30,176 research outputs found

    Design of a 7.5 kW Dual Active Bridge Converter in 650 V GaN Technology for Charging Applications

    Get PDF
    High-voltage GaN switches offer low conduction and commutation losses compared with their Si counterparts, enabling the development of high-efficiency switching-mode DC-DC converters with increased switching frequency, faster dynamics, and more compact dimensions. Nonetheless, the potential of GaN switches can be fully exploited only by means of accurate simulations, optimal switch driving, suitable converter topology, accurate component selection, PCB layout optimization, and fast digital converter control. This paper describes the detailed design, simulation, and implementation of an air-cooled, 7.5 kW, dual active bridge converter exploiting commercial 650 V GaN switches, a compact planar transformer, and low ESL/ESR metal film capacitors. The isolated bidirectional converter operates at a 200 kHz switching frequency, with an output voltage range of 200-500 V at nominal 400 V input voltage, and a maximum output current of 28 A, with a wide full-power ZVS region. The overall efficiency at full power is 98.2%. This converter was developed in particular for battery charging applications, when bidirectional power flow is required

    An Overview of HVDC Power Transmission System with Voltage Source Converter

    Get PDF
    A general platform is introduced to study thedynamics of power systems with high voltage dc (HVDC) transmission links. Small-signal stability, voltage stability, and interaction phenomena of power systems with both line-commutated-converter HVDC (LCC-HVDC) and voltage-source- converter HVDC (VSC-HVDC) are addressed using the proposed platform. In quest of high efficiency, power density and problems of bulk power transmission over long distance, requirement of full control over power transmission and growing interest to incorporate renewable energy source into the grid has led to develop a new era of high voltage direct current (HVDC) transmission system. The researchers have developed many new HVDC configurations and voltage source converter (VSC) based HVDC transmission is one of them. Their high efficiency, compact size, high reliability, short installation and commissioning period and low operating and maintenance cost make it suitable choice for HVDC transmission. The HVDC system with power converter acts as a backbone and provides high reliability with a long useful life to support the AC electrical system. The power conversion i.e. AC to DC or vice versa is achieved by controllable electronic switches in a 3-phase bridge configuration.The wide spread use of AC-DC converters for various applications has resulted in power quality pollution leading to failure of sensitive equipments, reduced efficiency, etc

    Current source for LED drivers based on a linear-assisted DC/DC regulator

    Get PDF
    This article presents a proposal of current source based on a linear-assisted DC/DC converter, in which a linear voltage regulator assists a switching DC/DC converter in order to obtain a compact circuit with advantages of both alternatives; i.e., high efficiency (similar to the switching converter), and low output ripple and fast reaction to the load changes (similar to the linear regulator). In order to reduce the power dissipation in the linear regulator, it is considered as an assisted circuit for providing just a little fraction of the load current. Furthermore, this stage provides the required clock signal for the switching counterpart, resulting in reduction of the complexity in the design of the control scheme for the switching converter and a compact topology, especially for on-chip practical implementations, since no output capacitors are required. This last advantage provides the possibility of obtaining goodperformance current-source drivers for LED technology in lighting applications. The implementation and results indicate that the proposed linear-assisted DC/DC regulator-based current source can achieve a notably compacting and higher performance, while consuming less power in comparison to linear alternatives.Peer ReviewedPostprint (published version

    Linear-assisted DC/DC regulator-based current source for LED drivers

    Get PDF
    © The Institution of Engineering and Technology 2016. A proposal of current source based on a linear-assisted DC/DC converter is presented, in which a linear voltage regulator assists a switching DC/DC converter in order to obtain a compact circuit with advantages of both alternatives; i.e. high efficiency (similar to the switching converter), and low output ripple and fast reaction to the load changes (similar to the linear regulator). To reduce the power dissipation in the linear regulator, it is considered as an assisted circuit for providing just a little fraction of the load current. Furthermore, this stage provides the required clock signal for the switching counterpart, resulting in reduction of the complexity in the design of the control scheme for the switching converter and a compact topology, especially for onchip practical implementations, since no output capacitors are required. This last advantage provides the possibility of obtaining good-performance current-source drivers for LED technology in lighting applications. The implementation and results indicate that the proposed linear-assisted DC/DC regulator-based current source can achieve a notably compacting and higher performance, while consuming less power in comparison to linear alternatives.Postprint (published version

    High Gain Magnetically Coupled Single Switch Quadratic Modified SEPIC DC-DC Converter

    Get PDF
    This article proposes, analyzes, and tests an improved high voltage gain dc-dc converter based on a single-ended primary-inductor converter (SEPIC). The proposed magnetically coupled quadratic modified SEPIC converter (MCQ-MSC) employs a coupled transformer with an optimized design to obtain a high voltage boost factor by controlling the transformer's turn ratio along with the switching duty cycle. Thanks to the unique structure of the coupled transformer, high voltage gain is obtained at low turns ratio, which is highly desirable for high voltage applications and the compact size of the converter. In addition to the coupled transformer, a voltage-boosting module is utilized to achieve a very high output voltage for a low switching duty cycle. The proposed inverter has a single switch with a wide control range of duty cycle (0<D<1), causing low conducting losses and high efficiency. Furthermore, a clamping circuit is successfully designed to remove the leakage inductance effects of the coupled transformer on the power switch. The proposed MCQ-MSC drains a continuous current from the input dc source, which makes it a suitable choice for renewable energy sources (RES). The hardware prototype of the proposed converter is tested to verify the mathematical expressions and theoretical results.acceptedVersionPeer reviewe

    Analysis and Design of Series LC Resonant-Pulse Assisted Soft-Switching Current-Fed DC/DC Converters

    Get PDF
    The accelerating pace of electrification via renewable energy sources is shifting focus towards de-carbonization and distributed generation with the potential to combat increasing environmental crisis and to promote sustainable development. Renewable technologies have the potential to fulfil the electricity demand locally which eliminates the unwanted conversion stages, promoting DC microgrid concept, ultimately lowering the energy costs and easy energy access. Alternative energy sources such as solar photovoltaic (PV) and fuel cell along with energy storage systems are promising for DC microgrid applications. However, the effective integration of these alternative energy sources still remains a challenge due to their low voltage output, unregulated and intermittent characteristics issuing a requirement of a dedicated power conditioning unit. To revolutionize the way these alternative sources are interfaced with a high voltage DC microgrid or to the conventional ac grid, dc/dc converters are expected to be power-dense, compact and extremely efficient. Current-fed dc/dc converters have strong application potential owing to their inherent merits. Accomplishing the abovementioned objectives together with distinct merits offered by current-fed circuits, this thesis aims to exploit the quasi-resonance concept for achieving soft-switching and smooth commutation of the semiconductor switching devices. The proposed quasi resonant approach that utilizes the leakage inductance of transformer and a high frequency series resonant capacitor for a short period also termed as ‘resonant-pulse’, has been investigated in various current-fed converter topologies. Proposed converter class emphasize on simple and efficient design, without the use of additional snubber circuits and eliminates device turn-off voltage spike, which is a historical problem with traditional current-fed converters. In this thesis, at first the proposed series resonant-pulse concept is implemented in single-phase current-fed push-pull and half-bridge configuration. The converter operation, control and performance are investigated for low voltage high current specifications. These converter configurations demonstrate good efficiency and compact structure with only two switching devices and simpler gate control requirement because devices having common ground with power supply. The idea has then been extended to modular current-fed full-bridge topology. The proposed series resonant-pulse assisted converter enables wide range ZCS and turn-off spike elimination across the semiconductor switches. Modularity of this converter allows easy scalability for high power and voltage levels with significantly lower current and voltage stress, making it suitable for relatively higher power industrial applications. Lastly, to achieve high power capability with high density, three-phase current sharing current-fed topology utilizing series resonant-pulse feature has been studied and investigated in detail. The proposed three-phase topology combines the benefits of current-sharing primary and load adaptive series resonant-pulse. As a result, these converters demonstrate promising attributes such as wide ZCS operation, reduced filtering requirement, lower component count, lower conduction losses etc

    A Dual-Supply Buck Converter with Improved Light-Load Efficiency

    Get PDF
    Power consumption and device size have been placed at the primary concerns for battery-operated portable applications. Switching converters gain popularity in powering portable devices due to their high efficiency, compact sizes and high current delivery capability. However portable devices usually operate at light loads most of the time and are only required to deliver high current in very short periods, while conventional buck converter suffers from low efficiency at light load due to the switching losses that do not scale with load current. In this research, a novel technique for buck converter is proposed to reduce the switching loss by reducing the effective voltage supply at light load. This buck converter, implemented in TSMC 0.18 micrometers CMOS technology, operates with a input voltage of 3.3V and generates an output voltage of 0.9V, delivers a load current from 1mA to 400mA, and achieves 54 percent ~ 91 percent power efficiency. It is designed to work with a constant switching frequency of 3MHz. Without sacrificing output frequency spectrum or output ripple, an efficiency improvement of up to 20 percent is obtained at light load

    SCARLET – A European Effort to Develop HTS and MgB2 Based MVDC Cables

    Get PDF
    Superconducting cables have been proven in a variety of pilot projects and utility installations, demonstrating several of their advantages, including compact size and low energy losses, which can make the technology economically attractive for certain applications. It is clear though that different applications impose different requirements and challenges, but also opportunities for the cables. An interesting application is high-power DC transfer at medium voltage (MVDC). The high-current capability of the superconductor allows for a reduction in voltage while maintaining or increasing the power transfer level. In this way, one MVDC superconducting cable can replace one or more conventional high-voltage DC cables. In the European project SCARLET (Superconducting cables for sustainable energy transition), two types of MVDC cables will be developed, one based on HTS and one on MgB2 materials. Additionally, protection requirements will be considered, including the development of a modular DC fault current limiter for 10 kA. A main motivation for the development is the elimination of costly high-voltage converter stations when going from high to medium voltage, e.g., for offshore wind power plants. Another feature is the combined hydrogen and electricity transmission from generation sites to industry or mobility end users. This paper describes the superconducting MVDC cable concept as well as the main challenges and research needed to develop and type test the cables.SCARLET – A European Effort to Develop HTS and MgB2 Based MVDC CablesacceptedVersio

    Low-power transcutaneous current stimulator for wearable applications

    Get PDF
    BACKGROUND: Peripheral neuropathic desensitization associated with aging, diabetes, alcoholism and HIV/AIDS, affects tens of millions of people worldwide, and there is little or no treatment available to improve sensory function. Recent studies that apply imperceptible continuous vibration or electrical stimulation have shown promise in improving sensitivity in both diseased and healthy participants. This class of interventions only has an effect during application, necessitating the design of a wearable device for everyday use. We present a circuit that allows for a low-power, low-cost and small form factor implementation of a current stimulator for the continuous application of subthreshold currents. RESULTS: This circuit acts as a voltage-to-current converter and has been tested to drive + 1 to - 1 mA into a 60 k[Formula: see text] load from DC to 1 kHz. Driving a 60 k[Formula: see text] load with a 2 mA peak-to-peak 1 kHz sinusoid, the circuit draws less than 21 mA from a 9 V source. The minimum operating current of the circuit is less than 12 mA. Voltage compliance is ± 60 V with just 1.02 mA drawn by the high voltage current drive circuitry. The circuit was implemented as a compact 46 mm × 21 mm two-layer PCB highlighting its potential for use in a body-worn device. CONCLUSIONS: No design to the best of our knowledge presents comparably low quiescent power with such high voltage compliance. This makes the design uniquely appropriate for low-power transcutaneous current stimulation in wearable applications. Further development of driving and instrumentation circuitry is recommended

    Hybrid monolithic integration of high-power DC-DC converters in a high-voltage technology

    Get PDF
    The supply of electrical energy to home, commercial, and industrial users has become ubiquitous, and it is hard to imagine a world without the facilities provided by electrical energy. Despite the ever increasing efficiency of nearly every electrical application, the worldwide demand for electrical power continues to increase, since the number of users and applications more than compensates for these technological improvements. In order to maintain the affordability and feasibility of the total production, it is essential for the distribution of the produced electrical energy to be as efficient as possible. In other words the loss in the power distribution is to be minimized. By transporting electrical energy at the maximum safe voltage, the current in the conductors, and the associated conduction loss can remain as low as possible. In order to optimize the total efficiency, the high transportation voltage needs to be converted to the appropriate lower voltage as close as possible to the end user. Obviously, this conversion also needs to be as efficient, affordable, and compact as possible. Because of the ever increasing integration of electronic systems, where more and more functionality is combined in monolithically integrated circuits, the cost, the power consumption, and the size of these electronic systems can be greatly reduced. This thorough integration is not limited to the electronic systems that are the end users of the electrical energy, but can also be applied to the power conversion itself. In most modern applications, the voltage conversion is implemented as a switching DC-DC converter, in which electrical energy is temporarily stored in reactive elements, i.e. inductors or capacitors. High switching speeds are used to allow for a compact and efficient implementation. For low power levels, typically below 1 Watt, it is possible to monolithically implement the voltage conversion on an integrated circuit. In some cases, this is even done on the same integrated circuit that is the end user of the electrical energy to minimize the system dimensions. For higher power levels, it is no longer feasible to achieve the desired efficiency with monolithically integrated components, and some external components prove indispensable. Usually, the reactive components are the main limiting factor, and are the first components to be moved away from the integrated circuit for increasing power levels. The semiconductor components, including the power transistors, remain part of the integrated circuit. Using this hybrid approach, it is possible in modern converterapplications to process around 60 Watt, albeit limited to voltages of a few Volt. For hybrid integrated converters with an output voltage of tens of Volt, the power is limited to approximately 10 Watt. For even higher power levels, the integrated power transistors also become a limiting factor, and are replaced with discrete power devices. In these discrete converters, greatly increased power levels become possible, although the system size rapidly increases. In this work, the limits of the hybrid approach are explored when using so-called smart-power technologies. Smart-power technologies are standard lowcost submicron CMOS technologies that are complemented with a number of integrated high-voltage devices. By using an appropriate combination of smart-power technologies and circuit topologies, it is possible to improve on the current state-of-the-art converters, by optimizing the size, the cost, and the efficiency. To determine the limits of smart-power DC-DC converters, we first discuss the major contributing factors for an efficient energy distribution, and take a look at the role of voltage conversion in the energy distribution. Considering the limitations of the technologies and the potential application areas, we define two test-cases in the telecommunications sector for which we want to optimize the hybrid monolithic integration in a smart-power technology. Subsequently, we explore the specifications of an ideal converter, and the relevant properties of the affordable smart-power technologies for the implementation of DC-DC converters. Taking into account the limitations of these technologies, we define a cost function that allows to systematically evaluate the different potential converter topologies, without having to perform a full design cycle for each topology. From this cost function, we notice that the de facto default topology selection in discrete converters, which is typically based on output power, is not optimal for converters with integrated power transistors. Based on the cost function and the boundary conditions of our test-cases, we determine the optimal topology for a smart-power implementation of these applications. Then, we take another step towards the real world and evaluate the influence of parasitic elements in a smart-power implementation of switching converters. It is noticed that the voltage overshoot caused by the transformer secondary side leakage inductance is a major roadblock for an efficient implementation. Since the usual approach to this voltage overshoot in discrete converters is not applicable in smart-power converters due to technological limitations, an alternative approach is shown and implemented. The energy from the voltage overshoot is absorbed and transferred to the output of the converter. This allows for a significant reduction in the voltage overshoot, while maintaining a high efficiency, leading to an efficient, compact, and low-cost implementation. The effectiveness of this approach was tested and demonstrated in both a version using a commercially available integrated circuit, and our own implementation in a smart-power integrated circuit. Finally, we also take a look at the optimization of switching converters over the load range by exploiting the capabilities of highly integrated converters. Although the maximum output power remains one of the defining characteristics of converters, it has been shown that most converters spend a majority of their lifetime delivering significantly lower output power. Therefore, it is also desirable to optimize the efficiency of the converter at reduced output current and output power. By splitting the power transistors in multiple independent segments, which are turned on or off in function of the current, the efficiency at low currents can be significantly improved, without introducing undesirable frequency components in the output voltage, and without harming the efficiency at higher currents. These properties allow a near universal application of the optimization technique in hybrid monolithic DC-DC converter applications, without significant impact on the complexity and the cost of the system. This approach for the optimization of switching converters over the load range was demonstrated using a boost converter with discrete power transistors. The demonstration of our smart-power implementation was limited to simulations due to an issue with a digital control block. On a finishing note, we formulate the general conclusions and provide an outlook on potential future work based on this research
    • …
    corecore