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Abstract: Distributed digital manufacturing offers a solution to medical supply and technology
shortages during pandemics. To prepare for the next pandemic, this study reviews the state-of-the-art
of open hardware designs needed in a COVID-19-like pandemic. It evaluates the readiness of the top
twenty technologies requested by the Government of India. The results show that the majority of the
actual medical products have some open source development, however, only 15% of the supporting
technologies required to produce them are freely available. The results show there is still considerable
research needed to provide open source paths for the development of all the medical hardware
needed during pandemics. Five core areas of future research are discussed, which include (i) technical
development of a wide-range of open source solutions for all medical supplies and devices, (ii) policies
that protect the productivity of laboratories, makerspaces, and fabrication facilities during a pandemic,
as well as (iii) streamlining the regulatory process, (iv) developing Good-Samaritan laws to protect
makers and designers of open medical hardware, as well as to compel those with knowledge that will
save lives to share it, and (v) requiring all citizen-funded research to be released with free and open
source licenses.

Keywords: pandemic; influenza pandemic; open source; open hardware; COVID-19; COVID-19
pandemic; medical hardware; open source medicine

1. Introduction

Pandemics stress critical infrastructures, and hospitals can be particularly challenged [1–5].
For example, the coronavirus disease 2019 (COVID-19) has overwhelmed our medical infrastructure at
the regional level, increasing mortality rates in many regions [6,7]. Developing nations are particularly
vulnerable [8]. For example, in India, the government’s ability to obtain needed supplies is challenged [9].
Even in the relatively wealthy U.S. [10], some hospitals are overwhelmed as epicenters of the disease
pass tipping points [11,12]. This lack of critical infrastructure and supplies results in higher mortality
primarily due to the volume of patients [13–15]. The health care systems have the technology and staff to
care for some patients, but not the volume of patients observed during surges brought about by a rapidly
spreading virus. Traditionally, these challenges were met with two strategies: first, by pre-planning
and stockpiling equipment, supplies, and medication [16–22], and second, by using policies equivalent
to the American Defense Production Act, which allows the President to direct private companies to
produce equipment needed for a national emergency [23–25]. Unfortunately, as shown during the
COVID-19 pandemic, the stockpiles are often insufficient [26–28], in part because of the high costs
associated with maintaining the stockpiles [29,30]. The second approach is complicated by intellectual
monopolies [31–33] that entangle global value chains [34] for critical medical supplies [35,36] that slow
the ramp rate of production. In some cases, good-natured companies free their intellectual monopolies
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during a pandemic and make technologies available for everyone to use [37]. Other companies even
block critically-needed testing [38], which directly prevents lives from being saved. Even if most of
the primary equipment or supply companies act with good will, the access to the rights and supply
chains of enabling technologies (e.g., the precursors to drugs or the microchips for medical devices) as
well as the lack of full documentation, however, make it challenging, if not impossible, to implement
a rapid scale-up of production in the face of a global pandemic [39,40]. In addition, during a global
pandemic, there is a conflict of interest between countries, which inhibits the global supply chains
(e.g., export bans of medical equipment) [41–44]), as well as in-fighting for medical supplies within
countries, states, and hospitals [45].

With this context in mind, it is illuminating to consider the ongoing transition observed in
the nature of manufacturing. There is growing evidence of a fundamental change in the nature of
manufacturing from the traditional large-scale, centralized, long lead-time, forecast-driven production
to a distributed manufacturing paradigm, where manufacturing is small-scale, decentralized, rapid,
autonomous, and geographically-proxemic to the consumer [46]. Distributed manufacturing refers to
an internet-enabled manufacturing system [47] where designs are manufactured close to the consumer,
normally by third-party companies [48]. Unlike conventional manufacturing that occurs in a centralized
factory with products shipped to customers, distributed manufacturing refers to manufacturing closer
to the consumer. In the most radical case, distributed manufacturing can occur in the consumers’
own home. Centralized manufacturing and distributed manufacturing can produce products that
are proprietary (e.g., patented) and open hardware (where the source for manufacturing a product is
shared and distributed with a license that allows reproduction). With recent advances in technology,
the combination of distributed manufacturing of open hardware is becoming a reality. Additive
manufacturing, for example, is dominated by the open source release of the self-replicating rapid
prototyper [49,50] class of 3-D printers and is currently deployed at the highest volumes throughout
the globe [51]. This type of distributed manufacturing is already altering global value chains [52]
and supporting a domestication of supply chains [53]. Technological maturation of a number of
enabling digital manufacturing technologies has allowed for a new, and even more radical, approach
to mass-scaled distributed manufacturing, where consumers fabricate their own products [54–60],
from toys [61–63] to high-end scientific tools [64–74]. In this model, open source hardware designs,
ideally made with free and open source software [75–77], are shared freely on the Internet, downloaded,
and then manufactured on site, normally for substantial economic savings [78]. This concept can be
applied to medical supplies [79–82] and there are already examples [83–92] and calls for open source
development of medical devices [93–96]. There is substantial evidence that funders, which invest in
open source design for medical equipment can expect large rates of return as products can then be
fabricated for little more than material costs [94,97–99].

This approach of leveraging open source hardware to combat global pandemics appears
promising [100], but there are unanswered questions about the current viability and the maturation of
the open source designs for manufacturing supplies and medically-required technologies. To determine
the effort and trajectory needed to apply this new method of manufacturing medical supplies to fight
a pandemic, this article evaluates the medical supplies to fight COVID-19 requested by the Ministry of
Micro, Small and Medium Enterprises for the Government of India [101]. Each technology is analyzed
for availability of free and open source designs, as well as availability of open source manufacturing
methods or equipment to fabricate the components of the primary requests. The results are discussed
in the context of the technical research required to make this method viable, and the policies that would
enable distributed manufacturing to provide a solution to the manufacturing of supplies and devices
for future pandemics.

2. Materials and Methods

Thirty-nine medical supplies were listed as needed by the Government of India [101] during
the COVID-19 pandemic, and in this study, the most critical twenty are evaluated. First, for each
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request, the existing Internet and gray literature is reviewed for open source projects and designs.
For each request, it is determined if a design is available that is completely free and open source
hardware (FOSH). A designation of FOSH indicates that the designs are licensed using an open
source hardware license [102], such as the CERN Open Hardware License (OHL) v1.2 [103] and the
TAPR Open Hardware License (OHL) [104]. Likewise, the technologies may be in the public domain.
The documentation of the design can be under an open license as well, such as GNU General Public
License (GPL) v.3 [105] and the Creative Commons Attribution-ShareAlike 3.0 [106], or again in the
public domain. For projects that use software, these also must use free and open source software (FOSS)
licenses [107]. In addition, to achieve full FOSH status, the practical details to enable replication need
to be available for the medical supplies and devices. This includes possessing accessible designs that
are freely accessible source files, such as bill of materials (BOM), computer aided design (CAD) files,
as well as production files (e.g., STL files for 3-D printing) for mechanical designs as well as printed
circuit board (PCB) layouts and other electronic design files, list of tools, and production machines
required, wiring diagrams, firmware and software, as well as assembly, operation, and calibration
instructions. If full FOSH documentation is not available but there are some basic designs, the request
is denoted as POS for partially open source. Finally, for those requests for which there are no free
and open source alternatives, the request is denoted ‘Closed’. The final results are tabulated and
color-coded for clarity, where dark green indicates FOSH completed, light green indicates FOSH with
near full documentation, yellow means POS, orange indicates some open source tools are available,
but primary plans are closed, and red means Closed technologies. It should be noted that the status of
all the technologies is also labeled in text form to be accessed for color blind readers.

Similarly, the building-block technologies needed to fabricate each of the devices are evaluated.
For simple technologies, these are evaluated completely. For complex devices, however, such as the
glucometer, the complexity of developing each part (e.g., PCB components) far exceeds the scope
of this paper and only general evaluations are presented. In all cases, the designs are evaluated
to determine if they can be completely digitally manufactured, ideally from locally-sourced waste
products. In some instances, using distributed recycling and additive manufacturing (DRAM) [108–113]
is possible as the technologies (open source granulator [114], pelletizer [115], and recyclebot
(an automated device to make filament for fused filament fabrication-based material extrusion
3-D printing) [116–118]) are already mature for pure polymers [108,119–124] and complex plastic
packaging, blends, and composites [125–129]. In addition, direct material extrusion of waste is now
possible for additive manufacturing [112,130–135]. Utilizing widely-dispersed waste material as
building blocks would ensure wide accessibility of the approach for providing medical technologies.

3. Results

The documentation to obtain FOSH is substantial and most projects were not able to meet the
rigorous requirements, as shown in the results below for each of the top 20 requested medical supplies
requested by the Indian government during the COVD-19 pandemic. It should be noted that the patent
literature was not included in the analysis because of lack of practical utility, although many patents
are no longer in force and a database is available to find inactive patents [136].

3.1. Ventilators

A recent review of open source ventilators was completed in the midst of the COVID-19
pandemic [137] which found that the peer-reviewed and vetted systems [138–144] lacked complete
documentation and the “open source” ventilator systems that were documented [145] were either
at the very early stages of design (often without a prototype) and lacked testing, or only had basic
testing. This is changing rapidly with AmboVent releasing all plans (Figure 1) [146] as well as a new
medical study providing full plans for a $75 non-invasive pressure support ventilator [147], and there
are several projects like the OxyGEN [148], an automated manual ventilator, being tested that appear
to be at or near the point of production for use in hospitals. Many of the designs, particularly in the
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open source community, relied on an Arduino [149–151], which is an open source microcontroller,
but many of the core components have no open source equivalent, such as the valves and methods of
producing pressure. Although it should be noted that for this specific technology, there is concern
about aerosolizing the virus with these systems, and thus they are a potential threat to health-care
workers [152] without appropriate safety precautions. Thus, appropriate personal protective equipment
(PPE), high-efficiency particulate air (HEPA), and negative pressure rooms can also be considered
required associated equipment. There is discussion about CPAP (continuous positive airway pressure)
being a better alternative for non-invasive treatment [153,154]. This device is identified as POS/Closed,
but, as of this writing, there is significant international development occurring in this space, so this
may change rapidly because of the critical nature of ventilators in treating COVID-19 patients.
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3.2. Alcohol-Based Hand-Rub

For a hand sanitizer to be effective, the U.S. Centers for Disease Control and Prevention (CDC)
reports that it must contain at least 60% alcohol content (and <80%) [155]. The World Health Organization
has provided a detailed guide for the local production of hand-rub formulations [156], as does the
Appropedia Foundation [157]. Knowledge of alcohol production is widespread and glycerol and
hydrogen peroxide are both widely available, but detailed validated instructions and safety testing
would assist open source production.

3.3. Face Shield (Eye, Nose, and Mouth Protection)

Several 3-D printable designs for face shields were created during the COVID-19 pandemic
(e.g., Figure 2) [158–160]. They involve a printed component, a clear plastic sheet, and in some cases,
bands. Other designs can simply be cut from the plastic sheets themselves and were released on
Creative Commons licenses [161]. Such PPE is widely used throughout the world [162,163]. The entire
device could be fabricated using open source tools and could meet its function from plastic waste
using readily available RepRap-class 3-D printers and recyclebots.

3.4. N95 Masks

Significant effort is underway globally to find alternatives to N95 masks due to the global shortage
of N95 masks during the COVIND-19 pandemic. Several designs were made available that could be
3-D printed [164–166] and then would use cut up pieces of commercially manufactured filter materials
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or alternative materials [167]. Southworth has also made available plans to fabricate an N95 substitute
using HEPA filters [168]. More research is necessary to develop open source methods of manufacturing
the active filter material making up the HEPA filters, as well as more reliable and deployable methods
of testing.
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Figure 2. Michigan Tech student volunteer, Bharth Lavu, with 3-D printed open source face shields he
fabricated on open source 3-D printers for use in local hospitals during the COVID-19 pandemic.

3.5. Latex Single-Use Gloves (Clinical)

Although the process for fabricating latex gloves is well established [169], there does not appear
to be an open source process or projects for fabricating latex gloves.

3.6. Reusable Vinyl/Rubber Gloves (Cleaning)

Similar to latex gloves, there does not appear to be an open source project focusing on
manufacturing reusable vinyl or rubber gloves. As these materials are thicker, it is possible to consider
laser welding gloves from sheets of the material using plastic welders [170] and then automatically
cutting them out using any number of open source laser cutters [171–174].

3.7. Eye Protection (Visor/Goggles)

Although a wide range of open source frames for glasses have been designed, including 3-D
printable self-adjustable glasses [57], those meant as safety glasses or goggles are only crudely modeled
and untested. There is, however, a substantial collection of open source face shields being designed,
3-D printed or manufactured/assembled, and used during the COVID-19 pandemic as discussed
in Section 3.3.

3.8. Protective Gowns/Aprons

There is a robust open source sewing community that shares patterns (e.g., Free Sewing that
made a face mask pattern available for the COVID-19 pandemic [175]) and open source pattern
design software like Seamly2D [176]. In addition, patterns for gowns and aprons are available.
None, however, appear focused on medical needs, nor have the materials available to lay people been
tested (as with mask materials) to see how they perform in medical environments.
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3.9. Disposable Thermometers

Disposable thermometers are based on a chemical system by varying the ratio of two organic
chemicals, which are completely soluble in each other while having different melting points.
Thus, the melting point of the mixture can be adjusted anywhere between the two end points
of the two chemicals. Research has been conducted in the open source appropriate technology
community [177,178] on such active thermometers in the past to make water pasteurization indicators
(WAPI) for solar water pasteurization [179–182]. There does not appear to be any efforts to make open
source disposable thermometers in the open source medical community, but research on 3-D printing
microfluidics with a number of technologies appears to be a promising route [183–191].

3.10. UV Tube Light for Sterilization

UV radiation can be used to inactivate microorganisms by causing DNA damage and
thus interfering with DNA replication [192,193]. It has been shown to be effective at disabling
coronavirus [194,195]. There are already detailed open source designs for a programmable and low-cost
ultraviolet room disinfection device (see Figure 3) [196] which could be adapted for use in a pandemic.
There is a clear need and promise of using UV radiation to extend the life of PPE during a pandemic [197],
and developing a distributed manufactured system to sterilize hand-held or -sized objects appears to
be possible. There are currently no plans available, however, to manufacture the core components
(either UV tube lights or UV LEDs), which are the critical components of such devices.
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3.11. Medical Masks (Surgical/Procedure)

The same limitations and opportunities as were discussed in Section 3.4 are present for both
surgical and procedure-based medical masks. Although it should be noted that the requirements for
these masks are less stringent than for the N95 masks [198], which would make meeting a specification
more easily obtained with widely-available materials. Dato et al. have discussed the use of T-shirt
material to act as a simple respiratory mask [199] and there is evidence that homemade masks decrease
viral exposure and reduce probability of infection [167,200].

3.12. Detergent/Disinfectant

Recipes for a ‘homemade laundry detergent’ that are as effective as commercial detergents
are widespread and can be made for significantly lower costs (50% less or more) than proprietary
formulations [201]. DIY recipes normally contain a mixture of borax (sodium borate), washing soda,



J. Manuf. Mater. Process. 2020, 4, 49 7 of 26

and bar soap along with non-active ingredients to add a pleasant odor; but can be made without
borax [202]. Such a DIY laundry detergent would be expected to remove coronavirus, as it contains
soap (just like washing hands). Thus, such recipes would be expected to be effective for disinfecting
medical clothing, but a study is needed in this area. Similarly, there are numerous open source resources
for fabricating the main ingredients: soap (e.g., [203]) and washing soda (e.g., [204]).

3.13. Single-Use Towels

Similar to Section 3.8, the know-how to make a disposable towel is widespread and no pattern is
necessary due to its simplicity, but detailed guidelines of acceptable materials have not been developed.
Unanswered questions include ‘Can rags cut to shape and sterilized be sufficient?’, ‘Does the material
need to be autoclavable?’, and ‘Can rags made of different materials be color-coded, representing utility
for different functions in the hospital?’.

3.14. Biohazard Bags

Biohazard bags are generally fabricated from 1.5 mils (0.038 mm) to 2 mils (0.05 mm) thick
polypropylene plastic, which can be sterilized with steam. California law is specific about the
mechanical properties of a biohazard bag [205], which must pass the tests for tear resistance of 480 g in
both parallel and perpendicular planes with respect to the length of the bag, following the American
Society for Testing Materials (ASTM) D1922, “Standard Test Method for Propagation Tear Resistance
of Plastic Film and Thin Sheeting by Pendulum Method” [206], and for impact resistance of 165 g,
following ASTM D1709, “Standard Test Methods for Impact Resistance of Plastic Film by the Free-Falling
Dart Method” [207]. Biohazard bags often generally have bold visuals printed on them signifying
decontamination use, and some jurisdictions specify a color. Similar to Section 3.6, open source laser
welders/cutters could be used to manufacture bags from raw materials, but future research is needed
to determine if there are other mass-manufactured bags (i.e., garbage bags) that could be repurposed
during a pandemic.

3.15. Wheelchair

A well-established literature has developed around the need for low-cost open source wheelchairs
made with PVC pipe, CNC laser cut wood, constructed around inexpensive outdoor lawn chairs, and
cut plywood [208–210]. The Hu-Go (Figure 4) [211], Kigali Chair [212], and the TooWheels [213] are all
open source wheelchairs that could be fabricated in makerspaces and fab labs. There are also open
source wheelchairs meant for off-road (e.g., more challenging) conditions like the SafariSeat [214]
that could be used for rural clinics, but are meant to be used by healthy people. In addition to the
normal advantages of open hardware, including cost and customizability, ease of repair is a substantial
benefit of open wheelchair designs [215]. As the materials are very diverse with which any of the many
open source wheelchair designs can be made, the manufacture of the components is also deemed
readily accessible. It should be pointed out, however, there is a clear opportunity for developing open
source versions of patient chairs on casters for patient transport within hospitals using common maker
techniques and tools.

3.16. Glucometer with Strips

Meehan has developed an open source universal glucometer that can use test strips from any
supplier [216], which includes all software, electronic design files, and mechanical designs for a 3-D
printed case. Gluco is another open source glucometer based on an Arduino Uno and the e-Health
Shield [217]. There have been some studies on printing low-cost glucose test strips on paper [218],
but more research is needed in this area, as well as perhaps the more promising development of open
source, non-invasive tests.
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3.17. Medicine

This request is too broad to adequately analyze, but there are substantial efforts like Open Source
Pharma, which hopes to be the “Linux of drugs” [219] (in reference to the free and open source
Linux operating system which dominates super computers, the cloud, smartphones, and embedded
systems [220–222]). Open source methods have already been developed to specifically target neglected
tropical diseases like malaria [223–225]. Open source biotechnology and drug discovery are becoming
more established because of the ability of the open source collaboration to accelerate discovery [226–230].
An open source pharma roadmap has been established to improve (i) efficiency, (ii) quality of research,
(iii) relevance of research, and (iv) encourage a wider participation by the scientific and patient
communities [231]. Far more research is needed, however, to develop a range of open source drugs for
all relevant diseases as well as the methods to manufacture them.

3.18. IV Fluid-DNS

DNS IV fluid is used to correct salt depletion and hypovolemia (decreased volume of blood
in circulation) with a supply of energy. Each 100 mL of DNS IV fluid is made up of sterile water
with 5.0 g of dextrose anhydrous and 0.90 g of sodium chloride [232]. The materials and formula are
well known and accessible, but the manufacturing method is not. As only a few facilities make IV
fluids, when Hurricane Maria struck Puerto Rico, home to a key manufacturer, it created a critical
shortage throughout the whole world [233]. Some have contended that there is not a simple solution
to this problem [234], however, the development of clear distributed manufacturing/sterilization
methodologies and the use of other types of fluid containers and digitally-manufactured quick connects
could provide a range of solutions to this and other IV fluid shortages. Extreme care must be taken to
ensure that the methods do not introduce further disease into patients that would use it.

3.19. IV Fluid-Dextrose

Dextrose IV fluid is used as a basic fluid to provide some calories and can also be used to administer
various drugs. It is also often used to prevent or treat dehydration. It is available in concentrations of
5%, 10%, and 25% where each 100 mL of sterile water contains 5.0 g, 10.0 g, and 25.0 g of dextrose,
respectively [235]. Similar to the request in Section 3.18, the materials are known, but a method to mix
the components, sterilize the solutions (e.g., open source autoclave), and contain them using low-cost,
widely accessible manufacturing methods needs further development.
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3.20. Hard-Frozen Gel Packs

There are a plethora of low-cost methods to fabricate frozen gel packs, which do not demand special
equipment, including filling a freezer or ziplock bag with (i) corn syrup, (ii) dish soap, (iii) combination
of vodka and water, (iv) diaper with water and alcohol, (v) salt water, (vi) loose change, (vii) sponge
with water, and (viii) rice grains [236]. The latter two methods can even utilize a cloth bag. Only modest
effort would be needed to identify the lowest-cost and most accessible materials for a given location.

3.21. Summary of Results

Table 1 summarizes the status of open source development of India’s top twenty requested medical
supplies and their method of manufacture of components during the COVID-19 pandemic. Most of these
medical supplies are for general medical use with 1 and 4 very specific to an airborne-based virus.
As can be seen from Table 1, whereas the majority (75%) of the actual medical products have had
some inroads into open source development, the methods of manufacture and the base materials
are 70% closed. For the core supplies or devices, forty percent are open source now and another
thirty-five percent are within range of being developed with a concentrated effort. On the other
hand, for the supporting technologies that make the open source device possible, only fifteen percent
have support.

Table 1. Summary of open source development status of India’s top 20 requested medical supplies and
their method of manufacture of components during the COVID-19 pandemic. Dark green indicates
FOSH completed, light green indicates FOSH with near full documentation, yellow means POS,
orange indicates some open source tools are available, but primary plans are closed, and red indicates
closed technologies.

Device OS Base Device Status OS Manufacture of
Components Status

1. Ventilators POS Closed
2. Alcohol based hand-rub FOSH FOSH
3. Face shield (eye, nose, and mouth protection) FOSH FOSH
4. N95 Masks FOSH Closed
5. Latex single use gloves (clinical) Closed Closed
6. Reusable vinyl/rubber gloves (cleaning) Closed Closed
7. Eye protection (visor/goggles) POS Closed
8. Protective gowns/aprons Closed Closed
9. Disposable thermometers Closed Closed
10. UV tube light for sterilization FOSH Closed
11. Medical masks (surgical/procedure) FOSH Closed
12. Detergent/Disinfectant FOSH FOSH
13. Single-use towels FOSH Closed
14. Biohazard bags FOSH POS
15. Wheelchair FOSH FOSH
16. Glucometer with strips FOSH POS
17. Medicine Closed Closed
18. IV Fluid-DNS FOSH Closed
19. IV Fluid-Dextrose FOSH Closed
20. Hard-frozen gel packs FOSH FOSH

4. Discussion

As the current pandemic has shown, our economy is fragile and dependent on a complex
web of business relationships that can be severely disrupted [42–45]. The industrial society can
borrow the concept of resilience from ecology [237] where a system persists in a state of equilibrium
even when the system is stressed. Due in part to the complexity of industrial society involving
unprecedented information and material exchanges, our supply chains and thus our entire society is
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sensitive to disruptive events [238]. Thus, just as individual companies are building resilient supply
chains [238–242], an industrial civilization needs to consider the benefits of resilience. Similarly, just as
individual enterprises are undertaking preventative actions to be more resilient in the face of a disruptive
event [243], so can the entire industrial base become more prepared and resilient. Preparedness capacity
in this context means being flexible and agile enough to anticipate the consequences of a pandemic
such as COVID-19 and promote the open source paradigm before the next pandemic occurrence.
Although disrupted manufacturing (closed commercial or open) would lead to a more resilient system
for the supply of needed products during a pandemic or other global disaster, open source distributed
manufacturing ensures the widest possible dispersion of fabrication knowledge and ability making for
the most resilient society. Only with open hardware can the largest possible number of fabricators that
could make the product be able to legally produce the product. In the same way, only if the designs
are shared open source before a pandemic can the knowledge be ensured to be available (e.g., a large
coronal mass ejection from a solar storm could greatly reduce global communication during the next
pandemic [244]). In addition, sharing designs ahead of a disaster can enable training of medical staff for
a new device to allow for it to be deployed, as in the current pandemic, training on new equipment was
also sometimes a barrier to deployment [245]. Thus, to ensure a resilient society, preventative actions
can take the form of ensuring a robust public health system [246,247], ensuring adequate food for the
population no matter the crisis by sharing information about alternative foods [248–250], and ensuring
supply chains for critical products through four techniques: (i) by developing a wide range of diverse
open source design solutions and sharing them, (ii) ensuring the society has the means to manufacture
them locally by protecting laboratories, makerspaces, and fabrication facilities during shelter in place,
(iii) streamlining regulatory processes so safe solutions can get to the public when they are needed,
and (iv) develop Good-Samaritan laws to protect those designing and making open hardware.

4.1. Diversity of Solutions Needed

The list of products requested by the Indian government during the COVID-19 pandemic can be
roughly regarded as in the order of perceived need. Therefore, open source designers could focus their
attention on the top of the list first to be most effective, while ensuring it is in areas they have experience
either in the specific supply, device, or the method of manufacture. This has certainly occurred
organically with request 1: an open source ventilator. Despite the massive efforts underway, however,
fully documented and tested systems that can be deployed and manufactured in a range of contexts
remain elusive (why and how to overcome this in the future will be discussed in Sections 4.2–4.4).
Open hardware designers should not stop their efforts as open designs are made available for the
specific project they are focusing upon. This is because having many methods of solving the problem
will ensure that these life-saving devices or supplies can be manufactured throughout the world.

A good example of this that has occurred in the past is with a technology further down on the list
of Indian’s priorities, number 35, which is the syringe pump. An open source syringe pump library was
developed that can be customized for any syringe using a scriptable CAD (OpenSCAD), 3-D printed
from waste plastic, and driven wirelessly with a Raspberry Pi [251] and open source software [252].
These and their variants (e.g., using an Arduino [253]) and other types of open source syringe pump
controllers have been developed [254] to allow for multi-syringe devices [255] or different sizes [256],
and to help different applications in biotech [237] and DNA labs [68], and those with feedback that
enable even more sophisticated control [257,258]. Ideally, such technical diversity could be realized for
all of the supplies and technologies needed to combat a pandemic.

Having a great diversity of solutions relying on different materials and approaches will ensure
the greatest possible coverage, because if only one approach is validated, the core components could
quickly become unavailable during a global pandemic, as all nations race to fabricate the devices for
their own populations. Whenever possible, these approaches should share a set of open safety testing
procedures to ensure that they can be used safely. In addition, as in the COVID-19 pandemic, shipping
and global supply chains can become disrupted, and thus being able to fabricate medical hardware
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from local supplies becomes important. Thus, whenever possible, open hardware designers of medical
equipment for pandemics should consider multiple approaches and tools for the fabrication of their
device, as well as alternate materials. This is particularly prescient with respect to materials. It should
be pointed out, not all of the materials are as advanced in their technical state for DRAM as plastic,
which was heavily favored as the solution for many of the requests shown in Table 1. Substantial effort
should be made to move open source DRAM for metals, ceramics, and semiconductors.

4.2. Protecting Laboratories, MakerSpaces, and Fabrication Facilities During ‘Shelter in Place’

Looking at the results in Table 1, the complexity of the requested device or supply does not
appear to be an indicator of a fully open source design. Supplies like gel packs that have frequent
home-based/consumer use have many solutions posted and tested by many all over the world.
These are simple to construct and have many substitutable materials. Even complex medical devices,
like a wheelchair, also have several designs, primarily because of the need in the developing world for
low-cost substitutes. Some simple supplies, however, like latex gloves, do not have available open
source solutions, nor complex devices like ventilators. These results can in part be explained by access
to technologies at home to fabricate them. Therefore, for example, numerous types of open source face
shields (Section 3.3) are available because they can be fabricated from readily available clear plastic
sheets and a simple print from a desktop 3-D printer. Open source fused-filament-based 3-D printers
are now widespread and there is a general ethos of sharing in the community as witnessed by the
exponentially growing number of free designs [78] in repositories like YouMagine, MyMiniFactory,
GrabCAD, Thingiverse, Cults, Pinshape, TurboSquid, Prusaprinters, CGTrader, 3DExport, Free3D,
and the NIH 3D Print Exchange. As people had these fabrication facilities available at home and access
to the plans on the Internet, it is now common for them to make face shields for their local hospitals.

Complex devices, however, which had not previously had substantial open hardware development
and that require facilities beyond the confines of a typical maker’s home, have been far more challenging
to complete than under normal circumstances. During a pandemic, many universities are closed first as
potential hosts of ‘super spreaders’, and after shelter in place orders are put in place, most makerspaces,
fab labs, machine shops, manufacturers, and university labs are shut. This limits innovation velocities.
Shelter in place that is necessary to slow the spread of the pandemic not only hampers development of
new technology, but can also slow manufacturing as more open hardware is designed, tested, vetted,
and approved for widespread deployment, and makers will need access to their equipment to make it.
In some cases, makers can get requisite permissions to use their facilities again as long as strict social
distancing rules are maintained [259]. To avoid this situation occurring in the future, however, policies
should be instituted to have mixed-use makerspaces. This means that whenever possible, superusers
or those that maintain the equipment in the various types of makerspaces should be ‘in residence’ or
facilities adapted to make them as such during a pandemic. Instituting such protocols varies in the
degree of challenge, depending on federal, state, and institutional rules and laws. As the risk to human
life to not have full access to fabrication and development equipment is large, efforts should be made
to adjust rules and laws to prepare for the next pandemic.

4.3. Streamline Regulatory Processes

Any medical equipment to be used on humans, even during a pandemic, must, to the greatest
extent possible, be proven to do more good than harm (and ideally no harm). Studies to enable medical
hardware to become approved by the medical authorities of most developed countries is complex.
For example, any studies involving testing on humans needs institutional review board (IRB) approval,
which alone could take months at the university level. For example, a recent study by Hall et al.
found the initial IRB review took two to four months, with expedited and exempt reviews requiring
less time with medians of 85 and 82 days, respectively [260]. The full board reviews had a median
of 131 days, but some went up to 296 days! This obviously is a major impediment to rapid research
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and development. During a pandemic, where, for example, there was an exponential rise of cases and
preventable death due to lack of supplies in Italy [261], any such lengthy delay is unacceptable.

If the device is to be used or manufactured in regulated areas, there are numerous challenges to
making medical devices [262]. For example, studies in the U.S. needed to enable open hardware to
be used clinically, would need an Investigational Device Exemption (IDE) to allow for a non-FDA
approved device. This is only a temporary approval and the complete device would need actual
FDA approval for legal deployment unless the laws are temporarily changed or suspended during
a pandemic. In the case of the U.S., the FDA has, for example, altered enforcement policies during
the pandemic [263] and made emergency use authorization (EUA) for a number of technologies [264],
both made in the U.S. and imported [265]. Similar regulatory roadblocks are in place in other nations
and would need to be removed/improved to have a clear method that allows for rapid response and
deployment of needed medical supplies and technologies during a pandemic.

4.4. Development of a Good-Samaritan Law for Protection of Makers and Designers of Open Source
Medical Hardware

During the current and potential future pandemics, there is a need to limit liability on the part
of the designers, makers, and users (e.g., medical professionals) of open source medical hardware.
Substantial future research is needed in this area, but one approach could be to expand Good-Samaritan
laws. In general, Good-Samaritan laws legally protect those who give reasonable assistance to others
whom they believe to be injured, ill, in peril, or otherwise incapacitated [266,267]. This legal protection
is intended to reduce barriers for one person to help another because of potential liability or prosecution
for unintended negative consequences. These types of protections are critical to reduce barriers to
companies and individuals to release all of their designs, which would allow others to replicate in
other locations. These laws can be instituted in such a way so as to provide as much protections as
possible for patients and their care givers from harm. This is challenging and will involve substantial
thought and careful implementation.

Laws could also directly help the release of documentation on known life-saving technology.
One way to do this is to use an expanded version of the Good-Samaritan laws. Often these laws
require people to aid others who are exposed to grave physical harm if there is no risk for the rescuer.
For example, in Finland, there is an explicit “general duty to act” and “engage in rescue activities
according to [one’s] abilities” [268]. Thus, the Finnish rules include a principle of proportionality,
which requires more of professionals than of laypersons. The Finnish Criminal Code section 15
(578/1995) stipulates “A person who knows that another is in mortal danger or serious danger to his
or her health, and does not give or procure such assistance that in view of his or her options and
the nature of the situation can reasonably be expected, shall be sentenced for neglect of rescue to
a fine or to imprisonment for at most six months.” Other European countries have similar laws like
Spain and France. When we apply this European logic to engineers and companies that design and
make medical equipment, the results are interesting. Such parties have knowledge that, if shared,
would save lives, and, if not shared (or not released with a usable open source license), there is
reasonable assurance that people will die unnecessarily. Is that ethically or morally defensible? If not,
it would appear that these designers and companies should be compelled to share the artificial construct
of ’intellectual property (IP)’ that would save others, and be held criminally liable for not doing so
under such legal logic. When analyzed in this way, the current global shortage of a wide range of
proprietary products call into question the entire IP system. It is intuitively obvious that if proprietary
designs were shared for the articles in Table 1, shortages would be reduced and lives would be saved.
Others might argue that without the IP protections in place, innovations may not have occurred.
There is a long-simmering debate in the literature on the efficacy of IP laws to even drive innovation at
all [31–35,269,270]. Many studies have concluded that the IP law simply gets in the way of innovation
in a wide range of fields and creates artificial (socially constructed) scarcity [31–35,177,271,272].
There are now well-established and successful business models based around open source technology
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(both software and hardware) [99,273–276], so the protests of intellectual property defenders grow
progressively more feeble, and the case for weakening patent rights is strong [277]. The shortage
of supplies and technologies analyzed in this study appear to support these claims. If widespread,
completely open source products, along with their methods of production, are available, shortages
are not. This hypothesis could be tested using the results of this study, as, for example, it would
appear that face shields will become less critical than N95 masks, despite the initial ranking from India,
because both the device and the method are open source and thus a wide array of makers can fabricate
them and make them available to the hospitals.

4.5. Require All Citizen Funded Research Be Released Freely under Open Source Licenses

As this review has shown, there is still considerable research needed to provide open source
paths for the development of all the medical hardware needed during a pandemic. It is clear that such
designs should be made open source so that everyone in the world can benefit from them. Including
both the core products and their components, nearly half of the list of evaluated needs for India are
closed and proprietary. Yet, much of the development of these technologies were funded by various
governments. This is a problem, because the IP system is centered on laws that exclude others from
using an invention. Is it tolerable for citizens to be excluded from using technologies they funded?

There are many examples of this particular problem, but perhaps the most egregious
currently-relevant example is the number 1 request of ventilators on the list from India for the COVID-19
pandemic. In the U.S., federal research money was invested in private companies to specifically develop
this life-saving technology to prepare for just such a pandemic as is occurring now [278]. Public funds
were given to a company, Newport, to create a low-cost ventilator, yet the project stalled as Newport
was acquired by Covidien, and no ventilators were ever delivered. Both “government officials and
executives at rival ventilator companies said they suspected that Covidien had acquired Newport
to prevent it from building a cheaper product that would undermine Covidien’s profits from its
existing ventilator business.” [278]. Then, Covidien was in turn purchased by Medtronic. Interestingly,
Medtronic just obtained a substantial amount of positive press for providing a temporary permissive
license for a ventilator (only during the pandemic) and providing design files [279]. This temporary
license may reduce deployment as decision makers weigh investing in devices they will not be able
to use after the crisis vs. investing in those they are legally able to use later. After inspection of the
initial release, although many files were included, both software and CAD files were not apparent.
This obviously limits the ability of anyone to replicate the device without Medtronic’s direct assistance.
Fortunately, Medtronic has now released all files and hopefully will help as many fabrication facilities
as possible to build their design until all of the global demand for ventilators is met. Or, they may not,
as they have already done more than all of the other ventilator vendors have to date. All of the other
commercial ventilator companies have this same choice. To prevent the lives of the world’s citizens
from being held ransom for the profits of such companies for any life-saving device or supply in the
future, all government-funded research could have a requirement for free and open source licensing.
This could be done similarly to how there are a growing number of science funders that demand open
access for the research they fund [280].

5. Conclusions

To prepare for the next pandemic and assist in solving critical shortages for the current COVID-19
pandemic, this study reviewed the readiness of the top twenty technologies requested by the
Government of India. The results show that the majority of the actual medical products have had some
open source development; however, only a tiny fraction of the supporting technologies were freely
available that make the open source device possible. The results show there is still considerable research
needed to provide open source paths for the development of all the medical hardware needed during
pandemics. The results of this investigation also show there are five core areas of future research needed
to provide the global community with an ‘open source’ insurance policy of a collection of vetted and
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tested freely available designs and methods of manufacture for needed medical technology. To enable
this potential source of increased security and resilience for the world, the technical development
of a wide range of open source solutions for all medical supplies and devices is needed. Policies
are needed to protect the productivity of laboratories, makerspaces, and fabrication facilities during
a pandemic to enable such products to be fabricated when the need arises. These products need to
be safe, but there is also a need for streamlining the regulatory process. Lawyers can help as well as
technologists by developing Good-Samaritan laws to protect makers, designers, and users of open
medical hardware, as well as to compel those with knowledge that will save lives to share it. Finally,
it is 2020 and all of the needed technologies are relatively well-known by scientists and engineers,
yet unavailable in the quantities needed. Requiring all citizen-funded research to be released with free
and open source licenses in the future will prevent such artificial scarcity from needlessly allowing
people to die.
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