimated the probability of them 

naturally occurring. This is plotted as the solid line in figure 4.16.

165



Measured occurence 
Estimated probability0.7

8 0.6 
§
3 0.5oo

<4-1

O 0.4

I  0.3
O

Jb*
^  0.2

40
Size of hub

Figure 4.16 Probability of Hubs Occurring Naturally 

Each cross represents one or more measured hubs, with those above the line being

unlikely to occur naturally.

Superimposed on this plot are all the maximal hubs measured in section 4.7, 

plotted as points corresponding to their size and frequency of occurrence, measured 

as a fraction of the total number of desirable primitives.

It is clear from this estimation, that the majority of measured hubs are unlikely 

to appear naturally. Some small, infrequent hubs may appear by random, but we are 

not focussing on these. Our measured hubs have more relevance the further they lie 

above the estimated probability curve.

It should be noted that many more hubs will appear below the curve. These do 

not show up, due to the heuristics used in our search algorithms.

166



4.9 Propagation of Variables and Hubs across Levels

Having identified relations of variables to define a series of concepts, we now return 

to our multilevel structure to investigate the propagation of variables across related 

concepts.

Recall our ideas of structure in football plays generated in section 4.2. Figure 

4.8 showed how the eight play concepts are related across two levels. We have 

shown that concepts at each level can be generated from a set of variables, and that 

the same variables can be reused at multiple levels. If there is a link between 

concepts within the multilevel structure, then surely there must also be a link 

between the variables associated with those concepts. More importantly, there 

should be a link between the sequences of variables appearing in each concept. If a 

concept at level N  is related to a concept at level N  + 1, then the set of variables 

describing the concept at level N  should also be part of the description of the concept 

at level N  + 1. In other words, the hubs used to describe the concept must flow 

through the multilevel structure. The exception to this case will be when multiple 

concepts with conflicting variables combine to form a higher level concept. 

However, even then, it is likely that some of the lower level hubs will emerge in the 

higher level concept.

Consider figure 4.17. This is a Venn diagram of our robot football structure. It 

shows the relation between variables and concepts. The circle represents the strategy 

concept. It is split into half vertically to represent the two opposite plays IN  HOME 

and IN AWAY, and split horizontally to represent the plays IN POSSESSION and 

OUT OF POSSESSION. The four quarters represent the combination plays IHIP, 

IHOP, IAIP, and IAOP.

167



HIPIHIP

POSSESSION^
p o s s e s s io n '~

IN
OUTOF

IAOP

Figure 4.17 Venn Diagram Showing the Relation between Variables and Concepts

in the Football Structure

Variables are placed on the diagram in accordance with their relation to each 

concept. If a variable lies within the region bound by a concept, then it is significant 

to that concept. If it falls on a boundary line, then it is significant to concepts on 

either side of that line. Consequently, a variable which is significant to all the 

concepts will fall at the centre of the circle, and cross into each segment.

Representing the concepts and variables in this way highlights a logical

relation between concepts. Variables, or rather sets of variables, occurring in IN

HOME, also appear in IHIP OR IHOP. Also, variables and sets occurring in IHIP

appear in IN  HOME AND IN POSSESSION We can state that for this particular set

of concepts, the relation mapping pairs of level N  concepts to a level N  + 1 concept

is an OR-aggregation, whereas the mapping between two level N  + 1 concepts down

168



to a single level N  concept is an AND-aggregation. We test this hypothesis 

experimentally.

4.9.1 Experiment

We begin by selecting the eight plays as our concepts of interest. In this experiment 

we will investigate the hypothesis that there is a logical OR relation between pairs of 

level N  hubs, and hubs present at level N  + 1. To simplify matters, we will only 

focus on our classifier hubs, i.e. those which differentiate between desirable and 

undesirable primitives, not those common to both types. The hubs for both levels 

have already been found in earlier sections of this thesis.

We will call the two level N  concepts a and /?, and the level N  + 1 concept y.

Firstly we check all the available variables for their significance. By this we 

mean those variables which appear in hubs corresponding to each of the three 

concepts. Variables which appear in only one of the level Vhubs may, or may not, 

appear at level N +  1.

Next, we test these significant variables for any conflicts. By this we mean any 

variables which occur on the same side of the global mean in hubs of a and /?, but 

the opposite side in y. If a variable is on opposite sides of the mean in a and /?, then 

we assume it is feasible for it to occur either side in y. However, if a variable occurs 

to the same side of the mean in both a and /?, then we presume it should also occur 

that side in y. Any conflicts indicate that variables can change as they migrate 

through the multilevel structure, and show a flaw in the hypothesis.

We continue by creating all the possible OR-aggregated combinations of hubs 

of a and /?. According to our theory, these should correspond to the hubs in y. We

169



then search for the aggregate hub with the closest match to each hub appearing in y. 

The sets of variables common to each are used as a measure of the similarity of the 

hubs across the two levels. Here, we shall measure the similarity as a percentage of 

variables matched between the hubs. For example, a y hub containing five variables 

is compared to a 6 variable aggregate hub. If the aggregate hub contains all five 

variables from the y hub, then there is an 80% match, having a one variable, or 20% 

error. A y hub of 6 variables paired with a 3 variable aggregate hub, all of which 

appear in the y hub, is a 50% match. The closest match between aggregate hub and y 

hub is recorded.

A problem with this method arises when we fail to include level N  concepts, 

which are related to our higher level concept. These can cause additional variables 

and sets to be introduced, or cancel out variables and sets which already exist. We 

limit this in our experiments by choosing bipolar plays, which together describe the 

whole of a strategy.

4.9.2 Results and Discussion

Table 4.15 shows the initial findings of the variable analysis. We split the 66 

variables introduced in section 4.4 into three groups. For each set of concepts, the 

insignificant variables are ones which do not turn up in any of the concepts. These 

identify structures which have no discemable effect on whether the primitives are 

desirable or undesirable. The significant variables are variables which are used to 

classify primitives in all three concepts. At this stage, we ignore whether they are 

valued above or below the global mean. The partially significant variables are those 

which turn up as classifiers in only one or two of the concepts.

170



Table 4.15 Mapping o f Variables through the Multilevel Structure

Level N +  1 Level N  Level N  Number of Number of Number of Number of
concept (y) concept concept insignificant partially significant conflicting

(a) (P) variables significant variables variables
variables

INHOME IHIP IHOP 21 19 26 0

IN AWAY IAIP IAOP 13 21 32 0

IN
POSSESSION

IHIP IAIP 16 22 28 0

OUT OF 
POSSESSION

IAIP IAOP 18 18 30 0

For our hypothesis to hold, we would expect that hubs turning up at level 

N  + J would be mainly composed of the significant variables, but that some 

partially significant variables may also exist. It is interesting to note that for each set 

of concepts, the number of significant variables is the largest, indicating that we 

have selected a good set of variables to describe these concepts. The final column in 

table 4.15 shows the number of conflicting variables. We find no conflicts, 

indicating that each significant variable falls the same side of the mean in y as it does 

in at least one of a or p. This indicates our hypothesis is still valid at this point.

The preliminary results for our hub comparison are shown in table 4.16. Each 

row represents the level N  + 1 hubs corresponding to the named concepts. The 

columns represent the percentage of each hub matched by the closest aggregate hub 

formed from the appropriate level N  hubs. The values in each cell indicate how 

many of the level N  + 1 hubs can be matched with that precision.

171



Table 4.16 Accuracy o f Measured Aggregate Hubs

Number of y hubs described with the specified accuracy (%)
Concept

50-60 60-70 70-80 80-85 85-90 90-95 95-100

INHOME 0 0 0 0 0 7 66

IN AWAY 0 0 1 1 2 17 99

IN
POSSESSION

1 2 9 12 14 16 10

OUT OF 
POSSESSION

0 1 3 11 8 18 56

We can see from these results that the majority of level N  + 1 hubs can be 

almost perfectly described by OR-aggregations of level N  concepts. In all, 228 of 

the 355 level N  + 1 hubs can be described with 100% accuracy. The largest 

discrepancies are found in the hubs relating to the IN POSSESSION play. Only 9 of 

its 63 hubs can be exactly produced by combinations of lower level hubs. A 

possible explanation for this could be that our variables are simply not good at 

describing this play. This is supported by the fact that the play concept has the 

fewest hubs associated with it, and many of the variables used are only partially 

significant. If we ignore the partially significant variables in our analysis, the results 

are as shown in table 4.17.

172



Table 4.17 Accuracy of Refined Aggregate Hubs

Number of y hubs described with the specified accuracy (%)
Concepts

80-85 85-90 90-95 95-100

0 5 68

4 0 115

1 1 61

0 6 91

As we can see from these results, removing the partially significant variables 

has done little to affect the hubs in the IN HOME and IN AWAY concepts, but has 

dramatically improved the results pertaining to the two possession concepts.

The partially significant variables appear mainly from 2 sources. The first is 

from the indifferent primitives. In this case, the global mean can be affected such 

that the variable does not register as significant in one of the concepts. The second 

is when a variable is a classifier for all primitives within a concept, and it appears as 

common to desirable and undesirable sets. Since we have ignored common 

variables, the occurrence of either of the above will mean a variable is ignored in the 

associated concept. If a variable is missing from one of the hubs, then this will 

obviously prevent it from matching a hub where the variable is existent.

In general, there appears to be a strong link between the level N  and N  + 1 

hubs, which supports our hypothesis. There are, of course, many combinations of 

level N  hubs which do not describe any level N  + 1 hubs. These combinations 

indicate plays which should not be combined, or do not work well together. There 

are also some hubs which cannot be fully described. This may be due to poorly

selected variables, chance occurrences in the plays, or measurement errors.

173

INHOME 0

IN AWAY 1

IN  0
POSSESSION

OUT OF 0
POSSESSION



Although these results support our hypothesis about the migration of hubs 

between levels of the multilevel structure, they do raise an interesting point. In this 

analysis, we have begun with hubs already measured for each concept. What we 

cannot do at this stage is use information about the hubs at level N  to generate, from 

scratch, the hubs at level N  + 1. This would require knowing the relation describing 

the association between the hubs of the concepts.

If we can migrate hubs up this multilevel structure using an OR-aggregation, it 

is probable we can also migrate down, as we have postulated, using an AND- 

aggregation. This should be possible using our concepts due to the way in which 

they have been defined, and their relationship according to the Venn diagram shown 

in figure 4.17.

Finally, we should reiterate that all the concepts at level N  that interact to form 

a concept at level N  + 1 are required to be able to generate possible hubs at level 

N  +1 . In this example, we have made this possible by selecting bipolar concepts at 

level N  which between them describe the whole of the concept at level N  + 1.

4.10 Applicability of Variables and Hubs across Leagues

Consider figure 4.18. Mirosot and RoboCup are two distinct types of robot football, 

just as IHIP and IHOP are two types of IN  HOME plays. We hypothesise that there 

may exist concepts common to both RoboCup and Mirosot, which can be used to 

describe a new concept of ROBOT FOOTBALL.

174



ROBOT FOOTBALL Level N + 1

Level N

Figure 4.18 Mapping of Robot Football Leagues into a General Robot Football

Concept

Although each are played with different numbers of players, on different sized 

pitches, both are team games played on a 2-dimensional rectangular pitch with the 

aim of putting a ball into the opponent goal. Some types of structure should, 

therefore, exist in both game concepts. Taking this a step further, we can see that 

these structures may also appear in human football and other games.

Plato philosophised that there existed a set of forms, which described perfect 

examples of every object and concept we could conceive (Ross, 1951). He supposed 

there was a form for ‘beauty’, and a form for ‘circle’, and that eveiy time we 

recognised a particular feature, object, or meaning, what we were actually doing was 

recognising the similarity of that thing to one of the forms. There is an ideal form 

for everything, and we identify objects and concepts in the real world by relating 

them to these ideas. What is more, there may be forms with a greater or lesser level 

of description, for similar ideas. As well as being a form for ‘circle’, there may also 

be one for ‘blue circle’.

Our ideas regarding a multilevel structure of concepts ties in with this

philosophy. Each concept is itself a form, describing a particular idea in robot

football. We are trying to find a measurable representation of these forms, by
175

RoboCupMirosot



identifying variables which can be used to describe them. It should not be difficult 

to see how RoboCup and Mirosot are both forms of robot football, which itself is a 

form of football, itself a form of team game, itself a form of competition, and so on.

In this final section, we will endeavour to show links between Mirosot and 

RoboCup using the same techniques we have demonstrated throughout this chapter. 

If we can successfully achieve this, then it should support our argument for 

extension of the multilevel structure beyond the confines of our limited RoboCup 

football data.

We reiterate that the two games of RoboCup Simulation League and Mirosot 

are very different. The RoboCup game is a simulation, and therefore less complex, 

than Mirosot, which is played with real robots. The RoboCup game uses 11 

omnidirectional robot agents each of which can control the ball by holding or 

kicking it. Mirosot, on the other hand, is a 5-a-side game using differential drive 

robots, which can exert only limited control over the ball. The robots can only push 

the ball using a shallow scoop, which makes passing, catching, or kicking the ball in 

a precise direction very difficult.

In this experiment we will endeavour to find relations of variables which are 

relevant to similarly defined concepts in both types of robot football. Since passing 

is very infrequent, and difficult, in Mirosot, we shall examine the play concepts of 

IN HOME and IN AWAY. From our experience in robot football, we know these are 

commonly used to define strategies in both games.

176



4.10.1 Experiment

Until now we have confined our experiments to the readily available RoboCup 

Simulation League data. Before proceeding, we need to collect a set of data relating 

to Mirosot robot football. Data from Mirosot matches is not recorded and published, 

as is the RoboCup simulation data, so we must generate our own.

We begin by generating seven Mirosot strategies, and playing and recording 

ten games. Four of these strategies are inherited from previous competitions, whilst 

the remaining three are built from scratch using the traditional role based approach. 

Using the results, we repeat the analysis described in section 4.4 to generate hubs 

relating to the two concepts, but removing or scaling variables which correspond to 

the number of players on a team.

To allow a direct comparison between the hubs for these concepts across both 

types of robot football, we must scale down any variables corresponding to 11 

players per team in the RoboCup data to their equivalent 5-a-side values. This 

should be acceptable, as it is comparable to using a ratio based variable of players to 

team size in the initial analysis, which would provide the same results.

As in section 4.4, we compare each set of variables and remove any which fall 

on opposite sides of the mean in each type of football. These indicate specific 

differences between the two game types. It should be noted that the mean for each 

variable will be different for each type of football. If we valued our variables over a 

limited range, as discussed in section 4.3.2, then we would need to look for overlaps 

in the ranges to determine whether each variable was significant to both game types. 

However, since we have measured the significance of our variables over infinite

ranges, they will overlap if both occur to a greater or lesser extent.

177



We conclude by comparing the hubs occurring for each game type, for each 

concept. Any variable sets which occur in both the RoboCup and Mirosot data are 

recorded and their sizes and frequencies measured.

4.10.2 Results and Discussion

For the IN  HOME concept, there are 8 desirable primitives in the RoboCup data, and 

6 desirable primitives in the Mirosot data. These give rise to 73 RoboCup hubs, and 

44 Mirosot hubs. Cross examining these, we find 82 unique hubs common to both 

types. A selection of these is given in table 4.18.

Table 4.18 Common Defensive Play Hubs across Football Leagues

Dimension of 
intersection

Maximum hub 
dimension

Largest hub

13 0 < x 4 ; R >

11 1 <x 2 , x 4 ; R >

10 2 < x 2, x 4, x J 8 ; R >

6 3 < x2, x4, X i g ,  X31 ;R>

4 4 < x 2, x 4, X j 8 ,  x 28,  x 2 2 ; R >

3 5 < X 4, X] 8 ,  X 20,  X 2s ,  X31,  x 3 2 ; R >

2 6 < X 2 , X 4, X js ,  X 2o,  X 28,  X31,  X 3 2 ’, R >

1 7 < x 2, x 4, x 17i x m  x 20) x 28, x 31, x 32 I R  >

Variable X4 appears in all of the primitives, making it a perfect classifier. The 

set < X2 , X4, xis > is also very strong, appearing in the largest maximal rectangles. 

Given that only nine of our measured variables are common to both the Mirosot and 

RoboCup hubs, these relationships are considerably strong. The significant 

variables and their values are shown in table 4.19. Here the average values listed are

178



the larger of the RoboCup and Mirosot values for the greater than relationships, and 

the smaller of the two for the less than relation.

Table 4.19 Common Defensive Variables and Values across Football Leagues

Variable Meaning Relation Value

*2 Number of frames analysed < 2229.25

X4 Total number of passes < 37.8

Xj7 Percentage of unsuccessful opponent passes > 70.9

Xl8 Number of home passes < 22.5

*20 Number of shots at opponent goal < 0.375

X28 Players closer to ball than closest opponent < 0.87

X30 Players closer to ball than third closest opponent < 2.88

X31 Players closer to ball than fourth closest opponent < 3.60

X32 Players closer to ball than fifth closest opponent < 4.14

From these results it is interesting to note that in defensive plays, the winning 

teams do not force as many players around the ball, as do the losing teams.

There are also 8 desirable primitives in the RoboCup data, and 6 desirable 

primitives in the Mirosot data, for the IN AWAY concept. These give rise to 121 

RoboCup hubs, and 46 Mirosot hubs, respectively. Cross examining these, we find 

182 unique hubs common to both types. A selection of these is given in table 4.20.

179



Table 4.20 Common Offensive Play Hubs across Football Leagues

Dimension of Maximum hub Largest hub 
intersection dimension

11 0 < x I 4 ; R >

10 1 < x 2 i  ; R >

9 3 < x $ ,  X 2 1 ,  X 3 0 ,  X31  \ R >

8 4 < x s ,  X j s ,  X 2 1 ,  X 3 0 ,  X31  ; R >

7 6 < x 8 ,  X j 4 ,  X ] 8 ,  X 2 1 ,  X 2 9 ,  X 3 0 ,  X31  ; R >

6 8 < x s ,  X g ,  X 1 4 , x j s ,  X 2 1 ,  X 2 8 ,  X 2 9 ,  X 3 0 ,  X 3 1 ; R  >

5 9 < X s ,  X 9 ,  X ] 0 ,  X j 4 ,  X j s ,  X 2 1 ,  X 2 8 ,  X 2 9 ,  X 3 0 ,  X31  ", R  >

4 10 < x 2 ,  X s ,  X 9 ,  X jo ,  X ] 4 ,  X j s ,  X 2 1 ,  X 2 8 ,  X 2 9 ,  X 3 0 ,  X31  ; R >

3 11 (  X s ,  X 9 ,  X ]Q ,  X ] 4 ,  X j s ,  X 2 0 ,  X 2 1 ,  X 2 8 ,  X 2 9 ,  X3Q, X 3 ] ,  X 3 2  ,  R  }

2 12 (. Xs, X9, X]q, X]2, X]4, Xjs, X20, X21, X 2 8 ,  X29, X3Q, X31, X32 , R y

1 14 < X 2 ,  X 4 ,  X s ,  X 9 ,  X j o ,  X ] 2 ,  X j 4 ,  X j s ,  X 2 0 ,  X 2 J ,  X 2 8 ,  X 2 9 ,  X 3 0 ,  X 3 J ,  X 3 2 ', R >

Here we see yet another good correlation. From our set of variables, 15 appear 

in similar amounts in both game types, all of which appear in one primitive from 

each set. Variable X21 is the most common, appearing 139 of the common hubs. 

Here, the set < xg, X21, X30, X31 > is particularly strong. The significant variables and 

their values are shown in table 4.21.

180



Table 4.21 Common Offensive Variables and Values across Football Leagues

Variable Meaning Relation Value

*2 Number of frames analysed > 4576.1

X 4 Total number of passes > 176.3

x 8 Percentage of player turns spent closer to the home goal 
than the ball

> 74.5

Xp Percentage of player turns spent further from the away 
goal than the ball

> 57.1

XlO Percentage of player turns spent inside the triangle 
described by the ball and the home goal posts

> 18.3

X ]2 Standard deviation in home player areas (%) > 9.2

X j4 Percentage of successful home passes > 65.3

X }8 Number of home passes > 110.8

X20 Number of shots at opponent goal > 4.8

X21 Percentage of shots becoming goals > 39.1

X28 Players closer to ball than closest opponent < 0.6

X29 Players closer to ball than second closest opponent < 1.3

X30 Players closer to ball than third closest opponent < 2.1

X 31 Players closer to ball than fourth closest opponent < 2.9

X32 Players closer to ball than fifth closest opponent < 3.6

These results show that the better teams in both types of robot football spend 

longer with the ball in the opponents half and, whilst there, they pass the ball more, 

pass more successfully, shoot more, and convert more shots into goals.

Having found that there are common hubs relating to similar concepts in both 

types of robot football, we can suggest that they may also apply to similar concepts 

in other robot football games, as they contribute to two generic play concepts.

181



4.11 Computational Efficiency

Performing the star-hub analysis is a computationally intensive process. In section 

4.3.4 we computed the hubs formed by pairs and triples of variables. The set of 85 

variables generated 3570 hubs of dimension 1 and 98770 hubs of dimension 2. In 

general, the number of subsets of N  variables is of the order 2N, which is a high level 

of computational complexity.

For a subset of size q, figure 4.19 indicates the number of possible 

combinations that can be obtained from a set of N  variables. The set of 

combinations in the central region of the graph are intractable. The entire set of 

subsets can only be computed in the tail regions of the graph as q —» 0 or q - ^ N . 

However, these regions contain some of the most useful subsets.

IntractableTractable Tractable

0
0 N

Size o f subset (q)

Figure 4.19 Tractability of Subsets

182



As shown in section 4.3.4, the ability of a hub to classify a set of data, in terms 

of the ration of successful to unsuccessful classifications, increases with the number 

of variables incorporated into the hub. However, the increase reduces as more 

variables are introduced into the hub. For the problems introduced in this thesis, a 

small number of variables have been sufficient to achieve a 100% successful 

classification rate. Furthermore, as the number of variables included in the 

classification increases, so too does the number of unclassifiable samples, providing 

a counter argument to calculating much larger hubs.

To enable the computation of the more important hubs from the entire range of 

subsets, we have implemented a number of heuristics as described below:

In our algorithms, we do not search for every possible subset. Rather, we focus 

on only finding the hubs corresponding to the intersections of a small number of 

simplices. For the majority of experiments run in this chapter, this was sufficient to 

enable the analysis. For example, in section 4.7 we generated just 9240 hubs out of 

a possible 2100 from 25 primitives of 100 variables.

For larger data sets, the abstraction of hubs did provide some difficulty. In 

these situations, we can reduce N  by omitting variables with a lesser significance 

from the analysis. The choice of variables to exclude could be based on the 

measures of specificity and broadness introduced in section 4.3.4, or on constraining 

the size and frequency of desired hubs.

Further reduction can be achieved by using a subset of the available primitives 

as training data. By reducing the number of primitives analysed, the number of 

simplices, stars, and intersections are also reduced, whilst still being likely to capture

183



the common hubs. This is the case when using a small set of primitives to generate 

hubs to classify further primitives.

The use of comparing averages to identify desirable variables has also provided 

a considerable reduction in computation from the methods used in (Iravani, 2005a). 

As stated in section 4.3.5, a single variable as identified in this work was previously 

represented by multiple binary variables. The example given shows a 5.5 times 

reduction in the number of variables. We have further reduced the value of N  by 

using the comparison of averages to identify only the most desirable variables for 

inclusion in our hub search.

The analysis outlined in this chapter has been performed off line as a separate 

learning process. By generating hubs in this manner, the computation time required 

is not a major issue. The benefit is that by abstracting the hubs off line we can 

identify tasks and plans prior to robots undertaking a task. This removes much of 

the decision making and planning at run time, to the relatively simple selection and 

reconstruction of hubs from a predefined list. This is demonstrated in the following 

chapter, where a team of real robots is controlled, in real time, in the dynamic 

football environment, using the hubs abstracted here.

4.12 Summary

Robot football has a complex multidimensional and multilevel structure. To analyse

such a system and abstract the sub tasks required to complete the objective requires a

new type of architecture. In this chapter we have introduced such an architecture,

based the theory of concept generation. From a set of variables, which could

possibly be used to describe the system, our architecture can identify the relations

184



which describe higher level concepts. These relations can be turned into hypotheses 

for classifying further data, or representatives for reconstructing the emergent 

properties of concepts. We have demonstrated the processes at various levels within 

a multilevel structure, and shown how the relations map between similar concepts, 

and across levels in the structure. It is important to note that although the method is 

used to abstract relationships from recorded data, we are not simply trying to 

recreate existing rule based systems, but identify the more subtle emergent 

properties.

The architecture was introduced in section 4.1. Each segment of the 

architecture was described, along with an explanation of how it might be applied to a 

generic problem. The process attempts to find relations of variables commonly 

found in desirable primitives to describe a concept. For a given concept, a number 

of primitives, examples of the concept, are identified in recorded data. These are 

described in terms of a set of chosen variables. After classifying primitives into 

desirable and undesirable sets, we can identify which variables commonly occur in 

the more desirable instances of our concept. Finally, we find the relations of 

variables, or hubs, which occur in the desirable primitives.

We propose a new method for classification of variables, based on comparison 

of averages. This method differentiated variables according to the desirability of the 

primitive, based on average values. In previous experiments, variables had been 

ordered into binary sets depending on whether they fulfilled some arbitrarily chosen 

specification. Our method has the advantage of generating its own, more significant, 

boundary values for specification, and allows for continuous variables to be analysed 

without loosing the information stored in them by the grouping into binary sets.

185



To run our abstraction architecture, we first need to identify possible concepts. 

We have shown how robot football has a complex multilevel structure, consisting of 

concepts which we have grouped into sets representing ideas of strategies, plays, 

tactics and skills. We have generated a number of concepts which could be used to 

describe the game, and shown how they might be connected into a multilevel 

structure. The multidimensional structure has been shown by considering 66 

variables, which are used to represent the concepts at each level in the multilevel 

structure. Using these two sets of structures as a framework, we set out to gradually 

build up a representation of the game of robot football.

We have shown how sets of variables combine to describe the various concepts 

in our multilevel structure. We have repeated the technique to build strategy, play, 

and tactic concepts. Previous work has been confined to the analysis of concepts on 

a single level in the structure, whereas here we investigate its application to multiple 

levels, showing how the same techniques and sets of variables can be equally 

relevant at each level. The definition of a desirable primitive for defining these 

concepts has also been investigated. We show, for the first time, how the meaning 

of the concept is affected by changing the duration over which the primitive is 

measured, or by changing the definition of success used to identify the primitives. 

We show this by measuring primitives over whole matches, and specific events, and 

by measuring different criteria for success.

We have also indicated how primitives can be classed to give concepts 

different meanings, whether they relate to general or winning structures. We have 

shown how some variables appear as constants across all strategies, or plays, and 

that these are fundamental indications of how the game is played. Other variables,

186



which appear to a greater or lesser extent in the desirable concepts, show how to play 

the game well. More importantly, we show how specific sets of these structures 

occur together, and are reliant on each other.

To verify our methods, we have measured the statistical likelihood of the 

measured hubs occurring randomly. A major concern was that given the number of 

variables and primitives being considered, it was possible that the hubs being 

recorded were occurring by chance. Although there are many hubs which could be 

classed as chance occurrences, our analysis suggests there are also many which are 

highly unlikely to occur by chance. These hubs represent the largest and most 

frequent common structures between primitives, and give the strongest 

representatives for our concepts.

Another new theory was generated in this chapter, and supported by 

experimental results. This related to the idea that given the relation of concepts 

between levels in the structure, there must also be a relation between structures of 

variables existing at each level. We hypothesised that by combining hubs on one 

level using logical operators, we could generate the hubs occurring at a level above, 

or below. Using our set of 8 play concepts, we showed how these relations could be 

represented diagrammatically using Venn diagrams, and suggested possible logical 

relations between trios of concepts spanning multiple levels. Our experimental 

results showed a strong correlation to back up our theory.

Finally, we have shown how common sets can also be found between different 

types of robot football. From our understanding of hierarchies, we hypothesised that 

there is a ‘form’ of robot football encompassing the football variants, and that there 

may be higher forms of ‘football’, ‘team games’ etc. We generated data pertaining

187



to Mirosot robot football using robots constructed for the purpose. By repeating our 

analysis on this data, we compared structures found occurring in the play concepts 

common to both Mirosot and the RoboCup Simulation League. We found that 

certain structures appear in both sets, and can state with some confidence that there 

are links between the two game types, and that these might represent play concepts 

in a wider variety of robot football types. These structures are evident, despite the 

two game types being different in many ways.

A limiting factor in this analysis is the selection of variables, and concepts, and 

identification of the multilevel structure. In the example presented here, these 

decisions have been made based on our knowledge of the game of football, and 

structures which we perceive to be relevant and useful. It is desirable that this whole 

procedure be automated, so that it can be used more efficiently as a learning tool for 

teaching robots to work together in such complex environments. However, this will 

require the system to identify its own variables, concepts, hierarchies and primitives, 

which may be difficult.

This chapter has detailed a method for generating a multilevel structural 

representation of the game of robot football from a set of measured variables. We 

have introduced a new method in concept generation using compared averages to 

classify variables according to their desirability, and used this to generate concepts 

relating to tactics, play, and strategies. Furthermore, we have shown how primitives 

can be classified in different ways to generate alternative concepts and have 

demonstrated how the generated hubs are statistically significant. Finally, we have 

revealed how variables and their relations link concepts on different levels, and 

between different varieties of football. The hubs generated in this chapter identify

188



structures of variables which together create the emergent properties evident in the 

related concepts.

189



Chapter 5 

Strategy Generation and Performance Evaluation on Real Robots

So far, in this thesis, we have introduced robot football as a complex multilevel and 

multidimensional system. In chapter 3 we investigated the properties of this system, 

and showed how spatial structures were integral to the game. In chapter 4 we 

examined the importance of these structures in more detail, showing how sets of 

particular structures were more prevalent in winning teams. Furthermore, we 

showed how these sets formed concepts, which themselves formed a multilevel 

structure of tactics, plays, and strategies, which could be used to describe the game 

of robot football. In this last chapter of experiments we will carry forward all these 

ideas and, using the results from the previous chapters, attempt to develop a 

controller capable of instructing our robots how to react in the complex football 

environment.

We generated a possible multilevel strategy structure in section 4.2 comprising 

of concepts defined by relations of variables. For each concept, we generated a 

number of sets of variables, which could be used as representatives for the concept. 

Each set was calculated experimentally, and is an abstraction of the concept from 

real world data. If we can design a controller to recreate these structures over their 

valid periods, and implement it on our robots, then we propose that a football 

playing strategy will emerge.

A strategy formed in this way will be a new development in robot controllers, 

consisting of experimentally abstracted objectives, and limited in its use of weakly

190



defined tasks. Being a multilevel and multidimensional structure, it should also be 

better suited to complex tasks. Furthermore, since many of the structures 

represented by the variables are functions of opponent positions, the emerging 

strategy should adapt to rival strategies, and be relevant against all opponents.

5.1 Control Architecture

Figure 5.1 depicts our control architecture. It describes the process of converting an 

abstracted strategy, found using the analysis in chapter 4, into a controller for a set of 

robots. We input a structure of representatives we desire to reconstruct, a list of the 

variables used to describe these representatives, and data pertaining to the current 

state of the system. The controller identifies the representative which most closely 

matches the current state of the system, and produces a list of actions required to 

reproduce the structures described by that representative. By reproducing these 

structures, we recreate the interactions which form the emergent system behaviour.

Robot commands

Select actions

Select
representative

Low level 
control

Generate actions

Calculate the effect o f  the 
actions

System data Representatives

Figure 5.1 Block Diagram of the Proposed Control Architecture

191



Representatives, derived using our abstraction architecture, and data, recorded 

through available sensors, are fed into the control architecture. Based on these 

inputs the controller selects the representative which most closely matches the state 

of the system (recall that each representative contains a description of the 

relationship it describes, which includes information on the state of the system at the 

time the representative is valid). If a multilevel structure of representatives is 

defined, then the each representative will point to a number of lower level 

representatives. In this way, the controller can identify all the low level structures 

required to recreate the highest level representative.

The individual variables within the representative describe structures which 

interact to form the governing concept. By recreating these structures, we recreate 

the concept. The next phase of the control, therefore, is to turn these variables into 

actions. Each variable inputted into the abstraction architecture contained a 

description of a structure to measure. In this section we use that description to 

define the action to be performed.

If there are more actions than robots, then action sets must be generated, so that 

a single robot can recreate a number of the required variables. The controller 

searches for possible action groupings and outputs them a list. Each grouping is 

assigned a set of values, which identify the effect of the action set on reconstructing 

the variables.

The controller searches through these groupings to find the set of action groups 

that will most closely reconstruct the variables in the representative. This set of 

actions is then sent to the robots to undertake. The low level control decides which 

robots perform which tasks, and handles the undertaking of each task.

192



In the following example we search for actions corresponding to all the 

variables listed in the representatives. The efficiency of the controller could be 

increased by only searching for actions relating to variables in the active 

representative.

5.2 Strategy Generation

The control architecture requires a set of representatives to recreate. For these 

experiments, we are interested in forming a strategy to run on real robots. This 

section describes how we form a strategy of representatives, based on the hubs 

abstracted in chapter 4.

We shall be using our Mirosot system as the main test bed, but will also use the 

Simurosot simulator as a comparison, to see how our controllers operate in both real 

and simulated environments. The performance of our Mirosot system has been 

measured, and details of the experiments can be found in appendix A. From the 

results we know that our control over the system is limited. Therefore, we will focus 

on recreating only the higher level concepts relating to the organisation of robots 

during different plays. We will avoid the lower tactical and skills levels, since these 

require a greater level of control over the robots, which our lower level algorithms 

cannot currently supply.

The hubs relating to the Mirosot matches are smaller and less frequent than

those for the RoboCup matches, indicating a lesser degree of separation between the

good and bad strategies. This may be due the greater ball control available in the

RoboCup Simulation League, or the fact that all our Mirosot matches have been

played on the same set of robots, and are limited by the low level control. However,

193



as we have demonstrated, there are links between the two types of robot football. 

We will therefore use the more abundant and descriptive RoboCup hubs to provide 

representatives to generate our abstracted strategies. Mirosot strategies, as we stated 

in chapter 2, are usually based on the two play concepts: IN HOME and IN  AWAY, 

therefore we will use RoboCup representatives of these plays to form our strategies.

The limitations of the Mirosot robots prevent us from reliably using ball 

controlling behaviours, and so we shall focus on developing a purely formational 

strategy. We do not see this as impeding our research, as the primary aim is to show 

that it is possible to recreate concepts using representatives, rather than to play 

football. If we improve the low level control, and measure the concepts relating to 

ball manipulation, then we will be in a position to generate a more complete 

strategy. The main issue is whether these concepts can be converted into control 

algorithms. We can show this by attempting to recreate the measured play hubs 

under similar conditions in a football match. If we can sufficiently reproduce the 

structures representing the variables in these hubs, then we have achieved our task.

Of all the variables we measured in section 4.5, some are easily controllable, 

whereas others are purely observable. For instance, we can measure, but not control, 

the percentage of shots which become goals. Ignoring variables which are purely 

observable, we select five of the most significant hubs from the IN HOME and IN  

AWAY play concepts measured in section 4.5. We add to these the common 

variables measured for each concept, then rescale all the variables from 11-a-side to 

5-a-side values, as done previously in section 4.10. These form our play 

representatives, which we will use to generate a Mirosot strategy, and are shown in 

table 5.1. The meanings of these variables, and their values, are given in table 5.2.

194



Note that we are using the inverse of the X9 variable used in section 4.5, as this is an 

easier structure to construct.

Table 5.1 Play Representatives Selected for Strategy Generation

Strategy
number

INHOME

Representative Rectangle
number

IN AWAY

Representative Rectangle
number

1 < x8l x9, x 2 8 ,  X 3 2 ,  x 3 7 ,  x 3 8  ;R> 30 < x28, x29, x3o, x3j, x37; R > 30

2 < x8, x9, xjo, x32, x37, x 3 8  ;R> 30 < x28, x29, x30, x3j, x32, x 3 7  ;R> 30

3 < X 8 ,  X 9 ,  X j o ,  x 3 2 ,  X 3 7 ,  X 3 8 ,  X 41

;R>
28 < x8, x9, x28, x29, x3o, x3J, x37; R 

>
35

4 < X 8 ,  X 9 ,  X 2 8 , X 3 0 , x32, x37, x38
;R>

28 < X 8 ,  X 9 ,  X 2 8 ,  X 2 9 ,  X 3 o ,  X 3 J ,  x32, x37
;R>

32

5 < X 8 ,  X 9 ,  X j o ,  x 2 8 ,  x 3 2 ,  x 3 7 ,  x 3 8  

;R>
28 < x28, x29, x3o, x3j, x32, x37, X 4 1 ; 

R>
28

195



Table 5.2 Variable Descriptions and Values for Strategy Generation

Variable Description
INHOME 

Relation Value

IN AWAY 

Relation Value

X8 Percentage of player turns spent closer to the 
home goal than the ball

> 63.33 > 63.03

Xg Percentage of player turns spent closer to the 
away goal than the ball

< 42.50 < 42.99

x j o Percentage of player turns spent inside the 
triangle formed by the ball and home goal 
posts

> 13.69 - “

x28 Players closer to ball than opponent 1 < 0.34

0.89

< 1.01

X2g Players closer to ball than opponent 2 - - < 1.41

X30 Players closer to ball than opponent 3 < 3.59 < 2.20

X31 Players closer to ball than opponent 4 - - < 3.01

X32 Players closer to ball than opponent 5 = 4.99 < 3.87

X37 Players closer to home goal than opponent 5 = 5 = 4.99

X38 Players closer to away goal than opponent 1 = 0 - -

X41 Players closer to away goal than opponent 4 < 2.40 > 2.39

Due to the effects of scaling, variable 28 has two possible values when used in 

the IN HOME play. This is because three variables in the 11-a-side RoboCup data 

correspond to just one variable in the 5-a-side Mirosot data. In most cases, the three 

variables appear together and the lowest, or highest, value of the three can be used as 

appropriate. However, in the IN HOME representatives above, they appear 

separately, and with significantly different values. The lower value of 0.33 is used in 

IN  HOME representatives 1 and 5, whereas the value of 0.87 is used in 

representative number 4.

196



We generate five strategies, each consisting of a pair of play representatives as 

shown in table 5.1. Each strategy will contain a simple switch based on the ball 

position to select one of the two representatives to be active at any time. The robots 

will then be controlled to reproduce the structures in the active representative.

5.3 Controller Implementation

Having identified a structure of plays, and selected our representatives, we now 

examine the implementation of our control architecture.

Recall, in chapter 4, we introduced our variables and placed emphasis on 

selecting parameters which could be represented mathematically. Although this 

helps to simplify the analysis, the main reason was to facilitate their use in a robot 

controller. We stated that human footballers may use complex descriptive or 

intuitions to understand what is happening on the pitch, but that these are of little use 

to robots. We purposely selected variables which could be easily converted into 

robot instructions so that the abstracted description of football formed in this thesis 

could be directly used to control a robot team.

The primitives used to describe the concepts were measured at every frame, 

which corresponds to the inherent sampling time of the robot football system. This 

is also the maximum rate at which we can provide meaningful control signals to our 

robots. Although it is possible to respond to a series of past data, or predicted future 

states, we will focus on reacting to the state of the game at the present instant. At 

every frame we will endeavour to recreate the desired representative, by passing 

target locations to each robot.

197



The variables we will be using in our controller all represent the number of 

robots in a particular segment of pitch. Since our primitives are averaged over a 

period of time, we need to convert the values stored within them to an integer 

number of robots in each segment at each frame. We will, therefore, round each 

variable to the nearest integer value. The modified target values for each variable 

per frame are shown in table 5.3.

Table 5.3 Modified Variable Values for Controller Generation

IN HOME IN AWAY
Variable

Relation Value Relation Value

* 8 > 3 > 3

X g < 2 < 2

XlO > 1 - -

X 28 < 0

1

< 1

X 29 - - < 1

X 30 < 4 < 2

X 31 - - < 3

X32 = 5 < 4

X37 = 5 = 5

X 38 = 0 - -

X 41 < 2 > 2

Our controller needs to calculate a set of positions which satisfy the criteria of 

the relevant representative. To do this, we begin by dividing the pitch up into 

regions which correspond to the variables given in the representative. These regions 

will intersect to form segments where more than one variable is affected.

198



Each of these segments is assigned a binary array equal in length to the number 

of variables; with each element of the array valued ‘1’ if placing a robot in the 

segment will affect the corresponding variable. Once all the segments have been 

valued in this way, we then search for the set which best reconstructs the 

representative. Each robot is then sent commands to move it into one of the selected 

segments. This process is repeated every frame.

Using this approach provides the additional benefit that it allows us to define 

regions, such as the goal area, penalty area, and centre circle. These are often 

subject to game rules, and may restrict the number of players that can be present 

within them. By segmenting the pitch in this way, we can add these limitations 

caused by the rules directly into our controller.

5.3.1 Controller Example

Consider a game played using strategy 3 given in table 5.1. At the moment of 

interest, the ball is in the home end of the pitch. The corresponding representative 

(x8, x9, x10, x32, x37, x38, x41; R) is selected for implementation by the controller. 

Listing 5.1 shows the pseudo code relating to this operation.

S e l e c t  r e p r e s e n t a t i v e
1 i n p u t  d a t a
2 i n p u t  r e p r e s e n t a t i v e s
3 c r e a t e  an  empty s t o r e  f o r  t h e  m ost v a l i d  p r i m i t i v e
4 f o r  e a ch  p r i m i t i v e
5 e x t r a c t  v a l i d i t y  c r i t e r i a  from p r i m i t i v e
6 m easure  t h e  v a l i d i t y  a g a i n s t  t h e  c u r r e n t  sy s te m  s t a t e
7 i f  p r i m i t i v e  i s  more v a l i d  t h a t  t h a t  s t o r e d
8 s t o r e  p r i m i t i v e  and  v a l i d i t y  m easu re
9 end
10: end
11: o u t p u t  m ost v a l i d  p r i m i t i v e

Listing 5.1 Pseudo Code for Representative Selection

199



Each strategy representative contains two play representatives, of which one is 

always valid. In our implementation, this simplifies the operation for measuring 

which representative is most valid to the current system state. The representative for 

IN  HOME is selected if the ball is in the home half of the pitch, and the 

representative for IN  AWAY is selected if the ball is in the opponents half of the 

pitch.

To recreate the representatives, the robots must perform actions which affect 

the variables they describe. Our method is to generate a list of actions, each of 

which influences the variables in some way, then select those actions which most 

closely satisfy the representative.

The variables in our representatives are all spatial structures, and represent 

players being present in specific areas on the football pitch. The actions to be 

generated can be thought of as target positions for the robots to move to. The 

pseudo code relating to the action generation procedure is given in listing 5.2.

200



G enera te  a c t i o n s
1: i n p u t  d a t a
2: i n p u t  v a r i a b l e s
3: d e f i n e  im p o r ta n t  f e a t u r e s
4: add  f e a t u r e s  i n t o  t h e  l i s t  o f  v a r i a b l e s
5: p o i n t  f e a t u r e s  = c a l l  g e n e r a t e  i n t e r s e c t i o n s  f u n c t i o n  on t h e

l i s t  o f  v a r i a b l e s  
6: s e c t o r s  = p e r fo rm  D elaunay  t r i a n g u l a t i o n  on p o i n t  f e a t u r e s
7: f i n d  c e n t r e s  o f  s e c t o r s
8: remove c e n t r e s  o u t s i d e  o f  p e r i m e t e r
9: o u t p u t  c e n t r e s

Genera te  i n t e r s e c t i o n s  
i n p u t  v a r i a b l e s  
c r e a t e  l i s t  o f  empty p o i n t s  
f o r  e a c h  v a r i a b l e

f o r  e v e ry  o t h e r  v a r i a b l e
c r e a t e  an  empty l i s t  o f  i n t e r s e c t i o n s  
i f  t h e  two v a r i a b l e s  a r e  c i r c l e s

c a l l  t h e  c i r c l e  i n t e r s e c t i o n  f u n c t i o n  
add t h e  r e s u l t  i n t o  t h e  l i s t  o f  i n t e r s e c t i o n s  

e l s e  i f  th e  two v a r i a b l e s  a r e  p o ly g o n s
add a l l  v e r t i c e s  i n t o  t h e  p o i n t  l i s t  
f o r  e ach  p a i r  o f  p o s s i b l y  i n t e r s e c t i n g  s i d e s  

c a l l  t h e  l i n e  i n t e r s e c t i o n  f u n c t i o n  
add t h e  r e s u l t  t o  t h e  l i s t  o f  i n t e r s e c t i o n s

end
e l s e  i f  t h e  v a r i a b l e s  a r e  a p o ly g o n  and a c i r c l e  

add t h e  po ly g o n  v e r t i c e s  i n t o  t h e  p o i n t  l i s t  
f o r  e a c h  po ly g o n  s i d e

c a l l  t h e  c i r c l e - l i n e  i n t e r s e c t i o n  f u n c t i o n  
add th e  r e s u l t  to  t h e  l i s t  o f  i n t e r s e c t i o n s

end
end
remove any r e p e a t e d  i n t e r s e c t i o n s  from th e  

i n t e r s e c t i o n  l i s t  
add  re m a in in g  i n t e r s e c t i o n s  i n t o  t h e  p o i n t  l i s t  

33 : end
34: end
35: r e t u r n  p o i n t  l i s t  

C i r c l e  i n t e r s e c t i o n  f u n c t i o n
36: c a l c u l a t e s  and  r e t u r n s  t h e  i n t e r s e c t i o n ( s )  o f  two c i r c l e s  

L ine  i n t e r s e c t i o n  f u n c t i o n
37: c a l c u l a t e s  th e  and r e t u r n s  t h e  i n t e r s e c t i o n  o f  two l i n e s  

C i r c l e - l i n e  i n t e r s e c t i o n  f u n c t i o n
38: c a l c u l a t e s  and  r e t u r n s  th e  i n t e r s e c t i o n ( s )  o f  a  l i n e  and  a

Listing 5.2 Pseudo Code for Action Generation

The code generates a model of the pitch in terms of the structures described by 

the variables. On line 1 the current positions of the robots and ball are inputted, on 

line 2 we input geometric representations of the variables, and on line 3 we define

201

n
12
13
14
15
16
17
18
19
20 
21  
22
23
24
25
26
27
28
29
30
31



any other important features; we specify the perimeter of the pitch. Line 5 passes 

these structures to the function listed on lines 9-35. This extracts the vertices of the 

structures, and finds the points where they intersect. The result is a list of points 

which describe the vertices of important segments of pitch. Figure 5.2 shows this 

process diagrammatically. Here the structures are represented by solid black lines, 

and each segment is identified by a letter.

» Target 
Point

Opponent
player

Structure
boundary

Pitch
segmentation

•  Ball

Figure 5.2 Pitch Segmentation Diagram

Having identified these segments, we generate target positions relating to each. 

On line 6 we use a built-in Delaunay triangulation of the vertices to further segment 

the pitch into triangular regions. This is illustrated by the grey lines in figure 5.2. 

The centre of each triangle is recorded as possible robot target point, provided it lies 

within the pitch perimeter.



Although the Delaunay diagram creates more segments than necessary, it is a 

simple and effective method of dividing the pitch into sections. It also allows us to 

generate more than one target point within each major segment, allowing us to place 

more than one robot in each area if necessary. In this example there are 37 Delaunay 

triangles representing 19 interesting segments of pitch, as divided up by the 

structural variables.

The next process is to calculate what effect each target point will have on 

recreating the representative. In the case of our example, placing a robot at each 

target point at each frame will simply add one to the value of each of the affected 

variables. The pseudo code for this function is given in listing 5.3.

C a l c u l a t e  th e  e f f e c t  o f  each a c t i o n
1 i n p u t  a c t i o n s
2 i n p u t  v a r i a b l e s
3 c r e a t e  a z e ro  v a lu e d  e f f e c t  m a t r ix  w i t h  a c t i o n s  

v a r i a b l e s  a s  columns
a s  rows and

4 f o r  e a ch  a c t i o n
5 f o r  e a ch  v a r i a b l e
6 e v a l u a t e  t h e  e f f e c t  t h e  a c t i o n  has  on t h e  v a r i a b l e
7 s t o r e  t h e  r e s u l t  i n  t h e  c o r r e s p o n d in g  

e f f e c t  m a t r ix
c e l l  o f  t h e

8 end
9. end
10: o u t p u t  e f f e c t  m a t r ix

Listing 5.3 Pseudo Code for Action Effect Calculation

The actions inputted on line 1 are the target points. On line 6 we call a 

function to evaluate the effect of placing a robot at a target point. This function, 

which is not listed, simply measures whether that point is within the area defined by 

the corresponding variable.

For the diagram given in figure 5.2, the effect matrix corresponding to the

labelled segments is shown in table 5.4. A ‘1* indicates that placing a robot in that

segment will increase the value of the associated variable. To simplify presentation,

203



segments rather than targets are listed; every target within a particular segment will 

give the same effect.

Table 5.4 Mapping of Variables to Named Pitch Segments

Variables
Segment

X s  X p  X jo X j 2  X3 7  X55 X41

A 1 0 0 1 1 0

B 1 0 1 1 1 0

C 1 0 0 1 1 0

D 0 0 0 1 0

E 0 0 1 1 0

F 1 0 0 1 1 0

G 1 0 1 1 1 0

H 1 0 0 1 1 0

I 1 0 0 0 0

J 0 0 0 0 1 0

K 1 1 0 1 1 0

L 0 1 0 1 1 0

M 0 1 0 0 1 0

N 0 1 0 1 0 0

0 0 1 0 0 0 0

P 0 1 0 0 0 1

Q 0 1 0 1 1 1

R 0 1 0 0 1 1

S 0 1 0 0 0 0

Next a search is conducted to find the set of target points which best matches 

the representative. We search each target to find the one that will bring the primitive 

for the frame closest to the representative. The process is then repeated for each 

robot.

204



In testing, we have been able to generate formations which are further from the 

representative, maximising variables which are desired to be greater than the 

average, and minimising those desired to be less than the average. However, these 

formations were often undesirable, with robots clustering in single segments. This 

led to our conclusion in section 4.3.2 that there is a range over which variables are 

desirable. To counter this, we aim to build formations which recreate values close to 

those stated in the representative, whilst still coinciding with the relation to the 

average. Listing 5.4 gives the pseudo code for the process.

205



Action selection
1: i n p u t  a c t i o n  e f f e c t  m a t r ix
2: i n p u t  r e p r e s e n t a t i v e
3: c r e a t e  an  empty l i s t  o f  a c t i o n s
4: c r e a t e  a  z e ro  v a lu e d  te m p o ra ry  a r r a y  e q u a l  i n  l e n g t h  t o  t h e

r e p r e s e n t a t i v e  t o  h o ld  t h e  v a lu e s  o f  t h e  r e c r e a t e d  v a r i a b l e s  
5: f o r  e a c h  r o b o t
6: c a l c u l a t e  t h e  d i f f e r e n c e  be tw een  e a c h  v a r i a b l e  i n  t h e

te m p o ra ry  r e p r e s e n t a t i v e  a r r a y  and  t h e  t r u e  
r e p r e s e n t a t i v e

7: c r e a t e  a l i s t  o f  v a r i a b l e s  t h a t  a r e  o v e r  t h e  maximum
v a lu e s  s p e c i f i e d  by th e  r e p r e s e n t a t i v e  

8: c r e a t e  a l i s t  o f  v a r i a b l e s  t h a t  a r e  u n d e r  t h e  minimum
v a lu e s  s p e c i f i e d  by th e  r e p r e s e n t a t i v e  

9: f o r  e a c h  a c t i o n  i n  t h e  e f f e c t  m a t r ix
10: c a l c u l a t e  i f  v a r i a b l e s  i n  t h e  a c t i o n  w i l l  add  t o  t h e

o v e rv a lu e d  and u n d e rv a lu e d  v a r i a b l e s  
11: i f  t h e  a c t i o n  w i l l  a f f e c t  few er  o f  t h e  o v e r v a lu e d

v a r i a b l e s  and more o f  t h e  u n d e rv a lu e d  v a r i a b l e s  
th a n  th e  c u r r e n t  b e s t  c h o ic e  

12: s t o r e  t h e  a c t i o n
13: s t o r e  t h e  o v e rv a lu e d  v a r i a b l e s
14: s t o r e  t h e  u n d e rv a lu e d  v a r i a b l e s
15: e l s e  i f  t h e  a c t i o n  w i l l  a f f e c t  few er  o f  t h e

o v e rv a lu e d  v a r i a b l e s  and t h e  same number o f  
u n d e rv a lu e d  v a r i a b l e s  th a n  th e  c u r r e n t  b e s t  c h o ic e  

16: s t o r e  t h e  a c t i o n
17: s t o r e  t h e  o v e rv a lu e d  v a r i a b l e s
18: s t o r e  t h e  u n d e rv a lu e d  v a r i a b l e s
19: e l s e  i f  t h e  a c t i o n  w i l l  a f f e c t  t h e  same number o f  t h e

o v e rv a lu e d  v a r i a b l e s  and  more o f  t h e  u n d e r v a lu e d  
v a r i a b l e s  th a n  th e  c u r r e n t  b e s t  c h o ic e  

20: s t o r e  t h e  a c t i o n
21: s t o r e  t h e  o v e rv a lu e d  v a r i a b l e s
22: s t o r e  t h e  u n d e rv a lu e d  v a r i a b l e s
23: end
24: end
25: add  b e s t  a c t i o n  to  t h e  a c t i o n  l i s t
26: remove t h e  a c t i o n  from th e  e f f e c t  m a t r ix
27: add th e  a c t i o n  e f f e c t  t o  t h e  te m p o ra ry  r e p r e s e n t a t i v e

a r r a y
28: end
28: o u tp u t  a c t i o n s

Listing 5.4 Pseudo Code for Action Selection

Variables in the representative are declared to be less than or greater than a 

specified value. This code attempts to generate values close to, but on the desired 

side, of the specified value. On line 4, we declare a zero valued temporary array. 

This is used to store the values of the variables generated by the selected actions. In 

effect, this holds the value of the reconstructed representative. The code then loops

206



to find the best action for each available robot. This begins by finding the difference 

between the original and reconstructed representative on lines 6-8. The code then 

loops through each available action to asses its suitability on lines 9-24.

Desirability is measured in terms of how many variables are over or under 

valued. We consider a variable that is required to be less than a given amount to be 

overvalued once it exceeds that value. Similarly, a variable that is required to be 

more than a given amount is considered undervalued until it exceeds that value. An 

action is chosen to replace any existing action for that robot if it fulfils one of the 

following criteria: 1) it reduces the value of the overvalued variables, but adds value 

to the undervalued variables 2) it will not affect the value of undervalued variables, 

but reduces the value of the overvalued variables 3) it will not affect the value of 

overvalued variables, but adds value to the undervalued variables. These are listed 

in order of importance, with criteria (1) overriding criteria (2) and (3). This code 

only examines variables which do not yet meet the specification given by the 

representative. The effect of the action on the remaining variables is not considered.

Once all available actions have been tested, the most desirable is added to the 

action list on line 25, and removed from the list of actions available to the remaining 

robots on line 26. The effect of this action is added to the reconstructed 

representative on line 27, for use in selecting actions for subsequent robots.

A more rigorous search method could be employed to improve the selection of 

target points. However, the time available to perform these calculations is limited, 

and we find that this technique is adequate for our needs.

Using this method, the five targets which best allow us to satisfy the

representative are chosen. The segments corresponding to the targets chosen in this

207



example are shown in table 5.5. The total value given is the value of the 

reconstructed representative. The desired value for each variable is given at the head 

of each column.

Table 5.5 Selection of Segments for Target Generation

Segment
x8 > 3 x 9  < 2 X j o  > 1

Variables

X J 2  = 5 X 3 7  = 5 * 3 8  =  0 x4J< 2

G 1 0 1 1 1 0 1

K 1 1 0 1 1 0 1

C 1 0 0 1 1 0 0

A 1 0 0 1 1 0 0

B 1 0 1 1 1 0 0

Total 5 1 2 5 5 0 2

Finally, the low level control interprets the actions into robot commands. In 

our experiments it implements a positional controller to send each robot to one of 

the selected target points. Since all our robots are identical, we have implemented 

an algorithm to match robots to target positions which minimises the overall 

movement of the team.

5.4 Performance Evaluation

Our experiment consists of three parts. Firstly, we test the ability of our controller to 

construct representatives, by using it to generate targets in response to 1000 

randomly selected frames of recorded Mirosot data. We then measure the average 

values of the variables for each play, and check whether they conform to the original

208



representative in each case. This demonstrates whether the controller is capable of 

generating acceptable targets.

The second experiment demonstrates the ability of our software to control a 

team of Simurosot robots. For each of our generated strategies, we run one match 

against a traditional role-based team. At each frame our controller selects 

appropriate target points, and drives the simulated robots toward those points. 

Again, we analyse 1000 frames and check whether the positions of our robots in 

those frames conforms to the appropriate representative. This experiment 

investigates the affect of game dynamics on the ability of robots to reach target 

points.

The third experiment is very similar to the second; however, instead of using 

the Simurosot simulator, we run the tests on our Mirosot robots. This experiment 

investigates the application of our controller to real world conditions.

The results of these experiments are shown in table 5.6, table 5.7, and table 

5.8. For each experiment, table 5.6 shows the percentage of variables, and full 

frames, which satisfy the representative. In table 5.7 and table 5.8, we have analysed 

the data from each experiment, and measured the primitives as done in section 4.5. 

We match each primitive with the corresponding representative to asses how well 

we have reproduced the corresponding structures. Variables which fail to meet the 

specification of the representative are shown in bold.

209



IN 
AW

AY
 

IN 
H

O
M

E

Table 5.6 Results for Reproduced Representatives

Correctly reproduced frames (%) Correctly reproduced variables (%)
Representative

Controller Simurosot Mirosot Controller Simurosot Mirosot

1 70.9 28.4 22.8 94.4 75.6 80.2

2 87.0 21.3 20.7 97.1 75.7 73.2

3 75.2 28.7 12.8 95.8 77.7 73.3

4 87.8 41.7 20.2 97.8 83.7 81.5

5 83.4 19.8 7.7 97.1 74.5 70.6

1 99.0 80.2 71.4 99.8 94.1 89.2

2 100 92.9 41.8 100 98.4 76.6

3 100 96.4 71.3 100 99.3 93.4

4 100 83.6 84.7 100 97.3 94.9

5 100 41.4 23.6 100 89.4 79.8

210



IN 
HO

M
E 

pr
im

iti
ve

s
Table 5.7 Results for Defensive Play Primitives

m
A
s?

CN
V

OsK
A0
K

Controller 3.05 1.70 -

E
Simurosot 2.99 2.99 -

Mirosot 3.70 3.18 -

Controller 3.29 1.47 0.88

K
Simurosot 3.32 3.09 0.52

Mirosot 2.98 3.18 0.38

Controller 3.44 1.45 0.97

&
Simurosot 3.54 2.72 0.64

Mirosot 3.79 3.38 0.33

Controller 3.28 1.65 -

c3
K

Simurosot 3.19 2.56 -

Mirosot 3.08 3.43 -

«o
Controller 3.11 1.50 0.94

53
Simurosot 2.95 2.93 0.52

Mirosot 3.00 3.44 0.26

Variables

0
V II II II

C5

£
<N

£
00

v?

0.03 - 5 5 0 -

0.70 - 4.93 4.99 0 -

0.58 - 4.98 4.99 0 -

- - 5 5 0 -

- - 4.98 5 0 -

- - 4.96 5 0 -

- - 5 5 0 0.94

- - 4.94 5 0 1.62

- - 5 5 0 1.74

0.37 2.40 5 5 0 -

0.65 3.02 4.97 5 0 -

0.62 2.90 4.99 5 0 -

0.08 - 5 5 0 -

0.70 - 4.99 5 0 -

0.51 _ 4.98 5 0

X
41
 < 

2



Table 5.8 Results for Offensive Play Primitives

co
A
!?

CN
V©VX

V00
5?

V©,
&

Variables

<N
V

y?

CO
V

f?

■o-
V*N II

5?

<N
A

Controller - - 0.09 0.21 0.39 0.81 - 5 -
T—H
I ' Simurosot _ _ 0.12 0.25 0.45 0.87 _ 5
Pi

Mirosot - - 0.34 0.76 1.09 1.83 - 4.97 -

Controller - - 0 0.09 0.41 0.92 1.79 4.99 -

<N
£ Simurosot - - 0.04 0.30 0.51 1.08 2.02 5 -

E

CO

Mirosot - - 0.35 0.95 1.78 2.64 3.55 5 -
Q

Controller 4.68 0.78 0.08 0.11 0.25 0.63 _ 5 -

co
ft

£ Simurosot 4.94 0.52 0.02 0.09 0.38 0.80 - 5 -

E
Mirosot 4.30 0.71 0.10 0.37 0.80 2.16 - 5 -

Controller 4.57 0.50 0.12 0.23 0.41 0.85 1.39 5 -

T t -

£ Simurosot 4.82 0.34 0.17 0.34 0.50 1.10 1.90 5 _

E
Mirosot 4.82 0.58 0.14 0.32 0.64 1.04 2.10 5 -

Controller - - 0.07 0.27 0.67 1.29 2.16 5 2.18

£ Simurosot - - 0.01 0.09 0.39 1.19 2.63. 4.98 1.54
E

Mirosot - - 0.14 0.48 1.47 2.21 3.00 5 1.32

From table 5.6, we can see that our method of control has a high success ratio 

for reproducing variable structures across all experiments. In each test we reproduce 

at least 70% of the variables correctly. There is a much lower chance of reproducing 

the lull representative at each frame, with structures in as few as 7.7% of frames 

meeting the specification. However, given the high proportion of variables correctly 

replicated, it is evident that it will only be one or two variables which prevent the 

whole representative being achieved in each case.

212



We can also see that some representatives are easier to reproduce than others. 

In particular, the representatives for the IN AWAY are generated with a much higher 

success rate than those for the IN HOME plays. It may be that IN AWAY plays are 

less strictly specified in general, or that we have not measured some critical 

structures.

The performance of the controller for generating targets is very good. As 

shown in table 5.6, it correctly reproduces the representative in at least 70% of 

frames, with 100% success achieved in a large proportion of cases. This indicates 

that we can use the techniques covered in this thesis to measure and reproduce 

structures relating to complex environments. By generating concepts, measuring 

primitives, constructing representatives, and reproducing these using the type of 

control described in this chapter, we can generate instructions to control robots to 

perform in the ways we have measured to be desirable. It has been noticed, 

however, that dividing the pitch into sections using a Delaunay diagram does not 

always give a target point in every segment. It also limits the number of possible 

targets in each section. Generally, as can be seen from the results, the targets are 

satisfactory, but we could improve this further by using a more accurate method of 

generating target options.

Although the controller itself is successful in generating targets, there is a loss 

in performance when applying that control to the robots. The results for the 

Simurosot experiment, shown in table 5.6, indicate a drop of 0-20% in the rate of 

reproducing variables, and 7-51% in the rate of reproducing the full representative. 

This difference arises from the movement characteristics, in particular the time taken 

for a robot to move between two target points. If a robot has to move to a new,

213



distant, target point, it will take a finite time to cross the region in between. During 

the majority of this time, the robot will be in segments which do not meet the 

specification of the representative, hence causing the response of the system to 

deteriorate. The larger, and more frequent, the required change in robot position, the 

worse the response of the system will become. A related factor which is evident in 

the simulator is the possibility of collisions, which prevent robots reaching their 

targets. Ways of improving these results could include improving the motion control 

of the robot to give a faster, more accurate response, implementing better obstacle 

avoidance, using prediction to estimate target points in advance, and attempting to 

reduce large target changes in the control by taking into account current robot 

positions.

The performance of the system decreases again when we implement the control 

on our Mirosot robots. We measure a drop of 5-24% in the reproduction of 

variables, and 15-63% in the reproduction of representatives, when compared to the 

targets generated by the controller. The reasons for this are similar to those given 

above for the deterioration in performance of the Simurosot system. However, they 

are even more evident in the Mirosot system due to the introduction of real world 

factors, including noise in the vision system and radio communications, and more 

disruptive collisions. Similar issues cause the motion control of the Mirosot robots 

to be worse than that of the Simurosot robots, producing a longer transition between 

target points.

As we have shown, the failure to reproduce the full representative is most 

frequently due to misrepresenting a single variable. In table 5.7 we can see the most 

unachievable of those variables is xjo, which is under valued in every primitive.

214



This relates to the number of robots in the triangle with vertices corresponding to the 

home goal posts and the ball. This is a small area and, using the Delaunay diagram 

to dissect the pitch, does not always contain a target point, let alone more than one. 

By altering our target generation algorithm to give more target points in the smaller 

segments, we may be able to improve the chances of reproducing such variables. 

Furthermore, we can see in table 5.8 that variables X32  and X 37  are also occasionally 

inadequate. Our definition in this experiment requires all common variables to be 

reconstructed equal to the value given in the representative. Recall, however, when 

we defined common variables back in section 4.3.2, that we allowed a 5% variance 

between the measured value and the average. If we apply the same criteria here, 

then all the measurements for these variables fall within 5% of the target value, and 

can be marked as successful. When taking into account these allowances, the 

primitive measured for IN AWAY play is achieved in all but play 5. Even then, the 

primitive for play 5 is only out by one variable.

In our final piece of analysis, we relate the results back to our initial 

investigation into the spatial qualities of robot football. Recall we stated that the 

area controlled by a team of robots was linked to the position of the ball, and that 

attacking teams occupied more space than defending teams. This was the initial 

foundation on which this work was based. In figure 5.3 we show a typical section of 

a Mirosot match played using the controller developed in this chapter. Once again, it 

can be seen that there is a relationship between area controlled and ball position. 

Although we have not explicitly programmed this, it has emerged from the 

interaction of the variables in the concepts we have defined. Despite having not 

produced a fully functional football strategy, these results show that we have



managed to reproduce the spatial structures of football on a strategic level using our 

new approach of task abstraction and concept generation.

— Area 
--Ball

50 g

£  40

5000  5200 5400  5600 5800  6000 6200 6400 6600 6800  7000
Time (frames)

Figure 5.3 Comparison of Ball Position and Controlled Team Area 

5.5 An Architecture for Analysis and Control

We have now demonstrated an architecture for both analysis and control of complex 

systems. The block diagrams in figure 4.1 and figure 5.1 have been combined below 

in figure 5.4 to show how the complete architecture functions.

216



Variables

Concepts

Log files

PRIMITIVE 
^  GENERATION

System State
data

Robot
commands

' VARIABLE AfrD
PRIMITIVE I

CLASSIFICATION I

HUD GENERATION

CONTROL
ARCHITECTURE

I
Hypothesis

J
-► Representative

ABSTRACTION
ARCHITECTURE

Figure 5.4 An Architecture for Analysis and Control

In this diagram, the robots’ are modelled as being part of the system. Low 

level feedback, actuating, and sensing processes are all contained within the system 

block. The output from the system block is the data recorded at that instant by the 

available sensors. The inputs to the block are the set of low level commands for the 

robots to perform.

The data logger accumulates state data over time, and stores it in a log file. 

The log is then used as training data from which the abstraction architecture can 

generate hypotheses and representatives. In the work undertaken in this thesis, the 

logs have been used to perform learning off line. Whenever new data relating to a

217



football match has become available, it has been added to the log, and used to update 

the abstraction.

Although not attempted in this thesis, it may be possible to perform some of 

the abstraction on line. In this case, data accumulated during the match could be 

used on the fly to update the analysis, and tailor the abstracted tasks to the 

opposition. However, due to the processing time required by the algorithms 

implemented here, this is not currently feasible.

The abstraction architecture generates a list of representatives and hypotheses, 

from the log file, relating to the variables and concepts selected by the user. The 

representatives are then passed to the controller for implementation, whereas the 

hypotheses are used as a method for classification. The dotted line in figure 5.4 

indicates how the hypotheses can be fed back into the analysis to classify future 

primitives. This would be used in situations where primitives could not be easily 

classified: A small set of training data, and hand selected primitives are used to 

generate a hypothesis, which is then used as the classification criteria for all future 

primitives.

Given the representatives, variables, and state data, the control architecture 

then attempts to create robot commands which will result in the recreation of the 

representative. These commands are sent to the robots to perform.

5.5.1 Implementation Flexibility

We have implemented our architecture on a centralised, deliberative system. 

However, we suggest that, with minor modification, it would be applicable to both 

distributed and reactive systems.

218



In our implementation, the architecture runs as a centralised process, creating 

representatives based on all available data, and generating control commands in a 

coordinated fashion. Consider the alternative, in which the architecture is 

implemented on a single robot. Data is only available from the robot’s own sensors, 

of from communication with other robots. Consequently, concepts are chosen which 

only relate to the individual robot, and the derived representatives will describe how 

that robot should attempt to accomplish the tasks using only the data available to it. 

Furthermore, the analysis architecture can be used separately for concepts which 

require two or more robots to interact. In this case, data available to each robot is 

included as a variable, and the representative will highlight what data needs to be 

communicated between the two.

The control architecture generated in section 5.1 is deliberative. Given a 

representative, it models the possible actions, creates plans for the possible action 

sets, and then selects the best option. However, a reactive architecture could be 

implemented in its place. In this situation, the abstraction architecture becomes a 

tool for learning and defining behaviours. If sensor and actuator data is fed into the 

abstraction process as the learning data, and the concepts are the desired low level 

behaviours, then the representatives give the appropriate sensor-actuator mappings. 

Higher level behaviour concepts can then be generated as mappings on lower level 

behaviours in the usual way.

5.6 Summary

In this chapter we have introduced an architecture for generating emergent 

controllers by reconstructing representatives. Based on the results from our earlier

219



experiments investigating structures in robot football, we generate an abstracted 

strategy composed of high level positional plays. These plays are described in terms 

of low level structures, but, through their interaction, appropriate formational plays 

emerge.

The chapter began by introducing a control architecture for reconstructing 

representatives created using our abstraction architecture. These representatives 

describe relations on sets of variables, which describe how to recreate given 

concepts. From a set of representatives, the controller selects the most appropriate to 

recreate based on the state of the system. It generates actions to recreate each 

variable individually, then combines these to satisfy the relation described by the 

representative. Once a satisfactory set of actions has been identified, these are 

turned into commands and sent to the robots for execution.

In the following section we created the strategies to implement. This was 

achieved by selecting maximal hubs measured in the earlier chapters of this thesis to 

use as representatives. Although there are a number of issues preventing us from 

creating a complete Mirosot strategy at this point, we do succeed in developing a 

simple 2-play strategy, which focuses on the high level coordination of robot 

movement. Using our ideas on multilevel and multidimensional structure in 

complex systems, we combine representatives taken from the RoboCup data to build 

five distinct, simple, 2-level strategies.

To implement these strategies on our robotic platform, we generate an instance 

of our control architecture. Running once for every frame acquired by the camera, 

the controller uses the position of the ball as a switch to select between play 

representatives from within a strategy representative. It creates a model of the pitch,

220



consisting of the variable structures in the representative. These structures dissect 

the pitch into segments, which each describe a relation between the variable. Each 

segment is then converted into a number of target points, which can be used to 

recreate the representative. The controller selects the five targets which together 

most closely generate the representative, and drives the robots to the chosen 

positions.

We test the controller’s ability to generate targets which match the 

representatives, and its performance in both Simurosot and Mirosot matches. The 

results show that although the controller does generate suitable sets of target points, 

the relatively slow response of the robots in moving to these positions causes the 

Simurosot and Mirosot teams to under perform. We show that it is only a small 

fraction of the representative that is missing in these cases, and suggest that using 

enhanced robot motion controllers, and predictive algorithms will substantially 

improve the performance. Despite these failures, which are evident during 

individual frames, the primitive measured over the duration of the play can match 

the representative. Furthermore, we show how the emergent spatial ownership of 

the pitch correlates with the initial investigation carried out in chapter 3. This is the 

objective of the work, and shows that we can abstract ideas from a complex system, 

such as robot football, and by carefully reproducing them, create a controller 

enabling robots to perform in that environment.

Finally, we laid out the analysis and control architectures in a single block 

diagram, showing the relevant interfaces and feedback loops. Although having 

implemented the architectures on a centralised, deliberative system, we described 

how they could be modified to work on both distributed and reactive systems.

221



Chapter 6 

Conclusions

In this thesis we have demonstrated how task abstraction using concept generation 

can be used to analyse and control a team of robots in the complex football 

environment.

We began, in chapter 1, by introducing our research problem. In chapter 2, we 

reviewed some of the main multirobot architectures, and showed that none of them 

are applicable to problems where the task is not well defined. We further showed 

that robot football possesses all the qualities of our problem, and that current 

competition strategies are designed based on poorly defined tasks. Methods using 

multilevel mathematics were introduced in section 2.4 as our proposed approach to 

solving the problem.

In chapter 3, we showed that robot football involves problems which cannot be 

solved using the game tree search algorithms traditionally associated with AI game 

problems. We showed that useful spatial configurations exist, and can be identified, 

which can be used to represent the game. These configurations, and the 

corresponding areas controlled by each team, are dependant on the state of play, with 

some areas becoming more valuable at different times. We showed that a team in 

which players work together to control space is more successful than a group of 

greedy individuals, which are again more successful than a randomly moving group 

of players.

222



In chapter 4 we introduced an architecture for task abstraction, and showed that 

sets of good spatial relationships can be extracted to represent structural concepts, 

through examination of winning and loosing football teams. Sets of spatial 

representations common to winning and losing teams indicate general structures 

required for playing the game, whereas sets distinct to winning teams indicate 

structures which enable a team to play well. These structures form a multilevel 

representation of the game, with variables propagating between levels; logical 

operators relate hubs on one level to hubs on another. We showed how 

representations of different types of football were linked, and inferred that concepts 

are mathematical representations of epistemological forms.

Our hypothesis throughout this work has been that controllers can be designed, 

based on representations of measured concepts, and used to control real robots. This 

was proven in chapter 5, in which we described a control architecture for 

reconstructing representatives. We developed 5 strategies based on measurements 

taken in chapter 4, and used these to develop 5 controllers. Our experiments showed 

that these controllers performed satisfactorily when generating actions to reconstruct 

representatives in response to randomly selected frames of robot football data. 

When implemented as a strategy in a in a game situation, the response deteriorated 

due to the dynamics and low level control of the robots.

6.1 Answers to the Research Questions

In chapter 1 we posed the question “How can we control a team of robots to perform 

a weakly-defined cooperative task in a complex, dynamic, unpredictable and 

competitive environment?” Throughout this thesis we have strived to answer this



question by tackling, in turn, a number of subsidiary questions. These are listed 

below, along with the answers and reference to supporting evidence supplied by this 

thesis.

1. Can we identify and construct useful representations of complex, 

dynamic, unpredictable and competitive environments in ways which 

facilitate the use of robots?

We identified robot football as a suitable system possessing the required 

qualities in section 2.3. In sections 3.2, 3.4.1 and 3.4.2 we showed a 

relation between the areas controlled by robots during a football match and 

the state of play. These areas are directly linked to the spatial structures 

formed by the players, which were further investigated in chapter 4. All of 

these spatial representations can be described mathematically with relative 

ease, and so are ideal for describing a robotic task

2. Can we extract useful information on how to control a team of robots 

by recognising the occurrence of key structures in different teams 

operating in similar situations?

In chapter 4 we searched for the occurrence of our spatial representations 

in data obtained from the RoboCup Simulation League. Our analysis 

showed that certain structures appeared, on average, more, or less, 

frequently in the winning teams. These structures, we concluded, were 

important in defining whether a team strategy would be successful or 

unsuccessful in terms of goals scored. Other structures were found to 

occur in similar amounts in both winning and losing teams. These were

indicative of how to play the game in general.

224



3. Can we use the same techniques to extract information about tasks in 

the environment at varying levels of representation?

We proposed, in section 2.3, that a robot football strategy has a multilevel 

structure. In section 4.2, we extended this proposal to show how we could 

represent it in terms of a multilevel structure of plays, tactics and skills. 

Having demonstrated our method of task abstraction to generate concepts 

at the strategic level in section 4.4, we moved on to show how the same 

technique could also be used to abstract information about plays in sections 

4.5 and 4.6, and tactical events in section 4.7.

4. Can we identify relations between interacting levels of representation?

Using Venn diagrams relating to a carefully chosen set of play concepts, 

we hypothesised, in section 4.9, that there must be a relation between the 

variables prevalent in associated concepts, and that these relations would 

cross the boundaries between levels in the strategy structure. We 

supported this claim in section 4.9.2 by providing experimental results 

which showed that sets of variables could be found, which propagated 

through the multilevel structure. Moreover, we showed how hubs relating 

to concepts at a higher level in the structure could be generated by 

combining hubs from separate concepts at a lower level, using an OR- 

aggregation.

5. Can we build our own representation of a set of tasks of varying 

complexity by combining information from different levels of 

analysis?

225



In chapter 4 we generated representatives for a range of tactics, plays, and 

overall strategies. In section 4.2 we showed how the related concepts 

would fit together to form a multilevel strategy. Although not a complete 

representation of a football strategy, this structure of concepts did 

described many aspects of the game. If all the necessary concepts can be 

identified, the connecting structure understood, and suitable representatives 

found, then a complete system representation can be built incorporating 

many tasks at many levels.

6. By combining information in this way, can we create an emergent 

strategy for controlling robots in the environment?

Our ideas on structure presented in section 4.2 showed how strategies, 

which were considered as our highest level concept, could be seen as 

composed of plays, which exist at a lower level in the multilevel structure. 

From the results taken in chapter 4, we selected ten of the largest 

representatives for two complimentary plays. In section 5.2 we combined 

these representatives following the structure proposed in section 4.2 to 

generate five distinct strategies. The variables contained within these 

representatives related to spatial structures, which on their own do not hold 

any information on how to play football. The resulting strategies, 

therefore, emerged from the interaction of these variables.

7. Can a team of robots, built upon these principles, function effectively 

in the given environment?

In section 5.4 we tested the ability of a controller to recreate the structures,

in the abstracted strategies, at the appropriate stages in the game. We

226



showed that our controller reproduces the structures on 71%-100% of 

occasions, when responding to static sensor data. The results are inferior 

when observed in simulated (20%-96%) and real robots (8%-85%) due to 

the dynamics and lack of prediction. However, these failures are only 

evident in one or two variables, with the remainder of the representative 

being correctly recreated. It is significant to note that when we 

investigated the motion of the robots during these games, that the 

relationship between ball position and area controlled was very similar to 

that identified in our analysis of RoboCup matches conducted in section 

3.4.2. Although not a complete football playing strategy, our methods 

have produced appropriate spatial configurations at the strategic level.

8. Can these ideas be combined to form an architecture whereby a 

robotic system can learn to perform in a given environment?

In section 4.1 we described an architecture for abstracting tasks from a 

complex system. This was used throughout chapter 4 to find hubs relating 

to the various concepts. In section 5.1 we described an architecture for 

control based on reproducing representatives of abstracted concepts. The 

two architectures were combined in section 5.5 to describe a single 

architecture through which robots can learn to perform in a given 

environment. Using this architecture we have supervised a team of robots 

to abstract and learn their own set of structures for playing football. The 

resulting strategy emerges from the interactions of these structures.

Returning to our original question, we now have sufficient evidence to show 

that our method for generating a control strategy by concept generation satisfies the

227



problem. We showed, in section 2.3, that robot football is a complex, dynamic, 

unpredictable and competitive environment, and that methods for coordinating teams 

have been limited by a deficiency in the definition of the task. Although further 

work needs to be undertaken to demonstrate a complete football controller using this 

technique, the evidence given in this thesis supports the idea that the methods 

described are capable of satisfying the need. Furthermore, this work represents a 

completely new approach to multirobot control.

6.2 Contributions to Knowledge

During the course of this work we have made a number of innovations:

1. We have conducted a series of studies into the importance of spatial 

structures in competitive team games. The Space-Time Possession Game 

has been designed as an extension to the existing set of Voronoi Games, 

and presents a more advanced challenge. It provides a clearer AI challenge 

for studying spatial competition and cooperation (section 3.2.1), and has 

been used to highlight the benefits of cooperative, over non-cooperative, 

behaviour (section 3.2.2). We have also introduced new theories regarding 

the importance of geometric structures and spatial control in the game of 

robot football (section 3.2). These have been supported by experimental 

results (sections 3.4.1 and 3.4.2).

2. A new approach to concept generation has been introduced, using global

and local averages to classify variables (section 4.3.2). This has been used

to analyse both RoboCup (sections 4.4 - 4.7) and Mirosot (section 4.10.1)

robot football. We have demonstrated that the results from the analysis

228



enable combinations to be found that have considerably increased 

probability of occurring in desirable primitives (section 4.3.4), and have 

extended previous investigations into passing events (Iravani, 2005a) to 

analyse additional spatial configurations (section 4.7). The use of concept 

generation has been demonstrated at multiple levels within a multilevel 

structure. We have used the technique to generate concepts relating to 

strategies (section 4.4), plays (sections 4.5 and 4.6), and tactics (section 

4.7). We have also shown how different properties can be used to classify 

primitives in these cases (sections 4.5 and 4.6).

3. Using experimental evidence, we have shown how sets of variables from 

two separate concepts at one level in the multilevel structure combine to 

form hubs in a single concept at a higher level (section 4.9.2). This 

property is closely linked to the idea of emergence. We have also shown 

that relationships exist between similar concepts in related complex 

systems. This was shown by comparing play hubs from Mirosot and 

RoboCup matches (section 4.10.2). From this we have been able to 

hypothesise that concepts relate to theoretical forms, and that there are 

higher level concepts which contain both types of robot football.

4. This thesis has also shown how representatives extracted from simulation 

data can be used to form a functional robot controller (chapter 5). 

Representatives corresponding to the concepts measured in chapter 4 were 

combined in a multilevel structure, effectively recreating the decomposed 

strategy. By moving robots to recreate the structures in these 

representations, a formational strategy emerged. This controller has been

229



demonstrated, on both simulated and real robots, and its performance 

evaluated (section 5.4).

The contributions identified in points 1 and 2 have been published by the 

author in (Law, 2005; Law & Johnson, 2004,2006, 2008).

6.3 Further Work

The research described by this thesis generated many more questions and highlighted 

areas which require further development to show the full utility of the method. The 

list below describes some of these areas, and the work required, as well as indicating 

some possible avenues for future research.

Work to support the theory:

1. Demonstrate the method is capable of producing a full solution by 

generating controllers for simpler problems.

2. Verify the relations (AND & OR) found to exist between the variables 

constituting concepts at different levels of the structure, by analysing other 

systems or groups of concepts.

3. Attempt to reproduce a known robot football strategy. Choose variables 

and concepts to match those programmed into a traditional strategy, and 

asses the difference in response.

Modifications to the algorithms:

4. Automate the procedure for choosing and creating variables, concepts, and 

multilevel structures. These are currently done by hand, and are likely to

230



be hindering performance. Consequently, automate the whole process so it 

can be run as an unsupervised learning process.

5. Investigate further heuristics for use in the hub finding algorithms.

6. Add the ability to investigate temporal structures.

7. Add boundary limits to the method of variable classification by average.

Additional work to enhance the results:

8. Analyse more primitives relating to strategies and plays.

9. Improve the reliability and low level motion control of the robots.

10. Incorporate short term prediction to estimate the position of the ball and 

players in advance. This will improve the desired positioning of the robots 

using the current control architecture.

11. Create and test a RoboCup simulation strategy using the RoboCup 

representatives.

12. Analyse pitch space using weighted Voronoi diagrams to account for 

differences in player and ball speeds.

13. Add further levels of abstraction into the robot football controller.

14. Investigate the effect of using representatives generated from undesirable 

primitives.

15. Examine other winning conditions in the Space-Time Possession Game.

231



Additional proving to demonstrate the effectiveness of the method:

16. Test the architectures ability to cope with classes of problems of specific 

interest in the field of multirobot systems. These may include scheduling, 

task allocation and tightly coupled task control.

17. Implement the approach on a reactive system.

18. Implement the approach on a distributed system.

19. Further demonstrate the scalability of the approach.

These last two points are currently of great interest in the community. Our 

approach is suitable for implementation on a distributed system. In this instance, 

variables would be limited to the sensors or communications available to each robot. 

This would reduce the number of possible variables, and simplify the search for 

maximal hubs. Regarding the scalability of the architecture, we have already shown 

how this approach works with both 11 and 5 robots. We can perform the scaling 

before or after generating representatives. If we do it beforehand, for a known 

number of robots, then it is only necessaiy to change the number of variables used in 

the analysis. Problems may occur if the number of variables becomes too high and 

overly affects the complexity of the hub search. If we perform the scaling after 

generating representatives, then we will lose information by scaling down, or create 

redundancy by scaling up. In our robot football example, each of our Mirosot robots 

had to take on the role of two RoboCup agents. Obviously they could not perform 

both roles completely, so some functionality was lost. Conversely, if we used 

Mirosot representatives in the RoboCup simulator, there would be two agents 

performing each role.

232



6.4 Closing Statement

In this thesis we have investigated a new approach to generating emergent 

multirobot controllers using ideas taken from complexity science. Our focus has 

been on abstracting multidimensional task information at multiple levels to construct 

a representation of the mission, which can be converted into a controller for a 

multirobot team. This is an alternative to the typical multirobot control architectures 

currently being researched and offers an approach to the problem of task 

decomposition.

During the course of this work we have formalised an architecture for 

multirobot task abstraction and control based on these principles. It is appropriate 

for problems which are complex, weakly-defined, multilevel, dynamic, competitive, 

unpredictable, and which display emergent properties.

233



Appendix A 

Benchmarking the Performance of Real Robots

The performance of a robotic system depends on an abundance of factors, from the 

environment it is operating in, through the mechanical and electrical design of the 

robot itself, to the controller guiding its movements. The same robot will operate 

differently on rough terrain to on a smooth, hard laboratory floor. Whether a robot 

has legs, wheels, or tracks will influence its ability to move in these environments, as 

will its weight and size. Different sensors will cause the robot to view the 

environment in different ways, and change its approach to tackling each obstacle or 

task. The type of movement control programmed onto the robot, its decision making 

software, whether behavioural or deliberative, even the order of loops within the 

software will affect the way it behaves. This list is not exhaustive, and even if each 

factor only makes a small impact on the robot, the combination can have a drastic 

influence on how a robot operates. An example of this is the demonstrated by the 

motion of a small mobile robot in seemingly constant conditions (Nehmzow & 

Walker, 2003).

The ability of a robot to perform the same actions time and time again is its 

repeatability. Some robots, for example those used in car manufacture, have a high 

repeatability. They have precision encoders, and few joints, which enables them to 

be controlled very accurately time and again. Other robots, like those used in our 

experiments have a low repeatability. The system is highly sensitive to the

234



conditions, and the feedback control loop is not sufficient to reproduce exact 

movements time and again.

Despite our robot football system being very similar to others used around the 

world, we cannot expect it to perform in the same way, or for our experiments to be 

exactly reproduced. In order to enable a comparison, and to distinguish effects of 

our proposed controller from those of the platform, we must quantify the 

performance of the robots in a meaningful and repeatable way.

A set of tests were introduced by Johnson (1997) and Johnson et al.(1998) 

designed to benchmark the performance of a robot football system such as ours. 

They represent the most common tasks required of the robots, and are designed to 

enable direct comparison between similar robot football systems. These tests, and 

some of our own design, are used to benchmark the performance of our system prior 

to running our experiments.

A .l Static Vision Calibration

Measurement and sensing are both provided for by the vision system. Using the 

overhead camera and associated software, we can identify the position of the ball 

and all robots on the pitch. In the case of the home team (that being controlled by 

the strategy of interest), we can also identify their orientation. These positions and 

orientations are used as inputs to the control software, but are also recorded for later 

analysis and generation of results. For these purposes, it is required that the vision 

system has sufficient accuracy, and that this can be measured.

235



Although the vision system is kept as simple as possible, with unique colours 

and patterns used to identify each robot and the ball, problems in accuracy still arise 

due to spherical aberration and parallax error.

Since the camera is located over the centre of the pitch, it views robots around 

the perimeter from a slight angle. Because the identification patch for the robot is 

positioned on its top side, the vision system will assume the robot is in a different 

position as shown in figure A.I. This is the parallax error. The vision system 

overcomes this using an algorithm to calculate a robot’s actual position based on its 

height and distance from the centre of the pitch.

Camera

Measured Actual
position position

s

Parallax
s error s /

Robot

Figure A.l Parallax Error

The height of the robot, combined with its distance from the centre of the image, 

results in an error in apparent position.

Spherical aberration is caused by the curvature of the lens distorting the image, 

making it slightly circular. In effect giving the image of our rectangular pitch curved 

edges, and forcing us to use a slightly modified coordinate system. Our software

236



includes an algorithm to measure the amount of spherical aberration, and perform a 

coordinate transform, enabling us to record positions on a standard Cartesian grid.

Before running any robots, a calibration sequence is always performed. This 

includes setting up the aforementioned algorithms, as well as calculating and 

compensating for the cameras orientation, which may not be directly over the centre 

of the pitch. We are now ready to measure the static accuracy of the vision system.

A 40 cm grid is drawn out on the pitch and robots placed at each intersection 

by hand. The vision system is then used to measure the positions of the robots. 

Measurements are recorded over 100 frames (3.3 seconds at 30 frames per second) 

and averages taken to compensate for fluctuations due to noise. The average 

positions are then compared to the grid on the pitch. Figure A.2 shows the average 

measured positions and orientations.

10 50 90 130 170 210
x Position (cm)

Figure A.2 Static Vision Calibration Results

Measured positions and orientations of 30 robots.
237



The errors evident in figure A.2 are negligible, particularly when compared to 

the errors measured before compensating for the effects of spherical aberration and 

parallax. Further analysis of the errors shows no discemable pattern, and it is 

considered that no further calibration is necessary. Table A.l gives values for the 

most significant errors measured over all points.

Table A.1 Positional Errors Measured in the Vision System

x Direction 
(mm)

y Direction 
(mm)

Orientation
(radians)

Absolute maximum individual errors 
from 100 frames

9.000 9.001 0.157

Absolute maximum errors averaged 
by position over 100 frames

7.800 8.471 0.117

Average errors for all positions over 
100 frames

-2.699 -0.556 -0.028

During the calibration, the camera was recorded capturing 3.77 mm per pixel. 

Given the results above, this indicates average accuracy to within 1 pixel, and worst 

case accuracy to within 3 pixels, which is satisfactory. It should be noted that the 

centre of the robot can be measured to within the size of a pixel since we are 

calculating the geometric centre of the set of pixels relating to the identification 

patch. The small errors remaining after calibration may be due to inaccuracies in 

placing the robots or identification patches, quantisation of the image, lighting 

fluctuations, or defects in the camera lens.

A.2 Dynamic Vision Calibration

During testing it was noticed that robots would occasionally be recorded as behaving 

differently to the way they did on the pitch. On some occasions the recorded

238



position would not change for significant periods. On others it would fluctuate 

between a number of distinct positions. This was due to the vision system losing 

track of the identification patch in the image, and usually occurred when the robot 

was travelling with a high velocity. This section examines the effect of movement 

on the accuracy of the measurements, and describes further calibration procedures 

which were instigated to overcome this.

Our camera has a variable shutter speed to control the amount of light reaching 

the CCD sensor. If the shutter is open for a significant length of time and there is 

movement in the scene, then the image will blur. This creates one of two effects 

when considering our robot footballers.

In the first instance, the robot moves through the image a short distance. 

Colours on the identification patch are still detectable, but the patch layout is 

distorted (figure A.3(b)). If the patch can still be recognised, the vision system 

identifies the robot as being somewhere under the centre of its image. This is an 

approximation of the robot’s location, and is still useful, though inaccurate.

(a) Static: The position can (b) Slow moving: The patch (c) Fast moving: The colours
be measured accurately can be identified, though the are too faded to be identified

shape is distorted and the correctly, and the position
measurement will not be cannot be measured
accurate

Figure A.3 Effect of Motion on Patch Identification

2 3 9



In the second instance the robot travels a further distance. Light reflected from 

the identification patch is now spread over a much larger area, and so colours appear 

faint (figure A.3(c)). The colours may appear so faint that the vision system can no 

longer recognise them correctly, and the robot’s position is lost. If this happens, the 

vision system will search for another feature resembling the robot, or failing this, 

presume the robot is at its last known location.

The solution to these problems is to suitably increase the shutter speed. The 

downside is that the faster the shutter speed, the lower the amount of incident light 

falling on the CCD, and the dimmer the colours will appear. Once again, this can 

lead to a situation where identification patches cannot be distinguished. Better 

lighting can be used to illuminate the pitch, though this is not an option available in 

competition matches. The solution requires finding a shutter speed which gives a 

suitable balance of image brightness and capture duration.

There is no definitive shutter speed which will overcome these effects on all 

systems as cameras, illumination, and identification patches vary across robot 

football teams. We use an experimental iterative approach to find a suitable value 

for our setup.

We begin by calibrating the identification colours in the vision system under a 

low level of illumination. When we are confident that we can reliably distinguish 

the colours, we increase the illumination to standard levels and increase the shutter 

speed to bring the colours back into their calibrated regions. Next, a robot is driven 

at maximum velocity down the pitch and an image is recorded. If the robot is still 

sufficiently distorted, then the robots’ maximum velocities must be limited to

240



prevent them becoming lost in the image. If the robot is not distorted, then the 

shutter speed can be incrementally reduced to improve the colour definition.

The results of our calibration allowed us to track a robot moving at full 

velocity (as described in the following section) by reducing the exposure time from 

1/30 s to 1/50 s under an illumination of 1721 lux. Now we have sufficiently 

calibrated the vision system we are ready to begin testing of the robots themselves.

A.3 Velocity Testing

The first test of robot performance is a straightforward measurement of its maximum 

velocity in a straight line. Our robots are controlled by communicating a value for 

the speed of each wheel, in pulses, between -255 and 255. At this stage, the relation 

between this value and the actual velocity is unknown. In the experiment, the robot 

is programmed to move in a straight line down the pitch, with the maximum velocity 

increased for each run; the controller onboard the robot handles its acceleration. The 

velocity of the robot is subsequently measured by differentiating its position over the 

period at which it is no longer accelerating. Figure A.4 shows the results from this 

experiment.

241



2.5

T3

0.5
+ Velocity
 y = 0.0164 x + 0.0398
 y = 2.09x

250200100 150
Input Velocity (pulses per frame)

Figure A.4 Velocity Profile of a Mirosot Robot

The results show that our robot has a maximum velocity of just over 2 m s '1. 

At lower speeds there is a linear relation between the input value and output 

velocity. We calculate the relationship to be approximately,

output velovity (m s'1) = 0.0161 xinput (pulses) + 0.0392

These results are consistent with other robots of this type (Lepetic, Klancar, 

Skrjanc, Matko, & Potocnik, 2003). It is worth noting that the Faulhaber motors 

used in our robots are rated at an unloaded maximum of 8200 rpm. With a wheel 

diameter of 5.2 cm and a gear ratio of 8:1, the theoretical maximum velocity is 2.79 

m s'1. The difference may be due to the load, friction in the drive mechanism, wheel 

slip, or poor processor management. It has been suggested that this final issue may 

be a critical issue on our robots. Due to the way in which the onboard processor

242



handles the encoder feedback, it is possible for the processor to become overloaded 

at higher velocities, and therefore fail to handle commands in real time.

A.4 Acceleration Testing

The second performance test is based on experiments undertaken by Lepetic et al. 

(2003), and aims to find the acceleration limits of the robots. This test is performed 

in two halves: first the tangential acceleration is determined for motion in a straight 

line, followed by the centripetal acceleration for motion in a circle. The results from 

these two experiments combine to give us an estimate of the robot’s complete 

acceleration profile.

A.4.1 Tangential Acceleration

We begin by measuring a robot’s ability to accelerate along a straight path, and 

determining the linear relationship between input and output accelerations. It may 

be that maximum performance requires non-linear acceleration, but to simplify 

matters we shall focus only on linear acceleration.

The experiment is set up as follows: A robot is placed at a starting position 

and programmed to accelerate at a predefined rate along a straight line. The actual 

acceleration is measured through the vision system. We repeat the test, each time 

increasing the acceleration, and record the resulting profile. To measure the 

acceleration, we take the second differential of the robot’s position. The 

differentiation process exacerbates any position errors, and care is required in the 

analysis.

243



Figure A.5 shows the results of this experiment. Figure A.5(a) shows the 

linear acceleration of a robot in response to an increase in velocity of 3 pulses per 

frame, whilst figure A.5(b) shows the acceleration response of the robot over a range 

of inputs. We can see that the profile flattens out at around 2.8 m s'2 giving us the 

maximum acceleration of the robot, although the linear relationship begins to 

deteriorate at around 1.4 m s'2. The limits on these values may be due to an 

acceleration restriction set in the on board software, limitations in processing speed, 

or physical aspects of the robots drive train.

1 J l 1

i Velocity Profile
Aproximate Linear Acceleration

■+-!'" = 1.48 ms'2

4.5 5 5.5 6 
Time (s)

(a) Acceleration in response to an increase of 3 pulses 
per frame

3.5

Experimental Measurements 
y = 0.4563 x + 0.0279 
y = 2.8

Input Acceleration (pulses per frame) 

(b) Acceleration profile over a range of inputs

Figure A.5 Tangential Acceleration Characteristics of a Mirosot Robot
244



A.4.2 Centripetal Acceleration

We now focus on the ability of the robot to accelerate in a circle. Again, we are 

looking to determine the maximum acceleration that the robot is capable of 

achieving.

In this experiment the robot is driven around a circle with a radius of 0.37 m. 

During each test the robot is programmed to perform a constant tangential 

acceleration. Unlike in the previous experiment where both wheels were driven with 

the same velocity, in this test the wheels are driven with a preset ratio between left 

and right wheel velocities, to obtain the circular trajectory. By gradually increasing 

the tangential velocity, we can find the point at which the robot drifts from the 

desired trajectory. This is the point at which the centripetal acceleration is at its 

maximum for controllable robot performance.

Figure A.6 shows the results of this experiment. Figure A.6(a) shows the 

velocity profile of a robot in response to an increase in tangential velocity of 1 pulse 

per frame, whilst figure A.6(b) shows the maximum centripetal acceleration of the 

robot over a range of tangential acceleration inputs. As we increase the rate of 

tangential acceleration, the number of measurements we can take decreases, making 

our linear interpolation less accurate. This accounts for the larger spread of 

measurements toward the right of the graph.

245



Velocity Profile 

Acceleration = 0.678 radians s

6.55.54.53.5
Time (s)

(a) Acceleration in response to a velocity increase of 1 pulse 
per frame

B, 6 

5 

4  

3 

2

<L>

' C

so

t Maximum Centripetal Accelerations 
Average Value = 4.26

-r

-i ■ i ■

I f t I I !
0 0.5 1 1.5 2 2.5 3

Tangential Acceleration (pulses per second)
3.5

(b) Maximum acceleration measured over a range of inputs

Figure A.6 Centripetal Acceleration Characteristics of a Mirosot Robot

Our experiments conclude that the maximum centripetal acceleration our 

robots are capable of is approximately 4.26 m s'2. Above this, the robot’s 

acceleration becomes non-linear, and increases rapidly.

We would expect that as the tangential velocity increased the forces acting on 

the robot would cause it to slip, and the radius of the circle would increase, thus 

limiting the centripetal acceleration. However, in these experiments we observed the

246



opposite. As the centripetal velocity approached 4.26 m s'1 the robot began to spiral 

into the centre of the circle, as shown by the motion path plotted in figure A.7.

1.5

1.4

1.3

End1.2

1.1

Start1

0.9

0.8

0.7
0.4 0.5 0.6 0.7 0.8 0.9 1.11

x Position (m)

Figure A.7 Motion Trajectory under Centripetal Acceleration

Further investigation indicated this effect may be due to the movement of the 

centre of effort of the robot. Our robot has a square footprint with one driving wheel 

on two opposite sides as shown in figure A.8. To provide some stabilisation and 

ground clearance, the robot also has two casters, one on each of the remaining sides. 

The casters and wheels are set so that during normal operation there will be three 

points of contact with the playing surface.

247



Figure A.8 Mirosot Robot Wheelbase

If the robot is stationary, the centre of effort will be somewhere above the axel, 

and the robot should theoretically balance on the two driving wheels. This is an 

unstable position, and so the robot will usually tip so that one of its castors is also in 

contact with the floor. If the robot moves in a straight line perpendicular to its axel, 

the centre of effort will move behind the axel as shown in figure A.9(a). When this 

happens, the robot will tip back and rest on its rear castor, and will have three points 

of contact with the floor as shown. If the robot is turning, centripetal forces come 

into play, and the centre of effort is moved laterally as well as transversely. Whilst it 

remains within the triangle described by the driving wheels and castor the robot will 

continue to function normally. However, if the centripetal forces increase, there is a 

chance that the centre of effort will move outside of this triangle as shown in figure 

A.9(b). If this happens, the inside driving wheel will no longer form part of the base 

triangle. Instead the robot will sit on the triangle formed by the external driving 

wheel, rear castor, and the comer of the chassis. Since only one driving wheel is 

now in contact the ground, the robot will begin to spin.

248



1! | / 
✓ m l

/

✓ ^ Gr o u n d c o nt a ct 7  
'   \  t ri a n gl e

\
N
S

Ia Gr o u n d c o nt a ct  
-  ..t ri a n gl e

C e nt r e o f f eff ort

N
|||:? I  / •A' 4

C e nt r e o f eff o rt
I

Di r e cti o n o f m oti o n\
Di r e cti o n o f m oti o n

( a) U n d e r sl o w li n e a r m oti o n t h e 
r o b ot is st a bl e, r esti n g o n b ot h  
d ri vi n g w h e els

( b) U n d e r f ast a n g ul a r m oti o n t h e 
r o b ot c a n l o s e c o nt a ct b et w e e n its  
i nsi d e w h e el a n d t h e g r o u n d

Fi g ur e A. 9 Eff e ct o f M oti o n o n C e ntr e o f Eff ort

A. 4. 3 A c c el e r ati o n C o nst r ai nts

W e h a v e n o w d et er mi n e d t h e pr a cti c al v el o cit y a n d a c c el er ati o n li mits o f o ur r o b ots. 

W e pr es u m e t h at o ur r o b ots ar e c a p a bl e t o p erf or m t h e s a m e m oti o ns i n b ot h 

f or w ar d a n d r e v ers e ori e nt ati o ns. T o r e m ai n u n d er c o ntr ol w e m u st e ns ur e t h at all 

pr o p os e d m o v e m e nt r e m ai ns wit hi n t h es e c o nstr ai nts. F oll o wi n g t h e w or k b y 

L e p eti c et al. ( 2 0 0 3) w e c a n esti m at e a n a c c el er ati o n c h ar a ct eristi c as s h o w n i n 

fi g ur e A. 1 0. O ur li mits ar e cl os e t o t h os e m e as ur e d b y L e p eti c et al. f or t h eir 

Mir os ot s yst e m.

2 4 9



I
Id

S - i

J h13o
%

8
60

2.8

2

1

0

1

2

- 2.8
4.26 52 30 11-5 -4.26 3 ■2

2Radial Acceleration (m s' )

Figure A. 10 Acceleration Limits of a Mirosot Robot

Acceleration and velocity limits are imposed within our strategy software to 

prevent forcing a robot to make an uncontrollable move.

A.5 Motion Accuracy

Now we have determined some of the limiting characteristics of the robot, we can 

move on to investigating its higher level movement and tactical abilities. This 

section describes the first benchmark suggested by Johnson et al. (1998), and 

examines the capacity to move between two points.

We have inherited a number of movement and shooting algorithms from our

colleagues at Warwick and Plymouth. Rather than designing our own controllers

from scratch, we will test the existing algorithms and select the best performing ones

for use in our generated strategies. The algorithms described as GoTo functions

convey the robot from a starting position ‘A’ to a target position ‘B’. Some, but not

all, have the capacity to control the angle or velocity, or both, of the robot as it

250



approaches the target point. We have little information on these algorithms, but do 

know they are mainly P, PD, or PID type controllers, varying the angle and linear 

velocity of the robot with respect to the target point. Some teams use trajectory 

follower functions for guiding their robots, which produce good results, although 

they are more difficult to design, and have higher computational requirements 

(Klancar, Matko, & Blazic, 2005).

This experiment will test the ability of each function to control the movement 

between a designated start and end point, 150 cm apart. We will measure the path of 

the robot and the duration of its movement. To enable a direct comparison between 

the 7 available GoTo functions, we will allow the robot to finish its movement at any 

angle, with zero velocity. To allow for small errors, we will assume an acceptable 

end position is anywhere within 2.5 cm of the designated target point. The robot is 

deemed to have finished its movement at the time it enters the target area, provided 

it does not subsequently leave the area. The robot will begin each run at 90° to the 

target point.

Figure A. 11 shows representative routes taken by the robot for each GoTo 

algorithm. The duration for each of these paths is shown in table A.2.

251



y 
Po

sit
ion

 
(c

m
)

Controller

 GoTo 1
-  — GoTo 2 
- - G o T o 3

- -  GoTo 4
GoTo 5 
GoTo 6 
GoTo 7

-20

-40
80 100 120 140 160 180 200

x Position (cm)

Figure A. 11 GoTo Algorithm Trajectory Results 

Typical paths taken by 7 different motion controllers inherited from the Universities 

of Plymouth and Warwick. Repeated tests of each algorithm show similar

responses.

Table A.2 Measured GoTo Algorithm Durations

Algorithm Time taken to reach 
destination (s)

GoTo 1 2.97

GoTo 2 3.33

GoTo 3 4.43

GoTo 4 4.17

GoTo 5 4.90

GoTo 6 7.50

GoTo 7 22.63

252



Of the 7 algorithms, only 1-3 give suitable trajectories. The other paths 

overshoot the target point, fail to settle, or take exaggerated routes. This is mainly 

due to the poorly calibrated gain parameters in those algorithms. For our 

experiments we desire fast, precise movement. From the results shown above, we 

select GoTo algorithm 1 for its trajectory, speed and accuracy.

Now we have selected our GoTo algorithm of choice, we need to measure its 

performance over a range of distances. We do this by repeating the above procedure 

50 times for each of 10 distances, and recording the time taken to reach the target 

circle. The results are shown in figure A. 12.

30

Time Taken To 5 5
Reach Destination (s)

152.4
12, i l 7 1 6  

106 68 91.44
76.2 

60.96 
45.72 

30.48 15 24
Distance To Target (cm)

Figure A. 12 GoTo Algorithm Speed Performance

2 5 3



We can now estimate how long it will take for a robot to move between two 

points on an unobstructed path, from stationary.

A.6 Striking a Static Ball

The second benchmark is a measure of how often a robot can strike a stationary ball 

through a target point. This will be required for a penalty situation, free balls, goal 

kicks and kick-offs. The experiment is divided into two halves, and is set up as 

shown in figure A.13. In the first part of the experiment the ball is placed on the 

penalty spot, and the robot is placed at 30° intervals facing the ball at a distance of 

36.6 cm as shown. In the second part of the experiment the robot and ball are placed 

in line with the centre of the goal, with the ball placed at distances of 16.5 cm, 56.5 

cm and 176.5 cm from the goal. In each instance the robot is placed 20 cm behind 

the ball. Both experiments are repeated, with the target at the centre of the goal.

/

O '
ro/

JJ

36.6 cm

38.1 cm

20 cm
p6 = 36.5 cm 
p7 = 76.5 cm 
p8 = 196.5 cm

(a) Varying strike angle (b) Varying strike distance

Figure A.13 Experimental Setup for Striking a Static Ball

From our catalogue of inherited functions we only have one controller

appropriate for this task. Using this algorithm we run the experiments described

above, and measure the point at which the ball crosses the front of the goal mouth, or

the point at which it hits the side wall if it misses. The distribution of shots taken
254



from each of the 8 starting positions is given in figure A.14. Table A.3 gives the 

number of shots from each position, the number of shots successfully entering the 

goal, and the value as a percentage. Failed attempts indicate either the ball not 

reaching the goal line, or the robot missing the ball completely.

Pi

I
<D

15

<D
&<L>Vh
Ph

15

I  10 

I  5
P-,

0
28

86 127
y Position (cm)

P5

86 127
y Position (cm)

..
Miss

)
Goal Miss

28 86 i: 
y Position (<

P3

11 183 
;m)

? „
11

) 1

28 86 127 
y Position (cm)

183

P?

183 28

86 127
y Position (cm)

86 127
y Position (cm)

86 127
y Position (cm)

P8

86 127
y Position (cm)

1 I 1 1
15

>> i i i i

:

S 10

2 5 
0

i i

183

Figure A.14 Results for Striking a Static Ball 

Measurements corresponding to a y position between 86 cm and 127 cm indicate a

goal scored.

255



Table A.3 Results for Stationary Striker Performance

Starting position Number of shots Goals scored Goals scored (%)

Pi 35 32 91

P2 49 35 71

P3 42 29 69

P4 52 30 58

P5 58 23 40

P6 34 34 100

P7 35 33 94

P8 37 23 62

The results indicate there is a better chance of success if the robot and ball are 

in line with the target, and if there is only a short distance to cover. If the robot has 

to travel through a large angle, or over a large distance, the chances of success are 

much smaller. This is as we would expect. However, looking at the distribution of 

shots given in figure A.14, we can see that almost all are on target. It would appear 

that if the robot successfully approaches the ball, then there is a high chance of 

success. Most misses occur as a result of the robot failing to strike the ball 

altogether.

A.7 Striking a Moving Ball

The third benchmark investigates the ability to strike a moving ball toward a target 

point. This is important in shooting and passing situations. From the three striking 

algorithms available to us, only one seems to perform with any success. This will be 

used in the following test, which is set up as follows:

25 6



A robot is placed at a distance of 72 cm facing the target point, which lies at 

the centre of the goal mouth, as shown in figure A. 15. The ball is rolled in front of 

the robot, which attempts to strike the ball at the target. We measure the motion of 

the ball and robot and calculate two sets of results. The first is the point at which the 

ball crosses the goal mouth, and is shown as a distribution in figure A. 16. The 

second is a measure of the ball’s velocity before being struck toward the target. This 

is split into velocity distributions for ball hits and misses, and is shown in figure

A. 17.

Robot □
mf

Ball
72 cm

v m  s-i

Figure A. 15 Experimental Setup for Striking a Moving Ball

257



Ball x Position Crossing Goal Line (cm)

Figure A. 16 Results for Striking a Moving Ball I

The measured position of the ball as it crosses the ball line, on the 64 occasions

when the robot successfully struck the ball.

I
0.4 0.6

w m  Hits 
I 1 Misses

n
0.8 1

- I sBall Velocity (m s' )

Figure A. 17 Results for Striking a Moving Ball II

Shows the velocity of the ball at the impact point for all 149 attempts.

258



We conducted 149 tests. The robot hit the ball on 64 of these, striking it into 

the goal on 55. We can see from figure a. 17 that for ball velocities over 0.2 m s'1 the 

robot is more likely to miss than hit the ball. Below this velocity the robot is more 

successful in its task. However, the results for velocities under 0.1 m s'1 are 

misleading, since they represent attempts where the robot stopped the ball by 

blocking its path, before taking its shot. This occurred when the robot reached the 

intercept point before the ball.

Our robot controller contains a filter to predict the motion of the ball and allow 

it to intercept it. However, the filter coefficients are only valid for a small range of 

ball velocities. This limits the robots performance, and enables it to only correctly 

intercept the ball on a limited number of occasions.

At the ball velocities tested above, the robot only has a success rate of 43% for 

hitting the ball, and only 37% for hitting the ball in a cone of 0.55 radians. Consider 

a robot attempting to pass the ball to a waiting robot. If the passer is required to pass 

the ball within a cone of 0.55 radians to a receiver, who is lined up in front of the 

goal, then the chance of successfully scoring by this tactic is only 13.7%, as two 

successive hits are required. Given that the accuracy of the direction of hit may need 

to be narrower, the chance of much faster ball speeds, and interference of other 

players, the likelihood of being able to perform one pass, let alone a string of passes, 

is extremely small.

A.8 Ball Passing in a Triangle

The final benchmark suggested by Johnson et al. (1998) is that of continually

passing a ball in a triangle between three robots. This measures the ability of the

259



robots to perform controlled passing. Given our robots poor success rate in simply 

striking a moving ball, we have omitted this experiment from our tests.

A.9 Summary

We have collated a set of benchmark tests by which we can measure and compare 

robot football systems. We have described the methods, useful measurements, and 

the results for our particular system. In terms of our the experiments conducted in 

this thesis, the information is necessary for differentiating between problems 

occurring due to the existing low level robot control, and problems in our new 

strategic controllers.

The significance of this work to the wider field of robotics is in its use as a 

comparative set of measurements. Using these tests we can evaluate the 

performance of any robot football team at a number of levels, not just at the 

overlying goal-scoring level focused on in competitions. By using these methods, 

we can investigate what makes teams different in terms of performance.

Until recently the factor which seemed to best define a teams overall 

performance was the ability of its vision system. We can now measure this above 

the level of frame rates and resolution, which typically dominate these discussions, 

and instead focus on the accuracy of the camera combined with the software and 

lighting. By using the methods described here to compare teams in more detail, we 

can identify the best aspects of different teams. These can then be collated to 

construct the best overall system.

260



References

Ahn, H.-K., Cheng, S.-W., Cheong, O., Golin, M., & Oostrum, R. (2001). 
Competitive facility location along a highway. In Proc. 7th Annual International 
Computing and Combinatorics Conference, Guilin, China, pp.237-246.

Alami, R. (2005). Multi-robot cooperation: architectures and paradigms. In Proc. 
Journees Nationales de la Recherche en Robotique JNRR '05, Guidel, France.

Alami, R., & Botelho, S. C. (2002). Plan-based multi-robot cooperation. Lecture 
Notes In Computer Science; Revised Papers from the International Seminar on 
Advances in Plan-Based Control o f Robotic Agents, vol 2466, pp. 1-20.

Alami, R., Fleury, S., Herrb, M., Ingrand, F., & Robert, F. (1998). Multi-robot 
cooperation in the MARTHA project IEEE Robotics & Automation Magazine, vol 
5(1), pp.36-47.
Alvaro, C., Freedman, H. G., & Gonzalo, M. (2006). How Spiritual Machine works. 
In Proc. FIRA RoboWorld Congress, Dortmund, Germany, pp. 175-178.

Arkin, R. (1987). Motor schema based navigation for a mobile robot: an approach to 
programming by behavior. In Proc. IEEE International Conference on Robotics and 
Automation, pp.264-271.

Arkin, R. C. (1990). Integrating behavioral, perceptual, and world knowledge in 
reactive navigation. Robotics and Autonomous Systems, vol 6, pp. 105-122.

Arkin, R. C., Endo, Y., Lee, B., MacKenzie, D., & Martinson, E. (2003). 
Multistrategy learning methods for multirobot systems. Mobile Robot Laboratory, 
College of Computing, Georgia Tech, Atlanta, GA. Unpublished.

Asama, H., Matsumoto, A., & Ishida, Y. (1989). Design of an autonomous and 
distributed robot system: ACTRESS. In Proc. IEEE/RSJInternational Workshop on 
Intelligent Robots and Systems, Tsukuba, Japan, pp.283-290.

Asama, H., Ozaki, K., Ishida, Y., Habib, M. K., Matsumoto, A., & Endo, I. (1991). 
Negotiation between multiple mobile robots and an environment manager. In Proc. 
Fifth International Conference on Advanced Robotics ICAR '91, Pisa, Italy, pp.533- 
538.

Asama, H., Ozaki, K., Ishida, Y., Yokota, K., Matsumoto, A., Kaetsu, H., et al. 
(1994). Collaborative team organization using communication in a decentralized 
robotic system. In Proc. IEEE/RSJ/GI International Conference on Intelligent 
Robots and Systems IROS '94, Munich, Germany, pp.816-823.

Asama, H., Ozaki, K., Itakura, H., Matsumoto, A., Ishida, Y., & Endo, I. (1991). 
Collision avoidance among multiple mobile robots based on rules and 
communication. In Proc. IEEE/RSJ International Workshop on Intelligent Robots 
and Systems IROS '91, Osaka, Japan, pp. 1215-1220.

Atkin, R. H. (1974). Mathematical Structures in Human Affairs. London:
Heinemann Educational Books.

261



Atkin, R. H., Hartston, W. R., & Witten, I. H. (1976). Fred CHAMP, positional- 
chess analyst. International Journal o f Man-Machine Studies, vol 8, pp.517-529.

Aun, L. H., Lin, H. L., Quiang, C. Z., & Seng, C. F. (2005). ARICC 3rd generation 
robots for Mirosot. In Proc. FIRA RoboWorld Congress, Singapore.

Balch, T. (1999). Reward and diversity in multirobot foraging. In Proc. 16th 
International Joint Conference on Artificial Intelligence IJCAI '99 Workshop: 
Learning About, From and With other Agents, Stockholm, Sweden.

Barfoot, T. D., & D’Eleuterio, G. M. T. (2001). Multiagent coordination by 
stochastic cellular automata. In Proc. Seventeenth International Joint Conference on 
Artificial Intelligence, Seattle, Washington.

Barnes, D. P., Ghanea-Hercock, R. A., Aylett, R. S., & Coddington, A. (1997).
Many hands make light work? An investigation into behaviourally controlled co­
operant autonomous mobile robots. In Proc. 1st International Conference on 
Autonomous Agents, Marina del Rey, pp.413-420.

Behring, C., Bracho, M., Castro, M., & Moreno, J. A. (2000). An algorithm for robot 
path planning with cellular automata. In Proc. Fourth International Conference on 
Cellular Automata for Research and Industry ACRI2000 in Theoretical and 
Practical Issues on Cellular Automata, pp. 11-19.

Botelho, S. C., & Alami, R. (1999). M+: a scheme for multi-robot cooperation 
through negotiated task allocation and achievement. In Proc. IEEE International 
Conference on Robotics and Automation ICRA '99, Detroit, Michigan, pp. 1234- 
1239.

Botelho, S. C., & Alami, R. (2000). Robots that cooperatively enhance their plans. In 
Proc. 5th International Symposium on Distributed Autonomous Robotic Systems 
DARS, Knoxville, Tennessee, pp.55-68.

Bouzy, B., & Cazenave, T. (2001). Computer Go: an Al-oriented survey. Artificial 
Intelligence Journal, vol 123, pp.39-103.

Bouzy, B., & Chaslot, G. (2006). Monte-carlo Go reinforcement learning 
experiments. In Proc. IEEE 2006 Symposium on Computational Intelligence in 
Games, Reno, USA, pp. 187-194.

Bowling, M., Browning, B., Chang, A., & Veloso, M. (2004). Plays as team plans 
for coordination and adaptation. RoboCup 2003: Robot Soccer World Cup VII,
LNCS, vol 3020, pp.686-693.

Bowling, M., Browning, B., & Veloso, M. (2004). Plays as effective multiagent 
plans enabling opponent-adaptive play selection. In Proc. International Conference 
on Automated Planning and Scheduling ICAPS '04, Whistler, Canada, pp.376-383.

Bracho, M., Castro, M., & Moreno, J. A. (2001). A robotic architecture for 
RoboCup. In Proc. Conferencia de la Asociacion Espahola para la Inteligencia 
Artificial, CAEPIA-TTIA.

Braitenberg, V. (1984). Vehicles : Experiments in Synthetic Psychology. Cambridge, 
Mass.: MIT Press.

Brooks, R. A. (1986). A robust layered control system for a mobile robot. IEEE 
Journal o f Robotics and Automation, vol 2(1), pp. 14-23.

262



Brooks, R. A. (1989). A robot that walks; emergent behaviors from a carefully 
evolved network. In Proc. IEEE International Conference on Robotics and 
Automation, Scottsdale, AZ, pp.292-296.

Brooks, R. A. (1990). Elephants don't play chess. Robotics and Autonomous Systems 
6 , pp.3-15.
Brooks, R. A., Maes, P., Mataric, M. J., & More, G. (1990). Lunar base construction 
robots. In Proc. IEEE International Workshop on Intelligent Robots and Systems 
IROS '90, Tsuchiura, Japan, pp.389-392.

Buason, G., & Ziemke, T. (2003). Competitive co-evolution of predator and prey 
sensory-motor systems Applications o f Evolutionary Computing, LNCS, vol 2611, 
pp.605-615.

Buckland, R., & Johnson, J. (1999). The Arthur C. Clarke mission: self-organising 
imaging robot explorers in the oceans of Europa. In Proc. 50th International 
Astronomical Congress, Amsterdam, Netherlands.

Buro, M. (1993). Methods for the evaluation o f game positions using examples, 
Ph.D. thesis, University of Paderbom, Germany.

Caloud, P., Choi, W., Latombe, J.-C., Le Pape, C., & Yim, M. (1990). Indoor 
automation with many mobile robots. In Proc. IEEE International Workshop on 
Intelligent Robots and Systems IROS '90, pp.67-72.

Campbell, M., Hoane, A. J., & Hsu, F.-h. (2002). Deep Blue. Artificial Intelligence, 
vol 134(1-2), pp.57-83.
Cao, Y. U., Fukunaga, A. S., & Kahng, A. (1997). Cooperative mobile robotics: 
antecedents and directions. Autonomous Robots, vol 4(1), pp.7-27.

Chaimowicz, L., Sugar, T., Kumar, V., & Campos, M. F. M. (2001). An architecture 
for tightly coupled multi-robot cooperation. In Proc. IEEE International Conference 
on Robotics and Automation ICRA ’01, pp.2992-2997 vol.2993.

Cheong, O., Har-Peled, S., Linial, N., & Matousek, J. (2002). The one-round 
Voronoi game. In Proc. 18th Annual ACM Symposium on Computational Geometry, 
Barcelona, Spain, pp.97-101.

Churchill, J., Cant, R., & Al-Dabass, D. (2001). A new computational approach to 
the game of Go. In Proc. Second International Conference on Intelligent Games and 
Simulation, London, pp.81-86.

de la Rosa, J. L., Oiler, A., Vehi, J., & Puyol, J. (1996). Soccer team based on agent- 
oriented programming. In Proc. IEEE Micro-Robot World Cup Soccer Tournament 
MIROSOT’96, Korea.

Dias, M. B. (2004). TraderBots: a new paradigm for robust and efficient multirobot 
coordination in dynamic environments. Ph.D. dissertation, The Robotics Institute, 
Carnegie Mellon Univ., Pittsburgh, Pennsylvania.

Dias, M. B., Zinck, M. B., Zlot, R. M., & Stentz, A. (2004). Robust multirobot 
coordination in dynamic environments. In Proc. IEEE International Conference on 
Robotics and Automation ICRA '04, Barcelona, Spain, pp.3435-3442.

Dias, M. B., Zlot, R. M., Zinck, M. B., Gonzalez, J. P., & Stentz, A. (2004). A 
versatile implementation o f the TraderBots approach for multirobot coordination.

263



Robotics Institute, Carnegie Mellon University, Pittsburgh, Pennsylvania. 
Unpublished.

Emery, R., Sikorski, K., & Balch, T. (2002). Protocols for collaboration, 
coordination and dynamic role assignment in a robot team. In Proc. IEEE 
International Conference on Robotics and Automation ICRA '02, Washington DC, 
pp.3008-3015.

Fassi, H., Scarpettini, F., & Santos, J. (2003). Development of the UBASOT 
simulation team. In Proc. FIRA Robot World Congress, Vienna, Austria.

Fekete, S. P., & Meijer, H. (2003). The one-round Voronoi game replayed. In Proc. 
8th International Workshop on Algorithms and Data Structures, pp.150-161.

FIRA. (2002). FIRA Middle League MiroSot game rules. [Internet]. Available at: 
http://www.fira.net/soccer/mirosot/MiroSot.ndf [accessed, November 2002].

Floreano, D., & Nolfi, S. (1997). God Save the red Queen! Competition in co- 
evolutionary robotics. In Proc. Second Annual Conference on Genetic Programming, 
San Francisco, CA, pp.398-406.

Flynn, A. M. (1987). Gnat robots (and how they will change robotics). In Proc. IEEE 
Micro Robots and Teleoperators Workshop: An investigation o f micromechanical 
structures, actuators and sensors, Hyannis, MA.
Gamier, S., Jost, C., Jeanson, R., Gautrais, J., Asadpour, M., Caprari, G., et al. 
(2005). Collective decision-making by a group of cockroach-like robots. In Proc. 
IEEE Swarm Intelligence Symposium SIS '05, pp.233-240.

Gasser, R. (1996). Solving nine men's morris. Games o f No Chance, MSRI 
Publications, vol 29, pp. 101-113.
Gat, E. (1992). Integrating planning and reacting in a heterogeneous asynchronous 
architecture for controlling real-world mobile robots. In Proc. Tenth National 
Conference on Artificial Intelligence AAAI, San Jose, California, pp.809-815.

Gerkey, B. P., & Mataric, M. J. (2001). Principled communication for dynamic 
multi-robot task allocation. Experimental Robotics VII, LNCIS, vol 271, pp.353-362.

Gerkey, B. P., & Mataric, M. J. (2002). Sold!: auction methods for multirobot 
coordination. IEEE Transactions on Robotics and Automation, vol 18(5), pp.758- 
768.

Gerkey, B. P., & Mataric, M. J. (2003). Multi-robot task allocation: analyzing the 
complexity and optimality of key architectures. In Proc. IEEE International 
Conference on Robotics and Automation ICRA '03, pp.3 862-3 868.

Gerkey, B. P., & Mataric, M. J. (2004). On role allocation in RoboCup. RoboCup 
2003: Robot Soccer World Cup VII, LNCS, vol 3020, pp.43-53.

Goldstein, J. (1999). Emergence as a constmct: history and issues. Emergence, vol 
l(l),pp.49-72.

Gravot, F., & Alami, R. (2001). An extension of the plan-merging paradigm for 
multi-robot coordination. In Proc. IEEE International Conference on Robotics and 
Automation ICRA '01, Seoul, Korea, pp.2929-2934.

264

http://www.fira.net/soccer/mirosot/MiroSot.ndf


Hackwood, S., & Wang, J. (1988). The engineering of cellular robotic systems. In 
Proc. IEEE International Symposium on Intelligent Control, Arlington, VA, pp.70- 
75.
Han, K.-H., Lee, K.-H., Moon, C.-K., Lee, H.-B., & Kim, J.-H. (2002). Robot soccer 
system of SOTY 5 for Middle League MiroSot. In Proc. FIRA Robot World 
Congress, Seoul, Korea.

Hewitt, C., Bishop, P., & Steiger, R. (1973). A universal modular actor formalism 
for Artificial Intelligence. In Proc. IJCAI, Palo Alto, California, pp.235-245.

Hsu, F. H., Anantharaman, T., Campbell, M., & Nowatzyk, A. (1990). A 
grandmaster chess machine. Scientific American, vol 263(4), pp.44-50.

Hu, H., Kostiadis, K., & Liu, Z. (1999). Coordination and learning in a team of 
mobile robots. In Proc. IASTED Robotics and Automation Conference, Santa 
Barbara, CA.

Huntsberger, T., Piijanian, P., & Schenker, P. S. (2001). Robotic outposts as 
precursors to a manned Mars habitat. In Proc. Space Technology and Applications 
International Forum, Albuquerque, New Mexico, pp.46-51.

Huntsberger, T., Piijanian, P., Trebi-Ollennu, A., Nayar, H. D., Aghazarian, H., 
Ganino, A. J., et al. (2003). CAMPOUT: a control architecture for tightly coupled 
coordination of multirobot systems for planetary surface exploration. IEEE 
Transactions on Systems, Man & Cybernetics: Part A, vol 33(5), pp.550-559.

Iravani, P. (2005a). An architecture for multilevel learning and robotic control 
based on concept generation. PhD. thesis, Department of Design and Innovation,
The Open University, Milton Keynes, UK.

Iravani, P. (2005b). Discovering relevant sensor data by Q-analysis. In Proc. 
RoboCup 2005 : Robot Soccer World Cup IX, Osaka, Japan, pp.81-92.

Iravani, P., & Johnson, J. H. (2005). The emergence of a visual communication 
language in robotic football. In Proc. Towards Autonomous Robotic Systems TAROS, 
London.

Johnson, J. (1983). Hierarchical set definition by Q-analysis. Part I: the hierarchical 
backcloth. International Journal o f Man-Machine Studies, vol 18, pp.337-359.

Johnson, J. (2000). Visual communication in swarms of intelligent robot agents. In 
Proc. Fifth International Symposium o f Artificial Life and Robotics, Oita, Japan.

Johnson, J. (2006). Hypemetworks for reconstructing the dynamics of multilevel 
systems. In Proc. European Conference on Complex Systems, Oxford, UK.

Johnson, J., de la Rosa, J. L., & Kim, J. H. (1998). Benchmark tests in the science of 
robot football. In Proc. Mirosot 98, Paris.

Johnson, J. H. (1997). Robot football: new frontiers in control and complexity 
theory. In Proc. International Conference on Systems Engineering ICSE97,
Coventry, UK.

Johnson, J. H., & Price, B. A. (2003). Complexity science and representation in 
robot soccer. In Proc. RoboCup 2003: Robot Soccer World Cup VII, Padua, Italy, 
pp.67-76.

265



Johnson, J. H., & Sugisaka, M. (2000). Complexity science for the design of swarm 
robot control systems. In Proc. IEEE Conference on Industrial Electronics &
Control IECON'OO.

Kai, J., Ping, L., & Beni, G. (1994). Stability of synchronized distributed control of 
discrete swarm structures. In Proc. IEEE International Conference on Robotics and 
Automation ICRA '94, San Diego, CA, pp.1033-1038.

Kalra, N., & Stentz, A. (2003). A market approach to tightly-coupled multi-robot 
coordination: first results. In Proc. ARL Collaborative Technologies Alliance 
Symposium.
Kim, J.-H., Kim, K.-C., Kim, D.-C., Kim, Y.-J., & Vadakkepat, P. (1998). Path 
planning and role selection mechanism for soccer robots. In Proc. IEEE Int. 
conference on Robotics and Automation ICRA '98, Leuven, Belgium, pp.3216-3221.

Kim, S. (2004). Voronoi analysis of a soccer game. Nonlinear Analysis: Modelling 
and Control, vol 9(3), pp.233-240.
Kitano, H., & Asada, M. (1998). RoboCup humanoid challenge: that's one small step 
for a robot, one giant leap for mankind. In Proc. IEEE/RSJ International Conference 
on Intelligent Robots and Systems, Victoria, BC, Canada, pp.419-424.

Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., & Matsubara, H. (1997). 
RoboCup: a challenge problem for AI. AIMagazine, vol 18(1), pp.73-85.

Klancar, G., & Matko, D. (2005). Strategy control of mobile agents in soccer game. 
In Proc. FIRA RoboWorld Congress, Singapore.

Klancar, G., Matko, D., & Blazic, S. (2005). Mobile robot control on a reference 
path. In Proc. 13th Mediterranean Conference on Control and Automation,
Limassol, Cyprus, pp. 1343-1348.
Kobrin, A. I., & Sinyavsky, O. Y. (2006). Research opportunities of management by 
movement models of the mobile robot-football player with the help of neural net 
algorithms. In Proc. FIRA RoboWorld Congress 2006, Dortmund, Germany, pp.74- 
78.

Kube, C. R., & Bonabeau, E. (2000). Cooperative transport by ants and robots. 
Robotics and Autonomous Systems, vol 30(1-2), pp.85-101.

Kube, C. R., & Zhang, H. (1992). Collective robotic intelligence. In Proc. Second 
International Conference on Simulation o f Adaptive Behavior, pp.460-468.

Law, J. (2005). Analysis of multi-robot cooperation using Voronoi diagrams. In 
Proc. The 3rd International RCL /  VNIItransmash Workshop on Planetary Rovers, 
Space Robotics and Earth-Based Robots, St. Petersburg, Russia.

Law, J., & Johnson, J. (2004). Discrete dynamics and the space time possession 
game. In Proc. FIRA Robot World Congress, Busan, Korea.

Law, J., & Johnson, J. (2006). The Voronoi Game in robot coordination. In Proc. 
FIRA RoboWorld Congress, Dortmund, Germany, pp.57-62.

Law, J., & Johnson, J. (2008). Multilevel hypemetworks in the design of complex 
multirobot control systems. In Proc. IEEE International Symposium on Industrial 
Electronics ISIE '08, Cambridge, UK, pp.902-907.

266



Le Pape, C. (1990). A combination of centralized and distributed methods for multi­
agent planning and scheduling. In Proc. IEEE International Conference on Robotics 
and Automation, Cincinnati, OH, pp.488-493.

Lee, D., Hwang, K., Kim, D., Chung, C., & Kuc, T. (2005). A dual camera based 
vision processing system of ICRO (KINGGO) for the Large League Mirosot. In 
Proc. FIRA RoboWorld Congress, Singapore.

Lemaire, T., Alami, R., & Lacroix, S. (2004). A distributed tasks allocation scheme 
in multi-UAV context. In Proc. IEEE International Conference on Robotics and 
Automation ICRA '04, pp.3622-3627 Vol.3624.

Lepetic, M., Klancar, G., Skijanc, I., Matko, D., & Potocnik, B. (2003). Time 
optimal path planning considering acceleration limits. Robotics and Autonomous 
Systems, vol 45(3-4), pp. 199-210.

Liu, L., Wang, L., Zhiqiang, Z., & Zengqi, S. (2004). A learning market based 
layered multi-robot architecture. In Proc. IEEE International Conference on 
Robotics and Automation ICRA '04, New Orleans, Louisiana, pp.3417-3422.

Luke, S., Hohn, C., Farris, J., Jackson, G., & Hendler, J. A. (1998). Co-evolving 
soccer softbot team coordination with genetic programming. In Proc. RoboCup-97: 
Robot Soccer World Cup I, Nagoya, Japan, pp.398-411.

Mackworth, A. K. (1993). On seeing robots. Computer Vision: Systems, Theory, and 
Applications, pp. 1 -13.

Maigret, P. (1991). Experiments in reactive planning and control with mobile robots. 
In Proc. IEEE International Symposium on Intelligent Control, Arlington, VA, 
pp.306-311.
Mataric, M. J., Nilsson, M., & Simsarin, K. T. (1995). Cooperative multi-robot box- 
pushing. In Proc. IEEE/RSJ International Conference on Intelligent Robots and 
Systems IROS '95, Pittsburgh, PA, pp.556-561.

McMillen, C., & Veloso, M. (2006). Distributed, play-based role assignment for 
robot teams in dynamic environments. In Proc. DARS 2006, Minneapolis, MN.

Merriam-Webster Online Dictionary. (2007). concept. [Online]. Available at: 
http://www.merriam-webster.com [accessed September 11, 2007].

Messom, C. H. (1998). Robot soccer:- sensing, planning, strategy and control, a 
distributed real time intelligent system approach. In Proc. The Third International 
Symposium on Artificial Life and Robotics AROB III ’98, pp.422-426.

Messom, C. H., Sen Gupta, G., & Sng, H. L. (2001). Distributed real-time image 
processing for a dual camera system. In Proc. IEEE International Conference on 
Computational Robotics and Autonomous Systems CIRAS '01, Singapore, pp.53-59.

Mitchell, T. M. (2006). The discipline o f machine learning (Technical report No. 
CMU-ML-06-108). Machine Learning Department, Carnegie Mellon University, 
Pittsburgh, PA.

Muller, M. (2002). Computer Go. Artificial Intelligence, vol 134(1-2), pp.145-179.

Nehmzow, U., & Walker, K. (2003). The behaviour of a mobile robot is chaotic. 
AISB, vol 1(4), pp.373-388.

267

http://www.merriam-webster.com


Nitschke, G. (2006). Emergent cooperation in RoboCup: a review. RoboCup 2005, 
LNAI, vol 4020, pp.512-520.

Novak, G. (2004). Roby-go, a prototype for several MiroSOT soccer playing robots. 
In Proc. Second IEEE International Conference on Computational Cybernetics, 
ICCC '04, pp.207-212.

Okabe, A., Boots, B., Sugihara, K., & Chiu, S. N. (2000). Spatial Tessellations : 
Concepts and Applications o f Voronoi Diagrams (2nd ed.). New York: Wiley.

0stergaard, E. H., & Lund, H. H. (2003). Co-evolving complex robot behavior. In 
Proc. The 5th International Conference on Evolvable Systems: From Biology to 
Hardware, ICES'03, Trondheim, Norway, pp.308-319.

Parker, C., & Hong, Z. (2002). Robot collective construction by blind bulldozing. In 
Proc. IEEE International Conference on Systems, Man and Cybernetics,
Hammamet, Tunisia, pp.59-63.

Parker, L. E. (1994). ALLIANCE: an architecture for fault tolerant, cooperative 
control of heterogeneous mobile robots. In Proc. IEEE/RSJ/GI International 
Conference on Intelligent Robots and Systems IROS 94, Munich, Germany, pp.776- 
783.

Parker, L. E. (1997). L-ALLIANCE: task-oriented multi-robot learning in behavior- 
based systems. Advanced Robotics, Special Issue on Selected Papers from IROS '96, 
vol 11(4), pp.305-322.

Parker, L. E. (1998). ALLIANCE: an architecture for fault tolerant multirobot 
cooperation. IEEE Transactions on Robotics and Automation, vol 14(2), pp.220- 
240.

Parker, L. E. (2002). Distributed algorithms for multi-robot observation of multiple 
moving targets. Autonomous Robots, vol 12(3), pp.231-255.

Parker, L. E. (2003). Current research in multi-robot systems. Journal o f Artificial 
Life and Robotics, vol 7, pp. 1-5.

Piijanian, P., Leger, C., Mumm, E., Kennedy, B., Garrett, M., Aghazarian, H., et al. 
(2002). Distributed control for a modular, reconfigurable cliff robot. In Proc. IEEE 
International Conference on Robotics and Automation ICRA '02, Washington, DC, 
pp.4083-4088.

Reynolds, C. W. (1987). Flocks, herds, and schools: a distributed behavioral model, 
in computer graphics. SIGGRAPH Computer Graphics, vol 21(4), pp.25-34.

Robinson, P., Wolf, J. C., Law, J. A., Oliver, J. D., Young, K. W., & Harewood-Gill, 
D. A. (2004). Recent Mirosot developments in the UK In Proc. FIRA Robot World 
Congress, Busan, Korea.

Ross, W. D. (1951). Plato’s Theory o f Ideas. Oxford: Clarendon Press.

Rus, D., Donald, B., & Jennings, J. (1995). Moving furniture with teams of 
autonomous robots. In Proc. IEEE/RSJInternational Conference on Intelligent 
Robots and Systems, Pittsburgh, PA, pp.235-242.

Samuel, A. L. (1959). Some studies in machine learning using the game of checkers. 
IBM Journal o f Research and Development, vol 3(3), pp.210-229.

268



Schaeffer, J., Culberson, J., Treloar, N., Knight, B., Lu, P., & Szaffon, D. (1992). A 
world championship caliber checkers program. Artificial Intelligence, vol 53(2-3), 
pp.273-290.

Schenker, P. S., Piijanian, P., Balaram, J., Ali, K. S., Trebi-Ollennu, A.,
Huntsberger, T. L., et al. (2000). Reconfigurable robots for all-terrain exploration. In 
Proc. SPIE Sensor Fusion and Decentralized Control in Robotic Systems III, Boston, 
pp.454-468.

Simmons, R., Apfelbaum, D., Fox, D., Goldman, R. P., Haigh, K. Z., Musliner, D.
J., et al. (2000). Coordinated deployment of multiple, heterogeneous robots. In Proc. 
Conference on Intelligent Robots and Systems (IROS), Takamatsu, Japan.

Smith, R. G. (1980). The contract net protocol: high-level communication and 
control in a distributed problem solver. Transactions on Computers, vol C-29(12), 
pp.l 104-1113.

Sng, H. L., Sen Gupta, G., & Messom, C. H. (2002). Strategy for collaboration in 
robot soccer. In Proc. IEEE DELTA, New Zealand, pp.347-351.

Sole, F., & Honzik, B. (2002). Modelling and control of a soccer robot In Proc. 7th 
International Workshop on Advanced Motion Control, pp.506-509.

Sorbello, R., Chella, A., & Arkin, R. C. (2004). Metaphor of politics: a mechanism 
of coalition formation. In Proc. Forming and Maintaining Coalitions and Teams in 
Adaptive Multiagent Systems AAAI '04 Workshop, San Jose, California.

Stentz, A., & Dias, M. B. (1999). A free market architecture for coordinating 
multiple robots (Technical report No. CMU-RI-TR-99-42). Robotics Institute, 
Carnegie Mellon University, Pittsburgh, PA.

Stentz, A., Dias, M. B., Zlot, R. M., & Kalra, N. (2004). Market-based approaches 
for coordination of multi-robot teams at different granularities of interaction. In 
Proc. ANS 10th International Conference on Robotics and Remote Systems for 
Hazardous Environments.
Stilwell, D. J., & Bay, J. S. (1993). Toward the development of a material transport 
system using swarms of ant-like robots. In Proc. IEEE International Conference on 
Robotics and Automation, Atlanta, GA, pp.766-771.

Stone, P., & Veloso, M. (1998a). A layered approach to learning client behaviors in 
the RoboCup soccer server. Applied Artificial Intelligence, vol 12, pp. 165-188.

Stone, P., & Veloso, M. (1998b). Towards collaborative and adversarial learning: a 
case study in robotic soccer. International Journal ofHuman-Computer Studies, vol 
48(1), pp.83-104.

Stone, P., & Veloso, M. (2000). Multiagent systems: a survey from a machine 
learning perspective. Autonomous Robots, vol 8(3), pp.345-383.

Sugar, T., & Kumar, V. (1999). Multiple cooperating mobile manipulators. In Proc. 
IEEE International Conference on Robotics and Automation ICRA '99, Detroit, MI, 
pp. 153 8-1543.

Sugar, T. G., & Kumar, V. (2002). Control of cooperating mobile manipulators.
IEEE Transactions on Robotics and Automation, vol 18(1), pp.94-103.

269



Sugawara, K., Sano, M., Yoshihara, I., Abe, K., & Watanabe, T. (1999). Foraging 
behaviour of multi-robot system and emergence of swarm intelligence. In Proc. 
IEEE International Conference on Systems, Man, and Cybernetics SMC '99, Tokyo, 
pp.257-262.

Thangavelauthma, J., Barfoot, T. D., & D'Eleuterio, G. M. T. (2003). Coevolving 
communication and cooperation for lattice formation tasks. In Proc. 7th European 
Conference on Artificial Life ECAL, Dortmund, Germany.

Veloso, M., Bowling, M., Achim, S., Han, K., & Stone, P. (1999). The CMUnited- 
98 champion small robot team. RoboCup-98: Robot Soccer World Cup II, pp.77-92.

Vidal, R., Shakemia, O., Kim, H. J., Shim, D. H., & Sastry, S. (2002). Probabilistic 
pursuit-evasion games: theory, implementation, and experimental evaluation. IEEE 
Transactions on Robotics and Automation, vol 18(5), pp.662-669.

Voronoi, G. (1907). Nouvelles applications des parametres continus a la theorie des 
formes quadratiques, deuxieme memoire, recherche sur les parallelloedres primitifs. 
Journal fur die Reine und Angewandte Mathematik, vol 133, pp. 198-287.

Walter, G. W. (1953). The Living Brain. London: Duckworth.

Wang, Q., Yao, J., Wang, J.-g., & Luo, K. (2005). Shooting action control of soccer 
robot based on genetic-fuzzy algorithm. In Proc. FIRA RoboWorld Congress, 
Singapore.

Wawerla, J., Sukhatme, G. S., & Mataric, M. J. (2002). Collective construction with 
multiple robots. In Proc. IEEE/RSJ International Conference on Intelligent Robots 
and Systems, Lausanne, Switzerland, pp.2696-2701.

Weiss, N., & Hildebrand, L. (2004). An exemplary robot soccer vision system. In 
Proc. CLAWAR/EURON Workshop on Robots in Entertainment, Leisure and Hobby, 
Vienna, Austria.

Yu, W., Shi, H., Lim, Y. S., Huang, L. L., Chen, Y. P., & Zhou, Z. (2003). Robust 
posture measurement and identification of soccer robots. Measurement Science and 
Technology, vol 14, pp. 1640-1647.

Zlot, R. M., & Stentz, A. (2003). Market-based multirobot coordination using task 
abstraction. In Proc. International Conference on Field and Service Robotics.

270


