LOW-POWER EMBEDDED DESIGN SOLUTIONS AND LOW-LATENCY ON-CHIP
INTERCONNECT ARCHITECTURE FOR SYSTEM-ON-CHIP DESIGN

A Dissertation
by
YOON SEOK YANG

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2012

Major Subject: Computer Engineering

LOW-POWER EMBEDDED DESIGN SOLUTIONS AND LOW-LATENCY ON-CHIP
INTERCONNECT ARCHITECTURE FOR SYSTEM-ON-CHIP DESIGN

A Dissertation
by
YOON SEOK YANG

Submitted to the Office of Graduate Studies of
Texas A&M University
in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, = Gwan S. Choi
Committee Members, Paul V. Gratz

Laszlo B. Kish

Vivek Sarin
Head of Department, Costas N. Georphiades

August 2012

Major Subject: Computer Engineering

il

ABSTRACT

Low-Power Embedded Design Solutions and Low-Latency On-Chip Interconnect
Architecture for System-On-Chip Design. (August 2012)
Yoon Seok Yang, B.S., Hanyang University;
M.S., University of California, Irvine

Chair of Advisory Committee: Dr. Gwan S. Choi

This dissertation presents three design solutions to support several key system-on-
chip (SoC) issues to achieve low-power and high performance. These are: 1) joint source
and channel decoding (JSCD) schemes for low-power SoCs used in portable multimedia
systems, 2) efficient on-chip interconnect architecture for massive multimedia data stream-
ing on multiprocessor SoCs (MPSoCs), and 3) data processing architecture for low-power
SoCs in distributed sensor network (DSS) systems and its implementation.

The first part includes a low-power embedded low density parity check code (LDPC)-
H.264 joint decoding architecture to lower the baseband energy consumption of a channel
decoder using joint source decoding and dynamic voltage and frequency scaling (DVES). A
low-power multiple-input multiple-output (MIMO) and H.264 video joint detector/decoder
design that minimizes energy for portable, wireless embedded systems is also designed.

In the second part, a link-level quality of service (QoS) scheme using unequal error
protection (UEP) for low-power network-on-chip (NoC) and low latency on-chip network
designs for MPSoCs is proposed. This part contains WaveSync, a low-latency focused
network-on-chip architecture for globally-asynchronous locally-synchronous (GALS) de-
signs and a simultaneous dual-path routing (SDPR) scheme utilizing path diversity present
in typical mesh topology network-on-chips. SDPR is akin to having a higher link width but
without the significant hardware overhead associated with simple bus width scaling.

The last part shows data processing unit designs for embedded SoCs. We propose

v

a data processing and control logic design for a new radiation detection sensor system
generating data at or above Peta-bits-per-second level. Implementation results show that
the intended clock rate is achieved within the power target of less than 200mW. We also
present a digital signal processing (DSP) accelerator supporting configurable MAC, FFT,
FIR, and 3-D cross product operations for embedded SoCs. It consumes 12.35mW along

with 0.167mm? area at 333MHz.

To my family

Vi

ACKNOWLEDGMENTS

I would like to first and foremost thank my advisor Dr. Gwan S. Choi for his advice
and direction in my PhD research. I sincerely appreciate his consistent encourage and
support during the period of my studies. I also thank my committee members including
Dr. Paul V. Gratz, Dr. Laszlo B. Kish and Dr. Vivek Sarin for their valuable suggestions,
comments, and advices on all aspects of my research. My thanks also go to other students
in Dr. Chot’s group including Pankaj Bhagawat, Reeshav Kumar, Hrishikesh Deshpande,
Ehsan Rohani, Jingwei Xu, and Wil Bassett for their valuable discussion on research with
me and help during my Ph.D. study.

I thank my friends in College Station: Kyu-Nam Shim, Yun-Bum Jung, Yong-Ho
Lee, Yong-Tae Kim, and Jung-Kyu Lee and their family for giving me countless assistant
during my Ph.D. study and making my life happy and joyful. I also thank MaGee’s family
(Russell, Karmen, Molly, Besty, Hayley and Matthew) for supporting my life in College
Station. They have supported me a lot to make my stay here worthwhile. I thank my Bible
study members, Thomas, Rachel, Derick, and Callie, too.

I would like to give heartfelt thanks to my parents, sisters and brothers in low for their
selfless love, trust, and support. I thank my wife, Won-Hee Kim, with all my heart for her

endless love, support, patience and encouragement.

TABLE OF CONTENTS

CHAPTER

I INTRODUCTION oo

A. Joint Source Channel Decoding Method for Low-Power
Portable and Wireless SoC Systems
B. Low-Latency On-Chip Interconnect Architecture for System-
On-ChipDesign
C. Data Processing Accelerator Architecture for Low-Power
SoCs in Distributed Sensor Network Systems

II JOINT SOURCE CHANNEL DECODING METHOD FOR LOW-
POWER PORTABLE AND WIRELESS SOC SYSTEMS

A. Joint Source Channel Decoding Method Using Unequal
Error Protection and LDPC Check Error Levels
1. Background: H.264 Unequal Error Protection and
LDPC Channel Decoding
a. H264 VideoCoding
b. LDPCCoding
2. Proposed Low-Power JSCD Scheme Using DVES
a. RuntimeProcess
b. Low-Power JSCD Implementation
3. Results and Discussion
a. Simulation Environment
b. SimulationResults
B. Optimal Configuration Search Method for Low-Power Chan-
nel Decoder in Embedded LDPC-H.264 Joint Decoding
Architecture Lo
1. Proposed Optimal Configuration Search Method
a. Overview of the proposed search scheme
b. Coarse binary search process
c. Fine search process using the UEP scheme
2. Energy Minimization Using DVFS
3. Resultsand Discussion

CHAPTER

C. Optimal Configuration Search Method for Low-Power MIMO
Detector in Embedded MIMO-H.264 Joint Decoding Ar-
chitecture

1. Background: MIMO Detection
2. The Proposed Low-Power MIMO-H.264 Joint De-
coderDesign
a. Coarse Search Process
b. Refining the Coarse Search Using UEP
3. Results and Discussion
D. Conclusionso

I LOW-LATENCY ON-CHIP INTERCONNECT ARCHITECTURE
FOR SYSTEM-ON-CHIP DESIGN

A. Link-Level QoS for Low-Power On-Chip Network
1. TransSync-RecSync Technique
2. UEP with TransSync-RecSynconNoC
3. Resultsand Discussion
a. Simulation Environment
b. UEPResults
B. WaveSync: Low-Latency Source Synchronous Bypass Network-
On-Chip Architecture
I. WaveSyncDesign
a. Clock Distribution
b. Router Microarchitecture
c. De-skewer for suppressing intra-flit skew on links

d. Synchronizer architecture for half cycle synchro-
nization latency
2. Experiments and Evaluation
a. Simulation methodology
b. Synthetic workloads
c. Realisticworkloads
3. Design Implementation

C. SDPR: Exploiting Path Diversity for Low-Latency through
Simultaneous Dual Path Routing
I. RelatedWork
2. Dual-Path Network Architecture
a. Dual-Path Routing Scheme
b. Network Adapter.

viil

Page

CHAPTER

c. BaselineRouter

d. SDPRRouter.

3. Experiments and Evaluation

a. Methodology

b. Results

c. Discussion,

4. SynthesisResults

D. Conclusions

v DATA PROCESSING ACCELERATOR ARCHITECTURE FOR
LOW-POWER SOCS IN DISTRIBUTED SENSOR NETWORK
SYSTEMS o

A. Data Processing Logic for Stacked Wafer-Scale CMOS
Radiation Sensor Network
1. DataProcessing Logic
a. Overall Architecture of Data Processing Unit
b. Proposed Data Compression Algorithm
c. Data Compression Unit
2. On-chip Router Design
3. Experiments
B. DSP Accelerator for Low-Power Sensor Hub SoCs
1. Background: DSP Algorithms
a. VectorDotProduct.
b. 3-Dimensional Cross Product
c. Fast Fourier Transform (FFT)
2. DSP Accelerator Features
3. DSP Accelerator Architecture
a. Address generate unit (AGU)
Data pathunit (DPU)
Controlunit (CU)
Command memory
Control register
Status register
Address registerandmap

R

Pipeline architecture
4. DSP Accelerator Operations
a. 16-/32-BitMACs
b. 8-/16-/32-Bit Cross Product

X

CHAPTER Page
c. FIROperation 148

d. FFT Operation

5. ExperimentResults 158

C. Conclusions i 164

A% CONCLUSIONS s e 165
REFERENCES e 167

LIST OF TABLES

TABLE
I H.264 data partition and prioritization
II Check error level for each errorscope
111 Parameters of sub-iterations (I2erg,ror jevel Priority) « « « « « « « « « o o .
v H.264 encoder parameters and configuration
\% Distributions of priority partitions in test video streams, Foreman,
Akiyo,and Mobileo o
VI Check error threshold values (cH”) used in the simulation
VII The number of sub-iterations used in the simulation

VIII Sub-iterations vs. voltage/frequence for DVES

IX Simulation results of the UEP Case3 on Foreman, Akiyo, and Mobile . . .
X Synthesis results of LDPC decoder and DVFES controller
XI Simulation results at 3.5, 3.6 and 3.7dB. It shows LDPC configuration

sets achieved from the coarse search and the fine search. E, represents
the energy consumption ratio of UEP over EEP,,, where n is the num-
berof iterations. Lo

X1II Synthesis results of MIMO detector using 45nm CMOS predictive
standard cell libraryo oo

X1 Simulation results at 22dB and 24dB SNRs. It shows the sets of
MIMO configurations resulted in the coarse binary search (BS) and
the fine search refining the binary search result (BFS). The percentage
value of normalized energy reduction (ER) was calculated by Eqn. (2.21). .

X1V Protection schemes employed on links with data partitions for differ-
ent UEP configurations studied

Xii

TABLE Page

XV Flit structure e 81

XVI Synthesis results of the WaveSync router @ 1GHz. Clock power de-
notes clock tree power per node (mW). CDP stands for clock distri-
bution power. 89|

XVII Distribution of dual path node pairs and serialization latency reduction

inSDPRwhere N=7 98
XVIII Packet structure for the SDPRrouter 102
XX H.264 videotraces 106
XXI A summary of average latency reductions on long packet traffic and

closeness to ideal latency reductions under SDPR on a 7x7 mesh NoC . .
XXII Resolution and detection bits 122

XXII Synthesis results of the data processing logic and baseline router at 1IGHz . [128]
XXIV DSP accelerator features [133]

XXV Execution cycles of the DSP accelerator operations, Cgp is command
fetch and decode cycles, P,,.mq4 1s pipeline delay cycles in normal
mode not including FFT, Prrr is pipeline delay cycles in FFT mode.
Crp=1 cycle, P,yma=2 cycles, Prrr=3 cycles in the DSP accelerator. . . [15§]

XXVI Comparison of the 256-point complex FFT performance (radix-2) to
other DSPs [L61]

XXVII Synthesis results using TSMC 65GS technology 163

FIGURE

10

11

12

13

14

15

16

17

LIST OF FIGURES

Xiil

Page
Variable supply voltage logic
Proposed joint source-channel decoding scheme 4
Performance scheduling for energy reduction
An example of (d;,d,) = (3,2) regular LDPC
DVFEScontroller 26
The proposed joint source-channel decoder Architecture 28]
Probability density function of number of check errors 31
Distributions of decoding sub-iterations for different number of check errors
BER performance comparison in between the five cases of check error
threshold configurations and the fixed-iteration scheme on Foreman [34
PSNR performance comparison in between UEP Case3 and the fixed-
iteration scheme on Foreman, Akiyo, and Mobile
Energy reduction (%) of the UEP-LDPC decoder on Foreman 36|
Energy reduction (%) of the UEP-H.264 decoder on Foreman
Energy reduction (%) of the UEP joint source channel decoder on
Foreman, Akiyo,and Mobile 38
Power consumption (UW) of the UEP decoder on Foreman, Akiyo,
andMobile 39
The proposed UEP-based joint decoderdesign 41l
Coarse searchmethod 42]

DVES controller for LDPC decoder

Xiv

FIGURE Page
18 BER performance of the LDPCdecoder
19 Iterations vs. supply voltage 48]
20 (a) Coarse search results, (b) coarse and fine search results, and (c)

comparisons of energy consumption ratio in foreman at 3.5, 3.6, and

37dBSNRS e
21 Energy scalable MIMO with variable detection effort 54
22 MIMO architecture 53
24 MIMO energy vs. BER performance: The more energy is needed for

thelower BER.. 60]
26 Simulation setup for evaluating the quality of reconstructed frames

with different protection schemesonlinks 69)
27 Merit of different protection schemes on 2mm long link wires
28 Merit of different protection schemes on 3mm long link wires [71]
29 Results for 2mm long link wires for the UEP schemes analyzed
30 Results for 3mm long link wires for the UEP schemes analyzed
31 Typical GALS clocking scheme on 4x4 meshNoC
33 (a) WaveSync router top block and (b-c) north and east clock domain

netsin WaveSync Lo /9]
34 (a) Microarchitecture of north, south, and west output submodules

and (b) microarchitecture of east output submodule including a virtual

channel for deadlock avoidance 80)
35 Flit format in WaveSync and source route decoding using a shifter logic . [82]
36 Proposed synchronizer: (a) schematic of the proposed synchronizer,

(b) selection logic for the proposed synchronizer 84

XV

FIGURE Page

37 Simulation results of synthetic traffic patterns (a) uniform, (b) trans-
pose, and (c) complement on fully synchronous router (FS), baseline
GALS (BG), ABC, WaveSync with BIFIFO (WB), and WaveSync
with our synchronizer (WS) 30)

38 Normalized latency results of SPLASH-2 realistic traffic patterns (RT:
Raytrace, WN:Water-nsquared, WS:Water-spatial, AVG:total average)

on FS, BG, ABC,WB,and WS RS
39 Dual-path routing on a 4x4 NoC system 92|
41 Network adapter architecture for packet splitting 99)
42 Microarchitectures of (a) baseline (i.e. single-path) router with two

virtual channels and (b) SDPR router with one virtual channel for each

XY or YX DOR. They exploit equivalent resources in terms of total

number of buffersused.o 100
43 Packet structure for the SDPRrouter (101l
44 QCIF and CIF frame resolutions on Akiyo [104]
45 Results of synthetic long length packets (average packet length=100) . . . [107l
46 Results of synthetic medium length packets (average packet length=25) . .
47 Results of synthetic short length packets (average packet length=3.5) . . . [108
52 Overview of the proposed radiation detection sensor system 120
53 Data compression scheme
55 Generating new address and resolution outputs using address and res-

olution inputs created in the previous pipeline stage 126
56 Baselinerouter 127
57 Micro-controller, DSP accelerator and data memory interface in the

proposed sensor hubSoC oo

58 DSP accelerator architecture [134]

FIGURE

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

Interface with uCon

Configurations of command, control and status registers

32-bit address registers for the DSP accelerator. ADDR_1, 2, 3 rep-

resent addresses for channel 1,2,3 respectively.
Addressmap

Pipeline architecture in the DSP accelerator

Pipeline stalls when AHB ready signals for read/write channels are

notready L
16-bit multiplication and 40-bit accumulator register for 16-bit MAC . . .
32-bit multiplication and 80-bit accumulator register for 32-bit MAC . . .

8-/16-/32-bit cross product operations

8-/16-/32-bit FIR filter operations implemented by diagonal accumu-

lators and shared multipliers

12th order 8-bit FIR (13 coefficients) with 16 pixels (8-bit data), (b)
illustrates the proposed diagonal accumulation scheme accelerating

the 8-bit FIR operation.

6th order 16-bit FIR (7 coefficients) with 8 half-words (16-bit data),
(b) illustrates the proposed diagonal accumulation scheme accelerat-

ing the 16-bit FIR operation.

6th order 32-bit FIR (13 coefficients) with 8 words (32-bit data), (b)
illustrates the proposed diagonal accumulation scheme accelerating

the 32-bit FIR operation.

The interconnected butterflies of an 8-point radix-2 DIT FFT

An example of pipelined execution for 8-point FFT operation. A FFT
stage operation can be performed by a command. The 8-point FFT

has 3 FFT stages (2¥98°=n points) v v v v v v v v v v oo

Xvi

149

Xvil

FIGURE Page
74 Results of execution cycles and throughput in cross product 159
75 Results of execution cycles and throughput in FIR and comparison

with 12¢h order 32-bit FIR filter on TI-67x and TI-62x DSPs 160

76 Comparison of execution cyclesin FFT [161]

CHAPTER I

INTRODUCTION

Today’s high-performance and multiprocessor SoCs (MPSoCs) incorporate hundreds of IP
blocks. With this trend, current SoC design and its applications are migrating from single
processor-based computation model to communication intensive multiprocessing. Future
multimedia and other data intensive applications require massive computing power possi-
bly tractable through low latency on-chip network and numerous application specific IPs
or processing units. We envision that future SoCs will be composed of a mixture of hetero-
geneous IPs and communication-centric architecture. Energy and performance issues will
be the focal points for such SoC designs. This thesis presents three solutions to address
emerging SoC design with specific emphasis on low-power and high performance. These
are: 1) joint source and channel decoding (JSCD) schemes for portable multimedia applica-
tions, 2) efficient on-chip interconnect architecture for massive multimedia data streaming
on MPSoCs, and 3) data processing architecture for low-power SoCs in distributed sensor
network (DSS) systems and its implementation.

The first contribution of this dissertation includes a low-power embedded low density
parity check code (LDPC)-H.264 joint source-channel decoding (JSCD) architecture to
lower the baseband energy consumption of a channel decoder using joint source decoding
and dynamic voltage and frequency scaling (DVFS). With the continuous increase in the
capabilities of portable multimedia devices and services, the demand to improve the energy
efficiency and error robustness motivates the interest in joint source-channel decoding with
unequal error protection (UEP). We propose a configuration search scheme based on UEP

to trade-off power and performance on power sensitive mobile devices. We also presents a

This dissertation follows the style of IEEE Transactions on Computers.

low-power multiple-input multiple-output (MIMO) and H.264 video joint detector/decoder
design that minimizes energy for portable, wireless embedded systems.

The second contribution contains a link-level quality of service (QoS) scheme using
UEP for low-power network-on-chip (NoC) and low latency on-chip network designs for
MPSoCs. VLSI process technology scaling has provided ever more transistors with both
higher performance and lower power consumption. As VLSI technology moves forward,
however, many positive VLSI scaling trends are being replaced with negative trends [/1].
Transistor leakage, leading to greater power consumption, has forced a practical plateau
in VLSI clock frequency based performance gains. Instead, increasing transistor density is
yielding performance gains solely through growing the number of cores integrated on a sin-
gle chip, placing a great burden on the communication between those cores. Therefore, on-
chip networks have become more widely accepted for the communication of many cores on
a chip such as RAW, TRIPS, Teraflop, and Tilera [2-5]]. Dally et al. advocated routing pack-
ets not wires since packet switching can surmount many of difficulties in on-chip communi-
cations [6]. Our contribution in this work also contains two novel NoC designs, WaveSync,
an low-latency focused network-on-chip architecture for globally-asynchronous locally-
synchronous (GALS) designs and a simultaneous dual-path routing (SDPR) scheme uti-
lizing path diversity present in typical mesh topology network-on-chips. SDPR is akin to
having a higher link width but without the significant hardware overhead associated with
simple bus width scaling.

The last contribution of this thesis is data processing accelerator designs for embedded
SoCs. Next generation SoCs will include sensors for detection, acceleration, momentum,
location, heading, temperature, pressure, sound and light. These sensing and data process-
ing components can be designed by micro-controller, dedicated hardware, or digital signal
processor. However, digital signal processing (DSP) or micro-controller units have limits

on performance and power necessary for processing input data captured by multiple sen-

sors on a sensor network. We need a dedicated hardware or accelerator to overcome this
limits. This thesis aims to provide a solution for a data processing and control logic design
that initiates a new sensor SoC system for radiation detection generating data at or above
Peta-bits-per-second level. We also present a DSP accelerator supporting multiple multiply
and accumulates (MACs), FFT, FIR, and 3-D cross product operations used in fundamental

signal processing for embedded systems.

A. Joint Source Channel Decoding Method for Low-Power Portable and Wireless SoC

Systems

This section presents three JSCD-based low-power decoding solutions for low-power portable
and wireless SoC systems using a novel UEP scheme. A UEP scheme utilizes prioritized
data information; the aim is to protect more important data from errors. This is in contrast
to an equal error protection (EEP) scheme where all received frames are treated equally.
Xiao, Stoufs, Parrein, and Yip et. al. present the efficiency of UEP schemes over tra-
ditional EEP schemes on multimedia video transmission [7/H10]], showing that UEP can
significantly outperform EEP on average.

The first and second designs are developed for portable applications over AWGN chan-
nels, configured by exploiting importance and error severity in each data frame. These
proposed JSCD schemes are based on LDPC and H.264 video decoding schemes. The
first JSCD is devised to operate at a fixed frame-decode-time loop regardless of the quality
of data received. Within each loop, optimal sub frequencies and voltage levels are dy-
namically configured to minimize the energy spent for each frame. This design meets the
real-time requirements of motion picture reproduction and minimizes overall power con-
sumption. The design is synthesized using TSMC 0.13 micron technology and is capable

of jointly decoding QCIF (176x144) video stream at 30 frame per second (FPS) over wire-

less channel with 80% code rate. As a result, up to 39% power reduction can be achieved
in Foreman, Akiyo, and Mobile, when compared to a fixed-iteration-based joint source
channel decoder.

The second design presents a low-power design scheme to lower baseband energy
consumption using JSCD and DVFS. The aim of this work is to find a near-optimal config-
uration search algorithm to maximize energy utilization while receiving and reproducing a
video stream through LDPC-H.264 joint decoding without significant loss in video quality.
UEP is exploited to obtain the optimal number of iterations for each priority type. The
decreased number of iterations reduces power consumption with DVES that scales voltage
and frequency [11]. Using the proposed method, we determine LDPC decoding config-
urations that achieve minimum energy consumption while satisfying pre-specified image
quality at the receiver. The implementation results yield 17%, 37%, 52% power reduc-
tions with 0, 0.3, 1.1 dB peak signal to noise ratio (PSNR) degradations at 3.6dB SNR in
Foreman test stream respectively.

In the third solution, we propose a low-power MIMO and H.264 video joint detec-
tor/decoder design that minimizes energy for portable, wireless embedded systems. The
design combines the UEP scheme with a variable fidelity of MIMO detection, making per-
formance and energy consumption tradeoffs as required by the importance of each coded
video frame. Using search space reduction/truncation strategies in MIMO detection along
with H.264 data partitioning (DP) method, we determine the decoding configurations that
yield minimum energy consumption for pre-specified image qualities at the receiver. The
synthesis result of this scalable MIMO detector using a 45nm technology library yields
52%, 57%, and 58% energy reductions at 24dB SNR in Foreman, Akiyo, and Mobile test

streams respectively. The tradeoff is negligible 0.3dB degradation in PSNR.

B. Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design

Multimedia components on an NoC/SoC often need to communicate with modules that
may be placed far away from them on the chip. For instance, channel decoding part may
be located on one part of the chip while the DSP processor may be located several hops
away from it since design constraints necessitate it be placed close to other modules with
which communication takes places more frequently. Signal reliability is a major issue
for the transfer of multimedia streams between modules placed several hops apart in NoC
settings because transmission of data over several hops is especially vulnerable to sin-
gle integrity loss and delay uncertainty. For on-chip interconnection, it takes long time to
charge/discharge large capacitances and the propagation delay is further deteriorated by the
coupling capacitances. While there are several factors contributing to reliability degrada-
tion in on-chip interconnection, crosstalk induced errors still constitute a majority. Existing
information theoretic models for soft errors grossly underestimate the impact of crosstalk
errors in interconnections in advanced technologies. Individual schemes for crosstalk pre-
vention and error correction on bus may not be sufficient to guarantee acceptable error rates
for video applications.

In this dissertation, we propose link-level quality-of-service (QoS) using UEP for a
low-power on-chip network. We explore the possibility of providing different levels of
protection against crosstalk induced errors for different priority video data on NoC links by
combining several crosstalk avoidance and error correction schemes to find the combination
which provides acceptable performance at the least power expense. In the results, UEP on
links using TransSync, TransSync 2 lines and RecSync schemes have been demonstrated
for a video decoder on an NoC with H.264 video test streams. For Akiyo test stream
transmitted over 3mm long link wires, UEP can lead to as much as 20% of power savings

with 3dB of degradation in average PSNR.

We also propose two on-chip interconnect designs for minimum latency NoCs. Al-
though on-chip interconnects or network-on-chips (NoCs) are trivially scalable and pro-
vide very high bandwidth, the worst-case, no-load latency to traverse network can be high
as well; approaching the access latency of off-chip DRAM for a 64-node, 2D mesh net-
work. The primary cause of this high latency is the traversal of multiple router pipeline
stages at each node in the network. Inter- and intra-processor latency has been shown to
place direct constraints on system performance, and hence there is a critical need to address
interconnect latency for future many-core CMP architectures to be viable [12-14].

The first low-latency on-chip network design is WaveSync, an low-latency focused
network-on-chip architecture for globally-asynchronous locally-synchronous (GALS) de-
signs. WaveSync facilitates low-latency communication leveraging the source-synchronous
clock sent with the data, to time components in the downstream routers, reducing the num-
ber of synchronizations needed. WaveSync accomplishes this by partitioning the router
components at each node into different clock-domains, each synchronized with one of the
the orthogonal incoming source synchronous clocks in a GALS 2D mesh network. The
data and clock subsequently propagate through each node/router, synchronously, until des-
tination is reached regardless of the number of hops it may take. As long as the data
travel in the path of clock propagation, and no congestion is encountered, it will be prop-
agated without latching, as if in a long-combinatorial path, with both the clock and the
data accruing delay at the same rate. Result is that the need for synchronization between
the mesochronous nodes and/or the asynchronous control associated with a typical GALS
network is completely eliminated. We also evaluate the performance of a near-half-cycle
synchronizer architecture to reduce synchronization latency when synchronization is un-
avoidable, further reducing per-hop latency. The proposed WaveSync design results in an
improvement in average latency of 68% over the baseline GALS and 55% over ABC router

across SPLASH-2 benchmark traffic.

In the second on-chip interconnect design, we propose a simultaneous dual-path rout-
ing (SDPR) scheme. NoCs have been adopted by emerging multi-core designs as a flexible,
scalable, and high power efficient solution. Deterministic routing algorithm such as DOR
is widely used in a 2D mesh NoC because it provides simple algorithm and low-cost imple-
mentation. However, its performance in latency can be insufficient due to no path diversity.
We observe that a significant component of latency in NoCs is due to the serialization of
long packets. Increasing the data/link widths across the network may considerably alleviate
this problem but is a costly proposition both in terms of device area and of power. Alter-
natively, we propose a dual-path router architecture that efficiently exploits path diversity
to attain low latency without significant hardware overhead. By 1) doubling the number of
injection and ejection ports, 2) splitting packets into two halves, 3) recomposing routing
policy to support path diversity, and 4) provisioning the network hardware design, we can
considerably enhance network resource utilization to achieve much higher performance
in latency. The SDPR architecture statically exploits the path diversity in the network to
improve link utilization. In particular, the proposed SDPR technique mitigates the lack
of path diversity and utilization of DOR by splitting a packet to two halves that involve
the same source-destination address and by injecting them simultaneously in parallel via
separate and independent orthogonal two paths (i.e. XY and YX). Our experiment results
show that the proposed simultaneous dual-path routing (SDPR) scheme outperforms the
conventional dimension order routing (DOR) technique across all workloads with 31-40%
average latency reduction on long packets running on a 49-core CMP, when compared to
the baseline XY DOR router. The fully synthesizable SDPR router occupies 30.89mW
power and 0.091mm? area with 3.7% and 4.7% power and area overheads over the baseline

router respectively.

C. Data Processing Accelerator Architecture for Low-Power SoCs in Distributed Sensor

Network Systems

We presents two hardware accelerators for low-power SoCs on a sensor network. The first
accelerator shows a data processing and control logic design for a new radiation detection
sensor system that can generate data at or above Peta-bits-per-second level. The logic
consists of novel data processing components and operation strategies including low-power
and network-on-wafer solutions. The aim of this design is to achieve subtle data reduction
before the information is ferried to the network, and redundant processing and channels to
minimize the loss of information. The result is a radiation detection system that can operate
at scan-rate of billion frames per second. Simulation results show that the intended clock
rate is achieved within the power target of less than 200mW.

In the second design, we propose a low-power digital signal processing (DSP) ac-
celerator supporting multiple multiply and accumulates (MACs), FFT, FIR, and 3-D cross
product operations used in fundamental signal processing for embedded SoCs. Power con-
sumption is a major concern as demands on the application processor to keep up with a
constant stream of sensor data diminish opportunities for power conserving sleep. A low-
power sensor hub SoC capable of managing the various sensors, aggregating and filtering
sensor signals, and notifying the application processor of significant events is needed. Dig-
ital signal processors are widely used to support this data processing for sensor hubs due
to the flexible programmable ability and powerful data processing, but power consumption
of DSPs are relatively higher than dedicated hardware accelerators. This paper presents a
low-power DSP accelerator design satisfying both requirements of data processing ability
and low-power consumption for sensor hub SoCs. In the evaluation of the proposed design,
the DSP accelerator synthesized on TSMC 65nm worst case library takes 2080 cycles for

256-point complex FFT, consuming 12.35mW power and 0.167mm? area at 333MHz.

The rest of this paper is organized as follows: Chapter [[I|discusses the proposed joint
source and channel decoding work. Chapter[[TIdiscusses our proposed NoC designs aiming
to enhance performance in latency. Chapter [[V|presents data processing accelerator designs
and implementations for low-power embedded SoCs. Finally, we conclude and present our

future work in Chapter [V]

10

CHAPTER 1I

JOINT SOURCE CHANNEL DECODING METHOD FOR LOW-POWER PORTABLE
AND WIRELESS SOC SYSTEMS

H.264/AVC standard provides some error resilience features for unequal error protection
such as flexible macro-block ordering (FMO), redundant slice, and data partitioning (DP).
Thomos et al. present that the use of FMO associated with a UEP scheme outperforms
classical H.264/AVC transmission schemes in terms of decoded video quality [15]. The
utilization of DP in H.264/AVC can yield a lower percentage of entirely lost frames [16].
An extensive study of prioritization and layering techniques for H.264/AVC shows that the
combination of DP, turbo codes (TC), and flexible modulation techniques outperforms the
combination of DP and TC only [17].

JSCD architectures which combine LDPC and H.264 video coding for UEP are pre-
sented by Guo, Wang, Qi, Kumar, and Yang et. al. [[18-22]]. Guo and Wang et. al. propose
LDPC-based unequal error protection algorithms using data partitioning [18,/19]]. The idea
of the LDPC-based unequal error protection is the high priority data are allocated to low
code rate, and low priority data are allocated to high code rate to protect more important
partitions from channel errors. Qi et. al propose a dynamic rate selection forward error
correction (FEC) scheme utilizing LDPC codes and Reed-Solomon (RS) code for robust
video communication [20].

The studies above focus on improving received data quality or robustness of trans-
mission using UEP. In contrast, Wang, Lu, and Zhang et al. consider minimizing both
processing power for JSCD and transmitting energy for constrained video quality with RS
channel coding [23-25]. Eisenberg et al. propose an unequal iterative decoding approach
minimizing the power consumption of a channel decoder with data partitioning and turbo

decoding [26]. Higher number of iterations for turbo decoding is used for high priority data

11

to minimize the receiver power while meeting distortion constraints specified by the video
decoder at a given channel rate.

Another method to reduce the power consumption of LDPC decoding is presented by
Dielissen et. al. [27]. That method exploits scalable sub-block parallelism to achieve ef-
ficient LDPC decoding implementations for DVB-S2, enabling lower operating frequency
by reducing the parallelism of the LDPC decoder instead of using UEP. However, the scal-
able parallelism cannot be varied according to the demand of tradeoffs between decoded
data quality and low-power requirement.

Wang et. al. present LDPC decoder architecture improving power efficiency through
adaptively adjusting the number of iterations of LDPC decoding to meet a required quality
for each incoming frame [28-30]. The advantage of this approach is that the LDPC en-
coder/decoder does not require rate adaptation, thereby simplifying encoder/decoder hard-
ware solutions. The early termination of the iterative process is determined by the con-
straints of check errors during the decoding of each individual frame. This scheme leads to
energy reduction, compared to a fixed iteration technique.

To mitigate the bandwidth limit, MIMO wireless systems that offer higher through-
put when compared to single input and single output (SISO) wireless systems have been
developed [31]. Thus, to accommodate the increasing capabilities of mobile multimedia
devices and services, a video over MIMO joint decoding design using UEP can improve
energy efficiency and error robustness in these devices. MIMO-based UEP schemes are
presented in [32-35]. These studies demonstrate that MIMO with UEP improves not only
the capacity of the system but also error resilience compared to EEP and overcomes fre-
quency selective effects of broadband wireless channels. Yang et. al. propose a hybrid
MIMO system, which consists of spatial multiplexing (SM) for low priority data and spa-
tial diversity (SD) for high priority data to achieve better performance in terms of BER and

PSNR [32]]. Liu et. al. similarly divide H.264 information into two parts according to prior-

12

ity as well [33]]. Li et. al utilize two modes, transmission diversity (TD) mode for high error
protection and spatial multiplexing (SM) mode for high data rate [34]. These researches
use the unequal number of information bits in their channel error correction codes.

The following sections discuss the proposed JSCD schemes using a low-power LDPC
decoding architecture, UEP-based configuration set search algorithm, H.264 data partition-
ing, and DVFS. We also propose a novel MIMO-H.264 JSCD scheme using the UEP-based

configuration set search algorithm to reduce power on MIMO detection.

A. Joint Source Channel Decoding Method Using Unequal Error Protection and LDPC

Check Error Levels

In this section, we present the proposed UEP scheme using a low-power LDPC decod-
ing architecture, H.264 data partitioning, and DVFS. The approach includes a partitioning
scheme that labels each frame into high, medium, and low priority data. The proposed UEP
scheme assigns the unequal number of LDPC decoding iterations to each frame according
to the partitioning information on the fly. The aim is to treat each frame with only appro-
priate degree of error protection, thereby minimizing energy spent for each decoding cycle.
The level of decoding effort is then further scaled by the amount of additive noise received
from a gaussian channel. Our overall aim is to provide maximum battery life while receiv-
ing and reproducing video stream without performance loss in video quality. Therefore,
we have explored the tradeoffs between the degradation of reconstructed video quality and
the amount of energy reduced by lowering decoding efforts. To further lower power dissi-
pation, our proposed scheme dynamically switches decoder frequency and voltage levels.
DVES is used to guarantee data rates and constant processing time of each decoding frame
as well as to achieve desired energy reduction [36,37].

We present a UEP-LDPC decoding architecture using a DVFES technique for the en-

13

VT')!"J! ‘
\ 4
Critical i Ty
—D Q- path —> D Q— & Counter >
s replica g 1
© far T Voou ¢ fdrT g— 0 fy = # [
2 Critical o |i Y = Voou
] o N = |5y »
® — D Q4 path D Q— @ (> Adder 1D Q 8 »
= replica = i) 1
© = § -
o f f = A 0 ~
_‘g ctr T ctr T % 4{ E
14D a D @—© s
fctr T T
Speed Detector Timing Controller Buck converter

Fig. 1.: Variable supply voltage logic

ergy reduction. This technique is employed for adjusting frequency (Freqrppc) and volt-
age (Vppr) to supply optimal power to the LDPC decoder. Power consumption of a digital

CMOS circuit is
P = aCys-V:f 2.1)

where « is switching factor, C, sy is effective capacitance, V' is operating voltage, and f is

operating frequency. Energy required to run a task during time T is
E = P-TxV? (2.2)

From (2.1)) and (2.2), lowering V yields a quadratic reduction in energy consumption. A
variable voltage scheme [11]] is presented as shown in Fig. [I] In this figure, f, is a main
clock, and a supply voltage is generated such that a replicated critical timing path is stably
clocked at f.

Fig. 2] illustrates the proposed JSCD architecture based on LDPC and H.264 video
coding for UEP with a power-aware scheme that configures adaptively the frequency and

voltage levels. Firstly, a video stream is encoded into packets with varying priority levels at

14

Video H.264 Encoder » LDPC Encoder > BPSK
Source Modulator
Importance v
DVFS =
Controller |rorfevel AWGN Channel
Vdd, freq Vdd, freq ’
Y \ 4
Received BPSK
Video H.264 Decoder |« LDPC Decoder |« Demodulator

Fig. 2.: Proposed joint source-channel decoding scheme

fixed length by H.264 data partitioning. Secondly, the stream is coded by a LDPC encoder
and transmitted over AWGN channels through binary phase shift keying (BPSK) modula-
tion. Next, an unequal error protection technique provides a different level of protection for
each frame in a LDPC decoding process. Lastly, a received video stream is reconstructed
by a H.264 decoder with error concealment, and then the quality degradation of the re-
ceived video is measured by peak signal to noise ratio (PSNR), typically used in an image
quality estimation.

Dynamic voltage and frequency scaling is used to guarantee data rates and constant
processing time of each decoding frame as well as to achieve desired energy efficiency [36,
37]]. An illustration of this is shown in Fig.[3] In Fig.[3(a), typically a joint source channel
decoder operates at full voltage level for a time duration necessary to successfully decode a
frame. In an early terminated iteration approach with clock/power gating techniques [38],
wider idle intervals than the intervals of Fig. [3(a) occur between LDPC decoding tasks as
shown in Fig. [3(b). In each idle period, the fixed-voltage decoder goes to clock gating mode
to reduce power dissipation until new frame data arrives. This process is repeated for each
subsequent frame. Alternatively, our DVFS approach estimates the number of LDPC de-

coding iterations necessary to accommodate the importance of the frame. Then it schedules

15

Fixed level
ol Fixed Fixed
§ 8 Iterz(gons <% Iterz(gons = A <% AL <% A
=5 Iterations Iterations Iterations
e > (A) (8)
S
I
) y 5Tlme

Fixed frequeﬁcy, voltage supf)ly ()

Fixed level

A) fje—r1de—> B) |e—10le—> Variable |gigep] Variable Lygien] le——idle—»
Iterations Iterations

Frequency,
Voltage

o *«\\ """ — e
2 /
Clock/power gating
Fixed frequency, voltage supply with clock/power gating (b)

(<5
& Sel4
S sel3
= . .
§ Sel 2 o Variable Iterations Variable Iterations
2 Sell
g @) -
T 0 _ 2 _ 3 4 5 1ime
Adaptive frequency, voltage selection using DVFS for LDPC decoder (c)
[<5)
g Sel4
o
S Sel3 u)
R . . gh decoding
é‘ Sel 2 — h@?&‘:ﬂg“‘gﬁgg?g effort for error
5 Low decoding effort |
;‘,’ Sel 1 7S () concealment concealment _
I) leme

Z 3 4
Adaptive frequency, voltage selection using DVFS for H.264 decoder (d)

Fig. 3.: Performance scheduling for energy reduction

exactly that number of iterations until the time point at which next frame is due, reducing
the voltage level appropriately for the reduced frequency. This is shown in Fig. [3(c). To
support this predictive scheduling of decoding iterations, a combined method is used that 1)
estimates the severity of error in each frame by sampling the number of failed parity check
equations from the LDPC decoder and 2) assesses the “importance” information associated
with each frame during H.264 coding. Fig.[3[(d) illustrates the dynamic voltage-frequency
adjustment for the H.264 decoder.

The video decoder employs concealment techniques to mitigate the effects of packet

16

loss [[1639.140]. In the video decoder, high error data needs more decoding efforts to con-
ceal and recover the errors while providing acceptable video quality. High priority and
check error frames, similarly, require high protection of data over errors. Therefore, it is
necessary to exploit more decoding efforts either. In Fig. (3| (A) uses less number of itera-
tions than (B) for LDPC decoding since it is involved in less error environment (less check
errors) and less importance; it also consumes less video decoding power. An important
real-time constraint for this process is that each frame should complete decoding within a
fixed frame-cycle to support constant frame rate in video reproduction. Simulation results
of the joint source-channel decoder design with DVFES based on priority and check errors
point out clearly that the proposed UEP scheme reduces power dissipation over AWGN
channels without performance loss in video quality.

We also propose a near-optimal configuration search method to maximize energy uti-
lization while receiving and reproducing a video stream through LDPC-H.264 joint decod-
ing without significant loss in video quality. An empirical analysis for the configurations
of LDPC decoding is studied to quantify the trade-off between the number of decoding
iterations and peak signal to noise ratio (PSNR) associated with the reconstructed image
quality. In this analysis, UEP is employed to determine the optimal number of iterations
for each priority type. The determined iterations are used during runtime to schedule the
LDPC decoding. Low priority data allows less iterations in the LDPC decoding process;
however, the lowered number of iterations leads to degradation in PSNR performance, but

saves energy when used with DVFS that scales voltage and frequency.

17

1. Background: H.264 Unequal Error Protection and LDPC Channel Decoding
a. H.264 Video Coding

H.264 overview: H.264 is a video compression standard known as MPEG-4 Part 10, or
MPEG-4 advanced video coding (AVC). It is developed as a joint standard by the ITU-T
Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group
(MPEG). H.264 video coding standard includes the same basic functional elements as pre-
vious standards (MPEG-1, MPEG-2, MPEG-4 part 2, H.261, and H.263) such as quantiza-
tion for bit-rate control, transform for reduction of spatial correlation, motion compensated
prediction for reduction of temporal correlation, and entropy encoding for reduction of
statistical correlation. The significant improvements in H.264 involve intra-picture predic-
tion, a new 4x4 integer transform, multiple reference pictures, variable block sizes and a
quarter-pel precision for motion compensation, a de-blocking filter, and improved entropy
coding.

H.264 unequal error protection: Multimedia data is especially vulnerable to channel er-
rors due to the predictive coding techniques used in compression schemes such as H.264.
Moreover, different portions of video bitstream have different importance to the recon-
structed video quality, thereby giving rise to different quality-of-service (QoS) require-
ments. In order to prevent the degradation caused by errors, one of error resilience tech-
niques is layered video transmission with unequal error protection. UEP provides different
levels of protection to the different parts of video data that have unequal degrees of impor-
tance. Basically, UEP changes the distribution of errors without incurring extra resource
consumption. The aim is to reduce bit errors in more important data. To achieve UEP, a
layered video coding scheme needs to be employed to encode the video source into two or
more layers with different priorities. Currently, layered video coding is supported by major

video compression standards, such as MPEG-2, MPEG-4 and H.264. Data partitioning is

18

Table I.: H.264 data partition and prioritization

Priority =~ NAL Type NAL Payload
2 MB headers, M Vs, etc
5 IDR picture
Priority A 6 SEI
7 SPS
8 PPS
Priority B 3 Intra residual
Priority C 4 Inter residual

the simplest form of layered coding. It provides the ability to separate more important and
less important syntax elements into different packets of data, and enables the application of
unequal error protection (UEP) and other techniques for improving error-loss robustness.
In this dissertation, we used the H.264/MPEG-4 AVC (Advanced Video Coding) stan-
dard developed by the joint video team (JVT) of ISO/IEC and ITU-T (Telecommunication
Standardization sector) and the reference software JM14.2 of H.264 as a source coder for
the video decoding process [41,42]. At the source side, The data partitioning is used to
obtain layered video compression data. At the receiver, because of error bits, the H.264
decoder reconstructs video with error concealment. This coding standard covers two lay-
ers, namely, video coding layer (VCL) and network abstraction layer (NAL). Table.
shows NAL units containing the coded video data partitioned into prioritya, priorityg, and
priorityc for the UEP scheme. We exploited the data partitioning technique to prioritize
the NAL units into three priority groups where the units in each priority group contain cer-
tain coded video elements of same importance to the reconstructed video quality. The first
part (priority A) contains the most important data, namely, macro blocks headers, motion
vectors (MVs), quantization parameters, IDR picture, and parameter sets. Intra residual

data are in the second partition (priority B), and inter residual data are in the last partition

19

(priority C). Since high important and check error frames demand high protection and error
concealment for data reconstruction over errors, it is necessary to exploit more decoding
efforts. The actions at the video decoder when losing some parts of DPs are described as

follows [39]]:

e The loss of C (available A and B): conceal using MVs from partition A and texture

from Partition B; intra concealment is optional.

e The loss of B (available A and C): conceal using MVs from partition A and inter info

from Partition C; inter texture concealment is optional.

e The loss of A (available B and/or C): drop partitions B and C, and use MVs of the

spatially above macro block (MB) row for each lost MB.

For instance, if DP B is lost, the motion vectors of DP A and the inter information of DP C
can be used for the concealment. Inter texture concealment is optional. We quantified the
impact of error in each of these groups empirically.

The quality of reconstructed video frames can be measured by PSNR. PSNR was
originally designed to measure distortion in still images due to effects such as lossy com-

pression, commonly used for motion pictures. PSNR is can be calculated by Eqn. (2.3)

and (2.4)).

n

PSNR = 10log(——— 23
S 0810 1/SE 2:3)
MSE =) —p 2 2.4

where MSE is mean square error computed based on the pixel values of original image
(p(x,y)) and reconstructed image (p’(x,y)). n is the number of bits describing the color of

each pixel, and M and N represent the width and height of the image respectively.

20

100100100
010010010
001001001

H=1 00001010
010100001

001010100

(a) H matrix

(b) Tanner graph

Fig. 4.: An example of (d.,d,) = (3,2) regular LDPC

b. LDPC Coding

LDPC code is an error correcting block code originally proposed by Gallager in 1960’s
and rediscovered in late 1990’s [43,44]. They describe an iterative two-phase message
passing algorithm (TPMP) which involves check-node update and variable-node update as
two phase schedule. This code is defined by a sparse parity check matrix H that consists
mostly of 0’s and described frequently by Tanner graph [45].

In the H matrix, each column contains a small fixed number d, of 1’s, and each row
contains a small fixed number d. > d, of 1’s. Fig. H]illustrates an example H matrix of
(d¢,dy) = (3,2) regular LDPC code and corresponding Tanner graph. Tanner graph is a
bipartite graph such that its vertex set V can be partitioned into two disjoint subsets, the set

of check nodes (V,) and the set of variable nodes (V;). The element of H is 1 if and only

21

if there is an edge in the edge set connecting the check node V. and the variable node V,,.
The block length of this code is n which is equal to the number of columns in the H matrix.
Suppose that the number of data bits before the channel encoding is /, then the number of
rows of this H matrix is m = n —[. Rate of this code is defined as [/n =1 —d, /d.. The
code words consist of all one-dimensional row vectors that span the null space of the parity
check H matrix. The number for d, and d. should be no less than 3 and 6, respectively,
for good coding performance. Another type of LDPC code is irregular codes, in which the
number of 1’s in each row and column is not constant.

The LDPC decoder is typically set to run for data convergence until a prescribed max-
imum number of iterations depending on the code rate. However, the actual number of
decoding iterations varies from frame to frame. As a result, the decoder often remains
idle since for most frames, the decoding process ends far earlier than the maximum num-
ber of iterations. Thus it is not power efficient. We based our design on recently developed
dynamic control to improve the system efficiency by adjusting maximum number of decod-
ing iterations. This design is built on the early termination technique satisfying the required
energy constraint for each incoming frame. There is research on the early termination of
frame that can not be decoded even if the maximum iterations are applied [46,47]. In both
papers, the early termination of the iterative process is determined by checking the mes-
sages during the decoding. Their attempts are to dynamically switch off the hardware when
no additional iterations will amount to improvement in decoding performance. Wang et al.
present an early termination scheme for layered LDPC decoders devised by evaluating the
number of checks in error for each frame [28-30].

To update check nodes, various algorithms are used such as sum of products (SP),
min-sum (MS) and Jacobian based BCJR (named after its discoverers Bahl, Cocke, Jelinik
and Raviv). MS is an approximation of the SP belief propagation algorithm. A quantita-

tive performance comparison for different check updates is given by [48]]. Their research

22

shows that the performance degradation of offset based min-sum with 5-bit quantization is
less than 0.1dB in SNR as compared with that of floating point SP and BCJR. Mansour et
al. introduce the concept of turbo decoding message passing (TDMP), called as layered de-
coding, using BCJR for their architecture-aware LDPC (AA-LDPC) codes [49,50]. TDMP
yields twice throughput and significant memory benefits, reducing the number of iterations
required by up to 50% without performance loss when compared to TPMP. This scheme is
later studied and applied for different LDPC codes using the sum of products algorithm and
its variations in [S1[]. Our paper presents a JSCD scheme using the layered LDPC decoding
based on the offset-min-sum algorithm, early termination strategy, H.264 data partitioning
technique for UEP, and DVFS over AWGN channels.

Two phase message passing LDPC decoding: The iterative two phase message passing
algorithm is computed in two phases [48,52]. One is check node processing and the other is
variable node processing. In the check node step, each row of the parity matrix is checked

to verify that parity check constraints are satisfied.

R = 8\ max (x4 — B,0) 2.5)
K = R = min QD) (2.6)
n'eN(m)\n

For the i iteration, Q,(f,zi is the message from variable node n to check node m, R,% is the
message from check node m to variable node n. A positive constant 3 depends on the code

parameters [48]]. The sign of check-node message R,(f,zl is defined as

sm=(T] sen@l,") 2.7)
n'eN(m)\n
In the variable node step, processing the probability will be updated by summing up the

other probabilities from the rest of the rows and the a priori probabilities from the channel

23

output.

0.,=L"+ Y R 2.8)

meM(n)\m

where the log-likelihood ratio of bit n is L,(lo) = yy. In the last step, a hard decision is taken
by setting £, = 0 if P,(x,) > 0, and £, = 1 if P,(x,) < 0. If £,HT = 0, the decoding process
is finished with X, as the decoder output; otherwise, go to the first step.

P=0+ Y R 2.9)

meM(n)

If the decoding process does not end within predefined maximum number of iterations,
itmax, Stop and output an error message flag and proceed to the decoding of the next data
frame.
Turbo decoding message passing LDPC decoding: In contrast with two phase message
passing algorithm, where all check-nodes are updated simultaneously in each iteration, lay-
ered decoding (or called as TDMP) views the H matrix as a concatenation of j = d,, sub-
codes. One of advantages of layered decoding is that the LDPC decoding can be performed
at each layered level. This increase the efficiency of the iterative decoding process. Math-
ematically, the layered decoding algorithm can be described as shown in equation (2.10)-
(2.13)
Vi=1,2,..., ity [Iteration loop]
Vl=1,2,...,d,,[Sub-iteration loop]

Vn=1,2,...,d.,[Block column loop]

RO_0P, =70 (2.10)

(Gt — [P,)50 K,V @10

24

R = (810150 2.12)

(B0 =[50 + R) (2.13)

The vectors ﬁgl}l and 652 represent all the R and Q messages in each block of the H
matrix. s(/,n) denotes the shift coefficient for the block in I’* block row. f() denotes the
check-node processing, which can be done using min-sum algorithm. Due to the structure
of layered LDPC H matrix, the updated sum [?n]s(“’) in each block column n needs to
go through either a) a cyclic down shift of n — 1 or b)cyclic up shift of (j — 1)n if we do

layered decoding.

2. Proposed Low-Power JSCD Scheme Using DVFS

The proposed layered LDPC code is developed on the adaptive decoding scheme described
in [29,30,38]. The number of iterations for LDPC decoding is assigned by the threshold
of check errors and importance (priority). There are two iteration parameters: inner loop
iterations (iter=outer loop iterations x the number of layers(d,)) and outer loop iterations
(i = [iter/d,]) known as ordinary LDPC iterations. For example, 12 iterations in the reg-
ular LDPC decoder are completed at the same time as 12 x 5 = 60 sub-iterations when d,
equals 5 in the layered LDPC decoder. The number of sub-iterations depends on the degree
of check errors since more check errors (severity of noise impairment) require more decod-
ing efforts. The priority information of the incoming frame thus determines the number of
iterations.

Next, the adaptive LDPC decoding routine is combined with UEP. The iterative de-
coding routine runs until izer reaches the sub-iterations. In the decoding process, we used

three threshold parameters (cErrThrey, cErrThrey, cErrThre3), and these produce four

25

Table II.: Check error level for each error scope

Check error level Check error scope
1 oo ~ cErrT hre;
2 cErrThrey ~ cErrThre;
3 cErrThrey ~ cErrT hres
4 cErrThre; ~ 0

Table IIL.: Parameters of sub-iterations (Iterg,ror ievel Priority)

Check error level Priorityy Priorityg Priorityc

1 Iter) o Iter| g Iter| c
2 Itery 4 Iter, p Iter, ¢
3 Iters 5 Iter; g Iter; c
4 Iter47A Iter4,3 II€F4,C

check error levels as shown in Table[[Il Combining the three priority (Table[l) and the four
check error levels, there are twelve sub-iteration parameters (4 error levels x 3 priorities =
12), where each parameter requires its specific error coverage (i.e. decoding iterations), as
summarized in Table The three threshold values (cErrT hrey, cErrT hrey, cErrT hres)
and necessary iterations (Table [[1I)) are determined by the empirical analysis of the check
error distributions, and stored in a look-up table in pre-processing. Furthermore, the analy-
sis of performance improvement and power consumption was studied to determine optimal
parameter sets. The details of this analysis are described in the results and discussion sec-

tion.

a. Runtime Process

For runtime decoding process, the joint source-channel encoder inserts NAL unit type bits
of the next frame into the current frame data. When the very first frame comes into the

LDPC decoder, it decodes the frame using the maximum number of sub-iterations, and

26

LDPC decoder

Received > NAL 4 > H.264
Frame Type cH decoder
Parser | «— A

Importance l icHT

DVFS Controller

Voltage Frequency
Selector Selector
° ° I:requec
\/ Frequorc
Vi

Fig. 5.: DVES controller

NAL type parser extracts the NAL unit type which denotes the priority of the next frame.
The next frame incoming, the LDPC decoder estimates check errors (cH Ty and reads the
check error thresholds from the look-up table to decide a corresponding check error level
according to the check errors. By the priority information acquired from the previous frame
decoding and the check error level, the decoder can select the number of sub-iterations
from the memory and decode the frame at runtime. However, three check error threshold
values and twelve sub-iterations determined by the probability density function of number

of check errors in the pre-processing simulation are not updated at runtime.

b. Low-Power JSCD Implementation

We present a low-power joint source-channel decoder architecture and its implementation
based on the UEP scheme and the adaptive decoding architecture. Fig. [5 illustrates the

block diagram of DVFS controller composed of frequency selector and voltage selector.

27

In this implementation, we use clock division to select frequency on the fly. This requires
no additional delay. For voltage, we have multiple power rails that we switch from. This
requires more than one clock cycle to stabilize. However, as long as minimum voltage level
to transition up to (or down to) a next selected frequency is met, voltage level can trail that
of enveloping minimum voltage level. The frequency selector selects the frequency values
(Freqrppc, Freqypgc) based on importance information extracted by NAL type parser and
check errors (cHT). The corresponding voltage levels (V) for the LDPC decoder and
for the video decoder are then chosen by the voltage selector. The power consumption of
both decoders can be minimized by the DVFS logic while meeting the real-time constraints

required to decode a frame. The DVFES logic operates in V,;;; domain, and it is characterized

by following Eqn. (2.14)) and (2.15) [28].

Pota = Pswitching + Py + Pleakage

= aCLAVVyafek + LIseVaa + lieakageVaa (2.14)

1 GlVaa Vaa

T frnd _—
far Lisat (Vag—Vip)'3

(2.15)

where Pyyircning sShows the switching power, and Cy, is the loading capacitance, f is the
clock frequency, and & is the node transition factor defined as the probability that a power
consuming transition occurs. Mostly, the voltage changing AV is the same as the supply
voltage V;,;. The short circuit power Psc is caused by direct-path short circuit current Is¢
which arises when both NMOS and PMOS are turned on. Parqge 1s the leakage com-
ponent of power, and [joqxqge 18 the total leakage current in CMOS circuit. Furthermore,
Eqn. (2.15)) represents the increment of circuit delay that brings the decrement of voltage
supply. The power consumption is estimated assuming 80% dynamic power and 20% static

power consumption.

28

LDPC decoder H.264 decoder
FS/R-sign >
R select [« Frame [¢ NAL Bitstream 3| ENUOPY | 1 ooorder |—p| INVerse
buffer Buffer Decoder Quantization
(Partition
Data >
CNU A,B,C)
1-61 > Error Concealment [~

Decoded) 4

¥
Frame | Inter Prediction - CD

A

A Deblocking

NAL Type Filter
Parser 4 4

Channel Reconstruction

LLR
Error level Importance

| DVFS Controller Vi F
VaaFreqiopc dd,FT€qvpec

—> Intra Prediction >

Fig. 6.: The proposed joint source-channel decoder Architecture

The proposed joint source-channel decoder architecture is shown in Fig. [6] including
layered decoding architecture and the real-time H.264/AVC baseline decoder. The left part
illustrates the architecture of LDPC decoder, and the H.264 decoder is in the right with
NAL stream interface to the LDPC decoder. The LDPC decoder includes two particular
modules in order to generate the importance information and the number of check errors
for UEP and DVFS. The first is NAL type parser, which analyzes NAL header bits to extract
NAL unit type. The parsed importance information (i.e. NAL type) is sent to the DVFS
controller for the selection of optimal frequency and voltage. The second is the check node
message block to provide the check error level to the DVFS logic.

Since the DVFS controller issues variable frequency and voltage to keep constant
decoding time, the input NAL stream is transmitted to the video decoder at constant rate.
The LDPC decoder in Fig. [6]is derived from the layered LDPC decoder implementation

proposed by [52]. The check node units (CNUs) in the figure take variable-node messages

29

associated with each check-node serially and compute the compressed check-node message
and index, in which this compressed check-node is the least magnitude of all variable-node
messages. These compressed check-node messages are called final states (FS), stored in FS
buffers. Check-node messages to each associated variable-node are sent out serially again,
selected by index and sign comparison, where the signs of check-node messages (R) are
stored in sign FIFO. As soon as the check-node message to the first connected variable-
node is ready, the corresponding sum message (P) can be computed, and the check error
value is sent to the DVFS unit for selecting adjustable voltage and frequency. Then the
variable-node message (Q) is ready for the check-node message processing of the next
sub-iteration. As such, each CNU operates on two layers of the H matrix simultaneously:
selecting check-node message for one layer and computing FS for the next layer.

The proposed H.264 video decoder is built on the open-source low-power H.264 base-
line decoder supporting QCIF resolution [53,|54]. We developed several minor modifica-
tions to incorporate the UEP scheme. These include additional data partitioning functions
and a fixed-length packetization unit. The video decoder is a fully hardwired design without

utilizing any general process cores, attributed with the following features:

e Utilization of pipelining and parallelism

Hybrid and self-adaptive pipeline architecture

Low cost intra/inter prediction unit

Error concealment unit

5-stage pipelined de-blocking filter

Clock gating to reduce power

30

Table IV.: H.264 encoder parameters and configuration

Source video stream Foreman, Akiyo, Mobile
The number of frames in each source 150
Frame rate 30frame/sec
Source resolution 176 x 144 (QCIF)
Quant. parameter 28

Table V.: Distributions of priority partitions in test video streams, Foreman, Akiyo, and

Mobile

Distributions(%)
Foreman Akiyo Mobile

Priority, 448% 44.6% 47.1%
Priorityg 29.6% 404% 19.8%
Priorityc 254% 14.6% 32.9%

Importance

3. Results and Discussion

In this subsection, we evaluate the proposed, low-power joint source-channel decoding
scheme in terms of BER, PSNR, and energy reduction, discussing about the configuration

of heuristic parameters and evaluation results.

a. Simulation Environment

The environment of simulation is described with specific case studies in this section. Ta-
ble [IV| presents parameters and configuration for H.264 encoding. Three video streams,
Foreman, Akiyo, and Mobile were simulated to evaluate the performance and energy re-
duction of the proposed UEP approach. The distributions of the priority A, B, and C

partitions in the test video streams are shown in Table |V| The distributions significantly

31

O SNR:3.0 [

T T T)
0.04 []

r——Py 2
Check error v T mf? ¢ SNR:35
0.035F threshold window . ____.8-" & éj o + SNR: 4.0 H
at 3.4-4.0 SNRs g & & e
Hat e
0.03 e ¥ & a
rTRR s ©
i B B
.. 0.025} ary O o
= %1 T O W
] 1 9% 0w)
5 002} O ’,
e) 8 9
- + VO ¥ A
0.015 + : N ©, : ©
by [% ® @
0.01 #} [@ 4 v O %
v v O
+ *)
a]
* < @ % @
0.005 *A 2 3)
% &y @
'%M.. ([.\%Y" 5
140 180/ 15%

Number of chkeck errors

Fig. 7.: Probability density function of number of check errors

Table VI.: Check error threshold values (cH”) used in the simulation

#Case cErrThre; cErrThrey cErrThres

Casel 140 115 110
Case2 140 120 110
Case3 140 125 110
Case4 140 130 110
Case5 140 135 110

influence the decoding efforts because higher priority groups not only cause more itera-
tive computations but also spend more power. Each priority partition with partition sizes
b(q) = {ba(q),bs(q),bc(q)}, where the size of the partitions b(g), is directly controlled
by the applied quantization parameter (QP) ¢ [[16]. The parameters, ¢ and channel coding

rates r = ra, g, Fc, can be constrained by a total bit-rate as

bA(Q)%_bB(Q)%_bC(Q)
ra rp rc

N(q.,r) = <N, (2.16)

where N, denotes the total number of bits available for a certain video frame.

Fig.[7)illustrates the probability density function of the number of check errors to find

32

T T T T

—6— Number of check errors >= 140
—+&— 130 < Number of check errors <= 140
\ —<— 110 < Number of check errors <= 130
0.2 | ¥ —#— Number of check errors <= 110

Probability
o
Y
(2}

o
[
T

0.05

Number of decoding sub-iterations

Fig. 8.: Distributions of decoding sub-iterations for different number of check errors

the bounds of the check error thresholds in the layered LDPC code. In the LDPC code,
the H matrix was created by d. = 25, d, =5, and p = 67, simulated on AWGN channels.
At a given SNR, the number of check errors for received data is consistent with Gaussian
distribution. We evaluated the probability density function of check errors at 3.0, 3.5,
and 4.0dB SNRs and determined the range of check error thresholds at 3.4-4.0dB SNRs
since the LDPC decoder yielded acceptable BER performance at the given SNRs (We will
show this in Fig. [9). Hence, cErrThre; and cErrThres, upper and lower bounds for the
thresholds, were set to be 140 and 110 where the probabilities of check errors appertained
to the section of high probability at 3.4-4.0dB SNRs (threshold window in Fig.[7). These
heuristic parameter sets are shown in Table In this table, five sets of threshold triplets
(cErrThrey, cErrT hrey,cErrT hres) were tested for identifying an optimal threshold value
set in the UEP simulation.

Fig. [§shows the distributions of decoding sub-iterations on various numbers of check
errors in the LDPC decoder. The average decoding sub-iterations (£) at the upper and

lower bounds (i.e. the numbers of check errors are 140 and 110) are 19.16 and 8.19, and

33

Table VII.: The number of sub-iterations used in the simulation

Check error level Priorityy Priorityg Priorityc

1 60 50 40
2 45 40 30
3 30 30 15
4 15 15 15

the corresponding standard deviations (o) are 17.56 and 2.12 respectively. The E 420
points are then 55 and 15. Based on the evaluation, we used 60 and 15 for the maximum
and minimum number of sub-iterations in the UEP-LDPC decoder. The twelve parameters
of sub-iterations, shown in Table were assessed within the min-max iteration bounds
to search minimum number of iterations at the given SNRs in the UEP-LDPC simulation.
For evaluation of the UEP-LDPC decoder, we compared the results of UEP decoding with
the result of fixed-iteration LDPC decoding. The fixed number of iterations was selected as
a half value (i.e. 30 sub-iterations) of the UEP-LDPC maximum number of iterations for
a proper evaluation because if we chose a large number of iterations for the fixed-iteration
decoding like 40~60 sub-iterations in the comparison, the energy reduction in the UEP
over the fixed-iteration method would be naturally achieved, thus this is not fair.

For the hardware implementation, we synthesized the joint source-channel decoder
and the DVFS controller using TSMC 0.13um technology. Critical path of the decoder
was extracted from Synopsys design compiler [55]]. Extra timing margin (5% on assum-
ing 2 x 0 <5%) was added to the critical path to accommodate variations; it can be in-
creased more when the variations are large [30]. We targeted at a low bit-rate and low
throughput portable system such that video bit rate was under 300kbps (H.264 baseline
decoder), and LDPC decoder had 1Mbps throughput, which was very low in comparison

with the throughput of [30]’s LDPC decoder, 200Mbps. In other words, our LDPC decoder

34

Table VIIL.: Sub-iterations vs. voltage/frequence for DVFS

#Sub-iterations Voltage(V;4) LDPC Frequency(MHz) H.264 Frequency(MHz)

60 1.45 16.2 3.7
50 1.4 15.5 3.5
45 1.25 12.5 2.8
40 1.2 11.7 2.6
30 1.1 9.2 2.0
15 1.0 7.0 1.5

—#— Case1
—&— Case?
—%— (Case3
—t+— Case4
—#— Case5
— 4~ - Fixed_Sublteration=30

Bit Error Rate
=
T

34 3.5 36 37 3.8 3.9 4
SNR dB

Fig. 9.: BER performance comparison in between the five cases of check error threshold

configurations and the fixed-iteration scheme on Foreman

and H.264 decoder, both were designed on low frequency, low performance and high en-
ergy saving constraints. In Table with 1.45~1.0V voltage supply constrained by the
technology, when the number of decoding sub-iterations was chosen among 15~60, the
corresponding frequency was able to be selected from 7.0MHz~16.2MHz for the LDPC

decoder and from 1.5MHz~3.7MHz for the video decoder.

35

i d
=
0]
o
=
ES
i / —— Foreman fixed-iteration
26 S o —+#— Foreman UEP
24 ?/ - g —{— Akiyo fixed-iteration
)El —+— Akiyo UEP
221 / —+t+— Mobile fixed-iteration
Mobile UEP
T

20 1 1 1 I
34 3.5 36 3T 38 3.9 4

SNR (dB)

Fig. 10.: PSNR performance comparison in between UEP Case3 and the fixed-iteration

scheme on Foreman, Akiyo, and Mobile

b. Simulation Results

The analysis of the amount of power reduction without performance loss is presented here.
In order to evaluate the proposed UEP design, the implemented hardware was operated on
five parameter cases (Table [VI). There are two evaluations for the proposed joint source
channel decoder. The first is the comparison of decoding performance between the fixed-
iteration simulation and the UEP simulation in terms of UEP-LDPC performance (BER)
and reconstructed image quality (PSNR). The other is the measurement of energy reduction
while driving the DVFS scheme in the UEP simulation.

Fig. [0] shows the BER performance of the UEP-LDPC decoder, compared with the
BER performance of the fixed-iteration decoder on Foreman. In this figure, 3.4~4.0dB
SNRs are used on AWGN channels, this is because we wanted to keep the BER better than
1072, (At SNRs of less than 3.4dB, the LDPC decoder’s BERs do not get better than 1072,
At high SNRs, there are few errors or no errors; therefore, comparing the UEP scheme with

the fixed iteration scheme is meaningless). Among the five test cases, Casel is the most

36

80 —#%— Casel
— O Case2
--%-- Casel
70+ —+— Cased

— & - Caseb

75

65
60

551

B0

s} /3/ 1

Normalized power reduction (%)

0 - :_/', # 4
354

L

3:%/ | | | | | .

4 35 36 3 38 3.9 4
SNR dB

Fig. 11.: Energy reduction (%) of the UEP-LDPC decoder on Foreman

protected in high channel errors so that it requires more iterations (more decoding effort
but less power reduction) in the LDPC decoding process. Therefore, it shows higher BER
performance than the other cases in Fig.[9]

Fig. [10| shows the PSNR performance of the proposed UEP based decoder and the
fixed-iteration decoder on Foreman, Akiyo, and Mobile. Case3 is selected for the perfor-
mance comparison with the fixed-iteration decoder because the check error thresholds of
Case3 are evenly balanced. The PSNR performance of the UEP Case3 is superior than the
fixed-iteration performance in 3.4~3.8dB since the UEP can efficiently protect high prior-
ity data that influence the reconstructed video quality over noisy channel. In high SNRs
(3.8~4.0dB), the PSNRs of the UEP and the fixed-iteration are saturated to the maximum
PSNR values since there are few errors.

The power analysis (Fig. [[T} [I2] and[I3)) presents the power reduction of the proposed
joint decoder. In Fig. [I1{and the power reduction results of the five simulation cases

in the UEP-LDPC decoder and in the UEP-H.264 decoder are shown respectively. The

30

37

—#— Casel
251 — o - Case?
---%-- Casel
o 200 _, Cased s -~ A
= 45| —© - Cases e ;?
k=) cmsee et Gam o
= AT et e 3l 3
g G LT 'P S - T =
s g S _,,.-V"_’_,e:’/%
§ 5 e e
o i o o 21
A T g etk
o Bt el i
Es i % ‘gf:_,-/
E BT e
i | T
Z° +
A0k
-15
-20 L 1 | i ;
34 35 36 37 38 19 1
SNR. dB

Fig. 12.: Energy reduction (%) of the UEP-H.264 decoder on Foreman

normalized power reduction (%) is computed by Eqn. (2.17)).

P
_ TOWETUEP \ 100

Powerreduclion = (

2.17)
Powergized

where Powerygp and Powerr;.q denote the power dissipation of the UEP decoder and the
fixed-iteration decoder respectively. In Case3, the UEP-LDPC scheme reduces 30% power
more than the fixed-iteration scheme at 3.4dB. As SNR increasing, more energy reduction
can be achieved not only because the average of UEP decoding iterations decreases but
because the operating frequency and voltage decrease by the DVFS logic, compared to the
fixed-iteration decoding scheme. In Fig.[I2] the UEP-video decoder consumes more power
than the non-UEP video decoder at low SNRs (3.4 and 3.5dB) since the UEP-video decoder
consumes more processing power for intensive error concealment than the non-UEP video
decoder in high error environment. However, at high SNRs, the UEP-video decoder con-
sumes less power than the non-UEP video decoder since the UEP-video decoder utilizes

less error concealment relatively; this decreases the operating frequency and voltage driven

by the DVFS logic.

38

45

T
—— Foreman

40 H —— Akiyo 5
—%— Mobile

Total JSCD power reduction (%)

4 35 36 347 38 38 4
SNR dB

Fig. 13.: Energy reduction (%) of the UEP joint source channel decoder on Foreman,

Akiyo, and Mobile

Fig. [13]illustrates the overall power reduction in the joint decoder on Foreman, Akiyo,
and Mobile. In the power reduction results of Akiyo and Mobile, we observed that the
results were similar to the result of Foreman even though the distributions of the priority
group B and C of Foreman, Akiyo, and Mobile were different. The reason is that these
video streams have similar distributions in the priority group A; the group A is dominant
in performance and energy consumption.

In summary, Table |[X]| presents the overall simulation results on Foreman, Akiyo and
Mobile, where F, U, and R denote fixed-iteration, UEP, and power reduction respectively.
The power results of the synthesized LDPC and video decoder are presented in Fig.
In the results, the LDPC decoder and H.264 decoder consume 256.3uW and 459.9uW
at 3.4 dB ,respectively, on Foreman; this consumes overall 716.2uW. According to the
evaluation results, it can be concluded that the proposed UEP-joint source channel decoder

design provides efficient energy scheduling without performance loss.

39

Table IX.: Simulation results of the UEP Case3 on Foreman, Akiyo, and Mobile

Foreman

SNR BERy BERy PSNRr PSNRy LDPCPr VDECP; JSCD Py
34 441x1073 236x1073 26.38 30.35 30.72 -3.90 8.48
35 203x1073 1.02x1073 28.62 33.27 4525 0.03 16.21
3.6 978x107% 4.99x107* 33.26 34.60 57.07 438 23.23
37 263x107* 138x107* 35.28 36.21 65.45 7.62 28.31
3.8 9.14x107° 4.54x107° 36.69 36.23 70.44 10.76 32.12
39 524x1075 442x107° 36.82 36.41 75.16 14.26 36.05
40 4.06x107% 7.41x107® 36.95 36.10 78.53 16.96 38.99

Akiyo

SNR BERf BERy PSNRr PSNRy LDPCPr VDECP; JSCD Pg
34 794x1073 242x1073 30.33 35.87 27.64 -6.03 6.01
35 3.65x1073 9.65x107* 34.30 37.36 4430 -1.61 14.81
3.6 175x1073 541x107* 36.84 37.90 55.36 2.68 21.53
37 474x107% 1.29x107* 3834 38.56 64.48 6.09 26.98
38 1.64x107% 524x107° 3847 38.65 69.37 8.99 30.59
39 941x1075 6.40x107° 38.70 38.65 74.52 13.07 35.06
40 731x107% 430x10°% 38.71 38.71 78.21 15.93 38.21

Mobile

SNR BERy BERy PSNRr PSNRy LDPCPrx VDECP; JSCD Pg
34 285x1073 2.29x1073 19.20 19.92 32.70 -2.40 10.15
35 131x1073 1.03x1073 23.32 25.70 46.59 1.16 17.41
3.6 632x107% 549x107* 25.60 28.06 57.60 5.20 23.95
37 170x107% 1.48x10~* 32.14 32.45 65.40 8.14 28.63
38 590x107° 5.78x107° 33.60 33.75 70.78 11.68 32.82
39 338x107° 5.11x107° 33.90 33.78 75.57 15.19 36.79
40 262x107% 9.11x107% 34.40 34.36 78.68 17.50 39.39

550 T T T T T

I - oreman VDEC
I ~kiyo VDEC]|
[IMabile vDEC ||
[]Fareman LDPC

I ~kiyo LDPC [
I |/\obile LDPC

Power Dissipation (uMy)

35 36 37 38 3.9
SNR dB

.

41

Fig. 14.: Power consumption (U W) of the UEP decoder on Foreman, Akiyo, and Mobile

40

B. Optimal Configuration Search Method for Low-Power Channel Decoder in Embedded

LDPC-H.264 Joint Decoding Architecture

In this section, we also propose a near-optimal configuration search method to maximize
energy utilization while receiving and reproducing a video stream through LDPC-H.264
joint decoding without significant loss in video quality. An empirical analysis for the con-
figurations of LDPC decoding is studied to quantify the trade-off between the number of
decoding iterations and peak signal to noise ratio (PSNR) associated with the reconstructed
image quality. In this analysis, UEP is employed to determine the optimal number of itera-
tions for each priority type. The determined iterations are used during runtime to schedule
the LDPC decoding. Low priority data allows less iterations in the LDPC decoding process;
however, the lowered number of iterations leads to degradation in PSNR performance, but

saves energy when used with DVFS that scales voltage and frequency [11].

1. Proposed Optimal Configuration Search Method

The presented joint decoding process mainly consists of two parts: offline pre-process
and online execution as shown in Fig. In the offline pre-process, a suite of test video
streams are encoded through an H.264 video encoding software, and the encoded video
frames are delivered to the search process to find optimal iteration sets using UEP. The
optimal sets are then determined by the priorities of input frames, and average PSNR values
are measured. Using this process, we quantify the relationship between the prioritized
video frames and the number of LDPC decoding iterations on targeted PSNRs and find
the minimum iteration sets. The searched iteration sets are stored in a lookup table for the
online execution process.

During the online process, encoded video streams containing partition information are

transferred through the LDPC encoder. When receiving the frames, the LDPC decoder

41

Online process (hardware system)

S\gﬂ‘f:e » H.264 Encoder - Data partitioning —z— LDPC encoder
Video data + parti'tion ‘ Error-prone channel ‘
information I
Received H.264 Decoder <= De-partionin -
Video : P 9
Video Yoo
Source LDPC fuo | DVFS
Partitioned video frames decoder |«
H.Ztssgﬂe;;::)edmg ! BER performance
Searching optimal corresponding to Readl T A T
iteration sets |«— the number of index lteration
H.264 decoding based on UEP |terat|;>ns c()jf LDPC UEP memory
software ecoder (Lookup table)

A

L A
Average PSNR H
measurement Measured PSNRs LDPC iteration sets

Offline process (software simulation)

Fig. 15.: The proposed UEP-based joint decoder design

reads the iteration values from the UEP memory using read indices to decode. The read
indices are generated by the pre-specified target PSNRs, channel condition (SNR), and
priority information on the fly. DVES controller then selects an operation voltage corre-
sponding to each input frame according to the iteration information loaded from the lookup

table.

a. Overview of the proposed search scheme

The proposed method searches the decoding iteration set (itermpin 4, it€¥min,B, it eryin c) that
yields minimum energy consumption at the given PSNR level, where iteryy A, iteryin .
iterpin,c are the minimum number of iterations for decoding frames annotated with priority
type A, B, and C respectively. The search process is composed of two search steps: coarse

search (algorithm I} [2) and fine search (algorithm 3)).

42

» X(priority A)
» y(priority B)
» z(priority C)

(itera, itermax, itermax)

| (itera, iterg,itermax)

(itera,iters,iterc)

Fig. 16.: Coarse search method

b. Coarse binary search process

In algorithm [I] binary search [56] is used to find a coarse estimate of an iteration set
(itery,iterp,iterc), where iter, indicates the number of iterations in LDPC decoding for
frames of priority A. The iteration set is then obtained when the average PSNR of H.264
reconstructed images marginally satisfies the target PSNR (desired quality of reconstructed

images), PSNR;4y4¢;. This routine can be graphically represented in Fig.
1. Find minimum itery = i satisfying PSNR;arger < PSNR(itery, itermax, itermax)
2. Find minimum iterg = i satisfying PSNR;arqes < PSNR(itery, iterp, iterx)
3. Find minimum iterc = i satisfying PSNR;arqer < PSNR(itery, iterp, iterc)

In this figure (each axis, x, y, z, shows the search space of iterations), itery is first searched
since the average PSNR is more sensitive to the impairment of high priority frames. There-
fore, the solution of the search routine would quickly converge on the coarse estimate of

the iteration set (itery,iterp,iterc) when the coarse search is conducted in the order of im-

43

portance A, B, and C. In addition, the initial values of iterp and iterc are set to iter,,,, while
searching itery because we search the set in the direction of reducing iterations (from the
large number of iterations to the small number of iterations : iter,q, — iteryi,). To find
the coarse iteration set (itery, iterp,iterc), the binary search algorithm can be performed as

algorithm 2]

Algorithm 1 Coarse Search

1: Coarse_Search(PSNR;, PSNR;arqet)
2: min =1, max = itery,y

3: while min <= max do

4: mid = (max+ min)/2

5: if PSNRyiq < PSNRiarger then
6: min = mid + 1

T: else if PSNR,yjq > PSNR4rqe; then
8: max = mid — 1

9: pos = mid

10: else

11: pos = mid

12: break

13: endif

14: end while
15: return pos

Algorithm 2 Coarse Iteration Set (itera,iterp,iterc)

PSNR; = PSNR(i,itermay, it€rmay)

itery = Coarse_Search(PSNR;, PSNR:4rger)
PSNR; = PSNR(iter,i,iter,y)

iterg = Coarse_Search(PSNR;, PSNR4rger)
PSNR; = PSNR(itery,iterp,i)

iterc = Coarse_Search(PSNR;, PSNR4rger)

SAR A Y

PSNR(a,b,c) shows an average PSNR at itery = a, iterg = b, and iterc = c. PSNR
(i,itermay, itermq,) means an average PSNR when irer4 is variable i, and iters, iterc are

fixed to iter, y.

44

c. Fine search process using the UEP scheme

The fine search shown in algorithm [3| uses the fact that the increasing of the number of
iterations for high importance data leads to enhancement in the average PSNR. Hence,
a small increment of itery leads to a large decrement of iterg and iterc while satisfying
the target PSNR. After obtaining a coarse iteration set (itery,iterp,iterc) from the coarse
search, we gradually increase itery and decrease iterp and iterc until finding a minimum
iteration set (iterin A, €T min B, itermin,c), Which maximizes the total reduced iterations

(Aiterg + Aiterc — Aiter,). The iteration set can be found as follows:
1. Increase itery and decrease iterg and iterc

2. Find (itery,iterp,iterc) maximizing [(Aiterg + Aiterc) — Aiter4] (the total number of

reduced iterations) and satisfying PSNR;areer < PSNR(itery, iterg, iterc)

The reduced iterations resulted from the proposed algorithms lead to energy savings along

with DVES.

2. Energy Minimization Using DVFS

Fig.[17|represents the hardware implementation of the LDPC decoder and DVFS controller.
The offset-min-sum LDPC decoder that we use In this dissertation is based on [30]. The
check node units (CNU1-61) take the variable-node message associated with each check-
node serially and compute the least magnitude of all variable-node messages. They are
stored in Final States (FS) buffers. Check-node messages to each associated variable-node
are sent out serially again, and they are selected by index and sign comparison, where the
signs of R messages are stored in a sign FIFO. As soon as check-node messages to the first
connected variable-node are ready, the corresponding P sum message can be computed.

The Q message is then ready for check-node message processing of the next iteration.

45

Algorithm 3 Fine search based on unequal error protection

1: Fine_Search()

2: x=itery,y = iterg, 7 = iterc

3. iteryina = itery, iteryinp = iterg, iteryiy.c = iterc
4 dif fax = 1

5: while x < iter,,,, do

6: x=x+1

7. y=iterp

8: while y > iter,,;, do

9: y=y—1

10: z=lterc

11: while z > iter,,;, do

12: z=2z—1

13: dif f = (iterg —y) + (iterc —z) — (x — itera)
14: if PSNR;arger < PSNR(x,,2) &8 dif fynax < dif f then
15: iterminA = X, itermin g =y, terminc =2
16: dif fnax =dif f

17: end if

18: end while
19: end while
20: end while

The searched sets of minimum iterations for priority frame A, B, and C are loaded
to the DVFS controller from the UEP memory for the energy minimization scheme in a
real-time system. Frequency information is generated from the iteration values and stored
into a frequency selector register in the DVFS controller. The frequency selector generates a
Freq_sel signal using the priority information. When the selection is done, the clock divider,
such as a phase-loop locker (PLL) [57], divides the fast system clocks (fsctr,fSgec) IntO
slower clock signals (fzec,fctr) according to the output of the frequency selection register.
faec clocks the decoder for the current frame, and f;, is sent to the variable supply voltage

logic for the voltage control.

3. Results and Discussion

We used four different QCIF (176x144) video sources (Foreman, Akiyo, Mobile and News:

each 300 frames) at 30fps for the IM14.2 decoder [42] for simulation. The proposed

LDPC decoder

DVFS controller

R select

FS/R-sign

Frame
buffer

j

Decoder

Vi

DL

supply voltage

output

\

ec

Variable

controller

? fctr

A

Clock divider |-

MAX(f;
QFIFO ()
Frequegncy
selector registe
Freqg_sel[1:0]
Priority Frequency
selector
PSNR, | Read ctrl]
Frame Channel
buffer LLR
\
Iteration Read index Iteration

Fig. 17.: DVES controller for LDPC decoder

46

method was simulated at 3.5, 3.6 and 3.7dB SNR levels. This was because we simulated

three cases keeping the BER performance of the LDPC decoder better than 10> as shown

in Fig. In this simulation, LDPC decoder had 4/5 code rate and 1675 bits code length

over an adaptive white gaussian noise channel (AWGN), and our searching scheme can

be extended to other LDPC decoder designs. For ASIC design, we synthesized the LDPC

decoder and DVFS controller with TSMC 0.13pum technology (Table [X). The critical path

of the decoder was extracted from Synopsys Design Compiler.

The DVFS controller demonstrated that the LDPC decoder could be clocked as fast

as 175MHz with a 1.5V supply voltage. Fig. |19 shows the relationship between decoding

iterations and required supply voltage for the decoding. For instance, when the numbers of

iterations were 3, 5, 12, and 18, then the supply voltages could be chosen to 1.02V, 1.05V,

47

SNR vs. BER at specific LDPC decoding iterations

10 L I T oo o i oo ad | | SRR
A 1| —%— lterations="1

.:| —e— lterations=4

—%— lterations=6 %

= : : —+— lterations=8

10-2‘:: 4 i '..":::::..."':::::5::::::: - —&— - Iterations=10

I 5 e SR AT A B SR R e R S

Fig. 18.: BER performance of the LDPC decoder

1.19V, and 1.45V, respectively. The corresponding decoder frequencies then were 66 MHz,
82.5MHz, 110MHz, and 165MHz, which could be derived from a 330MHz system clock.

Table @ shows the simulation results in Foreman, Akiyo, Mobile, and News video
streams. The number of iterations for the search scheme varied from 1 (minimum iter-
ations) to 20 (maximum iterations), and each result was compared to EEP using 10, 15,
and 20 iterations in terms of power consumption. PSNR;,.¢.; values were chosen from
PSNRs which mostly covered the PSNR ranges of reconstructed images. To measure the
energy reduction in the simulation, we computed energy consumption ratio of the energy
consumption of UEP over the energy consumption of EEP. E, E5, E»¢ denote the energy
consumption ratios, where the numbers of iterations are set to 10, 15, 20, respectively, in
the EEP simulation. The results of the coarse and fine search show that a slight increase
of iterations in high priority data causes a large amount of decrease of iterations in low

priority data with the same PSNR level. The energy consumption ratios can be greater than

48

Table X.: Synthesis results of LDPC decoder and DVFES controller

DVES logic LDPC decoder
Frequency 175MHz 175MHz
Area 0.011mm? 1.2mm?

Power ~ 10mW ~ 200mwW

15 T T T T

1451 .

141 .

1.35¢ -

—_
w
T
|

1.25¢ -

—_
N
T
|

Supply voltage (v)

N
-
)
T
1

—_
—_
T
|

1.05¢ .

1 1 1 1 1 1 1
|

1 |
2 4 6 8 10 12 14 16 18 20
Number of iteration (1~20)

Fig. 19.: Iterations vs. supply voltage

1 in the cases of Ejo and E|5 because, in high target PSNRs, the energy consumption of
UEP (i.e. the average iterations) can be greater than that of EEP. For example, E;q is 1.23
in Foreman when SNR is 3.5dB and target PSNR is 35.2dB.

Fig. 20| graphically shows the results of the proposed joint decoding method in Fore-
man video stream at 3.5, 3.6, and 3.7dB SNRs. In Fig. @Ka), the results of the coarse
search involve high numbers of iterations for priority B and C data. To further minimize

the iteration values which were found in the coarse search results, the iterations for the

49

priority B and C data were gradually decreased with a slight increasing of the iterations
for the priority A data in the fine search as shown in Fig. 20(b). In this figure, the consid-
erable decrease of the iteration values for the priority B and C data achieves noteworthy
power reduction. Fig.20(c) illustrates the energy consumption ratios of UEP over EEP at
given SNRs. When a target PSNR is low, the proposed UEP scheme can reduce power
consumption, but cause video quality degradation; therefore, the trade-off between power
and quality happens here. As presented in Table EEP PSNRs with 10, 15, 20 iterations
are 31.5, 32.7, 33.9 at 3.5dB in Foreman. Once 31.5 is selected as target PSNR, then the
proposed decoding scheme can reduce 15%, 35%, 48% energy consumption, but lower 0,
1.2, 2.4dB in PSNR compared to EEP using 10, 15, 20 iterations respectively. In Fig.[20{c),
the UEP scheme reduced 17%, 37%, 52% power consumption with 0, 0.3, 1.1dB PSNR
losses at 3.6dB, and 18%, 38%, 52% with 0.4, 0.4, 0.4dB PSNR losses at 3.7dB when

compared to the results of EEP using 10, 15, 20 iterations.

50

Table XI.: Simulation results at 3.5, 3.6 and 3.7dB. It shows LDPC configuration sets
achieved from the coarse search and the fine search. E, represents the energy consumption

ratio of UEP over EEP,,, where n is the number of iterations.

SNR=3.5dB
Foreman (EEP PSNRs with 10/15/20 iterations = 31.5/32.7/33.9) Akiyo (EEP PSNRs with 10/15/20 iterations = 37.7/38.1/38.07)
PSNR;arger Coarse Fine Eo Es Ey PSNR;arger Coarse Fine Eo Es Ey
30.0 (6,8,19) (8,4,1) 0.86 0.65 0.49 35.5 (4,4,9) (6,3,1) 0.83 0.63 0.47
31.0 (7,20,5) (10,3,1) 0.89 0.67 0.51 36.0 (4,6,13) 6,4,1) 0.83 0.63 0.47
32.0 (12,6,19) (15,3,1) 1.04 0.78 0.59 37.0 (6,8,12) (7,4,1) 0.85 0.64 0.48
33.0 (14,11,20) (18,4,3) 1.16 0.88 0.66 37.5 (10,6,19) (11,5,1) 092 0.70 0.52
33.5 (19,20,20) (20,12,2) 1.33 1.00 0.75 38.0 (19,20,19) (20,6,1) 1.25 094 0.71
Mobile (EEP PSNRs with 10/15/20 iterations = 26.9/27.1/27.8) News (EEP PSNRs with 10/15/20 iterations = 30.7/32.5/33.2)
PSNR;arger Coarse Fine Eo Es Ey PSNR;arger Coarse Fine E Es Ey
25.0 (13,20,5) (12,5,1) 095 0.72 0.54 29.5 (7,8,14) (8,6,1) 0.87 0.66 0.50
26.0 (13,20,8) (13,3,1) 096 0.73 0.55 30.5 (12,8,19) (13,7,1) 099 0.75 0.56
27.0 (13,20,19) (12,9,1) 098 0.74 0.56 31.5 (14,18,11) (17,8,1) 1.15 0.87 0.65
27.5 (14,20,10) (14,8,1) 1.03 0.78 0.59 32.5 (15,20,12) (16,11,2) 1.15 0.87 0.65
28.2 (15,20,16) 17,7,2) 1.14 0.86 0.65 334 (16,20,19) (19,9,1) 1.24 093 0.70
SNR=3.6dB
Foreman (EEP PSNRs with 10/15/20 iterations = 34.3/34.6/35.4) Akiyo (EEP PSNRs with 10/15/20 iterations = 38.2/38.3/38.6)
PSNR;arger Coarse Fine Eo Es Ey PSNR;arger Coarse Fine Eo Es Ey
32.0 (4,8,13) (5,2,1) 0.82 0.62 0.46 36.5 (2,20,15) 3,2,1) 0.80 0.61 0.46
33.0 (5,12,5) (7,1,1) 0.83 0.63 0.47 37.0 (3,13,19) 4,3,1) 0.81 0.62 0.46
34.0 (6,11,5) (7,6,1) 0.86 0.65 0.49 37.5 (4,3,19) (6,2,6) 0.84 0.64 0.48
345 (8,20,20) (10,5,1) 090 0.68 0.51 38.0 (12,7,11) (134,1) 097 0.73 0.55
35.2 (16,20,20) (19,8,1) 1.23 093 0.70 38.5 (14,20,15) (15,7,1) 1.06 0.80 0.60
Mobile (EEP PSNRs with 10/15/20 iterations = 29.2/30.8/31.2) News (EEP PSNRs with 10/15/20 iterations = 34.2/34.9/36.0)
PSNR;arger Coarse Fine Eo Es Ey PSNR;arger Coarse Fine Eo Es Ey
28.0 (5,5,11) (5,5,1) 0.83 0.63 0.47 32 (5,3,20) (6,4,1) 0.83 0.63 0.47
29.0 (5,6,20) 6,5,1) 0.84 0.63 0.48 33 (5,9,15) 6,7,1) 0.85 0.64 0.48
30.0 (5,20,15) (8,5,1) 0.87 0.66 0.49 34 (5,20,10) (7,8,4) 0.89 0.67 0.51
30.5 (8,20,15) (11,7,3) 095 0.72 0.54 35 (17,20,15) (20,3,2) 1.24 0.93 0.70
31.1 (9,20,18) (17,3,1) .11 0.84 0.63 35.6 (18,20,19) (19,8,8) 1.26 0.95 0.72
SNR=3.7dB
Foreman (EEP PSNRs with 10/15/20 iterations = 36.9/36.9/36.9) Akiyo (EEP PSNRs with 10/15/20 iterations = 38.7/38.7/38.7)
PSNR;arger Coarse Fine Eo Es Ey PSNR;arger Coarse Fine E Es Ex
32.0 (3,2,17) 4,1,1) 0.80 0.61 0.46 37.0 (2,1,20) (4,1,3) 0.81 0.61 0.46
33.0 (3,7,11) (5,2,1) 0.82 0.62 0.46 37.5 (3,2,14) (5,1,4) 0.82 0.62 0.47
34.0 (4,2,17) (6,1,5) 0.84 0.63 0.47 38.0 (3,5,10) 4,3,1) 0.81 0.62 0.46
35.5 (4,20,3) 6,3,7) 0.86 0.65 0.49 38.4 (4,12,3) 5.4,1) 0.83 0.62 0.47
36.5 (6,20,19) 9,5,1) 0.88 0.67 0.50 38.7 (6,20,9) (8,6,1) 0.87 0.66 0.50
Mobile (EEP PSNRs with 10/15/20 iterations = 34.4/34.4/34.4) News (EEP PSNRs with 10/15/20 iterations = 37.4/37.4/37.4)
PSNR;arger Coarse Fine Eqo Es Ey PSNR;arger Coarse Fine E Es Ex
32.0 (4,5,13) 5,4,1) 0.83 0.62 0.47 33.5 (4,2,13) (6,2,2) 0.83 0.63 0.47
33.0 (5,4,10) (8,2,1) 0.85 0.65 0.48 34.0 4,3,12) (7,1,1) 0.83 0.63 0.47
33.5 (5,4,16) (11,2,1) 091 0.69 0.52 34.5 (4,5,10) (7,2,1) 0.84 0.63 0.48
34.0 (5,20,16) (10,6,1) 090 0.68 0.51 36.5 (4,20,20) (5,5,1) 0.83 0.63 0.47

34.4 (11,20,11) (15,8,5) 091 0.82 0.62 37.3 (7,6,13) (8,5,2) 087 0.66 0.50

51

——iterations for A
—=—iterations for B

3.5dB

The number of iterations

The number of iterations

—=—iterations for C

27 28 29 30 31 32 33
Target PSNR

34 35

(a) Coarse search results at 3.5, 3.6,

——iterations for A
—=—iterations for B

3.6dB

The number of iterations

36

—+iterations for C

N - n
I=) o =3

o

——iterations for A
——iterations for B

3.7dB

The number of iterations

—=iterations for C

7

5 32 33 34 3%

Target PSNR

3‘0 3‘1

36

37

52 53 3‘4 35

—+—iterations for A
—=—iterations for B
—=iterations for C

3.5dB

TR0 31 32
Target PSNR

25| ——iterations for A
——iterations for B 3.6dB
&2 || iterations for C
S 200
o
i)
=
O 151
o
o]
Qo
£
3 10 |
2 /
£ Y.
5 T ey
esreed Nl

38 31 36 37 38 39 4C
Target PSNR
3.7dB
25| —iterations for A
—=iterations for B 3.7dB
——iterations for C
5.2 20 SIS

The number of iterations

357750 3 30 a3
Target PSNR

3

37

38

o

=)

o

3455 a6 37

Target PSNR

(b) Coarse + Fine search results at 3.5, 3.6, 3.7dB

3B 39 40

N

w

N

(c) Energy consumption results at 3.5, 3.6, 3.7dB

& ' ——UEP/EEP(EEP iterations=10) ,,’ E ——UEP/EEP(EEP iterations=10) & ——UEP/EEP(EEP iterations=10)
E 12 —UEP/EEP(EEP iterations=15)[° 3.5dB |4 12 —+-UEP/EEP(EEP iterations=15)| 3.6dB | 2 —+~UEP/EEP(EEP iterations=15)| 3.7dB
u:)" 111 ——UEP/EEP(EEP iterations=20) % 1.1 ——UEP/EEP(EEP iterations=207) %1.1 ——UEP/EEP(EEP iterations=20)
. fa’! . ER
® 09 o r’ T 09] T oot
é 08 | | .5 08 / .5 08
g07 J(£ 07 g o7t ” A
é 0.6f / é 0.6 é O_GW%W |9
S 05 8 05 3 05 AV,
> > N NN
Sos 204 204
9] 9]
LI:.I 03 - v v v v v v v v u‘i 0.3 L L L - - - - - . LI:J 03 L L L L L L L L L
27 28 29 30 31 32 33 34 35 36 "7 29 30 31 32 33 34 35 36 37 38 31 32 33 34 35 36 37 36 39 40
Target PSNR Target PSNR Target PSNR

Fig. 20.: (a) Coarse search results, (b) coarse and fine search results, and (c) comparisons

of energy consumption ratio in foreman at 3.5, 3.6, and 3.7dB SNRs

52

C. Optimal Configuration Search Method for Low-Power MIMO Detector in Embedded

MIMO-H.264 Joint Decoding Architecture

The UEP-based MIMO detector design is presented to minimize energy consumption with-
out significant loss in video quality in this section. This approach carries out an empiri-
cal analysis, searching the minimum configuration of MIMO detection in terms of power
savings. Energy reduction is fulfilled by trading off the search space of MIMO symbols
(MIMO candidate vectors, or search paths) and BER associated with the MIMO detection.
Reduced (or truncated) search paths lead to degradation in BER performance but reduce
energy consumption. To compensate for the BER degradation, we adopt UEP using the
H.264 DP method, which partitions image streams into three priority groups, A, B, and C:
A) high priority frames, B) medium priority frames, and C) low priority frames [41]. Here,
MIMO configuration (or processed paths) denotes the number of MIMO candidate vectors
to be searched, and a set of MIMO configurations is defined by [C4,Cp,Cc], where Cy, Cp,
and C¢ are MIMO configurations to detect priority A, B, and C data respectively.

The aim of this scheme is to 1) quantify the relationship between the priorities of
video data and MIMO configurations empirically, 2) design a search method such that we
used in LDPC-H.264 JSCD system to search minimum energy consuming sets (i.e. the
sets of MIMO configurations) to decode prioritized video data under the consideration of
reconstructed video quality, and 3) catalogue the searched configurations into a UEP lookup

table and use them for the joint MIMO-H.264 decoding in runtime.

1. Background: MIMO Detection

Eqn. (2.18)) shows a MIMO system composed of My transmit and M receive antennas [58]].

y=Hs+n (2.18)

53

where y=[y1,y», ...,yMR]T is a Mg x 1 received vector, s=[sy,s2, ...,sMT]T is a My x 1 trans-
mitted vector, n is a Mg X 1 zero mean complex Gaussian noise vector, and H is a Mg X M-
dimensional complex matrix. The complex channel gain from the ;j/* transmit antenna
to the " receive antenna can be denoted by h;; in the matrix H. MIMO symbol s; (i =
1,2,..M7) is derived from a set Q of cardinality 1, complex numbers with their real and
imaginary parts of the form {—,/n + (2k — 1)} where k=1,2,...,/7. This method is called
as a 1-ary quadrature amplitude modulation (QAM). A group of binary bits (size is log, 1)
is mapped onto a symbol from Q, creating the QAM symbols (s;). In Eqn. (2.19), the opti-

mal or the ML estimate $,,; of s can be achieved by y and H for the MIMO detection [59]:

S = arg min ||y — Hs||? (2.19)
seQMT

To reduce the cost of searching for §,,;, only a small subset of all the possible vectors can be
evaluated, using QR decomposition: H = QR, where, R is an upper triangular matrix, and

Q™ is the Hermitian of a unitary matrix Q. The estimate symbols, § is derived as (2.20) [60],

§=|y—Hs|* = |9 —Rs|*,and $ = 0"y (2.20)

It is well known that this optimization can be considered as a tree search problem with
each node of the tree having 1 children [61]. The complexity can be reduced by employing
pruning large parts of the tree (sphere decoding algorithm) as shown in [62]. However, we
chose to implement a hardware friendly detection algorithm called conditionally ordered
successive interference cancelation (COSIC) [63]]. In this algorithm the complicated data
flow is avoided as opposed to sphere decoding. The resulting “tree” structure is shown in
Fig. 21| (for 64-QAM), where only the root node has 64 children, and the rest of the nodes
in the tree have only one child. The key fact we utilized is that the more processed paths

(larger search space) in Fig.|21] better BER will be but at higher energy consumption levels.

54

64-Nodes

Tpp Level Nodes
112 |13 |4 |5 |6 |7] |8 57 158 |59 [60 [61 [62 |63 [64

Fig. 21.: Energy scalable MIMO with variable detection effort

We use these two divergent behaviors along with the fact that H.264 inherently has unequal
error protection requirements. In view of that, we can scale the energy consumption by
varying the number of paths used in the MIMO detection since more/less paths lead to
more/less energy needed.

For example, in Fig. 21] (1),(2),(3) indicate three differently sized search spaces that
computes 4, 7, and 64. In particular, we have used a variant of the staggered architecture
presented in [60]. The only difference is that [60] employs pruning during runtime, but
in this work we do not use pruning to reduce the search space, instead, the energy sav-
ings is attained by dynamically changing the size of the search space to keep the analysis
simple. This analysis can be applied when pruning is present. Fig.[22] shows the MIMO
hardware architecture, where the metric computation unit (MCU) is used as a computa-
tional node to detect 64-QAM symbols. This detection flow is implemented as a systolic
architecture carefully configured to minimize power-costly register/memory accesses. The
MCU for each level is composed of shift/add, adder, slicer, and norm computational logics

to compute the search function implicated in Eqn. (2.20).

55

Received Symbols

MCU (Level 4) | shif/Add || Shif/Add || shif/Add | :
i B * I Adder I ;
E v — :
MCU (Level 3) i
S — s
i) Tom]
: MCU (Level 2) i
E L2 Adder i
e [:
: ¥

: MCU (Level 1)

E ¥

y B

Estimated Symbols

Fig. 22.: MIMO architecture

2. The Proposed Low-Power MIMO-H.264 Joint Decoder Design

Our MIMO-H.264 joint decoder design using UEP is shown in Fig.[23] This design mainly
consists of two parts: initialization (i.e. pre-process) and runtime execution. During ini-
tialization, /) a suite of test video streams are encoded through an H.264 video encoding
software [42], and 2) encoded video frames are sent to the search process with the prior-
ity information of the frames and MIMO information (BERs and the number of processed
paths corresponding to each BER). 3) The encoded frames are corrupted by injecting errors
using BER information and sent to an H.264 software decoder [42]] to measure the average
PSNRs of decoded pictures. 4) The measured PSNRs are sent back to the search process,
and the sets of MIMO configurations are determined by the presented search scheme. Us-
ing this scheme, we quantify the relationship between prioritized video data and MIMO

configurations on various PSNRs and find minimum sets for a low-power MIMO detec-

56

wASAs 19p0odap jutol pasodoid oy, "¢z "S1

1oA1909Y OWIN

(uBisap atempley)
we)sAs peppaquie swpuny

Japooa(g

(uone|nwis a1emyos) uonezijeniu)

20In0g

(e1gey dnyjoo) | juswainseaw
Kowsw 4an [* suonenbiyuod Q|IA JO S19s ayL (s It UNSd
A
o8 :o_#mSm_EoO« #xwv:_ peay (&) SUNSd
(s a painsesp\ (€
1030939p ONIN - ~ . o OSPIA
A » Buuoiped-aq - JOpodaQg $9Z'H > OAIB00Y A
A &) -~ 2IeM}joS
(syied passaooud AMU o Buipoosp $9z'H
uonewoul Jopooug 40 Jsquinu suy d3n Buisn
auueyd auoid-1oll 7 | . 0} Buipuodsa.100)
7 | Y 3 uonied + eyep oapIA (e souewopiad y3g) wwmoo._M_.vco._mmw (1
+ | 7 7 oo uoneuwLojul ONIN alem)jos
Japiwsuel] ONIN ﬂ = 7 Buiuonied eyeq J8poou] ¥9Z'H ﬂ omn_>m Buipoous $9z'H
(e

sawelj 08pIA
pauoniped @ pspoous

O3pPIA

57

tor. 5) Last, the searched sets are saved into UEP memory (a lookup table) for runtime
execution.

During runtime, a) encoded video streams are sent to the MIMO detector with partition
information over error-prone channel.) The MIMO detector generates read indices using
a given target PSNR, channel condition (SNR), and the priority information of input frames,
reading a set of MIMO configurations from the UEP memory. This is to be done on-the-
fly. ¢) The output data of the MIMO detector are sent to an embedded video decoder to
reconstruct output images. For this evaluation, the encoded video streams are generated by
a software video encoder [42] and Matlab MIMO transmitter (dim blocks in Fig. [23).

The current implementation is based on a static scheme that uses pre-searched con-
figurations for the MIMO detection in runtime. However, these configurations can be re-
evaluated if application or channel conditions calls for a change. The optimization problem
for searching the minimum energy paths (i.e. the sets of configurations) of the MIMO de-
tector can be now stated by prioritized video sequences, utilization of paths, and PSNRs
of reconstructed video frames. The main purpose of our search scheme is to determine a
minimum MIMO configurations set [Cynin 4, Cnin,B> Cimin,c] while minimizing PSNR degra-
dation. The search scheme is composed of two search steps: /) coarse search and 2) fine
search.

The evaluation of quality degradation in video transmission over wireless channel is
necessary for this work since the variable effort of the MIMO detection is also affected by

the quality of reconstructed video.

a. Coarse Search Process

We exploit binary search (BS) to find a coarse estimate of the set of configurations [Ce, 4, Ceo,8,Ceo.c]
in the MIMO detection. The coarse set is searched when PSNR(a,b,c) (an average PSNR

of decoded video frames at C4 = a, Cp = b, and C¢c = ¢) marginally satisfies target PSNR

58

(the desired quality of reconstructed images), 7. The search is detailed as follows.
1. Find C, 4 satistying PSNR(C¢o 4, Cpax, Cnax) > T
2. Find C,, p satisfying PSNR(C¢o 4,Cco B,Cpax) > 7T
3. Find C,, ¢ satisfying PSNR(C¢o.4,Ce0,8,Ceo.c) > T

where G4y is the maximum MIMO configuration, 64. In the coarse search, C,, 4 is firstly
searched since the average PSNR is more sensitive to the impairment of high priority
frames. Therefore, when the coarse search is performed in order of importance (or pri-
ority), A, B, and C, the search result would be quickly converged. Plus, the initial values
of Cp and C¢ are Cyyq, While searching C., 4 because we search the set in the direction of

reducing energy consumption (from the large number of paths to the small number of paths

1 64—1).

b. Refining the Coarse Search Using UEP

The fine search refining the coarse search (binary search + fine search: BFS) result
shown in Algorithm [4] uses the fact that the increasing of the processed paths of high im-
portance frames leads to enhancement in the average PSNR due to UEP. Hence, a small
increment of C4 (x) leads to a large decrement of Cp (y) and C¢ (z) while meeting the
target PSNR. By this fact, we gradually increase x and decrease y and z until finding a min-
imum processed paths set [Cpin A, Cinin,B: Cnin,c]- A processed paths set which produces the
optimal performance in terms of energy reduction on a given target PSNR is searched as

follows (Algorithm [).

1. Increase C4 and decrease Cg and C¢

2. Find a minimum set, [Cynin 4, Ciin,B, Cmin,c] maximizing the number of reduced paths,

[(ACp + AC¢) — AC4] and satisfying PSNR(Cpin 4, Ciin B, Ciin,c) > T

59

Algorithm 4 Fine search algorithm refining coarse search result using UEP

1: Fine_Search(PSNR,Coarse Configurations Set)

2: Cpax =64, Cpin =1

3 x= Cco,A’ y= Cco,Ba i= Cco,C

4: CmimA = Cco,A, Cmin,B = Cco,B’ Cmin,C = Cco7C

5: diffmax =1

6: while x < C,,u do

7. x=x+1

8: y= Cco,B

9: while y > C,;, do

10: y=y—1

11: = Cco7C

12: while z > C,,,;, do

13: z=z—1

14: diff = (Cco,B - y) + (Cco,C - Z) - (X — Cco,A)
15: if PSNR(x,y, Z) > T && dif fnax < dif f then
16: Cmin,A =X, Cping = ¥, Cmin,C =z

17: difﬁ11ax = dlff

18: end if

19: end while
20: end while
21: end while

where Cp,i, 1s 1 (the minimum number of paths), and dif f,,,« denotes the maximum re-
duction of processed paths, which implies an amount of energy reduction ((ACg+ AC¢) —
ACy). As a result, the minimum sets of MIMO configurations can be searched using the

presented UEP scheme.

3. Results and Discussion

As aforementioned, the more paths considered for the MIMO detection, the better BER
gets. However, energy consumption increases as well. This relationship is shown in Fig.[24]
In this experiment, we wanted to keep the un-coded BER better than 1073 since the H.264
decoder could not work properly for high impaired data. The MIMO detection’s BER at
20dB did not get better than 1073, thus we simulated only for the range of 22 and 24dB.

The energy consumption of the MIMO detector in Fig. 24| was computed by the synthesis

60

107 ¢

BER vs Baseband Energy Consumed by the Detector at various snr

107 b 2y ol

BER

107 k-

0 5 0 15 0 %
Baseband Energy Per Detected MIMO Symbol{in nJ)

Fig. 24.: MIMO energy vs. BER performance: The more energy is needed for the lower
BER.

result shown in Table [XII} These design attribute estimates were achieved using Synopsys
design compiler [55]] and OSU PDK 45nm CMOS predictive standard cell library [64]. The
area of MCUs increased because more computations were needed as we went down the tree
(i.e. level 4 — level 1).

For the evaluation, we simulated three different QCIF (176x144) video sources (Fore-
man, Akiyo, and Mobile: each 300 frames) generally used for video test at 30fps. The
amount of energy reduction varied according to the distribution of priority in a video se-
quence since a high priority part utilized more resources (processed paths). Table [XIII|
shows the simulation results of the presented UEP-based MIMO design in Foreman, Akiyo,
and Mobile video streams. The normalized energy reduction (ER) can be computed by
Eqn. 2.21).

ERyormatizea = 1 — Ex,y,z/EN:64 (2.21)

61

Table XII.: Synthesis results of MIMO detector using 45nm CMOS predictive standard cell

library

Area Energy (nJ) Delay (ns)

Level 1 7325 0.148 15.68
Level 2 5997 0.114 14.65
Level 3 4158 0.076 12.84
Level 4 2982 0.023 6.9

where Ey , . is energy consumption at a processed paths set (x,y,z) , and Ey—_¢4 1S energy
consumption when using N=64 paths (maximum EEP energy consumption). In this table,
the ER results were attained from UEP-BFS and EEP (N=64). We observed that the results
of Akiyo and Mobile were similar to that of Foreman. Although the distributions of the
priority group B and C of Foreman, Akiyo, and Mobile were different, the results were
analogous one another in terms of energy consumption. The reason was that these video
streams had similar distributions in the priority group A. (Group A was dominant in per-
formance and energy consumption because it exploited more paths than B and C.) It leaded
to the comparable results in terms of energy reduction.

Fig.[25(a) and (d) show the UEP-BS results in the simulation of Foreman at 22dB and
24dB respectively. In these figures, the number of paths for B and C are considerably higher
than the number of paths for A. For energy reduction, the fine search algorithm was com-
bined. The UEP-BFS results in Foreman are shown in Fig. 25(b) and (e). In these results,
the numbers of utilized paths for B and C decreased under 10~20 with increasing the num-
ber paths for A. It leaded to energy reduction in the MIMO detector. We thus demonstrated
the number of processed paths for EEP that equally cut off the MIMO search paths (called
“EEP-cutoff”) regardless of the priority of data for comparison with the UEP results. For

instance, when target PSNR is 33.6dB at 22dB SNR, the processed paths set is (57,56,31)

62

uononpal ABlaua paziewlonN (})

1insal (S49) yoteas aulj + Areuig (9)

uononpar A319u9 (J) pue ‘SHg (@)

1nsal (sg) yoJeas Areuig (p)

UNSd jabieL UNSd jabieL UNSd 1ebiel
8¢ 9€ 12 A 0€ 0 8¢ Z€ 0¢ 0 8¢ 9€ 14
(Ho-In2)d3a - 3 |[2 10 suyjed pessedaoid -
(sagldan ——[{}0 =z | oL b g Jo syjed passasold —
(sg)dan —— zo g) m I v 40 sujed pessesold —s— |,

g | 0z & ot
g0 |] peses e
= <z
vod T 0¢ g
S| P b
sog | o g

el
90 2 3
8 [(BoIn9)d33 ..o [0S B
e L0 = 9 jo syjed passasolg ----- M
20 s r g Jo syjed pessesold —— {09 T
S v J0 syjed passanold —e— 2
N Baasabg () N N 3 : n 0L N N , , , oL
gp 1z Je uononpay ABiau3z 'sn ¥NSd }ebue, (s48) ap #z e syjed passaosoid ‘sn YNSd }9bieL (sg) gp ¥z e syjed passasoid ‘sA YNSd }ebiel
uolonpal ABiaua paziewloN (2) 1nsal (S49) yoteas auly + Areuig (q) 1nsal (sg) yoteas Areuig (e)
uNsd jebieL ¥NSd 1ebieL uNSd 1ebieL
e [4> 0g 8¢ 0 e 4> 0¢ 8T 0 e 4> 0¢ 14 0

_." (Ho-IN2)d33 - 2 40 syjed passanold .-

} (s49)dan —— 1+0 | oL || g 40 syjed passesoid —

(sg)dan —— || 70 . v 10 syjed pessaoold —o—

uoponpay Abiau3 pazijewloN

(Ho-In9)d33 -.-.-.- 1
0 Jo syjed passasold
g Jo syjed passasold — |
v Jo syjed passasold —e—

0z

0¢

/14

{r9~1)suped passasoid jo Jaquinu ayj

‘

4

ZZETmme

0s

ap gz e uononpay Abiauz 'sA YNSd }ebiel

(s48) gp zz je sujed passasoid ‘sA YNSd 1ebieL

(sg) gp zz 1e sujed passasoud 'sn YNSd 1ebieL

0L

‘Sq (p) :uewaIO] Ul gpty/g I8 SHNSAI UOnB[NWIS MOYS (J-P) 1030910p OIATIA IUSIOYJe ASIoU9 aseq-JH) IO Jo Uononpal A31ous

oyl (9) pue {(SHE) yoreas auy (q) ‘(Sg) YoIeas Areurq 9s1eod (8) :UBWAIO] Ul gPgg 1B SINSaI uone[nuiIs moys (9-e) :'¢g "SLy

(9~1)syjed passasoid jo Jaquinu ayl

{ra~Lisuyed passasoud Jo Jaquinu ayy

63

Table XIII.: Simulation results at 22dB and 24dB SNRs. It shows the sets of MIMO
configurations resulted in the coarse binary search (BS) and the fine search refining the

binary search result (BFS). The percentage value of normalized energy reduction (ER) was

calculated by Eqn. (2.21)).

SNR=22dB
7: Foreman Akiyo Mobile
BS BFS ER(%) BS BFS ER(%) BS BFS ER(%)
30.0dB (23,17,62) (26,1,8) 82 (25,40,52) (28,10,3) 79 (25,20,59) (27,5.4) 81
31.0dB (25,64,63) (26,2,11) 80 (28,60,59) (30,7,13) 74 (27,60,61) (29.,4,10) 78
32.0dB (37,42,50) (47,3,3) 73 (38,56,60) (45,6,4) 71 (35,63,60) (39,7.3) 74
33.0dB (41,64,64) (43,7,12) 68 (43,63,61) (50,9,2) 68 (42,64,63) (46,6,9) 68
33.6dB (57,56,31) (60,16,9) 56 (60,64,55) (62,12,3) 60 (56,64,58) (60,15,7) 57
SNR=24dB
T Foreman Akiyo Mobile
BS BFS ER(%) BS BFS ER(%) BS BFS ER(%)
32.0dB (18,29,57) (26,1,3) 84 (19,38,60) (25,5,7) 81 (23,37,49) (25,3,3) 84
33.0dB (23,50,64) (24.,5.6) 82 (27,62,62) (30,6,10) 76 (27,54,58) (30.4.7) 79
34.0dB (29,54,28) (36,5,8) 74 (34,63,42) (37.8,11) 71 (32,56,51) (36,3,10) 74
35.0dB (35,64,64) (45,5.8) 70 (39,60,64) (44,7,12) 67 (40,53,60) (44,7,9) 69
36.2dB (61,61,48) (62,16,14) 52 (60,63,58) (62,10,11) 57 (60,64,63) (63,10,8) 58

in UEP-BS, (60,16,9) in UEP-BFS, and (56,56,56) in EEP-cutoff. The maximum energy
reduction can be achieved by UEP-BFS that decreases considerably the number of paths for
B and C through increasing slightly the number of paths for A. Fig.[25(c) and (f) show UEP
and EEP-cutoff energy reduction vs. target PSNR in Foreman. In the simulation of Fore-
man, our MIMO-H.264 joint decoder with 33.6 and 36.2dB target PSNRs yielded 56%
and 52% energy reductions respectively while trading off 0.29dB and 0.3dB acceptable
degradation, when compared to EEP (N=64) at 22dB and 24dB SNRs.

Although our joint decoder design significantly reduced energy consumption in run-
time, it requires additional works such as: 1) a dynamic scheme for updating new con-
figurations in real-time, 2) evaluation and analysis using some problematic test streams,
and 3) a baseband logic implementation with a video processor. These issues are currently

addressed along with algorithm improvement for low-power video decoding.

64

D. Conclusions

This chapter presents a JSCD-based low-power decoder design that uses a novel UEP
scheme and DVFS. In Section |A] we propose an LDPC-H.264 JSCD scheme for portable
applications over AWGN channels, configured by exploiting importance and error severity
in each data frame. The proposed JSCD scheme is devised to operate at a fixed frame-
decode-time loop regardless of the quality of data received. Within each loop, optimal sub
frequencies and voltage levels are dynamically configured to minimize the energy spent for
each frame. This design meets the real-time requirements of motion picture reproduction
and minimizes overall power consumption. The design is synthesized using TSMC 0.13
micron technology and is capable of jointly decoding QCIF (176x144) video stream at 30
fps over wireless channel with 80% code rate. As a result, up to 39% power reduction
can be achieved in Foreman, Akiyo, and Mobile, compared to a fixed-iteration-based joint
source channel decoder.

Section |B|shows the proposed optimal configuration search scheme for LDPC-H.264
JSCD to reduce power consumption of LDPC channel decoder. As a result, the low-power
decoding framework not only provides the trade-off between power reduction and video
quality, but proposes a method for efficient resource utilization to save power.

We also present a low-power MIMO-H.264 joint decoder design using the optimal
configuration searching algorithm based on unequal error protection in Section |C| The de-
sign is developed for video mobile applications over MIMO and configured to make min-
imum tradeoffs between energy consumption and performance. The results show that our
design significantly reduces overall energy consumption and compromises picture quality

negligibly.

65

CHAPTER III

LOW-LATENCY ON-CHIP INTERCONNECT ARCHITECTURE FOR
SYSTEM-ON-CHIP DESIGN
We introduce link-level QoS usng UEP for low-power on-chip interconnect and two on-

chip interconnect architectures to address this low-latency demand for CMPs.

e Low-power interconnect design for NoC using UEP: Unequal protection against
crosstalk induced errors on link wires can result in considerable power savings with

acceptable degradation in performance

e WaveSync: Low-latency source synchronous bypass network-on-chip architecture

for globally-asynchronous locally-synchronous (GALS) designs

e SDPR: Dual-path router architecture that efficiently exploits path diversity to attain

low latency without significant hardware overhead

In the following sections, we discuss the proposed QoS scheme that reduces power
consumption on links and WaveSync that facilitates low-latency communication leveraging
the source-synchronous clock sent with the data. We also discuss SDPR doubling the
number of injection and ejection ports, splitting packets into two halves, and traversing

multiple-paths simultaneously to achieve much higher performance in latency.

A. Link-Level QoS for Low-Power On-Chip Network

In the previous chapter, we exploited UEP to reduce power consumption in JSCD systems.
In this section, we present a low-power on-chip interconnect design using UEP against
crosstalk induced errors on links. Video packets transmitted on links between nodes can be
classified into different priority groups. High priority parts require more efforts in protect-

ing than low priority parts against crosstalk induced errors on link wires. Therefore, we can

66

leverage this to employ a different level of protection to each priority category, exploring
tradeoff between power consumption and quality requirement in video decoding.

Capacitive coupling between wires in NoC/SoC paradigm has been widely studied
to minimize the impact of crosstalk on signal transition [65,66]. Increased wire spacing
(DBS), shielding of the wires are explored as options for reducing the impact of crosstalk
by Arunachalam et al. in [67]. The theory behind self-shielding or crosstalk-prevention
codes (CPC) and the methods for generating these code-words is presented by Victor et
al. [[68]]. Pande et al. propose the use of crosstalk avoidance codes (CAC) and modification
in the structure of the data packets to incorporate CAC schemes in the NoC data stream to
address both crosstalk and energy dissipation [[69] .

Error correction codes (ECC) are able to detect and correct the error bits based on an
information theoretic model [[70]. Unified framework of coding schemes for system on-chip
with CAC and ECC to solve delay, power, and reliability problems jointly are presented
in [[71H74]]. A joint error correction coding scheme using duplication with parity (DAP)
and triplication error correction (TEC) with Green bus coding for crosstalk avoidances to
guard against crosstalk induced errors is presented in [[75}/76] respectively.

We adopt TransSync and RecSync schemes [77] to provide different levels of pro-
tection on different priority groups. TransSync and RecSync allow them to be switched
on and off dynamically as and when required. In this approach, high priority data can be
protected by TransSync and RecSync against crosstalk induced errors, but the protection
schemes for the low priority parts can be switched-off due to a relatively small impact on

the reconstructed video quality.

1. TransSync-RecSync Technique

TransSync-RecSync technique mitigates crosstalk induced transition skew [[77]]. TransSync

preemptively eliminates transition skew amongst the bit-lines by calculating the expected

67

link traversal delay for each transition on the fly. RecSync tries to eliminate the accrued
intra-flit on link wires at the receiving node by forcing all the transitions to become aligned
before they are relayed to the receiving buffers. Using TranSync and RecSync along with
UEP can substantially reduce energy on links at the cost of relatively small loss of sys-
tem performance (i.e. slight degradation in reconstructed video quality). In the result and
discussion, we will evaluate the merits of UEP exploiting TranSync and RecSync on NoC

with H.264/VC test data streams.

2. UEP with TransSync-RecSync on NoC

Table [XTV|shows the different configurations of protection schemes studied to evaluate the
benefits of UEP on links against crosstalk induced errors. We choose to implement UEP
with only TransSync 2 lines, TransSync and RecSync schemes since these schemes have
the highest performance in terms of energy savings vs. quality loss. We will discuss this
performance comparison in the results and discussion subsection.

TransSync and RecSync techniques are also dynamically switched on/off to provide
different levels of protection for different priority data on the same link. Since the BER per-
formance of scheme employed for protecting higher priority parts is better than those of the
schemes used with lower priority parts, more energy is typically spent on securing higher
priority parts of the data. Table shows all possible UEP configurations obtained by
combining RecSync, TransSync and TransSync 2 lines. In these combinations, protection
schemes for lower priority data have the same or worse BER performance when compared
to those for the higher priority parts. Case 4, Case 7 and Case 10 are EEP schemes employ-
ing the same level of protection for all priority data parts. Case 15 is an example of UEP
which uses RecSync module for eliminating intra-flit skew for only Priority 4 data parts.
During the transmission of Priority p and Priority ¢ data parts in Case 15, the RecSync

module is switched off at the receiving node and TransSync 2 lines circuit is switched on

68

Table XIV.: Protection schemes employed on links with data partitions for different UEP

configurations studied

Configuration Priority 4 Priority g Priority ¢
Case 1 Baseline Baseline Baseline
Case 2 TransSync Baseline Baseline
Case 3 TransSync TransSync Baseline
Case 4 TransSync TransSync TransSync
Case 5 TransSync 2L Baseline Baseline
Case 6 TransSync 2. TransSync 2L Baseline
Case 7 TransSync 2. TransSync 2L TransSync 2L
Case 8 RecSync Baseline Baseline
Case 9 RecSync RecSync Baseline
Case 10 RecSync RecSync RecSync
Case 11 RecSync TransSync Baseline
Case 12 RecSync TransSync TransSync
Case 13 RecSync RecSync TransSync
Case 14 RecSync TransSync 2L Baseline
Case 15 RecSync TransSync 2L. TransSync 2L
Case 16 RecSync RecSync TransSync 2L

at the transmitting node.

a. Simulation Environment

3. Results and Discussion

For the comparison of crosstalk avoidance and error correction performance between pro-

tection schemes, we evaluated the PRNR of the reconstructed video streams with EEP. We

measured PSNRs when the different crosstalk avoidance and error correction schemes were

employed to protect against crosstalk induced errors on links for all data partitions. Fig.

shows the simulation setup used for evaluating the quality of reconstructed video streams

with different protections schemes on links under EEP. The encoded video frames were

impaired by randomly flipping bits in accordance with the BER of protection scheme em-

69

Bits flipped randomly in accor-
dance with BER of protection

scheme used on link wires
Encoded &
partitioned
frames .

Video H.264 encoding |
Source software

Baseline
Buffer
CPC
DAP
DBS

Received
frames

I |
I |
,_D . ecoding
I | H.264 decodi
I | software
| | <5
I Green | PSNR
| SHD | measurement
I |
I |
I |
I |
I |

TEC

TranSync

TranSync 2|

XOR

RecSync

Fig. 26.: Simulation setup for evaluating the quality of reconstructed frames with different

protection schemes on links

ployed on the link wires before they were sent to the sender/receiver circuit. The received
frames were sent to an H.264 software decoder [42]] and the decoder reconstructed video
frames to measure the average PSNRs. Damaged macro-blocks were concealed using mo-
tion copy [39] during the frame reconstruction process.

We computed a design metric called Merit (Eqn. to quantify performance and
overhead. Merit is the ratio of the average PSNR of the reconstructed video stream with the
protection scheme employed on links and the product of the normalized area and normal-
ized energy consumption in the scheme. The area and energy consumption of all schemes

are normalized to that of the baseline design to obtain the Merit figures.

PSNR
Merit = - - (3.1)
NormalizedArea x Normalized Energy

70

Fig.[27|and Fig. 28| show the merit of different protection schemes for 2mm and 3mm long
link wires. In these figures, TransSync 2 lines, TransSync, and RecSync schemes present
the highest Merit amongst all the schemes studied. That is the reason why we exploited

TransSync and RecSync for UEP on on-chip links.

b. UEP Results

Fig.[29]and Fig. [30|present the BER performance of the different UEP configurations ana-
lyzed, arranged in the increasing order of their average power consumption from left to right
for 2mm and 3mm long links respectively. The lowest tolerable average BER levels vary
between different applications. Fig. 29 and Fig. [30] enable the designer to select the UEP
configuration with the least energy consumption to meet a specified BER performance. For
example, if the PEs are placed 3mm apart on the die and the application requires a minimum
average PSNR of 35dB (dotted line in Fig. [30)) for Akiyo streams, then the leftmost UEP
configuration in Fig. [30|for which the average PSNR is greater than 35dB should be chosen
as the solutions. For the given example, Case 15 offers an average PSNR performance of
35.04dB at approximately 20% lesser overall energy consumption when compared to Case
15 which offers 38dB of average PSNR. We have therefore presented a design methodol-
ogy which allows the designers to achieve the required performance levels with the least
energy consumption using unequal error protection on link wires against crosstalk induced

€ITOorIS.

w
(92}

--Akiyo -=-Foreman --Mobile

Merit (dB)
= N N w
0 o »u o

[N
o

N N T I
K FEE e F oF F ¥ ot
Qﬂo &(’b Q‘ Q(;
S 2
Q")
N

Fig. 27.: Merit of different protection schemes on 2mm long link wires

30) .
—~-Akiyo -=Foreman Mobile
25
20
@ 15
3 10
P
5
0 T 'v—/ hd
O R U & U Q 0 & & L o &L
0,@ (O &
N &
N < S\
) S
,b(\
<&

Fig. 28.: Merit of different protection schemes on 3mm long link wires

71

72

45 ~ -=-Akiyo -+Foreman -=¢<Mobile -e-Normalized Power

Normalized Power m Normalized Power
@ N w9 T 333 J L2333 48
< oy

| | | | | ¥ 9sed m . “ \m < v 9se)
T ¢T9se) m w _ / 71 9se)

L €T 9se) Dnm .M. mm\ﬂ € ase)
L 0T 958) m m / €T ase)
- g ase) 2 m)= 1T ase)
= 1T 9seD 5 2 : 0T 95D

L 6 ased m H " 6 ased
= 9T ase) B M : 9T ase)

< z 9se) m S " \ z9se)

p g ase) Mc m " H g ase)
presey S £ pT ase)
<& ‘ GT 9se) m m \ ST 9se)

g“. 1 ase) n P _ T 9sed

——& g ase) :M .»nW“. _ G ase)

g ase) M A+n m g ase)

< L 3S€) Dam : [9se)

— T . ﬁ : : : A A A A A
2B RAR VS e d 928818\ S e
(9p) YNSd 2 (ap) YNSd

Fig. 30.: Results for 3mm long link wires for the UEP schemes analyzed

73

B. WaveSync: Low-Latency Source Synchronous Bypass Network-On-Chip Architec-

ture

As greater numbers of devices are connected to the same clock tree, the power consump-
tion necessary to ensure all nodes are fully synchronous is becoming prohibitive [78].
Globally-asynchronous, locally-synchronous (GALS) clocking has been proposed to re-
duce the power burden of globally synchronous clocking, at the cost of the synchronization
required for cross-clock domain communication [[79]. Achieving performance in current
multi- and future many-core architectures requires solutions which address their cross-
clock-domain communication needs [80,[81]. They also require redundant process to re-
configure asynchronous channel or asynchronous components to support a simple arbitra-
tion.

A significant issue in a fully synchronous design is clock tree power consumption.
Studies have shown that synchronous clock trees can consume as much as 30~40% of the
total chip power in real designs [82-84]. These power costs are expected to increase in
future process technologies as device count increases. The GALS design style is a well
known technique to reduce clock tree power consumption [79]. GALS designs are com-
posed of large synchronous blocks which communicate with each other asynchronously. By
eliminating the global clock, a major source of power consumption is eliminated. Asyn-
chronous inter-core communication in these designs is typically achieved by through source
synchronous data transmission (i.e. the transmit clock is sent with the data), followed by re-
ceiver synchronization. Synchronization is required to avoid metastability as packets cross
the mesochronous clock domains in GALS NoCs. This synchronization, however, accounts
for a major portion of the communication latency, impacting system performance [12].
Synchronization can often double or triple the latency overheads of inter-tile communica-

tion, exacerbating larger NoC designs’ already substantial packet latency issues.

74

o ode g Mo g Mol | N0l
Node im=zsNode Fm~s=i Node) “™~cs{Node D e
C Node jr==agr{Node jommgyg{ Node =~ gsNode
Node Jetime.z. o Node }attmag.=f Node) e 5(Node)

Fig. 31.: Typical GALS clocking scheme on 4x4 mesh NoC

Fig. [31] shows a diagram of a typical GALS CMP, composed of processing elements
(PEs) and network adapters interconnected via a mesh NoC and clocked with a GALS
clocking scheme. A GALS clock is "lazily” propagated from node to node in a daisy-
chain-like arrangement. We observe that, in this typical GALS scheme, not only is the
clock propagated to each node via the clock net; the NoC must also propagate a clock
along with the NoC link to provide for synchronization of data transfer between clock do-
mains. This clock redundancy represents both waste and an opportunity which we will
leverage the WaveSync design. Since the link already contains a clock signal for data syn-
chronization, we propose using the datas clock as the clock for the entire processing node
connected to that the router. Maintaining synchronization between the link and processing
element eliminates the need for send and receive synchronization on to the network. Fur-
ther, since clock is already propagated with data in any source synchronous GALS design,
we allow the packet to propagate without latching at each intervening hop in our design.
We also exploit a flow control that bypasses buffering/pipelining when there is no conges-
tion, similar to a technique proposed by Jain et al. [85]]. In this scheme, flits which traverse
a given router on their way to more distant nodes may accumulate only wire and cross-

bar logic delays each hop, without incurring additional latency due to needless latches.

75

Therefore, WaveSync can attain low latency via avoiding synchronization and bypassing
input buffers at the intermediate nodes on a multi-synchronous network in low congestion
levels. This approach outperforms even fully synchronous designs, turning the liability of
mesochronous communicating clock domains into a feature.

The following subsections discuss the proposed WaveSync clock distribution and net-
work, router, and synchronization architecture. We also propose We also evaluate the pre-

sented design and provide simulation results and implementation.

1. WaveSync Design

In a typical GALS NoC, each incoming link contains a source synchronous clock signal,
which is used to synchronize the incoming data into the local clock domain/node. By
contrast, WaveSync uses incoming clocks to time the routing components (and the PE itself
if that link is the designated clock source for it), eliminating the need for synchronization
between the incoming data and the local node assuming no turns are needed. In either
case, a dedicated clock distribution network is unnecessary and thus, the difficult problem
of building a fully synchronous clock network is avoided.

In WaveSync, straight path packets are stored in FIFOs only in the event that its header
arrives during transmission of another source’s packet or if no available downstream credit
is available. Our implementation assumes a 2-D mesh topology, credit based, and worm-
hole flow control where each packet is divided to header, body, and tail flits [86]. A di-
mension order routed (DOR) 2-D mesh wormhole router typically allows turns from the
first ordered dimension to the second. These turns, however, imply complexity in terms of
crossbar and VC allocation and crossbar ports. To reduce router complexity, the WaveSync
router disallows all left turns and removes most VCs; any arriving packet may only go
straight, turn right, or enter the local PE. This "Right-turn only” routing is a new, determin-

istic, minimal routing algorithm we propose, co-designed explicitly to reduce the need for

76

synchronization given our network and clock architecture. This routing algorithm favors
paths that are less likely to require synchronization. This algorithm requires one extra VC
in one ordinal direction to ensure deadlock freedom. The primary purpose of our right-turn
only routing policy, a key contribution of the work proposed here, is to reduce latency, first
by minimize the number of synchronizations in a network, and second by reducing router
complexity, hence reducing router pipeline stages, through minimizing the number of legal
paths through the crossbar. While we expect that reducing routing policy choices, as the
right-turn only algorithm does, will decrease load balance in the network somewhat; this
comes at the benefit of lower low-load latency. Taken as a whole, these router implemen-
tation choices have the effect of trading some bandwidth for lower latency; however, we
note that bandwidth is easily attained through extra link width and/or extra network layers,

while lower latency is much more difficult to attain.

a. Clock Distribution

We evaluated a number of clock assignment patterns possible with our scheme. Among
the many possible patterns, three patterns, A, B, and C, are chosen for evaluation and
shown in Fig. The arrows in PE blocks denote the direction of clocks that individual
PEs select for clocking internal logic. Each pattern was examined to determine the PE
clock assignment pattern that minimized overall latency in the network. To evaluate the
relative merits of each pattern, we computed the average number of synchronizations re-
quired under no-load, uniform random traffic. In Fig. [32(a), pattern A uses northbound
clock (south clock) for all PEs. In Fig. [32(b), pattern B, two clock sources, east and west
clocks, are used for each half PEs located in east half and west half respectively. Pattern
C exploits east, west, north, and south incoming clocks for the nodes of each quadrant as
shown in Fig. [32(c). Fig.[32[(d,e.f) shows the number of synchronizations necessary to ar-

rive at any given node for data originating from the S node on the three patterns shown in

77

9pou yoea 0} (§) 92In0s woiy s}aoed SUIPUIS USYM PIPASU SUOTIBZIUOIYIUAS
Jo 1qunu Ay sAoudp (3)‘(A)‘(p) ur dnoi3 spou B Ul JOqUINU YOBI PUB ‘QPOU B UL SYIO[D JO UONIAIIP Y} SAJOUIP MOLIE Y],
“jueipenb yoea ur (YiIou JO ‘YINOS JSam “ISBI) YOO[d [80] JUIPIP B sAojdwd O uraned pue ‘(SY00[d 1SEI puE }sam) SYO0[d [BIO]

om) sasn g uraned ‘(3(90[0 YINos) JO0[D [BI0] J[3UIS AQ PO ST Yy uraped : JI0m)ou pue uonnqrusip JO0[D JUASIABA 7€ 31

suJsaned uaalb ul uoneziuolysuAs O uianed ul apou g uiaired ul apou v ulaled ul
10 Jagwnu abeiany (B) pawybiybiy sy wouy uoireziuoiyouAs (1) paiybiybiy ayy wouy uoireziuoiyosuAs (a) apou pawybiybiy syl wouy uolreziuoiyosuAs (p)
usaped Juswubisse %2019
SIVO o] g \4 o2
«©
...... L
5
K
X
€3
@a“ o S - — v ¥ - - « « y ¥ ¥
9x9| G)
ol Tigt J Y its Jiwilid et }))
9«

'

5 G

9!
-
(=
!
-

N

ANGE)
=
U=
L

L ol o SRR WIS MR ST
A SN M DN T T

78

Fig. 32Ja,b,c). Packet propagation with zero synchronization is possible when incoming,
outgoing, and local paths are in the same clock domain. For instance, the synchroniza-
tion count from S to upper two nodes is zero in Fig. [32(d) because source clock (outgoing
clock), intermediate node traversing clock (incoming clock), and destination clock (local
clock) are in the same clock domain (i.e. same direction).

Fig. 32(g) shows average number of synchronizations in three patterns and baseline
GALS, based upon the assumption that all sources produce packets for all destinations with
equal probability (results analytically determined). In baseline, every packet is latched at
each node, requiring synchronization; hence, the average number of synchronizations for
GALS largely increases with network size. Clock pattern C, a symmetric and right turn
bounded pattern, yields the minimum average number of synchronizations when used in
conjunction with the right-turn only routing. In this pattern, data and clock are most likely
to be in the same direction (i.e. not in need of synchronization). Thus, we will use this

clock distribution pattern (pattern C) for the remainder of this work.

b. Router Microarchitecture

Fig. 33(a) shows a block diagram of the WaveSync router, with output submodules for
east, west, north, and south (R, R,,, R, R;), associated with output ports for each of the
orthogonal directions. On the figure we see the four data inputs (Nin, Sin, Win, Ein), four
data outputs (Nout, Sout, Wout, Eout), a local data input (Lin), four local data outputs
(Louts), and clocks for the incoming data (clky;, clky,, clke, clk.,). Each submodule is
clocked with its designated clock source, and is of its own clock domain. In Fig. [33|b-c),
the clock and data routes for each output submodule are denoted in black (e.g. in Fig.[33[b),
the output submodule uses the clock received from the south link, clkgy,).

Each output submodule and port may select among three incoming paths (bypass,

right-turn, and local in). The bypass path is clocked by the upstream clock and does not

79

Data

.......... clock N Nout clky
B Synchronizer b Sin
Lin—>North
[(Ro
Ein
1
clkwe H
Lin es East Eout
< ——
Wout (Rv) Lin
_ Clkey
|
i Win
South |
(Rs) mpa—Lin
. A\ \
clks, Sout
(a) WaveSync router architecture
Nout
4
Ein
1
H clkye H
Lin— H
i e East Eout
" -«—Lin (Re)
* 4
~a—Lin £
clksn
(b) clksn domain net (c) clkwe domain net

Fig. 33.: (a) WaveSync router top block and (b-c) north and east clock domain nets in

WaveSync

require synchronization; however, packets coming from a different input port than the one
clocking the PE should be synchronized before they are consumed. In this example, we
assume the PE is clocked by clkg, (i.e. it is a router from the southwest quadrant), hence
the north output submodule (R,) does not require synchronization for the traffic injected
from the PE, nor the traffic received from the south link addressed to propagate northward.
Further, the incoming traffic from the south can enter the PE port without synchronization

since the PE clock is originated from the source-synchronous clock coming in from south.

80

Output port, Data path and Control logic Output port, Data path and Control logic
credit_out Buffer credit_in credit_out Buffer credit_in
<—— controller [*— <—1 controller [*—

clk_s Switch allocator clk_s Switch allocator|__
local local
ks — Ty l oks —T i ig PRI
clk_| —{ Sync L clk_| — Sync L
flit_lin ——s Bypass flit_lin ——s1 Dypass >
turn turn
clk_s = . . clk_s =——p . > !
Ik_t — Sync it ﬂL_S&m Ik_t —» Sync M‘—» o flit_sout
c = c = >
flit_tin — bypass flit_tin — bypass >
H virtual I\
. .
flit_sin ——f-4 -).
flit_sin straight i straight 3
bypass // bypass =://
(a) Rn, Rs, and Ry microarchitecture (b) Re (east port) microarchitecture

Fig. 34.: (a) Microarchitecture of north, south, and west output submodules and (b) mi-
croarchitecture of east output submodule including a virtual channel for deadlock avoid-

ance

The data incoming from right turn path (Win) must be synchronized because the incoming
data is clocked by a different clock domain (clk,,). Since the local clock (i.e. process-
ing element clock) is sourced from the south clock that is different from the propagation
clocks of south, east, and west output submodules (R, R, Ry), local input/output and turn
paths require synchronization. As a result, total number of synchronizers required for the
WaveSync router top block is ten because R,, R,,, and R, each need two synchronizers, R,
requires one (for right turn path since the turn path is in different clock domain), and three
for south, west, and east local output data.

Fig. shows the microarchitecture for each of the output submodules. Each out-
put submodule is connected to three input ports, straight (flit_sin), turn (flit_tin), and local
(flit_lin) and incoming clocks (clock s, clock_t, clock 1). Three FIFO paths (east logic con-
tains four FIFO paths due to an extra virtual channel) and three bypass paths are connected

to the output multiplexer of the router. Flits which traverse the router along the straight

81

Table XV.: Flit structure

Field Field description
Packet type 00 : none, 01 : head flit, 10 : body flit, 11 : tail flit
DO: initial direction 00 : north, 01 : south, 10 : east, 11 : west

D1-12: 2-bit routing address for next hops 00 : straight, 01: turn, 10:stop

path (flit_sin), are not synchronized since the flits are clocked by straight (i.e. bypass) clock
(clock_s) which is the same as their output clock. Flits incoming from the turn input must
be synchronized to the straight clock because they are in different clock domain (clock-t),
and multiplexed output data are transferred to the next node along with the straight path
clock (clock_s). If clock_s is the same as the local clock (clock 1) timing the PE, then no
synchronization of local output flits for the PE is required, yielding a reduction of latency.
Internal output submodule logic, such as FIFOs, buffer controller, and switch allocator op-
erate on the straight clock. Packet routing information, denoting straight, turn right, or
enter the PE, is decoded and used on the fly as header flits of the packets are propagated
through the router.

For buffer management, we use a credit based flow control. If lack of upstream credit
(credit_in) indicates there is congestion, then all incoming packets will be buffered into
local FIFOs. The switch allocator controls the output multiplexer switching bypass mode
or buffer mode based on the traversal paths of incoming packets, the status of buffers owned
by the node, and credit_in signal. A two input mutiplexer is exploited to select a virtual
channel or a straight channel in the east port (Fig.[34(b)).

Fig. [35and Table show a flit format in WaveSync. A header flit consists of 2 bits
of packet type for header, body, and tail information and up to (2N — 1) x 2 bits of source
encoded route, where N is the network diameter (e.g. a maximum of 26-bits of source

information can be encoded in the header for a 7x7 NoC). The first 2 bits of the source

82

Do 2-bit Left

...... Shift
Flit in \ oy
:

—> —>
B 130 bits _ .
«—28bhits | o 2-bit Left *ay
Shift ol o l
2 2 2 2 62 8 32 [=}
Packetl DOI D1| | D12 | Reserved |Soume|Address
Type 1D

Header flit

2 128 Flit out \ l

Packet | |
Data
type

Body/tail flit

Fig. 35.: Flit format in WaveSync and source route decoding using a shifter logic

encoded route indicate a routing direction (north, south, east and west) at the initial node.
After each hop, the current routing bits (2 bits) are shifted away and new routing bits used at
the next node. This simple source routing scheme is used to reduce the logical complexity
of routing and the potential for skew between the routing bits and the remainder of the
header as it propagates along the bypass path. This scheme requires no actual shifting logic
as it is a static wire rename operation essentially; the two bits used in a given router are
not propagated and the remaining wires are renamed, Os are inserted into the missing bits.
Using this logic, the next hop information can be retrieved at the node without impacting
the skew between the flits and its clock signal. The remainder of the header flit can be
used for address and source ID, up to the bus bit-width of 130 bits. Body and tail flits are
composed of 2 bits of packet type and 128 bits data. Given the wide bit-widths available in
on-chip interconnection networks, header flits are not typically fully utilized. Therefore, we
argue that source encoded routing should not require any extra packet flits for moderately
large networks. If header bits become a constraint we could shift to a denser form of source

route encoding, at the cost of slightly more frequent de-skew operations.

83

c. De-skewer for suppressing intra-flit skew on links

The movement of flits on bypass paths in low latency NoC designs [87-89] like WaveSync
is very similar to the flow of data in wave pipelines [90]. Like wave pipelining, different
bits of a given flit which bypasses through several hops without synchronization or latch-
ing at the intervening hops, experience different wire delays. Factors which contribute
to temporal skewing between bits belonging to the same flit as the flit makes its way on
asynchronous bypass paths in low latency designs include: crosstalk coupling between link
wires, design irregularities, timing variations at switching and multiplexing logic on the by-
pass paths, process and temperature variations and physical changes like electro-migration.
Since the source synchronous clock is also carried on the links, the use of this incoming
clock signal on the link to facilitate bypass and also to synchronize incoming data bits to the
local clock at the receiving node can lead to packet errors from violation of setup and hold
constraints. It is therefore necessary to periodically eliminate the accrued skew between
bits of flits as they are bypassed.

At the 45nm technology node, given a positive edge triggered system with clock period
of 1ns, we determined via spice simulation that skewing between bits of a given flit would
be less than half the clock period, when asynchronously bypassed over three hops [77].
De-skewing can therefore be easily achieved by latching the bus data to the negative edge
of source synchronous clock every three hops. The inverted source synchronous clock used
for latching now becomes the new source clock on links upon de-skewing. To guarantee
error free operation, we only need to ensure that the de-skewing is performed every time a
flit travels three hops on the bypass paths. The placement of de-skewing blocks for static
de-skewing on a 7X7 mesh is done by simply turning off the bypass mode and latching all

the traffic at the 3rd column and 3rd row nodes.

84

elay Line
Incoming Data/
Source Clk
Local _ 11
Clk ,||,! ,||,! ,||,! ,||,!
Synchronized Output Synchronized Output " "

(a) Synchronizer

Source clock

Y
N

») :
o into delay line
Q Sel Data into
2 Incoming data D Q delay line
= Source clock——a> Sel
D Qe
Local_|) _
clock £ (b) Selection logic

Fig. 36.: Proposed synchronizer: (a) schematic of the proposed synchronizer, (b) selection

logic for the proposed synchronizer

d. Synchronizer architecture for half cycle synchronization latency

The proposed synchronizer, shown in Fig. [36(a), calculates the skew between the source
clock arriving on the link and the receiving node’s local clock, and applies appropriate
compensation for the calculated skew to the incoming data to synchronize them to the local
clock with an average synchronization latency of only half a clock cycle. The incoming
source clock along with each incoming data bit is successively delayed by the delay cells
comprised of inverters on similar delay lines. At each delay stage of the delay line, the
delayed incoming clock signal is compared to the local clock by taking the exclusive NOR
of the two signals. The output of the exclusive NOR gate drives the enable signal of a
tri-state buffer and outputs of all the delay stages are hard-wire ORed. When the incoming
clock has been delayed appropriately on the delay line such that it is synchronized to the
local clock, the output of the exclusive NOR gate is logic one for the entire period of the

local clock and the data from this delay stage is passed to the output. The delay is capable

85

of providing a phase skew of 7 radians. If the incoming clock signal lags the local clock
by a phase less than 7 radian, the incoming data bits need to be delayed appropriately. On
the other hand, for 50% duty cycle clock if the incoming clock lags the local clock edge by
a phase greater than 7 radian, then the incoming data bits need to be delayed by a phase
equivalent to the skew between the rising edge of the local clock and the falling edge of
the incoming clock and another 7 radians. Fig.[36(b) shows the circuit that performs this

selection.

2. Experiments and Evaluation

In this evaluation, we first discuss our simulation methodology. This is followed by our
evaluation of WaveSync’s performance versus competing designs under synthetic and real-

1stic workloads.

a. Simulation methodology

We evaluated two versions of our proposed WaveSync NoC: 1) WaveSync using a typical
BIFIFO; and 2) using our low delay synchronizer. These designs are compared against a
baseline GALS NoC, an asynchronous bypass channel (ABC) NoC [85]] and a fully syn-
chronous NoC design. A fully synthesizable Verilog implementation of a 7x7, 2-D mesh
WaveSync NoC is simulated. A single-stage, non-pipelined baseline GALS router design
is also evaluated on 7x7 2-D mesh network with XY DOR routing. In the baseline GALS,
packets need to be synchronized at every hop incurring 2.5 cycles of synchronization de-
lay and one cycle of pipeline delay per hop. The baseline router has two, eight-flit deep
virtual channels (VCs) at every port. The fully synchronous NoC design presented by
Kim et al. [91] is also implemented. Performance was measured under three types of syn-
thetic workloads (uniform, transpose and bit-complement) and realistic traces taken from

SPLASH-2 benchmarks [86,(92].

86

70 1 70 n 1 70
60 ! 6of ~BG 1 i 60
> 1 % |==ABC} I 0
o I @ e i 2
S 50 i S sop"*"WB | 4 S 50
g bo|eTmwst o S
|
240 ; 340 N 4 340
c c c
830 S 30 d y =30
o o —’/va’)
@ .| w¥ ™ g
g 20 5 20 . 5 20
< z ettt ®? z
10 10 10
0 0
0 01 02 03 04 U 01 02 0 0.1 0.2

Traffic load (flits/node/cycle) Traffic load (flits/node/cycle) Traffic load (flits/node/cycle)

(a) Uniform (b) Transpose (c) Complement

Fig. 37.: Simulation results of synthetic traffic patterns (a) uniform, (b) transpose, and (c)
complement on fully synchronous router (FS), baseline GALS (BG), ABC, WaveSync with
BIFIFO (WB), and WaveSync with our synchronizer (WS)

In the synthetic workloads, packet length was varied randomly between two to five
flits, and the simulation was run for 100,000 cycles including 1000 warm-up cycles. Syn-
thetic workloads of a given uniform random injection process are known to converge fairly
rapidly to a given average latency. Beyond 100000 clock cycles the average packet la-
tencies do not change significantly. The SPLASH-2 workloads are composed of last-level
cache spills and fills as well as coherence traffic packet traces, taken from a 49-core CMP.
For an unbiased evaluation of SPLASH-2, we use 500000 cycles from the middle of traces

with 1000 warm-up cycles.

b. Synthetic workloads

The three synthetic workloads, uniform random, transpose and bit-complement, were cho-

sen because they represent well balanced (uniform), and skewed corner case (transpose and

87

bit-complement) traffic patterns that may be seen in realistic workloads. These results are
shown in Fig. In all three cases, the WaveSync design has significantly lower, low-load
latency than all competing designs, achieving the goal of lower latency at the typical loads
seen in NoCs.

For uniform traffic, the latency performance of WaveSync is better at low injection
rates than those of baseline and ABC as shown in Fig.[37|(a); although, ABC outperforms
WaveSync at injection rates over 22%. This is because ABC router provides higher band-
width than the WaveSync router due to the extra “wrap-around” links in its serpentine
topology. Under transpose traffic (Fig. [37(b)), the WaveSync router yields the lowest la-
tency at all injection rates since the wrap-around paths of ABC in the serpentine topology
are not available. The traffic path range of bit-complement is relatively narrower than other
traffic patterns; and therefore, the link loading is higher than in other patterns. In the bit-
complement, ABC outperforms WaveSync in higher traffic loads (Fig. [37(c)), however,
WaveSync with our low latency synchronizer outperforms others regardless of the vari-
ability of traffic patterns in low network load because in that low load cases packets can
bypass more intermediate nodes. We note that the de-skewing logic adds an extra delay
of 1~3 cycles. We also note that generally, use of the proposed synchronizer reduces the

synchronization latency by almost 2~3 cycles when compared to BIFIFO.

c. Realistic workloads

Previous analysis has shown that realistic workloads typically have relatively low average
injection rates and many applications are highly sensitive to latency [[12,|13,93]. Fig.
shows the performance of the different router and network designs under traces taken from
benchmarks in the SPLASH-2 shared-memory, multi-threaded benchmark suite.

Generally the pattern exhibited in Fig. mirrors that seen for low loads with the

synthetic workloads. The average latency for WaveSync is smaller than that of ABC and

88

1 - B —
0.8 -~ mFS
0.6 BG
04 + ® ABC

m WB

2
0 = WS

0 - T

T T T

Barnes FFT LU Radix RT WN WS AVG

Fig. 38.: Normalized latency results of SPLASH-2 realistic traffic patterns (RT: Raytrace,
WN:Water-nsquared, WS:Water-spatial, AVG:total average) on FS, BG, ABC, WB, and
WS

baseline GALS routers for all benchmarks. On an average, WaveSync with the proposed
novel synchronizer results in an improvement in latency of 68% over the baseline and 55%
over ABC router. Furthermore, we see that WaveSync yields an improvement of 54%
over even a fully synchronous NoC design. These results reflect WaveSync’s ability to
support extremely low latency communication at low loads and the fact that generally the

SPLASH-2 benchmarks have low injection rates.

3. Design Implementation

The WaveSync router is implemented in Verilog and synthesized using TSMC 45nm li-
brary at a operating frequency of 1GHz. We used an eight-deep buffer for each FIFO in
the router design. For comparison, a fully synchronous router configured by two, eight-flit
entry, virtual channels a port and XY DOR routing is synthesized for the same technology,
consuming approximately 15% greater area than the WaveSync router. A baseline GALS

router has been built on the synchronous router design using the BIFIFO for GALS. Ta-

89

Table XVI.: Synthesis results of the WaveSync router @ 1GHz. Clock power denotes clock

tree power per node (mW). CDP stands for clock distribution power.

Network router # of FIFOs Router Synchronizer Total power Area
power power per node (mm?)

Synchronous router 10 29.9 - 299+ CDP 0.133
Baseline GALS 10 29.9 0.471 30.371 0.145
WaveSync + BIFIFO 13 34.7 0.422 35.122 0.116
WaveSync + Synchronizer 13 34.7 0.518 35.218 0.149

ble [XVI| shows the synthesis results of the WaveSync router, the fully synchronous router,
and the baseline GALS router. For clock tree power itself, we expect the synchronous 7x7
NoC to have a high clock tree power, we found one such example in the Xilinx Virtex6
chip, which has a clock tree power of 10.5W and is expect to be approximately the same
area [94]]. For the Baseline GALS and WaveSync NoCs, the four directional clocks are
transmitted over the regular link wires connecting nodes and therefore do not require any
special distribution scheme. The power associated with this clock distribution scheme is
therefore simply the power associated with transmitting data on four regular link wires
interconnecting nodes.

Although the router power for WaveSync is ~15% higher than that of baseline, it is
considerably less than the power required by a completely synchronous NoC+clock tree.
The increased power consumption in WaveSync over traditional GALS is a small price
to pay for improved network performance. Also, the power consumption in WaveSync is
expected to scale with frequency in similar fashion as in baseline but with much better

performance.

90

C. SDPR: Exploiting Path Diversity for Low-Latency through Simultaneous Dual Path

Routing

One of emerging issues in chip-multiprocessor (CMP) and multiprocessor systems-on-chip
(MPSoC) designs for mobile terminals is a massive data communication such as multime-
dia streaming between heterogeneous cores and components [95,96]]. The massive internal
data handling for portable multimedia devices such as smartphones over on-chip networks
requires low-power and minimum latency requirements. An increasingly large number of
integrated components (processors, memory arrays, application specific IPs such as base-
band processors and video processing units) oblige the use of NoCs [97,98] to permit high
system-level throughput. NoC design efforts to-date have largely been aimed at reducing
latency to relieve congestion [99-101]. For instance, Peh and Dally introduced router delay
models for the pipelined routers and proposed a microarchitecture for a speculative virtual-
channel router to reduce latency [[102]. However, a significant portion of network traffic
in MPSoCs for multimedia devices is lengthy multimedia streaming data. Lee et al. have
explored multimedia applications containing video block packets [97]. In the work, one
block data in a frame was (8 x8x 16 bits) divided into 64-flit length packets with 16-bit
flit size. Another example is the study of NoC designs for MPEG-4/H.264 parallel cod-
ing [98]. Multiple video streams are coded simultaneously in parallel while video stream
data are subsequently distributed to processing elements (PEs).

These studies point the need for an efficient on-chip interconnect architecture for mas-
sive data streaming. One solution for such applications is to increase the link widths. How-
ever, while this may reduce congestion and serialization latency, it comes at a high cost
of increased power consumption [[103]. We propose the simultaneous dual-path routing
(SDPR) scheme that utilizes the path diversity present in typical mesh topology NoCs.

This approach is akin to having a higher link width but without the significant hardware

91

overhead associated with simple bus width scaling.

Multipath routing has widely been explored in the networking community. It has been
recognized to yield reduced network congestion and traffic hotspots. This paper focuses on
the same objectives but with observation that we can prescribe specific multiple paths and
inject packets simultaneously through multiple I/O ports (and simultaneously eject at the
receiving node) to leverage the network’s path diversity on 2-D meshes. This is in contrast
with the multi-dimension routing works or OITURN routing selecting one of alternative
paths among available multi-paths and sending flits through the path sequentially [104].
C. Izu et al. have studied effects of multiple injection ports on highly congested network
and concluded that injecting multiple complete packets into network might not help in
performance [[105]. However it is assumed that injection rate will increase at injection
ports, and this makes the network resource too scarce to accept all the packets, thus causing
early saturation. We design a network adapter which takes a packet, splits it into two halves
and send them uniformly to the injection port queues. This makes the injection port twice
wider than a single port injection router. Hence, SDPR does not exert unnecessary injection
pressure on network throughput. To the best of our knowledge, this is the first work to
explore leveraging path diversity via packet splitting and injecting simultaneously through
multi-ports.

For most source-destination pairs in a mesh network there are two statically deter-
mined non-intersecting output links from the source node in the direction of the destina-
tion, XY and YX dimension order routing (DOR) paths, shown in Fig.[39] But only one can
be used when a packet is injected because of a single injection port. Even in the adaptive
routing networks, though a packet can travel in multiple routes based on the congestion,
it still uses the network bandwidth equal to its flit width. By doubling the number of the
injection port and ejection port and splitting packets into two halves, we can leverage the

available path diversity and cheaply mimic a higher bandwidth network. The motivation

92

I@outer.l.---RouLe.r-----RouLe.r Router
Message VA NA NA [t NA

|F1IF2IF3IF4I IE’E PE PE 1§ PE

' '

Fi.outer Router Route% Router

A NA NA e NA

[]

wE PE PE 4| H

' [

] s Packetyy

(]

Router_i---1 Router J—— .hROUte| I Router
NA NA | NA
PE PE PE

Packetyx
Router Router Router Router
NA NA NA NA
PE PE PE PE

Fig. 39.: Dual-path routing on a 4x4 NoC system

of packet splitting is that injecting two packets via the XY and YX DOR paths simulta-
neously can improve performance in latency and increase link utilization. But the packets
injected through the XY and YX minimal paths have to keep the same destination address
to traverse to the destination.

The reconstruction of packets can be done using the order information stored in the
head flit. We will focus on direct memory access (DMA) data transfers for this work, and
therefore providing a reconstruction order number in the header is sufficient to allow for
reconstruction within the DMA buffer at the destination, eliding the need for a dedicated
packet reconstruction buffer. Given this design, the SDPR router can ideally reduce seri-
alization latency by 50%. We note that the SDPR router provides greater benefit for large
or medium size packets such as video streams. Segmenting a short packet into two halves
can incur significant overhead in header flit generation. This can negate potential latency
improvement realized in serialization.

The remainder of this section summarizes relevant work on path diversity, outlines the

93

proposed SDPR scheme, and describes the microarchitecture of the SDPR router. We also
evaluate experiment results and examine hardware implementation overhead shown in the

synthesis result.

1. Related Work

This subsection summarizes the prior work on on-chip interconnect architecture for path
diversity. Heuristic approaches have been extensively explored [[106,/107]. Banner et al.
extends the discussion to feasibility of non-minimal paths as well [108]. Implementing
these complex algorithms in NoCs constrained by power, latency and hardware complexity
overheads, however, is not readily feasible.

There are oblivious, minimal, path diverse routing schemes such as Valiant [109],
ROMM [110], OITURN [104], and PROM [111]. Their path diversity leads to improving
throughput because of increasing routing flexibility. O1TURN routing randomly routes
packets in one of orthogonal paths (XY and YX) with equal probability (i.e. 50%). Valiant
routes each packet through a random intermediate node. As Valiant, ROMM is also one
of probabilistic routing algorithms, but it restricts the intermediate nodes to the minimal
routing area. PROM performs local randomized decisions at each hop based on probabilis-
tic oblivious routing policy. ROMM, Valiant, OITURN, and PROM are able to encounter
out-of-order packet arrivals at destination dissimilar to DOR, so the destination requires
enough buffer to reorder the packets. Even though they all achieve better path diversity
than DOR [[111] with minimal hardware overhead, they do not overcome the serialization
latency of a long packet incurred due to single injection port. As we showed in the SDPR
experiments, this problem can be mitigated by two injection ports injecting split halves of
a packet via separate and independent orthogonal two paths (i.e. XY and YX) at the same
time.

Murali et al. describes a multipath routing strategy for in-order packet delivery in

94

NoCs [112]. The packets are sent through non-intersecting paths and the lookup table is
employed at the switch of re-convergent node to support in-ordering. Michelogiannakis et
al. introduced multi-dimension routing concept for bufferless flow control [[113] in which
flits can travel in any productive directions. Common to these approaches is the aim to
better utilize the link diversity attainable at a given node or a link to reduce latency and

hotspots.

2. Dual-Path Network Architecture

Daeho Seo et al. reviewed the path diversity in 2-D mesh networks in O1TURN rout-
ing [[104] by injecting the packets in XY DOR and YX DOR paths with equal probability.
However it is done with a single injection port which does nothing to reduce the serial-
ization latency of packet injection. The motivation behind the SDPR router is to employ
complete parallelism in packet traversal to reduce the serialization latency. The number of
minimal non-intersecting paths where we can send the parts of the packet simultaneously
can at most be two. The best possible split size of the packet is half which traverse through
two independent paths simultaneously in parallel, leading to a 50% reduction in serializa-
tion latency ideally under no loads. Under the synthetic and realistic loads, we still get
reduction in serialization latency, but the benefit is reduced by difference in arrival time
of these packet pieces at the destination. Thus, the network adapter splits a message into
two halves and these packets are injected to travel XY DOR and YX DOR respectively,
leveraging the two available and productive output ports at the destination to increase the
effective network bandwidth. Each SDPR router consists of two injection ports and two
ejection ports along with minimum overhead. Injected packets approach the destination
from different directions and get absorbed by different ejectors in parallel. The baseline

and SDPR router details are described in this section.

95

a. Dual-Path Routing Scheme

SDPR can reduce the latency of serialization by accommodating additional injection and
ejection ports and exploiting two inherent minimal XY and YX DOR paths on a mesh
network, compared with baseline using XY DOR only. Fig. 0] presents the proposed
SDPR scheme. When source and destination nodes are not in a line (i.e. two minimal
paths are available) as shown in Fig. 40[a), a packet is split to two packets, and they are
simultaneously sent along the XY DOR path and the YX DOR path in parallel. In this
approach, the split two packets should retain the same source and destination addresses in
their head flits since they composed a packet and were supposed to be sent to the same
destination before being split. Therefore, SDPR requires preprocessing to divide a packet
to two halves and re-packetize them into two split packets. This task can be performed in
the packet generation process handled by a network adapter module as shown in Fig. 41} In
particular, this makes our method significantly different and independent from the previous
multi-path studies that send packets in serial via a path selected from multiple paths (e.g.
OITURN [104]], ROMM [110], Valiant [109], PROM [111]], or odd-even routing [|114]).
SDPR utilizes path diversity as the previous multi-path studies but contrastively injects the
divided portions of a packet via multiple paths at the same time. This increases parallelism
and path utilization as well as decreases serialization latency.

If there are minimal or non-minimal multiple paths where packets can traverse, SDPR
can be extended to accommodate the multiple splitting and simultaneous sending scheme.
In Fig. payload data are divided into two payload groups for split packet 1 and split
packet 2, which are packetized into two split packets with header (H) including flit type,
DOR path and VC information, source address (S0), destination address (D14), and pay-
load data respectively. The DOR path information denotes which path is allotted for each

split packet. In the figure, packet A, one of two halves, is injected into inject port 1 (Inj1)

96

‘yred XA I0 XX ®ia juas 91ds jou are sjoyord ‘Q10Jo1ay, (SIXe & IO SIXE X) QUI[SWes 9y} Ul
9Je SOpPOU A0INOS pue UoneUnsap Ay} (0 pue q) "Afeandadsar syjed YO XA PUB A X oY} BIA JUas A[snoauejnwiis are syaxoed jids omJ,

‘($1) 2pou uoneunsap Y} 03 ()S) Pou 221n0s Ay} woly syyed YOO Wwnwriur om) 31e Y[, (B) swayds YJds posodoad ayg, "0y ‘31

2 1o3oed nids [aa]
¥0a XA (] oo [w] v1a
al5a] ... o id bd | H | .. i ad | H qd | va los | H |23 pos
elep peojled 1\/\ dd od H | |pd | H ed va 0s | H T3 (sured W__AW_MWW%:«W AX) m m H v/
¥0Oa AX
Buiznayoedag WY [reL uy Apog i pesH
ST £] pu— 7 ssaippe
(Bunuds 19x0ed ou) (Bunds 19y0ed ou) 7 1oxoed wds uoneunsap
Ajuo yred ¥Oa XA (9) Ajuo yred ¥0a Ax (a) — — = | "_a0In0s
dd cen Pd v1a
N\ ” o o <~ swesay
@ daay| pjnoys
B ot 6 8 LA LH] B sjaxoed
iy IreL Wy Apog My pesH wds ayL
ayoed 108U
U 193 1oeu|
id id E
H L 9 S 14 og | v [ea |
% L <
O— «— =0 : = - Bk
= ¥0d A 3
g d0a A zlu| L1 [+ [+]
S € 7 e— 0s fur L i e L uy Apog Wy pesH
S) Tl Hdas Joy bumids 19x0ed

97

at the source SO, traverses through the XY DOR path (i.e. SO—1—-2—6—10—D14) and
ejects out of ejection port 1 (Ejl) at the destination D14. Packet B, the other half, simultane-
ously traverses from Inj2 to Ej2 along the YX DOR path (i.e. SO0—4—8—12—13—D14).
Once both A and B packets arrive at the destination node, they are retrieved and de-
packetized by the network adapter. The latency of a intact packet transmission is measured
from the injection time of the first injected packet in two halves at the source to the ejection
time of the last arrived packet at the destination. If the time difference of arrival between
two split packets at the destination increases due to congestion in the network, the packet
latency will also increase.

If there exists only one minimal path between source and destination like traversing
only on X or Y axis as shown in Fig. 40(b and c), the packet is sent intact without packet
splitting and dual-path routing. In this case, the performance of the SDPR router relatively
degrades, compared with that of the baseline router using the same number of virtual chan-
nels (VCs) of the SDPR router. This is because VCs for XY DOR are separate from VCs
for YX DOR in SDPR to avoid deadlock. When there is only one minimal path (XY or
YX) traversed, a set of VCs for the minimal path will be used. It means that VCs for the
other minimal path are not utilized. This causes inefficiency in terms of resource utilization
and performance degradation in SDPR.

Table [XVTI| shows the distribution equations of dual path node pairs over whole node
pairs under given traffic patterns, where N denotes network dimension. The motivation
of this examination is that serialization latency reduction in SDPR is highly dependent on
the distribution of source and destination pairs including both minimal DOR paths on a
traffic pattern. The reduction in serialization latency will be high at high levels of dual-path
node pairs in distribution. The distributions of dual path node pairs are 73%, 86%, 73%
at uniform random, transpose, and bit-complement on a 7x7 mesh network respectively.

It implies that the serialization latencies of SDPR across the three traffic patterns can be

98

Table XVII.: Distribution of dual path node pairs and serialization latency reduction in

SDPR where N=7

Ideal reduction in

Traffic pattern Distribution (%) serialization latency (%)

[N?-(N—1)%]/(N?-N?)

Uniform random — (N—12/N*=T3 37
(N*—N)/N?
Transpose — (N—1)/N =86 43
Bit-complement 100 (N:even) 50 (N:even)
P (N —1)2/N? =73 (N:0dd) 37 (N:odd)

ideally reduced by 37%, 43%, 37%, respectively, (i.e. half of the level of distribution
because of packet splitting and injecting in parallel) without accounting for the overhead
increase.

DOR is inherently deadlock free [115]]. In SDPR, separate channels are allocated for
XY DOR and YX DOR respectively to remove the cyclic dependencies in the resources
sharing a physical channel; hence, SDPR is also deadlock free. Virtual channels are also
provided in these separate channels to avoid the head-of-line blocking in XY and YX DOR

paths.

b. Network Adapter

The network adapter (NA) splits messages and injects them through separate injection ports
into the separate paths as shown in Fig. When a DMA block has a message (i.e. packet)
to send, it is forwarded from memory to the packet splitting block, and then split into two
packets of half the size, and re-packetized with modified header and tail flits. An initial
message with n flits is divided into two packets of n/2 + I(header) flits each. New head

flits for the half packets (Py, and P),) are built and injected to the SDPR router through

99

Network Adapter (NA)

CDyy
a—p| Ctri/Stat | o o -
Reg Packet [—
v splitting, Py
- header | CD
<« Send ata | puilding [*
DMA [T
yXx
Injection
Ctrl/Stat |<a—p]
Reg <_P
(3 Header "y
- parsing
D
<_>Rece|ve<a'[_a —
DMA)
yXx
Ejection

Fig. 41.: Network adapter architecture for packet splitting

network interface. At the destination, two ejected packets (P, and P,,) are delivered to NA
for header parsing and DMA transfers the parsed packets to memory. When DMA finishes
sending two ejected packets to the memory, a processing element (PE) reconstructs the split
packets.

We have observed that the reconstruction of the separated halves could be done using
small amount of cache memory in the experiment for realistic video benchmarks. This is
because the network load of realistic video traffic was low, leading to 27-34 cycles dif-
ference of ejection time of two split long packets on average at the destination. We will
demonstrate this result more in the experiments section. Furthermore, we note that in many
applications such as cache line or DMA data transfers, memory has already been set aside
for the reception of the data, thus even for the worst case ejection time difference, a re-
construction buffer is unnecessary. Therefore, in the cache line transfers or DMA data
transfers, the reconstruction order number (i.e. ADDR field in the header) can sufficiently
support to reconstruct the separate packets within the cache or DMA buffer at the destina-

tion.

100

Input unit
VCID XY
I' g
Nonh-q_a]]]ﬂ'> 1 logic . logic
Credit_out<— _ED:D;}’ | ' ' Ve
..... a";::(;mr E.DOR’UCID Xy allocator
VCID gyt INg ussE “1 | |[switch
-ﬂ:ﬂ:ﬁ}b N Switch Sout W] allocator
Sout B I allocator Credit_out<— TYx '
LYX]
Credit_out<— 'ED:D;}’ 1 ‘DORVCID == < > [€=Credit_in
""" (RN HA begng > North
vcio Xy < | |€=Credit_in East w. E:: b 2N : = South
East [1] |->\| al = = North Credit_out<— = C::vsits:har i O::‘;I)tut L3 East
as > H
+=»South iy Zzz:z
Credit_out<— [11 »,IJ Crossbar [P Output > Sou {DORVCID 7}y Jr Ly
T »(switch (= unit [East W “t- w. FE- . “~ > |
..... es S 1
veio XY} i B - t_\{v_e-s_t“ - Credit_out<—
[TT 3 > i Ejection He !
>

Fig. 42.: Microarchitectures of (a) baseline (i.e. single-path) router with two virtual chan-
nels and (b) SDPR router with one virtual channel for each XY or YX DOR. They exploit

equivalent resources in terms of total number of buffers used.

c. Baseline Router

The baseline is a standard 2D mesh, pipelined router with virtual channels [102]. The
pipeline consists of 2 stages: route computation and arbitration at output port. When a flit
enters a router, it is sent to the particular VC depending on the VC identification (VCID)
carried by the flit. If the flit is a header carrying the current node output port (CNOP)
information, arbitration is requested for acquiring the VC at next node as conventional

wormhole routers.

d. SDPR Router

Microarchitecture: Unlike the baseline router as shown in Fig. |Zf_7ka), the SDPR router
has an extra local injection and ejection port to make SDPR beneficial. In Fig. [@2(b), the

SDPR router consists of four directional input/output ports, two local injection ports, credit

101

Head flit

as | DOR | veiD | cNop| sAc_x | sRe.y [osT_x | osT_y | AcoR DATA
Body/tail fiit

ame | 0OR| veID DATA

Fig. 43.: Packet structure for the SDPR router

signals, and two ejection ports. Each directional input port contains two channels, one for
XY DOR and the other for YX DOR, supporting two completely disjoint paths from source
to destination. The XY or YX path in a packet is determined by 1-bit DOR information
encoded in the packet. If there are multiple VCs for each path, VCID indicates which
virtual channel is occupied by this packet. In Fig. 42[(b), the SDPR router exploits only one
virtual channel, hence VCID should be 0. In case of using two VCs for each path, VCID
can be 0 or 1 to denote which one is occupied. The credit based flow-control system is
used for buffer management. As highlighted in grey on the figure, the hardware overhead
of the SDPR router is minimal as the only additions are DOR information in a flit, extra
ejection port, and hence wider crossbar with slightly modified control logic. To keep the
same utilization of VC buffers, the two injection VCs are separated to two injection ports.
Therefore, no additional buffers are required because total VCs used in injection ports as
well as total VCs used in direction ports are equal in SDPR and baseline. SDPR thus does
not require extra channel ports, just static assignment of each injector to two of the output
directions.

Packet structure: Fig.[43|and Table [XVIII shows the packet format. The size of a flit is 64
bits and 2 MSBs indicate the flit type. The DOR bit determines XY DOR or YX DOR, and
the VCID bit is the same as that in baseline. We note that 1-bit VCID was used to provision
maximum 2 VCs per port in our experiment, but the number of VCs can be extensible.

CNOP (3 bits) denotes the output port for the packet at the current node and is required to

102

Table XVIII.: Packet structure for the SDPR router

Flit type DOR VCID CNOP SRC DST
000: inj1

00: head O: 0: 001: north

01:body XY 1 VC 010: south Coord. Coord.

10 : tail 1: 0,1: 011: east for sou for des

11:single YX 2VCs 100: west rce tination
101: inj2

request the output port. Once the output port is acquired, the CNOP is updated for the next
node. The source and destination addresses are used to update the CNOP for the next node
(i.e. lookahead routing). 10-bit ADDR followed by payload denotes the order information
of split packets for reconstruction. For the body and tail flits, it only has the flit type, DOR,
and VCID fields, and the rest is payload. Table [XVIII| explains the information stored in
the flit and its meaning.

Packet processing at source and destination: Each source node switches dual-path rout-
ing or single-path routing based on the destination address of packets. If the destination is
“in-line”, there are no two minimal paths to the destination and hence packet is sent intact
without splitting via XY DOR path (i.e. DOR=0). When there are two minimal paths to
the destination, the network adapter splits the packet into two halves and assigns the header
information (i.e. flit type, DOR=0/1, VCID, CNOP=000/101) to both packets at the source.
The re-packetized packets are injected simultaneously through dual injection ports. When
the split packets reach the destination, they exit through the ejection ports. Injectionl and
Ejectionl ports are dedicated for XY DOR path, and Injection2 and Ejection2 ports are
dedicated for YX DOR path. There are no mixed ejections between portl and port2 since
these ports are separate in different channels for deadlock prevention. Packet splitting in-

curs overhead of an extra head flit. In particular, for short packets (2-5 flits), this overhead

103

results in reducing the performance of SDPR. In the experiments section, we will demon-
strate the influence of overhead on short packets. Therefore, we target medium-long length
traffic such as video streams where the packet lengths are longer and serialization latency
is dominant. Splitting the long packets and thus injecting them simultaneously provide
double network bandwidth and cause at most 50% reduction in serialization latency with
a relatively minor overhead. While the proposed SDPR approach statically splits packets,
in the future we plan to explore the dynamic splitting of packets and balancing of lengths

between paths dependent on network load metrics.

3. Experiments and Evaluation

In this subsection, we evaluate the proposed SDPR scheme and the SDPR router experi-
mentally to analyze performance under different types of synthetic and realistic workloads.

We compare the performance of the SDPR router against that of the baseline router.

a. Methodology

We developed a fully synthesizable network consisting of the SDPR routers connected in
the 7x7 2-D mesh topology to obtain the performance numbers. All simulation models for
SDPR and baseline routers were coded in Verilog and synthesized using Synopsys Design
Compiler [55]. In the baseline router, we used 2 VCs and 4 VCs (BL-VC2 and BL-VC4,
BL stands for baseline) each with buffer depths of 5, 8, and 12. The buffer depth of 5 is
the minimum to ensure no pipeline bubbles due to credit return time in the credit-based
flow control [86]. For a fair comparison, we allocated the same number of buffers for
the baseline and SDPR routers. We compared the baseline routers with the SDPR routers
using 1 VC and 2 VCs per DOR path (SDPR-VC1 and BL-VC2) since BL-VC2 and BL-
VC4 consist of the same FIFO buffering and resources as SDPR-VC1 and SDPR-VC2

respectively. Hence, total buffers per port are two for BL-VC2 and SDPR-VCI and four

104

(;) QCIF

Fig. 44.: QCIF and CIF frame resolutions on Akiyo

for BL-VC4 and SDPR-VC2.

The performance of the proposed router was evaluated across uniform random, trans-
pose, and bit-complement synthetic workloads and H.264 video test streams and
SPLASH-2 benchmarks for realistic workloads with variations. Each of the routers
was experimented with a buffer of depth five. Table details the network configuration
and the variations used in the experiments. In the synthetic workload simulation, we used
long, medium, and short packets in which the average packet lengths (APLs) were 100, 25,
3.5 flits respectively.

We also evaluated SDPR and baseline across four different QCIF (176x144) 10 frames
and CIF (352x288) 10 frames video sources (Foreman, Akiyo, Mother, and Mobile streams
as configured in Table[XX]) generally used as video benchmarks for the evaluation on video
applications [117]. Fig. 4] shows CIF and QCIF frame resolutions on the Akiyo stream.
We used the H.264/MPEG-4 AVC (advanced video coding) standard developed by the joint
video team (JVT) of ISO/IEC and ITU-T (Telecommunication Standardization sector) and
the reference software of H.264 as a source coder for the video encoding [41,42]. The
five sources (i.e. four video streams and all mixed stream) were encoded by the software

H.264 encoder and uniformly distributed through source-destination pairs. Therefore, the

105

(891949) 000°00S ‘CT-HSV'1dS

(sswrey) 01 1DO ‘(sewely) 0T IO 09PIA $9T'H
(1I0Ys)§'¢ :Z-HSV'1dS

(1I0ys)G¢'g ‘(Suo[-wnipowr) /¢ :09pIA 97 H
sooen Z-HSV1dS

SJevI) OO@T/ vom.m

718

(qdAs)t ‘(sureseq)t,

(891249) 000001
(891949) 000°01

(Hoys)g-¢ ‘(wnipaun)gg ((Suo)0Q] :oNAYIULS

wopuel wojiu) quawa[dwos-jg ‘esodsuely,

9
S

(MdAas)1 ‘(sureseq)g
[QUUBYD SSOIO 01 | “I9INOI UL T :SA[IAD ¢

armo9yoIe paurjedid o3eis-omJ,

s1oyord pazATeuy
dnurem uonenuig
(yoyjoed 1ad syp)
y3u9 Joyoed oFeronay

PeOPIOM JUJel],

SHQ Ut 9ZIs)N
OA/SIRPNQ N
1104/S[ouuey) Teniaip
Kouare] doy-1og
QINIOANIYDIR INNOY

- dddsS 10J s§Od XA pue XX ‘dul[aseq 10} JOd AX Sunnoy
- USOIN AT LXL A3orodo],
SUOTIBLIBA uoneINSYuod JI0MIAN JnsLIvIoRIRY))

SIINOI YJ(IS PUL SUI[askq J0J SUOTIBLIBA PUB UONBINSYUOD JI0MIAN :"XTX 9[qeL

106

Table XX.: H.264 video traces

Source video stream Foreman, Akiyo, Mobile, Mother

The number of frames 10(QCIF),10(CIF)

Frame rate 30frame/sec

176 x 144 (QCIF)
352 x 288 (CIF)

Max. Bitrate 192(QCIF),768(CIF)kbit /s

Source resolution

video packets included H.264 encoded video bitstreams as payloads. The packet length of
the video streams were 33.14 (CIF) and 8.35 (QCIF) flits on average for medium and short
respectively, where the video streams suitably provided a realistic benchmark for evaluating
our design on short to long packet sizes.

SPLASH-2 [[86,92] is a shared-memory, multi-threaded benchmark suite. For an unbi-
ased evaluation of the SPLASH-2 benchmarks (Barnes, FFT, LU, Radix, Raytrace, Water-
nsqeuared, and Water-spatial), we used 500,000 cycles from the medium of traces with
10000 warm-up cycles. The packets consisted of 2-5 flits per packet (i.e. short packets) and
the average packet length of the SPLASH-2 traces was 3.5 flits. As we mentioned before,
the latency of the ejected packet was measured as time difference between the injection of

the first half packet at source and the ejection of the last half packet at destination.

b. Results

Standard synthetic loads: Fig. show the packet latency averaged across uni-
form random, transpose, and bit-complement synthetic loads using long, medium, and
short length packets at 2-50% injection bandwidths on BL-VC2, BL-VC4, SDPR-VCI,
and SDPR-VC2. As expected, SDPR with long packet significantly outperformed baseline

in latency across all traffic patterns. The latency results, 32%, 40%, 31% approached to

107

600 T T 600 T — 600 T T
—3--BL-VC2 -%--BL-VC2 -%--BL-VC2

5401 _g..BL.vC4 5401 _g..pLvC4 5401 . @.-BLVC4

480 —dr— SDPR-VC1 13% 480 —d— SDPR-VC1 480 —d— SDPR-VC1
- —&— SDPR-VC2 - —&— SDPR-VC2 I —&— SDPR-VC2
2 420 2 420 1 00pe 2 420
E 360 @ 360 ! E 360
z ' z ! z
S 300 / 5 300 0% g 300
= B [5
240 X 240 240
= < ﬂ* =
@ 18 2 18 < 18
z 2 /| e 2

120 0 M 20

60 60 60

0 0 0
0 01 0.2 0.3 0.4 0.5 0 01 0.2 0.3 04 0.5 0 01 0.2 0.3 04 0.5
Traffic load (flits/node/cycle) Traffic load (flitsinodelcycle) Traffic load (flits/nodelcycle)
(a) Uniform random (b) Transpose (c) Bit-complement

Fig. 45.: Results of synthetic long length packets (average packet length=100)

140

-
s
1=

200 7 200 T 200
== BL-VC2 H == BL-VC2 == BL-VC2
1801 _g..BLvC4 i ! 180f| _@..gLvC4 180 _g..gLvCa
160} —&— SDPR-VC1 I {6% 160}| —&— SDPR-VC1 160}| —&— SDPR-VC1
—e— SDPR-VC2 i —e—soPrvez| L —e— SDPR-VC2
1
m

=y
m»
o
=
N
=]

.
i
|
|
f 100

30%

// |

=]
=3
©
o

Average latency (cycles)
-
o
=]

Average latency (cycles)
-
(=]
o

Alyerage latency (cycles)

60 60, . Iy
e z

40 % 40
20 20 20

0 0 0

0 01 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 04 0.5 0 01 0.2 0.3 04 0.5

Traffic load (flitsinodelcycle) Traffic load (flitsinodel/cycle) Traffic load (flits/nodeicycle)
(a) Uniform random (b) Transpose (c) Bit-complement

Fig. 46.: Results of synthetic medium length packets (average packet length=25)

the ideal reduction gains in serialization latency (37, 43, 37% as discussed in Table X VII])
under three synthetic traffic patterns because SDPR provided better utilization of path di-
versity than baseline under long packet. In particular, the latency and saturation through-
put of SDPR were much better than them of the baseline router under transpose traffic
in Fig. 45|(b), [46[b), #7(b) because the transpose pattern is ideally balanced under SDPR
and increases the probability of packet splitting and parallel traversal through the dual-path

routes. The results show the improvement of saturation bandwidth by 100%, 100%, 75%

108

=
o
o

100 100

—--BL-VC2 1 —-- BL-VC2 = a.-BL-VC2 ,'
901 —g.-BLVC4 ! 90[—g-.BLVC4 90 —@.-BLVC4 ;
go}| —&— SDPR-VC1 i go}| —&— SDPR-vVC1 go}| —&— SDPR-vC1 i
- —&— SDPR-VC2 i = —&— SDPR-VC2 T —&— SDPR-VC2 !
2 70 i 2 70 1 2 70 !
2 i 3 I oy i
E 60 : E 60 : E 60 d
g 50 i § 50 i s 50 5% !
® 7% * B 9% i £ i
© 40 h w40 i > 40 i
? ! ? i ? ix
E 30 1] E 30 i E 30’
tﬁ 24 sanaaeiis 2
10 10 10
0 0 0
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 05 0 0.1 0.2 0.3 0.4 05
Traffic load (flits/node/cycle) Traffic load (flits/node/cycle) Traffic load (flits/inodelcycle)
(a) Uniform random (b) Transpose (c) Bit-complement

Fig. 47.: Results of synthetic short length packets (average packet length=3.5)

on long, medium, short packets respectively. On the other hand, bit-complement traffic
mainly uses horizontal and vertical network bisections and provides less chance of parallel
traversal than the transpose traffic, leading to the slightly less performance improvement in
latency and saturation bandwidth than the transpose and random uniform loads as shown in
Fig. [#5(c), 6|c), @7)(c). However, it still achieved up to 32% latency reduction in the long
packet traffic pattern. Fig. 5] 46| 47 also show that the saturation throughput of SDPR-
VCI is less than BL-VC2 under uniform random and bit-complement. This was because
SDPR-VCI1 used only one VC for each DOR path, leading to head-of-line blocking which
the BL-VC2 design did not experience. SDPR-VCI nevertheless achieved significantly
lower no-load latencies than BL-VC2.

Fig.[46]shows medium packet results. The APL of the medium packets was 25, greater
then the packet length boundary (20). Accordingly, latency reductions were improved to
25, 30, 21% on random uniform, transpose, and bit-complement which were 3-4 times the
short packet latency results across the synthetic traffic patterns. Long packet results are
shown in Fig. 45| where APL is 100.

Fig.|4’/|shows the results of short packet simulation (APL=3.5) across synthetic traffic

109

Table XXI.: A summary of average latency reductions on long packet traffic and closeness

to ideal latency reductions under SDPR on a 7x7 mesh NoC

Ideal latency Average latency Closeness to ideal

Traffic pattern reduction (%) reduction (%) latency reduction (%)

Uniform Random 37 32 86
Transpose 43 40 93
Bit-complement 37 31 84

patterns. Short length packets degraded the latency performance in SDPR due to the over-
head of header in split packets. In the figure, the average latencies gained by SDPR over
baseline were 7, 9, 5% on uniform random, transpose, and bit-complement respectively.
Also as expected, these improvements were much less than the ideal maximum gains un-
der the synthetic traffic patterns, 37, 43, 37% (we mentioned in Table in SDPR.
Table summarizes the average serialization latency reductions across synthetic work-
loads on long packet traffic and compares them with ideal serialization latency reductions
under SDPR.

Realistic loads-H.264 video streams: As we discussed, realistic H.264 video streams were
used to evaluate our SDPR scheme because lengthy video streaming data held significant
portion of network traffic, causing the system performance bottlenecks in the network.
Fig.[48|shows the video packet latency averaged across five test streams under medium and
short packet traffic patterns generated by H.264 CIF and QCIF encoded video workloads.
When we compared SDPR to baseline on medium packets (APL=33.14), the average laten-
cies of SDPR-VC2 were outperformed by 25%. The latency reduction of SDPR-VC2 with
short packets (APL=8.35) under the mixed video stream was 14% on average, compared
with BL-VC4. We were able to estimate the maximum reduction in serialization latency

from the distribution of dual-path node pairs across the five video traffic patterns as shown

110

(S¢'8 ="1dV “19oed 10ys) JIDO

pue ($1°€¢=1dV 1o3oed wnipawr) 4D PoXIW pue ‘IQYJOW ‘Q[IqOW ‘UBWIIOJ ‘OAINE :SPBO[IOM OJPIA ISI[BAI JO SINSAY :'{p ‘51

(5€'8="1dV :1oys) Aouaje| ‘BAy (p) (YL'€€=1dV :wnipaw) Aouadje| "BAY (9) ZDIA-UdAS UO [eALLIE JO BdUAIBYIP dwl] (q) uonnquisiq (e)
3 3 g 3 3 3 g 3 3) 3 3 g
253532 283528 2358 2 23382
o p = B < o 3 S 2 = B < ® 3 =0 <
c 8 © 53 & e s @ 5 o 2 2 58 S 8 2 @ 35 3
-0 ,l—Ll—Ll—Ll—Ll—} 0 L L L o(
= d
I L sie
s ¢ 3 : - %02
ZOA-¥das L o} 2oA-¥das wnipsiy iy m |spou dd
yOA-1E W yOA-TEE yoysm o sied - %0%
ek - 9 S spoudsm
...... 8 - %09
..... - 0e o\ommﬁ -8 3
wmwm.. -6z T |o_‘m _—__—uﬂxvow
()
- o€ A - %001

111

in Fig. d8|(a). The distribution of dual-path node pairs was 75% on average at the patterns;
thereby the maximum reduction in serialization latency on SDPR was expected as 38%.

Fig. 4§|(b) shows the distance of arrival time between two split packets at a destina-
tion node across video patterns. When the time difference of arrival increases, processing
elements require more memory space to hold the payloads of the split packets for recon-
struction. As shown in the figure, average time differences were 29.8, 5.3, 1.9 on the mixed
video patterns with medium and short packet length respectively. The reconstruction can
be performed using small amount of cache memory. Even for the worst case, cache mem-
ory is enough to handle this reconstruction without any additional buffers in the network
adapter.

We concluded from this analysis, SDPR attained a significant improvement over con-
ventional XY DOR for all traffic loads due to its better utilization of path diversity. Es-
pecially, the SDPR scheme outperformed XY DOR under lengthy streaming applications
such as video streaming since they mostly require long packet communication for high res-
olution between nodes in NoCs. SDPR also provided better performance in latency than
baseline across all buffer depths and injection rates we experimented. The reconstruction
of split packets could be done in memory space belonging to main processor units.
Realistic loads-SPLLASH-2: Realistic traces taken from SPLASH-2 benchmarks were ex-
ploited for evaluation. The SPLASH-2 workloads are composed of static traces of short
packets (APL=3.5) from the portion of the memory hierarchy which directly communicates
via the NoC. We performed SDPR simulations across the SPLASH-2 traces and obtained
the experimental result as shown in Fig. 49 The average packet length of SPLASH-2 was
short (i.e. 3.5) as that of synthetic short packet traffic, therefore, as expected, the latency
reduction (5-6%) attained from the experiments was low due to the short packet length
like the results of synthetic short packet traces. Fig.[49(a) shows the distribution of single-

path packets and dual-path packets implying reduction degree. Raytrace consists mainly

112

[eneds-1a1epy

pue ‘parenabsu-191epp ‘QoenAey XIpey ‘N1 ‘LA ‘Seureq (S ¢=T1dV) SHewyouaq Z-HSV1dS sso1oe synsal juswradxy 61 31

(LLv="1dv) Aouaje| pazijewnioN () ZOA-¥dAs uo [eALLe Jo dduasayip awl] (q) uonnquysiq (e)
£ 3 s
o Q Q
] 5 @ 53
> % 3 3 g 2 3 g2 -
< 4 o & o - 6 98 & o 028 o
gi883__3 f9 %% 3 o3 JE558 S
8§ 5 88 x g 3§ 2 58 5 8 8 § 3 2 sed B S5 8 3K =]
B O \"’. L o ”_ b L 1 1 1 1 1 1 1 nxuo
m 3 epoudq
205 - 1'0q sued - %02
= o
-vod 203 opoudsSm - %07
Q S
- 90 m - €098 - %09
- 80 2 - 708 — —— — - %08
P S
%ol 4 L 8 - g0l ial P

113

of dual-path packets, so SDPR can improve the efficiency of routing on this traffic pattern.
But it mostly included short packets (i.e. 2-5 filts per packet), thus the benefic of SDPR
was attenuated due to head flit overhead. The time arrival difference between two split and
ejected packets on SDPR-VC2 across the SPLASH-2 benchmarks is shown in Fig. @9|b).
The time difference was less than one cycle, which meant the split packets were ejected at

almost the same time.

c. Discussion

We examined the effect of packet length on our SDPR scheme, compared with the baseline
router simulation. A source and destination pair was uniformly and randomly selected,
and 10,000 payload flits were packetized and traversed along with single-path or dual-path
from the source to the destination on the 7x7 network. This experiment was repeated with
eight different pairs of nodes. The results of transfer time in cycle were measured and
averaged with 1,000 warmup cycles as shown in Fig.[50] In Fig.[50(a), transfer time results
on BL-VC4 were measured while packet length per injection port was varied from 2 to 100
to examine the optimal length of packets in terms of transfer time. We used short packets
for background nodes excluding the selected source-destination pair to minimize the side
effects of packet length variation in the background nodes. To investigate the influence
of buffer depth over the transmission, we used three buffer depth variations, 5, 8 and 12.
Fig. @Kb) shows the results of SDPR-VC2 simulation under 5, 8, and 12 buffer depths.
Injection rate thus varied from 3 to 30% to demonstrate the effect of congestion over BL-
VC4 and SDPR-VC2. Packet length boundary to achieve subminimal transfer time was 20
flit per injection port in both BL-VC4 and SDPR-VC2. If the packet length is less than the
boundary, transfer time will gradually increase. The performance gain of SDPR-VC2 over
BL-VC4 was about 36% across all injection rates and buffer depths. As a result, SDPR

with packet length boundary attained a significant improvement in latency performance

114

‘K1oanoadsar syydop Jogng 71 ‘g ‘G SuIsn s)[nsal UOHR[NUWIIS AU} MOYS SQUI[PAYSEP PUB ‘PaNop ‘PIOS "SDON

AdAS pue aurpaseq ur sajex uondafur pue ‘syidop Jopnq ‘syISud[Joxoed SNOLIBA JI9pun SHY 93essou ()00] JO QW) JdJsuel], :*()S ‘31

(zoN-ddas) 181n04 4das (a) (¥OA-19) J81n01 Buljeseq ()
(syy) wod uopasful Jad Ybua| Jayoed (syy) nod uonoalul sad Ybua| 1ayoed
00l 06 08 04 09 0§ or 0¢ 4 o0l 0. 001 06 08 0L 09 0§ or 0¢ 0z (1] 0.
m Q T T T T T T T L T m Q
! - . paAcldwll %9¢
41 4L

.l.nl.rn‘ri.l' Eﬂ.ll ek

= ; =

m ’ﬂﬂﬂw.l..l.l:‘.—’!ll"’ll‘.—’!ll. M

o g ™ : @

o g

..... 5 {ov 2

L] L]

Q Q

n..\ooﬂIN—. .Ifl mw a\eQﬂIN—. .Ifl FPFTTITLD - TILTLLLLL .WI | .WH-.w.-.._.v ._.H-—-I. A mu-

- '=] - . iy > Lo [=]

%0Z ¢l -—p-— g B 20221 - » S

[7601”21 - - 3 || %01 Ch 4= 3

%L Tk - a %L Tl -=t= a2

%€ gl ==t & %E 2k -=4-= 2

0L 8 - Y- e V0L - Yeur °

o %02 8o F Y 0T 8P oo e Yo 7

%018 e+) ﬁ %0178 - fe- m. .m X » X W.)

o 1, S or §— L S

Yol 8 reliers s Yol 8 =lde-- e

%E 8 --g--- o %G «x e o
%0E™ G —¥— %08 G —¥—

%0T_G —p— %0T_§ —P— Arepunoq UiBus| 19508 \
%0l § —4— %01_S —4—
Y%l G —8— %l”G —a—
Yol TG —lp VYol G i
1 1 L 1 L 1 L L mmﬂ 1 L L 1 L 1 1

115

regardless of buffer depth and injection rate.

4. Synthesis Results

We also examined the hardware overhead of the SDPR router to tradeoff strengths achieved
from the improved link utilization and weaknesses caused by the hardware overhead for
external injection and ejection ports and additional logic. Fig. [51| profiles and compares
the synthesis results of the fully synchronous baseline and SDPR routers. We synthesized
these two routers using Synopsys Design Compiler on TSMC 45nm technology with 20%
default switching activities. Internal blocks of each router such as input unit, VC allocator,
switch allocator, crossbar switch, output unit, and router top were synthesized to demon-
strate power and area overheads. The power and area results of input unit were relatively
greater than other blocks because it included twenty 4-depth, 64-bit width FIFOs (i.e. four
FIFOs times five ports). The results of SDPR-VC2 denote slightly higher power/area over-
heads than BL-VC4 due to the supplementary allocation and switch logic. However, these
overheads involved are inexpensive changes relative to the benefit of SDPR in terms of

improvement.

D. Conclusions

We present the WaveSync NoC design, which enables very low-latency communication
in GALS NoC designs under low injection rates. By clocking portions the downstream
node and processing element with the incoming source synchronous clocks on links, the
WaveSync architecture allows packets propagating along the same path as the clock to
skip synchronization entirely thereby allowing data to move as fast as it would in a long-
combinatorial path. We also evaluate the performance of a near-half-cycle synchronizer

architecture to reduce synchronization latency when synchronization is unavoidable, fur-

116

ZHO1 ® OAId Wdop- PIM ZDA-JAS PUB $DA~TH JO SINSAI SISAPUAS "G S

(Muw) samod (q) (-ww) eaiy (e)
|ejo} yun Uo}iMms Iojedoj|e 10}edo|e |ejo} Hun Ydims JojedojjeJojedojje pun
19Inoy IndinQ Jeqssold Yyoums 9A Hunjinduj 19n0y IndinQ Jeqssol) YoumMs OA induj
L L 1 L L 1 L o L 1 1 I 1 — 1 1
-G
- 0l
ZOA-ddas ¢oA-ddas
yOAIgm St poniam
- 02
- GC
- 0€
1

10°0
200
€00
00
§0°0
90'0
100
80°0
60°0
10

117

ther reducing per-hop latency. The proposed WaveSync design results in an improvement in
average latency of 68% over the baseline GALS and 55% over ABC across the SPLASH-2
benchmarks.

Deterministic routing algorithm such as DOR is widely used in 2D mesh NoC because
it provides simple algorithm and low-cost implementation. However, its performance in
latency can be insufficient due to no path diversity. We observe that there are two inherent
minimal paths (XY and YX DOR paths) on a 2-D mesh network. Simultaneous packet
injecting via the two paths can enhance performance and gain better link utilization, but the
two packets should have the same destination address to be injected at the same time.

We also propose a solution for this problem using the SDPR scheme. The SDPR ar-
chitecture statically exploits the path diversity in the network to improve link utilization. In
particular, the proposed SDPR technique mitigates the lack of path diversity and utilization
of DOR by splitting a packet to two halves that involve the same source-destination address
and injecting them simultaneously in parallel via separate and independent orthogonal two
paths (i.e. XY and YX). By using dual injection and ejection ports dedicated at the router,
parallel traversal along with XY DOR and YX DOR channels incurs a marginal logic and
power overhead.

The experiment results demonstrate that SDPR can outperform the traditional DOR-
based single injection scheme under long packets across all traffic patterns. We performed
the SDPR evaluation using different synthetic workloads and realistic H.264 video traces
and SPLASH-2 benchmarks to show significant reduction in the average packet latency.
In the results, the SDPR router achieves 31-40% average reduction in latency across all
synthetic under long packet simulations and 10% across SPLASH-2 realistic workloads,
compared to the baseline router. The fully synthesizable SDPR router occupies 30.89mW
power and 0.091mm? area with 3.7% and 4.7% power and area overheads over the baseline

router respectively.

118

CHAPTER IV

DATA PROCESSING ACCELERATOR ARCHITECTURE FOR LOW-POWER SOCS
IN DISTRIBUTED SENSOR NETWORK SYSTEMS
We present a data processing and control logic design for a new radiation detection sensor
system that can generate data at or above Peta-bits-per-second level. The logic consists
of novel data lossy compression components and operation strategies including low-power
and network-on-wafer solutions. The design goal is to achieve subtle data compression
before the information is ferried to the network, and redundant processing and channels to
minimize the loss of information. The result is a radiation detection system that can operate

at scan-rate of billion frames per second.

A. Data Processing Logic for Stacked Wafer-Scale CMOS Radiation Sensor Network

To further ensure safety from unauthorized transport and distributed radioactive material,
a detection system is needed to perform monitoring and serve as an early warning sys-
tem. This has led to the development of various detection systems with wireless sensor
networks [118,[119]. In [118]], distributed sensor network (DSS) systems composed of
commercial hardware for radiation detection are studied and simulated. A radiation sensor
network for emergency prototype was presented in [[119] to handle radiation information
through a sensor network.

This section presents a data processing architecture for a low-power radiation sensor
system and its implementation. This system is developed to detect radiological sources
such as nuclear weapons, improvised nuclear devices, radionuclide materials, and space
radiations. The design provides a data processing logic and implementation with a router
design for an on-chip network. The novelty of our design includes signal processing logic

for data compression and management, on-chip routers for a low-power multi-layer wafer-

119

scale radiation sensor network. Fig. [52|shows the whole mechanism of the sensor network.
In the figure, when radiation strikes a wafer, a photodiode emits a current pulse through
one row and one column of the sensor array [120]. The position and severity of detection
events can be recorded by sensor arrays and compressed into packets by data processing
logic. With the information, we can construct three dimensional images of multiple particle
interactions. To connect the sensor arrays and to transmit the compressed packets to main

controllers (redundant) in each wafer, we employ network-on-wafer (NoW) architecture.

1. Data Processing Logic

One of key challenges of our detector design is minimizing the amount of data recorded
and transmitted from a detection event without losing critical information. Lossless com-
pression, often used in medical imaging applications, guarantees the integrity of the data
without distortion. In contrast, lossy compression reduces data with reasonable distortions
but can achieve higher compression rates [[121]. In our design, a novel lossy data com-
pression scheme for sensor arrays is implemented. Fig.[52fe) shows a sensor unit used as
a basic detection unit on a detection wafer. The row and column axes of the sensor unit
have 1024 lines respectively, and each line is enabled when a radiation strikes one of pho-
todiodes in the line. As a result, we need to process up to 1024x1024 bits per array where
each bit indicates a detection or lack thereof. For instance, when we use 10 multi-layer
sensor wafers and each with 100 sensor units at 1 GHz operating clock, the amount of data
needed to be processed reach to 10'3 (quintillion) bits per second in the worst case unlikely
scenario. To reduce the volume of processing data, our compression scheme extracts only

necessary information from the detection data of the sensor arrays.

120

(a) Sensor network (b) Detection module N
v N v— ________ v-
R | = Control and comm board §
am @ 5B Seconcary elaon sare
econdary detection wafer
Node 1 e, ,v Node 2 Primaz detection wafer

~ s

e Y
) ol o _
@ : Radiation Particle
(e) Sensor array Receiver

01234567 1023

(HHHH H]
S

e

(0

(0

It

Photodiode

++-

44
44
44+
44

++-

T\/«

X ais 3-D detection
aee image (c) Multi-layer wafer

(]
I+I+I

+ iii
I

~NOoO A WNEFEO

(]
i
(]
il
il
il
ity
I+=

= ah
e —
e —
e —
e —
e —
e —

(]
I T30 1023 —
)

Y axis
(1024) l
X axis Y axis

(f) Data processing logic & router ,gui} Fiozanit

Clock = I
) 42bit 15bit 15bit D
Init_val # ounter [Timestamp | x | Pr i

Reset = 2 [

4

Count_value Write

(d) Detection wafer

Fig. 52.: Overview of the proposed radiation detection sensor system

121

a. Overall Architecture of Data Processing Unit

Fig. [52(f) illustrates the architecture of the proposed data processing unit, consisting of
counter, data compression unit, 2-port FIFO, and an on-chip router. The counter unit gen-
erates time stamp information and inserts it into every packet with detection information
created by the data compression unit every event if any particles are detected. In par-
ticular, the data processing logic is capable of compressing 1024x1024 bit/array input to
72-bit/array output packet per clock cycle. The output packet is composed of 42-bit time
stamp recoding the detection event time (a clock counter value) and two compressed results
(x and y) filled with 1-bit detection flag, 4-bit resolution, and 10-bit address. The detection
output data, x and y, show the range (distance or resolution) and the representative position
(address) of detected pixels at every event. Using the resolution and address information,
we can construct time-varying 3-D images and estimate the angle of incidence, intensity,

and the type of radiation source.

b. Proposed Data Compression Algorithm

The main idea of the detection algorithm is that when the sensor unit detects multiple par-
ticles, the compression unit does not need to send all information of detected positions but
sends minimal information necessary to reconstruct estimated detection information repre-
senting the position and severity of detection events since the detected particles are more
likely to be gathered in a specific area. Therefore, we can compress 1024 bits indicating
the detection positions of hit particles in an axis to 1-bit detection flag, 4-bit resolution
data, and 10-bit address designating the smallest index in the 1024 detection positions.
Table XXl shows the resolution of detected bits in a row or column axis. If the 4-bit res-
olution is 5, it means that the maximum and minimum number of detected particles are 32

(2resolution — 95y and 17 (2resolution=1 11 — 2% 1 1) respectively.

122

Table XXII.: Resolution and detection bits

Resolution n (0~ 10)
Detection bits 2" (1 ~ 1024)

Fig. |53| illustrates this compression scheme. In EX1, the detection positions of in-
put data are widely distributed from O to 1023 in an axis. In this case, 4-bit resolu-
tion representing detection range is 10, and 10-bit address, the smallest index of a de-
tected particle, is 0. As a result, 15-bit detection data is *1_1010_.0000000000’ in bi-
nary. In EX4, the resolution is 8 because the range of detection is from in[356] to in[530]

(range=530—-356+1 =175 < 28), and the address is 356.

c. Data Compression Unit

The data processing unit for compression is mainly composed of address generation and
resolution generation. Fig. [54] presents the architecture of data processing logic. There are
10 pipeline stages in the block, and we exploit divide and conquer strategy to build address
and resolution outputs at each pipeline stage. In the first stage, Initl~512 blocks that
receive 2-bit detection data through input ports generate next 3-bit output data that contain
1-bit detection flag, 1-bit resolution output, and 1-bit address output. In the next stage,
Main1~256 blocks generate new 2-bit resolution/address (i.e. 1-bit flag, 2-bit resolution,
and 2-bit address) using two 1-bit resolution/address inputs. In the last stage, Main9 block
creates a 15-bit detection packet composed of 1-bit flag, 4-bit resolution, and 10-bit address.

The address and resolution generators creating a next address and resolution are shown
in the left of Fig. The address generator selects the smallest index among detected
inputs, therefore if there are two detected bits (latched_in[1:0]), a smaller index will be

chosen. For instance, when in[0]=1(detected) and in[1]=1(detected), the result of address

123

EX 1 :in[01,[512:5111,[1023] EX 2 :in[255]
¢ in[o] T Inlo]
Resol=10,addr=0 ¢ In[255]

Out=1_1010_00_00000000
Resol=1,addr=255

Out=1_1000_00_11111111
; In[511] A1
In[512] In[512]

* In[1023] In[1023]
EX 3 :in[64:33],[151:120] EX 4 :in[387:356],[530:499]
In[0] T inlo]
In[33] Resol=8,addr=356
32 C Resol=7,addr=33 Out=1_1000_01_01100100
In[64] Out=1_0111_00_00100001 e In[356]
42 C: In[120] In[3871]
® In[151]
i 32 e In[499]
In[512] In[530]
° Input=1
In[1023] (detected) In[1023]

Fig. 53.: Data compression scheme

uorssaxdwod 10y jrun Jurssadord eie(q ¢ 81

<
N
o—
01 eufedid 6 oulledid g suljedid Z uljedid | eujjedid
I J
tgu [7~ SHa ey 0
' (Hg|)losel
9 H 1
I MNIF (] 1 1
uew H 0 ot
ssalppe sNqo|L + ' 0 10
uolinjosal siidy + Belj 1q | I !
tguul [7~ SM9je 0 0
slq gL : " e] josal [0: |]3ndu| =
] .
CCLTTTTTTIT T T T8 — uep '
[
H [0:1]uIPoydIe| |19,2
elep HDQU_DO H
2 spae COEM;QC&O uolinjosay
il ;
e ' _
UeN H (1q1)1ppe
]
f_’ i .
sig § cHU| I\P..wa_n 4
K 0 m
] l o]}
2 ; o | 1
ulew ! 0 00 _
' ippe [0:1]13Indu| 1
[Ts] h _
suq G S 1 2w L/ s1q 2
. H [0:1]urPeyotel 0192
201 = S8pOU JO Jequinu ayL H uolelousb ssal
L
g ssappy [! " PPY
3 uopnjosey [Lee==""
Bey) uonosieg [a] w ||'t|||
sige | N[sHae UL
[Ts] ee="""

125

generator is 0 which is the smallest index. The resolution generator creates new resolutions
by using two resolution inputs generated in the previous pipeline stage. In Fig. [54] the
resolution generator receives two 1-bit detection inputs and computes a 2-bit resolution
output. For example, when in[0]=1(detected) and in[1]=1(detected), the updated resolution
will be 1 since there are two detected particles (i.e. 21 =2).

Fig. 55| shows the method generating a new address and resolution output in Module
C using address and resolution inputs delivered from the previous Module A and B. First, a
new address can be determined by the smallest index of A and B. Accordingly, the address
of C will be the address of A, 15. A new resolution can be computed by the addresses of
A and B and the resolution of B. As the resolution of B (b) implies the maximum distance
from the address of B in the Module B, total distance from the address of A to the end of
detection area of B in the Module C will be (a)+(b), which equals (c). In this case, the

resolution of the Module C will be 10 since the address range (c) is 661.

2. On-chip Router Design

Network-on-Chips (NoC) has emerged as an alternative of the traditional bus-based inter-
connecting between sensing and processing array elements (SPE), to increase bandwidth
and reduce interconnection complexity on a chip. As shown in Fig. [56 each SPE in an
NoC architecture is linked through a router, and data are transferred in the form of packets
which are subdivided by flits (Header, Body, and Tail). In our system, the idea of NoC is
simply expanded to the wafer-scale while achieving power efficient data communication.
The NoC paradigm fails when reliability of all components (SPEs and interconnections)
on the wafer cannot be guaranteed. To tolerate component failure on a wafer, protocols
are placed to ensure the system as a whole can continue to function. In our system, the
redundant main controllers on each wafer are responsible for determining failures of indi-

vidual links or nodes. This built-in self-test (BIST) will dynamically modify the routing

126

In[(\]
|

In[15]=Addr(A)

Module A
(resolution=3)

Input=1

¢ (detected)

(1) New address =
the first detected input

l
| In module A = Addr(A)=15
Address

range In[’1 1 (2) Address_range =

Ta12] Addr(B)+2resolB-Addr(A)=
ny 612+64—15=661
\ = new resolution = 10

(c) —

VTQ- In[6||1 2]=Addr(B)

| Module B Final output of C :

: (resolution=6) * Detection flag=1
(b) | * Resolution =10
| * Address = 15

=>1_1010_0000001111
Lo- In[6{2+63]

l
l

I_nHl)ZS]

r
I
l
|
|
|
|
|
I

Module C |

|
|
|
|
|
|
|
|
|
|
\

Fig. 55.: Generating new address and resolution outputs using address and resolution inputs

created in the previous pipeline stage

127

r .
: Routin
PE PE PE . LOgng
N .qu :
4 E .
3
S

e A h < :(:l
[4;“ ;IL:HI‘ W ;LA ;L:L
North : Crossbar © North
—) 5X5 —
South : South
PE PE PE — —
East - East
p AR A AN Ry s
X = o 'L,;I _’ —
Local - - Local
. ' —
PE PE PE : :
f ! f "_f ~ e e e e e e e e e e e .
] | 3|]

Fig. 56.: Baseline router

table to navigate data transmission around these failures and defects. Equally important
as reliability is the goal of reducing power consumption. A globally asynchronous locally
synchronous (GALS) architecture is also proposed for our NoW design, eliminating the
need for complex clock trees, which are expensive in both cost and power. This architec-
ture reduces power consumption to near zero during standby/detection mode [[122]. An-
other substantial challenge facing designers of NoWs is the need for resilience. A unified
framework of coding for SoCs with crosstalk avoidance codes and error control codes was
proposed [123]]. The paper investigates combining existing coding schemes and provides
practical coding schemes to reduce delay and energy and increases reliability. The baseline
router we used in the proposed design is a standard 2D mesh, pipelined router with virtual
channels (VC) [86L/102]]. The pipeline is composed of 2 stages (i.e. route computation and

arbitration) at output port.

128

Table XXIII.: Synthesis results of the data processing logic and baseline router at 1GHz

Data processing logic Router

Target Library Input : 1024x1024 bit/cycle 128 bit/cycle
Output : 72 bit/cycle

Compression Rate 99.99% -
Maximum Frequency 1GHz 1GHz
Area 60358 32060
Power Consumption 112.1718mW 79mW

3. Experiments

The data processing logic and baseline router was implemented in Verilog. We synthesized
them using Nangate 45nm open library at 1GHz (Table [XXIII). In the design, the reduc-
tion rate of data was 99.99% because input (1024x1024 bit/cycle) was compressed to 72
bit/cycle. In the synthesis result, the data processing logic consumed 112.17mW @ 1GHz,
and router consumed 79mW @ 1GHz with 128-bit data width. The data compression block
consists of a pipelined architecture (10 pipelines), therefore, it could be synthesized at high

frequency, 1GHz.

129

B. DSP Accelerator for Low-Power Sensor Hub SoCs

A sensor hub SoC typically contains a heterogeneous mix of hardware blocks such as a
small embedded microprocessor managing sensors, DSPs or dedicated hardware accelera-
tors to perform complex DSP algorithms for massive data. The data can be sensed by an-
gular momentum, GPS location, magnetic compass heading, temperature, pressure, sound
and light. In this sensor hub SoC design, the main components dominantly consuming
power and area are signal processing cores. General purpose DSPs can provide develop-
ers flexibility and quick development of DSP-oriented algorithms. However, the chip area
and energy consumption per operation of DSP is relatively higher than dedicated hardware
logics performing the same operations due to overheads to support wide functionality. In
particular, power consumption is a major concern as demands on the sensor hub SoCs since
they are typically used in portable and battery restricted sensor systems. All these require-
ments for low-power data processing for the sensor hub SoC make extensive use of a DSP
accelerator. The DSP accelerator provides a compromise between the performance gains of
fixed-functionality hardware and the flexibility of software-programmable tasks, enabling
energy-efficient digital signal processing.

In this paper we make the following contributions to the DSP accelerator design:

e We propose a DSP accelerator design for low-power and low-cost SoCs for sensor
network systems. The low-power DSP accelerator performs DSP operations such
as single instruction multiple data (SIMD) style multiply and accumulate (MAC),
FFT/IFFT, FIR, and 3-D cross product (CP). This accelerator is developed as a ded-
icated hardware to obtain small area and low-power performance but provides pro-
grammable functionality to run fundamental DSP algorithms when compared tradi-

tional hardwired accelerators.

e The DSP accelerator does not contain large internal registers such as general purpose

130

registers (GPRs). The GPRs are typically used in DSPs to load data from a larger
memory and to hold temporarily data and intermediately result, but demanding addi-
tional area and power. The DSP accelerator loads and stores data from and to external
SRAM through AHB bus; it leads to low area and power consumption like dedicated

hardware accelerators.

e We propose fast FFT, CP, FIR executions using a pipeline architecture that supports
large loop operations effectively. The result shows the proposed DSP accelerator out-
performs general purpose DSPs in throughput performance, close to that of a hard-

wired accelerator with programmable control as well as with low-power requirement.

The detail features of the proposed DSP accelerator will be shown in the next subsection.

1. Background: DSP Algorithms
a. Vector Dot Product

Vector dot product (or sum of products) is the most fundamental operation in DSP. It is
widely used for convolutional algorithms such as finite impulse response (FIR) filters. FIR
filters compute the convolution between the filter coefficients and the delay line values.

This is described in equation (@.T)).
N-1
Y, = Z CiXy—i (41)
i=0

where N is the number of coefficients, C; are the coefficients of the filter, and X,,, Y,, are the
nth terms of the input and output sequences respectively. This vector dot product algorithm
can be implemented by multiply and accumulate (MAC) operations with zero-overhead
looping technique. MAC is a very common low-level operation used in many DSP al-
gorithms. This operation multiplies two numbers and adds into an accumulator register.

The DSP accelerator provides 8-,16-,32-bit SIMD MAC operations for programmable FIR

131

filters.

b. 3-Dimensional Cross Product

The 3-D CP calculates a new vector from two vectors in 3-D space. The resulting vector is
perpendicular to the two original vectors. This operation is used to compute the normal for
a triangle or polygon. It is also used for computational geometry applications in computer
graphics. We design a fast 8-,16-,32-bit CP operation for these computationally intensive
applications. For vectors A=(a, a2, az), B=(by, ba, b3), C=(cy, c3, c3) in R3, the CP is

defined by equation (4.2)).
i j k
C=AXB=(aybs—azby)i+ (asby —a1b3) j+ (a1by —arby)k = |ay az a3 “4.2)

by by b3

where 1,j,k are unit vectors.

c. Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) is an efficient algorithm to calculate the discrete Fourier
transform (DFT). It is also one of the most primary used operations in digital signal pro-
cessing. The DFT transforms N discrete-time samples (n=0 to N-1) to the same number of
discrete frequency samples, and is defined as
| N=1 ”
X (k) = N n;ox(n)WN (4.3)
where k = 0 to N — 1, and Wy, the twiddle factor, is defined as

Wy = e /2N 4.4)

In practice for large series, DFT takes significant time proportional to the square of

132

the number on points. A much faster algorithm has been developed by Cooley and Tukey
in 1965 called the FFT. Radix-2 Cooley-Tukey decimation-in-time (DIT) FFT breaks each
DFT computation into the combination of two DFTs, one for even-indexed inputs and
another for odd-indexed inputs [[124]. The decomposition continues until a DFT of just two
inputs remains. The 2-point DFT is called a butterfly, and it is the simplest computational

kernel of radix-2 FFT algorithms.

2. DSP Accelerator Features

Table presents the features of the DSP accelerator. It supports 8-, 16- and 32- fixed-
point data and operates in SIMD operations for handling MAC, FFT/IFFT, CP, and FIR
filter processing. In the accelerator, the SIMD supports up to 4 operations (4x8=32 bits)
at the same time. It can generate up to two read-memory addresses and one write-memory
address per cycle using three address generate units (AGUs). A 32-bit multiplier is built
on 16x8-bit multipliers to support 8-, 16-bit and 32-bit multiplications. The 8-, 16- and
32-bit multiplied results are accumulated into a 80-bit accumulator with saturation process,
and an auxiliary 60-bit accumulator is implemented to accelerate 8-, 16- and 32-bit FIR
operations. The accelerator supports programmable shift, guard bits, rounding, and satura-
tion to provide shifted, rounded, saturated and guarded outputs in the accumulator. Special
addressing modes such as bit-reverse for decimation-in-time (DIT) radix-2 FFT/IFFT op-
eration, programable increment/decrement by n, and zero overhead looping for optimized

control flow and background processing are also supported.

3. DSP Accelerator Architecture

SoC top block and the architecture of DSP accelerator are shown in Fig. The
accelerator includes separated read and write channels to process pipelined operations for

FFT/IFFT, MAC, CP, and FIR. For two read channels and one write channel, three 32-

133

Table XXIV.: DSP accelerator features

Numeric features | 8/16/32-bit fixed point
Memory channel | 3 x 32-bit read/write channels

Multiplication 16 x 8-bit multipliers

Accumulator 80-bit (+ 60-bit for FIR)

SIMD 4-way 8-bit / 2-way 16-bit / 1-way 32-bit

Numeric fidelity Programmable shifter, guard bits, rounding, saturation

Addressing modes | Bit-reverse, cyclic, inc/dec by n, zero overhead looping

8/16/32-bit dot product,

8/16/32-bit cross product,

32-bit complex (16-bit real and 16-bit imaginary) radix-2 DIT FFT/IFFT
8/16/32-bit FIR

Operations

bit address and data ports are built in the accelerator. When two operands are loaded by
two read channels, a 32-bit output will be written back through the write channel in the
next cycle. Thus the operands read, execution, and output write-back can performed in
a pipelined fashion to increase operating speed. Typically DSPs exploit general purpose
registers to store any transient data required by the program. The DSP accelerator, however,
does not accommodate any memory inside the block to store operands, outcomes, and any
transient data. Therefore, whenever the accelerator executes a command (or instruction), it
is necessary to load two operands or transient data every time from outside SRAM memory
through AHB bus. This gives both pros and cons. The accelerator wastes SRAM read/write
cycles to load input data and write back output data through AHB bus for every instruction,
but it keeps small area and low-power consumption due to not including power dominant
data register block. Control unit controls address generation, receives 96-bit commands
(i.e. instructions) from a micro-controller through AHB”™ [125]] slave port, and stores

them into internal command FIFOs (i.e. instruction memory).

134

DSP
Accelerator

AHB Arbiter M S| SRAM1

uController

AHB Arbiter M S| SRAM1

AHB Arbiter [M §| SRAM2

Fig. 57.: Micro-controller, DSP accelerator and data memory interface in the proposed

sensor hub SoC

_l ite Mact
| Channel 1 __Channel 2_Channel 3 AHB |'IteChanreI 1 Channel 2 Channel 3
|| Read |1 L write /32'b“ Read 32-bit [Lwrite back
324 addres¥?1 324 address 3247 readperands32 read 324 result
Address 32-bit 32-bit 30-bit
Generation AGU1 AGU2 AGU3 |AL]A2]A3]A4] |B1|B2]|B3[B4] write
Unit (AGU) (32-bit) (82-bit) (82-bit) Opprang A Opkrangl B Result
Y V. V.V Y V V' VY
o . 8 8 8 8 8 8 8 8
peration > Mult | Mult | Mult | Mult Mult | Mult | Mult | Mult
— Simd_mod —— 16-Mult 32-Mult 16-Mult
8 8 8 8 8 8 8 8
. Data_sel = Mult | Mult | Mult | Mult Mult | Mult | Mult | Mult
o Control Unit -
K Bshift size 16-Mult 16-Mult
n L —>
-2 = =~ I
< Command FIFO Sat_en I Saturate/Accumulate (80-bit and 60-bit) I
Control/status Reg Signed_a =——p; *
o . Programmable Round/Shift
Intr_dsp Signed_b = I I
Data path

Micro-controller

Fig. 58.: DSP accelerator architecture

135

Control Unit

3x32-bitcom 96-bit

> Address
Generation
Unit (AGU),

@ Data Path Unit

o (DPU)

uCon

Sontrol/
Status Reg.

DSP Accelerator

Fig. 59.: Interface with uCon

a. Address generate unit (AGU)

Three AGUs generate 32-bit addresses for two 32-bit read data and one 32-bit write data
per cycle. AGUs support special address modes such as bit-reverse, increment/decrement

and cyclic addressing.

b. Data path unit (DPU)

AHB channel 1 and 2 are assigned for two read operands, and AHB channel 3 is used for
writing back a 32-bit result. When two operands are loaded for an operation, DPU performs
the operation using loop-level pipeline. We will discuss this pipeline design for loops in
the pipeline architecture. The DPU consists of 16x8-bit multipliers and a 80-bit accumula-
tor for 8-, 16- and 32-bit MAC operations. FIR requires a 60-bit supplement accumulator
to diagonally accelerate 8- and16-bit FIR filtering processes. Rounding, shifting, and sat-
urating are also provided by the data path. The arithmetic logic unit (ALU) of the DPU

incorporates the 16x8-bit multipliers and 80-bit and 60-bit accumulators. All operations

136

96-bit Command register: FIFO_H/M/L (32-bit width x 16 depth)

CMD[95:64] | OPCODE | ADDR_UPDATE | PATH_SEL | SHIFT_OP | SHIFT_SIZE | LOOP_SIZE | CLEAR_MAC | ADDR_MODE
(FIFO_H) 3 1 2 3 7 12 1 3

CMD[63:32] | FFT_STAGE | IN_SEL A IN.SEL_B | SIGNED_A | SIGNED_B | INC_SIZE OFFSET_ADDR_C
(FIFO_M) 4 2 2 4 4 2 2

CMDI[31:0] | BA_SEL_C| BA_SEL_A OFFSET_ADDR_A Reserved | BA_SEL B OFFSET_ADDR_B
(FIFO_L) 2 2 12 2 2 12

Control register (32-bit)

ctriia1:161| NTREEN | READY_EN [SIMD_MODE | COMPLX_EN [ROUND_EN | SAT_MOD | OVF_SET
rl[31:16] 1 1 2 1 1 2 7

CHrl[15:0] CLEAT_OVF ROUN;D_SET SIMD_SlUM_EN COEFS_SIZE

Status register (32-bit)

Reserved OVF_ST Reserved INTR_ST
26 2 3 1

Status[31:0]

Fig. 60.: Configurations of command, control and status registers

performed in the DSP accelerator share the ALU block. This leads to the minimization of
hardware overhead and the increase of resource utilization. For instance, the high-order
FFT/IFFT and 3-D CP operations can be implemented by sharing the data path with minor

control logic overhead and configuration registers for programmable features.

c. Control unit (CU)

CU block controls address generation units and data path based on commands and control
information configured by an on-chip micro-controller. Fig. [59] shows interface between
the micro-controller (i.e. tCon) and the DSP accelerator. uCon sends a 96-bit (3x32bit)
command by AHB slave interface, and the 96-bit command is divided to high, middle, low
32-bit commands and stored into command FIFO_H, M, _L, respectively. Each FIFO has
32-bit data width and 16 depth; therefore, total 16 x 96-bit commands can be stored in the
FIFOs. When commands are available, CU reads a 96-bit command from FIFO_H,_ M, _L,

at a time, generating control signals for AGU and DPU. Control information in a command

137

is only valid for the command. However, 32-bit control information in the control register
of CU is effective over the DSP accelerator. So the 32-bit control register stores global
control configurations such as interrupt enable, SIMD mode, complex number enable for

FFT, and so on. The 32-bit status register reports overflow and interrupt occurrence.

d. Command memory

Fig.[60]depicts these 96-bit command configurations (CMD[95:0]), 32-bit control (Ctrl[31:0)

and status (Status[31:0]) registers. The command fields in the figure denote as follows.

e OPCODE (3-bit) signifies operation mode. 0: no operation, 1: multiplication, 2:

MAC addition, 3: MAC subtract, 4: CP, 5: FFT, 6: IFFT, 7: FIR

e ADDR_UPDATE (1-bit): When this bit is enabled, three read/write addresses in

AGUs are initialized by base addresses and offset addresses.

e PATH_SEL (2-bit) selects a path to apply the shift operation. 0: operand A, 1:operand
B, 2: MAC

e SHIFT_OP (3-bit) configures the mode of shift operation. O: bypass shifter, 1: logical

right shift, 2: logical left shift, 3: arithmetic right shift, 4: arithmetic left shift
e SHIFT_SIZE (7-bit) shows the magnitude of shift.

e LOOP_SIZE (12-bit) denotes m when the number of points is 2" in FFT/IFFT. This
field also denotes the number of input samples to compute loop size in FIR. Other-

wise, it represents the number of loops in an operation.

e CLEAR_MAC (1-bit) initializes accumulators for MAC

138

e ADDR_MODE (3-bit) selects the address mode. O: none, 1: increment (+INC_SIZE),
2: decrement (-INC_SIZE), 3: cyclic-increment, 4: cyclic-decrement, 5: bit-reverse,

6: FIR

e FFT_STAGE (4-bit) denotes FFT/IFFT stage number in a command. The FFT/IFFT
operation needs m commands to operate m stages in 2" point FFT/IFFT. Therefore,

each command contains a corresponding stage number.

e IN_SEL_A (B) (2-bit) selects two operand sources (A and B) from input sources. 0:
A, 1: B, 2: accumulator. e.g. IN.SEL_A=0 and IN_SEL _B=2 means operand A and

B are connected to input channel A and accumulator output respectively.

e SIGNED_A (B) (4-bit) indicates the sign of each byte in 4x8-bit data (i.e. 32-bit
data). e.g. SIGNED_A=1010 then A[31:24]: signed, A[23:16]: unsigned, A[15:8]:

signed, A[7:0]: unsigned

e INC_SIZE (4-bit) configures address increment/decrement size.

e BA_SEL_A (B) (C) (2-bit) selects base address (BA) for operands (A and B) or
outcome (C). e.g. BA_SEL_A = 0 : select BA register 0 for loading operand A,
BA_SEL_A =1 : select BA register 1 for loading operand A, BA_SEL_A =2 : select

BA register 2 for loading operand A

e OFFSET_ADDR (12-bit) represents 12-bit immediate value for address offset. Ef-
fective address (EA) can be computed as EA = BA + OFFSET_ADDR.
e. Control register

This register involves global configurations to control the accelerator. The field description

of the 32-bit control register shown as follows.

139

e INTR_EN (1-bit) enables interrupt generation. When this is enabled, CU creates a

cycle valid interrupt signal to the micro-controller for interrupt handling.

e READY EN (1-bit) supports interconnect with the micro-controller using hready sig-
nal. 0: DSP accelerator does not reflect its busy/available status on hready_resp 1:

DSP accelerator reflects its busy/available status on hready_resp

e SIMD_MOD (2-bit): O : 8-bit 4-way, 1: 16-bit 2-way, 2: 32-bit 1-way

e COMPLX _EN (1-bit) enables 32-bit complex multiplication. SIMD_MOD must be

1 (16-bit) to perform 4x16-bit real and imaginary multiplications.

e ROUND_EN (1-bit) enables round operation

e SAT_MOD (2-bit) controls saturation mode. O : no saturation 1 : saturation for

normal overflow (set guard bit) 2 : saturation for super-overflow (overflow guard bit)

e OVF_SET (7-bit) sets overflow position. e.g. when OVF_SET=7, data size is equal

to 1-bit sign + 7-bit magnitude.

e CLEAR_OVF (1-bit) clears overflow bit in the status register.

e ROUND _SET (7-bit) denotes round position. e.g. when ROUND _SET =7,
if round_data[7:0]>"01111111" then round_data[8]=1; else round_data[8]=0.

e SIMD_SUM_EN (1-bit) enables the sum of results in 8/16-bit SIMD mode.

e COEFF_SIZE (8-bit) configures the number of coefficients in FIR filter.

f. Status register

This register informs the status of overflow and interrupt to the micro-controller. The field

description of the 32-bit status register is presented as follows.

140

BASE_ADDR_1 START_ADDR_1 END_ADDR_1
32 32 32
BASE_ADDR_2 START_ADDR_2 END_ADDR_2
32 32 32
BASE_ADDR_3 START_ADDR_3 END_ADDR_3
32 32 32

Fig. 61.: 32-bit address registers for the DSP accelerator. ADDR_1,_2,_3 represent ad-

dresses for channel 1,2,3 respectively.

e OVF_ST reflects the status of overflow in an operation. This field can be cleared
by CLEAR_OVEFE. OVF_ST[1] denotes super-overflow which denotes the overflow of

guard-bits. OVF_ST[0] presents normal overflow in the operation.

e INTR_ST shows interrupt status. When micro-controller reads this status, this field

will be reset automatically.

g. Address register and map

Fig.|61| shows address registers for data read and write. There are three address categories,
1,2,3 for memory channel 1,2,3 respectively. Base addresses are used to denote read points
for two operands and write point to write back an execution result. Effective address for
data access is computed as EA = 32-bit BASE_ADDR + 12-bit OFFSET_ADDR. Start
(START_ADDR) and end (END_ADDR) addresses specify begin and end address points
for cyclic addressing mode.

Fig. 62| depicts the address map of the accelerator, showing all register addresses and
external SRAM addresses. DSP_BaseAddress is the base address to access registers in the
DSP accelerator. Sram_1,2,3_BaseAddress stand for the base addresses to access external

SRAMI1,2,3 by AHB bus respectively.

141

Register Address Memory Address

Sram_1 BaseAddress

FIFO_H DSP_BaseAddress + 0x0 (0x80000000)
RAM_L S 1 AddressR
ram_1_AddressRange
FIFO_M DSP_BaseAddress + 0x4 (0x10000)
Sram_2_BaseAddress
FIFO_L DSP_BaseAddress + 0x8 (0x80010000)
C | RAM_2 S 2_AddressR
ontro ram_2_AddressRange
Sl DSP_BaseAddress + 0x10 (0x10000)
Status Sram_3_BaseAddress
Register DSP_BaseAddress + 0x14 AN 3 (0x80060000)

Base Address
Register 1

DSP_BaseAddress + 0x20

Sram_3_ AddressRange
(0x10000)

Base Address
Register 2

DSP_BaseAddress + 0x24

Base Address
Register 3

DSP_BaseAddress + 0x28

Start Address

DSP_BaseAddress + 0x30

Register 1

ST Address DSP_BaseAddress + 0x34
Register 2

Start Address DSP_BaseAddress + 0x38
Register 3

End Address | hop gaseaddress + 0x40
Register 1

End Address DSP_BaseAddress + 0x44
Register 2 -

21 Address DSP_BaseAddress + 0x48
Register 3

Fig. 62.: Address map

142

1 cycle command

read and decode 3-stage pipeline

Operand read Execution Write back

Command
fetch & decode

l Operandread | Execution | Write back

l Operandread | Execulion | Write back

Operand read ‘ Execution Write back

Command
fetch & decode

Command complete I |

Fig. 63.: Pipeline architecture in the DSP accelerator

Operand read Execution Write back

h. Pipeline architecture

The DSP accelerator supports a three-stage pipeline to increase throughput performance.
Fig.|63[shows the pipeline architecture for the proposed DSP accelerator. In the beginning
of operating a command, the accelerator fetches the command and decodes it. This accel-
erator is devised to execute DSP oriented operations such as looping MAC operations or
high-point FFT, so a command usually involves large loops. Thus we implement that the
pipeline occurs only in multiple loops. We call this loop-level pipeline. It also implies that
the accelerator does not support instruction (or command) level pipeline. This makes its
architecture simple, achieving low area and power consumption. Moreover, this can pre-
vent occurring intricate data/control hazard that is not easy to be solved in the AHB-based
read/write architecture. The DSP accelerator does not include any general purpose registers
occupying large area and consuming high energy, so every data (i.e. operands) should be
directly loaded through AHB interface from an external SRAM or memory. Problem is that
when the AHB read or write is not ready, the execution of pipelined loops will be delayed
till the bus is available. This is also not predictable.

Once a command is fetched and decoded, the pipelined execution occurs in a loops

143

Command Operand .]
fetch & decode read(1) Execution(1) | Write back(1)
Operand X]
read(2) Execution(2) | Write back(2)

Operand

Stall Stall read(3)

Execution(3) | Write back(3)

Operand

read(4) Execution(4) | Write back(4)

AHB Ready signal for read ports

(a) AHB read port is not available — pipeline stall

Command Operand X .
fetch & decode read(1) Execution(1) | Write back(1)
Operand X -
read(2) Execution(2) Stall Stall Write back(2)
Operazg;i read Stall Stall Execution(3) | Write back(3)
Operand . .
read(4) Execution(4) | Write back(4)

AHB Ready signal for write port

(b) AHB write port is not available — pipeline stall

Fig. 64.: Pipeline stalls when AHB ready signals for read/write channels are not ready

operation. Fig. |63| depicts the pipelined loops operation when LOOP_SIZE=4. The first
stage 1s operand read. Two operands are loaded through two read AHB channels simul-
taneously per cycle. The execution of an operation is performed in the second stage, and
in the last stage the 32-bit execution result is written back to external memory through the
write AHB channel.

When AHB channel access is not available, pipeline loops operation should be hold
until the bus is ready to access. Fig. 64| shows three cases necessary to stall pipeline. When
one of AHB read channels is not available, the AHB read bus asserts this using the AHB
ready signal. In Fig. [64[a), the AHB ready signal is not enabled, so the pipeline for the
loops operation should be stalled. Once the ready is enabled again, the pipeline stall is

released. The pipeline stall for AHB write ready also occurs in the same way as shown in

Fig. [64(b).

144

4. DSP Accelerator Operations
a. 16-/32-Bit MACs

Fig. [65] illustrates a 16-bit multiplier and accumulator implementation using four 8-bit
multipliers. The DSP accelerator contains eight 8-bit multipliers so four 16-bit multi-
plications can be conducted in a SIMD style. The signed or unsigned multiplication is
configured by SIGNED_A (B) field in each command. In the figure SIGNED_A="0010",
SIGNED_B="0010", so A[15:8] (a0), B[15:8] (b0) are signed bytes, but A[7:0], B[7:0] are
unsigned bytes. Four 8-bit multipliers are used to compute four signed 8-bit multiplica-
tions, alxbl, aOxbl, alxb0, aOxb0 and sum up all 8-bit multiplication results in a 40-bit
result including 8-bit guard bits. If MAC_EN=1 (i.e. MAC is enabled), the 40-bit mul-
tiplication result should be accumulated to the 40-bit accumulator register (accO). When
MAC_EN=0, the 40-bit accO stores the 40-bit multiplication result without accumulation.
A 32-bit multiplier can be implemented in the same way as shown in Fig.[66] Four 16-
bit multipliers can construct a 32-bit multiplier, and the signed or unsigned operation is also
controlled by the SIGNED_A (B) field. The result of 80-bit multiplication are accumulated
into 80-bit accumulator (acc) with 16-bit guard bits. The accumulator result can be satu-
rated, rounded, or shifted according to the configurations of command and control register

fields such as SHIFT_OP, SHIFT _SIZE, ROUND_EN, ROUND_SET, and SAT_MOD.

b. 8-/16-/32-Bit Cross Product

The DSP accelerator provides 8-/16-/32-bit 3 dimensional CP operations. These operations
basically utilize 8-/16-/32-bit multipliers to compute equation (4.2)). In Fig. [67((a) showing
8-bit 3-D CP, 32-bit operand A and B contain 8-bit 3-D vector input A,[31:8]=(az,—2,
as,—1, azy) and B, [31:8]=(b3;,_2, b3,—1, b3yn), respectively, where n denotes the index of a

sample vector. LSB bytes in A and B (i.e. A,[7:0], B,[7:0]) are filled with 0. 8-bit vector

145

A[15:0]: 16-bit | S-bit | 8-bit

SIGNED_A[1:0] = “10”
a0 al

X B[15:0] : 16-bit 8-bit | 8-bit SIGNED_B[1:0] = “10”

al [X | b1 8bit mult 0

a0 X | b1 8bit mult 1
al | X | bO 8bit mult 2
a0 | X | b0 8bit mult 3

40-bit result (8-bit guard)

MAC_EN=1 D Signed data
40-bit accO (8-bit guard)

Fig. 65.: 16-bit multiplication and 40-bit accumulator register for 16-bit MAC

146

32-bit operand A 16bit | 16bit SIGNED_A[3:0] = “1000”
a0 al

x 32-bitoperand B | 16bit | 16bit
b0 bl

SIGNED_B[3:0] = “1000”

al | X | b1 4 X 8bit mult 0

a0 X | b1 4 x 8bit muit 1
al [X | bO 4 x 8bit mult 2
a0 X | bO 4 x 8bit mult 3

80-bit result (16-bit guard)

E Signed data
MAC_EN=1

80-bit acc (16-bit guard)

Fig. 66.: 32-bit multiplication and 80-bit accumulator register for 32-bit MAC

8-bit vector cross product
32-bit

A | {a1,a2,a3,00} | {a4,a5,a6,00} | {a7,a8,a9,00}

B | {b1,b2,b3,00} | {a4,b5,b6,00} | {b7,b8,b9,00}

A4 \ 4 v
C cl,c2,c3 c4,c5,c6 c7,c8,c9
1 cycle for 8-bit 3D vector cross product

* a,, by, c, : 8-bit

* 6 8-bit multiplications per cycle

C,=A;xB; =(a,bs-azb,, azb,-a;b;, a;b,-a,b,)

Cn=AnXBn= (a3n-21a3n-11a3n)x(b3n-2! b3n-1lb3n)l
(a) 8-bit 3-D cross product

16-bit vector cross product
32-bit

a | {21, | {a3, | {a4, | {a6, | {a7, | {a9,
a2} | 00} | a5} | 00} | a8} | 00}

g | {b1, | {b3, | {b4, | {b6, | {b7, | {b9,
b2} | 00} | bS5} | 00} | b8} | 00}

Y \ 4 4 \ 4 \ 4
C c3 c2,c1 c6 c5,c4 c9 c8,c7 *a,b,, c,: 16-bit
2 cycles for a 16-bit 3D vector cross product

*6 16-bit multiplications require 2 cycles

C,=A,xB, =(a,bs-asb,, asb,-a,b;, a,b,-a,b,)
(b) 16-bit 3-D cross product

32-bit vector cross product
32-bit

al a2 a3 al a2 a3 a4 a5

b2 bl bl b3 b3 b2 b5

M s Mg s g

al*b2 a2*bl a3*bl al1*b3 a2*b3 a3*b2

' ' ‘ * an, by, ¢, : 32-bit

c3 c2 cl

b4

6 cycles per 32-bit vector cross product
*6 32-bit multiplications require 6 cycles

C,=A,xB, =(a,bs-asb,, asb,-a,b;, a;b,-a,b,)

(c) 32-bit 3-D cross product

Fig. 67.: 8-/16-/32-bit cross product operations

147

148

output, C,, = (cy, ¢, c3) = (axb3 — azby, azby —a1b3, ayby — axby) can be computed using
6 8-bit multiplications. The DSP supports max 8 8-bit multiplications per cycle, therefore
the execution of 8-bit 3-D CP takes only 1 cycle. The 16-bit 3-D CPs are illustrated in
Fig. [67(b). It requires two cycles to calculate 6 16-bit multiplications. In the first cycle,
two 16-bit elements in a vector, a;, ap (b1, by) are loaded into a 32-bit operand A (B).
The loaded elements (a;, a», by, by) are used to compute ¢3 = a1b, — arb; and temporarily
stored in an internal register to reuse them in the next cycle. The rest elements as, b3 are
loaded in the next cycle and used along with ay, a;, by, b, stored in the temporary register to
compute ¢ = axb3 —azby, c» = azb; — a1 bs. Fig.[67)c) shows the 32-bit 3-D CP operation.
It demands 6 32-bit multiplications, taking 6 cycles since the DSP accelerator can provide
a 32-bit multiplication per cycle. In the first cycle, 32-bit aj, b, are loaded and multiplied.
The result of the 32-bit multiplication is stored in the 80-bit accumulator register to reuse it
for computing c3. In the next cycle, 32-bit ay, b are loaded, multiplied, and accumulated

into the accumulator to calculate c3 = a1b, —azb;. In the same way, c;, ¢ can be attained.

c. FIR Operation

The DSP accelerator supports 8-/16-/32 bit FIR operations. We propose a novel fast FIR
scheme using diagonal accumulation. Fig.[68(a) shows 8-bit FIR filter operation using 16
8-bit multipliers and 7 20-bit diagonal accumulators (ACyp-AC7) built in the data path. The
data path consists of 16 8-bit multipliers and 80-bit main and 60-bit auxiliary accumulators.
The 16 8-bit multipliers can be reformed as 4 16-bit multipliers or a 32-bit multiplier (see
the data path part and 16-/32-bit MACs). The results of 8-bit multiplications (P; x H;, i=0,
.., 3) are accumulated in the diagonal direction in the 8-bit FIR filter operation. ACy-AC3
are implemented by the 80-bit main accumulator. AC4, ACs, ACg are built on the 60-bit
auxiliary accumulator for the 8-bit FIR filter operation. The aim of the diagonal accumu-

lators is to maximize the utilization of multipliers in the data path. When we exploit the

149

Data path Po=P[31:24]

Ho H; Ho Hs P,=P[23:16]
P,=P[15:8]
PO o o o P3:P[70]
rollolfoffomr
Accumulator
8-bit mult
Pl A d \ 4 L 4
ACy 0—@ 1»@ 1»@ 1@
P2 A d \ 4 L 4
ool
P3 A d \ 4 L 4
ororolo
AC3 AC4 A C5 A CB

ALU of DSP accelerator

(a) 8-bit FIR filter using the data path

Data path
Ho Hi Po=P[31:16]
P,=P[15:0]
Po * AC : 40-bit
Accumulator
4x 4x
P, 16-bit mult |~ 16-bit mult Data path
4x Ax H P, H: 32-bit
16-bit mult _#16-bit mult =) ﬁgcﬁ?n(ﬁgttor
8bit
AC, AC; AC 32-bit mult
(b) 16-bit FIR filter using (c) 32-bit FIR filter using
the data path the data path

Fig. 68.: 8-/16-/32-bit FIR filter operations implemented by diagonal accumulators and

shared multipliers

150

diagonal accumulators, we can keep using all 16 8-bit multipliers at each cycle. This leads
to the maximum utilization of resources in data path, providing significant improvement in
throughput performance.

In Fig. [68|(b), 4 16-bit multiplications and 3 40-bit diagonal accumulators ACp, AC},
AC, are used to implement the 16-bit FIR operation. ACy, AC; are built on the 80-bit
main accumulator, and AC; is stored in the 60-bit auxiliary accumulator. In the same way,
32-bit FIR filter can be implemented using a 32-bit multiplication and a 80-bit diagonal
accumulator (AC) built on the 80-bit main accumulator.

Here, we present how the diagonal accumulators accelerate the FIR filter operations.
We explain this scheme using a 12t/ order 8-bit FIR filter example as shown in Fig. [69]
The filter consists of 13 8-bit coefficients (hO-h12), 16 8-bit inputs (p0-p15), and 16+12
8-bit outputs (y0-y27). Fig. [69(a) shows coefficients, inputs and outputs for a 8-bit FIR
filter operation at cyclel-16 for computing 28 8-bit outputs, y0-y27. For instance, when
the DSP accelerator loads 4 8-bit coefficients (hO-h3), 4 8-bit inputs (p0-p3) through 32-
bit operand channels, the coefficients and inputs are multiplied and accumulated in the
diagonal direction, yielding 4 8-bit outputs (y0-y3 in the black box) at cyclel. The next
32-bit (i.e. 4 8-bit) outputs, y4-y7, are obtained at cycle3 from the diagonal accumulators.
In this way, the last 32-bit outputs, y24-y27 can be computed at cyclel6. In this operation,
all 16 8-bit multipliers are used to compute 16 8-bit multiplications at each cycle. This
increases performance in throughput. Total execution cycles in the 8-bit FIR operation
using the diagonal accumulators can be calculated by the number of sample words (32-bit)
x the number of coefficient words (32-bit) = 4x4 = 16 cycles. Throughput is 28 bytes / 16
cycles = 1.75 bytes per cycle. We note that samples and coefficients must be 32-bit aligned
data in this design, so if not aligned in a 32-bit word, they must be padded by zeros.

The diagonal accumulation is illustrated in Fig.[69(b). In this figure, a small rectan-

gular box denotes a 8-bit multiplication of input and coefficient (i.e. p*h) and a large box

151

cyclel cycle3 cycle 6 cycle 10
hOh1 h2h3 h4h5 h6 h7 h8h9 h10 h11 h12000
pOpl p2p3 pOpl p2p3 pOpl p2p3 pOpl p2p3
yOyly2y3 yay5y6y7 y8y9yl0yil y12y13 y14 y15
cycle 2 cycle5 cycle9 cycle 13
hOh1 h2 h3 h4h5 h6 h7 h8h9 h10 h11 h12000
p4p5 p6 p7 p4p5 pb6 p7 p4p5 p6p7 4p5 p6 p7
cycled cycle 8 cycle 12 cycle 15
hOh1 h2h3 h4h5 h6 h7 h8h9 h10 h11 h12000
p8p9 pl0 pll p8p9 pl10 pll p8p9 pl0 pll 8p9 p10 pll
0
cycle 7 cycle 11 cycle 14 cycle 16
hOh1 h2h3 h4h5 h6 h7 h8h9 h10 h11 h12000
p12 p13 p14 p15 |p12p13 pl4pl5 ([p12p13 pl4 pl5 ilz El?, i14 ilS

(a) Coefficients, inputs and outputs for a 8-bit FIR filter
operation at each cycle

6
&5

OO ONO WO RO O
~poh1 poh2 poh3 poha pohs pohe . poh7 _Jpoh

Tk

y8 y10; yll
lpohO 8 _poho . pohio pohll |poh12

p1h0 _pih1 pih2 plh3 [pihd4 pih5 _-pihé _-pih7 -pih8 _~plho pihl0 plhil (p1h12
p2h0 p2hl p2h2 p2h3 pzha pZh5 p2he pzh7 P2h8 pzh9 p2h10 p2hl1l __|p2h12
3h0 p3hi p3h2 p3h3 3h4 _.p3h5 _-p3h6__p3h7 3h8 p3h9 p3h10 _p3h1l p3h12
paho p4hl p4h2 p4h3 p4hd pahs 4h6 pah7 p4h8 p4h9 4h10 pdhll [p4hl2
b5ho" psh1 _pSh2 _pSH3 __|pSHA _.pShS ﬁe p5h7 |psh8 p5h9ﬁ10 pSHI1 _|pshi?

p6h0 p6hl p6h2 p6h3 p6ha p6ns 6 pén7 6h8 p6h9 10 p7hil |p7h12
7h0 __p7hl __p7h2 __ p7h3 7h4 p7h5 p7h6 _p7h7 7h8 _p7h9 p7hi0 pshll [p8hi2
8h0 _ps8hl _p8h2 ps8h3 [08hd4 p8h5 psh6 p8h7 8h8 p8h9 p8hi0 pShil |p8hi2

Esho po9hl pShz poSh3 [poSh4 p9h56 p9h7 9h8 p9h9 c12 10 p9hii [p9h12
p10R0 p10h1 pl0h2 pi0h3 [p10h4 plOk 6 plOh7 [p10h8 pi0h Dhi0 plOW1l |p10h12
11h0 plihl plih2 pi1h3~ |plihd” plahS plih6 pllh7 [pllh8 plihS piihi0 plihil |plahi2
12h0 pi12hl pl2h2 pi2h3 [pl2h4 pl2h5 pl2h6 p12h7 [p12h8 pi12h9 pi2h10 pi2hil [p12hi2

13h0 pl13h1 pi3h2 pl3h3 |pi3h4 pl13h5 p13h6 pl3h7 [pl3h8 pi3h9 pl3h10 pi3hil [p13h12 C16
14h0" pl4hl pldah2 pldh3" |p14h4 plah5 plah6 plah7 [p14h8 plah9 plah10 pléhll |pl4h12
15h0° pi15h1" pi5h2 pi15h3 [p15h4 pl15h5 pl15h6 pl5h7 15h8 p15h9 p15h10 p15h11l [p15hi2

ACo~AC; AC,4~ACs c14

(b) Diagonal accumulation in the 8-bit FIR filter operation

Fig. 69.: 12th order 8-bit FIR (13 coefficients) with 16 pixels (8-bit data), (b) illustrates the

proposed diagonal accumulation scheme accelerating the 8-bit FIR operation.

152

labeled by C1-C16 (i.e. cyclel-cyclel6) including the 16 small boxes presents the execu-
tion of 16 8-bit multiplications in the data path at each cycle. ACy-ACg¢ denotes the 7 20-bit

diagonal accumulators. In the first cycle (C1), the outputs can by calculated by

y0 =ACy = p0*h0
vl =AC; = pl«hO+ pOxhl
V2 =AC, = p2*xh0+ plxhl + pOxh2
y3=AC3 = p3xh0+ p2xhl+ plxh2+ pOxh3
The next outputs, y4-y7, can be obtained by the diagonal accumulators, AC4, ACs, ACeg,

ACy at C3 (cycle3), and the accumulations are shown as the diagonal lines in the figure as

follows:

v4 =ACy = p4+xh0+ p3*xhl + p2+xh2+ pl xh3 + p0 x h4

vS =ACs = pS+h0+ pdxhl + p3xh2+ p2xh3+ pl xhd+ p0xhS

y6 = ACg = p6 x h0+ pSxhl + p4xh2+ p3+«h3+ p2xhd + pl xh5+ p0*xh6

VI =ACy = pT+h0+ p6xhl + pSxh2+ p4d«h3+ p3xhd+ p2xh5+ pl «h6+ p0xh7

In this scheme, 7 20-bit accumulators (ACy-ACg) are used to prevent overwriting FIR re-
sults into the non-available accumulators.

Fig. 70| shows the 16-bit FIR filter operation using 3 40-bit diagonal accumulators.
This example shows the 6th order 16-bit FIR filter operation that has 7 16-bit coefficients
and 8 half-word inputs (16-bit data), yielding 14 16-bit outputs, yO-y13. The mechanism of
diagonal accumulation is the same as that of the 8-bit FIR filtering process. In Fig.[70(b),
40-bit accumulators, ACy, ACy, AC,, accumulate the results of 16-bit multiplication (a
16-bit coefficient x a 16-bit input) in the diagonal directions. Like the 8-bit FIR, all 4 16-
bit multipliers are utilized to calculate 4 16-bit multiplications by means of the diagonal

accumulators at each cycle. This also maximizes the utilization of multipliers. In this

153

cycle10

h4h5
p2p3 p2p3 p2p3 p2p3
hOh1 cycled |[h2h3 cycle8 h4h5 cyclel2 |h60
p4p5 p4p5 p4p5 p4p5
hOh1 cycle7 |[h2h3 cyclell |h4h5 cycleld |h60
p6p7 p6p7 p6p7 p6p7

(a) Coefficients, inputs and outputs for a 16-bit FIR filter
operation at each cycle

A" @ @ @ @ @

pOhO pOhl pOh2 p0Oh3 pOh4 p0h5 pOh6
p1h0 plhl plh2 p1h3 pih4 p1h5 p1h6
p2h0 p2hl p2h2 p2h3 p2h4 p2h5 p2h6
p3h0 p3h1 p3h2 p3h3 p3h4 p3h5 p3h6
p4h0 p4nl p4h2 p4h3 p4h4 p4h5 p4h6
p5h0 p5hl p5h2 p5h3 p5h4 p5h5 p5h6
p6h0 p6hl p6h2 p6h3 p6h4 p6h5 p6h6
p7h0 p7hil p7h2 p7h3 p7h4 p7h5 p7h6

AC,AC; | AC,
(b) Diagonal accumulation in the 16-bit FIR filter operation

Fig. 70.: 6th order 16-bit FIR (7 coefficients) with 8 half-words (16-bit data), (b) illustrates

the proposed diagonal accumulation scheme accelerating the 16-bit FIR operation.

ho cyclel |h1 cycle3 h2 cycle6 |h3 cycle10 [h4 cycle15 |h5 cycle21 |h6
pO _po ﬁpo pO _PO pO
ho cycle2 |hl cycle5 h2 cycle9 |[h3 cycle14 [h4 cycle20 |h5 cycle27 |h6
pl pl pl pl pl pl
ho cycled |hl cycle8 h2 cycle13 |h3 cyclel9 [h4 cycle26 |[h5 cycle34 |h6
2 p2 2 p2 p2 p2
ho cycle7 |h1 cycle12 h2 cycle18 |h3 cycle25 [h4 cycle33 |h5 cycle40 |h6
p3 p3 3 p3 p3 p3 p3
ho cycle11|h1 cyclel7 h2 cycle24 |h3 cycle32 [h4 cycle39 |h5 cycle45 [h6
4 p4 4 4 p4 p4 p4
ho cycle 16 |h1 cycle23 h2 cycle31 |h3 cycle38 [h4 cycle44 |h5 cycle49 |h6
5 p5 5 5 p5 pS pS
ho cycle 22|h1 cycle30 h2 cycle37 h3 cycle43 [h4 cycle48 |h5 cycle52 [h6
6 p6 6 6 p6 p6 p6
ho cycle 29|h1 cycle36 h2 cycle42 |h3 cycled? [ha cycle51 |h5 cycle54 |h6
7 p7 7 7 p7 p7 p7

(a) Coefficients, inputs and outputs for a 16-bit FIR filter
operation at each cycle

(0)

®)

vyl y2 y4 y5, y6
POhO pOh1 pOh2 pOh3 pOh4 pOh5 pOh6 j y7
1h0 plhl p1h2 p1h3 plh4 p1h5 p1h6 v8
p2h0 2h1 p2h2 p2h3 p2h4 p2h5 p2h6 y9
3h0 3h1 p3h2 p3h3 p3h4 p3h5 p3h6 y10
4h0 4h1 p4h2 p4h3 p4hd p4h5 p4h6 y11
5h0 Sh1 5h2 pSh3 p5h4 p5h5 p5h6 \ y12
6h0 6h1 p6h?2 p6h3 p6h4 p6h5 p6h6 V2l
7h0 p7h1 p7h2 p7h3 p7h4 p7h5 p7h6
AC

(b) Diagonal accumulation in the 16-bit FIR filter operation

cycle28

154

Fig. 71.: 6th order 32-bit FIR (13 coefficients) with 8 words (32-bit data), (b) illustrates the

proposed diagonal accumulation scheme accelerating the 32-bit FIR operation.

155

example, total execution cycles can be computed by total cycles = the number of sample
words x the number of coefficient words = 4x4 = 16 cycles. Throughput is 28 bytes / 16
cycles = 1.75 bytes per cycle.

Fig.[/1|shows the 32-bit FIR filter operation using a 80-bit diagonal accumulator. The
6th order 32-bit FIR filter operation that has 7 32-bit coefficients and 8 word inputs (32-bit
data) is illustrated in the figure. In this example, the operation yields 14 word outputs, y0-
y13. This operation does not utilize the 60-bit supplement accumulator, accumulating the
results of multiplication of two 32-bit operands in the 80-bit main accumulator (AC). The
efficiency of the 32-bit FIR filter operation is inferior to that of the 8-/16-bit FIR filters due
to less parallel accumulation performed by the auxiliary accumulators in the 8-/16-bit FIR
mode. Total execution cycles is calculated in the same way: total cycles = the number of
sample words x the number of coefficient words = 8x7 = 56 cycles. Throughput is 56 bytes

/ 56 cycles = 1 bytes per cycle.

d. FFT Operation

The interconnected butterflies of an 8-point radix-2 DIT FFT is illustrated in Fig. The
inputs to the FFT are indexed in bit-reversed order (0, 4, 2, 6, 1, 5, 3, 7) and the outputs
are indexed in sequential order (0, 1, 2, 3, 4, 5, 6, 7). Computation of a radix-2 DIT
FFT requires the input vector to be in bit-reversed order, and generates an output vector
in sequential order. The DSP accelerator supports this bit-reverse addressing mode in the
command register (ADDR_MODE=5).

Pipelined execution considerably improves throughput when loop size is large. Fig.
shows an example of pipeline loops for 8-point radix-2 DIT FFT. When the number of
points is n = 2" in FFT, the number of stages is log,(n) = m, and 2" /2 butterfly opera-
tions are required. Since a butterfly operation performs a complex multiplication and two

complex addition, the complexity of radix-2 DIT FFT involves n/2 x logy(n) =n/2 xm

156

Reversed Sequential
order Stagel Stage2 Stage3 order

x(0)

x(n

%(2)

X(3)

x{4)

x(5)

Fig. 72.: The interconnected butterflies of an 8-point radix-2 DIT FFT

157

Command fft_stage=0
fetch & decode
A X[4] X[0] X[6) X[2) X[5) X[1) X[7) X[3)
Operand read
B w[o] w[o] w[o] wio]
Execusion X[4]*W[0) Y[olY[1] X[6]*W[0) Y[2]Y[3] X[s]'W[0] Y4IY[5] X[7rwio) Yielv(r
Write back C Y[0 Y[Y2 Y3 Y4 YI5] Yie) | Ayl l
Next recececscccccceeas PPlas
S command eecccccccascnssnanseee==" ceecececcceae"
.- (next stage)
Command fft_stage=1
fetch & decode
A X[2] X[0] X[3] X[1] X[6] X[4) X(7) X[5]
Operand read
B wio] wi2) wio] wi2]
Execusion X[2]*'W[0] Y[0)Y[2) X[3'W[2) YY[3] X[6]*W[0] Y[4]v[6] X[71rw[2) Y[SIY[7]
Write back C (o) vi2 Y[i3] Yi4 (6] Yis) | Ayl l
Next P
ceseseseececcccccccccaaaan., o Pl
..-==% command cecccecccscsssssss=""" cecacase="
.=" (next stage)
Command fft_stage=2 : .
fetch & decode — 8-point FFT: 12 x 3 FFT
A X[4) X[0) X(5) X[1) X[6) X[2) X[7) X[3] stages = 36 cycles
Operand read
B w[o) w1 wi2) W3] W
N
)
Execusion X[41*W[0] Y[0]Y[4] X[5]*W[1] Y[1]Y[5) X[61*W[2] Y[2]Y[6] X[7rW(3] YBIVI7] *
-
Write back C Y[0] Yi4] Y[YI5) Y2 Y(6] i3] | AUl ‘*

Fig. 73.: An example of pipelined execution for 8-point FFT operation. A FFT stage

operation can be performed by a command. The 8-point FFT has 3 FFT stages (2*98¢=n

points)

158

Table XXV.: Execution cycles of the DSP accelerator operations, Crp is command fetch
and decode cycles, P,,,;maqr 1S pipeline delay cycles in normal mode not including FFT, Prrr
is pipeline delay cycles in FFT mode. Cgp=1 cycle, P,,,ma=2 cycles, Prrr=3 cycles in

the DSP accelerator.

Operation Cycles

8-/16-/32-bit MAC | Cpgp + Pormar + #0f loops

8-bit CP Crp + Puormar + 1 (cycles per a 8-bit CP) x #of loops
16-bit CP Crp + Puormar + 2 (cycles per a 16-bit CP) x #of loops
32-bit CP Crp + Puormar + 6 (cycles per a 32-bit CP) x #of loops
8-/16-/32-bit FIR Crp + Pormar + #of sample words x # of coefficient words
32-bit complex FFT | (Cgp + Prpr + #of points) x #of FFT stages

complex multiplications, and n x log,(n) = n x m complex additions. In the FFT function,
each stage can be conducted by a command. Therefore, 2"-point radix-2 DIT FFT requires
m commands. The pipeline execution occurs in a stage for running 2™ /2 butterfly opera-
tion loops. In Fig.[73|the 8-point FFT consists of 3 FFT stages where each stage conducts 4
butterfly operations. The execution cycles in each stage is 1 for command fetch and decode
+ 3 for pipeline latency + 8 for 4 butterfly executions = 12 cycles. Hence, the total execu-
tion cycles taken in the 8-point FFT is 12 for cycles in a stage x 3 for the number of FFT
stages = 36 cycles. We note that the commands are individually performed, not pipelined,
so when a command is completed, the next command can be fetched and executed. In the
command structure, the number of FFT stages is configured by the LOOP_SIZE field, and

a corresponding stage number in a command is set by the FFT_STAGE field.

5. Experiment Results

Table presents the execution time of the DSP accelerator operations. Delay cycles
in pipeline took normally 2 cycles except FFT since the FFT operation required one more

delay cycle to execute addition/subtraction from a complex input to the complex multipli-

159

x 10
T T 35 T T
—+—8-bit CP —+—8-bit CP
—&—16-bit CP Ao s " " —2—16-bit CP |4
2 ——32bitcP|| _ £ —o—32-bit CP
S 254 1
3
'1 5 L E &
3 T 2
-4 T 2
(6] 1k 2— 15F
j=]
L 3 F
EAp
0.5 -
0.5¢
— T
0 1000 2000 3000 a000 % 1000 2000 3000 2000
Loops Loops
(a) Execution cycles in cross product (CP) (b) Throughput in cross product (CP)

Fig. 74.: Results of execution cycles and throughput in cross product

cation (the other complex input * a twiddle factor).

The execution cycles and throughput performance of 8-/16-/32-bit CPs are shown in
Fig. For instance, 4095 loops 3D CP took 4098, 8193, 24573 cycles at 8-/16-/32-bit
CP operations respectively. The 4095 is the maximum number of loop size in the pro-
posed design but can be expandable with the negligible overhead of field bit extension
(e.g. extend 12-bit LOOP_SIZE to 16-bit LOOP_SIZE). Throughput of 8-/16-bit CPs were
1.5 times greater than that of 32-bit CP in performance. This was because 8-/16-bit CPs
read multiple operands (3 operands in 8-bit, 2 operands in 16-bit mode) at once per each
operand channel, executing multiple 8-/16-bit multiplications in parallel. This technique
was similarly exploited to accelerate the 8-/16-bit FIR operations.

Fig.|75| shows the results of 8-/16-/32-bit FIR filter operations. This experiment was
performed on the 12¢h order FIR filter with varying the number of input samples and data
width (8-/16-/32-bit) of the samples. In Fig. [75[a), 8-/16-/32-bit FIR operations with 128
samples took 131, 451, 1667 cycles respectively. The figure also shows the comparison of

the FIR filter performance with 12tk order 32-bit FIR filter (general purpose) on TI-67x

160

x10 5
5 2 —+—8-bit FIR
—&—16-bit FIR
. L —e—32-bit FIR
4r @15 -
o
) 4
93 < &
2 E
7] = —
> 3 E: S
© £
2r 2
2 .
16-b'\LF\/R~’ * F o5
1t P . g
e -bit FIR
F , —— . &bitER .
wle- T . J o,
0 1000 2000 3000 4000 0 1000 2000 3000 4000
Samples Samples
(a) Execution cycles in FIR (b) Throughput in FIR

Fig. 75.: Results of execution cycles and throughput in FIR and comparison with 12¢h order

32-bit FIR filter on TI-67x and TI-62x DSPs

and TI-62x DSPs [126,127]. The 32-bit FIR performance of the DSP accelerator was close
to that of TI-62x. The 8-/16-bit FIRs took much less execution cycles than the 32-bit FIR
filters (32-bit FIR, TI-62x, TI-67x). We will discuss this reason in the throughput result.

The throughput performance of the FIR operations is show in Fig. [75|b). As we dis-
cussed in the 8-/16-bit CPs, the 8-bit FIR operation yielded around three and two times
more outputs per cycle than 16-bit and 32-bit FIRs respectively. The 16-bit FIR was also
approximately twice better than the 32-bit FIR in throughput. Since multiple operands (4
operands in 8-bit, 2 operands in 16-bit) per each read channel were loaded, multiplied, and
diagonally accumulated in parallel, the utilization of multipliers could be maximized as we
discussed. Hence, the throughput could be considerably improved.

Fig.|76|shows the comparison of execution cycles between the proposed DSP acceler-
ator and other processing components in radix-2 Complex DIT FFT. The DSP accelerator
provided a superior performance in execution cycles than CPU [128] and DSPs (TI-67x

and TI-62x) that support more programmable functions. However, it denoted a less per-

161

x 10

0 200 400 600 800 1000
Points

Fig. 76.: Comparison of execution cycles in FFT

Table XXVI.: Comparison of the 256-point complex FFT performance (radix-2) to other

DSPs
DSP accelerator | ConnX D2 | TI-55x
Cycles 2080 3740 4786
Normalized cycles against DSP accelerator | 1 1.8 (+44%) | 2.3 (+57%)

formance than TI FFT hardware accelerator (HWAFFT) [128]] because HWAFFT is more
optimized to compute FFT in hardware. Table. compares the 256-point radix-2
FFT performance of the DSP accelerator to ConnX D2 [129] and TI-55x [130]. The pro-
posed accelerator could achieve 44% and 130% reduction in execution cycles, compared to
ConnX D2 and TI-55x in the FFT operation respectively.

We also examined the area and power consumption of the accelerator. Table. XX VT
compares the synthesis result of the DSP accelerator to the result of ConnX D2. We synthe-

sized the DSP accelerator using Synopsys Design Compiler on TSMC 65nm-GP process

162

Ao uns2r BILwN 14

S)[NSaI qepIeA oY) Yim uosLredwiod Aq pawtoyred sem preoq oyl

uo sy[nsai pajerado 9y JO UONBOYLIDA Y], "PIe0q VO SO9TIN U0 I0IeIa[ad0e S posodoid oy jo uonensuowd(q :°// ‘31

) xyo yns= gVILYINEIE

=i
o wr ¢ (pazijew.ou) v, UI4 Jo 'bayy yo-3nd
__ T wq it wZT | WId ssedmol Jo 1opio
FFmr At e T T Vo
i H S}
_ R = oo0r vo!i ot uilod 95Z 19-971 siaquinu ajdwes
e € : ¥Id pue 144 1593 uonesado
O e = T b o %
u il FE1 1Rz o m W.
............ bo---f-{ze B
senepene penoee €0 ;
WOdd K30 yns=s g5g+si0poueN 144 (99 dd A x30 ynse JSQ+=onouEy W4 o : T .w..... “1Ee Aﬁmn+u_‘._v
" ; € xj01d4
> + > é %30 YNS21 45 +2I000UEN |4 x
(dsa+>on) (dsa+on) %
A jo 144 AUId
X E]
!
(qepen) € (qepen) X
A Jo 144 AId 6
ug Aousnbaiy (x) jeuis induy|
>é >6 = e X (qenew)
ug Aauznba 00Z as_‘wo_ 0 00% -9 9% v T X Jo 144
e
- i ze o ¥
0=
I e ze g
0 w. 570
A 1 o & €0
SE0
| -1 Fr1irnze
T m 0 Xjoynsas gy LvIn 144

163

Table XXVII.: Synthesis results using TSMC 65GS technology

DSP accelerator | ConnX D2
Max. Frequency (MHz) 333 605
Area (mm?) 0.167 0.18
Power consumption (mW/MHz) | 0.037 0.052

technology with 20% default switching activities. It consumed 12.35mW and 0.167mm?
in power and area at 333MHz respectively. We also demonstrated it on ML605 FPGA
board [[131]] at 25MHz with 3% LUT used.

Fig. [77] illustrates this demonstration on the board. For the verification of the DSP
accelerator logic, we generated reference data using Matlab, compared them with the re-
sults obtained on the FPGA board. For instance, we generated input x=0.3cos(2z fin/N) +
0.3sin(2x fon/N) +0.3cos(27 f3n/N) with 16-bit 256 points samples where f1=16, f,=64,
f3=100, N=256, n=[0, ..., N-1] for the demonstration of FIR and FFT operations. The
low-pass FIR filter was configured by 12th order and 1/4 normalized cut-off frequency.
In the first step we programmed and configured commands and control register fields for
computing FFT and FIR via micro-controller (4C) and AHB bus. In the second step the
DSP accelerator loaded commands when they were available in FIFOs. The input samples
(x) were transformed to X, frequency domain information of x, by the FFT operation. In
the figure, the FFT result (X) shows three frequency components at f1=16, f,=64, f3=100.
Input samples (x) were filtered by the low-pass FIR filter with the 1/4 cut-off frequency.
The result of FIR was denoted as y. In the last step, the FIR result (y) was transformed to Y
by FFT to show the FIR results in frequency domain. The Y contained only low-frequency

bin at f1=16 due to the low-pass filtering.

164

C. Conclusions

This section presents data processing units for low-power embedded SoCs. The first de-
sign introduces a radiation sensor system and its implementation. The design can compress
massive sensor data, while providing high throughput, low-power, and significant compres-
sion rate. The proposed architecture is implemented with a router design for on-chip/wafer
network. In the synthesis result, the data processing logic consumes 112.17mW @ 1GHz,
and router consumes 79mW @ 1GHz with 128-bit data width.

In the second design we propose a DSP accelerator for sensor hub SoCs. The DSP ac-
celerator provides both low-power consumption and programmable functionality, enabling
energy-efficient digital signal processing. The DSP accelerator does not include general
purpose registers demanding large area and power. The DSP accelerator loads and stores
data from and to external SRAM through AHB bus for low area and power consump-
tion. We also propose FFT, CP, FIR accelerating schemes using a pipeline architecture and
auxiliary accumulators for high throughput and parallel execution. The design consumed
12.35mW power on 0.167mm? area at 333MHz. We also demonstrated it on ML605 FPGA
board for verification. The result shows the proposed DSP accelerator outperforms general
purpose DSPs in throughput performance, close to that of a hardware accelerator with pro-

grammable control and low area and power consumption.

165

CHAPTER V

CONCLUSIONS
Reducing system-on-chip power consumption has become a critical challenge for the nan-
otechnology era. Problems relating to power consumption are not only applicable to the
battery powered, handheld and mobile applications where the power influences designs not
only in terms of time to market, but also for cost and reliability.

We address three solutions for the low-power SoC design. First, this thesis presents a
low-power embedded LDPC-H.264 JSCD architecture to lower the baseband energy con-
sumption of a channel decoder using joint source decoding and DVFS. With the tremendous
increase in the capabilities of portable multimedia devices and services, the demand to im-
prove the energy efficiency and error robustness of such systems motivates the interest in
low-power joint source-channel decoding with UEP. A novel configuration search scheme
based on UEP to trade-off power and performance on power sensitive mobile devices is also
presented. The proposed low-power MIMO and H.264 video joint detector/decoder design
using the proposed scheme minimizes energy for portable, wireless embedded systems.

Second, we address a link-level QoS methodology using UEP for the low-power NoC
and low latency on-chip network designs for MPSoCs. The QoS NoC study has been
extended to develop minimum latency on-chip networks. We also contribute two NoC de-
signs, WaveSync, an low-latency focused network-on-chip architecture for GALS designs
and the SDPR scheme utilizing path diversity present in typical mesh topology network-
on-chips. SDPR is akin to having a higher link width but without the significant hardware
overhead associated with simple bus width scaling.

Third, we explore data processing accelerator designs for embedded SoCs. The de-
mand for embedded SoCs containing sensors for sensing and acceleration has been in-

creased significantly. We propose a solution for a data processing and control logic design

166

that initiates a new sensor SoC system for radiation detection generating data at or above
Peta-bits-per-second level. We also contribute to develop a DSP accelerator supporting
DSP centric operations such as FFT, FIR, and 3-D cross product operations for low-power
and high performance embedded SoCs. These all give benefits on SoC design for low-
power sensor network systems.

Looking to the future, there are significant opportunities in emerging portable and
sensor networked systems and hardware support for the systems. Leveraging the expertise
in the previous established works will open a new challenge and need innovative idea to

redesign the entire system. The future research directions can include:

e Study of our JSCD schemes with run-time configuration searching approach in real

world environment

e Exploration of path diversity on new routing schemes for on-chip network, minimiz-

ing traversal latency along with reliability variation.

e Design of ultra low-power DSP accelerator for battery restricted sensor systems such

as solar powered nano-sensor networks.

[1]

167

REFERENCES

International Technology Roadmap for Semiconductors (ITRS) Working Group,
“International Technology Roadmap for Semiconductors (ITRS), 2009 Edition.”
http://www.itrs.net/Links/2009ITRS/Home2009.htm, accessed on May 20,

2012.

M. Bedford Taylor, W. Lee, S. Amarasinghe, and A. Agarwal, “Scalar Operand
Networks: On-Chip Interconnect for ILP in Partitioned Architectures,” in The Ninth

International Symposium on High-Performance Computer Architecture (HPCA-9),

pp. 341 — 353, 2003.

K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. Keckler, and
C. Moore, “Exploiting ILP, TLP, and DLP with The Polymorphous TRIPS Archi-
tecture,” in 30th Annual International Symposium on Computer Architecture (ISCA),

pp. 422 — 433, 2003.

Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz Mesh Inter-

connect for a Teraflops Processor,” IEEE Micro, vol. 27, no. 5, pp. 51 — 61, 2007.

D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,
C.-C. Miao, J. Brown, and A. Agarwal, “On-Chip Interconnection Architecture of

the Tile Processor,” IEEE Micro, vol. 27, no. 5, pp. 15 — 31, 2007.

W. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection Net-

works,” in Design Automation Conference (DAC), pp. 684 — 689, 2001.

S. Xiao, C. Wu, J. Du, and Y. Yang, “Reliable Transmission of H.264 Video over
Wireless Network,” in Advanced Information Networking and Applications (AINA),
vol. 2, p. 5 pp., 2006.

http://www.itrs.net/Links/2009ITRS/Home2009.htm

[8]

[9]

[10]

[11]

[12]

[13]

[14]

168

M. Stoufs, A. Munteanu, P. Schelkens, and J. Cornelis, “Optimal Joint Source-
Channel Coding using Unequal Error Protection for the Scalable Extension of
H.264/MPEG-4 AVC,” IEEFE International Conference on Image Processing (ICIP),

vol. 6, pp. VI -517-VI =520, 2007.

B. Parrein, F. Boulos, P. Le Callet, and J. Guedon, “Priority Image and Video En-
coding Transmission Based on a Discrete Radon Transform,” Packet Video 2007,

pp. 105-112, 2007.

P. Yip, J. Malcolm, W. Fernando, K. Loo, and H. Arachchi, “Joint Source and Chan-
nel Coding for H.264 Compliant Stereoscopic Video Transmission,” Canadian Con-

ference on Electrical and Computer Engineering, pp. 188—191, 2005.

T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watan-
abe, K. Matsuda, T. Maeda, T. Sakurai, and T. Furuyama, “Variable supply-voltage
scheme for low-power high-speed CMOS digital design,” Solid-State Circuits, IEEE
Journal of, vol. 33, no. 3, pp. 454-462, 1998.

P. Gratz, C. Kim, R. McDonald, S. Keckler, and D. Burger, “Implementation and
Evaluation of On-Chip Network Architectures,” in International Conference on

Computer Design (ICCD), pp. 477 — 484, 2006.

P. Gratz, K. Sankaralingam, H. Hanson, P. Shivakumar, R. McDonald, S. W. Keckler,
and D. Burger, “Implementation and Evaluation of a Dynamically Routed Processor
Operand Network,” in The Ist ACM/IEEE Int’l Symposium on Networks-on-Chip,
pp- 7-17, 2007.

P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S. W. Keckler, and
D. Burger, “On-Chip Interconnection Networks of the TRIPS Chip,” IEEE Micro,
vol. 27, pp. 41-50, 2007.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

169

N. Thomos, S. Argyropoulos, N. Boulgouris, and M. Strintzis, “Robust Transmis-
sion of H.264/AVC Video using Adaptive Slice Grouping and Unequal Error Protec-

tion,” IEEE International Conference on Multimedia and Expo, pp. 593-596, 2006.

T. Stockhammer and M. Bystrom, “H.264/AVC Data Partitioning for Mobile Video
Communication,” International Conference on Image Processing (ICIP), vol. 1,

pp. 545-548, 2004.

M. M. Ghandi, Layered Video Coding for Wireless Communications. PhD thesis,

University of Essex, 2006.

R. Guo, L. Wang, and X. Jiang, “Stereo Video Transmission using LDPC Code,” in
International Journal of Communications, Network and System Sciences, pp. 254—

259, 2008.

Y. Wang, S. Yu, and X. Yang, “Error Robustness Scheme for H.264 Based on LDPC

Code,” International Multi-Media Modelling Conference, pp. 4 pp.—, 2006.

L. Qi, L. Yang, W. Wensheng, C. Huijuan, and T. Kun, “Robust Video Transmission
Scheme using Dynamic Rate Selection LDPC and RS codes,” IMACS Multiconfer-
ence on Computational Engineering in Systems Applications, vol. 2, pp. 16731679,

2006.

V. Kumar and O. Milenkovic, “On Unequal Error Protection LDPC Codes Based
on Plotkin-type Constructions,” Global Telecommunications Conference (GLOBE-

COM), vol. 1, pp. 493-497 Vol.1, 2004.

Y. S. Yang and G. Choi, “Low-Power Embedded LDPC-H.264 Joint Decoding Ar-
chitecture Based on Unequal Error Protection,” in Future Information Technology

(FutureTech), pp. 1-6, 2010.

[23]

[24]

[25]

[26]

[28]

[29]

[30]

170

Y. Wang, S. Yu, and X. Yang, “Unequal Iterative Decoding for Power Efficient Video
Transmission,” IEEE International Conference on Multimedia and Expo, pp. 613—

616, 2006.

X. Lu, E. Erkip, Y. Wang, and D. Goodman, “Power Efficient Multimedia Commu-
nication over Wireless Channels,” IEEE Journal on Selected Areas in Communica-

tions, vol. 21, no. 10, pp. 1738-1751, 2003.

Q. Zhang, Z. Ji, W. Zhu, and Y.-Q. Zhang, “Power-minimized Bit Allocation for
Video Communication over Wireless Channels,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 12, no. 6, pp. 398-410, 2002.

Y. Eisenberg, C. Luna, T. Pappas, R. Berry, and A. Katsaggelos, “Joint Source Cod-
ing and Transmission Power Management for Energy Efficient Wireless Video Com-
munications,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 12, no. 6, pp. 411-424, 2002.

J. Dielissen, A. Hekstra, and V. Berg, “Low Cost LDPC Decoder for DVB-S2.” in

Design, Automation and Test in Europe Conference Exhibition (DATE), vol. 2, pp. 1

-6, 2006.

W. Wang and G. Choi, “Minimum-Energy LDPC Decoder for Real-Time Mobile
Application,” Design, Automation Test in Europe Conference Exhibition (DATE),
pp- 1-6, 2007.

W. Wang and G. Choi, “Speculative Energy Scheduling for LDPC Decoding,” Inter-

national Symposium on Quality Electronic Design (ISQED), pp. 79-84, 2007.

W. Wang, G. Choi, and K. K. Gunnam, “Low-power VLSI Design of LDPC Decoder

using DVFS for AWGN Channels,” in International Conference on VLSI Design,

[31]

[32]

[33]

[34]

[35]

[36]

[37]

171

pp. 51-56, 2009.

P. Moberg, A. Osseiran, and P. Skillermark, “Cost Comparison between SISO and
MIMO Deployments in Future Wide Area Cellular Networks,” in Vehicular Tech.
Conf., pp. 1-5, 2009.

G.-H. Yang, D. Shen, and V. Li, “Unequal Error Protection for MIMO Systems
with a Hybrid Structure,” IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 4 pp.—685, 2006.

Y. Liu, Q. song Tong, A. dong Men, Z. yi Quan, and B. Yang, “A Joint Source-
Channel Coding Scheme Focused on Unequal Error Protection for H.264 Trans-
mission over MIMO-OFDM System,” Computing, Communication, Control, and

Management (CCCM), vol. 2, pp. 491-495, 2008.

X. Li, S. Yang, Y. Wang, and Z. Li, “Performance of UEP based MIMO scheme
for LDPC codes,” in International Conf. on Computer Engineering and Technology

(ICCET), vol. 6, pp. 216-220, 2010.

Y. S. Yang, P. Bhagawat, and G. Choi, “Energy-efficient MIMO detection using un-
equal error protection for embedded joint decoding system,” in Design Automation

Conference (DAC), pp. 579-584, 2011.

Z. Cao, B. Foo, L. He, and M. van der Schaar, “Optimality and Improvement of
Dynamic Voltage Scaling Algorithms for Multimedia Applications,” IEEE Trans-
actions on Circuits and Systems I: Regular Papers, vol. 57, no. 3, pp. 681 —690,
2010.

J. Kim, S. Yoo, and C.-M. Kyung, “Program Phase and Runtime Distribution-Aware

[38]

[40]

[41]

[42]

[44]

[45]

172

Online DVES for Combined Vdd/Vbb Scaling,” in Design, Automation Test in Eu-

rope Conference Exhibition (DATE), pp. 417 —422, 2009.

Y. S. Yang and G. Choi, “Low-power Baseband Processing for Wireless Multimedia
Systems using Unequal Error Protection,” in Wireless Telecommunications Sympo-

sium (WTS), pp. 1 -6, 2010.

S. Kumar, L. Xu, M. K. Mandal, and S. Panchanathan, “Error Resiliency Schemes in
H.264/AVC Standard,” Journal of Visual Communication and Image Representation,

vol. 17, no. 2, pp. 425 — 450, 2006.

F. Zhai, Y. Eisenberg, T. N. Pappas, R. Berry, and A. K. Katsaggelos, “Joint Source-
Channel Coding and Power Adaptation for Energy Efficient Wireless Video Com-
munications,” Signal Processing: Image Communication, vol. 20, no. 4, pp. 371 —

387, 2005.

JVT, “International Standard of Joint Video Specification,” ITU-T Rec. H.264,
ISO/IEC 14 496-10 AVC, 2003.

VCEG, “H.264/AVC JVT JM-18.3. http://iphome.hhi.de/suehring/tml/

download/, accessed on May 20, 2012.

R. Gallager, “Low-Density Parity-Check Codes,” IRE Transactions on Information

Theory, vol. 8, no. 1, pp. 21-28, 1962.

D. MacKay and R. Neal, “Near Shannon Limit Performance of Low Density Parity

Check Codes,” Electronics Letters, vol. 33, no. 6, pp. 457458, 1997.

R. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Transactions

on Information Theory, vol. 27, no. 5, pp. 533-547, 1981.

http://iphome.hhi.de/suehring/tml/download/
http://iphome.hhi.de/suehring/tml/download/

[46]

[47]

[48]

[49]

[51]

[52]

[53]

[54]

173

F. Kienle and N. Wehn, “Low Complexity Stopping Criterion for LDPC Code De-
coders,” Vehicular Technology Conference (VIC), vol. 1, pp. 606—-609, 2005.

G. Glikiotis and V. Paliouras, “A Low-power Termination Criterion for Iterative
LDPC Code Decoders,” IEEE Workshop on Signal Processing Systems Design and
Implementation, pp. 122—-127, 2005.

J. Chen and M. Fossorier, “Near Optimum Universal Belief Propagation Based De-
coding of Low-Density Parity Check Codes,” IEEE Transactions on Communica-

tions, vol. 50, no. 3, pp. 406 —414, 2002.

M. Mansour and N. Shanbhag, “High-throughput LDPC Decoders,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6, pp. 976-996,
2003.

M. Mansour and N. Shanbhag, “A 640-Mb/s 2048-bit Programmable LDPC De-
coder Chip,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 684-698, 2006.

D. Hocevar, “A Reduced Complexity Decoder Architecture via Layered Decoding

of LDPC Codes,” in Signal Processing Systems (SIPS), pp. 107 — 112, 2004.

K. Gunnam, G. Choi, and M. Yeary, “A Parallel VLSI Architecture for Layered De-
coding for Array LDPC Codes,” International Conference on VLSI Design, pp. 738—
743, 2007.

K. Xu, “H.264/AVC Baseline Decoder.” http://www.opencores.org/projects.

cgi/web/nova/overview, accessed on May 20, 2012.

K. Xu and C. S. Choy, “Low-power H.264/AVC Baseline Decoder for Portable
Applications,” in International symposium on Low power electronics and design

(ISLPED), pp. 256261, 2007.

http://www.opencores.org/projects.cgi/web/nova/overview
http://www.opencores.org/projects.cgi/web/nova/overview

[55]

[56]

[57]

[58]

[59]

[60]

[62]

174

Synopsys, “Design Compiler.” http://www.synopsys.com, accessed on May 20,

2012.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms,

year = 2009,. MIT Press, 3rd ed.

P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey, “A voltage reduction
technique for digital systems,” in Solid-State Circuits Conference, 1990. Digest of

Technical Papers. 37th ISSCC., 1990 IEEE International, pp. 238-239, 1990.

P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-BLAST: An archi-
tecture for realizing very high data rates over the rich-scattering wireless channel,”

International Symposium on Signals, Systems, and Electronics, pp. 295-300, 1998.

Y. Wu, T. Cui, and C. Tellambura, “Optimal low-complexity detection for space
division multiple access wireless systems,” IEEE Communications Letters, vol. 10,

no. 3, pp. 156-158, 2006.

P. Bhagawat, S. Ekambavanan, S. Das, G. Choi, and Khatri.S, “VLSI Implementa-
tion of a Staggered Sphere Decoder Design for MIMO Detection,” Forty-Fifth An-
nual Allerton Conf., pp. 228-235, 2007.

B. Hassibi and H. Vikalo, “On the expected complexity of sphere decoding,” in
Thirty-Fifth Asilomar Conf. on Signals, Systems and Computers, vol. 2, pp. 1051-
1055, 2001.

A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei,
“VLSI implementation of MIMO detection using the sphere decoding algorithm,”

IEEE Journal of Solid-State Circuits, vol. 40, no. 7, pp. 1566 — 1577, 2005.

http://www.synopsys.com

[63]

[67]

[68]

[69]

[70]

[71]

[72]

175

C. Hess, M. Wenk, A. Burg, P. Luethi, C. Studer, N. Felber, and W. Fichtner,
“Reduced-complexity mimo detector with close-to ml error rate performance,” in

Great Lakes symposium on VLSI (GLSVLSI), pp. 200-203, 2007.
“FreePDK: An open-source variation-aware design kit,”

C. Alpert, A. Devgan, and S. Quay, “Buffer Insertion for Noise and Delay Opti-
mization,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 18, no. 11, pp. 1633 —1645, 1999.

H. Zhou and D. Wong, “Global Routing with Crosstalk Constraints,” in DAC, pp. 374
=377, 1998.

R. Arunachalam, E. Acar, and S. Nassif, “Optimal Shielding/Spacing Metrics for

Low Power Design,” in VLSI, pp. 167 — 172, 2003.

B. Victor and K. Keutzer, “Bus Encoding to Prevent Crosstalk Delay,” in ICCAD,
pp. 57 —63, 2001.

P. Pande, H. Zhu, A. Ganguly, and C. Grecu, “Crosstalk-Aware Energy Reduction in
NoC Communication Fabrics,” in SOC Conference, pp. 225 -228, 2006.

R. Hegde and N. Shanbhag, “Toward Achieving Energy Efficiency in Presence of
Deep Submicron Noise,” IEEE Transactions on VLSI Systems,, vol. 8, no. 4, pp. 379
-391, 2000.

S. Sridhara and N. Shanbhag, “Coding for Reliable On-Chip Buses: A Class of
Fundamental Bounds and Practical Codes,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 26, no. 5, pp. 977 -982, 2007.

P. P. Pande, A. Ganguly, B. Feero, B. Belzer, and C. Grecu, “Design of Low power

Reliable Networks on Chip through Joint Crosstalk Avoidance and Forward Error

[73]

[74]

[75]

[76]

[77]

[78]

[79]

176

Correction Coding,” in Defect and Fault Tolerance in VLSI Systems, pp. 466 —476,
2006.

A. Ganguly, P. P. Pande, B. Belzer, and C. Grecu, “Addressing Signal Integrity in
Networks on Chip Interconnects through Crosstalk-Aware Double Error Correction
Coding,” in IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 317
-324, 2007.

S.E. Lee, Y. S. Yang, G. Choi, W. Wu, and R. lyer, “Low-Power, Resilient Intercon-
nection with Orthogonal Latin Squares,” IEEE Design Test of Computers, pp. 30-39,
2011.

S. Sridhara and N. Shanbhag, “Coding for System-on-Chip Networks: A Unified
Framework,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,
vol. 13, no. 6, pp. 655 —667, 2005.

P.-T. Huang, W.-L. Fang, Y.-L. Wang, and W. Hwang, “Low Power and Reliable
Interconnection with Self-Corrected Green Coding Scheme for Network-on-Chip,”
in ACM/IEEE International Symposium on Networks-on-Chip (NoCS), pp. 77 —83,
2008.

R. Kumar, Y. S. Yang, and G. Choi, “Intra-Flit Skew Reduction for Asynchronous
Bypass Channel in NoCs,” in International Conference on VLSI Design (VLSI De-
sign), pp- 238 —243, 2011.

W. Dally and J. Poulton, Digital Systems Engineering. New York, NY: Cambridge

Univ. Press, 1998.

A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson, J. Oberg,

P. Ellervee, and D. Lundqvist, “Lowering Power Consumption in Clock by Using

[80]

[82]

[83]

[84]

[85]

[86]

177

Globally Asynchronous Locally Synchronous Design Style,” in Design Automation

Conference, 1999. Proceedings. 36th, pp. 873 —878, 1999.

G. Gill, S. Attarde, G. Lacourba, and S. Nowick, “A low-latency adaptive asyn-
chronous interconnection network using bi-modal router nodes,” in NoCS, pp. 193

—200, 2011.

M. Horak, S. Nowick, M. Carlberg, and U. Vishkin, “A Low-Overhead Asyn-
chronous Interconnection Network for GALS Chip Multiprocessors,” IEEE Trans-

actions on CAD, vol. 30, no. 4, pp. 494 =507, 2011.

M. Donno, E. Macii, and L. Mazzoni, “Power-Aware Clock Tree Planning,” in Int’l

Symposium on Physical Design, pp. 138—147, 2004.

S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer,
A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, “An 80-Tile
1.28TFLOPS Network-on-Chip in 65nm CMOS,” in Solid-State Circuits Conference
(ISSCC)L, pp. 98 —589, 2007.

M. Amde, T. Felicijan, A. Efthymiou, D. Edwards, and L. Lavagno, “Asynchronous
on-chip networks,” IEE Proceedings Computers and Digital Techniques, vol. 152,

no. 2, pp. 273 — 283, 2005.

T. Jain, P. Gratz, A. Sprintson, and G. Choi, “Asynchronous Bypass Channels: Im-
proving Performance for Multi-synchronous NoCs,” in Fourth ACM/IEEE Interna-

tional Symposium on Networks-on-Chip (NOCS), pp. 51 — 58, 2010.

W. Dally and B. Towles, Principles and Practices of Interconnection Networks. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

178

W. Dally, “Express Cubes: Improving The Performance of K-ary N-cube Intercon-
nection Networks,” IEEE Transactions on Computers, vol. 40, no. 9, pp. 1016 —

1023, 1991.

U. Ogras and R. Marculescu, “Application-Specific Network-on-Chip Architecture
Customization via Long-Range Link Insertion,” in Int’l Conf. on Computer-Aided

Design, pp. 246 — 253, 2005.

T. Krishna, A. Kumar, P. Chiang, M. Erez, and L. Peh, “NoC with Near-Ideal Ex-
press Virtual Channels Using Global-Line Communication,” in Symposium on High

Performance Interconnects, pp. 11 =20, 2008.

W. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-Pipelining: a Tutorial and
Research Survey,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-
tems, vol. 6, no. 3, pp. 464 —474, 1998.

J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C. Das, “A Low Latency
Router Supporting Adaptivity for On-Chip Interconnects,” in DAC, pp. 559 — 564,
2005.

S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2 Programs:
Characterization and Methodological Considerations,” in Annual Int’l Symposium

on Computer Architecture, 1995.

P. Gratz and S. W. Keclker, “Realistic Workload Characterization and Analysis for
Networks-on-Chip Design,” in The 4th Workshop on Chip Multiprocessor Memory

Systems and Interconnects, 2010.

XILINX, “Power Consumption at 40 and 45nm,” in White Paper: Spartan-6 and

Virtex-6 Devices, 2009.

179

[95] G. Desoli and E. Filippi, “An Outlook on The Evolution of Mobile Terminals: from

Monolithic to Modular Multiradio, Multiapplication Platforms,” IEEE Circuits and

Systems Magazine, vol. 6, no. 2, pp. 17 — 29, 2006.

[96] J. Xu, W. Wolf, J. Henkel, S. Chakradhar, and T. Lv, “A Case Study in Networks-

[97]

[98]

[99]

[100]

[101]

[102]

On-Chip Design for Embedded Video,” in Design, Automation and Test in Europe
Conference and Exhibition (DATE), vol. 2, pp. 770 — 775, 2004.

H. G. Lee, U. Ogras, R. Marculescu, and N. Chang, “Design Space Exploration and

Prototyping for On-Chip Multimedia Applications,” in DAC, pp. 137 — 142, 2006.

T. Xu, A. Yin, P. Liljeberg, and H. Tenhunen, “A Study of 3D Network-on-Chip
Design for Data Parallel H.264 Coding,” in NORCHIP, pp. 1 — 6, 2009.

L. Xin and C. sing Choy, “A Low-Latency NoC Router with Lookahead Bypass,” in
IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3981 — 3984,
2010.

X. Wang and L. Bandi, “A Low-Area and Low-Latency Network-On-Chip,” in 23rd
Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1 —
5,2010.

E. Carvalho, N. Calazans, and F. Moraes, “Congestion-Aware Task Mapping in
NoC-based MPSoCs with Dynamic Workload,” in IEEE Computer Society Annual

Symposium on VLSI, pp. 459 — 460, 2007.

L. S. Peh and W. J. Dally, “A Delay Model and Speculative Architecture for
Pipelined Routers,” in High-Performance Computer Architecture (HPCA), pp. 255 —
266, 2001.

180

[103] K. Lee, S.-J. Lee, and H.-J. Yoo, “SILENT: Serialized Low Energy Transmission
Coding for On-Chip Interconnection Networks,” in IEEE/ACM International Con-
ference on Computer Aided Design (ICCAD), pp. 448 — 451, 2004.

[104] D. Seo, A. Ali, W.-T. Lim, and N. Rafique, “Near-Optimal Worst-Case Throughput
Routing for Two-Dimensional Mesh Networks,” in ISCA, pp. 432 — 443, 2005.

[105] C.Izu,J. Miguel-Alonso, and J. Gregorio, “Effects of Injection Pressure on Network
Throughput,” in Parallel, Distributed, and Network-Based Processing (PDP), p. 8
pp-, 2006.

[106] Y. Wang and Z. Wang, “Explicit Routing Algorithms for Internet Traffic Engineer-
ing,” in Eight International Conference on Computer Communications and Net-

works, pp. 582 — 588, 1999.

[107] A. Elwalid, C. Jin, S. Low, and 1. Widjaja, “MATE: MPLS Adaptive Traffic Engi-
neering,” in INFOCOM, vol. 3, pp. 1300 — 1309, 2001.

[108] R. Banner and A. Orda, “Multipath Routing Algorithms for Congestion Minimiza-

tion,” IEEE/ACM Transactions on Networking, vol. 15, no. 2, pp. 413 — 424, 2007.

[109] L. G. Valiant and G. J. Brebner, “Universal Schemes for Parallel Communication,”

in ACM Symposium on Theory of Computing, pp. 263 — 277, 1981.

[110] T. Nesson and S. L. Johnsson, “ROMM Routing: A Class of Efficient Minimal Rout-
ing Algorithms,” in The International Workshop on Parallel Computer Routing and

Communication, pp. 185 — 199, 1994.

[111] M. H. Cho, M. Lis, K. S. Shim, M. Kinsy, and S. Devadas, “Path-based, Random-
ized, Oblivious, Minimal routing,” in The 2nd International Workshop on Network

on Chip Architectures (NoCArc), pp. 23 — 28, 2009.

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

181

S. Murali, D. Atienza, L. Benini, and G. De Micheli, “A Multi-Path Routing Strat-
egy with Guaranteed In-Order Packet Delivery and Fault-Tolerance for Networks on

Chip,” in DAC, pp. 845 — 848, 2006.

G. Michelogiannakis, D. Sanchez, W. Dally, and C. Kozyrakis, “Evaluating Buffer-
less Flow Control for On-chip Networks,” in Fourth ACM/IEEE International Sym-
posium on Networks-on-Chip (NOCS), pp. 9 — 16, 2010.

G.-M. Chiu, “The Odd-Even Turn Model for Adaptive Routing,” IEEE Transactions

on Parallel and Distributed Systems, vol. 11, no. 7, pp. 729 738, 2000.

W. Dally and C. Seitz, “Deadlock-Free Message Routing in Multiprocessor Inter-
connection Networks,” IEEE Transactions on Computers, vol. C-36, no. 5, pp. 547

— 553, 1987.

N. Kamaci and Y. Altunbasak, “Performance Comparison of The Emerging H.264
Video Coding Standard with The Existing Standards,” in International Conference

on Multimedia and Expo (ICME), vol. 1, pp. 345 — 348, 2003.

“Video Traces.” http://trace.eas.asu.edu/yuv/index.html, accessed on

May 20, 2012.

S. Brennan, A. Mielke, D. Torney, and A. Maccabe, ‘“Radiation detection with dis-

tributed sensor networks,” Computer, vol. 37, no. 8, pp. 57 — 59, 2004.

Y. Yang, Y. Ju, H. Xia, W. Zhao, and Y. Zhen, “A Network Protocol Stack Based
Radiation Sensor Network For Emergency System,” IJCSNS, vol. 8, no. 8, pp. 312 —
318, 2008.

E. Culurciello and P. Weerakoon, ‘“Three-Dimensional Photodetectors in 3-D

Silicon-On-Insulator Technology,” Electron Device Letters, IEEE, vol. 28, no. 2,

http://trace.eas.asu.edu/yuv/index.html

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

182

pp. 117 -119, 2007.

A. Ephremides, “Book Review [review of Algorithmic Information Theory: Mathe-
matics of Digital Information Processing (Seibt, P.; 2006)],” Signal Processing Mag-

azine, IEEE, vol. 24, pp. 128 —129, july 2007.

Z. Yu and B. Baas, “High Performance, Energy Efficiency, and Scalability With
GALS Chip Multiprocessors,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 17, no. 1, pp. 66 =79, 2009.

S. Sridhara and N. Shanbhag, “Coding for system-on-chip networks: a unified
framework,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 13, no. 6, pp. 655 —667, 2005.

J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Com-
plex Fourier Series,” Mathematics of Computation, vol. 19, no. 90, pp. 297-301,
1965.

ARM, “AMBA Open Specification.” http://www.arm.com/products/
system-ip/amba/amba-open-specifications.php, accessed on May 20,

2012.

T. Instruments, “TT TMS320C62x DSPs C62x Core Benchmarks.” http://wuw.

ti.com/1lsds/ti/dsp/home.page, accessed on May 20, 2012.

T. Instruments, “TI TMS320C67x Floating Point DSPs C67x Core Benchmarks.”

http://www.ti.com/1sds/ti/dsp/home.page, accessed on May 20, 2012.

T. Instruments, “TT FFT hardware accelerator (HWAFFT) .” http://www.ti.com/

lit/an/sprabb6a/sprabb6a.pdf, accessed on May 20, 2012.

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lit/an/sprabb6a/sprabb6a.pdf
http://www.ti.com/lit/an/sprabb6a/sprabb6a.pdf

183

[129] Tensilica, “ConnX D2 DSP Engine.” http://www.tensilica.com/uploads/

pdf/connx_d2_pb.pdf, accessed on May 20, 2012.

[130] T. Instruments, “TI TMS320C55x DSP Benchmarks.” http://www.ti.com/lsds/

ti/dsp/home.page, accessed on May 20, 2012.

[131] Xilinx, “ML605 Hardware User Guide.” http://www.xilinx.com/support/

documentation/boards_and_kits/ugh34.pdf, accessed on May 20, 2012.

http://www.tensilica.com/uploads/pdf/connx_d2_pb.pdf
http://www.tensilica.com/uploads/pdf/connx_d2_pb.pdf
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf

184

VITA

Yoon Seok Yang received his B.S. and M.S. degree from Hanyang University, Korea,
in February 1998 and 2000. He also received his M.S. degree in Electrical Engineering and
Computer Science from University of California, Irvine, USA, in March 2008. He received
his Ph.D. degree in Electrical and Computer Engineering from Texas A&M University in
August 2012. His research interests include a unified architecture for communication and
multimedia systems and high-performance, low-power interconnection design for on-chip
networks. He is a student member of IEEE.

Yoon Seok Yang may be reached in the Department of Electrical and Computer En-
gineering at Texas A&M University, 214 Zachry Engineering Center TAMU 3128, Texas
77843-3128 USA. His email address is yoonseoky @ gmail.com.

	I Introduction
	A. Joint Source Channel Decoding Method for Low-Power Portable and Wireless SoC Systems
	B. Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design
	C. Data Processing Accelerator Architecture for Low-Power SoCs in Distributed Sensor Network Systems

	II Joint Source Channel Decoding Method for Low-Power Portable and Wireless SoC Systems
	A. Joint Source Channel Decoding Method Using Unequal Error Protection and LDPC Check Error Levels
	1. Background: H.264 Unequal Error Protection and LDPC Channel Decoding
	a. H.264 Video Coding
	b. LDPC Coding

	2. Proposed Low-Power JSCD Scheme Using DVFS
	a. Runtime Process
	b. Low-Power JSCD Implementation

	3. Results and Discussion
	a. Simulation Environment
	b. Simulation Results

	B. Optimal Configuration Search Method for Low-Power Channel Decoder in Embedded LDPC-H.264 Joint Decoding Architecture
	1. Proposed Optimal Configuration Search Method
	a. Overview of the proposed search scheme
	b. Coarse binary search process
	c. Fine search process using the UEP scheme

	2. Energy Minimization Using DVFS
	3. Results and Discussion

	C. Optimal Configuration Search Method for Low-Power MIMO Detector in Embedded MIMO-H.264 Joint Decoding Architecture
	1. Background: MIMO Detection
	2. The Proposed Low-Power MIMO-H.264 Joint Decoder Design
	a. Coarse Search Process
	b. Refining the Coarse Search Using UEP

	3. Results and Discussion

	D. Conclusions

	III Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design
	A. Link-Level QoS for Low-Power On-Chip Network
	1. TransSync-RecSync Technique
	2. UEP with TransSync-RecSync on NoC
	3. Results and Discussion
	a. Simulation Environment
	b. UEP Results

	B. WaveSync: Low-Latency Source Synchronous Bypass Network-On-Chip Architecture
	1. WaveSync Design
	a. Clock Distribution
	b. Router Microarchitecture
	c. De-skewer for suppressing intra-flit skew on links
	d. Synchronizer architecture for half cycle synchronization latency

	2. Experiments and Evaluation
	a. Simulation methodology
	b. Synthetic workloads
	c. Realistic workloads

	3. Design Implementation

	C. SDPR: Exploiting Path Diversity for Low-Latency through Simultaneous Dual Path Routing
	1. Related Work
	2. Dual-Path Network Architecture
	a. Dual-Path Routing Scheme
	b. Network Adapter
	c. Baseline Router
	d. SDPR Router

	3. Experiments and Evaluation
	a. Methodology
	b. Results
	c. Discussion

	4. Synthesis Results

	D. Conclusions

	IV Data Processing Accelerator Architecture for Low-Power SoCs in Distributed Sensor Network Systems
	A. Data Processing Logic for Stacked Wafer-Scale CMOS Radiation Sensor Network
	1. Data Processing Logic
	a. Overall Architecture of Data Processing Unit
	b. Proposed Data Compression Algorithm
	c. Data Compression Unit

	2. On-chip Router Design
	3. Experiments

	B. DSP Accelerator for Low-Power Sensor Hub SoCs
	1. Background: DSP Algorithms
	a. Vector Dot Product
	b. 3-Dimensional Cross Product
	c. Fast Fourier Transform (FFT)

	2. DSP Accelerator Features
	3. DSP Accelerator Architecture
	a. Address generate unit (AGU)
	b. Data path unit (DPU)
	c. Control unit (CU)
	d. Command memory
	e. Control register
	f. Status register
	g. Address register and map
	h. Pipeline architecture

	4. DSP Accelerator Operations
	a. 16-/32-Bit MACs
	b. 8-/16-/32-Bit Cross Product
	c. FIR Operation
	d. FFT Operation

	5. Experiment Results

	C. Conclusions

	V Conclusions
	REFERENCES
	VITA

