8,005 research outputs found

    An Optimisation-Driven Prediction Method for Automated Diagnosis and Prognosis

    Get PDF
    open access articleThis article presents a novel hybrid classification paradigm for medical diagnoses and prognoses prediction. The core mechanism of the proposed method relies on a centroid classification algorithm whose logic is exploited to formulate the classification task as a real-valued optimisation problem. A novel metaheuristic combining the algorithmic structure of Swarm Intelligence optimisers with the probabilistic search models of Estimation of Distribution Algorithms is designed to optimise such a problem, thus leading to high-accuracy predictions. This method is tested over 11 medical datasets and compared against 14 cherry-picked classification algorithms. Results show that the proposed approach is competitive and superior to the state-of-the-art on several occasions

    Efficient Extraction and Automated Thyroid Prediction with an Optimized Gated Recurrent Unit in Recurrent Neural Networks

    Get PDF
    Computer-aided tools are becoming increasingly important in medical diagnostics. This paper introduces the Efficient Feature Extraction Based Recurrent Neural Network (FERNN) for computer-aided thyroid disease prediction. The FERNN model uses a Gated Recurrent Unit Recurrent Neural Network (GRU-RNN) optimized with the COOT Optimization Algorithm.The study begins by gathering data from an open-source system and preprocessing it using min-max normalization to address missing values. The preprocessed data undergoes a two-level feature extraction (TLFE) procedure. In the first level, a ranked filter feature set technique is used to prioritize features based on medical expert recommendations. In the second level, a variety of metrics, including information gain, gain ratio, chi-square, and relief, are used to rank and select features. A composite measure guided by fuzzy logic is then used to select a judicious subset of features. The FERNN model uses the GRU-RNN to classify thyroid diseases in the databases. To optimise, the COOT optimization method is employed. The model's weights. The FERNN model was put into practise in MATLAB and assessed with a variety of statistical metrics, including kappa, accuracy, precision, recall, sensitivity, specificity, and the F-measure. The proposed methodology was benchmarked against traditional techniques, including the deep belief neural network (DBN), artificial neural network (ANN), and support vector machine (SVM)

    Radial Basis Function Artificial Neural Network for the Investigation of Thyroid Cytological Lesions

    Get PDF
    Objective. This study investigates the potential of an artificial intelligence (AI) methodology, the radial basis function (RBF) artificial neural network (ANN), in the evaluation of thyroid lesions. Study Design. The study was performed on 447 patients who had both cytological and histological evaluation in agreement. Cytological specimens were prepared using liquid-based cytology, and the histological result was based on subsequent surgical samples. Each specimen was digitized; on these images, nuclear morphology features were measured by the use of an image analysis system. The extracted measurements (41,324 nuclei) were separated into two sets: the training set that was used to create the RBF ANN and the test set that was used to evaluate the RBF performance. The system aimed to predict the histological status as benign or malignant. Results. The RBF ANN obtained in the training set has sensitivity 82.5%, specificity 94.6%, and overall accuracy 90.3%, while in the test set, these indices were 81.4%, 90.0%, and 86.9%, respectively. Algorithm was used to classify patients on the basis of the RBF ANN, the overall sensitivity was 95.0%, the specificity was 95.5%, and no statistically significant difference was observed. Conclusion. AI techniques and especially ANNs, only in the recent years, have been studied extensively. The proposed approach is promising to avoid misdiagnoses and assists the everyday practice of the cytopathology. The major drawback in this approach is the automation of a procedure to accurately detect and measure cell nuclei from the digitized images

    Thyroid disease treatment prediction with machine learning approaches

    Get PDF
    The thyroid is an endocrine gland located in the anterior region of the neck: its main task is to produce thyroid hormones, which are functional to our entire body. Its possible dysfunction can lead to the production of an insufficient or excessive amount of thyroid hormone. Therefore, the thyroid can become inflamed or swollen due to one or more swellings forming inside it. Some of these nodules can be the site of malignant tumors. One of the most used treatments is sodium levothyroxine, also known as LT4, a synthetic thyroid hormone used in the treatment of thyroid disorders and diseases. Predictions about the treatment can be important for supporting endocrinologists' activities and improve the quality of the patients' life. To date, there are numerous studies in the literature that focus on the prediction of thyroid diseases on the trend of the hormonal parameters of people. This work, differently, aims to predict the LT4 treatment trend for patients suffering from hypothyroidism. To this end, a dedicated dataset was built that includes medical information related to patients being treated in the”AOU Federico II” hospital of Naples. For each patient, the clinical history is available over time, and therefore on the basis of the trend of the hormonal parameters and other attributes considered it was possible to predict the course of each patient's treatment in order to understand if this should be increased or decreased. To conduct this study, we used different machine learning algorithms. In particular, we compared the results of 10 different classifiers. The performances of the different algorithms show good results, especially in the case of the Extra-Tree Classifier, where the accuracy reaches 84%

    Comparative assessment of texture features for the identification of cancer in ultrasound images: a review

    Get PDF
    In this paper, we review the use of texture features for cancer detection in Ultrasound (US) images of breast, prostate, thyroid, ovaries and liver for Computer-Aided Diagnosis (CAD) systems. This paper shows that texture features are a valuable tool to extract diagnostically relevant information from US images. This information helps practitioners to discriminate normal from abnormal tissues. A drawback of some classes of texture features comes from their sensitivity to both changes in image resolution and grayscale levels. These limitations pose a considerable challenge to CAD systems, because the information content of a specific texture feature depends on the US imaging system and its setup. Our review shows that single classes of texture features are insufficient, if considered alone, to create robust CAD systems, which can help to solve practical problems, such as cancer screening. Therefore, we recommend that the CAD system design involves testing a wide range of texture features along with features obtained with other image processing methods. Having such a competitive testing phase helps the designer to select the best feature combination for a particular problem. This approach will lead to practical US based cancer detection systems which de- liver real benefits to patients by improving the diagnosis accuracy while reducing health care cost
    • …
    corecore