289 research outputs found

    04171 Abstracts Collection -- Logic Based Information Agents

    Get PDF
    From 18.04.04 to 23.04.04, the Dagstuhl Seminar 04171 ``Logic Based Information Agents\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. During the seminar, several participants presented their current research, and ongoing work and open problems were discussed. Abstracts of the presentations given during the seminar as well as abstracts of seminar results and ideas are put together in this paper. The first section describes the seminar topics and goals in general. Links to extended abstracts or full papers are provided, if available

    Energy resource scheduling in a smart microgrid neighbourhood

    Get PDF
    This project consists of the case study of a smart microgrid district in a spanish town. The smart energy microgrid district consists of several households and a public use building (school) that includes renewable energy sources (photovoltaic), li-ion batteries for electric energy storage, domestic hot water heaters acting as thermal energy storage, a pool for balancing energy consumptions and supplies, and the connection to the electric grid. The problem has been modelled as a non-linear mathematical programming model that is linearly approximated using special ordered sets of type 2. The linear approximation is solved using Gurobi optimization software providing close-to-the-optimum solutions within an interval of 15 minutes that allows near real time operation of the smart energy district. The obtained results allow to advance within the net zero energy neighbourhood concept in all the evaluated scenarios within a daily horizon, and a positive energy balance in wider horizons. Even if these results are obtained in part due to the magnificent insolation conditions of this particular town, they allow to justify that the appropriate use of renewable energy resources, energy storage systems together with balancing mechanism at district level (as the pool in our case study) may lead to nearly net zero energy neighbourhood in other geographical locations too.Universidad de Sevilla. Máster en Organización Industrial y Gestión de Empresa

    Control and Optimization of Energy Storage in AC and DC Power Grids

    Get PDF
    Energy storage attracts attention nowadays due to the critical role it will play in the power generation and transportation sectors. Electric vehicles, as moving energy storage, are going to play a key role in the terrestrial transportation sector and help reduce greenhouse emissions. Bulk hybrid energy storage will play another critical role for feeding the new types of pulsed loads on ship power systems. However, to ensure the successful adoption of energy storage, there is a need to control and optimize the charging/discharging process, taking into consideration the customer preferences and the technical aspects. In this dissertation, novel control and optimization algorithms are developed and presented to address the various challenges that arise with the adoption of energy storage in the electricity and transportation sectors. Different decentralized control algorithms are proposed to manage the charging of a mass number of electric vehicles connected to different points of charging in the power distribution system. The different algorithms successfully satisfy the preferences of the customers without negatively impacting the technical constraints of the power grid. The developed algorithms were experimentally verified at the Energy Systems Research Laboratory at FIU. In addition to the charge control of electric vehicles, the optimal allocation and sizing of commercial parking lots are considered. A bi-layer Pareto multi-objective optimization problem is formulated to optimally allocate and size a commercial parking lot. The optimization formulation tries to maximize the profits of the parking lot investor, as well as minimize the losses and voltage deviations for the distribution system operator. Sensitivity analysis to show the effect of the different objectives on the selection of the optimal size and location is also performed. Furthermore, in this dissertation, energy management strategies of the onboard hybrid energy storage for a medium voltage direct current (MVDC) ship power system are developed. The objectives of the management strategies were to maintain the voltage of the MVDC bus, ensure proper power sharing, and ensure proper use of resources, where supercapacitors are used during the transient periods and batteries are used during the steady state periods. The management strategies were successfully validated through hardware in the loop simulation

    Elastic bundles :modelling and architecting asynchronous circuits with granular rigidity

    Get PDF
    PhD ThesisIntegrated Circuit (IC) designs these days are predominantly System-on-Chips (SoCs). The complexity of designing a SoC has increased rapidly over the years due to growing process and environmental variations coupled with global clock distribution di culty. Moreover, traditional synchronous design is not apt to handle the heterogeneous timing nature of modern SoCs. As a countermeasure, the semiconductor industry witnessed a strong revival of asynchronous design principles. A new paradigm of digital circuits emerged, as a result, namely mixed synchronous-asynchronous circuits. With a wave of recent innovations in synchronous-asynchronous CAD integration, this paradigm is showing signs of commercial adoption in future SoCs mainly due to the scope for reuse of synchronous functional blocks and IP cores, and the co-existence of synchronous and asynchronous design styles in a common EDA framework. However, there is a lack of formal methods and tools to facilitate mixed synchronousasynchronous design. In this thesis, we propose a formal model based on Petri nets with step semantics to describe these circuits behaviourally. Implication of this model in the veri cation and synthesis of mixed synchronous-asynchronous circuits is studied. Till date, this paradigm has been mainly explored on the basis of Globally Asynchronous Locally Synchronous (GALS) systems. Despite decades of research, GALS design has failed to gain traction commercially. To understand its drawbacks, a simulation framework characterising the physical and functional aspects of GALS SoCs is presented. A novel method for synthesising mixed synchronous-asynchronous circuits with varying levels of rigidity is proposed. Starting with a high-level data ow model of a system which is intrinsically asynchronous, the key idea is to introduce rigidity of chosen granularity levels in the model without changing functional behaviour. The system is then partitioned into functional blocks of synchronous and asynchronous elements before being transformed into an equivalent circuit which can be synthesised using standard EDA tools

    Multi-Softcore Architecture on FPGA

    Get PDF
    To meet the high performance demands of embedded multimedia applications, embedded systems are integrating multiple processing units. However, they are mostly based on custom-logic design methodology. Designing parallel multicore systems using available standards intellectual properties yet maintaining high performance is also a challenging issue. Softcore processors and field programmable gate arrays (FPGAs) are a cheap and fast option to develop and test such systems. This paper describes a FPGA-based design methodology to implement a rapid prototype of parametric multicore systems. A study of the viability of making the SoC using the NIOS II soft-processor core from Altera is also presented. The NIOS II features a general-purpose RISC CPU architecture designed to address a wide range of applications. The performance of the implemented architecture is discussed, and also some parallel applications are used for testing speedup and efficiency of the system. Experimental results demonstrate the performance of the proposed multicore system, which achieves better speedup than the GPU (29.5% faster for the FIR filter and 23.6% faster for the matrix-matrix multiplication)

    Low-Power Embedded Design Solutions and Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design

    Get PDF
    This dissertation presents three design solutions to support several key system-on-chip (SoC) issues to achieve low-power and high performance. These are: 1) joint source and channel decoding (JSCD) schemes for low-power SoCs used in portable multimedia systems, 2) efficient on-chip interconnect architecture for massive multimedia data streaming on multiprocessor SoCs (MPSoCs), and 3) data processing architecture for low-power SoCs in distributed sensor network (DSS) systems and its implementation. The first part includes a low-power embedded low density parity check code (LDPC) - H.264 joint decoding architecture to lower the baseband energy consumption of a channel decoder using joint source decoding and dynamic voltage and frequency scaling (DVFS). A low-power multiple-input multiple-output (MIMO) and H.264 video joint detector/decoder design that minimizes energy for portable, wireless embedded systems is also designed. In the second part, a link-level quality of service (QoS) scheme using unequal error protection (UEP) for low-power network-on-chip (NoC) and low latency on-chip network designs for MPSoCs is proposed. This part contains WaveSync, a low-latency focused network-on-chip architecture for globally-asynchronous locally-synchronous (GALS) designs and a simultaneous dual-path routing (SDPR) scheme utilizing path diversity present in typical mesh topology network-on-chips. SDPR is akin to having a higher link width but without the significant hardware overhead associated with simple bus width scaling. The last part shows data processing unit designs for embedded SoCs. We propose a data processing and control logic design for a new radiation detection sensor system generating data at or above Peta-bits-per-second level. Implementation results show that the intended clock rate is achieved within the power target of less than 200mW. We also present a digital signal processing (DSP) accelerator supporting configurable MAC, FFT, FIR, and 3-D cross product operations for embedded SoCs. It consumes 12.35mW along with 0.167mm2 area at 333MHz

    Learning from safety science: A way forward for studying cybersecurity incidents in organizations

    Full text link
    In the aftermath of cybersecurity incidents within organizations, explanations of their causes often revolve around isolated technical or human events such as an Advanced Persistent Threat or a “bad click by an employee.” These explanations serve to identify the responsible parties and inform efforts to improve security measures. However, safety science researchers have long been aware that explaining incidents in socio-technical systems and determining the role of humans and technology in incidents is not an objective procedure but rather an act of social constructivism: what you look for is what you find, and what you find is what you fix. For example, the search for a technical “root cause” of an incident might likely result in a technical fix, while from a sociological perspective, cultural issues might be blamed for the same incident and subsequently lead to the improvement of the security culture. Starting from the insights of safety science, this paper aims to extract lessons on what general explanations for cybersecurity incidents can be identified and what methods can be used to study causes of cybersecurity incidents in organizations. We provide a framework that allows researchers and practitioners to proactively select models and methods for the investigation of cybersecurity incidents

    On Energy Efficient Computing Platforms

    Get PDF
    In accordance with the Moore's law, the increasing number of on-chip integrated transistors has enabled modern computing platforms with not only higher processing power but also more affordable prices. As a result, these platforms, including portable devices, work stations and data centres, are becoming an inevitable part of the human society. However, with the demand for portability and raising cost of power, energy efficiency has emerged to be a major concern for modern computing platforms. As the complexity of on-chip systems increases, Network-on-Chip (NoC) has been proved as an efficient communication architecture which can further improve system performances and scalability while reducing the design cost. Therefore, in this thesis, we study and propose energy optimization approaches based on NoC architecture, with special focuses on the following aspects. As the architectural trend of future computing platforms, 3D systems have many bene ts including higher integration density, smaller footprint, heterogeneous integration, etc. Moreover, 3D technology can signi cantly improve the network communication and effectively avoid long wirings, and therefore, provide higher system performance and energy efficiency. With the dynamic nature of on-chip communication in large scale NoC based systems, run-time system optimization is of crucial importance in order to achieve higher system reliability and essentially energy efficiency. In this thesis, we propose an agent based system design approach where agents are on-chip components which monitor and control system parameters such as supply voltage, operating frequency, etc. With this approach, we have analysed the implementation alternatives for dynamic voltage and frequency scaling and power gating techniques at different granularity, which reduce both dynamic and leakage energy consumption. Topologies, being one of the key factors for NoCs, are also explored for energy saving purpose. A Honeycomb NoC architecture is proposed in this thesis with turn-model based deadlock-free routing algorithms. Our analysis and simulation based evaluation show that Honeycomb NoCs outperform their Mesh based counterparts in terms of network cost, system performance as well as energy efficiency.Siirretty Doriast

    Charging electric vehicles in the smart city: A survey of economy-driven approaches

    Get PDF
    International audienceElectric vehicles (EVs), as their penetration increases, do not only challenge the sustainability of the power grid but also stimulate and promote its upgrading. Indeed, EVs can actively reinforce the development of the smart grid if their charging processes are properly coordinated through two-way communications, possibly benefiting all types of actors. Because grid systems involve a large number of actors with nonaligned objectives, we focus on the economic and incentive aspects, where each actor behaves in its own interest. We indeed believe that the market structure will directly impact the actors' behaviors, and as a result, the total benefits that the presence of EVs can earn in the society, hence the need for a careful design. This survey provides an overview of economic models considering unidirectional energy flows and bidirectional energy flows, i.e., with EVs temporarily providing energy to the grid. We describe and compare the main approaches, summarize the requirements on the supporting communication systems, and propose a classification to highlight the most important results and lacks
    corecore