162 research outputs found

    3d food printing: study and applications to produce innovative food products.

    Get PDF
    La stampa 3D degli alimenti rappresenta una tecnologia innovativa ed emergente capace di costruire un oggetto tridimensionale partendo da un modello CAD creato su software di disegno grafico. Durante gli ultimi anni molti studi hanno dimostrato come questa tecnologia sia stata applicata per la produzione di alimenti nuovi. L’obiettivo principale di questa tesi è stato l’approfondimento e il miglioramento della tecnologia di stampa 3D nel settore alimentare contribuendo alla creazione di alimenti dalle proprietà mai esplorate prima. Dopo un’analisi dell’evoluzione temporale della tecnologia di stampa 3D nel settore alimentare, una varietà di altri aspetti sono stati studiati, tra cui la capacità di creare e modificare alimenti dalle nuove texture attraverso la progettazione di nuovi design, inoltre è stata oggetto di studio la stampa 3D ad alta velocità, tema interessante dal punto di vista dell’applicazione in campo industriale. Gli studi si sono focalizzati sull’utilizzo di due diverse matrici di stampa: impasto a base di cereali e gel a base d’amido, stampando strutture geometriche (cubi, parallelepipedi) e design ispirati alla natura (tessuti interni delle mele). La tesi è strutturata in 8 capitoli: una breve introduzione (capitolo 1), obiettivi e linee di ricerca (capitolo 2) e altri cinque capitoli corrispondenti alle 5 pubblicazioni su riviste internazionali; Drawing the scientific landscape of 3D Food Printing. Maps and interpretation of the global information in the first 13 years of detailed experiments, from 2007 to 2020’(capitolo 3) and ‘Rheological properties, dispensing force and printing fidelity of starchy-gels modulated by concentration, temperature and resting time’ (capitolo 4). I capitoli 5 e 6 sono dedicati alla creazione di alimenti stampati in 3D con proprietà meccaniche desiderate e personalizzabili: Programmable texture properties of cereal-based snack mediated by 3D printing technology’ (capitolo 5), ‘Extending 3D food printing application. Apple tissues microstructure as CAD model to create innovative cereal-based snacks’ (capitolo 6). Il capitolo 7 si è focalizzato sulla stampa 3D ad alta velocità: ‘Extending the 3D food printing tests at high speed. Material deposition and effect of non-printing movements on the final quality of printed structures’. E infine il capitolo 8 racchiude le conclusioni e alter discussioni generali riguardanti la tesi.3D printing (3DP) represents an innovative and emerging technology aiming to build three-dimensional objects starting from the computer-aided model. During last years main studies showed the application of this technology to produce innovative foods. The main aim of this research was the better understanding and the implementation of 3D Printing in the food sector aiming to contribute to the creation of food with unprecedented properties. After an analysis on the temporal evolution of 3D Food Printing (3DFP) in scientific field, a variety of relevant aspects have been studied: the capability of modifying the texture properties of the end products by means of accurate design of the digital models and the printing at high speed that could open for a more practical application at industrial level. Moreover, the studies have focused on two different matrix: cereals based and starchy gels, printing geometric structures (cube, parallelepiped) and design inspired by nature (apple tissue). The thesis is structured in 8 chapters: a brief introduction (chapter 1), objects and outlines of research (chapter 2) and the other sections consists of five published papers in international peer reviewed journals ‘Drawing the scientific landscape of 3D Food Printing. Maps and interpretation of the global information in the first 13 years of detailed experiments, from 2007 to 2020’(chapter 3); ‘Rheological properties, dispensing force and printing fidelity of starchy-gels modulated by concentration, temperature and resting time’ (chapter 4). The chapters 5 and 6 has been dedicated to the creation of 3D-printed food with desired and programmable mechanical properties: ‘Programmable texture properties of cereal-based snack mediated by 3D printing technology’ (chapter 5), ‘Extending 3D food printing application. Apple tissues microstructure as CAD model to create innovative cereal-based snacks’ (chapter 6). Chapter 7 focused on speed up of 3DFP: ‘Extending the 3D food printing tests at high speed. Material deposition and effect of non-printing movements on the final quality of printed structures’. Finally chapter 8 contains the conclusions and some general discussion of the thesis

    Food texture design by 3D printing: a review

    Get PDF
    An important factor in consumers’ acceptability, beyond visual appearance and taste, is food texture. The elderly and people with dysphagia are more likely to present malnourishment due to visually and texturally unappealing food. Three-dimensional Printing is an additive manufacturing technology that can aid the food industry in developing novel and more complex food products and has the potential to produce tailored foods for specific needs. As a technology that builds food products layer by layer, 3D Printing can present a new methodology to design realistic food textures by the precise placement of texturing elements in the food, printing of multi-material products, and design of complex internal structures. This paper intends to review the existing work on 3D food printing and discuss the recent developments concerning food texture design. Advantages and limitations of 3D Printing in the food industry, the material-based printability and model-based texture, and the future trends in 3D Printing, including numerical simulations, incorporation of cooking technology to the printing, and 4D modifications are discussed. Key challenges for the mainstream adoption of 3D Printing are also elaborated on.info:eu-repo/semantics/publishedVersio

    Trends in functional food development with three-dimensional (3D) food printing technology : prospects for value-added traditionally processed food products

    Get PDF
    Abstract: One of the recent, innovative, and digital food revolutions gradually gaining acceptance is threedimensional food printing (3DFP), an additive technique used to develop products, with the possibility of obtaining foods with complex geometries. Recent interest in this technology has opened the possibilities of complementing existing processes with 3DFP for better value addition. Fermentation and malting are age-long traditional food processes known to improve food value, functionality, and beneficial health constituents. Several studies have demonstrated the applicability of 3D printing to manufacture varieties of food constructs, especially cereal-based, from root and tubers, fruit and vegetables as well as milk and milk products, with potential for much more value-added products. This review discusses the extrusion-based 3D printing of foods and the major factors affecting the process development of successful edible 3D structures. Though some novel food products have emanated from 3DFP, considering the beneficial effects of traditional food processes, particularly fermentation and malting in food, concerted efforts should also be directed toward developing 3D products using substrates from these conventional techniques. Such experimental findings will significantly promote the availability of minimally processed, affordable, and convenient meals customized in complex geometric structures with enhanced functional and nutritional values

    Design and Testing of a Hybrid Direct Ink Writing and Fused Deposition Modeling Multi-Process 3D Printer

    Get PDF
    Multi-material 3D Printing allows the ability to fabricate parts with tuned mechanical properties, multi-process 3D printing widens the choices of available fabrication materials. The objective of this study is to build a custom 3D printing test bed that is capable of printing multi-material parts with fused deposition modeling and direct ink writing techniques. A 3D printer, controlled by an industrial motion control system, with FDM and DIW capabilities was built by combining FDM extruders with a pneumatic dispensing system on a single platform. By utilizing the Direct Ink Writing function, we expand the number of printable materials to include some off the shelf silicones and epoxies, as well as custom, user made, materials. This study will further expand the manufacturing and research capabilities within the additive manufacturing discipline

    Distributed manufacturing of open source medical hardware for pandemics

    Get PDF
    Distributed digital manufacturing offers a solution to medical supply and technology shortages during pandemics. To prepare for the next pandemic, this study reviews the state-of-the-art of open hardware designs needed in a COVID-19-like pandemic. It evaluates the readiness of the top twenty technologies requested by the Government of India. The results show that the majority of the actual medical products have some open source development, however, only 15% of the supporting technologies required to produce them are freely available. The results show there is still considerable research needed to provide open source paths for the development of all the medical hardware needed during pandemics. Five core areas of future research are discussed, which include (i) technical development of a wide-range of open source solutions for all medical supplies and devices, (ii) policies that protect the productivity of laboratories, makerspaces, and fabrication facilities during a pandemic, as well as (iii) streamlining the regulatory process, (iv) developing Good-Samaritan laws to protect makers and designers of open medical hardware, as well as to compel those with knowledge that will save lives to share it, and (v) requiring all citizen-funded research to be released with free and open source licenses

    Extrusion-based additive manufacturing technologies: State of the art and future perspectives

    Get PDF
    Extrusion-based additive manufacturing (AM) has recently become widespread for the layer-by-layer fabrication of three-dimensional prototypes and components even with highly complex shapes. This technology involves extrusion through a nozzle by means of a plunger-, filament- or screw-based mechanism; where necessary, this is preceded by heating of the feedstock material to reduce its viscosity sufficiently to facilitate extrusion. Extrusion-based AM offers greater design freedom, larger building volumes and more cost-efficient production than liquid- and powder-based AM processes. Although this technology was originally developed for polymeric filament materials, it is now increasingly applied to a wide variety of material classes, including metallic, edible and construction materials. This is in part thanks to the recent development of AM-specific feedstock materials (AM materials), in which materials that are not intrinsically suited to extrusion, for example because of high melting points or brittleness, are combined with other, usually polymeric materials that can be more readily extruded. This paper comprehensively and systematically reviews the state of the art in the field of extrusion-based AM, including the techniques applied and the individual challenges and developments in each materials class for which the technology is being developed. The paper includes material- and process-centred suitability analysis of extrusion-based AM, and a comparison of this technology with liquid- and powder-based AM processes. Prospective applications of this technology are also briefly discussed

    How Is Rheology Involved in 3D Printing of Phase-Separated PVC-Acrylate Copolymers Obtained by Free Radical Polymerization

    Get PDF
    New auto-plasticised copolymers of poly(vinyl chloride)-r-(acrylate) and polyvinylchloride, obtained by radical polymerization, are investigated to analyse their capacity to be processed by 3D printing. The specific microstructure of the copolymers gives rise to a phase-separated morphology constituted by poly(vinyl chloride) (PVC) domains dispersed in a continuous phase of acrylate-vinyl chloride copolymer. The analysis of the rheological results allows the suitability of these copolymers to be assessed for use in a screw-driven 3D printer, but not by the fused filament fabrication method. This is due to the high melt elasticity of the copolymers, caused by interfacial tension between phases. A relationship between the relaxation modulus of the copolymers and the interlayer adhesion is established. Under adequate 3D-printing conditions, flexible and ductile samples with good dimensional stability and cohesion are obtained, as is proven by scanning electron microscopy (SEM) and tensile stress-strain tests

    A Digital Manufacturing Process For Three-Dimensional Electronics

    Get PDF
    Additive manufacturing (AM) offers the ability to produce devices with a degree of three-dimensional complexity and mass customisation previously unachievable with subtractive and formative approaches. These benefits have not transitioned into the production of commercial electronics that still rely on planar, template-driven manufacturing, which prevents them from being tailored to the end user or exploiting conformal circuitry for miniaturisation. Research into the AM fabrication of 3D electronics has been demonstrated; however, because of material restrictions, the durability and electrical conductivity of such devices was often limited. This thesis presents a novel manufacturing approach that hybridises the AM of polyetherimide (PEI) with chemical modification and selective light-based synthesis of silver nanoparticles to produce 3D electronic systems. The resulting nanoparticles act as a seed site for the electroless deposition of copper. The use of high-performance materials for both the conductive and dielectric elements created devices with the performance required for real-world applications. For printing PEI, a low-cost fused filament fabrication (FFF); also known as fused deposition modelling (FDM), printer with a unique inverted design was developed. The orientation of the printer traps hot air within a heated build environment that is open on its underside allowing the print head to deposit the polymer while keeping the sensitive components outside. The maximum achievable temperature was 120 °C and was found to reduce the degree of warping and the ultimate tensile strength of printed parts. The dimensional accuracy was, on average, within 0.05 mm of a benchmark printer and fine control over the layer thickness led to the discovery of flexible substrates that can be directly integrated into rigid parts. Chemical modification of the printed PEI was used to embed ionic silver into the polymer chain, sensitising it to patterning with a 405 nm laser. The rig used for patterning was a re-purposed vat-photopolymerisation printer that uses a galvanometer to guide the beam that is focused to a spot size of 155 µm at the focal plane. The positioning of the laser spot was controlled with an open-sourced version of the printers slicing software. The optimal laser patterning parameters were experimentally validated and a link between area-related energy density and the quality of the copper deposition was found. In tests where samples were exposed to more than 2.55 J/cm^2, degradation of the polymer was experienced which produced blistering and delamination of the copper. Less than 2.34 J/cm^2 also had negative effect and resulted in incomplete coverage of the patterned area. The minimum feature resolution produced by the patterning setup was 301 µm; however, tests with a photomask demonstrated features an order of magnitude smaller. The non-contact approach was also used to produce conformal patterns over sloped and curved surfaces. Characterisation of the copper deposits found an average thickness of 559 nm and a conductivity of 3.81 × 107 S/m. Tape peel and bend fatigue testing showed that the copper was ductile and adhered well to the PEI, with flexible electronic samples demonstrating over 50,000 cycles at a minimum bend radius of 6.59 mm without failure. Additionally, the PEI and copper combination was shown to survive a solder reflow with peak temperatures of 249°C. Using a robotic pick and place system a test board was automatically populated with surface mount components as small as 0201 resistors which were affixed using high-temperature, Type-V Tin-Silver-Copper solder paste. Finally, to prove the process a range of functional demonstrators were built and evaluated. These included a functional timer circuit, inductive wireless power coils compatible with two existing standards, a cylindrical RF antenna capable of operating at several frequencies below 10 GHz, flexible positional sensors, and multi-mode shape memory alloy actuators

    Harnessing Artificial Intelligence for the Next Generation of 3D Printed Medicines

    Get PDF
    Artificial intelligence (AI) is redefining how we exist in the world. In almost every sector of society, AI is performing tasks with super-human speed and intellect; from the prediction of stock market trends to driverless vehicles, diagnosis of disease, and robotic surgery. Despite this growing success, the pharmaceutical field is yet to truly harness AI. Development and manufacture of medicines remains largely in a ‘one size fits all’ paradigm, in which mass-produced, identical formulations are expected to meet individual patient needs. Recently, 3D printing (3DP) has illuminated a path for on-demand production of fully customisable medicines. Due to its flexibility, pharmaceutical 3DP presents innumerable options during formulation development that generally require expert navigation. Leveraging AI within pharmaceutical 3DP removes the need for human expertise, as optimal process parameters can be accurately predicted by machine learning. AI can also be incorporated into a pharmaceutical 3DP ‘Internet of Things’, moving the personalised production of medicines into an intelligent, streamlined, and autonomous pipeline. Supportive infrastructure, such as The Cloud and blockchain, will also play a vital role. Crucially, these technologies will expedite the use of pharmaceutical 3DP in clinical settings and drive the global movement towards personalised medicine and Industry 4.0
    • …
    corecore