
LOW-POWER EMBEDDED DESIGN SOLUTIONS AND LOW-LATENCY ON-CHIP

INTERCONNECT ARCHITECTURE FOR SYSTEM-ON-CHIP DESIGN

A Dissertation

by

YOON SEOK YANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

August 2012

Major Subject: Computer Engineering

LOW-POWER EMBEDDED DESIGN SOLUTIONS AND LOW-LATENCY ON-CHIP

INTERCONNECT ARCHITECTURE FOR SYSTEM-ON-CHIP DESIGN

A Dissertation

by

YOON SEOK YANG

Submitted to the Office of Graduate Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Approved by:

Chair of Committee, Gwan S. Choi
Committee Members, Paul V. Gratz

Laszlo B. Kish
Vivek Sarin

Head of Department, Costas N. Georphiades

August 2012

Major Subject: Computer Engineering

iii

ABSTRACT

Low-Power Embedded Design Solutions and Low-Latency On-Chip Interconnect

Architecture for System-On-Chip Design. (August 2012)

Yoon Seok Yang, B.S., Hanyang University;

M.S., University of California, Irvine

Chair of Advisory Committee: Dr. Gwan S. Choi

This dissertation presents three design solutions to support several key system-on-

chip (SoC) issues to achieve low-power and high performance. These are: 1) joint source

and channel decoding (JSCD) schemes for low-power SoCs used in portable multimedia

systems, 2) efficient on-chip interconnect architecture for massive multimedia data stream-

ing on multiprocessor SoCs (MPSoCs), and 3) data processing architecture for low-power

SoCs in distributed sensor network (DSS) systems and its implementation.

The first part includes a low-power embedded low density parity check code (LDPC)-

H.264 joint decoding architecture to lower the baseband energy consumption of a channel

decoder using joint source decoding and dynamic voltage and frequency scaling (DVFS). A

low-power multiple-input multiple-output (MIMO) and H.264 video joint detector/decoder

design that minimizes energy for portable, wireless embedded systems is also designed.

In the second part, a link-level quality of service (QoS) scheme using unequal error

protection (UEP) for low-power network-on-chip (NoC) and low latency on-chip network

designs for MPSoCs is proposed. This part contains WaveSync, a low-latency focused

network-on-chip architecture for globally-asynchronous locally-synchronous (GALS) de-

signs and a simultaneous dual-path routing (SDPR) scheme utilizing path diversity present

in typical mesh topology network-on-chips. SDPR is akin to having a higher link width but

without the significant hardware overhead associated with simple bus width scaling.

The last part shows data processing unit designs for embedded SoCs. We propose

iv

a data processing and control logic design for a new radiation detection sensor system

generating data at or above Peta-bits-per-second level. Implementation results show that

the intended clock rate is achieved within the power target of less than 200mW. We also

present a digital signal processing (DSP) accelerator supporting configurable MAC, FFT,

FIR, and 3-D cross product operations for embedded SoCs. It consumes 12.35mW along

with 0.167mm2 area at 333MHz.

v

To my family

vi

ACKNOWLEDGMENTS

I would like to first and foremost thank my advisor Dr. Gwan S. Choi for his advice

and direction in my PhD research. I sincerely appreciate his consistent encourage and

support during the period of my studies. I also thank my committee members including

Dr. Paul V. Gratz, Dr. Laszlo B. Kish and Dr. Vivek Sarin for their valuable suggestions,

comments, and advices on all aspects of my research. My thanks also go to other students

in Dr. Choi’s group including Pankaj Bhagawat, Reeshav Kumar, Hrishikesh Deshpande,

Ehsan Rohani, Jingwei Xu, and Wil Bassett for their valuable discussion on research with

me and help during my Ph.D. study.

I thank my friends in College Station: Kyu-Nam Shim, Yun-Bum Jung, Yong-Ho

Lee, Yong-Tae Kim, and Jung-Kyu Lee and their family for giving me countless assistant

during my Ph.D. study and making my life happy and joyful. I also thank MaGee’s family

(Russell, Karmen, Molly, Besty, Hayley and Matthew) for supporting my life in College

Station. They have supported me a lot to make my stay here worthwhile. I thank my Bible

study members, Thomas, Rachel, Derick, and Callie, too.

I would like to give heartfelt thanks to my parents, sisters and brothers in low for their

selfless love, trust, and support. I thank my wife, Won-Hee Kim, with all my heart for her

endless love, support, patience and encouragement.

vii

TABLE OF CONTENTS

CHAPTER Page

I INTRODUCTION . 1

A. Joint Source Channel Decoding Method for Low-Power
Portable and Wireless SoC Systems 3

B. Low-Latency On-Chip Interconnect Architecture for System-
On-Chip Design . 5

C. Data Processing Accelerator Architecture for Low-Power
SoCs in Distributed Sensor Network Systems 8

II JOINT SOURCE CHANNEL DECODING METHOD FOR LOW-
POWER PORTABLE AND WIRELESS SOC SYSTEMS 10

A. Joint Source Channel Decoding Method Using Unequal
Error Protection and LDPC Check Error Levels 12
1. Background: H.264 Unequal Error Protection and

LDPC Channel Decoding 17
a. H.264 Video Coding 17
b. LDPC Coding . 20

2. Proposed Low-Power JSCD Scheme Using DVFS 24
a. Runtime Process . 25
b. Low-Power JSCD Implementation 26

3. Results and Discussion 30
a. Simulation Environment 30
b. Simulation Results 35

B. Optimal Configuration Search Method for Low-Power Chan-
nel Decoder in Embedded LDPC-H.264 Joint Decoding
Architecture . 40
1. Proposed Optimal Configuration Search Method 40

a. Overview of the proposed search scheme 41
b. Coarse binary search process 42
c. Fine search process using the UEP scheme 44

2. Energy Minimization Using DVFS 44
3. Results and Discussion 45

viii

CHAPTER Page

C. Optimal Configuration Search Method for Low-Power MIMO
Detector in Embedded MIMO-H.264 Joint Decoding Ar-
chitecture . 52
1. Background: MIMO Detection 52
2. The Proposed Low-Power MIMO-H.264 Joint De-

coder Design . 55
a. Coarse Search Process 57
b. Refining the Coarse Search Using UEP 58

3. Results and Discussion 59
D. Conclusions . 64

III LOW-LATENCY ON-CHIP INTERCONNECT ARCHITECTURE
FOR SYSTEM-ON-CHIP DESIGN 65

A. Link-Level QoS for Low-Power On-Chip Network 65
1. TransSync-RecSync Technique 66
2. UEP with TransSync-RecSync on NoC 67
3. Results and Discussion 68

a. Simulation Environment 68
b. UEP Results . 70

B. WaveSync: Low-Latency Source Synchronous Bypass Network-
On-Chip Architecture . 73
1. WaveSync Design . 75

a. Clock Distribution 76
b. Router Microarchitecture 78
c. De-skewer for suppressing intra-flit skew on links . . 83
d. Synchronizer architecture for half cycle synchro-

nization latency . 84
2. Experiments and Evaluation 85

a. Simulation methodology 85
b. Synthetic workloads 86
c. Realistic workloads 87

3. Design Implementation 88
C. SDPR: Exploiting Path Diversity for Low-Latency through

Simultaneous Dual Path Routing 90
1. Related Work . 93
2. Dual-Path Network Architecture 94

a. Dual-Path Routing Scheme 95
b. Network Adapter . 98

ix

CHAPTER Page

c. Baseline Router . 100
d. SDPR Router . 100

3. Experiments and Evaluation 103
a. Methodology . 103
b. Results . 106
c. Discussion . 113

4. Synthesis Results . 115
D. Conclusions . 115

IV DATA PROCESSING ACCELERATOR ARCHITECTURE FOR
LOW-POWER SOCS IN DISTRIBUTED SENSOR NETWORK
SYSTEMS . 118

A. Data Processing Logic for Stacked Wafer-Scale CMOS
Radiation Sensor Network . 118
1. Data Processing Logic 119

a. Overall Architecture of Data Processing Unit 121
b. Proposed Data Compression Algorithm 121
c. Data Compression Unit 122

2. On-chip Router Design 125
3. Experiments . 128

B. DSP Accelerator for Low-Power Sensor Hub SoCs 129
1. Background: DSP Algorithms 130

a. Vector Dot Product 130
b. 3-Dimensional Cross Product 131
c. Fast Fourier Transform (FFT) 131

2. DSP Accelerator Features 132
3. DSP Accelerator Architecture 132

a. Address generate unit (AGU) 135
b. Data path unit (DPU) 135
c. Control unit (CU) 136
d. Command memory 137
e. Control register . 138
f. Status register . 139
g. Address register and map 140
h. Pipeline architecture 142

4. DSP Accelerator Operations 144
a. 16-/32-Bit MACs 144
b. 8-/16-/32-Bit Cross Product 144

x

CHAPTER Page

c. FIR Operation . 148
d. FFT Operation . 155

5. Experiment Results . 158
C. Conclusions . 164

V CONCLUSIONS . 165

REFERENCES . 167

VITA . 184

xi

LIST OF TABLES

TABLE Page

I H.264 data partition and prioritization 18

II Check error level for each error scope 25

III Parameters of sub-iterations (IterError level,Priority) 25

IV H.264 encoder parameters and configuration 30

V Distributions of priority partitions in test video streams, Foreman,
Akiyo, and Mobile . 30

VI Check error threshold values (cHT) used in the simulation 31

VII The number of sub-iterations used in the simulation 33

VIII Sub-iterations vs. voltage/frequence for DVFS 34

IX Simulation results of the UEP Case3 on Foreman, Akiyo, and Mobile . . . 39

X Synthesis results of LDPC decoder and DVFS controller 48

XI Simulation results at 3.5, 3.6 and 3.7dB. It shows LDPC configuration
sets achieved from the coarse search and the fine search. En represents
the energy consumption ratio of UEP over EEPn, where n is the num-
ber of iterations. 50

XII Synthesis results of MIMO detector using 45nm CMOS predictive
standard cell library . 61

XIII Simulation results at 22dB and 24dB SNRs. It shows the sets of
MIMO configurations resulted in the coarse binary search (BS) and
the fine search refining the binary search result (BFS). The percentage
value of normalized energy reduction (ER) was calculated by Eqn. (2.21). . 63

XIV Protection schemes employed on links with data partitions for differ-
ent UEP configurations studied . 68

xii

TABLE Page

XV Flit structure . 81

XVI Synthesis results of the WaveSync router @1GHz. Clock power de-
notes clock tree power per node (mW). CDP stands for clock distri-
bution power. 89

XVII Distribution of dual path node pairs and serialization latency reduction
in SDPR where N=7 . 98

XVIII Packet structure for the SDPR router . 102

XX H.264 video traces . 106

XXI A summary of average latency reductions on long packet traffic and
closeness to ideal latency reductions under SDPR on a 7x7 mesh NoC . . 109

XXII Resolution and detection bits . 122

XXIII Synthesis results of the data processing logic and baseline router at 1GHz . 128

XXIV DSP accelerator features . 133

XXV Execution cycles of the DSP accelerator operations, CFD is command
fetch and decode cycles, Pnormal is pipeline delay cycles in normal
mode not including FFT, PFFT is pipeline delay cycles in FFT mode.
CFD=1 cycle, Pnormal=2 cycles, PFFT =3 cycles in the DSP accelerator. . . 158

XXVI Comparison of the 256-point complex FFT performance (radix-2) to
other DSPs . 161

XXVII Synthesis results using TSMC 65GS technology 163

xiii

LIST OF FIGURES

FIGURE Page

1 Variable supply voltage logic . 13

2 Proposed joint source-channel decoding scheme 14

3 Performance scheduling for energy reduction 15

4 An example of (dc,dv) = (3,2) regular LDPC 20

5 DVFS controller . 26

6 The proposed joint source-channel decoder Architecture 28

7 Probability density function of number of check errors 31

8 Distributions of decoding sub-iterations for different number of check errors 32

9 BER performance comparison in between the five cases of check error
threshold configurations and the fixed-iteration scheme on Foreman 34

10 PSNR performance comparison in between UEP Case3 and the fixed-
iteration scheme on Foreman, Akiyo, and Mobile 35

11 Energy reduction (%) of the UEP-LDPC decoder on Foreman 36

12 Energy reduction (%) of the UEP-H.264 decoder on Foreman 37

13 Energy reduction (%) of the UEP joint source channel decoder on
Foreman, Akiyo, and Mobile . 38

14 Power consumption (µW) of the UEP decoder on Foreman, Akiyo,
and Mobile . 39

15 The proposed UEP-based joint decoder design 41

16 Coarse search method . 42

17 DVFS controller for LDPC decoder . 46

xiv

FIGURE Page

18 BER performance of the LDPC decoder 47

19 Iterations vs. supply voltage . 48

20 (a) Coarse search results, (b) coarse and fine search results, and (c)
comparisons of energy consumption ratio in foreman at 3.5, 3.6, and
3.7dB SNRs . 51

21 Energy scalable MIMO with variable detection effort 54

22 MIMO architecture . 55

24 MIMO energy vs. BER performance: The more energy is needed for
the lower BER. 60

26 Simulation setup for evaluating the quality of reconstructed frames
with different protection schemes on links 69

27 Merit of different protection schemes on 2mm long link wires 71

28 Merit of different protection schemes on 3mm long link wires 71

29 Results for 2mm long link wires for the UEP schemes analyzed 72

30 Results for 3mm long link wires for the UEP schemes analyzed 72

31 Typical GALS clocking scheme on 4x4 mesh NoC 74

33 (a) WaveSync router top block and (b-c) north and east clock domain
nets in WaveSync . 79

34 (a) Microarchitecture of north, south, and west output submodules
and (b) microarchitecture of east output submodule including a virtual
channel for deadlock avoidance . 80

35 Flit format in WaveSync and source route decoding using a shifter logic . 82

36 Proposed synchronizer: (a) schematic of the proposed synchronizer,
(b) selection logic for the proposed synchronizer 84

xv

FIGURE Page

37 Simulation results of synthetic traffic patterns (a) uniform, (b) trans-
pose, and (c) complement on fully synchronous router (FS), baseline
GALS (BG), ABC, WaveSync with BIFIFO (WB), and WaveSync
with our synchronizer (WS) . 86

38 Normalized latency results of SPLASH-2 realistic traffic patterns (RT:
Raytrace, WN:Water-nsquared, WS:Water-spatial, AVG:total average)
on FS, BG, ABC, WB, and WS . 88

39 Dual-path routing on a 4x4 NoC system 92

41 Network adapter architecture for packet splitting 99

42 Microarchitectures of (a) baseline (i.e. single-path) router with two
virtual channels and (b) SDPR router with one virtual channel for each
XY or YX DOR. They exploit equivalent resources in terms of total
number of buffers used. 100

43 Packet structure for the SDPR router . 101

44 QCIF and CIF frame resolutions on Akiyo 104

45 Results of synthetic long length packets (average packet length=100) . . . 107

46 Results of synthetic medium length packets (average packet length=25) . . 107

47 Results of synthetic short length packets (average packet length=3.5) . . . 108

52 Overview of the proposed radiation detection sensor system 120

53 Data compression scheme . 123

55 Generating new address and resolution outputs using address and res-
olution inputs created in the previous pipeline stage 126

56 Baseline router . 127

57 Micro-controller, DSP accelerator and data memory interface in the
proposed sensor hub SoC . 134

58 DSP accelerator architecture . 134

xvi

FIGURE Page

59 Interface with µCon . 135

60 Configurations of command, control and status registers 136

61 32-bit address registers for the DSP accelerator. ADDR 1, 2, 3 rep-
resent addresses for channel 1,2,3 respectively. 140

62 Address map . 141

63 Pipeline architecture in the DSP accelerator 142

64 Pipeline stalls when AHB ready signals for read/write channels are
not ready . 143

65 16-bit multiplication and 40-bit accumulator register for 16-bit MAC . . . 145

66 32-bit multiplication and 80-bit accumulator register for 32-bit MAC . . . 146

67 8-/16-/32-bit cross product operations 147

68 8-/16-/32-bit FIR filter operations implemented by diagonal accumu-
lators and shared multipliers . 149

69 12th order 8-bit FIR (13 coefficients) with 16 pixels (8-bit data), (b)
illustrates the proposed diagonal accumulation scheme accelerating
the 8-bit FIR operation. 151

70 6th order 16-bit FIR (7 coefficients) with 8 half-words (16-bit data),
(b) illustrates the proposed diagonal accumulation scheme accelerat-
ing the 16-bit FIR operation. 153

71 6th order 32-bit FIR (13 coefficients) with 8 words (32-bit data), (b)
illustrates the proposed diagonal accumulation scheme accelerating
the 32-bit FIR operation. 154

72 The interconnected butterflies of an 8-point radix-2 DIT FFT 156

73 An example of pipelined execution for 8-point FFT operation. A FFT
stage operation can be performed by a command. The 8-point FFT
has 3 FFT stages (2stage=n points) . 157

xvii

FIGURE Page

74 Results of execution cycles and throughput in cross product 159

75 Results of execution cycles and throughput in FIR and comparison
with 12th order 32-bit FIR filter on TI-67x and TI-62x DSPs 160

76 Comparison of execution cycles in FFT 161

1

CHAPTER I

INTRODUCTION

Today’s high-performance and multiprocessor SoCs (MPSoCs) incorporate hundreds of IP

blocks. With this trend, current SoC design and its applications are migrating from single

processor-based computation model to communication intensive multiprocessing. Future

multimedia and other data intensive applications require massive computing power possi-

bly tractable through low latency on-chip network and numerous application specific IPs

or processing units. We envision that future SoCs will be composed of a mixture of hetero-

geneous IPs and communication-centric architecture. Energy and performance issues will

be the focal points for such SoC designs. This thesis presents three solutions to address

emerging SoC design with specific emphasis on low-power and high performance. These

are: 1) joint source and channel decoding (JSCD) schemes for portable multimedia applica-

tions, 2) efficient on-chip interconnect architecture for massive multimedia data streaming

on MPSoCs, and 3) data processing architecture for low-power SoCs in distributed sensor

network (DSS) systems and its implementation.

The first contribution of this dissertation includes a low-power embedded low density

parity check code (LDPC)-H.264 joint source-channel decoding (JSCD) architecture to

lower the baseband energy consumption of a channel decoder using joint source decoding

and dynamic voltage and frequency scaling (DVFS). With the continuous increase in the

capabilities of portable multimedia devices and services, the demand to improve the energy

efficiency and error robustness motivates the interest in joint source-channel decoding with

unequal error protection (UEP). We propose a configuration search scheme based on UEP

to trade-off power and performance on power sensitive mobile devices. We also presents a

This dissertation follows the style of IEEE Transactions on Computers.

2

low-power multiple-input multiple-output (MIMO) and H.264 video joint detector/decoder

design that minimizes energy for portable, wireless embedded systems.

The second contribution contains a link-level quality of service (QoS) scheme using

UEP for low-power network-on-chip (NoC) and low latency on-chip network designs for

MPSoCs. VLSI process technology scaling has provided ever more transistors with both

higher performance and lower power consumption. As VLSI technology moves forward,

however, many positive VLSI scaling trends are being replaced with negative trends [1].

Transistor leakage, leading to greater power consumption, has forced a practical plateau

in VLSI clock frequency based performance gains. Instead, increasing transistor density is

yielding performance gains solely through growing the number of cores integrated on a sin-

gle chip, placing a great burden on the communication between those cores. Therefore, on-

chip networks have become more widely accepted for the communication of many cores on

a chip such as RAW, TRIPS, Teraflop, and Tilera [2–5]. Dally et al. advocated routing pack-

ets not wires since packet switching can surmount many of difficulties in on-chip communi-

cations [6]. Our contribution in this work also contains two novel NoC designs, WaveSync,

an low-latency focused network-on-chip architecture for globally-asynchronous locally-

synchronous (GALS) designs and a simultaneous dual-path routing (SDPR) scheme uti-

lizing path diversity present in typical mesh topology network-on-chips. SDPR is akin to

having a higher link width but without the significant hardware overhead associated with

simple bus width scaling.

The last contribution of this thesis is data processing accelerator designs for embedded

SoCs. Next generation SoCs will include sensors for detection, acceleration, momentum,

location, heading, temperature, pressure, sound and light. These sensing and data process-

ing components can be designed by micro-controller, dedicated hardware, or digital signal

processor. However, digital signal processing (DSP) or micro-controller units have limits

on performance and power necessary for processing input data captured by multiple sen-

3

sors on a sensor network. We need a dedicated hardware or accelerator to overcome this

limits. This thesis aims to provide a solution for a data processing and control logic design

that initiates a new sensor SoC system for radiation detection generating data at or above

Peta-bits-per-second level. We also present a DSP accelerator supporting multiple multiply

and accumulates (MACs), FFT, FIR, and 3-D cross product operations used in fundamental

signal processing for embedded systems.

A. Joint Source Channel Decoding Method for Low-Power Portable and Wireless SoC

Systems

This section presents three JSCD-based low-power decoding solutions for low-power portable

and wireless SoC systems using a novel UEP scheme. A UEP scheme utilizes prioritized

data information; the aim is to protect more important data from errors. This is in contrast

to an equal error protection (EEP) scheme where all received frames are treated equally.

Xiao, Stoufs, Parrein, and Yip et. al. present the efficiency of UEP schemes over tra-

ditional EEP schemes on multimedia video transmission [7–10], showing that UEP can

significantly outperform EEP on average.

The first and second designs are developed for portable applications over AWGN chan-

nels, configured by exploiting importance and error severity in each data frame. These

proposed JSCD schemes are based on LDPC and H.264 video decoding schemes. The

first JSCD is devised to operate at a fixed frame-decode-time loop regardless of the quality

of data received. Within each loop, optimal sub frequencies and voltage levels are dy-

namically configured to minimize the energy spent for each frame. This design meets the

real-time requirements of motion picture reproduction and minimizes overall power con-

sumption. The design is synthesized using TSMC 0.13 micron technology and is capable

of jointly decoding QCIF (176x144) video stream at 30 frame per second (FPS) over wire-

4

less channel with 80% code rate. As a result, up to 39% power reduction can be achieved

in Foreman, Akiyo, and Mobile, when compared to a fixed-iteration-based joint source

channel decoder.

The second design presents a low-power design scheme to lower baseband energy

consumption using JSCD and DVFS. The aim of this work is to find a near-optimal config-

uration search algorithm to maximize energy utilization while receiving and reproducing a

video stream through LDPC-H.264 joint decoding without significant loss in video quality.

UEP is exploited to obtain the optimal number of iterations for each priority type. The

decreased number of iterations reduces power consumption with DVFS that scales voltage

and frequency [11]. Using the proposed method, we determine LDPC decoding config-

urations that achieve minimum energy consumption while satisfying pre-specified image

quality at the receiver. The implementation results yield 17%, 37%, 52% power reduc-

tions with 0, 0.3, 1.1 dB peak signal to noise ratio (PSNR) degradations at 3.6dB SNR in

Foreman test stream respectively.

In the third solution, we propose a low-power MIMO and H.264 video joint detec-

tor/decoder design that minimizes energy for portable, wireless embedded systems. The

design combines the UEP scheme with a variable fidelity of MIMO detection, making per-

formance and energy consumption tradeoffs as required by the importance of each coded

video frame. Using search space reduction/truncation strategies in MIMO detection along

with H.264 data partitioning (DP) method, we determine the decoding configurations that

yield minimum energy consumption for pre-specified image qualities at the receiver. The

synthesis result of this scalable MIMO detector using a 45nm technology library yields

52%, 57%, and 58% energy reductions at 24dB SNR in Foreman, Akiyo, and Mobile test

streams respectively. The tradeoff is negligible 0.3dB degradation in PSNR.

5

B. Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design

Multimedia components on an NoC/SoC often need to communicate with modules that

may be placed far away from them on the chip. For instance, channel decoding part may

be located on one part of the chip while the DSP processor may be located several hops

away from it since design constraints necessitate it be placed close to other modules with

which communication takes places more frequently. Signal reliability is a major issue

for the transfer of multimedia streams between modules placed several hops apart in NoC

settings because transmission of data over several hops is especially vulnerable to sin-

gle integrity loss and delay uncertainty. For on-chip interconnection, it takes long time to

charge/discharge large capacitances and the propagation delay is further deteriorated by the

coupling capacitances. While there are several factors contributing to reliability degrada-

tion in on-chip interconnection, crosstalk induced errors still constitute a majority. Existing

information theoretic models for soft errors grossly underestimate the impact of crosstalk

errors in interconnections in advanced technologies. Individual schemes for crosstalk pre-

vention and error correction on bus may not be sufficient to guarantee acceptable error rates

for video applications.

In this dissertation, we propose link-level quality-of-service (QoS) using UEP for a

low-power on-chip network. We explore the possibility of providing different levels of

protection against crosstalk induced errors for different priority video data on NoC links by

combining several crosstalk avoidance and error correction schemes to find the combination

which provides acceptable performance at the least power expense. In the results, UEP on

links using TransSync, TransSync 2 lines and RecSync schemes have been demonstrated

for a video decoder on an NoC with H.264 video test streams. For Akiyo test stream

transmitted over 3mm long link wires, UEP can lead to as much as 20% of power savings

with 3dB of degradation in average PSNR.

6

We also propose two on-chip interconnect designs for minimum latency NoCs. Al-

though on-chip interconnects or network-on-chips (NoCs) are trivially scalable and pro-

vide very high bandwidth, the worst-case, no-load latency to traverse network can be high

as well; approaching the access latency of off-chip DRAM for a 64-node, 2D mesh net-

work. The primary cause of this high latency is the traversal of multiple router pipeline

stages at each node in the network. Inter- and intra-processor latency has been shown to

place direct constraints on system performance, and hence there is a critical need to address

interconnect latency for future many-core CMP architectures to be viable [12–14].

The first low-latency on-chip network design is WaveSync, an low-latency focused

network-on-chip architecture for globally-asynchronous locally-synchronous (GALS) de-

signs. WaveSync facilitates low-latency communication leveraging the source-synchronous

clock sent with the data, to time components in the downstream routers, reducing the num-

ber of synchronizations needed. WaveSync accomplishes this by partitioning the router

components at each node into different clock-domains, each synchronized with one of the

the orthogonal incoming source synchronous clocks in a GALS 2D mesh network. The

data and clock subsequently propagate through each node/router, synchronously, until des-

tination is reached regardless of the number of hops it may take. As long as the data

travel in the path of clock propagation, and no congestion is encountered, it will be prop-

agated without latching, as if in a long-combinatorial path, with both the clock and the

data accruing delay at the same rate. Result is that the need for synchronization between

the mesochronous nodes and/or the asynchronous control associated with a typical GALS

network is completely eliminated. We also evaluate the performance of a near-half-cycle

synchronizer architecture to reduce synchronization latency when synchronization is un-

avoidable, further reducing per-hop latency. The proposed WaveSync design results in an

improvement in average latency of 68% over the baseline GALS and 55% over ABC router

across SPLASH-2 benchmark traffic.

7

In the second on-chip interconnect design, we propose a simultaneous dual-path rout-

ing (SDPR) scheme. NoCs have been adopted by emerging multi-core designs as a flexible,

scalable, and high power efficient solution. Deterministic routing algorithm such as DOR

is widely used in a 2D mesh NoC because it provides simple algorithm and low-cost imple-

mentation. However, its performance in latency can be insufficient due to no path diversity.

We observe that a significant component of latency in NoCs is due to the serialization of

long packets. Increasing the data/link widths across the network may considerably alleviate

this problem but is a costly proposition both in terms of device area and of power. Alter-

natively, we propose a dual-path router architecture that efficiently exploits path diversity

to attain low latency without significant hardware overhead. By 1) doubling the number of

injection and ejection ports, 2) splitting packets into two halves, 3) recomposing routing

policy to support path diversity, and 4) provisioning the network hardware design, we can

considerably enhance network resource utilization to achieve much higher performance

in latency. The SDPR architecture statically exploits the path diversity in the network to

improve link utilization. In particular, the proposed SDPR technique mitigates the lack

of path diversity and utilization of DOR by splitting a packet to two halves that involve

the same source-destination address and by injecting them simultaneously in parallel via

separate and independent orthogonal two paths (i.e. XY and YX). Our experiment results

show that the proposed simultaneous dual-path routing (SDPR) scheme outperforms the

conventional dimension order routing (DOR) technique across all workloads with 31-40%

average latency reduction on long packets running on a 49-core CMP, when compared to

the baseline XY DOR router. The fully synthesizable SDPR router occupies 30.89mW

power and 0.091mm2 area with 3.7% and 4.7% power and area overheads over the baseline

router respectively.

8

C. Data Processing Accelerator Architecture for Low-Power SoCs in Distributed Sensor

Network Systems

We presents two hardware accelerators for low-power SoCs on a sensor network. The first

accelerator shows a data processing and control logic design for a new radiation detection

sensor system that can generate data at or above Peta-bits-per-second level. The logic

consists of novel data processing components and operation strategies including low-power

and network-on-wafer solutions. The aim of this design is to achieve subtle data reduction

before the information is ferried to the network, and redundant processing and channels to

minimize the loss of information. The result is a radiation detection system that can operate

at scan-rate of billion frames per second. Simulation results show that the intended clock

rate is achieved within the power target of less than 200mW.

In the second design, we propose a low-power digital signal processing (DSP) ac-

celerator supporting multiple multiply and accumulates (MACs), FFT, FIR, and 3-D cross

product operations used in fundamental signal processing for embedded SoCs. Power con-

sumption is a major concern as demands on the application processor to keep up with a

constant stream of sensor data diminish opportunities for power conserving sleep. A low-

power sensor hub SoC capable of managing the various sensors, aggregating and filtering

sensor signals, and notifying the application processor of significant events is needed. Dig-

ital signal processors are widely used to support this data processing for sensor hubs due

to the flexible programmable ability and powerful data processing, but power consumption

of DSPs are relatively higher than dedicated hardware accelerators. This paper presents a

low-power DSP accelerator design satisfying both requirements of data processing ability

and low-power consumption for sensor hub SoCs. In the evaluation of the proposed design,

the DSP accelerator synthesized on TSMC 65nm worst case library takes 2080 cycles for

256-point complex FFT, consuming 12.35mW power and 0.167mm2 area at 333MHz.

9

The rest of this paper is organized as follows: Chapter II discusses the proposed joint

source and channel decoding work. Chapter III discusses our proposed NoC designs aiming

to enhance performance in latency. Chapter IV presents data processing accelerator designs

and implementations for low-power embedded SoCs. Finally, we conclude and present our

future work in Chapter V.

10

CHAPTER II

JOINT SOURCE CHANNEL DECODING METHOD FOR LOW-POWER PORTABLE

AND WIRELESS SOC SYSTEMS

H.264/AVC standard provides some error resilience features for unequal error protection

such as flexible macro-block ordering (FMO), redundant slice, and data partitioning (DP).

Thomos et al. present that the use of FMO associated with a UEP scheme outperforms

classical H.264/AVC transmission schemes in terms of decoded video quality [15]. The

utilization of DP in H.264/AVC can yield a lower percentage of entirely lost frames [16].

An extensive study of prioritization and layering techniques for H.264/AVC shows that the

combination of DP, turbo codes (TC), and flexible modulation techniques outperforms the

combination of DP and TC only [17].

JSCD architectures which combine LDPC and H.264 video coding for UEP are pre-

sented by Guo, Wang, Qi, Kumar, and Yang et. al. [18–22]. Guo and Wang et. al. propose

LDPC-based unequal error protection algorithms using data partitioning [18,19]. The idea

of the LDPC-based unequal error protection is the high priority data are allocated to low

code rate, and low priority data are allocated to high code rate to protect more important

partitions from channel errors. Qi et. al propose a dynamic rate selection forward error

correction (FEC) scheme utilizing LDPC codes and Reed-Solomon (RS) code for robust

video communication [20].

The studies above focus on improving received data quality or robustness of trans-

mission using UEP. In contrast, Wang, Lu, and Zhang et al. consider minimizing both

processing power for JSCD and transmitting energy for constrained video quality with RS

channel coding [23–25]. Eisenberg et al. propose an unequal iterative decoding approach

minimizing the power consumption of a channel decoder with data partitioning and turbo

decoding [26]. Higher number of iterations for turbo decoding is used for high priority data

11

to minimize the receiver power while meeting distortion constraints specified by the video

decoder at a given channel rate.

Another method to reduce the power consumption of LDPC decoding is presented by

Dielissen et. al. [27]. That method exploits scalable sub-block parallelism to achieve ef-

ficient LDPC decoding implementations for DVB-S2, enabling lower operating frequency

by reducing the parallelism of the LDPC decoder instead of using UEP. However, the scal-

able parallelism cannot be varied according to the demand of tradeoffs between decoded

data quality and low-power requirement.

Wang et. al. present LDPC decoder architecture improving power efficiency through

adaptively adjusting the number of iterations of LDPC decoding to meet a required quality

for each incoming frame [28–30]. The advantage of this approach is that the LDPC en-

coder/decoder does not require rate adaptation, thereby simplifying encoder/decoder hard-

ware solutions. The early termination of the iterative process is determined by the con-

straints of check errors during the decoding of each individual frame. This scheme leads to

energy reduction, compared to a fixed iteration technique.

To mitigate the bandwidth limit, MIMO wireless systems that offer higher through-

put when compared to single input and single output (SISO) wireless systems have been

developed [31]. Thus, to accommodate the increasing capabilities of mobile multimedia

devices and services, a video over MIMO joint decoding design using UEP can improve

energy efficiency and error robustness in these devices. MIMO-based UEP schemes are

presented in [32–35]. These studies demonstrate that MIMO with UEP improves not only

the capacity of the system but also error resilience compared to EEP and overcomes fre-

quency selective effects of broadband wireless channels. Yang et. al. propose a hybrid

MIMO system, which consists of spatial multiplexing (SM) for low priority data and spa-

tial diversity (SD) for high priority data to achieve better performance in terms of BER and

PSNR [32]. Liu et. al. similarly divide H.264 information into two parts according to prior-

12

ity as well [33]. Li et. al utilize two modes, transmission diversity (TD) mode for high error

protection and spatial multiplexing (SM) mode for high data rate [34]. These researches

use the unequal number of information bits in their channel error correction codes.

The following sections discuss the proposed JSCD schemes using a low-power LDPC

decoding architecture, UEP-based configuration set search algorithm, H.264 data partition-

ing, and DVFS. We also propose a novel MIMO-H.264 JSCD scheme using the UEP-based

configuration set search algorithm to reduce power on MIMO detection.

A. Joint Source Channel Decoding Method Using Unequal Error Protection and LDPC

Check Error Levels

In this section, we present the proposed UEP scheme using a low-power LDPC decod-

ing architecture, H.264 data partitioning, and DVFS. The approach includes a partitioning

scheme that labels each frame into high, medium, and low priority data. The proposed UEP

scheme assigns the unequal number of LDPC decoding iterations to each frame according

to the partitioning information on the fly. The aim is to treat each frame with only appro-

priate degree of error protection, thereby minimizing energy spent for each decoding cycle.

The level of decoding effort is then further scaled by the amount of additive noise received

from a gaussian channel. Our overall aim is to provide maximum battery life while receiv-

ing and reproducing video stream without performance loss in video quality. Therefore,

we have explored the tradeoffs between the degradation of reconstructed video quality and

the amount of energy reduced by lowering decoding efforts. To further lower power dissi-

pation, our proposed scheme dynamically switches decoder frequency and voltage levels.

DVFS is used to guarantee data rates and constant processing time of each decoding frame

as well as to achieve desired energy reduction [36, 37].

We present a UEP-LDPC decoding architecture using a DVFS technique for the en-

13

Fig. 1.: Variable supply voltage logic

ergy reduction. This technique is employed for adjusting frequency (FreqLDPC) and volt-

age (VDDL) to supply optimal power to the LDPC decoder. Power consumption of a digital

CMOS circuit is

P = α ·Ce f f ·V 2 · f (2.1)

where α is switching factor, Ce f f is effective capacitance, V is operating voltage, and f is

operating frequency. Energy required to run a task during time T is

E = P ·T ∝ V 2. (2.2)

From (2.1) and (2.2), lowering V yields a quadratic reduction in energy consumption. A

variable voltage scheme [11] is presented as shown in Fig. 1. In this figure, fctr is a main

clock, and a supply voltage is generated such that a replicated critical timing path is stably

clocked at fctr.

Fig. 2 illustrates the proposed JSCD architecture based on LDPC and H.264 video

coding for UEP with a power-aware scheme that configures adaptively the frequency and

voltage levels. Firstly, a video stream is encoded into packets with varying priority levels at

14

H.264 Encoder LDPC Encoder
BPSK

Modulator

AWGN Channel

H.264 Decoder LDPC Decoder
BPSK

Demodulator

Video

Source

Received

Video

DVFS

Controller

Vdd, freqVdd, freq

Error level

Importance

Fig. 2.: Proposed joint source-channel decoding scheme

fixed length by H.264 data partitioning. Secondly, the stream is coded by a LDPC encoder

and transmitted over AWGN channels through binary phase shift keying (BPSK) modula-

tion. Next, an unequal error protection technique provides a different level of protection for

each frame in a LDPC decoding process. Lastly, a received video stream is reconstructed

by a H.264 decoder with error concealment, and then the quality degradation of the re-

ceived video is measured by peak signal to noise ratio (PSNR), typically used in an image

quality estimation.

Dynamic voltage and frequency scaling is used to guarantee data rates and constant

processing time of each decoding frame as well as to achieve desired energy efficiency [36,

37]. An illustration of this is shown in Fig. 3. In Fig. 3(a), typically a joint source channel

decoder operates at full voltage level for a time duration necessary to successfully decode a

frame. In an early terminated iteration approach with clock/power gating techniques [38],

wider idle intervals than the intervals of Fig. 3(a) occur between LDPC decoding tasks as

shown in Fig. 3(b). In each idle period, the fixed-voltage decoder goes to clock gating mode

to reduce power dissipation until new frame data arrives. This process is repeated for each

subsequent frame. Alternatively, our DVFS approach estimates the number of LDPC de-

coding iterations necessary to accommodate the importance of the frame. Then it schedules

15

Fixed

Iterations

Fixed

Iterations

(A)

Fixed

Iterations

(B)

Fixed

Iterations

Fixed

Iterations

0 1 2 3 4 5

IdleIdleIdleIdle

0 1 2 3 4 5

(A) (B)
Variable

Iterations

Variable

Iterations

Clock/power gating

Idle Idle IdleIdle Idle

F
re

q
u

en
cy

,

V
o
lt

a
g
e

F
re

q
u

en
cy

,

V
o
lt

a
g
e

Sel 4

Sel 3

Sel 2

Sel 1

Fixed frequency, voltage supply (a)

Fixed level

Fixed level

(A)
(B)

Variable Iterations
Variable Iterations

0 1 2 3 4 5F
re

q
u

en
cy

,
V

o
lt

a
g
e

Adaptive frequency, voltage selection using DVFS for LDPC decoder (c)

Time

Time

Time

Fixed frequency, voltage supply with clock/power gating (b)

(A)

Low decoding effort

(B)

Medium decoding

effort for error

concealment

High decoding

effort for error

concealment

0 1 2 3 4 5F
re

q
u

en
cy

,
V

o
lt

a
g
e

Adaptive frequency, voltage selection using DVFS for H.264 decoder (d)

Time

Sel 4

Sel 3

Sel 2

Sel 1

Fig. 3.: Performance scheduling for energy reduction

exactly that number of iterations until the time point at which next frame is due, reducing

the voltage level appropriately for the reduced frequency. This is shown in Fig. 3(c). To

support this predictive scheduling of decoding iterations, a combined method is used that 1)

estimates the severity of error in each frame by sampling the number of failed parity check

equations from the LDPC decoder and 2) assesses the ”importance” information associated

with each frame during H.264 coding. Fig. 3(d) illustrates the dynamic voltage-frequency

adjustment for the H.264 decoder.

The video decoder employs concealment techniques to mitigate the effects of packet

16

loss [16, 39, 40]. In the video decoder, high error data needs more decoding efforts to con-

ceal and recover the errors while providing acceptable video quality. High priority and

check error frames, similarly, require high protection of data over errors. Therefore, it is

necessary to exploit more decoding efforts either. In Fig. 3, (A) uses less number of itera-

tions than (B) for LDPC decoding since it is involved in less error environment (less check

errors) and less importance; it also consumes less video decoding power. An important

real-time constraint for this process is that each frame should complete decoding within a

fixed frame-cycle to support constant frame rate in video reproduction. Simulation results

of the joint source-channel decoder design with DVFS based on priority and check errors

point out clearly that the proposed UEP scheme reduces power dissipation over AWGN

channels without performance loss in video quality.

We also propose a near-optimal configuration search method to maximize energy uti-

lization while receiving and reproducing a video stream through LDPC-H.264 joint decod-

ing without significant loss in video quality. An empirical analysis for the configurations

of LDPC decoding is studied to quantify the trade-off between the number of decoding

iterations and peak signal to noise ratio (PSNR) associated with the reconstructed image

quality. In this analysis, UEP is employed to determine the optimal number of iterations

for each priority type. The determined iterations are used during runtime to schedule the

LDPC decoding. Low priority data allows less iterations in the LDPC decoding process;

however, the lowered number of iterations leads to degradation in PSNR performance, but

saves energy when used with DVFS that scales voltage and frequency.

17

1. Background: H.264 Unequal Error Protection and LDPC Channel Decoding

a. H.264 Video Coding

H.264 overview: H.264 is a video compression standard known as MPEG-4 Part 10, or

MPEG-4 advanced video coding (AVC). It is developed as a joint standard by the ITU-T

Video Coding Experts Group (VCEG) and the ISO/IEC Moving Picture Experts Group

(MPEG). H.264 video coding standard includes the same basic functional elements as pre-

vious standards (MPEG-1, MPEG-2, MPEG-4 part 2, H.261, and H.263) such as quantiza-

tion for bit-rate control, transform for reduction of spatial correlation, motion compensated

prediction for reduction of temporal correlation, and entropy encoding for reduction of

statistical correlation. The significant improvements in H.264 involve intra-picture predic-

tion, a new 4x4 integer transform, multiple reference pictures, variable block sizes and a

quarter-pel precision for motion compensation, a de-blocking filter, and improved entropy

coding.

H.264 unequal error protection: Multimedia data is especially vulnerable to channel er-

rors due to the predictive coding techniques used in compression schemes such as H.264.

Moreover, different portions of video bitstream have different importance to the recon-

structed video quality, thereby giving rise to different quality-of-service (QoS) require-

ments. In order to prevent the degradation caused by errors, one of error resilience tech-

niques is layered video transmission with unequal error protection. UEP provides different

levels of protection to the different parts of video data that have unequal degrees of impor-

tance. Basically, UEP changes the distribution of errors without incurring extra resource

consumption. The aim is to reduce bit errors in more important data. To achieve UEP, a

layered video coding scheme needs to be employed to encode the video source into two or

more layers with different priorities. Currently, layered video coding is supported by major

video compression standards, such as MPEG-2, MPEG-4 and H.264. Data partitioning is

18

Table I.: H.264 data partition and prioritization

Priority NAL Type NAL Payload

2 MB headers, MVs, etc
5 IDR picture

Priority A 6 SEI
7 SPS
8 PPS

Priority B 3 Intra residual

Priority C 4 Inter residual

the simplest form of layered coding. It provides the ability to separate more important and

less important syntax elements into different packets of data, and enables the application of

unequal error protection (UEP) and other techniques for improving error-loss robustness.

In this dissertation, we used the H.264/MPEG-4 AVC (Advanced Video Coding) stan-

dard developed by the joint video team (JVT) of ISO/IEC and ITU-T (Telecommunication

Standardization sector) and the reference software JM14.2 of H.264 as a source coder for

the video decoding process [41, 42]. At the source side, The data partitioning is used to

obtain layered video compression data. At the receiver, because of error bits, the H.264

decoder reconstructs video with error concealment. This coding standard covers two lay-

ers, namely, video coding layer (VCL) and network abstraction layer (NAL). Table. I

shows NAL units containing the coded video data partitioned into priorityA, priorityB, and

priorityC for the UEP scheme. We exploited the data partitioning technique to prioritize

the NAL units into three priority groups where the units in each priority group contain cer-

tain coded video elements of same importance to the reconstructed video quality. The first

part (priority A) contains the most important data, namely, macro blocks headers, motion

vectors (MVs), quantization parameters, IDR picture, and parameter sets. Intra residual

data are in the second partition (priority B), and inter residual data are in the last partition

19

(priority C). Since high important and check error frames demand high protection and error

concealment for data reconstruction over errors, it is necessary to exploit more decoding

efforts. The actions at the video decoder when losing some parts of DPs are described as

follows [39]:

• The loss of C (available A and B): conceal using MVs from partition A and texture

from Partition B; intra concealment is optional.

• The loss of B (available A and C): conceal using MVs from partition A and inter info

from Partition C; inter texture concealment is optional.

• The loss of A (available B and/or C): drop partitions B and C, and use MVs of the

spatially above macro block (MB) row for each lost MB.

For instance, if DP B is lost, the motion vectors of DP A and the inter information of DP C

can be used for the concealment. Inter texture concealment is optional. We quantified the

impact of error in each of these groups empirically.

The quality of reconstructed video frames can be measured by PSNR. PSNR was

originally designed to measure distortion in still images due to effects such as lossy com-

pression, commonly used for motion pictures. PSNR is can be calculated by Eqn. (2.3)

and (2.4).

PSNR = 10log10
2n−1
MSE

(2.3)

MSE =
1

M×N ∑
x,y
[p(x,y)− p′(x,y)]2 (2.4)

where MSE is mean square error computed based on the pixel values of original image

(p(x,y)) and reconstructed image (p′(x,y)). n is the number of bits describing the color of

each pixel, and M and N represent the width and height of the image respectively.

20

H =



1 0 0 1 0 0 1 0 0
0 1 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0 1
1 0 0 0 0 1 0 1 0
0 1 0 1 0 0 0 0 1
0 0 1 0 1 0 1 0 0


(a) H matrix

Vv1 Vv2 Vv3 Vv4 Vv5 Vv6

Vc1 Vc2 Vc3 Vc4 Vc5 Vc6 Vc7 Vc8 Vc9

(b) Tanner graph

Fig. 4.: An example of (dc,dv) = (3,2) regular LDPC

b. LDPC Coding

LDPC code is an error correcting block code originally proposed by Gallager in 1960’s

and rediscovered in late 1990’s [43, 44]. They describe an iterative two-phase message

passing algorithm (TPMP) which involves check-node update and variable-node update as

two phase schedule. This code is defined by a sparse parity check matrix H that consists

mostly of 0’s and described frequently by Tanner graph [45].

In the H matrix, each column contains a small fixed number dv of 1’s, and each row

contains a small fixed number dc > dv of 1’s. Fig. 4 illustrates an example H matrix of

(dc,dv) = (3,2) regular LDPC code and corresponding Tanner graph. Tanner graph is a

bipartite graph such that its vertex set V can be partitioned into two disjoint subsets, the set

of check nodes (Vc) and the set of variable nodes (Vv). The element of H is 1 if and only

21

if there is an edge in the edge set connecting the check node Vc and the variable node Vv.

The block length of this code is n which is equal to the number of columns in the H matrix.

Suppose that the number of data bits before the channel encoding is l, then the number of

rows of this H matrix is m = n− l. Rate of this code is defined as l/n = 1− dv/dc. The

code words consist of all one-dimensional row vectors that span the null space of the parity

check H matrix. The number for dv and dc should be no less than 3 and 6, respectively,

for good coding performance. Another type of LDPC code is irregular codes, in which the

number of 1’s in each row and column is not constant.

The LDPC decoder is typically set to run for data convergence until a prescribed max-

imum number of iterations depending on the code rate. However, the actual number of

decoding iterations varies from frame to frame. As a result, the decoder often remains

idle since for most frames, the decoding process ends far earlier than the maximum num-

ber of iterations. Thus it is not power efficient. We based our design on recently developed

dynamic control to improve the system efficiency by adjusting maximum number of decod-

ing iterations. This design is built on the early termination technique satisfying the required

energy constraint for each incoming frame. There is research on the early termination of

frame that can not be decoded even if the maximum iterations are applied [46, 47]. In both

papers, the early termination of the iterative process is determined by checking the mes-

sages during the decoding. Their attempts are to dynamically switch off the hardware when

no additional iterations will amount to improvement in decoding performance. Wang et al.

present an early termination scheme for layered LDPC decoders devised by evaluating the

number of checks in error for each frame [28–30].

To update check nodes, various algorithms are used such as sum of products (SP),

min-sum (MS) and Jacobian based BCJR (named after its discoverers Bahl, Cocke, Jelinik

and Raviv). MS is an approximation of the SP belief propagation algorithm. A quantita-

tive performance comparison for different check updates is given by [48]. Their research

22

shows that the performance degradation of offset based min-sum with 5-bit quantization is

less than 0.1dB in SNR as compared with that of floating point SP and BCJR. Mansour et

al. introduce the concept of turbo decoding message passing (TDMP), called as layered de-

coding, using BCJR for their architecture-aware LDPC (AA-LDPC) codes [49,50]. TDMP

yields twice throughput and significant memory benefits, reducing the number of iterations

required by up to 50% without performance loss when compared to TPMP. This scheme is

later studied and applied for different LDPC codes using the sum of products algorithm and

its variations in [51]. Our paper presents a JSCD scheme using the layered LDPC decoding

based on the offset-min-sum algorithm, early termination strategy, H.264 data partitioning

technique for UEP, and DVFS over AWGN channels.

Two phase message passing LDPC decoding: The iterative two phase message passing

algorithm is computed in two phases [48,52]. One is check node processing and the other is

variable node processing. In the check node step, each row of the parity matrix is checked

to verify that parity check constraints are satisfied.

R(i)
mn = δ

(i)
mn max(κ(i)

mn−β ,0) (2.5)

κ
(i)
mn = |R(i)

mn|= min
n′∈N(m)\n

|Q(i−1)
n′m | (2.6)

For the ith iteration, Q(i)
nm is the message from variable node n to check node m, R(i)

mn is the

message from check node m to variable node n. A positive constant β depends on the code

parameters [48]. The sign of check-node message R(i)
mn is defined as

δ
(i)
mn = (∏

n′∈N(m)\n
sgn(Q(i−1)

n′m)) (2.7)

In the variable node step, processing the probability will be updated by summing up the

other probabilities from the rest of the rows and the a priori probabilities from the channel

23

output.

Qn = L(0)
n + ∑

m∈M(n)\m
R(i)

mn (2.8)

where the log-likelihood ratio of bit n is L(0)
n = yn. In the last step, a hard decision is taken

by setting x̂n = 0 if Pn(xn)≥ 0, and x̂n = 1 if Pn(xn)< 0. If x̂nHT = 0, the decoding process

is finished with x̂n as the decoder output; otherwise, go to the first step.

Pn = L(0)
n + ∑

m∈M(n)
R(i)

mn (2.9)

If the decoding process does not end within predefined maximum number of iterations,

itmax, stop and output an error message flag and proceed to the decoding of the next data

frame.

Turbo decoding message passing LDPC decoding: In contrast with two phase message

passing algorithm, where all check-nodes are updated simultaneously in each iteration, lay-

ered decoding (or called as TDMP) views the H matrix as a concatenation of j = dv sub-

codes. One of advantages of layered decoding is that the LDPC decoding can be performed

at each layered level. This increase the efficiency of the iterative decoding process. Math-

ematically, the layered decoding algorithm can be described as shown in equation (2.10)-

(2.13)

∀i = 1,2, ..., itmax,[Iteration loop]

∀l = 1,2, ...,dv,[Sub-iteration loop]

∀n = 1,2, ...,dc,[Block column loop]

−→
R (0)

l,n = 0,
−→
P n =

−→
L (0)

n (2.10)

[
−→
Q (i)

l,n]
S(l,n) = [

−→
P n]

S(l,n)−−→R (i−1)
l,n (2.11)

24

−→
R (i)

l,n = f ([
−→
Q (i)

l,n′]
S(l,n′)) (2.12)

[
−→
P n]

S(l,n) = [
−→
Q (i)

l,n]
S(l,n)+

−→
R (i)

l,n (2.13)

The vectors
−→
R (i)

l,n and
−→
Q (i)

l,n represent all the R and Q messages in each block of the H

matrix. s(l,n) denotes the shift coefficient for the block in lth block row. f () denotes the

check-node processing, which can be done using min-sum algorithm. Due to the structure

of layered LDPC H matrix, the updated sum [
−→
P n]

S(l,n) in each block column n needs to

go through either a) a cyclic down shift of n− 1 or b)cyclic up shift of (j− 1)n if we do

layered decoding.

2. Proposed Low-Power JSCD Scheme Using DVFS

The proposed layered LDPC code is developed on the adaptive decoding scheme described

in [29, 30, 38]. The number of iterations for LDPC decoding is assigned by the threshold

of check errors and importance (priority). There are two iteration parameters: inner loop

iterations (iter=outer loop iterations × the number of layers(dv)) and outer loop iterations

(i = diter/dve) known as ordinary LDPC iterations. For example, 12 iterations in the reg-

ular LDPC decoder are completed at the same time as 12×5 = 60 sub-iterations when dv

equals 5 in the layered LDPC decoder. The number of sub-iterations depends on the degree

of check errors since more check errors (severity of noise impairment) require more decod-

ing efforts. The priority information of the incoming frame thus determines the number of

iterations.

Next, the adaptive LDPC decoding routine is combined with UEP. The iterative de-

coding routine runs until iter reaches the sub-iterations. In the decoding process, we used

three threshold parameters (cErrT hre1, cErrT hre2, cErrT hre3), and these produce four

25

Table II.: Check error level for each error scope

Check error level Check error scope

1 ∞∼ cErrT hre1
2 cErrT hre1 ∼ cErrT hre2
3 cErrT hre2 ∼ cErrT hre3
4 cErrT hre3 ∼ 0

Table III.: Parameters of sub-iterations (IterError level,Priority)

Check error level PriorityA PriorityB PriorityC

1 Iter1,A Iter1,B Iter1,C
2 Iter2,A Iter2,B Iter2,C
3 Iter3,A Iter3,B Iter3,C
4 Iter4,A Iter4,B Iter4,C

check error levels as shown in Table II. Combining the three priority (Table I) and the four

check error levels, there are twelve sub-iteration parameters (4 error levels × 3 priorities =

12), where each parameter requires its specific error coverage (i.e. decoding iterations), as

summarized in Table III. The three threshold values (cErrT hre1, cErrT hre2, cErrT hre3)

and necessary iterations (Table III) are determined by the empirical analysis of the check

error distributions, and stored in a look-up table in pre-processing. Furthermore, the analy-

sis of performance improvement and power consumption was studied to determine optimal

parameter sets. The details of this analysis are described in the results and discussion sec-

tion.

a. Runtime Process

For runtime decoding process, the joint source-channel encoder inserts NAL unit type bits

of the next frame into the current frame data. When the very first frame comes into the

LDPC decoder, it decodes the frame using the maximum number of sub-iterations, and

26

LDPC decoder

NAL
Type
Parser

cHT

Voltage
Selector

Frequency
Selector

DVFS Controller

Importance cHT

Vddl

Freqvdec

FreqLDPC

H.264
decoder

Received
Frame

Fig. 5.: DVFS controller

NAL type parser extracts the NAL unit type which denotes the priority of the next frame.

The next frame incoming, the LDPC decoder estimates check errors (cHT) and reads the

check error thresholds from the look-up table to decide a corresponding check error level

according to the check errors. By the priority information acquired from the previous frame

decoding and the check error level, the decoder can select the number of sub-iterations

from the memory and decode the frame at runtime. However, three check error threshold

values and twelve sub-iterations determined by the probability density function of number

of check errors in the pre-processing simulation are not updated at runtime.

b. Low-Power JSCD Implementation

We present a low-power joint source-channel decoder architecture and its implementation

based on the UEP scheme and the adaptive decoding architecture. Fig. 5 illustrates the

block diagram of DVFS controller composed of frequency selector and voltage selector.

27

In this implementation, we use clock division to select frequency on the fly. This requires

no additional delay. For voltage, we have multiple power rails that we switch from. This

requires more than one clock cycle to stabilize. However, as long as minimum voltage level

to transition up to (or down to) a next selected frequency is met, voltage level can trail that

of enveloping minimum voltage level. The frequency selector selects the frequency values

(FreqLDPC, FreqV DEC) based on importance information extracted by NAL type parser and

check errors (cHT). The corresponding voltage levels (Vddl) for the LDPC decoder and

for the video decoder are then chosen by the voltage selector. The power consumption of

both decoders can be minimized by the DVFS logic while meeting the real-time constraints

required to decode a frame. The DVFS logic operates in Vddl domain, and it is characterized

by following Eqn. (2.14) and (2.15) [28].

Ptotal = Pswitching +Psc +Pleakage

= αCL∆VVdd fclk + IscVdd + IleakageVdd (2.14)

τ =
1

fclk
=

CLVdd

Idsat
∝

Vdd

(Vdd−Vth)1.3 (2.15)

where Pswitching shows the switching power, and CL is the loading capacitance, fclk is the

clock frequency, and α is the node transition factor defined as the probability that a power

consuming transition occurs. Mostly, the voltage changing ∆V is the same as the supply

voltage Vdd . The short circuit power PSC is caused by direct-path short circuit current ISC

which arises when both NMOS and PMOS are turned on. Pleakage is the leakage com-

ponent of power, and Ileakage is the total leakage current in CMOS circuit. Furthermore,

Eqn. (2.15) represents the increment of circuit delay that brings the decrement of voltage

supply. The power consumption is estimated assuming 80% dynamic power and 20% static

power consumption.

28

LDPC decoder H.264 decoder

R select

Cyclic

Shifter

+

-

+

FS/R-sign

Frame

buffer

Q FIFO

CNU

1-61

+

Mux

+

+

P

Rnew

Rold

Q
shift

Channel

LLR

P
shift

Bitstream

Buffer

(Partition

Data

A,B,C)

Reconstruction

Entropy

Decoder

Inverse

Quantization
Reorder

+Inter Prediction

Intra Prediction
Deblocking

Filter

Decoded

Frame

+

+

NAL

DVFS Controller

Error level

Vddl,FreqLDPC
Vddl,FreqVDEC

NAL Type

Parser

Importance

Error Concealment

Fig. 6.: The proposed joint source-channel decoder Architecture

The proposed joint source-channel decoder architecture is shown in Fig. 6, including

layered decoding architecture and the real-time H.264/AVC baseline decoder. The left part

illustrates the architecture of LDPC decoder, and the H.264 decoder is in the right with

NAL stream interface to the LDPC decoder. The LDPC decoder includes two particular

modules in order to generate the importance information and the number of check errors

for UEP and DVFS. The first is NAL type parser, which analyzes NAL header bits to extract

NAL unit type. The parsed importance information (i.e. NAL type) is sent to the DVFS

controller for the selection of optimal frequency and voltage. The second is the check node

message block to provide the check error level to the DVFS logic.

Since the DVFS controller issues variable frequency and voltage to keep constant

decoding time, the input NAL stream is transmitted to the video decoder at constant rate.

The LDPC decoder in Fig. 6 is derived from the layered LDPC decoder implementation

proposed by [52]. The check node units (CNUs) in the figure take variable-node messages

29

associated with each check-node serially and compute the compressed check-node message

and index, in which this compressed check-node is the least magnitude of all variable-node

messages. These compressed check-node messages are called final states (FS), stored in FS

buffers. Check-node messages to each associated variable-node are sent out serially again,

selected by index and sign comparison, where the signs of check-node messages (R) are

stored in sign FIFO. As soon as the check-node message to the first connected variable-

node is ready, the corresponding sum message (P) can be computed, and the check error

value is sent to the DVFS unit for selecting adjustable voltage and frequency. Then the

variable-node message (Q) is ready for the check-node message processing of the next

sub-iteration. As such, each CNU operates on two layers of the H matrix simultaneously:

selecting check-node message for one layer and computing FS for the next layer.

The proposed H.264 video decoder is built on the open-source low-power H.264 base-

line decoder supporting QCIF resolution [53, 54]. We developed several minor modifica-

tions to incorporate the UEP scheme. These include additional data partitioning functions

and a fixed-length packetization unit. The video decoder is a fully hardwired design without

utilizing any general process cores, attributed with the following features:

• Utilization of pipelining and parallelism

• Hybrid and self-adaptive pipeline architecture

• Low cost intra/inter prediction unit

• Error concealment unit

• 5-stage pipelined de-blocking filter

• Clock gating to reduce power

30

Table IV.: H.264 encoder parameters and configuration

Source video stream Foreman, Akiyo, Mobile

The number of frames in each source 150

Frame rate 30 f rame/sec

Source resolution 176×144 (QCIF)

Quant. parameter 28

Table V.: Distributions of priority partitions in test video streams, Foreman, Akiyo, and

Mobile

Importance
Distributions(%)

Foreman Akiyo Mobile

PriorityA 44.8% 44.6% 47.1%
PriorityB 29.6% 40.4% 19.8%
PriorityC 25.4% 14.6% 32.9%

3. Results and Discussion

In this subsection, we evaluate the proposed, low-power joint source-channel decoding

scheme in terms of BER, PSNR, and energy reduction, discussing about the configuration

of heuristic parameters and evaluation results.

a. Simulation Environment

The environment of simulation is described with specific case studies in this section. Ta-

ble IV presents parameters and configuration for H.264 encoding. Three video streams,

Foreman, Akiyo, and Mobile were simulated to evaluate the performance and energy re-

duction of the proposed UEP approach. The distributions of the priority A, B, and C

partitions in the test video streams are shown in Table V. The distributions significantly

31

Fig. 7.: Probability density function of number of check errors

Table VI.: Check error threshold values (cHT) used in the simulation

#Case cErrT hre1 cErrT hre2 cErrT hre3

Case1 140 115 110
Case2 140 120 110
Case3 140 125 110
Case4 140 130 110
Case5 140 135 110

influence the decoding efforts because higher priority groups not only cause more itera-

tive computations but also spend more power. Each priority partition with partition sizes

b(q) = {bA(q),bB(q),bC(q)}, where the size of the partitions b(q), is directly controlled

by the applied quantization parameter (QP) q [16]. The parameters, q and channel coding

rates r = rA,rB,rC, can be constrained by a total bit-rate as

Nc(q,r) =
bA(q)

rA
+

bB(q)
rB

+
bC(q)

rC
≤ Nt (2.16)

where Nt denotes the total number of bits available for a certain video frame.

Fig. 7 illustrates the probability density function of the number of check errors to find

32

0 10 20 30 40 50 60
0

0.05

0.1

0.15

0.2

Number of decoding sub−iterations

P
ro

ba
bi

lit
y

Number of check errors >= 140
130 < Number of check errors <= 140
110 < Number of check errors <= 130
Number of check errors <= 110

Fig. 8.: Distributions of decoding sub-iterations for different number of check errors

the bounds of the check error thresholds in the layered LDPC code. In the LDPC code,

the H matrix was created by dc = 25, dv = 5, and p = 67, simulated on AWGN channels.

At a given SNR, the number of check errors for received data is consistent with Gaussian

distribution. We evaluated the probability density function of check errors at 3.0, 3.5,

and 4.0dB SNRs and determined the range of check error thresholds at 3.4-4.0dB SNRs

since the LDPC decoder yielded acceptable BER performance at the given SNRs (We will

show this in Fig. 9). Hence, cErrT hre1 and cErrT hre3, upper and lower bounds for the

thresholds, were set to be 140 and 110 where the probabilities of check errors appertained

to the section of high probability at 3.4-4.0dB SNRs (threshold window in Fig. 7). These

heuristic parameter sets are shown in Table VI. In this table, five sets of threshold triplets

(cErrT hre1, cErrT hre2,cErrT hre3) were tested for identifying an optimal threshold value

set in the UEP simulation.

Fig. 8 shows the distributions of decoding sub-iterations on various numbers of check

errors in the LDPC decoder. The average decoding sub-iterations (E) at the upper and

lower bounds (i.e. the numbers of check errors are 140 and 110) are 19.16 and 8.19, and

33

Table VII.: The number of sub-iterations used in the simulation

Check error level PriorityA PriorityB PriorityC

1 60 50 40
2 45 40 30
3 30 30 15
4 15 15 15

the corresponding standard deviations (σ) are 17.56 and 2.12 respectively. The E + 2σ

points are then 55 and 15. Based on the evaluation, we used 60 and 15 for the maximum

and minimum number of sub-iterations in the UEP-LDPC decoder. The twelve parameters

of sub-iterations, shown in Table VII, were assessed within the min-max iteration bounds

to search minimum number of iterations at the given SNRs in the UEP-LDPC simulation.

For evaluation of the UEP-LDPC decoder, we compared the results of UEP decoding with

the result of fixed-iteration LDPC decoding. The fixed number of iterations was selected as

a half value (i.e. 30 sub-iterations) of the UEP-LDPC maximum number of iterations for

a proper evaluation because if we chose a large number of iterations for the fixed-iteration

decoding like 40∼60 sub-iterations in the comparison, the energy reduction in the UEP

over the fixed-iteration method would be naturally achieved, thus this is not fair.

For the hardware implementation, we synthesized the joint source-channel decoder

and the DVFS controller using TSMC 0.13µm technology. Critical path of the decoder

was extracted from Synopsys design compiler [55]. Extra timing margin (5% on assum-

ing 2×σ <5%) was added to the critical path to accommodate variations; it can be in-

creased more when the variations are large [30]. We targeted at a low bit-rate and low

throughput portable system such that video bit rate was under 300kbps (H.264 baseline

decoder), and LDPC decoder had 1Mbps throughput, which was very low in comparison

with the throughput of [30]’s LDPC decoder, 200Mbps. In other words, our LDPC decoder

34

Table VIII.: Sub-iterations vs. voltage/frequence for DVFS

#Sub-iterations Voltage(Vddl) LDPC Frequency(MHz) H.264 Frequency(MHz)

60 1.45 16.2 3.7
50 1.4 15.5 3.5
45 1.25 12.5 2.8
40 1.2 11.7 2.6
30 1.1 9.2 2.0
15 1.0 7.0 1.5

Fig. 9.: BER performance comparison in between the five cases of check error threshold

configurations and the fixed-iteration scheme on Foreman

and H.264 decoder, both were designed on low frequency, low performance and high en-

ergy saving constraints. In Table VIII, with 1.45∼1.0V voltage supply constrained by the

technology, when the number of decoding sub-iterations was chosen among 15∼60, the

corresponding frequency was able to be selected from 7.0MHz∼16.2MHz for the LDPC

decoder and from 1.5MHz∼3.7MHz for the video decoder.

35

Fig. 10.: PSNR performance comparison in between UEP Case3 and the fixed-iteration

scheme on Foreman, Akiyo, and Mobile

b. Simulation Results

The analysis of the amount of power reduction without performance loss is presented here.

In order to evaluate the proposed UEP design, the implemented hardware was operated on

five parameter cases (Table VI). There are two evaluations for the proposed joint source

channel decoder. The first is the comparison of decoding performance between the fixed-

iteration simulation and the UEP simulation in terms of UEP-LDPC performance (BER)

and reconstructed image quality (PSNR). The other is the measurement of energy reduction

while driving the DVFS scheme in the UEP simulation.

Fig. 9 shows the BER performance of the UEP-LDPC decoder, compared with the

BER performance of the fixed-iteration decoder on Foreman. In this figure, 3.4∼4.0dB

SNRs are used on AWGN channels, this is because we wanted to keep the BER better than

10−2. (At SNRs of less than 3.4dB, the LDPC decoder’s BERs do not get better than 10−2.

At high SNRs, there are few errors or no errors; therefore, comparing the UEP scheme with

the fixed iteration scheme is meaningless). Among the five test cases, Case1 is the most

36

Fig. 11.: Energy reduction (%) of the UEP-LDPC decoder on Foreman

protected in high channel errors so that it requires more iterations (more decoding effort

but less power reduction) in the LDPC decoding process. Therefore, it shows higher BER

performance than the other cases in Fig. 9.

Fig. 10 shows the PSNR performance of the proposed UEP based decoder and the

fixed-iteration decoder on Foreman, Akiyo, and Mobile. Case3 is selected for the perfor-

mance comparison with the fixed-iteration decoder because the check error thresholds of

Case3 are evenly balanced. The PSNR performance of the UEP Case3 is superior than the

fixed-iteration performance in 3.4∼3.8dB since the UEP can efficiently protect high prior-

ity data that influence the reconstructed video quality over noisy channel. In high SNRs

(3.8∼4.0dB), the PSNRs of the UEP and the fixed-iteration are saturated to the maximum

PSNR values since there are few errors.

The power analysis (Fig. 11, 12, and 13) presents the power reduction of the proposed

joint decoder. In Fig. 11 and 12, the power reduction results of the five simulation cases

in the UEP-LDPC decoder and in the UEP-H.264 decoder are shown respectively. The

37

Fig. 12.: Energy reduction (%) of the UEP-H.264 decoder on Foreman

normalized power reduction (%) is computed by Eqn. (2.17).

Powerreduction = (1− PowerUEP

PowerFixed
)×100 (2.17)

where PowerUEP and PowerFixed denote the power dissipation of the UEP decoder and the

fixed-iteration decoder respectively. In Case3, the UEP-LDPC scheme reduces 30% power

more than the fixed-iteration scheme at 3.4dB. As SNR increasing, more energy reduction

can be achieved not only because the average of UEP decoding iterations decreases but

because the operating frequency and voltage decrease by the DVFS logic, compared to the

fixed-iteration decoding scheme. In Fig. 12, the UEP-video decoder consumes more power

than the non-UEP video decoder at low SNRs (3.4 and 3.5dB) since the UEP-video decoder

consumes more processing power for intensive error concealment than the non-UEP video

decoder in high error environment. However, at high SNRs, the UEP-video decoder con-

sumes less power than the non-UEP video decoder since the UEP-video decoder utilizes

less error concealment relatively; this decreases the operating frequency and voltage driven

by the DVFS logic.

38

Fig. 13.: Energy reduction (%) of the UEP joint source channel decoder on Foreman,

Akiyo, and Mobile

Fig. 13 illustrates the overall power reduction in the joint decoder on Foreman, Akiyo,

and Mobile. In the power reduction results of Akiyo and Mobile, we observed that the

results were similar to the result of Foreman even though the distributions of the priority

group B and C of Foreman, Akiyo, and Mobile were different. The reason is that these

video streams have similar distributions in the priority group A; the group A is dominant

in performance and energy consumption.

In summary, Table IX presents the overall simulation results on Foreman, Akiyo and

Mobile, where F, U, and R denote fixed-iteration, UEP, and power reduction respectively.

The power results of the synthesized LDPC and video decoder are presented in Fig. 14.

In the results, the LDPC decoder and H.264 decoder consume 256.3µW and 459.9µW

at 3.4 dB ,respectively, on Foreman; this consumes overall 716.2µW. According to the

evaluation results, it can be concluded that the proposed UEP-joint source channel decoder

design provides efficient energy scheduling without performance loss.

39

Table IX.: Simulation results of the UEP Case3 on Foreman, Akiyo, and Mobile

Foreman

SNR BERF BERU PSNRF PSNRU LDPC PR VDEC PR JSCD PR

3.4 4.41×10−3 2.36×10−3 26.38 30.35 30.72 -3.90 8.48
3.5 2.03×10−3 1.02×10−3 28.62 33.27 45.25 0.03 16.21
3.6 9.78×10−4 4.99×10−4 33.26 34.60 57.07 4.38 23.23
3.7 2.63×10−4 1.38×10−4 35.28 36.21 65.45 7.62 28.31
3.8 9.14×10−5 4.54×10−5 36.69 36.23 70.44 10.76 32.12
3.9 5.24×10−5 4.42×10−5 36.82 36.41 75.16 14.26 36.05
4.0 4.06×10−6 7.41×10−6 36.95 36.10 78.53 16.96 38.99

Akiyo

SNR BERF BERU PSNRF PSNRU LDPC PR VDEC PR JSCD PR

3.4 7.94×10−3 2.42×10−3 30.33 35.87 27.64 -6.03 6.01
3.5 3.65×10−3 9.65×10−4 34.30 37.36 44.30 -1.61 14.81
3.6 1.75×10−3 5.41×10−4 36.84 37.90 55.36 2.68 21.53
3.7 4.74×10−4 1.29×10−4 38.34 38.56 64.48 6.09 26.98
3.8 1.64×10−4 5.24×10−5 38.47 38.65 69.37 8.99 30.59
3.9 9.41×10−5 6.40×10−5 38.70 38.65 74.52 13.07 35.06
4.0 7.31×10−6 4.30×10−6 38.71 38.71 78.21 15.93 38.21

Mobile

SNR BERF BERU PSNRF PSNRU LDPC PR VDEC PR JSCD PR

3.4 2.85×10−3 2.29×10−3 19.20 19.92 32.70 -2.40 10.15
3.5 1.31×10−3 1.03×10−3 23.32 25.70 46.59 1.16 17.41
3.6 6.32×10−4 5.49×10−4 25.60 28.06 57.60 5.20 23.95
3.7 1.70×10−4 1.48×10−4 32.14 32.45 65.40 8.14 28.63
3.8 5.90×10−5 5.78×10−5 33.60 33.75 70.78 11.68 32.82
3.9 3.38×10−5 5.11×10−5 33.90 33.78 75.57 15.19 36.79
4.0 2.62×10−6 9.11×10−6 34.40 34.36 78.68 17.50 39.39

Fig. 14.: Power consumption (µW) of the UEP decoder on Foreman, Akiyo, and Mobile

40

B. Optimal Configuration Search Method for Low-Power Channel Decoder in Embedded

LDPC-H.264 Joint Decoding Architecture

In this section, we also propose a near-optimal configuration search method to maximize

energy utilization while receiving and reproducing a video stream through LDPC-H.264

joint decoding without significant loss in video quality. An empirical analysis for the con-

figurations of LDPC decoding is studied to quantify the trade-off between the number of

decoding iterations and peak signal to noise ratio (PSNR) associated with the reconstructed

image quality. In this analysis, UEP is employed to determine the optimal number of itera-

tions for each priority type. The determined iterations are used during runtime to schedule

the LDPC decoding. Low priority data allows less iterations in the LDPC decoding process;

however, the lowered number of iterations leads to degradation in PSNR performance, but

saves energy when used with DVFS that scales voltage and frequency [11].

1. Proposed Optimal Configuration Search Method

The presented joint decoding process mainly consists of two parts: offline pre-process

and online execution as shown in Fig. 15. In the offline pre-process, a suite of test video

streams are encoded through an H.264 video encoding software, and the encoded video

frames are delivered to the search process to find optimal iteration sets using UEP. The

optimal sets are then determined by the priorities of input frames, and average PSNR values

are measured. Using this process, we quantify the relationship between the prioritized

video frames and the number of LDPC decoding iterations on targeted PSNRs and find

the minimum iteration sets. The searched iteration sets are stored in a lookup table for the

online execution process.

During the online process, encoded video streams containing partition information are

transferred through the LDPC encoder. When receiving the frames, the LDPC decoder

41

H.264 Encoder Data partitioning LDPC encoder

Error-prone channel

H.264 Decoder De-partioning

LDPC

decoder

Video

Source

Received

Video

DVFS

Iteration

H.264 encoding

software

H.264 decoding

software

BER performance

corresponding to

the number of

iterations of LDPC

decoder

Average PSNR

measurement

Searching optimal

iteration sets

based on UEP

Partitioned video frames

Measured PSNRs

Video

Source

LDPC iteration sets

Video data + partition

information

Offline process (software simulation)

Online process (hardware system)

UEP memory

(Lookup table)

VDDL

Read

index

fdec

Fig. 15.: The proposed UEP-based joint decoder design

reads the iteration values from the UEP memory using read indices to decode. The read

indices are generated by the pre-specified target PSNRs, channel condition (SNR), and

priority information on the fly. DVFS controller then selects an operation voltage corre-

sponding to each input frame according to the iteration information loaded from the lookup

table.

a. Overview of the proposed search scheme

The proposed method searches the decoding iteration set (itermin,A, itermin,B, itermin,C) that

yields minimum energy consumption at the given PSNR level, where itermin,A, itermin,B,

itermin,C are the minimum number of iterations for decoding frames annotated with priority

type A, B, and C respectively. The search process is composed of two search steps: coarse

search (algorithm 1, 2) and fine search (algorithm 3).

42

Fig. 16.: Coarse search method

b. Coarse binary search process

In algorithm 1, binary search [56] is used to find a coarse estimate of an iteration set

(iterA, iterB, iterC), where iterA indicates the number of iterations in LDPC decoding for

frames of priority A. The iteration set is then obtained when the average PSNR of H.264

reconstructed images marginally satisfies the target PSNR (desired quality of reconstructed

images), PSNRtarget . This routine can be graphically represented in Fig. 16:

1. Find minimum iterA = i satisfying PSNRtarget < PSNR(iterA, itermax, itermax)

2. Find minimum iterB = i satisfying PSNRtarget < PSNR(iterA, iterB, itermax)

3. Find minimum iterC = i satisfying PSNRtarget < PSNR(iterA, iterB, iterC)

In this figure (each axis, x, y, z, shows the search space of iterations), iterA is first searched

since the average PSNR is more sensitive to the impairment of high priority frames. There-

fore, the solution of the search routine would quickly converge on the coarse estimate of

the iteration set (iterA, iterB, iterC) when the coarse search is conducted in the order of im-

43

portance A, B, and C. In addition, the initial values of iterB and iterC are set to itermax while

searching iterA because we search the set in the direction of reducing iterations (from the

large number of iterations to the small number of iterations : itermax → itermin). To find

the coarse iteration set (iterA, iterB, iterC), the binary search algorithm can be performed as

algorithm 2.

Algorithm 1 Coarse Search
1: Coarse Search(PSNRi,PSNRtarget)
2: min = 1, max = itermax

3: while min <= max do
4: mid = (max+min)/2
5: if PSNRmid < PSNRtarget then
6: min = mid +1
7: else if PSNRmid > PSNRtarget then
8: max = mid−1
9: pos = mid
10: else
11: pos = mid
12: break
13: end if
14: end while
15: return pos

Algorithm 2 Coarse Iteration Set (iterA, iterB, iterC)
1: PSNRi = PSNR(i, itermax, itermax)
2: iterA = Coarse Search(PSNRi,PSNRtarget)
3: PSNRi = PSNR(iterA, i, itermax)
4: iterB = Coarse Search(PSNRi,PSNRtarget)
5: PSNRi = PSNR(iterA, iterB, i)
6: iterC = Coarse Search(PSNRi,PSNRtarget)

PSNR(a,b,c) shows an average PSNR at iterA = a, iterB = b, and iterC = c. PSNR

(i, itermax, itermax) means an average PSNR when iterA is variable i, and iterB, iterC are

fixed to itermax.

44

c. Fine search process using the UEP scheme

The fine search shown in algorithm 3 uses the fact that the increasing of the number of

iterations for high importance data leads to enhancement in the average PSNR. Hence,

a small increment of iterA leads to a large decrement of iterB and iterC while satisfying

the target PSNR. After obtaining a coarse iteration set (iterA, iterB, iterC) from the coarse

search, we gradually increase iterA and decrease iterB and iterC until finding a minimum

iteration set (itermin,A, itermin,B, itermin,C), which maximizes the total reduced iterations

(∆iterB +∆iterC−∆iterA). The iteration set can be found as follows:

1. Increase iterA and decrease iterB and iterC

2. Find (iterA, iterB, iterC) maximizing [(∆iterB+∆iterC)−∆iterA] (the total number of

reduced iterations) and satisfying PSNRtarget < PSNR(iterA, iterB, iterC)

The reduced iterations resulted from the proposed algorithms lead to energy savings along

with DVFS.

2. Energy Minimization Using DVFS

Fig. 17 represents the hardware implementation of the LDPC decoder and DVFS controller.

The offset-min-sum LDPC decoder that we use In this dissertation is based on [30]. The

check node units (CNU1-61) take the variable-node message associated with each check-

node serially and compute the least magnitude of all variable-node messages. They are

stored in Final States (FS) buffers. Check-node messages to each associated variable-node

are sent out serially again, and they are selected by index and sign comparison, where the

signs of R messages are stored in a sign FIFO. As soon as check-node messages to the first

connected variable-node are ready, the corresponding P sum message can be computed.

The Q message is then ready for check-node message processing of the next iteration.

45

Algorithm 3 Fine search based on unequal error protection
1: Fine Search()
2: x = iterA, y = iterB, z = iterC

3: itermin,A = iterA, itermin,B = iterB, itermin,C = iterC

4: di f fmax = 1
5: while x < itermax do
6: x = x+1
7: y = iterB

8: while y > itermin do
9: y = y−1
10: z = iterC

11: while z > itermin do
12: z = z−1
13: di f f = (iterB− y)+(iterC− z)− (x− iterA)
14: if PSNRtarget < PSNR(x,y,z) && di f fmax < di f f then
15: itermin,A = x, itermin,B = y, itermin,C = z
16: di f fmax = di f f
17: end if
18: end while
19: end while
20: end while

The searched sets of minimum iterations for priority frame A, B, and C are loaded

to the DVFS controller from the UEP memory for the energy minimization scheme in a

real-time system. Frequency information is generated from the iteration values and stored

into a frequency selector register in the DVFS controller. The frequency selector generates a

Freq sel signal using the priority information. When the selection is done, the clock divider,

such as a phase-loop locker (PLL) [57], divides the fast system clocks (f sctr, f sdec) into

slower clock signals (fdec, fctr) according to the output of the frequency selection register.

fdec clocks the decoder for the current frame, and fctr is sent to the variable supply voltage

logic for the voltage control.

3. Results and Discussion

We used four different QCIF (176x144) video sources (Foreman, Akiyo, Mobile and News:

each 300 frames) at 30fps for the JM14.2 decoder [42] for simulation. The proposed

46

LDPC decoder

R select

Cyclic

Shifter

+

-

+

FS/R-sign

Frame

buffer

Q FIFO

CNU

1-61

+

Mux

+

+

P

Rnew

Rold

Qshift

Channel

LLR

Pshift

Decoder

output

Clock divider

fsdec

VDDL

Iteration

Frequency

selector

fsa

Freq_sel[1:0]

fsb fsc

MAX(fi)

fsctr

Variable

supply voltage

controller

fctr

fdec

DVFS controller

Frequency

selector register

Frame

buffer

Read Ctrl

Read index

Priority

PSNR

Iteration

Fig. 17.: DVFS controller for LDPC decoder

method was simulated at 3.5, 3.6 and 3.7dB SNR levels. This was because we simulated

three cases keeping the BER performance of the LDPC decoder better than 10−3 as shown

in Fig. 18. In this simulation, LDPC decoder had 4/5 code rate and 1675 bits code length

over an adaptive white gaussian noise channel (AWGN), and our searching scheme can

be extended to other LDPC decoder designs. For ASIC design, we synthesized the LDPC

decoder and DVFS controller with TSMC 0.13µm technology (Table X). The critical path

of the decoder was extracted from Synopsys Design Compiler.

The DVFS controller demonstrated that the LDPC decoder could be clocked as fast

as 175MHz with a 1.5V supply voltage. Fig. 19 shows the relationship between decoding

iterations and required supply voltage for the decoding. For instance, when the numbers of

iterations were 3, 5, 12, and 18, then the supply voltages could be chosen to 1.02V, 1.05V,

47

Fig. 18.: BER performance of the LDPC decoder

1.19V, and 1.45V, respectively. The corresponding decoder frequencies then were 66MHz,

82.5MHz, 110MHz, and 165MHz, which could be derived from a 330MHz system clock.

Table XI shows the simulation results in Foreman, Akiyo, Mobile, and News video

streams. The number of iterations for the search scheme varied from 1 (minimum iter-

ations) to 20 (maximum iterations), and each result was compared to EEP using 10, 15,

and 20 iterations in terms of power consumption. PSNRtarget values were chosen from

PSNRs which mostly covered the PSNR ranges of reconstructed images. To measure the

energy reduction in the simulation, we computed energy consumption ratio of the energy

consumption of UEP over the energy consumption of EEP. E10, E15, E20 denote the energy

consumption ratios, where the numbers of iterations are set to 10, 15, 20, respectively, in

the EEP simulation. The results of the coarse and fine search show that a slight increase

of iterations in high priority data causes a large amount of decrease of iterations in low

priority data with the same PSNR level. The energy consumption ratios can be greater than

48

Table X.: Synthesis results of LDPC decoder and DVFS controller

DVFS logic LDPC decoder

Frequency 175MHz 175MHz

Area 0.011mm2 1.2mm2

Power ∼ 10mW ∼ 200mW

Fig. 19.: Iterations vs. supply voltage

1 in the cases of E10 and E15 because, in high target PSNRs, the energy consumption of

UEP (i.e. the average iterations) can be greater than that of EEP. For example, E10 is 1.23

in Foreman when SNR is 3.5dB and target PSNR is 35.2dB.

Fig. 20 graphically shows the results of the proposed joint decoding method in Fore-

man video stream at 3.5, 3.6, and 3.7dB SNRs. In Fig. 20(a), the results of the coarse

search involve high numbers of iterations for priority B and C data. To further minimize

the iteration values which were found in the coarse search results, the iterations for the

49

priority B and C data were gradually decreased with a slight increasing of the iterations

for the priority A data in the fine search as shown in Fig. 20(b). In this figure, the consid-

erable decrease of the iteration values for the priority B and C data achieves noteworthy

power reduction. Fig. 20(c) illustrates the energy consumption ratios of UEP over EEP at

given SNRs. When a target PSNR is low, the proposed UEP scheme can reduce power

consumption, but cause video quality degradation; therefore, the trade-off between power

and quality happens here. As presented in Table XI, EEP PSNRs with 10, 15, 20 iterations

are 31.5, 32.7, 33.9 at 3.5dB in Foreman. Once 31.5 is selected as target PSNR, then the

proposed decoding scheme can reduce 15%, 35%, 48% energy consumption, but lower 0,

1.2, 2.4dB in PSNR compared to EEP using 10, 15, 20 iterations respectively. In Fig. 20(c),

the UEP scheme reduced 17%, 37%, 52% power consumption with 0, 0.3, 1.1dB PSNR

losses at 3.6dB, and 18%, 38%, 52% with 0.4, 0.4, 0.4dB PSNR losses at 3.7dB when

compared to the results of EEP using 10, 15, 20 iterations.

50

Table XI.: Simulation results at 3.5, 3.6 and 3.7dB. It shows LDPC configuration sets

achieved from the coarse search and the fine search. En represents the energy consumption

ratio of UEP over EEPn, where n is the number of iterations.

SNR=3.5dB

Foreman (EEP PSNRs with 10/15/20 iterations = 31.5/32.7/33.9) Akiyo (EEP PSNRs with 10/15/20 iterations = 37.7/38.1/38.07)
PSNRtarget Coarse Fine E10 E15 E20 PSNRtarget Coarse Fine E10 E15 E20

30.0 (6,8,19) (8,4,1) 0.86 0.65 0.49 35.5 (4,4,9) (6,3,1) 0.83 0.63 0.47
31.0 (7,20,5) (10,3,1) 0.89 0.67 0.51 36.0 (4,6,13) (6,4,1) 0.83 0.63 0.47
32.0 (12,6,19) (15,3,1) 1.04 0.78 0.59 37.0 (6,8,12) (7,4,1) 0.85 0.64 0.48
33.0 (14,11,20) (18,4,3) 1.16 0.88 0.66 37.5 (10,6,19) (11,5,1) 0.92 0.70 0.52
33.5 (19,20,20) (20,12,2) 1.33 1.00 0.75 38.0 (19,20,19) (20,6,1) 1.25 0.94 0.71

Mobile (EEP PSNRs with 10/15/20 iterations = 26.9/27.1/27.8) News (EEP PSNRs with 10/15/20 iterations = 30.7/32.5/33.2)
PSNRtarget Coarse Fine E10 E15 E20 PSNRtarget Coarse Fine E10 E15 E20

25.0 (13,20,5) (12,5,1) 0.95 0.72 0.54 29.5 (7,8,14) (8,6,1) 0.87 0.66 0.50
26.0 (13,20,8) (13,3,1) 0.96 0.73 0.55 30.5 (12,8,19) (13,7,1) 0.99 0.75 0.56
27.0 (13,20,19) (12,9,1) 0.98 0.74 0.56 31.5 (14,18,11) (17,8,1) 1.15 0.87 0.65
27.5 (14,20,10) (14,8,1) 1.03 0.78 0.59 32.5 (15,20,12) (16,11,2) 1.15 0.87 0.65
28.2 (15,20,16) (17,7,2) 1.14 0.86 0.65 33.4 (16,20,19) (19,9,1) 1.24 0.93 0.70

SNR=3.6dB

Foreman (EEP PSNRs with 10/15/20 iterations = 34.3/34.6/35.4) Akiyo (EEP PSNRs with 10/15/20 iterations = 38.2/38.3/38.6)
PSNRtarget Coarse Fine E10 E15 E20 PSNRtarget Coarse Fine E10 E15 E20

32.0 (4,8,13) (5,2,1) 0.82 0.62 0.46 36.5 (2,20,15) (3,2,1) 0.80 0.61 0.46
33.0 (5,12,5) (7,1,1) 0.83 0.63 0.47 37.0 (3,13,19) (4,3,1) 0.81 0.62 0.46
34.0 (6,11,5) (7,6,1) 0.86 0.65 0.49 37.5 (4,3,19) (6,2,6) 0.84 0.64 0.48
34.5 (8,20,20) (10,5,1) 0.90 0.68 0.51 38.0 (12,7,11) (13,4,1) 0.97 0.73 0.55
35.2 (16,20,20) (19,8,1) 1.23 0.93 0.70 38.5 (14,20,15) (15,7,1) 1.06 0.80 0.60

Mobile (EEP PSNRs with 10/15/20 iterations = 29.2/30.8/31.2) News (EEP PSNRs with 10/15/20 iterations = 34.2/34.9/36.0)
PSNRtarget Coarse Fine E10 E15 E20 PSNRtarget Coarse Fine E10 E15 E20

28.0 (5,5,11) (5,5,1) 0.83 0.63 0.47 32 (5,3,20) (6,4,1) 0.83 0.63 0.47
29.0 (5,6,20) (6,5,1) 0.84 0.63 0.48 33 (5,9,15) (6,7,1) 0.85 0.64 0.48
30.0 (5,20,15) (8,5,1) 0.87 0.66 0.49 34 (5,20,10) (7,8,4) 0.89 0.67 0.51
30.5 (8,20,15) (11,7,3) 0.95 0.72 0.54 35 (17,20,15) (20,3,2) 1.24 0.93 0.70
31.1 (9,20,18) (17,3,1) 1.11 0.84 0.63 35.6 (18,20,19) (19,8,8) 1.26 0.95 0.72

SNR=3.7dB

Foreman (EEP PSNRs with 10/15/20 iterations = 36.9/36.9/36.9) Akiyo (EEP PSNRs with 10/15/20 iterations = 38.7/38.7/38.7)
PSNRtarget Coarse Fine E10 E15 E20 PSNRtarget Coarse Fine E10 E15 E20

32.0 (3,2,17) (4,1,1) 0.80 0.61 0.46 37.0 (2,1,20) (4,1,3) 0.81 0.61 0.46
33.0 (3,7,11) (5,2,1) 0.82 0.62 0.46 37.5 (3,2,14) (5,1,4) 0.82 0.62 0.47
34.0 (4,2,17) (6,1,5) 0.84 0.63 0.47 38.0 (3,5,10) (4,3,1) 0.81 0.62 0.46
35.5 (4,20,3) (6,3,7) 0.86 0.65 0.49 38.4 (4,12,3) (5,4,1) 0.83 0.62 0.47
36.5 (6,20,19) (9,5,1) 0.88 0.67 0.50 38.7 (6,20,9) (8,6,1) 0.87 0.66 0.50

Mobile (EEP PSNRs with 10/15/20 iterations = 34.4/34.4/34.4) News (EEP PSNRs with 10/15/20 iterations = 37.4/37.4/37.4)
PSNRtarget Coarse Fine E10 E15 E20 PSNRtarget Coarse Fine E10 E15 E20

32.0 (4,5,13) (5,4,1) 0.83 0.62 0.47 33.5 (4,2,13) (6,2,2) 0.83 0.63 0.47
33.0 (5,4,10) (8,2,1) 0.85 0.65 0.48 34.0 (4,3,12) (7,1,1) 0.83 0.63 0.47
33.5 (5,4,16) (11,2,1) 0.91 0.69 0.52 34.5 (4,5,10) (7,2,1) 0.84 0.63 0.48
34.0 (5,20,16) (10,6,1) 0.90 0.68 0.51 36.5 (4,20,20) (5,5,1) 0.83 0.63 0.47
34.4 (11,20,11) (15,8,5) 0.91 0.82 0.62 37.3 (7,6,13) (8,5,2) 0.87 0.66 0.50

51

(a) Coarse search results at 3.5, 3.6, 3.7dB

(b) Coarse + Fine search results at 3.5, 3.6, 3.7dB

(c) Energy consumption results at 3.5, 3.6, 3.7dB

3.5dB

3.5dB

3.5dB

3.6dB

3.6dB

3.7dB

3.7dB

3.6dB 3.7dB

Fig. 20.: (a) Coarse search results, (b) coarse and fine search results, and (c) comparisons

of energy consumption ratio in foreman at 3.5, 3.6, and 3.7dB SNRs

52

C. Optimal Configuration Search Method for Low-Power MIMO Detector in Embedded

MIMO-H.264 Joint Decoding Architecture

The UEP-based MIMO detector design is presented to minimize energy consumption with-

out significant loss in video quality in this section. This approach carries out an empiri-

cal analysis, searching the minimum configuration of MIMO detection in terms of power

savings. Energy reduction is fulfilled by trading off the search space of MIMO symbols

(MIMO candidate vectors, or search paths) and BER associated with the MIMO detection.

Reduced (or truncated) search paths lead to degradation in BER performance but reduce

energy consumption. To compensate for the BER degradation, we adopt UEP using the

H.264 DP method, which partitions image streams into three priority groups, A, B, and C:

A) high priority frames, B) medium priority frames, and C) low priority frames [41]. Here,

MIMO configuration (or processed paths) denotes the number of MIMO candidate vectors

to be searched, and a set of MIMO configurations is defined by [CA,CB,CC], where CA, CB,

and CC are MIMO configurations to detect priority A, B, and C data respectively.

The aim of this scheme is to 1) quantify the relationship between the priorities of

video data and MIMO configurations empirically, 2) design a search method such that we

used in LDPC-H.264 JSCD system to search minimum energy consuming sets (i.e. the

sets of MIMO configurations) to decode prioritized video data under the consideration of

reconstructed video quality, and 3) catalogue the searched configurations into a UEP lookup

table and use them for the joint MIMO-H.264 decoding in runtime.

1. Background: MIMO Detection

Eqn. (2.18) shows a MIMO system composed of MT transmit and MR receive antennas [58].

y = Hs+n (2.18)

53

where y=[y1,y2, ...,yMR]
T is a MR×1 received vector, s=[s1,s2, ...,sMT]

T is a MT ×1 trans-

mitted vector, n is a MR×1 zero mean complex Gaussian noise vector, and H is a MR×MT -

dimensional complex matrix. The complex channel gain from the jth transmit antenna

to the ith receive antenna can be denoted by hi j in the matrix H. MIMO symbol si (i =

1,2, ..MT) is derived from a set Ω of cardinality η , complex numbers with their real and

imaginary parts of the form {−√η +(2k−1)} where k=1,2,...
√

η . This method is called

as a η-ary quadrature amplitude modulation (QAM). A group of binary bits (size is log2 η)

is mapped onto a symbol from Ω, creating the QAM symbols (si). In Eqn. (2.19), the opti-

mal or the ML estimate ŝml of s can be achieved by y and H for the MIMO detection [59]:

ŝml = arg min
s∈ΩMT

‖y−Hs‖2 (2.19)

To reduce the cost of searching for ŝml , only a small subset of all the possible vectors can be

evaluated, using QR decomposition: H = QR, where, R is an upper triangular matrix, and

QH is the Hermitian of a unitary matrix Q. The estimate symbols, ŝ is derived as (2.20) [60],

ŝ = ‖y−Hs‖2 = ‖ŷ−Rs‖2,and ŷ = QHy (2.20)

It is well known that this optimization can be considered as a tree search problem with

each node of the tree having η children [61]. The complexity can be reduced by employing

pruning large parts of the tree (sphere decoding algorithm) as shown in [62]. However, we

chose to implement a hardware friendly detection algorithm called conditionally ordered

successive interference cancelation (COSIC) [63]. In this algorithm the complicated data

flow is avoided as opposed to sphere decoding. The resulting ”tree” structure is shown in

Fig. 21 (for 64-QAM), where only the root node has 64 children, and the rest of the nodes

in the tree have only one child. The key fact we utilized is that the more processed paths

(larger search space) in Fig. 21, better BER will be but at higher energy consumption levels.

54

64 -N odes

... T op Lev el N odes

(1)

(2)
(3)

1 2 3 4 5 6 7 8 57 58 59 60 61 62 63 64

Fig. 21.: Energy scalable MIMO with variable detection effort

We use these two divergent behaviors along with the fact that H.264 inherently has unequal

error protection requirements. In view of that, we can scale the energy consumption by

varying the number of paths used in the MIMO detection since more/less paths lead to

more/less energy needed.

For example, in Fig. 21, (1),(2),(3) indicate three differently sized search spaces that

computes 4, 7, and 64. In particular, we have used a variant of the staggered architecture

presented in [60]. The only difference is that [60] employs pruning during runtime, but

in this work we do not use pruning to reduce the search space, instead, the energy sav-

ings is attained by dynamically changing the size of the search space to keep the analysis

simple. This analysis can be applied when pruning is present. Fig. 22 shows the MIMO

hardware architecture, where the metric computation unit (MCU) is used as a computa-

tional node to detect 64-QAM symbols. This detection flow is implemented as a systolic

architecture carefully configured to minimize power-costly register/memory accesses. The

MCU for each level is composed of shift/add, adder, slicer, and norm computational logics

to compute the search function implicated in Eqn. (2.20).

55

MCU (Level 4)

MCU (Level 3)

MCU (Level 2)

MCU (Level 1)

Shif/Add Shif/Add Shif/Add

Adder

Slicer

Shif/Add

Norm

Adder

Received Symbols

Estimated Symbols

Fig. 22.: MIMO architecture

2. The Proposed Low-Power MIMO-H.264 Joint Decoder Design

Our MIMO-H.264 joint decoder design using UEP is shown in Fig. 23. This design mainly

consists of two parts: initialization (i.e. pre-process) and runtime execution. During ini-

tialization, 1) a suite of test video streams are encoded through an H.264 video encoding

software [42], and 2) encoded video frames are sent to the search process with the prior-

ity information of the frames and MIMO information (BERs and the number of processed

paths corresponding to each BER). 3) The encoded frames are corrupted by injecting errors

using BER information and sent to an H.264 software decoder [42] to measure the average

PSNRs of decoded pictures. 4) The measured PSNRs are sent back to the search process,

and the sets of MIMO configurations are determined by the presented search scheme. Us-

ing this scheme, we quantify the relationship between prioritized video data and MIMO

configurations on various PSNRs and find minimum sets for a low-power MIMO detec-

56

H
.2

6
4

 E
n

c
o

d
e

r
D

a
ta

 p
a

rt
it
io

n
in

g
M

IM
O

 T
ra

n
s
m

it
te

r

E
rr

o
r-

p
ro

n
e

 c
h

a
n

n
e

l

H
.2

6
4

 D
e

c
o

d
e

r
D

e
-p

a
rt

io
n

in
g

M
IM

O
 d

e
te

c
to

r

V
id

e
o

S
o

u
rc

e

R
e

c
e

iv
e

d

V
id

e
o

U
E

P
 m

e
m

o
ry

(L
o

o
k
u

p
 t
a

b
le

)

C
o

n
fi
g

u
ra

ti
o

n
 s

e
t

M
IM

O
 R

e
c
e

iv
e

r

H
.2

6
4

 e
n

c
o

d
in

g

s
o

ft
w

a
re

H
.2

6
4

 d
e

c
o

d
in

g

s
o

ft
w

a
re

M
IM

O
 i
n

fo
rm

a
ti
o

n

(B
E

R
 p

e
rf

o
rm

a
n

c
e

c
o

rr
e

s
p

o
n

d
in

g
 t
o

th
e

 n
u

m
b

e
r

o
f

p
ro

c
e

s
s
e

d
 p

a
th

s
)

P
S

N
R

m
e

a
s
u

re
m

e
n

t

S
e

a
rc

h
 p

ro
c
e

s
s

u
s
in

g
 U

E
P

M
e

a
s
u

re
d

P
S

N
R

s

V
id

e
o

S
o

u
rc

e

T
h

e
 s

e
ts

 o
f
M

IM
O

 c
o

n
fi
g

u
ra

ti
o

n
s

V
id

e
o

 d
a

ta
 +

 p
a

rt
it
io

n

in
fo

rm
a

ti
o

n

R
e

a
d

 i
n

d
e

x

In
it
ia

liz
a

ti
o

n
 (

s
o

ft
w

a
re

 s
im

u
la

ti
o

n
)

R
u

n
ti
m

e
 e

m
b

e
d

d
e

d
 s

y
s
te

m

(h
a

rd
w

a
re

 d
e

s
ig

n
)

E
n

c
o

d
e

d
 &

 p
a

rt
it
io

n
e

d

v
id

e
o

 f
ra

m
e

s

2
)

3
)

3
)

4
)

2
)

1
)

4
)

5
)

a
)

a
)

a
)

b
)

b
)

c
)

c
)

c
)

E
n

c
o

d
e

r

D
e

c
o

d
e

r

Fi
g.

23
.:

T
he

pr
op

os
ed

jo
in

td
ec

od
er

sy
st

em

57

tor. 5) Last, the searched sets are saved into UEP memory (a lookup table) for runtime

execution.

During runtime, a) encoded video streams are sent to the MIMO detector with partition

information over error-prone channel. b) The MIMO detector generates read indices using

a given target PSNR, channel condition (SNR), and the priority information of input frames,

reading a set of MIMO configurations from the UEP memory. This is to be done on-the-

fly. c) The output data of the MIMO detector are sent to an embedded video decoder to

reconstruct output images. For this evaluation, the encoded video streams are generated by

a software video encoder [42] and Matlab MIMO transmitter (dim blocks in Fig. 23).

The current implementation is based on a static scheme that uses pre-searched con-

figurations for the MIMO detection in runtime. However, these configurations can be re-

evaluated if application or channel conditions calls for a change. The optimization problem

for searching the minimum energy paths (i.e. the sets of configurations) of the MIMO de-

tector can be now stated by prioritized video sequences, utilization of paths, and PSNRs

of reconstructed video frames. The main purpose of our search scheme is to determine a

minimum MIMO configurations set [Cmin,A, Cmin,B, Cmin,C] while minimizing PSNR degra-

dation. The search scheme is composed of two search steps: 1) coarse search and 2) fine

search.

The evaluation of quality degradation in video transmission over wireless channel is

necessary for this work since the variable effort of the MIMO detection is also affected by

the quality of reconstructed video.

a. Coarse Search Process

We exploit binary search (BS) to find a coarse estimate of the set of configurations [Cco,A,Cco,B,Cco,C]

in the MIMO detection. The coarse set is searched when PSNR(a,b,c) (an average PSNR

of decoded video frames at CA = a, CB = b, and CC = c) marginally satisfies target PSNR

58

(the desired quality of reconstructed images), τ . The search is detailed as follows.

1. Find Cco,A satisfying PSNR(Cco,A,Cmax,Cmax) > τ

2. Find Cco,B satisfying PSNR(Cco,A,Cco,B,Cmax) > τ

3. Find Cco,C satisfying PSNR(Cco,A,Cco,B,Cco,C) > τ

where Cmax is the maximum MIMO configuration, 64. In the coarse search, Cco,A is firstly

searched since the average PSNR is more sensitive to the impairment of high priority

frames. Therefore, when the coarse search is performed in order of importance (or pri-

ority), A, B, and C, the search result would be quickly converged. Plus, the initial values

of CB and CC are Cmax while searching Cco,A because we search the set in the direction of

reducing energy consumption (from the large number of paths to the small number of paths

: 64→1).

b. Refining the Coarse Search Using UEP

The fine search refining the coarse search (binary search + fine search: BFS) result

shown in Algorithm 4 uses the fact that the increasing of the processed paths of high im-

portance frames leads to enhancement in the average PSNR due to UEP. Hence, a small

increment of CA (x) leads to a large decrement of CB (y) and CC (z) while meeting the

target PSNR. By this fact, we gradually increase x and decrease y and z until finding a min-

imum processed paths set [Cmin,A,Cmin,B,Cmin,C]. A processed paths set which produces the

optimal performance in terms of energy reduction on a given target PSNR is searched as

follows (Algorithm 4).

1. Increase CA and decrease CB and CC

2. Find a minimum set, [Cmin,A,Cmin,B,Cmin,C] maximizing the number of reduced paths,

[(∆CB +∆CC)−∆CA] and satisfying PSNR(Cmin,A,Cmin,B,Cmin,C) > τ

59

Algorithm 4 Fine search algorithm refining coarse search result using UEP
1: Fine Search(PSNR,Coarse Configurations Set)
2: Cmax = 64, Cmin = 1
3: x =Cco,A, y =Cco,B, z =Cco,C

4: Cmin,A =Cco,A, Cmin,B =Cco,B, Cmin,C =Cco,C

5: di f fmax = 1
6: while x <Cmax do
7: x = x+1
8: y =Cco,B

9: while y >Cmin do
10: y = y−1
11: z =Cco,C

12: while z >Cmin do
13: z = z−1
14: di f f = (Cco,B− y)+(Cco,C− z)− (x−Cco,A)
15: if PSNR(x,y,z)> τ && di f fmax < di f f then
16: Cmin,A = x, Cmin,B = y, Cmin,C = z
17: di f fmax = di f f
18: end if
19: end while
20: end while
21: end while

where Cmin is 1 (the minimum number of paths), and di f fmax denotes the maximum re-

duction of processed paths, which implies an amount of energy reduction ((∆CB +∆CC)−

∆CA). As a result, the minimum sets of MIMO configurations can be searched using the

presented UEP scheme.

3. Results and Discussion

As aforementioned, the more paths considered for the MIMO detection, the better BER

gets. However, energy consumption increases as well. This relationship is shown in Fig. 24.

In this experiment, we wanted to keep the un-coded BER better than 10−3 since the H.264

decoder could not work properly for high impaired data. The MIMO detection’s BER at

20dB did not get better than 10−3, thus we simulated only for the range of 22 and 24dB.

The energy consumption of the MIMO detector in Fig. 24 was computed by the synthesis

60

Fig. 24.: MIMO energy vs. BER performance: The more energy is needed for the lower

BER.

result shown in Table XII. These design attribute estimates were achieved using Synopsys

design compiler [55] and OSU PDK 45nm CMOS predictive standard cell library [64]. The

area of MCUs increased because more computations were needed as we went down the tree

(i.e. level 4→ level 1).

For the evaluation, we simulated three different QCIF (176x144) video sources (Fore-

man, Akiyo, and Mobile: each 300 frames) generally used for video test at 30fps. The

amount of energy reduction varied according to the distribution of priority in a video se-

quence since a high priority part utilized more resources (processed paths). Table XIII

shows the simulation results of the presented UEP-based MIMO design in Foreman, Akiyo,

and Mobile video streams. The normalized energy reduction (ER) can be computed by

Eqn. (2.21).

ERnormalized = 1−Ex,y,z/EN=64 (2.21)

61

Table XII.: Synthesis results of MIMO detector using 45nm CMOS predictive standard cell

library

Area Energy (nJ) Delay (ns)

Level 1 7325 0.148 15.68
Level 2 5997 0.114 14.65
Level 3 4158 0.076 12.84
Level 4 2982 0.023 6.9

where Ex,y,z is energy consumption at a processed paths set (x,y,z) , and EN=64 is energy

consumption when using N=64 paths (maximum EEP energy consumption). In this table,

the ER results were attained from UEP-BFS and EEP (N=64). We observed that the results

of Akiyo and Mobile were similar to that of Foreman. Although the distributions of the

priority group B and C of Foreman, Akiyo, and Mobile were different, the results were

analogous one another in terms of energy consumption. The reason was that these video

streams had similar distributions in the priority group A. (Group A was dominant in per-

formance and energy consumption because it exploited more paths than B and C.) It leaded

to the comparable results in terms of energy reduction.

Fig. 25(a) and (d) show the UEP-BS results in the simulation of Foreman at 22dB and

24dB respectively. In these figures, the number of paths for B and C are considerably higher

than the number of paths for A. For energy reduction, the fine search algorithm was com-

bined. The UEP-BFS results in Foreman are shown in Fig. 25(b) and (e). In these results,

the numbers of utilized paths for B and C decreased under 10∼20 with increasing the num-

ber paths for A. It leaded to energy reduction in the MIMO detector. We thus demonstrated

the number of processed paths for EEP that equally cut off the MIMO search paths (called

”EEP-cutoff”) regardless of the priority of data for comparison with the UEP results. For

instance, when target PSNR is 33.6dB at 22dB SNR, the processed paths set is (57,56,31)

62

(a
)

B
in

a
ry

 s
e

a
rc

h
 (

B
S

)
re

s
u

lt
(b

)
B

in
a

ry
 +

 f
in

e
 s

e
a

rc
h

 (
B

F
S

)
re

s
u

lt
(c

)
N

o
rm

a
li
z
e

d
 e

n
e

rg
y

 r
e

d
u

c
ti

o
n

(d
)

B
in

a
ry

 s
e

a
rc

h
 (

B
S

)
re

s
u

lt
(e

)
B

in
a

ry
 +

 f
in

e
 s

e
a

rc
h

 (
B

F
S

)
re

s
u

lt
(f

)
N

o
rm

a
li
z
e

d
 e

n
e

rg
y

 r
e

d
u

c
ti

o
n

Fi
g.

25
.:

(a
-c

)
sh

ow
si

m
ul

at
io

n
re

su
lts

at
22

dB
in

Fo
re

m
an

:
(a

)
co

ar
se

bi
na

ry
se

ar
ch

(B
S)

,(
b)

fin
e

se
ar

ch
(B

FS
),

an
d

(c
)

th
e

en
er

gy
re

du
ct

io
n

of
ou

rU
E

P-
ba

se
en

er
gy

ef
fic

ie
nt

M
IM

O
de

te
ct

or
,(

d-
f)

sh
ow

si
m

ul
at

io
n

re
su

lts
at

24
dB

in
Fo

re
m

an
:(

d)
B

S,

(e
)B

FS
,a

nd
(f

)e
ne

rg
y

re
du

ct
io

n

63

Table XIII.: Simulation results at 22dB and 24dB SNRs. It shows the sets of MIMO

configurations resulted in the coarse binary search (BS) and the fine search refining the

binary search result (BFS). The percentage value of normalized energy reduction (ER) was

calculated by Eqn. (2.21).

SNR=22dB

τ
Foreman Akiyo Mobile

BS BFS ER(%) BS BFS ER(%) BS BFS ER(%)

30.0dB (23,17,62) (26,1,8) 82 (25,40,52) (28,10,3) 79 (25,20,59) (27,5,4) 81
31.0dB (25,64,63) (26,2,11) 80 (28,60,59) (30,7,13) 74 (27,60,61) (29,4,10) 78
32.0dB (37,42,50) (47,3,3) 73 (38,56,60) (45,6,4) 71 (35,63,60) (39,7,3) 74
33.0dB (41,64,64) (43,7,12) 68 (43,63,61) (50,9,2) 68 (42,64,63) (46,6,9) 68
33.6dB (57,56,31) (60,16,9) 56 (60,64,55) (62,12,3) 60 (56,64,58) (60,15,7) 57

SNR=24dB

τ
Foreman Akiyo Mobile

BS BFS ER(%) BS BFS ER(%) BS BFS ER(%)

32.0dB (18,29,57) (26,1,3) 84 (19,38,60) (25,5,7) 81 (23,37,49) (25,3,3) 84
33.0dB (23,50,64) (24,5,6) 82 (27,62,62) (30,6,10) 76 (27,54,58) (30,4,7) 79
34.0dB (29,54,28) (36,5,8) 74 (34,63,42) (37,8,11) 71 (32,56,51) (36,3,10) 74
35.0dB (35,64,64) (45,5,8) 70 (39,60,64) (44,7,12) 67 (40,53,60) (44,7,9) 69
36.2dB (61,61,48) (62,16,14) 52 (60,63,58) (62,10,11) 57 (60,64,63) (63,10,8) 58

in UEP-BS, (60,16,9) in UEP-BFS, and (56,56,56) in EEP-cutoff. The maximum energy

reduction can be achieved by UEP-BFS that decreases considerably the number of paths for

B and C through increasing slightly the number of paths for A. Fig. 25(c) and (f) show UEP

and EEP-cutoff energy reduction vs. target PSNR in Foreman. In the simulation of Fore-

man, our MIMO-H.264 joint decoder with 33.6 and 36.2dB target PSNRs yielded 56%

and 52% energy reductions respectively while trading off 0.29dB and 0.3dB acceptable

degradation, when compared to EEP (N=64) at 22dB and 24dB SNRs.

Although our joint decoder design significantly reduced energy consumption in run-

time, it requires additional works such as: 1) a dynamic scheme for updating new con-

figurations in real-time, 2) evaluation and analysis using some problematic test streams,

and 3) a baseband logic implementation with a video processor. These issues are currently

addressed along with algorithm improvement for low-power video decoding.

64

D. Conclusions

This chapter presents a JSCD-based low-power decoder design that uses a novel UEP

scheme and DVFS. In Section A, we propose an LDPC-H.264 JSCD scheme for portable

applications over AWGN channels, configured by exploiting importance and error severity

in each data frame. The proposed JSCD scheme is devised to operate at a fixed frame-

decode-time loop regardless of the quality of data received. Within each loop, optimal sub

frequencies and voltage levels are dynamically configured to minimize the energy spent for

each frame. This design meets the real-time requirements of motion picture reproduction

and minimizes overall power consumption. The design is synthesized using TSMC 0.13

micron technology and is capable of jointly decoding QCIF (176x144) video stream at 30

fps over wireless channel with 80% code rate. As a result, up to 39% power reduction

can be achieved in Foreman, Akiyo, and Mobile, compared to a fixed-iteration-based joint

source channel decoder.

Section B shows the proposed optimal configuration search scheme for LDPC-H.264

JSCD to reduce power consumption of LDPC channel decoder. As a result, the low-power

decoding framework not only provides the trade-off between power reduction and video

quality, but proposes a method for efficient resource utilization to save power.

We also present a low-power MIMO-H.264 joint decoder design using the optimal

configuration searching algorithm based on unequal error protection in Section C. The de-

sign is developed for video mobile applications over MIMO and configured to make min-

imum tradeoffs between energy consumption and performance. The results show that our

design significantly reduces overall energy consumption and compromises picture quality

negligibly.

65

CHAPTER III

LOW-LATENCY ON-CHIP INTERCONNECT ARCHITECTURE FOR

SYSTEM-ON-CHIP DESIGN

We introduce link-level QoS usng UEP for low-power on-chip interconnect and two on-

chip interconnect architectures to address this low-latency demand for CMPs.

• Low-power interconnect design for NoC using UEP: Unequal protection against

crosstalk induced errors on link wires can result in considerable power savings with

acceptable degradation in performance

• WaveSync: Low-latency source synchronous bypass network-on-chip architecture

for globally-asynchronous locally-synchronous (GALS) designs

• SDPR: Dual-path router architecture that efficiently exploits path diversity to attain

low latency without significant hardware overhead

In the following sections, we discuss the proposed QoS scheme that reduces power

consumption on links and WaveSync that facilitates low-latency communication leveraging

the source-synchronous clock sent with the data. We also discuss SDPR doubling the

number of injection and ejection ports, splitting packets into two halves, and traversing

multiple-paths simultaneously to achieve much higher performance in latency.

A. Link-Level QoS for Low-Power On-Chip Network

In the previous chapter, we exploited UEP to reduce power consumption in JSCD systems.

In this section, we present a low-power on-chip interconnect design using UEP against

crosstalk induced errors on links. Video packets transmitted on links between nodes can be

classified into different priority groups. High priority parts require more efforts in protect-

ing than low priority parts against crosstalk induced errors on link wires. Therefore, we can

66

leverage this to employ a different level of protection to each priority category, exploring

tradeoff between power consumption and quality requirement in video decoding.

Capacitive coupling between wires in NoC/SoC paradigm has been widely studied

to minimize the impact of crosstalk on signal transition [65, 66]. Increased wire spacing

(DBS), shielding of the wires are explored as options for reducing the impact of crosstalk

by Arunachalam et al. in [67]. The theory behind self-shielding or crosstalk-prevention

codes (CPC) and the methods for generating these code-words is presented by Victor et

al. [68]. Pande et al. propose the use of crosstalk avoidance codes (CAC) and modification

in the structure of the data packets to incorporate CAC schemes in the NoC data stream to

address both crosstalk and energy dissipation [69] .

Error correction codes (ECC) are able to detect and correct the error bits based on an

information theoretic model [70]. Unified framework of coding schemes for system on-chip

with CAC and ECC to solve delay, power, and reliability problems jointly are presented

in [71–74]. A joint error correction coding scheme using duplication with parity (DAP)

and triplication error correction (TEC) with Green bus coding for crosstalk avoidances to

guard against crosstalk induced errors is presented in [75, 76] respectively.

We adopt TransSync and RecSync schemes [77] to provide different levels of pro-

tection on different priority groups. TransSync and RecSync allow them to be switched

on and off dynamically as and when required. In this approach, high priority data can be

protected by TransSync and RecSync against crosstalk induced errors, but the protection

schemes for the low priority parts can be switched-off due to a relatively small impact on

the reconstructed video quality.

1. TransSync-RecSync Technique

TransSync-RecSync technique mitigates crosstalk induced transition skew [77]. TransSync

preemptively eliminates transition skew amongst the bit-lines by calculating the expected

67

link traversal delay for each transition on the fly. RecSync tries to eliminate the accrued

intra-flit on link wires at the receiving node by forcing all the transitions to become aligned

before they are relayed to the receiving buffers. Using TranSync and RecSync along with

UEP can substantially reduce energy on links at the cost of relatively small loss of sys-

tem performance (i.e. slight degradation in reconstructed video quality). In the result and

discussion, we will evaluate the merits of UEP exploiting TranSync and RecSync on NoC

with H.264/VC test data streams.

2. UEP with TransSync-RecSync on NoC

Table XIV shows the different configurations of protection schemes studied to evaluate the

benefits of UEP on links against crosstalk induced errors. We choose to implement UEP

with only TransSync 2 lines, TransSync and RecSync schemes since these schemes have

the highest performance in terms of energy savings vs. quality loss. We will discuss this

performance comparison in the results and discussion subsection.

TransSync and RecSync techniques are also dynamically switched on/off to provide

different levels of protection for different priority data on the same link. Since the BER per-

formance of scheme employed for protecting higher priority parts is better than those of the

schemes used with lower priority parts, more energy is typically spent on securing higher

priority parts of the data. Table XIV shows all possible UEP configurations obtained by

combining RecSync, TransSync and TransSync 2 lines. In these combinations, protection

schemes for lower priority data have the same or worse BER performance when compared

to those for the higher priority parts. Case 4, Case 7 and Case 10 are EEP schemes employ-

ing the same level of protection for all priority data parts. Case 15 is an example of UEP

which uses RecSync module for eliminating intra-flit skew for only Priority A data parts.

During the transmission of Priority B and Priority C data parts in Case 15, the RecSync

module is switched off at the receiving node and TransSync 2 lines circuit is switched on

68

Table XIV.: Protection schemes employed on links with data partitions for different UEP

configurations studied

Configuration Priority A Priority B Priority C

Case 1 Baseline Baseline Baseline
Case 2 TransSync Baseline Baseline
Case 3 TransSync TransSync Baseline
Case 4 TransSync TransSync TransSync
Case 5 TransSync 2L Baseline Baseline
Case 6 TransSync 2L TransSync 2L Baseline
Case 7 TransSync 2L TransSync 2L TransSync 2L
Case 8 RecSync Baseline Baseline
Case 9 RecSync RecSync Baseline

Case 10 RecSync RecSync RecSync
Case 11 RecSync TransSync Baseline
Case 12 RecSync TransSync TransSync
Case 13 RecSync RecSync TransSync
Case 14 RecSync TransSync 2L Baseline
Case 15 RecSync TransSync 2L TransSync 2L
Case 16 RecSync RecSync TransSync 2L

at the transmitting node.

3. Results and Discussion

a. Simulation Environment

For the comparison of crosstalk avoidance and error correction performance between pro-

tection schemes, we evaluated the PRNR of the reconstructed video streams with EEP. We

measured PSNRs when the different crosstalk avoidance and error correction schemes were

employed to protect against crosstalk induced errors on links for all data partitions. Fig. 26

shows the simulation setup used for evaluating the quality of reconstructed video streams

with different protections schemes on links under EEP. The encoded video frames were

impaired by randomly flipping bits in accordance with the BER of protection scheme em-

69

Bits flipped randomly in accor-

dance with BER of protection

scheme used on link wires

Fig. 26.: Simulation setup for evaluating the quality of reconstructed frames with different

protection schemes on links

ployed on the link wires before they were sent to the sender/receiver circuit. The received

frames were sent to an H.264 software decoder [42] and the decoder reconstructed video

frames to measure the average PSNRs. Damaged macro-blocks were concealed using mo-

tion copy [39] during the frame reconstruction process.

We computed a design metric called Merit (Eqn. 3.1) to quantify performance and

overhead. Merit is the ratio of the average PSNR of the reconstructed video stream with the

protection scheme employed on links and the product of the normalized area and normal-

ized energy consumption in the scheme. The area and energy consumption of all schemes

are normalized to that of the baseline design to obtain the Merit figures.

Merit =
PSNR

NormalizedArea×NormalizedEnergy
(3.1)

70

Fig. 27 and Fig. 28 show the merit of different protection schemes for 2mm and 3mm long

link wires. In these figures, TransSync 2 lines, TransSync, and RecSync schemes present

the highest Merit amongst all the schemes studied. That is the reason why we exploited

TransSync and RecSync for UEP on on-chip links.

b. UEP Results

Fig. 29 and Fig. 30 present the BER performance of the different UEP configurations ana-

lyzed, arranged in the increasing order of their average power consumption from left to right

for 2mm and 3mm long links respectively. The lowest tolerable average BER levels vary

between different applications. Fig. 29 and Fig. 30 enable the designer to select the UEP

configuration with the least energy consumption to meet a specified BER performance. For

example, if the PEs are placed 3mm apart on the die and the application requires a minimum

average PSNR of 35dB (dotted line in Fig. 30) for Akiyo streams, then the leftmost UEP

configuration in Fig. 30 for which the average PSNR is greater than 35dB should be chosen

as the solutions. For the given example, Case 15 offers an average PSNR performance of

35.04dB at approximately 20% lesser overall energy consumption when compared to Case

15 which offers 38dB of average PSNR. We have therefore presented a design methodol-

ogy which allows the designers to achieve the required performance levels with the least

energy consumption using unequal error protection on link wires against crosstalk induced

errors.

71

0

5

10

15

20

25

30

35
Akiyo Foreman Mobile

M
er

it
 (

d
B

)

Fig. 27.: Merit of different protection schemes on 2mm long link wires

0

5

10

15

20

25

30
Akiyo Foreman Mobile

M
er

it
 (

d
B

)

Fig. 28.: Merit of different protection schemes on 3mm long link wires

72

0.9

1.1

1.3

1.5

1.7

1.9

0

5

10

15

20

25

30

35

40

45

C
as

e
7

C
as

e
6

C
as

e
5

C
as

e
1

C
as

e
1

5

C
as

e
1

4

C
as

e
8

C
as

e
2

C
as

e
1

6

C
as

e
9

C
as

e
1

1

C
as

e
3

C
as

e
1

0

C
as

e
1

3

C
as

e
1

2

C
as

e
4

P
SN

R
 (

d
B

)

Akiyo Foreman Mobile Normalized Power

N
o

rm
alized

 P
o

w
er

Fig. 29.: Results for 2mm long link wires for the UEP schemes analyzed

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

2.6

2.8

0

5

10

15

20

25

30

35

40

45

C
as

e
7

C
as

e
6

C
as

e
5

C
as

e
1

C
as

e
1

5

C
as

e
1

4

C
as

e
8

C
as

e
2

C
as

e
1

6

C
as

e
9

C
as

e
1

0

C
as

e
1

1

C
as

e
1

3

C
as

e
3

C
as

e
1

2

C
as

e
4

P
SN

R
 (

d
B

)

Akiyo Foreman Mobile Normalized power

N
o

rm
alized

 P
o

w
er

Fig. 30.: Results for 3mm long link wires for the UEP schemes analyzed

73

B. WaveSync: Low-Latency Source Synchronous Bypass Network-On-Chip Architec-

ture

As greater numbers of devices are connected to the same clock tree, the power consump-

tion necessary to ensure all nodes are fully synchronous is becoming prohibitive [78].

Globally-asynchronous, locally-synchronous (GALS) clocking has been proposed to re-

duce the power burden of globally synchronous clocking, at the cost of the synchronization

required for cross-clock domain communication [79]. Achieving performance in current

multi- and future many-core architectures requires solutions which address their cross-

clock-domain communication needs [80, 81]. They also require redundant process to re-

configure asynchronous channel or asynchronous components to support a simple arbitra-

tion.

A significant issue in a fully synchronous design is clock tree power consumption.

Studies have shown that synchronous clock trees can consume as much as 30∼40% of the

total chip power in real designs [82–84]. These power costs are expected to increase in

future process technologies as device count increases. The GALS design style is a well

known technique to reduce clock tree power consumption [79]. GALS designs are com-

posed of large synchronous blocks which communicate with each other asynchronously. By

eliminating the global clock, a major source of power consumption is eliminated. Asyn-

chronous inter-core communication in these designs is typically achieved by through source

synchronous data transmission (i.e. the transmit clock is sent with the data), followed by re-

ceiver synchronization. Synchronization is required to avoid metastability as packets cross

the mesochronous clock domains in GALS NoCs. This synchronization, however, accounts

for a major portion of the communication latency, impacting system performance [12].

Synchronization can often double or triple the latency overheads of inter-tile communica-

tion, exacerbating larger NoC designs’ already substantial packet latency issues.

74

Node
Clock

Node Node Node

Node Node Node Node

Node Node Node Node

Node Node Node Node

Router

Processing

Element

(PE)

Fig. 31.: Typical GALS clocking scheme on 4x4 mesh NoC

Fig. 31 shows a diagram of a typical GALS CMP, composed of processing elements

(PEs) and network adapters interconnected via a mesh NoC and clocked with a GALS

clocking scheme. A GALS clock is ”lazily” propagated from node to node in a daisy-

chain-like arrangement. We observe that, in this typical GALS scheme, not only is the

clock propagated to each node via the clock net; the NoC must also propagate a clock

along with the NoC link to provide for synchronization of data transfer between clock do-

mains. This clock redundancy represents both waste and an opportunity which we will

leverage the WaveSync design. Since the link already contains a clock signal for data syn-

chronization, we propose using the datas clock as the clock for the entire processing node

connected to that the router. Maintaining synchronization between the link and processing

element eliminates the need for send and receive synchronization on to the network. Fur-

ther, since clock is already propagated with data in any source synchronous GALS design,

we allow the packet to propagate without latching at each intervening hop in our design.

We also exploit a flow control that bypasses buffering/pipelining when there is no conges-

tion, similar to a technique proposed by Jain et al. [85]. In this scheme, flits which traverse

a given router on their way to more distant nodes may accumulate only wire and cross-

bar logic delays each hop, without incurring additional latency due to needless latches.

75

Therefore, WaveSync can attain low latency via avoiding synchronization and bypassing

input buffers at the intermediate nodes on a multi-synchronous network in low congestion

levels. This approach outperforms even fully synchronous designs, turning the liability of

mesochronous communicating clock domains into a feature.

The following subsections discuss the proposed WaveSync clock distribution and net-

work, router, and synchronization architecture. We also propose We also evaluate the pre-

sented design and provide simulation results and implementation.

1. WaveSync Design

In a typical GALS NoC, each incoming link contains a source synchronous clock signal,

which is used to synchronize the incoming data into the local clock domain/node. By

contrast, WaveSync uses incoming clocks to time the routing components (and the PE itself

if that link is the designated clock source for it), eliminating the need for synchronization

between the incoming data and the local node assuming no turns are needed. In either

case, a dedicated clock distribution network is unnecessary and thus, the difficult problem

of building a fully synchronous clock network is avoided.

In WaveSync, straight path packets are stored in FIFOs only in the event that its header

arrives during transmission of another source’s packet or if no available downstream credit

is available. Our implementation assumes a 2-D mesh topology, credit based, and worm-

hole flow control where each packet is divided to header, body, and tail flits [86]. A di-

mension order routed (DOR) 2-D mesh wormhole router typically allows turns from the

first ordered dimension to the second. These turns, however, imply complexity in terms of

crossbar and VC allocation and crossbar ports. To reduce router complexity, the WaveSync

router disallows all left turns and removes most VCs; any arriving packet may only go

straight, turn right, or enter the local PE. This ”Right-turn only” routing is a new, determin-

istic, minimal routing algorithm we propose, co-designed explicitly to reduce the need for

76

synchronization given our network and clock architecture. This routing algorithm favors

paths that are less likely to require synchronization. This algorithm requires one extra VC

in one ordinal direction to ensure deadlock freedom. The primary purpose of our right-turn

only routing policy, a key contribution of the work proposed here, is to reduce latency, first

by minimize the number of synchronizations in a network, and second by reducing router

complexity, hence reducing router pipeline stages, through minimizing the number of legal

paths through the crossbar. While we expect that reducing routing policy choices, as the

right-turn only algorithm does, will decrease load balance in the network somewhat; this

comes at the benefit of lower low-load latency. Taken as a whole, these router implemen-

tation choices have the effect of trading some bandwidth for lower latency; however, we

note that bandwidth is easily attained through extra link width and/or extra network layers,

while lower latency is much more difficult to attain.

a. Clock Distribution

We evaluated a number of clock assignment patterns possible with our scheme. Among

the many possible patterns, three patterns, A, B, and C, are chosen for evaluation and

shown in Fig. 32. The arrows in PE blocks denote the direction of clocks that individual

PEs select for clocking internal logic. Each pattern was examined to determine the PE

clock assignment pattern that minimized overall latency in the network. To evaluate the

relative merits of each pattern, we computed the average number of synchronizations re-

quired under no-load, uniform random traffic. In Fig. 32(a), pattern A uses northbound

clock (south clock) for all PEs. In Fig. 32(b), pattern B, two clock sources, east and west

clocks, are used for each half PEs located in east half and west half respectively. Pattern

C exploits east, west, north, and south incoming clocks for the nodes of each quadrant as

shown in Fig. 32(c). Fig. 32(d,e,f) shows the number of synchronizations necessary to ar-

rive at any given node for data originating from the S node on the three patterns shown in

77

(g
)

A
v

e
ra

g
e

 n
u

m
b

e
r

o
f

s
y

n
c

h
ro

n
iz

a
ti

o
n

 i
n

 g
iv

e
n

 p
a

tt
e

rn
s

c
lk

w
e

c
lk

s
n

c
lk

e
w

c
lk

n
s

c
lk

s
n

c
lk

n
s

c
lk

s
n

c
lk

n
s

c
lk

s
n

c
lk

n
s

(a
)

L
o

c
a

l
c

lo
c

k
 a

s
s

ig
n

m
e

n
t

p
a

tt
e

rn
 A

2
2

0

3
2

3

(d
)

S
y

n
c

h
ro

n
iz

a
ti

o
n

 f
ro

m
 t

h
e

 h
ig

h
li
g

h
te

d
 n

o
d

e

in
 p

a
tt

e
rn

 A

c
lk

w
e

S

c
lk

s
n

c
lk

e
w

c
lk

n
s

c
lk

w
e

c
lk

e
w

c
lk

s
n

c
lk

n
s

c
lk

s
n

c
lk

n
s

c
lk

s
n

c
lk

n
s

2
13

2
3 3

2
3

(e
)

S
y

n
c

h
ro

n
iz

a
ti

o
n

 f
ro

m
 t

h
e

 h
ig

h
li
g

h
te

d

n
o

d
e

 i
n

 p
a

tt
e

rn
 B

S

(b
)

L
o

c
a

l
c

lo
c

k
 a

s
s

ig
n

m
e

n
t

p
a

tt
e

rn
 B

c
lk

w
e

c
lk

s
n

c
lk

e
w

c
lk

n
s

c
lk

w
e

c
lk

e
w

c
lk

s
n

c
lk

n
s

c
lk

s
n

c
lk

n
s

c
lk

s
n

c
lk

n
s

(c
)

L
o

c
a

l
c

lo
c

k
 a

s
s

ig
n

m
e

n
t

p
a

tt
e

rn
 C

c
lk

w
e

c
lk

e
w

2

2
3

1

3
2

3

(f
)

S
y

n
c

h
ro

n
iz

a
ti

o
n

 f
ro

m
 t

h
e

 h
ig

h
li
g

h
te

d

n
o

d
e

 i
n

 p
a

tt
e

rn
 C

S

c
lk

w
e

c
lk

e
w

c
lk

w
e

c
lk

e
w

c
lk

w
e

c
lk

e
w

c
lk

w
e

c
lk

e
w

c
lk

w
e

c
lk

e
w

c
lk

w
e

c
lk

e
w

Fi
g.

32
.:

W
av

eS
yn

c
cl

oc
k

di
st

ri
bu

tio
n

an
d

ne
tw

or
k

:
pa

tte
rn

A
is

cl
oc

ke
d

by
si

ng
le

lo
ca

lc
lo

ck
(s

ou
th

cl
oc

k)
,p

at
te

rn
B

us
es

tw
o

lo
ca

lc
lo

ck
s

(w
es

ta
nd

ea
st

cl
oc

ks
),

an
d

pa
tte

rn
C

em
pl

oy
s

a
di

ff
er

en
tl

oc
al

cl
oc

k
(e

as
t,

w
es

t,
so

ut
h,

or
no

rt
h)

in
ea

ch
qu

ad
ra

nt
.

T
he

ar
ro

w
de

no
te

s
th

e
di

re
ct

io
n

of
cl

oc
ks

in
a

no
de

,
an

d
ea

ch
nu

m
be

r
in

a
no

de
gr

ou
p

in
(d

),(
e)

,(f
)

de
no

te
s

th
e

nu
m

be
r

of

sy
nc

hr
on

iz
at

io
ns

ne
ed

ed
w

he
n

se
nd

in
g

pa
ck

et
s

fr
om

so
ur

ce
(S

)t
o

ea
ch

no
de

78

Fig. 32(a,b,c). Packet propagation with zero synchronization is possible when incoming,

outgoing, and local paths are in the same clock domain. For instance, the synchroniza-

tion count from S to upper two nodes is zero in Fig. 32(d) because source clock (outgoing

clock), intermediate node traversing clock (incoming clock), and destination clock (local

clock) are in the same clock domain (i.e. same direction).

Fig. 32(g) shows average number of synchronizations in three patterns and baseline

GALS, based upon the assumption that all sources produce packets for all destinations with

equal probability (results analytically determined). In baseline, every packet is latched at

each node, requiring synchronization; hence, the average number of synchronizations for

GALS largely increases with network size. Clock pattern C, a symmetric and right turn

bounded pattern, yields the minimum average number of synchronizations when used in

conjunction with the right-turn only routing. In this pattern, data and clock are most likely

to be in the same direction (i.e. not in need of synchronization). Thus, we will use this

clock distribution pattern (pattern C) for the remainder of this work.

b. Router Microarchitecture

Fig. 33(a) shows a block diagram of the WaveSync router, with output submodules for

east, west, north, and south (Re, Rw, Rn, Rs), associated with output ports for each of the

orthogonal directions. On the figure we see the four data inputs (Nin, Sin, Win, Ein), four

data outputs (Nout, Sout, Wout, Eout), a local data input (Lin), four local data outputs

(Louts), and clocks for the incoming data (clkns, clksn, clkwe, clkew). Each submodule is

clocked with its designated clock source, and is of its own clock domain. In Fig. 33(b-c),

the clock and data routes for each output submodule are denoted in black (e.g. in Fig. 33(b),

the output submodule uses the clock received from the south link, clksn).

Each output submodule and port may select among three incoming paths (bypass,

right-turn, and local in). The bypass path is clocked by the upstream clock and does not

79

(b) clksn domain net (c) clkwe domain net

West

(Rw)

North

(Rn)

East

(Re)

South

(Rs)

clksn

Wout

Ein

Sout

Nout

Eout

Win

Nin

Sin

PE Lin

Data

clock

Nin

clkns

clkwe

clkew

Lin

Lin

Lin

Lin

clksn

Sin
Win

Ein

Synchronizer

(a) WaveSync router architecture

West

(Rw)

North

(Rn)

East

(Re)

South

(Rs)

clksn

Wout

Ein

Sout

Nout

Eout

Win

Nin

Sin

PE Lin

Nin

clkns

clkwe

clkew

Lin

Lin

Lin

Lin

clksn

Sin
Win

Ein

West

(Rw)

North

(Rn)

South

(Rs)

clksn

Wout

Sout

Nout

Eout

Win

Nin

Sin

PE Lin

Nin

clkns

clkew

Lin

Lin

Lin

Lin

clksn

Sin
Win

East

(Re)

Ein

clkwe

Ein

Fig. 33.: (a) WaveSync router top block and (b-c) north and east clock domain nets in

WaveSync

require synchronization; however, packets coming from a different input port than the one

clocking the PE should be synchronized before they are consumed. In this example, we

assume the PE is clocked by clksn (i.e. it is a router from the southwest quadrant), hence

the north output submodule (Rn) does not require synchronization for the traffic injected

from the PE, nor the traffic received from the south link addressed to propagate northward.

Further, the incoming traffic from the south can enter the PE port without synchronization

since the PE clock is originated from the source-synchronous clock coming in from south.

80

flit_sout

flit_tin
clk_t Sync

clk_s
flit_ts

flit_sin

flit_lin
clk_l Sync

clk_s
flit_ls

Switch allocator

credit_incredit_out Buffer

controller

straight

turn

local

(a) Rn, Rs, and Rw microarchitecture

bypass

bypass

bypass

clk_s

Output port, Data path and Control logic

flit_sout

flit_tin
clk_t Sync

clk_s
flit_ts

flit_sin

flit_lin
clk_l Sync

clk_s
flit_ls

Switch allocator

virtual

credit_incredit_out Buffer

controller

straight

turn

local

bypass

bypass

bypass

clk_s

Output port, Data path and Control logic

(b) Re (east port) microarchitecture

Fig. 34.: (a) Microarchitecture of north, south, and west output submodules and (b) mi-

croarchitecture of east output submodule including a virtual channel for deadlock avoid-

ance

The data incoming from right turn path (Win) must be synchronized because the incoming

data is clocked by a different clock domain (clkew). Since the local clock (i.e. process-

ing element clock) is sourced from the south clock that is different from the propagation

clocks of south, east, and west output submodules (Re, Rw, Rs), local input/output and turn

paths require synchronization. As a result, total number of synchronizers required for the

WaveSync router top block is ten because Re, Rw, and Rs each need two synchronizers, Rn

requires one (for right turn path since the turn path is in different clock domain), and three

for south, west, and east local output data.

Fig. 34 shows the microarchitecture for each of the output submodules. Each out-

put submodule is connected to three input ports, straight (flit sin), turn (flit tin), and local

(flit lin) and incoming clocks (clock s, clock t, clock l). Three FIFO paths (east logic con-

tains four FIFO paths due to an extra virtual channel) and three bypass paths are connected

to the output multiplexer of the router. Flits which traverse the router along the straight

81

Table XV.: Flit structure

Field Field description

Packet type 00 : none, 01 : head flit, 10 : body flit, 11 : tail flit
D0: initial direction 00 : north, 01 : south, 10 : east, 11 : west
D1-12: 2-bit routing address for next hops 00 : straight, 01: turn, 10:stop

path (flit sin), are not synchronized since the flits are clocked by straight (i.e. bypass) clock

(clock s) which is the same as their output clock. Flits incoming from the turn input must

be synchronized to the straight clock because they are in different clock domain (clock t),

and multiplexed output data are transferred to the next node along with the straight path

clock (clock s). If clock s is the same as the local clock (clock l) timing the PE, then no

synchronization of local output flits for the PE is required, yielding a reduction of latency.

Internal output submodule logic, such as FIFOs, buffer controller, and switch allocator op-

erate on the straight clock. Packet routing information, denoting straight, turn right, or

enter the PE, is decoded and used on the fly as header flits of the packets are propagated

through the router.

For buffer management, we use a credit based flow control. If lack of upstream credit

(credit in) indicates there is congestion, then all incoming packets will be buffered into

local FIFOs. The switch allocator controls the output multiplexer switching bypass mode

or buffer mode based on the traversal paths of incoming packets, the status of buffers owned

by the node, and credit in signal. A two input mutiplexer is exploited to select a virtual

channel or a straight channel in the east port (Fig. 34(b)).

Fig. 35 and Table XV show a flit format in WaveSync. A header flit consists of 2 bits

of packet type for header, body, and tail information and up to (2N−1)×2 bits of source

encoded route, where N is the network diameter (e.g. a maximum of 26-bits of source

information can be encoded in the header for a 7x7 NoC). The first 2 bits of the source

82

Packet

Type

2

Address

32

Data

128

Packet

type

2

130 bits

D0

2

D1

2

D12

2

...

28 bits

Source

ID

8

Reserved

62

Header flit

Body/tail flit

01 1000

D0 D1 D2

10

D1 D2

2-bit Left

Shift

1
0

D
2

2-bit Left

Shift

Flit in

Flit out

01

Fig. 35.: Flit format in WaveSync and source route decoding using a shifter logic

encoded route indicate a routing direction (north, south, east and west) at the initial node.

After each hop, the current routing bits (2 bits) are shifted away and new routing bits used at

the next node. This simple source routing scheme is used to reduce the logical complexity

of routing and the potential for skew between the routing bits and the remainder of the

header as it propagates along the bypass path. This scheme requires no actual shifting logic

as it is a static wire rename operation essentially; the two bits used in a given router are

not propagated and the remaining wires are renamed, 0s are inserted into the missing bits.

Using this logic, the next hop information can be retrieved at the node without impacting

the skew between the flits and its clock signal. The remainder of the header flit can be

used for address and source ID, up to the bus bit-width of 130 bits. Body and tail flits are

composed of 2 bits of packet type and 128 bits data. Given the wide bit-widths available in

on-chip interconnection networks, header flits are not typically fully utilized. Therefore, we

argue that source encoded routing should not require any extra packet flits for moderately

large networks. If header bits become a constraint we could shift to a denser form of source

route encoding, at the cost of slightly more frequent de-skew operations.

83

c. De-skewer for suppressing intra-flit skew on links

The movement of flits on bypass paths in low latency NoC designs [87–89] like WaveSync

is very similar to the flow of data in wave pipelines [90]. Like wave pipelining, different

bits of a given flit which bypasses through several hops without synchronization or latch-

ing at the intervening hops, experience different wire delays. Factors which contribute

to temporal skewing between bits belonging to the same flit as the flit makes its way on

asynchronous bypass paths in low latency designs include: crosstalk coupling between link

wires, design irregularities, timing variations at switching and multiplexing logic on the by-

pass paths, process and temperature variations and physical changes like electro-migration.

Since the source synchronous clock is also carried on the links, the use of this incoming

clock signal on the link to facilitate bypass and also to synchronize incoming data bits to the

local clock at the receiving node can lead to packet errors from violation of setup and hold

constraints. It is therefore necessary to periodically eliminate the accrued skew between

bits of flits as they are bypassed.

At the 45nm technology node, given a positive edge triggered system with clock period

of 1ns, we determined via spice simulation that skewing between bits of a given flit would

be less than half the clock period, when asynchronously bypassed over three hops [77].

De-skewing can therefore be easily achieved by latching the bus data to the negative edge

of source synchronous clock every three hops. The inverted source synchronous clock used

for latching now becomes the new source clock on links upon de-skewing. To guarantee

error free operation, we only need to ensure that the de-skewing is performed every time a

flit travels three hops on the bypass paths. The placement of de-skewing blocks for static

de-skewing on a 7X7 mesh is done by simply turning off the bypass mode and latching all

the traffic at the 3rd column and 3rd row nodes.

84

..

..

..

Incoming Data/

Source Clk

Local

Clk

Synchronized Output Synchronized Output

Delay Line

1

0

D Q

Sel

S
o

u
rc

e
 c

lo
c
k

Source clock

into delay line

D Q

1

0

SelSource clock

Incoming data

Data into

delay line

Local

clock

(a) Synchronizer

(b) Selection logic

Fig. 36.: Proposed synchronizer: (a) schematic of the proposed synchronizer, (b) selection

logic for the proposed synchronizer

d. Synchronizer architecture for half cycle synchronization latency

The proposed synchronizer, shown in Fig. 36(a), calculates the skew between the source

clock arriving on the link and the receiving node’s local clock, and applies appropriate

compensation for the calculated skew to the incoming data to synchronize them to the local

clock with an average synchronization latency of only half a clock cycle. The incoming

source clock along with each incoming data bit is successively delayed by the delay cells

comprised of inverters on similar delay lines. At each delay stage of the delay line, the

delayed incoming clock signal is compared to the local clock by taking the exclusive NOR

of the two signals. The output of the exclusive NOR gate drives the enable signal of a

tri-state buffer and outputs of all the delay stages are hard-wire ORed. When the incoming

clock has been delayed appropriately on the delay line such that it is synchronized to the

local clock, the output of the exclusive NOR gate is logic one for the entire period of the

local clock and the data from this delay stage is passed to the output. The delay is capable

85

of providing a phase skew of π radians. If the incoming clock signal lags the local clock

by a phase less than π radian, the incoming data bits need to be delayed appropriately. On

the other hand, for 50% duty cycle clock if the incoming clock lags the local clock edge by

a phase greater than π radian, then the incoming data bits need to be delayed by a phase

equivalent to the skew between the rising edge of the local clock and the falling edge of

the incoming clock and another π radians. Fig. 36(b) shows the circuit that performs this

selection.

2. Experiments and Evaluation

In this evaluation, we first discuss our simulation methodology. This is followed by our

evaluation of WaveSync’s performance versus competing designs under synthetic and real-

istic workloads.

a. Simulation methodology

We evaluated two versions of our proposed WaveSync NoC: 1) WaveSync using a typical

BIFIFO; and 2) using our low delay synchronizer. These designs are compared against a

baseline GALS NoC, an asynchronous bypass channel (ABC) NoC [85] and a fully syn-

chronous NoC design. A fully synthesizable Verilog implementation of a 7x7, 2-D mesh

WaveSync NoC is simulated. A single-stage, non-pipelined baseline GALS router design

is also evaluated on 7x7 2-D mesh network with XY DOR routing. In the baseline GALS,

packets need to be synchronized at every hop incurring 2.5 cycles of synchronization de-

lay and one cycle of pipeline delay per hop. The baseline router has two, eight-flit deep

virtual channels (VCs) at every port. The fully synchronous NoC design presented by

Kim et al. [91] is also implemented. Performance was measured under three types of syn-

thetic workloads (uniform, transpose and bit-complement) and realistic traces taken from

SPLASH-2 benchmarks [86, 92].

86

(b) Transpose (c) Complement(a) Uniform

0 0.1 0.2 0.3 0.4
0

10

20

30

40

50

60

70

Traffic load (flits/node/cycle)

A
v
e
ra

g
e
 l

a
te

n
c
y
 (

c
y
c
le

s
)

FS

BG

ABC

WB

WS

0 0.1 0.2
0

10

20

30

40

50

60

70

Traffic load (flits/node/cycle)

A
v
e
ra

g
e
 l

a
te

n
c
y
 (

c
y
c
le

s
)

FS

BG

ABC

WB

WS

0 0.1 0.2
0

10

20

30

40

50

60

70

Traffic load (flits/node/cycle)

A
v
e
ra

g
e
 l

a
te

n
c
y
 (

c
y
c
le

s
)

FS

BG

ABC

WB

WS

Fig. 37.: Simulation results of synthetic traffic patterns (a) uniform, (b) transpose, and (c)

complement on fully synchronous router (FS), baseline GALS (BG), ABC, WaveSync with

BIFIFO (WB), and WaveSync with our synchronizer (WS)

In the synthetic workloads, packet length was varied randomly between two to five

flits, and the simulation was run for 100,000 cycles including 1000 warm-up cycles. Syn-

thetic workloads of a given uniform random injection process are known to converge fairly

rapidly to a given average latency. Beyond 100000 clock cycles the average packet la-

tencies do not change significantly. The SPLASH-2 workloads are composed of last-level

cache spills and fills as well as coherence traffic packet traces, taken from a 49-core CMP.

For an unbiased evaluation of SPLASH-2, we use 500000 cycles from the middle of traces

with 1000 warm-up cycles.

b. Synthetic workloads

The three synthetic workloads, uniform random, transpose and bit-complement, were cho-

sen because they represent well balanced (uniform), and skewed corner case (transpose and

87

bit-complement) traffic patterns that may be seen in realistic workloads. These results are

shown in Fig. 37. In all three cases, the WaveSync design has significantly lower, low-load

latency than all competing designs, achieving the goal of lower latency at the typical loads

seen in NoCs.

For uniform traffic, the latency performance of WaveSync is better at low injection

rates than those of baseline and ABC as shown in Fig. 37(a); although, ABC outperforms

WaveSync at injection rates over 22%. This is because ABC router provides higher band-

width than the WaveSync router due to the extra “wrap-around” links in its serpentine

topology. Under transpose traffic (Fig. 37(b)), the WaveSync router yields the lowest la-

tency at all injection rates since the wrap-around paths of ABC in the serpentine topology

are not available. The traffic path range of bit-complement is relatively narrower than other

traffic patterns; and therefore, the link loading is higher than in other patterns. In the bit-

complement, ABC outperforms WaveSync in higher traffic loads (Fig. 37(c)), however,

WaveSync with our low latency synchronizer outperforms others regardless of the vari-

ability of traffic patterns in low network load because in that low load cases packets can

bypass more intermediate nodes. We note that the de-skewing logic adds an extra delay

of 1∼3 cycles. We also note that generally, use of the proposed synchronizer reduces the

synchronization latency by almost 2∼3 cycles when compared to BIFIFO.

c. Realistic workloads

Previous analysis has shown that realistic workloads typically have relatively low average

injection rates and many applications are highly sensitive to latency [12, 13, 93]. Fig. 38

shows the performance of the different router and network designs under traces taken from

benchmarks in the SPLASH-2 shared-memory, multi-threaded benchmark suite.

Generally the pattern exhibited in Fig. 38 mirrors that seen for low loads with the

synthetic workloads. The average latency for WaveSync is smaller than that of ABC and

88

Fig. 38.: Normalized latency results of SPLASH-2 realistic traffic patterns (RT: Raytrace,

WN:Water-nsquared, WS:Water-spatial, AVG:total average) on FS, BG, ABC, WB, and

WS

baseline GALS routers for all benchmarks. On an average, WaveSync with the proposed

novel synchronizer results in an improvement in latency of 68% over the baseline and 55%

over ABC router. Furthermore, we see that WaveSync yields an improvement of 54%

over even a fully synchronous NoC design. These results reflect WaveSync’s ability to

support extremely low latency communication at low loads and the fact that generally the

SPLASH-2 benchmarks have low injection rates.

3. Design Implementation

The WaveSync router is implemented in Verilog and synthesized using TSMC 45nm li-

brary at a operating frequency of 1GHz. We used an eight-deep buffer for each FIFO in

the router design. For comparison, a fully synchronous router configured by two, eight-flit

entry, virtual channels a port and XY DOR routing is synthesized for the same technology,

consuming approximately 15% greater area than the WaveSync router. A baseline GALS

router has been built on the synchronous router design using the BIFIFO for GALS. Ta-

89

Table XVI.: Synthesis results of the WaveSync router @1GHz. Clock power denotes clock

tree power per node (mW). CDP stands for clock distribution power.

Network router # of FIFOs Router Synchronizer Total power Area
power power per node (mm2)

Synchronous router 10 29.9 - 29.9 + CDP 0.133
Baseline GALS 10 29.9 0.471 30.371 0.145

WaveSync + BIFIFO 13 34.7 0.422 35.122 0.116
WaveSync + Synchronizer 13 34.7 0.518 35.218 0.149

ble XVI shows the synthesis results of the WaveSync router, the fully synchronous router,

and the baseline GALS router. For clock tree power itself, we expect the synchronous 7x7

NoC to have a high clock tree power, we found one such example in the Xilinx Virtex6

chip, which has a clock tree power of 10.5W and is expect to be approximately the same

area [94]. For the Baseline GALS and WaveSync NoCs, the four directional clocks are

transmitted over the regular link wires connecting nodes and therefore do not require any

special distribution scheme. The power associated with this clock distribution scheme is

therefore simply the power associated with transmitting data on four regular link wires

interconnecting nodes.

Although the router power for WaveSync is ∼15% higher than that of baseline, it is

considerably less than the power required by a completely synchronous NoC+clock tree.

The increased power consumption in WaveSync over traditional GALS is a small price

to pay for improved network performance. Also, the power consumption in WaveSync is

expected to scale with frequency in similar fashion as in baseline but with much better

performance.

90

C. SDPR: Exploiting Path Diversity for Low-Latency through Simultaneous Dual Path

Routing

One of emerging issues in chip-multiprocessor (CMP) and multiprocessor systems-on-chip

(MPSoC) designs for mobile terminals is a massive data communication such as multime-

dia streaming between heterogeneous cores and components [95,96]. The massive internal

data handling for portable multimedia devices such as smartphones over on-chip networks

requires low-power and minimum latency requirements. An increasingly large number of

integrated components (processors, memory arrays, application specific IPs such as base-

band processors and video processing units) oblige the use of NoCs [97,98] to permit high

system-level throughput. NoC design efforts to-date have largely been aimed at reducing

latency to relieve congestion [99–101]. For instance, Peh and Dally introduced router delay

models for the pipelined routers and proposed a microarchitecture for a speculative virtual-

channel router to reduce latency [102]. However, a significant portion of network traffic

in MPSoCs for multimedia devices is lengthy multimedia streaming data. Lee et al. have

explored multimedia applications containing video block packets [97]. In the work, one

block data in a frame was (8×8×16 bits) divided into 64-flit length packets with 16-bit

flit size. Another example is the study of NoC designs for MPEG-4/H.264 parallel cod-

ing [98]. Multiple video streams are coded simultaneously in parallel while video stream

data are subsequently distributed to processing elements (PEs).

These studies point the need for an efficient on-chip interconnect architecture for mas-

sive data streaming. One solution for such applications is to increase the link widths. How-

ever, while this may reduce congestion and serialization latency, it comes at a high cost

of increased power consumption [103]. We propose the simultaneous dual-path routing

(SDPR) scheme that utilizes the path diversity present in typical mesh topology NoCs.

This approach is akin to having a higher link width but without the significant hardware

91

overhead associated with simple bus width scaling.

Multipath routing has widely been explored in the networking community. It has been

recognized to yield reduced network congestion and traffic hotspots. This paper focuses on

the same objectives but with observation that we can prescribe specific multiple paths and

inject packets simultaneously through multiple I/O ports (and simultaneously eject at the

receiving node) to leverage the network’s path diversity on 2-D meshes. This is in contrast

with the multi-dimension routing works or O1TURN routing selecting one of alternative

paths among available multi-paths and sending flits through the path sequentially [104].

C. Izu et al. have studied effects of multiple injection ports on highly congested network

and concluded that injecting multiple complete packets into network might not help in

performance [105]. However it is assumed that injection rate will increase at injection

ports, and this makes the network resource too scarce to accept all the packets, thus causing

early saturation. We design a network adapter which takes a packet, splits it into two halves

and send them uniformly to the injection port queues. This makes the injection port twice

wider than a single port injection router. Hence, SDPR does not exert unnecessary injection

pressure on network throughput. To the best of our knowledge, this is the first work to

explore leveraging path diversity via packet splitting and injecting simultaneously through

multi-ports.

For most source-destination pairs in a mesh network there are two statically deter-

mined non-intersecting output links from the source node in the direction of the destina-

tion, XY and YX dimension order routing (DOR) paths, shown in Fig. 39. But only one can

be used when a packet is injected because of a single injection port. Even in the adaptive

routing networks, though a packet can travel in multiple routes based on the congestion,

it still uses the network bandwidth equal to its flit width. By doubling the number of the

injection port and ejection port and splitting packets into two halves, we can leverage the

available path diversity and cheaply mimic a higher bandwidth network. The motivation

92

PE

Router

PE

Router

PE

Router

PE

Router

PE

Router

PE

Router

PE

Router

PE

Router

NA NA

NA NA

NA NA

NA NA

F1 F2 F3 F4

Message
PE

Router

PE

Router

PE

Router

PE

Router

NA

NA

NA

NA

PE

Router

PE

Router

PE

Router

PE

Router

NA

NA

NA

NA

H F3

PacketYX

H F1

PacketXY

F2

F4

Fig. 39.: Dual-path routing on a 4x4 NoC system

of packet splitting is that injecting two packets via the XY and YX DOR paths simulta-

neously can improve performance in latency and increase link utilization. But the packets

injected through the XY and YX minimal paths have to keep the same destination address

to traverse to the destination.

The reconstruction of packets can be done using the order information stored in the

head flit. We will focus on direct memory access (DMA) data transfers for this work, and

therefore providing a reconstruction order number in the header is sufficient to allow for

reconstruction within the DMA buffer at the destination, eliding the need for a dedicated

packet reconstruction buffer. Given this design, the SDPR router can ideally reduce seri-

alization latency by 50%. We note that the SDPR router provides greater benefit for large

or medium size packets such as video streams. Segmenting a short packet into two halves

can incur significant overhead in header flit generation. This can negate potential latency

improvement realized in serialization.

The remainder of this section summarizes relevant work on path diversity, outlines the

93

proposed SDPR scheme, and describes the microarchitecture of the SDPR router. We also

evaluate experiment results and examine hardware implementation overhead shown in the

synthesis result.

1. Related Work

This subsection summarizes the prior work on on-chip interconnect architecture for path

diversity. Heuristic approaches have been extensively explored [106, 107]. Banner et al.

extends the discussion to feasibility of non-minimal paths as well [108]. Implementing

these complex algorithms in NoCs constrained by power, latency and hardware complexity

overheads, however, is not readily feasible.

There are oblivious, minimal, path diverse routing schemes such as Valiant [109],

ROMM [110], O1TURN [104], and PROM [111]. Their path diversity leads to improving

throughput because of increasing routing flexibility. O1TURN routing randomly routes

packets in one of orthogonal paths (XY and YX) with equal probability (i.e. 50%). Valiant

routes each packet through a random intermediate node. As Valiant, ROMM is also one

of probabilistic routing algorithms, but it restricts the intermediate nodes to the minimal

routing area. PROM performs local randomized decisions at each hop based on probabilis-

tic oblivious routing policy. ROMM, Valiant, O1TURN, and PROM are able to encounter

out-of-order packet arrivals at destination dissimilar to DOR, so the destination requires

enough buffer to reorder the packets. Even though they all achieve better path diversity

than DOR [111] with minimal hardware overhead, they do not overcome the serialization

latency of a long packet incurred due to single injection port. As we showed in the SDPR

experiments, this problem can be mitigated by two injection ports injecting split halves of

a packet via separate and independent orthogonal two paths (i.e. XY and YX) at the same

time.

Murali et al. describes a multipath routing strategy for in-order packet delivery in

94

NoCs [112]. The packets are sent through non-intersecting paths and the lookup table is

employed at the switch of re-convergent node to support in-ordering. Michelogiannakis et

al. introduced multi-dimension routing concept for bufferless flow control [113] in which

flits can travel in any productive directions. Common to these approaches is the aim to

better utilize the link diversity attainable at a given node or a link to reduce latency and

hotspots.

2. Dual-Path Network Architecture

Daeho Seo et al. reviewed the path diversity in 2-D mesh networks in O1TURN rout-

ing [104] by injecting the packets in XY DOR and YX DOR paths with equal probability.

However it is done with a single injection port which does nothing to reduce the serial-

ization latency of packet injection. The motivation behind the SDPR router is to employ

complete parallelism in packet traversal to reduce the serialization latency. The number of

minimal non-intersecting paths where we can send the parts of the packet simultaneously

can at most be two. The best possible split size of the packet is half which traverse through

two independent paths simultaneously in parallel, leading to a 50% reduction in serializa-

tion latency ideally under no loads. Under the synthetic and realistic loads, we still get

reduction in serialization latency, but the benefit is reduced by difference in arrival time

of these packet pieces at the destination. Thus, the network adapter splits a message into

two halves and these packets are injected to travel XY DOR and YX DOR respectively,

leveraging the two available and productive output ports at the destination to increase the

effective network bandwidth. Each SDPR router consists of two injection ports and two

ejection ports along with minimum overhead. Injected packets approach the destination

from different directions and get absorbed by different ejectors in parallel. The baseline

and SDPR router details are described in this section.

95

a. Dual-Path Routing Scheme

SDPR can reduce the latency of serialization by accommodating additional injection and

ejection ports and exploiting two inherent minimal XY and YX DOR paths on a mesh

network, compared with baseline using XY DOR only. Fig. 40 presents the proposed

SDPR scheme. When source and destination nodes are not in a line (i.e. two minimal

paths are available) as shown in Fig. 40(a), a packet is split to two packets, and they are

simultaneously sent along the XY DOR path and the YX DOR path in parallel. In this

approach, the split two packets should retain the same source and destination addresses in

their head flits since they composed a packet and were supposed to be sent to the same

destination before being split. Therefore, SDPR requires preprocessing to divide a packet

to two halves and re-packetize them into two split packets. This task can be performed in

the packet generation process handled by a network adapter module as shown in Fig. 41. In

particular, this makes our method significantly different and independent from the previous

multi-path studies that send packets in serial via a path selected from multiple paths (e.g.

O1TURN [104], ROMM [110], Valiant [109], PROM [111], or odd-even routing [114]).

SDPR utilizes path diversity as the previous multi-path studies but contrastively injects the

divided portions of a packet via multiple paths at the same time. This increases parallelism

and path utilization as well as decreases serialization latency.

If there are minimal or non-minimal multiple paths where packets can traverse, SDPR

can be extended to accommodate the multiple splitting and simultaneous sending scheme.

In Fig. 40, payload data are divided into two payload groups for split packet 1 and split

packet 2, which are packetized into two split packets with header (H) including flit type,

DOR path and VC information, source address (S0), destination address (D14), and pay-

load data respectively. The DOR path information denotes which path is allotted for each

split packet. In the figure, packet A, one of two halves, is injected into inject port 1 (Inj1)

96

S
0

1
2

3

4
5

6
7

8
9

10
11

12
13

D
14

15

X
Y

D
O

R

YXDOR

S
D

X
Y

D
O

R

S D

(a
)S

D
P

R
(X

Y
an

d
Y

X
D

O
R

pa
th

s)

(b
)X

Y
D

O
R

pa
th

on
ly

(n
o

pa
ck

et
sp

lit
tin

g)
(c

)Y
X

D
O

R
pa

th
on

ly
(n

o
pa

ck
et

sp
lit

tin
g)

YXDOR

P
ac

ke
ts

pl
itt

in
g

fo
rS

D
P

R
In

j1
In

j2

Th
e

sp
lit

pa
ck

et
s

sh
ou

ld
ke

ep
th

e
sa

m
e

so
ur

ce
-

de
st

in
at

io
n

ad
dr

es
s

Ej
2

Ej
1

H
S0

D
ep

ac
ke

tiz
in

g P
ay

lo
ad

da
ta

Pa
Pb

Pc
Pd

H
ea

d
fli

t
H S0 D
14 Pa

B
od

y
fli

t
Ta

il
fli

t
H

H

Pb

Pc Pd Pe Pf

Po Pp Pq Pr

H
ea

d
fli

t
H S0 D
14 Pa

B
od

y
fli

t
Ta

il
fli

t
H

H

Pc Pd

Po Pp

H
ea

d
fli

t
H S0 D
14 Pb

B
od

y
fli

t
Ta

il
fli

t
H

H

Pe Pf

Pq Pr

In
ta

ct
pa

ck
et

S
pl

it
pa

ck
et

1

D
14

Pa

H
S0

D
14

Pb

H
Pc

Pd
H

Po
Pp

H
Pe

Pf
H

Pq
Pr

Pq
Pr

S
pl

it
pa

ck
et

2

X
Y

D
O

R

Y
X

D
O

R

Fi
g.

40
.:

T
he

pr
op

os
ed

SD
PR

sc
he

m
e

(a
)T

he
re

ar
e

tw
o

m
in

im
um

D
O

R
pa

th
s

fr
om

th
e

so
ur

ce
no

de
(S

0)
to

th
e

de
st

in
at

io
n

no
de

(D
14

).

Tw
o

sp
lit

pa
ck

et
s

ar
e

si
m

ul
ta

ne
ou

sl
y

se
nt

vi
a

th
e

X
Y

an
d

Y
X

D
O

R
pa

th
s

re
sp

ec
tiv

el
y.

(b
an

d
c)

th
e

de
st

in
at

io
n

an
d

so
ur

ce
no

de
s

ar
e

in
th

e
sa

m
e

lin
e

(X
ax

is
or

Y
ax

is
).

T
he

re
fo

re
,p

ac
ke

ts
ar

e
no

ts
pl

it,
se

nt
vi

a
X

Y
or

Y
X

pa
th

.

97

at the source S0, traverses through the XY DOR path (i.e. S0→1→2→6→10→D14) and

ejects out of ejection port 1 (Ej1) at the destination D14. Packet B, the other half, simultane-

ously traverses from Inj2 to Ej2 along the YX DOR path (i.e. S0→4→8→12→13→D14).

Once both A and B packets arrive at the destination node, they are retrieved and de-

packetized by the network adapter. The latency of a intact packet transmission is measured

from the injection time of the first injected packet in two halves at the source to the ejection

time of the last arrived packet at the destination. If the time difference of arrival between

two split packets at the destination increases due to congestion in the network, the packet

latency will also increase.

If there exists only one minimal path between source and destination like traversing

only on X or Y axis as shown in Fig. 40(b and c), the packet is sent intact without packet

splitting and dual-path routing. In this case, the performance of the SDPR router relatively

degrades, compared with that of the baseline router using the same number of virtual chan-

nels (VCs) of the SDPR router. This is because VCs for XY DOR are separate from VCs

for YX DOR in SDPR to avoid deadlock. When there is only one minimal path (XY or

YX) traversed, a set of VCs for the minimal path will be used. It means that VCs for the

other minimal path are not utilized. This causes inefficiency in terms of resource utilization

and performance degradation in SDPR.

Table XVII shows the distribution equations of dual path node pairs over whole node

pairs under given traffic patterns, where N denotes network dimension. The motivation

of this examination is that serialization latency reduction in SDPR is highly dependent on

the distribution of source and destination pairs including both minimal DOR paths on a

traffic pattern. The reduction in serialization latency will be high at high levels of dual-path

node pairs in distribution. The distributions of dual path node pairs are 73%, 86%, 73%

at uniform random, transpose, and bit-complement on a 7x7 mesh network respectively.

It implies that the serialization latencies of SDPR across the three traffic patterns can be

98

Table XVII.: Distribution of dual path node pairs and serialization latency reduction in

SDPR where N=7

Traffic pattern Distribution (%)
Ideal reduction in

serialization latency (%)

Uniform random
[N2 · (N−1)2]/(N2 ·N2)

37
= (N−1)2/N2 = 73

Transpose
(N2−N)/N2

43
= (N−1)/N = 86

Bit-complement
100 (N:even) 50 (N:even)

(N−1)2/N2 = 73 (N:odd) 37 (N:odd)

ideally reduced by 37%, 43%, 37%, respectively, (i.e. half of the level of distribution

because of packet splitting and injecting in parallel) without accounting for the overhead

increase.

DOR is inherently deadlock free [115]. In SDPR, separate channels are allocated for

XY DOR and YX DOR respectively to remove the cyclic dependencies in the resources

sharing a physical channel; hence, SDPR is also deadlock free. Virtual channels are also

provided in these separate channels to avoid the head-of-line blocking in XY and YX DOR

paths.

b. Network Adapter

The network adapter (NA) splits messages and injects them through separate injection ports

into the separate paths as shown in Fig. 41. When a DMA block has a message (i.e. packet)

to send, it is forwarded from memory to the packet splitting block, and then split into two

packets of half the size, and re-packetized with modified header and tail flits. An initial

message with n flits is divided into two packets of n/2 + 1(header) flits each. New head

flits for the half packets (Pxy and Pyx) are built and injected to the SDPR router through

99

C
or

e
IF

Send
DMA

Ctrl/Stat
Reg

N
et

w
or

k
IF

Packet
splitting,
header

building

Core

L1
Cache

L2
Cache

Ctrl/Stat
Reg

Pxy

Pxy

Pyx

Pyx

Network Adapter (NA)

Injection

Ejection

Header
parsing

Receive
DMA

Mem Data

R
ou

te
r

Data

CDxy

CDyx

Fig. 41.: Network adapter architecture for packet splitting

network interface. At the destination, two ejected packets (Pxy and Pyx) are delivered to NA

for header parsing and DMA transfers the parsed packets to memory. When DMA finishes

sending two ejected packets to the memory, a processing element (PE) reconstructs the split

packets.

We have observed that the reconstruction of the separated halves could be done using

small amount of cache memory in the experiment for realistic video benchmarks. This is

because the network load of realistic video traffic was low, leading to 27-34 cycles dif-

ference of ejection time of two split long packets on average at the destination. We will

demonstrate this result more in the experiments section. Furthermore, we note that in many

applications such as cache line or DMA data transfers, memory has already been set aside

for the reception of the data, thus even for the worst case ejection time difference, a re-

construction buffer is unnecessary. Therefore, in the cache line transfers or DMA data

transfers, the reconstruction order number (i.e. ADDR field in the header) can sufficiently

support to reconstruct the separate packets within the cache or DMA buffer at the destina-

tion.

100

North

DOR,VCID

Credit_out

South
Credit_out

East
Credit_out

West
Credit_out

Injection1
Credit_out

Injection2
Credit_out

XY

YX

XY

YX

XY

YX

XY

YX

XY

YX

Routing
logic
VC

allocator
Switch

allocator

Crossbar
switch

Output
unit

Input unit

North
South
East
West
Ejection1
Ejection2

Credit_in

(b) SDPR router (SDPR-VC1)

DOR,VCID

DOR,VCID

DOR,VCID

North

VCID

Credit_out

South

VCID

Credit_out

East

VCID

Credit_out

West

VCID

Credit_out

Injection

VCID

Credit_out

XY

XY

XY

XY

XY

Routing
logic

VC
allocator

Switch
allocator

Crossbar
switch

Output
unit

Input unit

North
South
East

West

Ejection

Credit_in

(a) Baseline router (BL-VC2)

Fig. 42.: Microarchitectures of (a) baseline (i.e. single-path) router with two virtual chan-

nels and (b) SDPR router with one virtual channel for each XY or YX DOR. They exploit

equivalent resources in terms of total number of buffers used.

c. Baseline Router

The baseline is a standard 2D mesh, pipelined router with virtual channels [102]. The

pipeline consists of 2 stages: route computation and arbitration at output port. When a flit

enters a router, it is sent to the particular VC depending on the VC identification (VCID)

carried by the flit. If the flit is a header carrying the current node output port (CNOP)

information, arbitration is requested for acquiring the VC at next node as conventional

wormhole routers.

d. SDPR Router

Microarchitecture: Unlike the baseline router as shown in Fig. 42(a), the SDPR router

has an extra local injection and ejection port to make SDPR beneficial. In Fig. 42(b), the

SDPR router consists of four directional input/output ports, two local injection ports, credit

101

Fig. 43.: Packet structure for the SDPR router

signals, and two ejection ports. Each directional input port contains two channels, one for

XY DOR and the other for YX DOR, supporting two completely disjoint paths from source

to destination. The XY or YX path in a packet is determined by 1-bit DOR information

encoded in the packet. If there are multiple VCs for each path, VCID indicates which

virtual channel is occupied by this packet. In Fig. 42(b), the SDPR router exploits only one

virtual channel, hence VCID should be 0. In case of using two VCs for each path, VCID

can be 0 or 1 to denote which one is occupied. The credit based flow-control system is

used for buffer management. As highlighted in grey on the figure, the hardware overhead

of the SDPR router is minimal as the only additions are DOR information in a flit, extra

ejection port, and hence wider crossbar with slightly modified control logic. To keep the

same utilization of VC buffers, the two injection VCs are separated to two injection ports.

Therefore, no additional buffers are required because total VCs used in injection ports as

well as total VCs used in direction ports are equal in SDPR and baseline. SDPR thus does

not require extra channel ports, just static assignment of each injector to two of the output

directions.

Packet structure: Fig. 43 and Table XVIII shows the packet format. The size of a flit is 64

bits and 2 MSBs indicate the flit type. The DOR bit determines XY DOR or YX DOR, and

the VCID bit is the same as that in baseline. We note that 1-bit VCID was used to provision

maximum 2 VCs per port in our experiment, but the number of VCs can be extensible.

CNOP (3 bits) denotes the output port for the packet at the current node and is required to

102

Table XVIII.: Packet structure for the SDPR router

Flit type DOR VCID CNOP SRC DST

000: inj1
00 : head 0: 0: 001: north
01 : body XY 1 VC 010: south Coord. Coord.
10 : tail 1: 0,1: 011: east for sou for des
11 : single YX 2 VCs 100: west rce tination

101: inj2

request the output port. Once the output port is acquired, the CNOP is updated for the next

node. The source and destination addresses are used to update the CNOP for the next node

(i.e. lookahead routing). 10-bit ADDR followed by payload denotes the order information

of split packets for reconstruction. For the body and tail flits, it only has the flit type, DOR,

and VCID fields, and the rest is payload. Table XVIII explains the information stored in

the flit and its meaning.

Packet processing at source and destination: Each source node switches dual-path rout-

ing or single-path routing based on the destination address of packets. If the destination is

”in-line”, there are no two minimal paths to the destination and hence packet is sent intact

without splitting via XY DOR path (i.e. DOR=0). When there are two minimal paths to

the destination, the network adapter splits the packet into two halves and assigns the header

information (i.e. flit type, DOR=0/1, VCID, CNOP=000/101) to both packets at the source.

The re-packetized packets are injected simultaneously through dual injection ports. When

the split packets reach the destination, they exit through the ejection ports. Injection1 and

Ejection1 ports are dedicated for XY DOR path, and Injection2 and Ejection2 ports are

dedicated for YX DOR path. There are no mixed ejections between port1 and port2 since

these ports are separate in different channels for deadlock prevention. Packet splitting in-

curs overhead of an extra head flit. In particular, for short packets (2-5 flits), this overhead

103

results in reducing the performance of SDPR. In the experiments section, we will demon-

strate the influence of overhead on short packets. Therefore, we target medium-long length

traffic such as video streams where the packet lengths are longer and serialization latency

is dominant. Splitting the long packets and thus injecting them simultaneously provide

double network bandwidth and cause at most 50% reduction in serialization latency with

a relatively minor overhead. While the proposed SDPR approach statically splits packets,

in the future we plan to explore the dynamic splitting of packets and balancing of lengths

between paths dependent on network load metrics.

3. Experiments and Evaluation

In this subsection, we evaluate the proposed SDPR scheme and the SDPR router experi-

mentally to analyze performance under different types of synthetic and realistic workloads.

We compare the performance of the SDPR router against that of the baseline router.

a. Methodology

We developed a fully synthesizable network consisting of the SDPR routers connected in

the 7x7 2-D mesh topology to obtain the performance numbers. All simulation models for

SDPR and baseline routers were coded in Verilog and synthesized using Synopsys Design

Compiler [55]. In the baseline router, we used 2 VCs and 4 VCs (BL-VC2 and BL-VC4,

BL stands for baseline) each with buffer depths of 5, 8, and 12. The buffer depth of 5 is

the minimum to ensure no pipeline bubbles due to credit return time in the credit-based

flow control [86]. For a fair comparison, we allocated the same number of buffers for

the baseline and SDPR routers. We compared the baseline routers with the SDPR routers

using 1 VC and 2 VCs per DOR path (SDPR-VC1 and BL-VC2) since BL-VC2 and BL-

VC4 consist of the same FIFO buffering and resources as SDPR-VC1 and SDPR-VC2

respectively. Hence, total buffers per port are two for BL-VC2 and SDPR-VC1 and four

104

Fig. 44.: QCIF and CIF frame resolutions on Akiyo

for BL-VC4 and SDPR-VC2.

The performance of the proposed router was evaluated across uniform random, trans-

pose, and bit-complement synthetic workloads [86] and H.264 video test streams [116] and

SPLASH-2 benchmarks [86,92] for realistic workloads with variations. Each of the routers

was experimented with a buffer of depth five. Table XIX details the network configuration

and the variations used in the experiments. In the synthetic workload simulation, we used

long, medium, and short packets in which the average packet lengths (APLs) were 100, 25,

3.5 flits respectively.

We also evaluated SDPR and baseline across four different QCIF (176x144) 10 frames

and CIF (352x288) 10 frames video sources (Foreman, Akiyo, Mother, and Mobile streams

as configured in Table XX) generally used as video benchmarks for the evaluation on video

applications [117]. Fig. 44 shows CIF and QCIF frame resolutions on the Akiyo stream.

We used the H.264/MPEG-4 AVC (advanced video coding) standard developed by the joint

video team (JVT) of ISO/IEC and ITU-T (Telecommunication Standardization sector) and

the reference software of H.264 as a source coder for the video encoding [41, 42]. The

five sources (i.e. four video streams and all mixed stream) were encoded by the software

H.264 encoder and uniformly distributed through source-destination pairs. Therefore, the

105

Ta
bl

e
X

IX
.:

N
et

w
or

k
co

nfi
gu

ra
tio

n
an

d
va

ri
at

io
ns

fo
rb

as
el

in
e

an
d

SD
PR

ro
ut

er
s

C
ha

ra
ct

er
is

tic
N

et
w

or
k

co
nfi

gu
ra

tio
n

V
ar

ia
tio

ns

To
po

lo
gy

7x
7

2D
M

es
h

-
R

ou
tin

g
X

Y
D

O
R

fo
rb

as
el

in
e,

X
Y

an
d

Y
X

D
O

R
s

fo
rS

D
PR

-
R

ou
te

ra
rc

hi
te

ct
ur

e
Tw

o-
st

ag
e

pi
pe

lin
ed

ar
ch

ite
ct

ur
e

-
Pe

r-
ho

p
la

te
nc

y
3

cy
cl

es
:2

in
ro

ut
er

,1
to

cr
os

s
ch

an
ne

l
-

V
ir

tu
al

C
ha

nn
el

s/
Po

rt
2(

ba
se

lin
e)

,1
(S

D
PR

)
4(

ba
se

lin
e)

,2
(S

D
PR

)
Fl

it
bu

ff
er

s/
V

C
5

8,
12

Fl
it

si
ze

in
bi

ts
64

-
Tr

af
fic

w
or

kl
oa

d
Tr

an
sp

os
e,

B
it-

co
m

pl
em

en
t,

U
ni

fo
rm

ra
nd

om
H

.2
64

vi
de

o
tr

ac
es

SP
L

A
SH

-2
tr

ac
es

A
ve

ra
ge

pa
ck

et
le

ng
th

Sy
nt

he
tic

:1
00

(l
on

g)
,2

5(
m

ed
iu

m
),

3.
5(

sh
or

t)
H

.2
64

vi
de

o:
37

(m
ed

iu
m

-l
on

g)
,8

.3
5(

sh
or

t)
(fl

its
pe

rp
ac

ke
t)

SP
L

A
SH

-2
:3

.5
(s

ho
rt

)
Si

m
ul

at
io

n
w

ar
m

up
10

,0
00

(c
yc

le
s)

-
A

na
ly

ze
d

pa
ck

et
s

10
0,

00
0

(c
yc

le
s)

H
.2

64
vi

de
o:

C
IF

10
(f

ra
m

es
),

Q
C

IF
10

(f
ra

m
es

)
SP

L
A

SH
-2

:5
00

,0
00

(c
yc

le
s)

106

Table XX.: H.264 video traces

Source video stream Foreman, Akiyo, Mobile, Mother

The number of frames 10(QCIF),10(CIF)

Frame rate 30 f rame/sec

Source resolution
176×144 (QCIF)
352×288 (CIF)

Max. Bitrate 192(QCIF),768(CIF)kbit/s

video packets included H.264 encoded video bitstreams as payloads. The packet length of

the video streams were 33.14 (CIF) and 8.35 (QCIF) flits on average for medium and short

respectively, where the video streams suitably provided a realistic benchmark for evaluating

our design on short to long packet sizes.

SPLASH-2 [86,92] is a shared-memory, multi-threaded benchmark suite. For an unbi-

ased evaluation of the SPLASH-2 benchmarks (Barnes, FFT, LU, Radix, Raytrace, Water-

nsqeuared, and Water-spatial), we used 500,000 cycles from the medium of traces with

10000 warm-up cycles. The packets consisted of 2-5 flits per packet (i.e. short packets) and

the average packet length of the SPLASH-2 traces was 3.5 flits. As we mentioned before,

the latency of the ejected packet was measured as time difference between the injection of

the first half packet at source and the ejection of the last half packet at destination.

b. Results

Standard synthetic loads: Fig. 45, 46, 47 show the packet latency averaged across uni-

form random, transpose, and bit-complement synthetic loads using long, medium, and

short length packets at 2-50% injection bandwidths on BL-VC2, BL-VC4, SDPR-VC1,

and SDPR-VC2. As expected, SDPR with long packet significantly outperformed baseline

in latency across all traffic patterns. The latency results, 32%, 40%, 31% approached to

107

(a) Uniform random (b) Transpose (c) Bit-complement

Fig. 45.: Results of synthetic long length packets (average packet length=100)

(a) Uniform random (b) Transpose (c) Bit-complement

Fig. 46.: Results of synthetic medium length packets (average packet length=25)

the ideal reduction gains in serialization latency (37, 43, 37% as discussed in Table XVII)

under three synthetic traffic patterns because SDPR provided better utilization of path di-

versity than baseline under long packet. In particular, the latency and saturation through-

put of SDPR were much better than them of the baseline router under transpose traffic

in Fig. 45(b), 46(b), 47(b) because the transpose pattern is ideally balanced under SDPR

and increases the probability of packet splitting and parallel traversal through the dual-path

routes. The results show the improvement of saturation bandwidth by 100%, 100%, 75%

108

(a) Uniform random (b) Transpose (c) Bit-complement

Fig. 47.: Results of synthetic short length packets (average packet length=3.5)

on long, medium, short packets respectively. On the other hand, bit-complement traffic

mainly uses horizontal and vertical network bisections and provides less chance of parallel

traversal than the transpose traffic, leading to the slightly less performance improvement in

latency and saturation bandwidth than the transpose and random uniform loads as shown in

Fig. 45(c), 46(c), 47(c). However, it still achieved up to 32% latency reduction in the long

packet traffic pattern. Fig. 45, 46, 47 also show that the saturation throughput of SDPR-

VC1 is less than BL-VC2 under uniform random and bit-complement. This was because

SDPR-VC1 used only one VC for each DOR path, leading to head-of-line blocking which

the BL-VC2 design did not experience. SDPR-VC1 nevertheless achieved significantly

lower no-load latencies than BL-VC2.

Fig. 46 shows medium packet results. The APL of the medium packets was 25, greater

then the packet length boundary (20). Accordingly, latency reductions were improved to

25, 30, 21% on random uniform, transpose, and bit-complement which were 3-4 times the

short packet latency results across the synthetic traffic patterns. Long packet results are

shown in Fig. 45, where APL is 100.

Fig. 47 shows the results of short packet simulation (APL=3.5) across synthetic traffic

109

Table XXI.: A summary of average latency reductions on long packet traffic and closeness

to ideal latency reductions under SDPR on a 7x7 mesh NoC

Traffic pattern
Ideal latency Average latency Closeness to ideal
reduction (%) reduction (%) latency reduction (%)

Uniform Random 37 32 86
Transpose 43 40 93

Bit-complement 37 31 84

patterns. Short length packets degraded the latency performance in SDPR due to the over-

head of header in split packets. In the figure, the average latencies gained by SDPR over

baseline were 7, 9, 5% on uniform random, transpose, and bit-complement respectively.

Also as expected, these improvements were much less than the ideal maximum gains un-

der the synthetic traffic patterns, 37, 43, 37% (we mentioned in Table XVII) in SDPR.

Table XXI summarizes the average serialization latency reductions across synthetic work-

loads on long packet traffic and compares them with ideal serialization latency reductions

under SDPR.

Realistic loads-H.264 video streams: As we discussed, realistic H.264 video streams were

used to evaluate our SDPR scheme because lengthy video streaming data held significant

portion of network traffic, causing the system performance bottlenecks in the network.

Fig. 48 shows the video packet latency averaged across five test streams under medium and

short packet traffic patterns generated by H.264 CIF and QCIF encoded video workloads.

When we compared SDPR to baseline on medium packets (APL=33.14), the average laten-

cies of SDPR-VC2 were outperformed by 25%. The latency reduction of SDPR-VC2 with

short packets (APL=8.35) under the mixed video stream was 14% on average, compared

with BL-VC4. We were able to estimate the maximum reduction in serialization latency

from the distribution of dual-path node pairs across the five video traffic patterns as shown

110

(a
) D

is
tr

ib
ut

io
n

(b
) T

im
e

di
ffe

re
nc

e
of

 a
rr

iv
al

 o
n

SD
PR

-V
C

2
(d

) A
vg

. l
at

en
cy

 (s
ho

rt
: A

PL
=8

.3
5)

(c
) A

vg
. l

at
en

cy
 (m

ed
iu

m
: A

PL
=3

3.
14

)

Time difference (cycles)

Average latency (cycles)
Fi

g.
48

.:
R

es
ul

ts
of

re
al

is
tic

vi
de

o
w

or
kl

oa
ds

:
ak

iy
o,

fo
re

m
an

,m
ob

ile
,m

ot
he

r,
an

d
m

ix
ed

C
IF

(m
ed

iu
m

pa
ck

et
,A

PL
=3

3.
14

)
an

d

Q
C

IF
(s

ho
rt

pa
ck

et
,A

PL
=

8.
35

)

111

in Fig. 48(a). The distribution of dual-path node pairs was 75% on average at the patterns;

thereby the maximum reduction in serialization latency on SDPR was expected as 38%.

Fig. 48(b) shows the distance of arrival time between two split packets at a destina-

tion node across video patterns. When the time difference of arrival increases, processing

elements require more memory space to hold the payloads of the split packets for recon-

struction. As shown in the figure, average time differences were 29.8, 5.3, 1.9 on the mixed

video patterns with medium and short packet length respectively. The reconstruction can

be performed using small amount of cache memory. Even for the worst case, cache mem-

ory is enough to handle this reconstruction without any additional buffers in the network

adapter.

We concluded from this analysis, SDPR attained a significant improvement over con-

ventional XY DOR for all traffic loads due to its better utilization of path diversity. Es-

pecially, the SDPR scheme outperformed XY DOR under lengthy streaming applications

such as video streaming since they mostly require long packet communication for high res-

olution between nodes in NoCs. SDPR also provided better performance in latency than

baseline across all buffer depths and injection rates we experimented. The reconstruction

of split packets could be done in memory space belonging to main processor units.

Realistic loads-SPLASH-2: Realistic traces taken from SPLASH-2 benchmarks were ex-

ploited for evaluation. The SPLASH-2 workloads are composed of static traces of short

packets (APL=3.5) from the portion of the memory hierarchy which directly communicates

via the NoC. We performed SDPR simulations across the SPLASH-2 traces and obtained

the experimental result as shown in Fig. 49. The average packet length of SPLASH-2 was

short (i.e. 3.5) as that of synthetic short packet traffic, therefore, as expected, the latency

reduction (5-6%) attained from the experiments was low due to the short packet length

like the results of synthetic short packet traces. Fig. 49(a) shows the distribution of single-

path packets and dual-path packets implying reduction degree. Raytrace consists mainly

112

(a
) D

is
tr

ib
ut

io
n

(b
) T

im
e

di
ffe

re
nc

e
of

 a
rr

iv
al

 o
n

SD
PR

-V
C

2
(c

) N
or

m
al

iz
ed

 la
te

nc
y

(A
PL

=4
.1

1)

Latency (normalized against BL-VC4)

Time difference (cycles)

Fi
g.

49
.:

E
xp

er
im

en
tr

es
ul

ts
ac

ro
ss

SP
L

A
SH

-2
be

nc
hm

ar
ks

(A
PL

=3
.5

):
B

ar
ne

s,
FF

T,
L

U
,R

ad
ix

,R
ay

tr
ac

e,
W

at
er

-n
sq

eu
ar

ed
,a

nd

W
at

er
-s

pa
tia

l

113

of dual-path packets, so SDPR can improve the efficiency of routing on this traffic pattern.

But it mostly included short packets (i.e. 2-5 filts per packet), thus the benefic of SDPR

was attenuated due to head flit overhead. The time arrival difference between two split and

ejected packets on SDPR-VC2 across the SPLASH-2 benchmarks is shown in Fig. 49(b).

The time difference was less than one cycle, which meant the split packets were ejected at

almost the same time.

c. Discussion

We examined the effect of packet length on our SDPR scheme, compared with the baseline

router simulation. A source and destination pair was uniformly and randomly selected,

and 10,000 payload flits were packetized and traversed along with single-path or dual-path

from the source to the destination on the 7x7 network. This experiment was repeated with

eight different pairs of nodes. The results of transfer time in cycle were measured and

averaged with 1,000 warmup cycles as shown in Fig. 50. In Fig. 50(a), transfer time results

on BL-VC4 were measured while packet length per injection port was varied from 2 to 100

to examine the optimal length of packets in terms of transfer time. We used short packets

for background nodes excluding the selected source-destination pair to minimize the side

effects of packet length variation in the background nodes. To investigate the influence

of buffer depth over the transmission, we used three buffer depth variations, 5, 8 and 12.

Fig. 50(b) shows the results of SDPR-VC2 simulation under 5, 8, and 12 buffer depths.

Injection rate thus varied from 3 to 30% to demonstrate the effect of congestion over BL-

VC4 and SDPR-VC2. Packet length boundary to achieve subminimal transfer time was 20

flit per injection port in both BL-VC4 and SDPR-VC2. If the packet length is less than the

boundary, transfer time will gradually increase. The performance gain of SDPR-VC2 over

BL-VC4 was about 36% across all injection rates and buffer depths. As a result, SDPR

with packet length boundary attained a significant improvement in latency performance

114

(a
)B

as
el

in
e

ro
ut

er
(B

L-
VC

4)
(b

)S
D

PR
ro

ut
er

(S
D

PR
-V

C
2)

Fi
g.

50
.:

Tr
an

sf
er

tim
e

of
10

,0
00

m
es

sa
ge

fli
ts

un
de

rv
ar

io
us

pa
ck

et
le

ng
th

s,
bu

ff
er

de
pt

hs
,a

nd
in

je
ct

io
n

ra
te

s
in

ba
se

lin
e

an
d

SD
PR

N
oC

s.
So

lid
,d

ot
te

d,
an

d
da

sh
ed

lin
es

sh
ow

th
e

si
m

ul
at

io
n

re
su

lts
us

in
g

5,
8,

12
bu

ff
er

de
pt

hs
re

sp
ec

tiv
el

y.

115

regardless of buffer depth and injection rate.

4. Synthesis Results

We also examined the hardware overhead of the SDPR router to tradeoff strengths achieved

from the improved link utilization and weaknesses caused by the hardware overhead for

external injection and ejection ports and additional logic. Fig. 51 profiles and compares

the synthesis results of the fully synchronous baseline and SDPR routers. We synthesized

these two routers using Synopsys Design Compiler on TSMC 45nm technology with 20%

default switching activities. Internal blocks of each router such as input unit, VC allocator,

switch allocator, crossbar switch, output unit, and router top were synthesized to demon-

strate power and area overheads. The power and area results of input unit were relatively

greater than other blocks because it included twenty 4-depth, 64-bit width FIFOs (i.e. four

FIFOs times five ports). The results of SDPR-VC2 denote slightly higher power/area over-

heads than BL-VC4 due to the supplementary allocation and switch logic. However, these

overheads involved are inexpensive changes relative to the benefit of SDPR in terms of

improvement.

D. Conclusions

We present the WaveSync NoC design, which enables very low-latency communication

in GALS NoC designs under low injection rates. By clocking portions the downstream

node and processing element with the incoming source synchronous clocks on links, the

WaveSync architecture allows packets propagating along the same path as the clock to

skip synchronization entirely thereby allowing data to move as fast as it would in a long-

combinatorial path. We also evaluate the performance of a near-half-cycle synchronizer

architecture to reduce synchronization latency when synchronization is unavoidable, fur-

116

(b
) P

ow
er

 (m
W

)
(a

) A
re

a
(m

m
2)

05101520253035

In
pu

t u
ni

t
VC

al

lo
ca

to
r

Sw
itc

h
al

lo
ca

to
rC

ro
ss

ba
r

sw
itc

h
O

ut
pu

t
un

it
R

ou
te

r
to

ta
l

B
L-

VC
4

SD
PR

-V
C

2

0
0.

01
0.

02
0.

03
0.

04
0.

05
0.

06
0.

07
0.

08
0.

090.
1

In
pu

t
un

it
VC

al

lo
ca

to
r

Sw
itc

h
al

lo
ca

to
rC

ro
ss

ba
r

sw
itc

h
O

ut
pu

t
un

it
R

ou
te

r
to

ta
l

B
L-

VC
4

SD
PR

-V
C

2

Fi
g.

51
.:

Sy
nt

he
si

s
re

su
lts

of
B

L
-V

C
4

an
d

SD
PR

-V
C

2
w

ith
4-

de
pt

h
FI

FO
@

1G
H

z

117

ther reducing per-hop latency. The proposed WaveSync design results in an improvement in

average latency of 68% over the baseline GALS and 55% over ABC across the SPLASH-2

benchmarks.

Deterministic routing algorithm such as DOR is widely used in 2D mesh NoC because

it provides simple algorithm and low-cost implementation. However, its performance in

latency can be insufficient due to no path diversity. We observe that there are two inherent

minimal paths (XY and YX DOR paths) on a 2-D mesh network. Simultaneous packet

injecting via the two paths can enhance performance and gain better link utilization, but the

two packets should have the same destination address to be injected at the same time.

We also propose a solution for this problem using the SDPR scheme. The SDPR ar-

chitecture statically exploits the path diversity in the network to improve link utilization. In

particular, the proposed SDPR technique mitigates the lack of path diversity and utilization

of DOR by splitting a packet to two halves that involve the same source-destination address

and injecting them simultaneously in parallel via separate and independent orthogonal two

paths (i.e. XY and YX). By using dual injection and ejection ports dedicated at the router,

parallel traversal along with XY DOR and YX DOR channels incurs a marginal logic and

power overhead.

The experiment results demonstrate that SDPR can outperform the traditional DOR-

based single injection scheme under long packets across all traffic patterns. We performed

the SDPR evaluation using different synthetic workloads and realistic H.264 video traces

and SPLASH-2 benchmarks to show significant reduction in the average packet latency.

In the results, the SDPR router achieves 31-40% average reduction in latency across all

synthetic under long packet simulations and 10% across SPLASH-2 realistic workloads,

compared to the baseline router. The fully synthesizable SDPR router occupies 30.89mW

power and 0.091mm2 area with 3.7% and 4.7% power and area overheads over the baseline

router respectively.

118

CHAPTER IV

DATA PROCESSING ACCELERATOR ARCHITECTURE FOR LOW-POWER SOCS

IN DISTRIBUTED SENSOR NETWORK SYSTEMS

We present a data processing and control logic design for a new radiation detection sensor

system that can generate data at or above Peta-bits-per-second level. The logic consists

of novel data lossy compression components and operation strategies including low-power

and network-on-wafer solutions. The design goal is to achieve subtle data compression

before the information is ferried to the network, and redundant processing and channels to

minimize the loss of information. The result is a radiation detection system that can operate

at scan-rate of billion frames per second.

A. Data Processing Logic for Stacked Wafer-Scale CMOS Radiation Sensor Network

To further ensure safety from unauthorized transport and distributed radioactive material,

a detection system is needed to perform monitoring and serve as an early warning sys-

tem. This has led to the development of various detection systems with wireless sensor

networks [118, 119]. In [118], distributed sensor network (DSS) systems composed of

commercial hardware for radiation detection are studied and simulated. A radiation sensor

network for emergency prototype was presented in [119] to handle radiation information

through a sensor network.

This section presents a data processing architecture for a low-power radiation sensor

system and its implementation. This system is developed to detect radiological sources

such as nuclear weapons, improvised nuclear devices, radionuclide materials, and space

radiations. The design provides a data processing logic and implementation with a router

design for an on-chip network. The novelty of our design includes signal processing logic

for data compression and management, on-chip routers for a low-power multi-layer wafer-

119

scale radiation sensor network. Fig. 52 shows the whole mechanism of the sensor network.

In the figure, when radiation strikes a wafer, a photodiode emits a current pulse through

one row and one column of the sensor array [120]. The position and severity of detection

events can be recorded by sensor arrays and compressed into packets by data processing

logic. With the information, we can construct three dimensional images of multiple particle

interactions. To connect the sensor arrays and to transmit the compressed packets to main

controllers (redundant) in each wafer, we employ network-on-wafer (NoW) architecture.

1. Data Processing Logic

One of key challenges of our detector design is minimizing the amount of data recorded

and transmitted from a detection event without losing critical information. Lossless com-

pression, often used in medical imaging applications, guarantees the integrity of the data

without distortion. In contrast, lossy compression reduces data with reasonable distortions

but can achieve higher compression rates [121]. In our design, a novel lossy data com-

pression scheme for sensor arrays is implemented. Fig. 52(e) shows a sensor unit used as

a basic detection unit on a detection wafer. The row and column axes of the sensor unit

have 1024 lines respectively, and each line is enabled when a radiation strikes one of pho-

todiodes in the line. As a result, we need to process up to 1024x1024 bits per array where

each bit indicates a detection or lack thereof. For instance, when we use 10 multi-layer

sensor wafers and each with 100 sensor units at 1 GHz operating clock, the amount of data

needed to be processed reach to 1018 (quintillion) bits per second in the worst case unlikely

scenario. To reduce the volume of processing data, our compression scheme extracts only

necessary information from the detection data of the sensor arrays.

120

...

...

...

...

...

...

...

Main Controller

x y

15bit

Time Stamp

42bit

Counter

Reset

Init_val

Clock

Count_value

2-port FIFO

Write

Read

Router

... ...

0 1 2 3 4 5 6 7 1023

0

1

2

3

4

5

6

7

1023

Y axis

(1024)

X axis

(1024)

15bit

Sensor unit

Photodiode

Control and comm board
Polymer battery

Secondary detection wafer
Primary detection wafer

(a) Sensor network (b) Detection module

(d) Detection wafer

(e) Sensor array

(f) Data processing logic & router

Data

Processing

X axis Y axis

1024bit 1024bit

Receiver

d

Node 1 Node 2

3-D detection

image (c) Multi-layer wafer

Radiation Particle

Main Controller(s)

Fig. 52.: Overview of the proposed radiation detection sensor system

121

a. Overall Architecture of Data Processing Unit

Fig. 52(f) illustrates the architecture of the proposed data processing unit, consisting of

counter, data compression unit, 2-port FIFO, and an on-chip router. The counter unit gen-

erates time stamp information and inserts it into every packet with detection information

created by the data compression unit every event if any particles are detected. In par-

ticular, the data processing logic is capable of compressing 1024x1024 bit/array input to

72-bit/array output packet per clock cycle. The output packet is composed of 42-bit time

stamp recoding the detection event time (a clock counter value) and two compressed results

(x and y) filled with 1-bit detection flag, 4-bit resolution, and 10-bit address. The detection

output data, x and y, show the range (distance or resolution) and the representative position

(address) of detected pixels at every event. Using the resolution and address information,

we can construct time-varying 3-D images and estimate the angle of incidence, intensity,

and the type of radiation source.

b. Proposed Data Compression Algorithm

The main idea of the detection algorithm is that when the sensor unit detects multiple par-

ticles, the compression unit does not need to send all information of detected positions but

sends minimal information necessary to reconstruct estimated detection information repre-

senting the position and severity of detection events since the detected particles are more

likely to be gathered in a specific area. Therefore, we can compress 1024 bits indicating

the detection positions of hit particles in an axis to 1-bit detection flag, 4-bit resolution

data, and 10-bit address designating the smallest index in the 1024 detection positions.

Table XXII shows the resolution of detected bits in a row or column axis. If the 4-bit res-

olution is 5, it means that the maximum and minimum number of detected particles are 32

(2resolution = 25) and 17 (2resolution−1 +1 = 24 +1) respectively.

122

Table XXII.: Resolution and detection bits

Resolution n (0∼ 10)

Detection bits 2n (1∼ 1024)

Fig. 53 illustrates this compression scheme. In EX1, the detection positions of in-

put data are widely distributed from 0 to 1023 in an axis. In this case, 4-bit resolu-

tion representing detection range is 10, and 10-bit address, the smallest index of a de-

tected particle, is 0. As a result, 15-bit detection data is ’1 1010 0000000000’ in bi-

nary. In EX4, the resolution is 8 because the range of detection is from in[356] to in[530]

(range=530−356+1 = 175 < 28), and the address is 356.

c. Data Compression Unit

The data processing unit for compression is mainly composed of address generation and

resolution generation. Fig. 54 presents the architecture of data processing logic. There are

10 pipeline stages in the block, and we exploit divide and conquer strategy to build address

and resolution outputs at each pipeline stage. In the first stage, Init1∼512 blocks that

receive 2-bit detection data through input ports generate next 3-bit output data that contain

1-bit detection flag, 1-bit resolution output, and 1-bit address output. In the next stage,

Main1∼256 blocks generate new 2-bit resolution/address (i.e. 1-bit flag, 2-bit resolution,

and 2-bit address) using two 1-bit resolution/address inputs. In the last stage, Main9 block

creates a 15-bit detection packet composed of 1-bit flag, 4-bit resolution, and 10-bit address.

The address and resolution generators creating a next address and resolution are shown

in the left of Fig. 54. The address generator selects the smallest index among detected

inputs, therefore if there are two detected bits (latched in[1:0]), a smaller index will be

chosen. For instance, when in[0]=1(detected) and in[1]=1(detected), the result of address

123

EX 3 : in[64:33],[151:120]

...

In[0]

In[1023]

In[512]

Resol=7,addr=33
Out=1_0111_00_00100001

EX 4 : in[387:356],[530:499]

...
...

In[0]

In[1023]

Resol=8,addr=356
Out=1_1000_01_01100100

...

In[151]

In[530]

In[356]

EX 1 : in[0],[512:511],[1023]

...

In[0]

In[1023]

In[512]

Resol=10,addr=0
Out=1_1010_00_00000000

...

In[511]

EX 2 : in[255]

...

In[0]

In[1023]

In[512]

Resol=1,addr=255
Out=1_1000_00_11111111

...

In[255]

In[33]

In[64]
...

In[120]...

32

32
In[387]

32

In[499]
32

Input=1
(detected)

Fig. 53.: Data compression scheme

124

In
it
1

In
it
2

In
it
3

In
it
4

In
it
5
1

1

In
it
5
1

2

M
a
in

1
_1

M
a
in

1
_2

M
a
in

1
_2

5
6

M
a
in

2
_1

2
 b

it
s

D

3
 b

it
s

3
 b

it
s

D

..
.

5
 b

it
s

5
 b

it
s

M
a
in

3
_1

D

..
.

..
.

D

M
a
in

9
D

P
ip

e
lin

e
 1

P
ip

e
lin

e
 2

P
ip

e
lin

e
 3

P
ip

e
lin

e
 9

P
ip

e
lin

e
 1

0

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

2
 b

it
s

O
u
tp

u
t
d
a
ta

D

6
 b

it
s

8
 b

it
s

1
5
 b

it
s

..
.

=

0 1

la
tc

h
e
d
_i

n
[1

:0
]

2
'b

1
0

0 1

a
d
d
r(

1
b
it
)

A
d
d
re

s
s
 g

e
n
e
ra

ti
o
n

In
p
u
t[

1
:0

]

0
0

0

a
d
d
r

0
1

0

1
0

1

1
1

0

=

1 0

la
tc

h
e
d
_i

n
[1

:0
]

2
'b

1
1

1 0

re
s
o
l(
1
b
it
)

R
e
s
o
lu

ti
o
n
 g

e
n
e
ra

ti
o
n

In
p
u
t[

1
:0

]

0
0

0

re
s
o
l

0
1

0

1
0

0

1
1

1

R
e
s
o
lu

ti
o
n
 b

it

A
d
d
re

s
s
 b

it

D T
h
e
 n

u
m

b
e
r
o
f
n
o
d
e
s
 =

 1
0
2
4

D
e
te

c
ti
o
n
 f
la

g

1
b
it
 f
la

g

+
 4

b
it
s
 r
e
s
o
lu

ti
o
n

+
 1

0
b
it
s
 a

d
d
re

s
s

Fi
g.

54
.:

D
at

a
pr

oc
es

si
ng

un
it

fo
rc

om
pr

es
si

on

125

generator is 0 which is the smallest index. The resolution generator creates new resolutions

by using two resolution inputs generated in the previous pipeline stage. In Fig. 54, the

resolution generator receives two 1-bit detection inputs and computes a 2-bit resolution

output. For example, when in[0]=1(detected) and in[1]=1(detected), the updated resolution

will be 1 since there are two detected particles (i.e. 21 = 2).

Fig. 55 shows the method generating a new address and resolution output in Module

C using address and resolution inputs delivered from the previous Module A and B. First, a

new address can be determined by the smallest index of A and B. Accordingly, the address

of C will be the address of A, 15. A new resolution can be computed by the addresses of

A and B and the resolution of B. As the resolution of B (b) implies the maximum distance

from the address of B in the Module B, total distance from the address of A to the end of

detection area of B in the Module C will be (a)+(b), which equals (c). In this case, the

resolution of the Module C will be 10 since the address range (c) is 661.

2. On-chip Router Design

Network-on-Chips (NoC) has emerged as an alternative of the traditional bus-based inter-

connecting between sensing and processing array elements (SPE), to increase bandwidth

and reduce interconnection complexity on a chip. As shown in Fig. 56, each SPE in an

NoC architecture is linked through a router, and data are transferred in the form of packets

which are subdivided by flits (Header, Body, and Tail). In our system, the idea of NoC is

simply expanded to the wafer-scale while achieving power efficient data communication.

The NoC paradigm fails when reliability of all components (SPEs and interconnections)

on the wafer cannot be guaranteed. To tolerate component failure on a wafer, protocols

are placed to ensure the system as a whole can continue to function. In our system, the

redundant main controllers on each wafer are responsible for determining failures of indi-

vidual links or nodes. This built-in self-test (BIST) will dynamically modify the routing

126

...

In[15]=Addr(A)

Input=1
(detected)

...

In[0]

In[512]

In[612]=Addr(B)

...
...

...

In[1023]

Address
range

In[511]

Module A
(resolution=3)

Module B
(resolution=6)

5

(2) Address_range =
Addr(B)+2resol(B)-Addr(A)=
612+64-15=661

à new resolution = 10

In[612+63]

Module C

Final output of C :
* Detection flag=1
* Resolution =10
* Address = 15
=> 1_1010_0000001111

(1) New address =
the first detected input
In module A = Addr(A)=15

(a)

(b)

(c)

Fig. 55.: Generating new address and resolution outputs using address and resolution inputs

created in the previous pipeline stage

127

PE PE

PE PE

PE

PE

PE PE PE

Arbiter

Routing
Logic

...N

W

S

E

L

Crossbar
5X5

North

South

East

West

Local

North

South

East

West

Local

Fig. 56.: Baseline router

table to navigate data transmission around these failures and defects. Equally important

as reliability is the goal of reducing power consumption. A globally asynchronous locally

synchronous (GALS) architecture is also proposed for our NoW design, eliminating the

need for complex clock trees, which are expensive in both cost and power. This architec-

ture reduces power consumption to near zero during standby/detection mode [122]. An-

other substantial challenge facing designers of NoWs is the need for resilience. A unified

framework of coding for SoCs with crosstalk avoidance codes and error control codes was

proposed [123]. The paper investigates combining existing coding schemes and provides

practical coding schemes to reduce delay and energy and increases reliability. The baseline

router we used in the proposed design is a standard 2D mesh, pipelined router with virtual

channels (VC) [86, 102]. The pipeline is composed of 2 stages (i.e. route computation and

arbitration) at output port.

128

Table XXIII.: Synthesis results of the data processing logic and baseline router at 1GHz

Data processing logic Router

Target Library Input : 1024x1024 bit/cycle 128 bit/cycle
Output : 72 bit/cycle

Compression Rate 99.99% -
Maximum Frequency 1GHz 1GHz

Area 60358 32060
Power Consumption 112.1718mW 79mW

3. Experiments

The data processing logic and baseline router was implemented in Verilog. We synthesized

them using Nangate 45nm open library at 1GHz (Table XXIII). In the design, the reduc-

tion rate of data was 99.99% because input (1024x1024 bit/cycle) was compressed to 72

bit/cycle. In the synthesis result, the data processing logic consumed 112.17mW @ 1GHz,

and router consumed 79mW @ 1GHz with 128-bit data width. The data compression block

consists of a pipelined architecture (10 pipelines), therefore, it could be synthesized at high

frequency, 1GHz.

129

B. DSP Accelerator for Low-Power Sensor Hub SoCs

A sensor hub SoC typically contains a heterogeneous mix of hardware blocks such as a

small embedded microprocessor managing sensors, DSPs or dedicated hardware accelera-

tors to perform complex DSP algorithms for massive data. The data can be sensed by an-

gular momentum, GPS location, magnetic compass heading, temperature, pressure, sound

and light. In this sensor hub SoC design, the main components dominantly consuming

power and area are signal processing cores. General purpose DSPs can provide develop-

ers flexibility and quick development of DSP-oriented algorithms. However, the chip area

and energy consumption per operation of DSP is relatively higher than dedicated hardware

logics performing the same operations due to overheads to support wide functionality. In

particular, power consumption is a major concern as demands on the sensor hub SoCs since

they are typically used in portable and battery restricted sensor systems. All these require-

ments for low-power data processing for the sensor hub SoC make extensive use of a DSP

accelerator. The DSP accelerator provides a compromise between the performance gains of

fixed-functionality hardware and the flexibility of software-programmable tasks, enabling

energy-efficient digital signal processing.

In this paper we make the following contributions to the DSP accelerator design:

• We propose a DSP accelerator design for low-power and low-cost SoCs for sensor

network systems. The low-power DSP accelerator performs DSP operations such

as single instruction multiple data (SIMD) style multiply and accumulate (MAC),

FFT/IFFT, FIR, and 3-D cross product (CP). This accelerator is developed as a ded-

icated hardware to obtain small area and low-power performance but provides pro-

grammable functionality to run fundamental DSP algorithms when compared tradi-

tional hardwired accelerators.

• The DSP accelerator does not contain large internal registers such as general purpose

130

registers (GPRs). The GPRs are typically used in DSPs to load data from a larger

memory and to hold temporarily data and intermediately result, but demanding addi-

tional area and power. The DSP accelerator loads and stores data from and to external

SRAM through AHB bus; it leads to low area and power consumption like dedicated

hardware accelerators.

• We propose fast FFT, CP, FIR executions using a pipeline architecture that supports

large loop operations effectively. The result shows the proposed DSP accelerator out-

performs general purpose DSPs in throughput performance, close to that of a hard-

wired accelerator with programmable control as well as with low-power requirement.

The detail features of the proposed DSP accelerator will be shown in the next subsection.

1. Background: DSP Algorithms

a. Vector Dot Product

Vector dot product (or sum of products) is the most fundamental operation in DSP. It is

widely used for convolutional algorithms such as finite impulse response (FIR) filters. FIR

filters compute the convolution between the filter coefficients and the delay line values.

This is described in equation (4.1).

Yn =
N−1

∑
i=0

CiXn−i (4.1)

where N is the number of coefficients, Ci are the coefficients of the filter, and Xn, Yn are the

nth terms of the input and output sequences respectively. This vector dot product algorithm

can be implemented by multiply and accumulate (MAC) operations with zero-overhead

looping technique. MAC is a very common low-level operation used in many DSP al-

gorithms. This operation multiplies two numbers and adds into an accumulator register.

The DSP accelerator provides 8-,16-,32-bit SIMD MAC operations for programmable FIR

131

filters.

b. 3-Dimensional Cross Product

The 3-D CP calculates a new vector from two vectors in 3-D space. The resulting vector is

perpendicular to the two original vectors. This operation is used to compute the normal for

a triangle or polygon. It is also used for computational geometry applications in computer

graphics. We design a fast 8-,16-,32-bit CP operation for these computationally intensive

applications. For vectors A=(a1, a2, a3), B=(b1, b2, b3), C=(c1, c2, c3) in R3, the CP is

defined by equation (4.2).

C = A×B = (a2b3−a3b2)i+(a3b1−a1b3) j+(a1b2−a2b1)k =

∣∣∣∣∣∣∣∣∣∣∣

i j k

a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣∣∣∣∣∣
(4.2)

where i,j,k are unit vectors.

c. Fast Fourier Transform (FFT)

The fast Fourier transform (FFT) is an efficient algorithm to calculate the discrete Fourier

transform (DFT). It is also one of the most primary used operations in digital signal pro-

cessing. The DFT transforms N discrete-time samples (n=0 to N-1) to the same number of

discrete frequency samples, and is defined as

X(k) =
1
N

N−1

∑
n=0

x(n)W nk
N (4.3)

where k = 0 to N−1, and WN , the twiddle factor, is defined as

WN = e− j2π/N (4.4)

In practice for large series, DFT takes significant time proportional to the square of

132

the number on points. A much faster algorithm has been developed by Cooley and Tukey

in 1965 called the FFT. Radix-2 Cooley-Tukey decimation-in-time (DIT) FFT breaks each

DFT computation into the combination of two DFTs, one for even-indexed inputs and

another for odd-indexed inputs [124]. The decomposition continues until a DFT of just two

inputs remains. The 2-point DFT is called a butterfly, and it is the simplest computational

kernel of radix-2 FFT algorithms.

2. DSP Accelerator Features

Table XXIV presents the features of the DSP accelerator. It supports 8-, 16- and 32- fixed-

point data and operates in SIMD operations for handling MAC, FFT/IFFT, CP, and FIR

filter processing. In the accelerator, the SIMD supports up to 4 operations (4x8=32 bits)

at the same time. It can generate up to two read-memory addresses and one write-memory

address per cycle using three address generate units (AGUs). A 32-bit multiplier is built

on 16x8-bit multipliers to support 8-, 16-bit and 32-bit multiplications. The 8-, 16- and

32-bit multiplied results are accumulated into a 80-bit accumulator with saturation process,

and an auxiliary 60-bit accumulator is implemented to accelerate 8-, 16- and 32-bit FIR

operations. The accelerator supports programmable shift, guard bits, rounding, and satura-

tion to provide shifted, rounded, saturated and guarded outputs in the accumulator. Special

addressing modes such as bit-reverse for decimation-in-time (DIT) radix-2 FFT/IFFT op-

eration, programable increment/decrement by n, and zero overhead looping for optimized

control flow and background processing are also supported.

3. DSP Accelerator Architecture

SoC top block and the architecture of DSP accelerator are shown in Fig. 57, 58. The

accelerator includes separated read and write channels to process pipelined operations for

FFT/IFFT, MAC, CP, and FIR. For two read channels and one write channel, three 32-

133

Table XXIV.: DSP accelerator features

Numeric features 8/16/32-bit fixed point
Memory channel 3 x 32-bit read/write channels
Multiplication 16 x 8-bit multipliers
Accumulator 80-bit (+ 60-bit for FIR)
SIMD 4-way 8-bit / 2-way 16-bit / 1-way 32-bit
Numeric fidelity Programmable shifter, guard bits, rounding, saturation
Addressing modes Bit-reverse, cyclic, inc/dec by n, zero overhead looping

Operations

8/16/32-bit dot product,
8/16/32-bit cross product,
32-bit complex (16-bit real and 16-bit imaginary) radix-2 DIT FFT/IFFT
8/16/32-bit FIR

bit address and data ports are built in the accelerator. When two operands are loaded by

two read channels, a 32-bit output will be written back through the write channel in the

next cycle. Thus the operands read, execution, and output write-back can performed in

a pipelined fashion to increase operating speed. Typically DSPs exploit general purpose

registers to store any transient data required by the program. The DSP accelerator, however,

does not accommodate any memory inside the block to store operands, outcomes, and any

transient data. Therefore, whenever the accelerator executes a command (or instruction), it

is necessary to load two operands or transient data every time from outside SRAM memory

through AHB bus. This gives both pros and cons. The accelerator wastes SRAM read/write

cycles to load input data and write back output data through AHB bus for every instruction,

but it keeps small area and low-power consumption due to not including power dominant

data register block. Control unit controls address generation, receives 96-bit commands

(i.e. instructions) from a micro-controller through AHBT M [125] slave port, and stores

them into internal command FIFOs (i.e. instruction memory).

134

μController
DSP

Accelerator

M S M

S

S

S

S

M

M

AHB Arbiter SRAM1

AHB Arbiter SRAM2

SMAHB Arbiter SRAM1

S

Fig. 57.: Micro-controller, DSP accelerator and data memory interface in the proposed

sensor hub SoC

A1 A2 A3 A4

8

Mult

8

Mult

8

Mult

8

Mult

Saturate/Accumulate (80-bit and 60-bit)

32-bit

16-Mult

Operation

Simd_mod

Data path

Data_sel

Bshift_size

Sat_en

Signed_a

Signed_b

A
H

B
 S

la
v
e

Control/status Reg

Command FIFO

Control Unit

AGU2

(32-bit)

Address

Generation

Unit (AGU)

AGU1

(32-bit)

32 32

AHB-Lite Master

32 32

Programmable Round/Shift

8

Mult

8

Mult

8

Mult

8

Mult

8

Mult

8

Mult

8

Mult

8

Mult

8

Mult

8

Mult

8

Mult

8

Mult

16-Mult

16-Mult 16-Mult

32-Mult

B1 B2 B3 B4

32-bit

32

AGU3

(32-bit)

32

Intr_dsp

32-bit

write

32-bit

read

32-bit

read

Channel 1 Channel 2 Channel 3 Channel 1 Channel 2 Channel 3

Write

address

Read

address

Read

operands

Write back

result

Operand A Operand B Result

Micro-controller

Fig. 58.: DSP accelerator architecture

135

μCon

Interrupt
DSP Accelerator

3x32-bit commands

32-bit control register
32-bit status register

96-bit

H

M

L

Fig. 59.: Interface with µCon

a. Address generate unit (AGU)

Three AGUs generate 32-bit addresses for two 32-bit read data and one 32-bit write data

per cycle. AGUs support special address modes such as bit-reverse, increment/decrement

and cyclic addressing.

b. Data path unit (DPU)

AHB channel 1 and 2 are assigned for two read operands, and AHB channel 3 is used for

writing back a 32-bit result. When two operands are loaded for an operation, DPU performs

the operation using loop-level pipeline. We will discuss this pipeline design for loops in

the pipeline architecture. The DPU consists of 16x8-bit multipliers and a 80-bit accumula-

tor for 8-, 16- and 32-bit MAC operations. FIR requires a 60-bit supplement accumulator

to diagonally accelerate 8- and16-bit FIR filtering processes. Rounding, shifting, and sat-

urating are also provided by the data path. The arithmetic logic unit (ALU) of the DPU

incorporates the 16x8-bit multipliers and 80-bit and 60-bit accumulators. All operations

136

OPCODE

3

SHIFT_OP

3

SHIFT_SIZE

7

LOOP_SIZE

12

CLEAR_MAC

1

ROUND_EN

1

SIMD_MODE

2

COMPLX_EN

1

SAT_MOD

2

CLEAR_OVF

1

SIMD_SUM_EN

1

OVF_SET

7

ROUND_SET

7

OVF_ST

2

IN_SEL_A

2

ADDR_MODE

3

INC_SIZE

4

IN_SEL_B

2

PATH_SEL

2

SIGNED_A

4

SIGNED_B

4

OFFSET_ADDR_A

12

OFFSET_ADDR_B

12

Reserved

26

BA_SEL_C

2

ADDR_UPDATE

1

FFT_STAGE

4

OFFSET_ADDR_C

12

BA_SEL_A

2

BA_SEL_B

2

Reserved

2

COEF_SIZE

8

READY_EN

1

INTR_EN

1

INTR_ST

1

Reserved

3

CMD[95:64]

(FIFO_H)

CMD[63:32]

(FIFO_M)

CMD[31:0]

(FIFO_L)

Control register (32-bit)

Status register (32-bit)

96-bit Command register: FIFO_H/M/L (32-bit width x 16 depth)

Ctrl[31:16]

Ctrl[15:0]

Status[31:0]

Fig. 60.: Configurations of command, control and status registers

performed in the DSP accelerator share the ALU block. This leads to the minimization of

hardware overhead and the increase of resource utilization. For instance, the high-order

FFT/IFFT and 3-D CP operations can be implemented by sharing the data path with minor

control logic overhead and configuration registers for programmable features.

c. Control unit (CU)

CU block controls address generation units and data path based on commands and control

information configured by an on-chip micro-controller. Fig. 59 shows interface between

the micro-controller (i.e. µCon) and the DSP accelerator. µCon sends a 96-bit (3x32bit)

command by AHB slave interface, and the 96-bit command is divided to high, middle, low

32-bit commands and stored into command FIFO H, M, L, respectively. Each FIFO has

32-bit data width and 16 depth; therefore, total 16 x 96-bit commands can be stored in the

FIFOs. When commands are available, CU reads a 96-bit command from FIFO H, M, L,

at a time, generating control signals for AGU and DPU. Control information in a command

137

is only valid for the command. However, 32-bit control information in the control register

of CU is effective over the DSP accelerator. So the 32-bit control register stores global

control configurations such as interrupt enable, SIMD mode, complex number enable for

FFT, and so on. The 32-bit status register reports overflow and interrupt occurrence.

d. Command memory

Fig. 60 depicts these 96-bit command configurations (CMD[95:0]), 32-bit control (Ctrl[31:0)

and status (Status[31:0]) registers. The command fields in the figure denote as follows.

• OPCODE (3-bit) signifies operation mode. 0: no operation, 1: multiplication, 2:

MAC addition, 3: MAC subtract, 4: CP, 5: FFT, 6: IFFT, 7: FIR

• ADDR UPDATE (1-bit): When this bit is enabled, three read/write addresses in

AGUs are initialized by base addresses and offset addresses.

• PATH SEL (2-bit) selects a path to apply the shift operation. 0: operand A, 1:operand

B, 2: MAC

• SHIFT OP (3-bit) configures the mode of shift operation. 0: bypass shifter, 1: logical

right shift, 2: logical left shift, 3: arithmetic right shift, 4: arithmetic left shift

• SHIFT SIZE (7-bit) shows the magnitude of shift.

• LOOP SIZE (12-bit) denotes m when the number of points is 2m in FFT/IFFT. This

field also denotes the number of input samples to compute loop size in FIR. Other-

wise, it represents the number of loops in an operation.

• CLEAR MAC (1-bit) initializes accumulators for MAC

138

• ADDR MODE (3-bit) selects the address mode. 0: none, 1: increment (+INC SIZE),

2: decrement (-INC SIZE), 3: cyclic-increment, 4: cyclic-decrement, 5: bit-reverse,

6: FIR

• FFT STAGE (4-bit) denotes FFT/IFFT stage number in a command. The FFT/IFFT

operation needs m commands to operate m stages in 2m point FFT/IFFT. Therefore,

each command contains a corresponding stage number.

• IN SEL A (B) (2-bit) selects two operand sources (A and B) from input sources. 0:

A, 1: B, 2: accumulator. e.g. IN SEL A=0 and IN SEL B=2 means operand A and

B are connected to input channel A and accumulator output respectively.

• SIGNED A (B) (4-bit) indicates the sign of each byte in 4x8-bit data (i.e. 32-bit

data). e.g. SIGNED A=1010 then A[31:24]: signed, A[23:16]: unsigned, A[15:8]:

signed, A[7:0]: unsigned

• INC SIZE (4-bit) configures address increment/decrement size.

• BA SEL A (B) (C) (2-bit) selects base address (BA) for operands (A and B) or

outcome (C). e.g. BA SEL A = 0 : select BA register 0 for loading operand A,

BA SEL A = 1 : select BA register 1 for loading operand A, BA SEL A = 2 : select

BA register 2 for loading operand A

• OFFSET ADDR (12-bit) represents 12-bit immediate value for address offset. Ef-

fective address (EA) can be computed as EA = BA + OFFSET ADDR.

e. Control register

This register involves global configurations to control the accelerator. The field description

of the 32-bit control register shown as follows.

139

• INTR EN (1-bit) enables interrupt generation. When this is enabled, CU creates a

cycle valid interrupt signal to the micro-controller for interrupt handling.

• READY EN (1-bit) supports interconnect with the micro-controller using hready sig-

nal. 0: DSP accelerator does not reflect its busy/available status on hready resp 1:

DSP accelerator reflects its busy/available status on hready resp

• SIMD MOD (2-bit): 0 : 8-bit 4-way, 1: 16-bit 2-way, 2: 32-bit 1-way

• COMPLX EN (1-bit) enables 32-bit complex multiplication. SIMD MOD must be

1 (16-bit) to perform 4x16-bit real and imaginary multiplications.

• ROUND EN (1-bit) enables round operation

• SAT MOD (2-bit) controls saturation mode. 0 : no saturation 1 : saturation for

normal overflow (set guard bit) 2 : saturation for super-overflow (overflow guard bit)

• OVF SET (7-bit) sets overflow position. e.g. when OVF SET=7, data size is equal

to 1-bit sign + 7-bit magnitude.

• CLEAR OVF (1-bit) clears overflow bit in the status register.

• ROUND SET (7-bit) denotes round position. e.g. when ROUND SET = 7,

if round data[7:0]>”01111111” then round data[8]=1; else round data[8]=0.

• SIMD SUM EN (1-bit) enables the sum of results in 8/16-bit SIMD mode.

• COEFF SIZE (8-bit) configures the number of coefficients in FIR filter.

f. Status register

This register informs the status of overflow and interrupt to the micro-controller. The field

description of the 32-bit status register is presented as follows.

140

BASE_ADDR_1

32

BASE_ADDR_2

32

BASE_ADDR_3

32

START_ADDR_1

32

START_ADDR_2

32

START_ADDR_3

32

END_ADDR_1

32

END_ADDR_2

32

END_ADDR_3

32

Fig. 61.: 32-bit address registers for the DSP accelerator. ADDR 1, 2, 3 represent ad-

dresses for channel 1,2,3 respectively.

• OVF ST reflects the status of overflow in an operation. This field can be cleared

by CLEAR OVF. OVF ST[1] denotes super-overflow which denotes the overflow of

guard-bits. OVF ST[0] presents normal overflow in the operation.

• INTR ST shows interrupt status. When micro-controller reads this status, this field

will be reset automatically.

g. Address register and map

Fig. 61 shows address registers for data read and write. There are three address categories,

1,2,3 for memory channel 1,2,3 respectively. Base addresses are used to denote read points

for two operands and write point to write back an execution result. Effective address for

data access is computed as EA = 32-bit BASE ADDR + 12-bit OFFSET ADDR. Start

(START ADDR) and end (END ADDR) addresses specify begin and end address points

for cyclic addressing mode.

Fig. 62 depicts the address map of the accelerator, showing all register addresses and

external SRAM addresses. DSP BaseAddress is the base address to access registers in the

DSP accelerator. Sram 1,2,3 BaseAddress stand for the base addresses to access external

SRAM1,2,3 by AHB bus respectively.

141

Register Address

FIFO_H DSP_BaseAddress + 0x0

FIFO_M DSP_BaseAddress + 0x4

FIFO_L DSP_BaseAddress + 0x8

Control

Register
DSP_BaseAddress + 0x10

Status

Register
DSP_BaseAddress + 0x14

Memory Address

RAM_1

Sram_1_BaseAddress

(0x80000000)

Sram_1_AddressRange

(0x10000)

RAM_2

Sram_2_BaseAddress

(0x80010000)

Sram_2_AddressRange

(0x10000)

RAM_3

Sram_3_BaseAddress

(0x80060000)

Sram_3_AddressRange

(0x10000)

Base Address

Register 1
DSP_BaseAddress + 0x20

Base Address

Register 2
DSP_BaseAddress + 0x24

Base Address

Register 3
DSP_BaseAddress + 0x28

Start Address

Register 1
DSP_BaseAddress + 0x30

Start Address

Register 2
DSP_BaseAddress + 0x34

Start Address

Register 3
DSP_BaseAddress + 0x38

End Address

Register 1
DSP_BaseAddress + 0x40

End Address

Register 2
DSP_BaseAddress + 0x44

End Address

Register 3
DSP_BaseAddress + 0x48

Fig. 62.: Address map

142

3-stage pipeline

1 cycle command
read and decode

Fig. 63.: Pipeline architecture in the DSP accelerator

h. Pipeline architecture

The DSP accelerator supports a three-stage pipeline to increase throughput performance.

Fig. 63 shows the pipeline architecture for the proposed DSP accelerator. In the beginning

of operating a command, the accelerator fetches the command and decodes it. This accel-

erator is devised to execute DSP oriented operations such as looping MAC operations or

high-point FFT, so a command usually involves large loops. Thus we implement that the

pipeline occurs only in multiple loops. We call this loop-level pipeline. It also implies that

the accelerator does not support instruction (or command) level pipeline. This makes its

architecture simple, achieving low area and power consumption. Moreover, this can pre-

vent occurring intricate data/control hazard that is not easy to be solved in the AHB-based

read/write architecture. The DSP accelerator does not include any general purpose registers

occupying large area and consuming high energy, so every data (i.e. operands) should be

directly loaded through AHB interface from an external SRAM or memory. Problem is that

when the AHB read or write is not ready, the execution of pipelined loops will be delayed

till the bus is available. This is also not predictable.

Once a command is fetched and decoded, the pipelined execution occurs in a loops

143

Command

fetch & decode

Operand

read(1)
Execution(1) Write back(1)

Operand

read(3)
StallStall Execution(3) Write back(3)

Operand

read(4)
Execution(4) Write back(4)

Operand

read(2)
Execution(2) Write back(2)

AHB Ready signal for read ports

(a) AHB read port is not available – pipeline stall

Command

fetch & decode

Operand

read(1)
Execution(1) Write back(1)

Operand read

(3)
Stall

Stall

Stall

Write back(2)
Operand

read(2)
Execution(2)

Write back(3)

AHB Ready signal for write port

Execution(3)

Write back(4)
Operand

read(4)
Execution(4)

Stall

(b) AHB write port is not available – pipeline stall

Fig. 64.: Pipeline stalls when AHB ready signals for read/write channels are not ready

operation. Fig. 63 depicts the pipelined loops operation when LOOP SIZE=4. The first

stage is operand read. Two operands are loaded through two read AHB channels simul-

taneously per cycle. The execution of an operation is performed in the second stage, and

in the last stage the 32-bit execution result is written back to external memory through the

write AHB channel.

When AHB channel access is not available, pipeline loops operation should be hold

until the bus is ready to access. Fig. 64 shows three cases necessary to stall pipeline. When

one of AHB read channels is not available, the AHB read bus asserts this using the AHB

ready signal. In Fig. 64(a), the AHB ready signal is not enabled, so the pipeline for the

loops operation should be stalled. Once the ready is enabled again, the pipeline stall is

released. The pipeline stall for AHB write ready also occurs in the same way as shown in

Fig. 64(b).

144

4. DSP Accelerator Operations

a. 16-/32-Bit MACs

Fig. 65 illustrates a 16-bit multiplier and accumulator implementation using four 8-bit

multipliers. The DSP accelerator contains eight 8-bit multipliers so four 16-bit multi-

plications can be conducted in a SIMD style. The signed or unsigned multiplication is

configured by SIGNED A (B) field in each command. In the figure SIGNED A=”0010”,

SIGNED B=”0010”, so A[15:8] (a0), B[15:8] (b0) are signed bytes, but A[7:0], B[7:0] are

unsigned bytes. Four 8-bit multipliers are used to compute four signed 8-bit multiplica-

tions, a1xb1, a0xb1, a1xb0, a0xb0 and sum up all 8-bit multiplication results in a 40-bit

result including 8-bit guard bits. If MAC EN=1 (i.e. MAC is enabled), the 40-bit mul-

tiplication result should be accumulated to the 40-bit accumulator register (acc0). When

MAC EN=0, the 40-bit acc0 stores the 40-bit multiplication result without accumulation.

A 32-bit multiplier can be implemented in the same way as shown in Fig. 66. Four 16-

bit multipliers can construct a 32-bit multiplier, and the signed or unsigned operation is also

controlled by the SIGNED A (B) field. The result of 80-bit multiplication are accumulated

into 80-bit accumulator (acc) with 16-bit guard bits. The accumulator result can be satu-

rated, rounded, or shifted according to the configurations of command and control register

fields such as SHIFT OP, SHIFT SIZE, ROUND EN, ROUND SET, and SAT MOD.

b. 8-/16-/32-Bit Cross Product

The DSP accelerator provides 8-/16-/32-bit 3 dimensional CP operations. These operations

basically utilize 8-/16-/32-bit multipliers to compute equation (4.2). In Fig. 67(a) showing

8-bit 3-D CP, 32-bit operand A and B contain 8-bit 3-D vector input An[31:8]=(a3n−2,

a3n−1, a3n) and Bn[31:8]=(b3n−2, b3n−1, b3n), respectively, where n denotes the index of a

sample vector. LSB bytes in A and B (i.e. An[7:0], Bn[7:0]) are filled with 0. 8-bit vector

145

A[15:0] :

B[15:0] :

SIGNED_A[1:0] = “10”

SIGNED_B[1:0] = “10”

40-bit result (8-bit guard)

X

MAC_EN=1

8bit mult 0

8-bit
a0

8-bit
a1

16-bit

8-bit
b0

8-bit
b1

16-bit

a1 b1

Xa0 b1

Xa1 b0

Xa0 b0

8bit mult 1

8bit mult 2

8bit mult 3

40-bit acc0 (8-bit guard)

+
Signed data

X

Fig. 65.: 16-bit multiplication and 40-bit accumulator register for 16-bit MAC

146

SIGNED_A[3:0] = “1000”

SIGNED_B[3:0] = “1000”

80-bit result (16-bit guard)

X

MAC_EN=1

4 X 8bit mult 0

16bit
a0

16bit
a1

32-bit operand A

16bit
b0

16bit
b1

a1 b1

Xa0 b1

Xa1 b0

Xa0 b0

4 x 8bit mult 1

4 x 8bit mult 2

4 x 8bit mult 3

80-bit acc (16-bit guard)

+

Signed data

32-bit operand BX

Fig. 66.: 32-bit multiplication and 80-bit accumulator register for 32-bit MAC

147

(a) 8-bit 3-D cross product

(b) 16-bit 3-D cross product

(c) 32-bit 3-D cross product

{a1,a2,a3,00}

{b1,b2,b3,00}

32-bit

A

B

{a4,a5,a6,00}

{a4,b5,b6,00}

{a7,a8,a9,00}

{b7,b8,b9,00}

c1,c2,c3

…

C1=A1xB1 =(a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)
… ,
Cn=AnxBn=(a3n-2,a3n-1,a3n)x(b3n-2,b3n-1,b3n),

8-bit vector cross product

1 cycle for 8-bit 3D vector cross product

c4,c5,c6 c7,c8,c9 * an, bn, cn : 8-bit

* 6 8-bit multiplications per cycle

C

{a1,
a2}

{b1,
b2}

32-bit

A

B

{a3,
00}

{b3,
00}

{a4,
a5}

{b4,
b5}

{a6,
00}

{b6,
00}

{a7,
a8}

{b7,
b8}

{a9,
00}

{b9,
00}

c3 c2,c1 c6 c5,c4 c9 c8,c7

…

16-bit vector cross product

2 cycles for a 16-bit 3D vector cross product

* an, bn, cn : 16-bit

*6 16-bit multiplications require 2 cycles

C1=A1xB1 =(a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)

C

a1

b2

32-bit

A

B

a2

b1

a3

b1

a1

b3

a2

b3

a3

b2

a4

b5

a1*b2

…

32-bit vector cross product

a5

b4

a2*b1 a3*b1 a1*b3 a2*b3 a3*b2

c3 c2 c1

6 cycles per 32-bit vector cross product

…

MASMUL MASMUL MASMUL

* an, bn, cn : 32-bit

*6 32-bit multiplications require 6 cycles

C1=A1xB1 =(a2b3-a3b2, a3b1-a1b3, a1b2-a2b1)

C

Fig. 67.: 8-/16-/32-bit cross product operations

148

output, Cn = (c1, c2, c3) = (a2b3−a3b2, a3b1−a1b3, a1b2−a2b1) can be computed using

6 8-bit multiplications. The DSP supports max 8 8-bit multiplications per cycle, therefore

the execution of 8-bit 3-D CP takes only 1 cycle. The 16-bit 3-D CPs are illustrated in

Fig. 67(b). It requires two cycles to calculate 6 16-bit multiplications. In the first cycle,

two 16-bit elements in a vector, a1, a2 (b1, b2) are loaded into a 32-bit operand A (B).

The loaded elements (a1, a2, b1, b2) are used to compute c3 = a1b2−a2b1 and temporarily

stored in an internal register to reuse them in the next cycle. The rest elements a3, b3 are

loaded in the next cycle and used along with a1, a2, b1, b2 stored in the temporary register to

compute c1 = a2b3−a3b2, c2 = a3b1−a1b3. Fig. 67(c) shows the 32-bit 3-D CP operation.

It demands 6 32-bit multiplications, taking 6 cycles since the DSP accelerator can provide

a 32-bit multiplication per cycle. In the first cycle, 32-bit a1, b2 are loaded and multiplied.

The result of the 32-bit multiplication is stored in the 80-bit accumulator register to reuse it

for computing c3. In the next cycle, 32-bit a2, b1 are loaded, multiplied, and accumulated

into the accumulator to calculate c3 = a1b2−a2b1. In the same way, c2, c1 can be attained.

c. FIR Operation

The DSP accelerator supports 8-/16-/32 bit FIR operations. We propose a novel fast FIR

scheme using diagonal accumulation. Fig. 68(a) shows 8-bit FIR filter operation using 16

8-bit multipliers and 7 20-bit diagonal accumulators (AC0-AC7) built in the data path. The

data path consists of 16 8-bit multipliers and 80-bit main and 60-bit auxiliary accumulators.

The 16 8-bit multipliers can be reformed as 4 16-bit multipliers or a 32-bit multiplier (see

the data path part and 16-/32-bit MACs). The results of 8-bit multiplications (Pi x Hi, i=0,

.., 3) are accumulated in the diagonal direction in the 8-bit FIR filter operation. AC0-AC3

are implemented by the 80-bit main accumulator. AC4, AC5, AC6 are built on the 60-bit

auxiliary accumulator for the 8-bit FIR filter operation. The aim of the diagonal accumu-

lators is to maximize the utilization of multipliers in the data path. When we exploit the

149

H0 H1 H2 H3

P0

P1

P2

P3

AC0

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

X

AC1

AC2

AC3 AC4 AC5 AC6

P0=P[31:24]

P1=P[23:16]

P2=P[15:8]

P3=P[7:0]

AC : 20-bit

Accumulator

ALU of DSP accelerator

H0 H1

P0

P1

AC0

4x

8bit

4x

8bit

4x

8bit

4x

8bit

AC1

P0=P[31:16]

P1=P[15:0]

AC : 40-bit

Accumulator

H

P
16x

8bit

AC

P, H: 32-bit

AC : 80-bit

Accumulator
16-bit mult

16-bit mult 16-bit mult

16-bit mult

32-bit mult

8-bit mult

AC2

(a) 8-bit FIR filter using the data path

(b) 16-bit FIR filter using

the data path

Data path

Data path

Data path

(c) 32-bit FIR filter using

the data path

Fig. 68.: 8-/16-/32-bit FIR filter operations implemented by diagonal accumulators and

shared multipliers

150

diagonal accumulators, we can keep using all 16 8-bit multipliers at each cycle. This leads

to the maximum utilization of resources in data path, providing significant improvement in

throughput performance.

In Fig. 68(b), 4 16-bit multiplications and 3 40-bit diagonal accumulators AC0, AC1,

AC2 are used to implement the 16-bit FIR operation. AC0, AC1 are built on the 80-bit

main accumulator, and AC2 is stored in the 60-bit auxiliary accumulator. In the same way,

32-bit FIR filter can be implemented using a 32-bit multiplication and a 80-bit diagonal

accumulator (AC) built on the 80-bit main accumulator.

Here, we present how the diagonal accumulators accelerate the FIR filter operations.

We explain this scheme using a 12th order 8-bit FIR filter example as shown in Fig. 69.

The filter consists of 13 8-bit coefficients (h0-h12), 16 8-bit inputs (p0-p15), and 16+12

8-bit outputs (y0-y27). Fig. 69(a) shows coefficients, inputs and outputs for a 8-bit FIR

filter operation at cycle1-16 for computing 28 8-bit outputs, y0-y27. For instance, when

the DSP accelerator loads 4 8-bit coefficients (h0-h3), 4 8-bit inputs (p0-p3) through 32-

bit operand channels, the coefficients and inputs are multiplied and accumulated in the

diagonal direction, yielding 4 8-bit outputs (y0-y3 in the black box) at cycle1. The next

32-bit (i.e. 4 8-bit) outputs, y4-y7, are obtained at cycle3 from the diagonal accumulators.

In this way, the last 32-bit outputs, y24-y27 can be computed at cycle16. In this operation,

all 16 8-bit multipliers are used to compute 16 8-bit multiplications at each cycle. This

increases performance in throughput. Total execution cycles in the 8-bit FIR operation

using the diagonal accumulators can be calculated by the number of sample words (32-bit)

x the number of coefficient words (32-bit) = 4x4 = 16 cycles. Throughput is 28 bytes / 16

cycles = 1.75 bytes per cycle. We note that samples and coefficients must be 32-bit aligned

data in this design, so if not aligned in a 32-bit word, they must be padded by zeros.

The diagonal accumulation is illustrated in Fig. 69(b). In this figure, a small rectan-

gular box denotes a 8-bit multiplication of input and coefficient (i.e. p*h) and a large box

151

cycle 1 cycle 3 cycle 6 cycle 10
h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 0 0 0
p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3 p0 p1 p2 p3

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12 y13 y14 y15

cycle 2 cycle 5 cycle 9 cycle 13
h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 0 0 0
p4 p5 p6 p7 p4 p5 p6 p7 p4 p5 p6 p7 p4 p5 p6 p7

y16~19

cycle 4 cycle 8 cycle 12 cycle 15
h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 0 0 0
p8 p9 p10 p11 p8 p9 p10 p11 p8 p9 p10 p11 p8 p9 p10 p11

y20~23

cycle 7 cycle 11 cycle 14 cycle 16
h0 h1 h2 h3 h4 h5 h6 h7 h8 h9 h10 h11 h12 0 0 0
p12 p13 p14 p15 p12 p13 p14 p15 p12 p13 p14 p15 p12 p13 p14 p15

y24~27

(a) Coefficients, inputs and outputs for a 8-bit FIR filter

operation at each cycle

y0 y1 y2 y3 y4 y5 y6 y7 y8 y9 y10 y11 y12

p0h0 p0h1 p0h2 p0h3 p0h4 p0h5 p0h6 p0h7 p0h8 p0h9 p0h10 p0h11 p0h12 y13

p1h0 p1h1 p1h2 p1h3 p1h4 p1h5 p1h6 p1h7 p1h8 p1h9 p1h10 p1h11 p1h12 y14

p2h0 p2h1 p2h2 p2h3 p2h4 p2h5 p2h6 p2h7 p2h8 p2h9 p2h10 p2h11 p2h12 y15

p3h0 p3h1 p3h2 p3h3 p3h4 p3h5 p3h6 p3h7 p3h8 p3h9 p3h10 p3h11 p3h12 y16

p4h0 p4h1 p4h2 p4h3 p4h4 p4h5 p4h6 p4h7 p4h8 p4h9 p4h10 p4h11 p4h12 y17

p5h0 p5h1 p5h2 p5h3 p5h4 p5h5 p5h6 p5h7 p5h8 p5h9 p5h10 p5h11 p5h12 y18

p6h0 p6h1 p6h2 p6h3 p6h4 p6h5 p6h6 p6h7 p6h8 p6h9 p6h10 p7h11 p7h12 y19

p7h0 p7h1 p7h2 p7h3 p7h4 p7h5 p7h6 p7h7 p7h8 p7h9 p7h10 p8h11 p8h12 y20

p8h0 p8h1 p8h2 p8h3 p8h4 p8h5 p8h6 p8h7 p8h8 p8h9 p8h10 p8h11 p8h12 y21

p9h0 p9h1 p9h2 p9h3 p9h4 p9h5 p9h6 p9h7 p9h8 p9h9 p9h10 p9h11 p9h12 y22

p10h0 p10h1 p10h2 p10h3 p10h4 p10h5 p10h6 p10h7 p10h8 p10h9 p10h10 p10h11 p10h12 y23

p11h0 p11h1 p11h2 p11h3 p11h4 p11h5 p11h6 p11h7 p11h8 p11h9 p11h10 p11h11 p11h12 y24

p12h0 p12h1 p12h2 p12h3 p12h4 p12h5 p12h6 p12h7 p12h8 p12h9 p12h10 p12h11 p12h12 y25

p13h0 p13h1 p13h2 p13h3 p13h4 p13h5 p13h6 p13h7 p13h8 p13h9 p13h10 p13h11 p13h12 y26

p14h0 p14h1 p14h2 p14h3 p14h4 p14h5 p14h6 p14h7 p14h8 p14h9 p14h10 p14h11 p14h12 y27

p15h0 p15h1 p15h2 p15h3 p15h4 p15h5 p15h6 p15h7 p15h8 p15h9 p15h10 p15h11 p15h12

AC0~AC3 AC4~AC6

AC0 AC1 AC2 AC3 AC4 AC5 AC6 AC0 AC1 AC2 AC3

C1

C2

C4

C7

C3 C6

C10

C13

C15

C16

C14C11

C5

C8 C12

C9

(b) Diagonal accumulation in the 8-bit FIR filter operation

Fig. 69.: 12th order 8-bit FIR (13 coefficients) with 16 pixels (8-bit data), (b) illustrates the

proposed diagonal accumulation scheme accelerating the 8-bit FIR operation.

152

labeled by C1-C16 (i.e. cycle1-cycle16) including the 16 small boxes presents the execu-

tion of 16 8-bit multiplications in the data path at each cycle. AC0-AC6 denotes the 7 20-bit

diagonal accumulators. In the first cycle (C1), the outputs can by calculated by

y0 = AC0 = p0∗h0

y1 = AC1 = p1∗h0+ p0∗h1

y2 = AC2 = p2∗h0+ p1∗h1+ p0∗h2

y3 = AC3 = p3∗h0+ p2∗h1+ p1∗h2+ p0∗h3

The next outputs, y4-y7, can be obtained by the diagonal accumulators, AC4, AC5, AC6,

AC0 at C3 (cycle3), and the accumulations are shown as the diagonal lines in the figure as

follows:

y4 = AC4 = p4∗h0+ p3∗h1+ p2∗h2+ p1∗h3+ p0∗h4

y5 = AC5 = p5∗h0+ p4∗h1+ p3∗h2+ p2∗h3+ p1∗h4+ p0∗h5

y6 = AC6 = p6∗h0+ p5∗h1+ p4∗h2+ p3∗h3+ p2∗h4+ p1∗h5+ p0∗h6

y7 = AC0 = p7∗h0+ p6∗h1+ p5∗h2+ p4∗h3+ p3∗h4+ p2∗h5+ p1∗h6+ p0∗h7

In this scheme, 7 20-bit accumulators (AC0-AC6) are used to prevent overwriting FIR re-

sults into the non-available accumulators.

Fig. 70 shows the 16-bit FIR filter operation using 3 40-bit diagonal accumulators.

This example shows the 6th order 16-bit FIR filter operation that has 7 16-bit coefficients

and 8 half-word inputs (16-bit data), yielding 14 16-bit outputs, y0-y13. The mechanism of

diagonal accumulation is the same as that of the 8-bit FIR filtering process. In Fig. 70(b),

40-bit accumulators, AC0, AC1, AC2, accumulate the results of 16-bit multiplication (a

16-bit coefficient x a 16-bit input) in the diagonal directions. Like the 8-bit FIR, all 4 16-

bit multipliers are utilized to calculate 4 16-bit multiplications by means of the diagonal

accumulators at each cycle. This also maximizes the utilization of multipliers. In this

153

h0 h1 cycle 1 h2 h3 cycle3 h4 h5 cycle6 h6 0 cycle10

p0 p1 y0,y1 p0 p1 y2,y3 p0 p1 y4,y5 p0 p1 y6,7

h0 h1 cycle 2 h2 h3 cycle5 h4 h5 cycle9 h6 0 cycle13

p2 p3 p2 p3 p2 p3 p2 p3 y8,9

h0 h1 cycle 4 h2 h3 cycle8 h4 h5 cycle12 h6 0 cycle15

p4 p5 p4 p5 p4 p5 p4 p5 y10,11

h0 h1 cycle 7 h2 h3 cycle11 h4 h5 cycle14 h6 0 cycle16

p6 p7 p6 p7 p6 p7 p6 p7 y12,13

(a) Coefficients, inputs and outputs for a 16-bit FIR filter

operation at each cycle

(b) Diagonal accumulation in the 16-bit FIR filter operation

AC0,AC1 AC2

y0 y1 y2 y3 y4 y5 y6

p0h0 p0h1 p0h2 p0h3 p0h4 p0h5 p0h6 y7

p1h0 p1h1 p1h2 p1h3 p1h4 p1h5 p1h6 y8

p2h0 p2h1 p2h2 p2h3 p2h4 p2h5 p2h6 y9

p3h0 p3h1 p3h2 p3h3 p3h4 p3h5 p3h6 y10

p4h0 p4h1 p4h2 p4h3 p4h4 p4h5 p4h6 y11

p5h0 p5h1 p5h2 p5h3 p5h4 p5h5 p5h6 y12

p6h0 p6h1 p6h2 p6h3 p6h4 p6h5 p6h6 y13

p7h0 p7h1 p7h2 p7h3 p7h4 p7h5 p7h6

AC0 AC1 AC2 AC0 AC1 AC2 AC0

AC1

AC2

Fig. 70.: 6th order 16-bit FIR (7 coefficients) with 8 half-words (16-bit data), (b) illustrates

the proposed diagonal accumulation scheme accelerating the 16-bit FIR operation.

154

h0 cycle 1 h1 cycle3 h2 cycle6 h3 cycle10 h4 cycle15 h5 cycle21 h6 cycle28

p0 y0 p0 y1 p0 y2 p0 y3 p0 y4 p0 y5 p0 y6

h0 cycle 2 h1 cycle5 h2 cycle9 h3 cycle14 h4 cycle20 h5 cycle27 h6 cycle35

p1 p1 p1 p1 p1 p1 p1 y7

h0 cycle 4 h1 cycle8 h2 cycle13 h3 cycle19 h4 cycle26 h5 cycle34 h6 cycle41

p2 p2 p2 p2 p2 p2 p2 y8

h0 cycle 7 h1 cycle12 h2 cycle18 h3 cycle25 h4 cycle33 h5 cycle40 h6 cycle46

p3 p3 p3 p3 p3 p3 p3 y9

h0 cycle 11 h1 cycle17 h2 cycle24 h3 cycle32 h4 cycle39 h5 cycle45 h6 cycle50

p4 p4 p4 p4 p4 p4 p4 y10

h0 cycle 16 h1 cycle23 h2 cycle31 h3 cycle38 h4 cycle44 h5 cycle49 h6 cycle53

p5 p5 p5 p5 p5 p5 p5 y11

h0 cycle 22 h1 cycle30 h2 cycle37 h3 cycle43 h4 cycle48 h5 cycle52 h6 cycle55

p6 p6 p6 p6 p6 p6 p6 y12

h0 cycle 29 h1 cycle36 h2 cycle42 h3 cycle47 h4 cycle51 h5 cycle54 h6 cycle56

p7 p7 p7 p7 p7 p7 p7 y13

AC

y0 y1 y2 y3 y4 y5 y6

p0h0 p0h1 p0h2 p0h3 p0h4 p0h5 p0h6 y7

p1h0 p1h1 p1h2 p1h3 p1h4 p1h5 p1h6 y8

p2h0 p2h1 p2h2 p2h3 p2h4 p2h5 p2h6 y9

p3h0 p3h1 p3h2 p3h3 p3h4 p3h5 p3h6 y10

p4h0 p4h1 p4h2 p4h3 p4h4 p4h5 p4h6 y11

p5h0 p5h1 p5h2 p5h3 p5h4 p5h5 p5h6 y12

p6h0 p6h1 p6h2 p6h3 p6h4 p6h5 p6h6 y13

p7h0 p7h1 p7h2 p7h3 p7h4 p7h5 p7h6

(a) Coefficients, inputs and outputs for a 16-bit FIR filter

operation at each cycle

(b) Diagonal accumulation in the 16-bit FIR filter operation

Fig. 71.: 6th order 32-bit FIR (13 coefficients) with 8 words (32-bit data), (b) illustrates the

proposed diagonal accumulation scheme accelerating the 32-bit FIR operation.

155

example, total execution cycles can be computed by total cycles = the number of sample

words x the number of coefficient words = 4x4 = 16 cycles. Throughput is 28 bytes / 16

cycles = 1.75 bytes per cycle.

Fig. 71 shows the 32-bit FIR filter operation using a 80-bit diagonal accumulator. The

6th order 32-bit FIR filter operation that has 7 32-bit coefficients and 8 word inputs (32-bit

data) is illustrated in the figure. In this example, the operation yields 14 word outputs, y0-

y13. This operation does not utilize the 60-bit supplement accumulator, accumulating the

results of multiplication of two 32-bit operands in the 80-bit main accumulator (AC). The

efficiency of the 32-bit FIR filter operation is inferior to that of the 8-/16-bit FIR filters due

to less parallel accumulation performed by the auxiliary accumulators in the 8-/16-bit FIR

mode. Total execution cycles is calculated in the same way: total cycles = the number of

sample words x the number of coefficient words = 8x7 = 56 cycles. Throughput is 56 bytes

/ 56 cycles = 1 bytes per cycle.

d. FFT Operation

The interconnected butterflies of an 8-point radix-2 DIT FFT is illustrated in Fig. 72. The

inputs to the FFT are indexed in bit-reversed order (0, 4, 2, 6, 1, 5, 3, 7) and the outputs

are indexed in sequential order (0, 1, 2, 3, 4, 5, 6, 7). Computation of a radix-2 DIT

FFT requires the input vector to be in bit-reversed order, and generates an output vector

in sequential order. The DSP accelerator supports this bit-reverse addressing mode in the

command register (ADDR MODE=5).

Pipelined execution considerably improves throughput when loop size is large. Fig. 73

shows an example of pipeline loops for 8-point radix-2 DIT FFT. When the number of

points is n = 2m in FFT, the number of stages is log2(n) = m, and 2m/2 butterfly opera-

tions are required. Since a butterfly operation performs a complex multiplication and two

complex addition, the complexity of radix-2 DIT FFT involves n/2× log2(n) = n/2×m

156

Reversed
order

Sequential
orderStage1 Stage2 Stage3

Fig. 72.: The interconnected butterflies of an 8-point radix-2 DIT FFT

157

X[4]A

W[0]B

X[0]

X[4]*W[0] Y[0]Y[1]

X[6]

W[0]

X[2]

X[6]*W[0] Y[2]Y[3]

C Y[0] Y[1] Y[2] Y[3]

Operand read

Execusion

Write back

X[5]

W[0]

X[1] X[7]

W[0]

X[3]

X[7]*W[0] Y[6]Y[7]

Y[4] Y[5] Y[6] Y[7]

X[5]*W[0] Y[4]Y[5]

Command

fetch & decode

fft_stage=0

X[2]A

W[0]B

X[0]

X[2]*W[0] Y[0]Y[2]

X[3]

W[2]

X[1]

X[3]*W[2] Y[1]Y[3]

C Y[0] Y[2] Y[1] Y[3]

Operand read

Execusion

Write back

X[6]

W[0]

X[4] X[7]

W[2]

X[5]

X[7]*W[2] Y[5]Y[7]

Y[4] Y[6] Y[5] Y[7]

X[6]*W[0] Y[4]Y[6]

fft_stage=1

X[4]A

W[0]B

X[0]

X[4]*W[0] Y[0]Y[4]

X[5]

W[1]

X[1]

X[5]*W[1] Y[1]Y[5]

C Y[0] Y[4] Y[1] Y[5]

Operand read

Execusion

Write back

X[6]

W[2]

X[2] X[7]

W[3]

X[3]

X[7]*W[3] Y[3]Y[7]

Y[2] Y[6] Y[3] Y[7]

X[6]*W[2] Y[2]Y[6]

fft_stage=2Command

fetch & decode

Command

fetch & decode

Next

command

(next stage)

Next

command

(next stage)

8-point FFT: 12 x 3 FFT
stages = 36 cycles

Fig. 73.: An example of pipelined execution for 8-point FFT operation. A FFT stage

operation can be performed by a command. The 8-point FFT has 3 FFT stages (2stage=n

points)

158

Table XXV.: Execution cycles of the DSP accelerator operations, CFD is command fetch

and decode cycles, Pnormal is pipeline delay cycles in normal mode not including FFT, PFFT

is pipeline delay cycles in FFT mode. CFD=1 cycle, Pnormal=2 cycles, PFFT =3 cycles in

the DSP accelerator.

Operation Cycles
8-/16-/32-bit MAC CFD + Pnormal + #of loops
8-bit CP CFD + Pnormal + 1 (cycles per a 8-bit CP) x #of loops
16-bit CP CFD + Pnormal + 2 (cycles per a 16-bit CP) x #of loops
32-bit CP CFD + Pnormal + 6 (cycles per a 32-bit CP) x #of loops
8-/16-/32-bit FIR CFD + Pnormal + #of sample words x # of coefficient words
32-bit complex FFT (CFD + PFFT + #of points) x #of FFT stages

complex multiplications, and n× log2(n) = n×m complex additions. In the FFT function,

each stage can be conducted by a command. Therefore, 2m-point radix-2 DIT FFT requires

m commands. The pipeline execution occurs in a stage for running 2m/2 butterfly opera-

tion loops. In Fig. 73 the 8-point FFT consists of 3 FFT stages where each stage conducts 4

butterfly operations. The execution cycles in each stage is 1 for command fetch and decode

+ 3 for pipeline latency + 8 for 4 butterfly executions = 12 cycles. Hence, the total execu-

tion cycles taken in the 8-point FFT is 12 for cycles in a stage x 3 for the number of FFT

stages = 36 cycles. We note that the commands are individually performed, not pipelined,

so when a command is completed, the next command can be fetched and executed. In the

command structure, the number of FFT stages is configured by the LOOP SIZE field, and

a corresponding stage number in a command is set by the FFT STAGE field.

5. Experiment Results

Table XXV presents the execution time of the DSP accelerator operations. Delay cycles

in pipeline took normally 2 cycles except FFT since the FFT operation required one more

delay cycle to execute addition/subtraction from a complex input to the complex multipli-

159

(a) Execution cycles in cross product (CP) (b) Throughput in cross product (CP)

Fig. 74.: Results of execution cycles and throughput in cross product

cation (the other complex input * a twiddle factor).

The execution cycles and throughput performance of 8-/16-/32-bit CPs are shown in

Fig. 74. For instance, 4095 loops 3D CP took 4098, 8193, 24573 cycles at 8-/16-/32-bit

CP operations respectively. The 4095 is the maximum number of loop size in the pro-

posed design but can be expandable with the negligible overhead of field bit extension

(e.g. extend 12-bit LOOP SIZE to 16-bit LOOP SIZE). Throughput of 8-/16-bit CPs were

1.5 times greater than that of 32-bit CP in performance. This was because 8-/16-bit CPs

read multiple operands (3 operands in 8-bit, 2 operands in 16-bit mode) at once per each

operand channel, executing multiple 8-/16-bit multiplications in parallel. This technique

was similarly exploited to accelerate the 8-/16-bit FIR operations.

Fig. 75 shows the results of 8-/16-/32-bit FIR filter operations. This experiment was

performed on the 12th order FIR filter with varying the number of input samples and data

width (8-/16-/32-bit) of the samples. In Fig. 75(a), 8-/16-/32-bit FIR operations with 128

samples took 131, 451, 1667 cycles respectively. The figure also shows the comparison of

the FIR filter performance with 12th order 32-bit FIR filter (general purpose) on TI-67x

160

(a) Execution cycles in FIR (b) Throughput in FIR

16-bit FIR

8-bit FIR

32-b
it

FIR

Fig. 75.: Results of execution cycles and throughput in FIR and comparison with 12th order

32-bit FIR filter on TI-67x and TI-62x DSPs

and TI-62x DSPs [126,127]. The 32-bit FIR performance of the DSP accelerator was close

to that of TI-62x. The 8-/16-bit FIRs took much less execution cycles than the 32-bit FIR

filters (32-bit FIR, TI-62x, TI-67x). We will discuss this reason in the throughput result.

The throughput performance of the FIR operations is show in Fig. 75(b). As we dis-

cussed in the 8-/16-bit CPs, the 8-bit FIR operation yielded around three and two times

more outputs per cycle than 16-bit and 32-bit FIRs respectively. The 16-bit FIR was also

approximately twice better than the 32-bit FIR in throughput. Since multiple operands (4

operands in 8-bit, 2 operands in 16-bit) per each read channel were loaded, multiplied, and

diagonally accumulated in parallel, the utilization of multipliers could be maximized as we

discussed. Hence, the throughput could be considerably improved.

Fig. 76 shows the comparison of execution cycles between the proposed DSP acceler-

ator and other processing components in radix-2 Complex DIT FFT. The DSP accelerator

provided a superior performance in execution cycles than CPU [128] and DSPs (TI-67x

and TI-62x) that support more programmable functions. However, it denoted a less per-

161

Fig. 76.: Comparison of execution cycles in FFT

Table XXVI.: Comparison of the 256-point complex FFT performance (radix-2) to other

DSPs

DSP accelerator ConnX D2 TI-55x
Cycles 2080 3740 4786
Normalized cycles against DSP accelerator 1 1.8 (+44%) 2.3 (+57%)

formance than TI FFT hardware accelerator (HWAFFT) [128] because HWAFFT is more

optimized to compute FFT in hardware. Table. XXVI compares the 256-point radix-2

FFT performance of the DSP accelerator to ConnX D2 [129] and TI-55x [130]. The pro-

posed accelerator could achieve 44% and 130% reduction in execution cycles, compared to

ConnX D2 and TI-55x in the FFT operation respectively.

We also examined the area and power consumption of the accelerator. Table. XXVII

compares the synthesis result of the DSP accelerator to the result of ConnX D2. We synthe-

sized the DSP accelerator using Synopsys Design Compiler on TSMC 65nm-GP process

162

F
F
T

 o
f

x
(
μ
C

+
D

S
P

)

F
I
R

(
M

a
tl

a
b

)

F
F
T

 o
f

x
(
M

a
tl

a
b

)

F
I
R

(
μ
C

+
D

S
P

)

F
F
T

 o
f

y
(
μ
C

+
D

S
P

)

F
F
T

 o
f

y
(
M

a
tl

a
b
)

x x

y
XX

y
y y

Y Y

O
p
e
r
a
t
io

n
t
e
s
t

F
F
T

a
n

d
F
I
R

S
a
m

p
le

n
u

m
b
e
r
s

1
6

-
b
it

2
5

6
 p

o
in

t
s

O
r
d
e
r
 o

f
lo

w
p
a
s
s

F
I
R

1
2

t
h

C
u

t
-
o
ff

 f
r
e
q
.
o
f

F
I
R

¼
(
n

o
r
m

a
li
z
e
d
)

]1
0[

,
2
5
6

,
1
0
0

3
,

6
4

2
,

1
6

1
*

n
/N

)
f3

co
s(

2
0
.3

n
/N

)
f2

si
n
(2

0
.3

n
/N

)
f1

co
s(

2
0
.3

x




























N
n

N
f

f
f








1
6

6
4

1
0

0

1
6

6
4

1
0

0

1
6 1
6

Fi
g.

77
.:

D
em

on
st

ra
tio

n
of

th
e

pr
op

os
ed

D
SP

ac
ce

le
ra

to
ro

n
M

L
60

5
FP

G
A

bo
ar

d.
T

he
ve

ri
fic

at
io

n
of

th
e

op
er

at
ed

re
su

lts
on

th
e

bo
ar

d
w

as
pe

rf
or

m
ed

by
co

m
pa

ri
so

n
w

ith
th

e
M

at
la

b
re

su
lts

163

Table XXVII.: Synthesis results using TSMC 65GS technology

DSP accelerator ConnX D2
Max. Frequency (MHz) 333 605
Area (mm2) 0.167 0.18
Power consumption (mW/MHz) 0.037 0.052

technology with 20% default switching activities. It consumed 12.35mW and 0.167mm2

in power and area at 333MHz respectively. We also demonstrated it on ML605 FPGA

board [131] at 25MHz with 3% LUT used.

Fig. 77 illustrates this demonstration on the board. For the verification of the DSP

accelerator logic, we generated reference data using Matlab, compared them with the re-

sults obtained on the FPGA board. For instance, we generated input x=0.3cos(2π f1n/N)+

0.3sin(2π f2n/N)+0.3cos(2π f3n/N) with 16-bit 256 points samples where f1=16, f2=64,

f3=100, N=256, n=[0, ..., N-1] for the demonstration of FIR and FFT operations. The

low-pass FIR filter was configured by 12th order and 1/4 normalized cut-off frequency.

In the first step we programmed and configured commands and control register fields for

computing FFT and FIR via micro-controller (µC) and AHB bus. In the second step the

DSP accelerator loaded commands when they were available in FIFOs. The input samples

(x) were transformed to X, frequency domain information of x, by the FFT operation. In

the figure, the FFT result (X) shows three frequency components at f1=16, f2=64, f3=100.

Input samples (x) were filtered by the low-pass FIR filter with the 1/4 cut-off frequency.

The result of FIR was denoted as y. In the last step, the FIR result (y) was transformed to Y

by FFT to show the FIR results in frequency domain. The Y contained only low-frequency

bin at f1=16 due to the low-pass filtering.

164

C. Conclusions

This section presents data processing units for low-power embedded SoCs. The first de-

sign introduces a radiation sensor system and its implementation. The design can compress

massive sensor data, while providing high throughput, low-power, and significant compres-

sion rate. The proposed architecture is implemented with a router design for on-chip/wafer

network. In the synthesis result, the data processing logic consumes 112.17mW@1GHz,

and router consumes 79mW@1GHz with 128-bit data width.

In the second design we propose a DSP accelerator for sensor hub SoCs. The DSP ac-

celerator provides both low-power consumption and programmable functionality, enabling

energy-efficient digital signal processing. The DSP accelerator does not include general

purpose registers demanding large area and power. The DSP accelerator loads and stores

data from and to external SRAM through AHB bus for low area and power consump-

tion. We also propose FFT, CP, FIR accelerating schemes using a pipeline architecture and

auxiliary accumulators for high throughput and parallel execution. The design consumed

12.35mW power on 0.167mm2 area at 333MHz. We also demonstrated it on ML605 FPGA

board for verification. The result shows the proposed DSP accelerator outperforms general

purpose DSPs in throughput performance, close to that of a hardware accelerator with pro-

grammable control and low area and power consumption.

165

CHAPTER V

CONCLUSIONS

Reducing system-on-chip power consumption has become a critical challenge for the nan-

otechnology era. Problems relating to power consumption are not only applicable to the

battery powered, handheld and mobile applications where the power influences designs not

only in terms of time to market, but also for cost and reliability.

We address three solutions for the low-power SoC design. First, this thesis presents a

low-power embedded LDPC-H.264 JSCD architecture to lower the baseband energy con-

sumption of a channel decoder using joint source decoding and DVFS. With the tremendous

increase in the capabilities of portable multimedia devices and services, the demand to im-

prove the energy efficiency and error robustness of such systems motivates the interest in

low-power joint source-channel decoding with UEP. A novel configuration search scheme

based on UEP to trade-off power and performance on power sensitive mobile devices is also

presented. The proposed low-power MIMO and H.264 video joint detector/decoder design

using the proposed scheme minimizes energy for portable, wireless embedded systems.

Second, we address a link-level QoS methodology using UEP for the low-power NoC

and low latency on-chip network designs for MPSoCs. The QoS NoC study has been

extended to develop minimum latency on-chip networks. We also contribute two NoC de-

signs, WaveSync, an low-latency focused network-on-chip architecture for GALS designs

and the SDPR scheme utilizing path diversity present in typical mesh topology network-

on-chips. SDPR is akin to having a higher link width but without the significant hardware

overhead associated with simple bus width scaling.

Third, we explore data processing accelerator designs for embedded SoCs. The de-

mand for embedded SoCs containing sensors for sensing and acceleration has been in-

creased significantly. We propose a solution for a data processing and control logic design

166

that initiates a new sensor SoC system for radiation detection generating data at or above

Peta-bits-per-second level. We also contribute to develop a DSP accelerator supporting

DSP centric operations such as FFT, FIR, and 3-D cross product operations for low-power

and high performance embedded SoCs. These all give benefits on SoC design for low-

power sensor network systems.

Looking to the future, there are significant opportunities in emerging portable and

sensor networked systems and hardware support for the systems. Leveraging the expertise

in the previous established works will open a new challenge and need innovative idea to

redesign the entire system. The future research directions can include:

• Study of our JSCD schemes with run-time configuration searching approach in real

world environment

• Exploration of path diversity on new routing schemes for on-chip network, minimiz-

ing traversal latency along with reliability variation.

• Design of ultra low-power DSP accelerator for battery restricted sensor systems such

as solar powered nano-sensor networks.

167

REFERENCES

[1] International Technology Roadmap for Semiconductors (ITRS) Working Group,

“International Technology Roadmap for Semiconductors (ITRS), 2009 Edition.”

http://www.itrs.net/Links/2009ITRS/Home2009.htm, accessed on May 20,

2012.

[2] M. Bedford Taylor, W. Lee, S. Amarasinghe, and A. Agarwal, “Scalar Operand

Networks: On-Chip Interconnect for ILP in Partitioned Architectures,” in The Ninth

International Symposium on High-Performance Computer Architecture (HPCA-9),

pp. 341 – 353, 2003.

[3] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. Keckler, and

C. Moore, “Exploiting ILP, TLP, and DLP with The Polymorphous TRIPS Archi-

tecture,” in 30th Annual International Symposium on Computer Architecture (ISCA),

pp. 422 – 433, 2003.

[4] Y. Hoskote, S. Vangal, A. Singh, N. Borkar, and S. Borkar, “A 5-GHz Mesh Inter-

connect for a Teraflops Processor,” IEEE Micro, vol. 27, no. 5, pp. 51 – 61, 2007.

[5] D. Wentzlaff, P. Griffin, H. Hoffmann, L. Bao, B. Edwards, C. Ramey, M. Mattina,

C.-C. Miao, J. Brown, and A. Agarwal, “On-Chip Interconnection Architecture of

the Tile Processor,” IEEE Micro, vol. 27, no. 5, pp. 15 – 31, 2007.

[6] W. Dally and B. Towles, “Route Packets, Not Wires: On-Chip Interconnection Net-

works,” in Design Automation Conference (DAC), pp. 684 – 689, 2001.

[7] S. Xiao, C. Wu, J. Du, and Y. Yang, “Reliable Transmission of H.264 Video over

Wireless Network,” in Advanced Information Networking and Applications (AINA),

vol. 2, p. 5 pp., 2006.

http://www.itrs.net/Links/2009ITRS/Home2009.htm

168

[8] M. Stoufs, A. Munteanu, P. Schelkens, and J. Cornelis, “Optimal Joint Source-

Channel Coding using Unequal Error Protection for the Scalable Extension of

H.264/MPEG-4 AVC,” IEEE International Conference on Image Processing (ICIP),

vol. 6, pp. VI –517–VI –520, 2007.

[9] B. Parrein, F. Boulos, P. Le Callet, and J. Guedon, “Priority Image and Video En-

coding Transmission Based on a Discrete Radon Transform,” Packet Video 2007,

pp. 105–112, 2007.

[10] P. Yip, J. Malcolm, W. Fernando, K. Loo, and H. Arachchi, “Joint Source and Chan-

nel Coding for H.264 Compliant Stereoscopic Video Transmission,” Canadian Con-

ference on Electrical and Computer Engineering, pp. 188–191, 2005.

[11] T. Kuroda, K. Suzuki, S. Mita, T. Fujita, F. Yamane, F. Sano, A. Chiba, Y. Watan-

abe, K. Matsuda, T. Maeda, T. Sakurai, and T. Furuyama, “Variable supply-voltage

scheme for low-power high-speed CMOS digital design,” Solid-State Circuits, IEEE

Journal of, vol. 33, no. 3, pp. 454–462, 1998.

[12] P. Gratz, C. Kim, R. McDonald, S. Keckler, and D. Burger, “Implementation and

Evaluation of On-Chip Network Architectures,” in International Conference on

Computer Design (ICCD), pp. 477 – 484, 2006.

[13] P. Gratz, K. Sankaralingam, H. Hanson, P. Shivakumar, R. McDonald, S. W. Keckler,

and D. Burger, “Implementation and Evaluation of a Dynamically Routed Processor

Operand Network,” in The 1st ACM/IEEE Int’l Symposium on Networks-on-Chip,

pp. 7–17, 2007.

[14] P. Gratz, C. Kim, K. Sankaralingam, H. Hanson, P. Shivakumar, S. W. Keckler, and

D. Burger, “On-Chip Interconnection Networks of the TRIPS Chip,” IEEE Micro,

vol. 27, pp. 41–50, 2007.

169

[15] N. Thomos, S. Argyropoulos, N. Boulgouris, and M. Strintzis, “Robust Transmis-

sion of H.264/AVC Video using Adaptive Slice Grouping and Unequal Error Protec-

tion,” IEEE International Conference on Multimedia and Expo, pp. 593–596, 2006.

[16] T. Stockhammer and M. Bystrom, “H.264/AVC Data Partitioning for Mobile Video

Communication,” International Conference on Image Processing (ICIP), vol. 1,

pp. 545–548, 2004.

[17] M. M. Ghandi, Layered Video Coding for Wireless Communications. PhD thesis,

University of Essex, 2006.

[18] R. Guo, L. Wang, and X. Jiang, “Stereo Video Transmission using LDPC Code,” in

International Journal of Communications, Network and System Sciences, pp. 254–

259, 2008.

[19] Y. Wang, S. Yu, and X. Yang, “Error Robustness Scheme for H.264 Based on LDPC

Code,” International Multi-Media Modelling Conference, pp. 4 pp.–, 2006.

[20] L. Qi, L. Yang, W. Wensheng, C. Huijuan, and T. Kun, “Robust Video Transmission

Scheme using Dynamic Rate Selection LDPC and RS codes,” IMACS Multiconfer-

ence on Computational Engineering in Systems Applications, vol. 2, pp. 1673–1679,

2006.

[21] V. Kumar and O. Milenkovic, “On Unequal Error Protection LDPC Codes Based

on Plotkin-type Constructions,” Global Telecommunications Conference (GLOBE-

COM), vol. 1, pp. 493–497 Vol.1, 2004.

[22] Y. S. Yang and G. Choi, “Low-Power Embedded LDPC-H.264 Joint Decoding Ar-

chitecture Based on Unequal Error Protection,” in Future Information Technology

(FutureTech), pp. 1–6, 2010.

170

[23] Y. Wang, S. Yu, and X. Yang, “Unequal Iterative Decoding for Power Efficient Video

Transmission,” IEEE International Conference on Multimedia and Expo, pp. 613–

616, 2006.

[24] X. Lu, E. Erkip, Y. Wang, and D. Goodman, “Power Efficient Multimedia Commu-

nication over Wireless Channels,” IEEE Journal on Selected Areas in Communica-

tions, vol. 21, no. 10, pp. 1738–1751, 2003.

[25] Q. Zhang, Z. Ji, W. Zhu, and Y.-Q. Zhang, “Power-minimized Bit Allocation for

Video Communication over Wireless Channels,” IEEE Transactions on Circuits and

Systems for Video Technology, vol. 12, no. 6, pp. 398–410, 2002.

[26] Y. Eisenberg, C. Luna, T. Pappas, R. Berry, and A. Katsaggelos, “Joint Source Cod-

ing and Transmission Power Management for Energy Efficient Wireless Video Com-

munications,” IEEE Transactions on Circuits and Systems for Video Technology,

vol. 12, no. 6, pp. 411–424, 2002.

[27] J. Dielissen, A. Hekstra, and V. Berg, “Low Cost LDPC Decoder for DVB-S2,” in

Design, Automation and Test in Europe Conference Exhibition (DATE), vol. 2, pp. 1

–6, 2006.

[28] W. Wang and G. Choi, “Minimum-Energy LDPC Decoder for Real-Time Mobile

Application,” Design, Automation Test in Europe Conference Exhibition (DATE),

pp. 1–6, 2007.

[29] W. Wang and G. Choi, “Speculative Energy Scheduling for LDPC Decoding,” Inter-

national Symposium on Quality Electronic Design (ISQED), pp. 79–84, 2007.

[30] W. Wang, G. Choi, and K. K. Gunnam, “Low-power VLSI Design of LDPC Decoder

using DVFS for AWGN Channels,” in International Conference on VLSI Design,

171

pp. 51–56, 2009.

[31] P. Moberg, A. Osseiran, and P. Skillermark, “Cost Comparison between SISO and

MIMO Deployments in Future Wide Area Cellular Networks,” in Vehicular Tech.

Conf., pp. 1–5, 2009.

[32] G.-H. Yang, D. Shen, and V. Li, “Unequal Error Protection for MIMO Systems

with a Hybrid Structure,” IEEE International Symposium on Circuits and Systems

(ISCAS), pp. 4 pp.–685, 2006.

[33] Y. Liu, Q. song Tong, A. dong Men, Z. yi Quan, and B. Yang, “A Joint Source-

Channel Coding Scheme Focused on Unequal Error Protection for H.264 Trans-

mission over MIMO-OFDM System,” Computing, Communication, Control, and

Management (CCCM), vol. 2, pp. 491–495, 2008.

[34] X. Li, S. Yang, Y. Wang, and Z. Li, “Performance of UEP based MIMO scheme

for LDPC codes,” in International Conf. on Computer Engineering and Technology

(ICCET), vol. 6, pp. 216–220, 2010.

[35] Y. S. Yang, P. Bhagawat, and G. Choi, “Energy-efficient MIMO detection using un-

equal error protection for embedded joint decoding system,” in Design Automation

Conference (DAC), pp. 579–584, 2011.

[36] Z. Cao, B. Foo, L. He, and M. van der Schaar, “Optimality and Improvement of

Dynamic Voltage Scaling Algorithms for Multimedia Applications,” IEEE Trans-

actions on Circuits and Systems I: Regular Papers, vol. 57, no. 3, pp. 681 –690,

2010.

[37] J. Kim, S. Yoo, and C.-M. Kyung, “Program Phase and Runtime Distribution-Aware

172

Online DVFS for Combined Vdd/Vbb Scaling,” in Design, Automation Test in Eu-

rope Conference Exhibition (DATE), pp. 417 –422, 2009.

[38] Y. S. Yang and G. Choi, “Low-power Baseband Processing for Wireless Multimedia

Systems using Unequal Error Protection,” in Wireless Telecommunications Sympo-

sium (WTS), pp. 1 –6, 2010.

[39] S. Kumar, L. Xu, M. K. Mandal, and S. Panchanathan, “Error Resiliency Schemes in

H.264/AVC Standard,” Journal of Visual Communication and Image Representation,

vol. 17, no. 2, pp. 425 – 450, 2006.

[40] F. Zhai, Y. Eisenberg, T. N. Pappas, R. Berry, and A. K. Katsaggelos, “Joint Source-

Channel Coding and Power Adaptation for Energy Efficient Wireless Video Com-

munications,” Signal Processing: Image Communication, vol. 20, no. 4, pp. 371 –

387, 2005.

[41] JVT, “International Standard of Joint Video Specification,” ITU-T Rec. H.264,

ISO/IEC 14 496-10 AVC, 2003.

[42] VCEG, “H.264/AVC JVT JM-18.3.” http://iphome.hhi.de/suehring/tml/

download/, accessed on May 20, 2012.

[43] R. Gallager, “Low-Density Parity-Check Codes,” IRE Transactions on Information

Theory, vol. 8, no. 1, pp. 21–28, 1962.

[44] D. MacKay and R. Neal, “Near Shannon Limit Performance of Low Density Parity

Check Codes,” Electronics Letters, vol. 33, no. 6, pp. 457–458, 1997.

[45] R. Tanner, “A Recursive Approach to Low Complexity Codes,” IEEE Transactions

on Information Theory, vol. 27, no. 5, pp. 533–547, 1981.

http://iphome.hhi.de/suehring/tml/download/
http://iphome.hhi.de/suehring/tml/download/

173

[46] F. Kienle and N. Wehn, “Low Complexity Stopping Criterion for LDPC Code De-

coders,” Vehicular Technology Conference (VTC), vol. 1, pp. 606–609, 2005.

[47] G. Glikiotis and V. Paliouras, “A Low-power Termination Criterion for Iterative

LDPC Code Decoders,” IEEE Workshop on Signal Processing Systems Design and

Implementation, pp. 122–127, 2005.

[48] J. Chen and M. Fossorier, “Near Optimum Universal Belief Propagation Based De-

coding of Low-Density Parity Check Codes,” IEEE Transactions on Communica-

tions, vol. 50, no. 3, pp. 406 –414, 2002.

[49] M. Mansour and N. Shanbhag, “High-throughput LDPC Decoders,” IEEE Transac-

tions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 6, pp. 976–996,

2003.

[50] M. Mansour and N. Shanbhag, “A 640-Mb/s 2048-bit Programmable LDPC De-

coder Chip,” IEEE Journal of Solid-State Circuits, vol. 41, no. 3, pp. 684–698, 2006.

[51] D. Hocevar, “A Reduced Complexity Decoder Architecture via Layered Decoding

of LDPC Codes,” in Signal Processing Systems (SIPS), pp. 107 – 112, 2004.

[52] K. Gunnam, G. Choi, and M. Yeary, “A Parallel VLSI Architecture for Layered De-

coding for Array LDPC Codes,” International Conference on VLSI Design, pp. 738–

743, 2007.

[53] K. Xu, “H.264/AVC Baseline Decoder.” http://www.opencores.org/projects.

cgi/web/nova/overview, accessed on May 20, 2012.

[54] K. Xu and C. S. Choy, “Low-power H.264/AVC Baseline Decoder for Portable

Applications,” in International symposium on Low power electronics and design

(ISLPED), pp. 256–261, 2007.

http://www.opencores.org/projects.cgi/web/nova/overview
http://www.opencores.org/projects.cgi/web/nova/overview

174

[55] Synopsys, “Design Compiler.” http://www.synopsys.com, accessed on May 20,

2012.

[56] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to algorithms,

year = 2009,. MIT Press, 3rd ed.

[57] P. Macken, M. Degrauwe, M. Van Paemel, and H. Oguey, “A voltage reduction

technique for digital systems,” in Solid-State Circuits Conference, 1990. Digest of

Technical Papers. 37th ISSCC., 1990 IEEE International, pp. 238–239, 1990.

[58] P. Wolniansky, G. Foschini, G. Golden, and R. Valenzuela, “V-BLAST: An archi-

tecture for realizing very high data rates over the rich-scattering wireless channel,”

International Symposium on Signals, Systems, and Electronics, pp. 295–300, 1998.

[59] Y. Wu, T. Cui, and C. Tellambura, “Optimal low-complexity detection for space

division multiple access wireless systems,” IEEE Communications Letters, vol. 10,

no. 3, pp. 156–158, 2006.

[60] P. Bhagawat, S. Ekambavanan, S. Das, G. Choi, and Khatri.S, “VLSI Implementa-

tion of a Staggered Sphere Decoder Design for MIMO Detection,” Forty-Fifth An-

nual Allerton Conf., pp. 228–235, 2007.

[61] B. Hassibi and H. Vikalo, “On the expected complexity of sphere decoding,” in

Thirty-Fifth Asilomar Conf. on Signals, Systems and Computers, vol. 2, pp. 1051–

1055, 2001.

[62] A. Burg, M. Borgmann, M. Wenk, M. Zellweger, W. Fichtner, and H. Bolcskei,

“VLSI implementation of MIMO detection using the sphere decoding algorithm,”

IEEE Journal of Solid-State Circuits, vol. 40, no. 7, pp. 1566 – 1577, 2005.

http://www.synopsys.com

175

[63] C. Hess, M. Wenk, A. Burg, P. Luethi, C. Studer, N. Felber, and W. Fichtner,

“Reduced-complexity mimo detector with close-to ml error rate performance,” in

Great Lakes symposium on VLSI (GLSVLSI), pp. 200–203, 2007.

[64] “FreePDK: An open-source variation-aware design kit,”

[65] C. Alpert, A. Devgan, and S. Quay, “Buffer Insertion for Noise and Delay Opti-

mization,” IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, vol. 18, no. 11, pp. 1633 –1645, 1999.

[66] H. Zhou and D. Wong, “Global Routing with Crosstalk Constraints,” in DAC, pp. 374

–377, 1998.

[67] R. Arunachalam, E. Acar, and S. Nassif, “Optimal Shielding/Spacing Metrics for

Low Power Design,” in VLSI, pp. 167 – 172, 2003.

[68] B. Victor and K. Keutzer, “Bus Encoding to Prevent Crosstalk Delay,” in ICCAD,

pp. 57 –63, 2001.

[69] P. Pande, H. Zhu, A. Ganguly, and C. Grecu, “Crosstalk-Aware Energy Reduction in

NoC Communication Fabrics,” in SOC Conference, pp. 225 –228, 2006.

[70] R. Hegde and N. Shanbhag, “Toward Achieving Energy Efficiency in Presence of

Deep Submicron Noise,” IEEE Transactions on VLSI Systems,, vol. 8, no. 4, pp. 379

–391, 2000.

[71] S. Sridhara and N. Shanbhag, “Coding for Reliable On-Chip Buses: A Class of

Fundamental Bounds and Practical Codes,” IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, vol. 26, no. 5, pp. 977 –982, 2007.

[72] P. P. Pande, A. Ganguly, B. Feero, B. Belzer, and C. Grecu, “Design of Low power

Reliable Networks on Chip through Joint Crosstalk Avoidance and Forward Error

176

Correction Coding,” in Defect and Fault Tolerance in VLSI Systems, pp. 466 –476,

2006.

[73] A. Ganguly, P. P. Pande, B. Belzer, and C. Grecu, “Addressing Signal Integrity in

Networks on Chip Interconnects through Crosstalk-Aware Double Error Correction

Coding,” in IEEE Computer Society Annual Symposium on VLSI (ISVLSI), pp. 317

–324, 2007.

[74] S. E. Lee, Y. S. Yang, G. Choi, W. Wu, and R. Iyer, “Low-Power, Resilient Intercon-

nection with Orthogonal Latin Squares,” IEEE Design Test of Computers, pp. 30–39,

2011.

[75] S. Sridhara and N. Shanbhag, “Coding for System-on-Chip Networks: A Unified

Framework,” IEEE Transactions on Very Large Scale Integration (VLSI) Systems,

vol. 13, no. 6, pp. 655 –667, 2005.

[76] P.-T. Huang, W.-L. Fang, Y.-L. Wang, and W. Hwang, “Low Power and Reliable

Interconnection with Self-Corrected Green Coding Scheme for Network-on-Chip,”

in ACM/IEEE International Symposium on Networks-on-Chip (NoCS), pp. 77 –83,

2008.

[77] R. Kumar, Y. S. Yang, and G. Choi, “Intra-Flit Skew Reduction for Asynchronous

Bypass Channel in NoCs,” in International Conference on VLSI Design (VLSI De-

sign), pp. 238 –243, 2011.

[78] W. Dally and J. Poulton, Digital Systems Engineering. New York, NY: Cambridge

Univ. Press, 1998.

[79] A. Hemani, T. Meincke, S. Kumar, A. Postula, T. Olsson, P. Nilsson, J. Oberg,

P. Ellervee, and D. Lundqvist, “Lowering Power Consumption in Clock by Using

177

Globally Asynchronous Locally Synchronous Design Style,” in Design Automation

Conference, 1999. Proceedings. 36th, pp. 873 –878, 1999.

[80] G. Gill, S. Attarde, G. Lacourba, and S. Nowick, “A low-latency adaptive asyn-

chronous interconnection network using bi-modal router nodes,” in NoCS, pp. 193

–200, 2011.

[81] M. Horak, S. Nowick, M. Carlberg, and U. Vishkin, “A Low-Overhead Asyn-

chronous Interconnection Network for GALS Chip Multiprocessors,” IEEE Trans-

actions on CAD, vol. 30, no. 4, pp. 494 –507, 2011.

[82] M. Donno, E. Macii, and L. Mazzoni, “Power-Aware Clock Tree Planning,” in Int’l

Symposium on Physical Design, pp. 138–147, 2004.

[83] S. Vangal, J. Howard, G. Ruhl, S. Dighe, H. Wilson, J. Tschanz, D. Finan, P. Iyer,

A. Singh, T. Jacob, S. Jain, S. Venkataraman, Y. Hoskote, and N. Borkar, “An 80-Tile

1.28TFLOPS Network-on-Chip in 65nm CMOS,” in Solid-State Circuits Conference

(ISSCC)l, pp. 98 –589, 2007.

[84] M. Amde, T. Felicijan, A. Efthymiou, D. Edwards, and L. Lavagno, “Asynchronous

on-chip networks,” IEE Proceedings Computers and Digital Techniques, vol. 152,

no. 2, pp. 273 – 283, 2005.

[85] T. Jain, P. Gratz, A. Sprintson, and G. Choi, “Asynchronous Bypass Channels: Im-

proving Performance for Multi-synchronous NoCs,” in Fourth ACM/IEEE Interna-

tional Symposium on Networks-on-Chip (NOCS), pp. 51 – 58, 2010.

[86] W. Dally and B. Towles, Principles and Practices of Interconnection Networks. San

Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 2003.

178

[87] W. Dally, “Express Cubes: Improving The Performance of K-ary N-cube Intercon-

nection Networks,” IEEE Transactions on Computers, vol. 40, no. 9, pp. 1016 –

1023, 1991.

[88] U. Ogras and R. Marculescu, “Application-Specific Network-on-Chip Architecture

Customization via Long-Range Link Insertion,” in Int’l Conf. on Computer-Aided

Design, pp. 246 – 253, 2005.

[89] T. Krishna, A. Kumar, P. Chiang, M. Erez, and L. Peh, “NoC with Near-Ideal Ex-

press Virtual Channels Using Global-Line Communication,” in Symposium on High

Performance Interconnects, pp. 11 –20, 2008.

[90] W. Burleson, M. Ciesielski, F. Klass, and W. Liu, “Wave-Pipelining: a Tutorial and

Research Survey,” IEEE Transactions on Very Large Scale Integration (VLSI) Sys-

tems, vol. 6, no. 3, pp. 464 –474, 1998.

[91] J. Kim, D. Park, T. Theocharides, N. Vijaykrishnan, and C. Das, “A Low Latency

Router Supporting Adaptivity for On-Chip Interconnects,” in DAC, pp. 559 – 564,

2005.

[92] S. Woo, M. Ohara, E. Torrie, J. Singh, and A. Gupta, “The SPLASH-2 Programs:

Characterization and Methodological Considerations,” in Annual Int’l Symposium

on Computer Architecture, 1995.

[93] P. Gratz and S. W. Keclker, “Realistic Workload Characterization and Analysis for

Networks-on-Chip Design,” in The 4th Workshop on Chip Multiprocessor Memory

Systems and Interconnects, 2010.

[94] XILINX, “Power Consumption at 40 and 45nm,” in White Paper: Spartan-6 and

Virtex-6 Devices, 2009.

179

[95] G. Desoli and E. Filippi, “An Outlook on The Evolution of Mobile Terminals: from

Monolithic to Modular Multiradio, Multiapplication Platforms,” IEEE Circuits and

Systems Magazine, vol. 6, no. 2, pp. 17 – 29, 2006.

[96] J. Xu, W. Wolf, J. Henkel, S. Chakradhar, and T. Lv, “A Case Study in Networks-

On-Chip Design for Embedded Video,” in Design, Automation and Test in Europe

Conference and Exhibition (DATE), vol. 2, pp. 770 – 775, 2004.

[97] H. G. Lee, U. Ogras, R. Marculescu, and N. Chang, “Design Space Exploration and

Prototyping for On-Chip Multimedia Applications,” in DAC, pp. 137 – 142, 2006.

[98] T. Xu, A. Yin, P. Liljeberg, and H. Tenhunen, “A Study of 3D Network-on-Chip

Design for Data Parallel H.264 Coding,” in NORCHIP, pp. 1 – 6, 2009.

[99] L. Xin and C. sing Choy, “A Low-Latency NoC Router with Lookahead Bypass,” in

IEEE International Symposium on Circuits and Systems (ISCAS), pp. 3981 – 3984,

2010.

[100] X. Wang and L. Bandi, “A Low-Area and Low-Latency Network-On-Chip,” in 23rd

Canadian Conference on Electrical and Computer Engineering (CCECE), pp. 1 –

5, 2010.

[101] E. Carvalho, N. Calazans, and F. Moraes, “Congestion-Aware Task Mapping in

NoC-based MPSoCs with Dynamic Workload,” in IEEE Computer Society Annual

Symposium on VLSI, pp. 459 – 460, 2007.

[102] L. S. Peh and W. J. Dally, “A Delay Model and Speculative Architecture for

Pipelined Routers,” in High-Performance Computer Architecture (HPCA), pp. 255 –

266, 2001.

180

[103] K. Lee, S.-J. Lee, and H.-J. Yoo, “SILENT: Serialized Low Energy Transmission

Coding for On-Chip Interconnection Networks,” in IEEE/ACM International Con-

ference on Computer Aided Design (ICCAD), pp. 448 – 451, 2004.

[104] D. Seo, A. Ali, W.-T. Lim, and N. Rafique, “Near-Optimal Worst-Case Throughput

Routing for Two-Dimensional Mesh Networks,” in ISCA, pp. 432 – 443, 2005.

[105] C. Izu, J. Miguel-Alonso, and J. Gregorio, “Effects of Injection Pressure on Network

Throughput,” in Parallel, Distributed, and Network-Based Processing (PDP), p. 8

pp., 2006.

[106] Y. Wang and Z. Wang, “Explicit Routing Algorithms for Internet Traffic Engineer-

ing,” in Eight International Conference on Computer Communications and Net-

works, pp. 582 – 588, 1999.

[107] A. Elwalid, C. Jin, S. Low, and I. Widjaja, “MATE: MPLS Adaptive Traffic Engi-

neering,” in INFOCOM, vol. 3, pp. 1300 – 1309, 2001.

[108] R. Banner and A. Orda, “Multipath Routing Algorithms for Congestion Minimiza-

tion,” IEEE/ACM Transactions on Networking, vol. 15, no. 2, pp. 413 – 424, 2007.

[109] L. G. Valiant and G. J. Brebner, “Universal Schemes for Parallel Communication,”

in ACM Symposium on Theory of Computing, pp. 263 – 277, 1981.

[110] T. Nesson and S. L. Johnsson, “ROMM Routing: A Class of Efficient Minimal Rout-

ing Algorithms,” in The International Workshop on Parallel Computer Routing and

Communication, pp. 185 – 199, 1994.

[111] M. H. Cho, M. Lis, K. S. Shim, M. Kinsy, and S. Devadas, “Path-based, Random-

ized, Oblivious, Minimal routing,” in The 2nd International Workshop on Network

on Chip Architectures (NoCArc), pp. 23 – 28, 2009.

181

[112] S. Murali, D. Atienza, L. Benini, and G. De Micheli, “A Multi-Path Routing Strat-

egy with Guaranteed In-Order Packet Delivery and Fault-Tolerance for Networks on

Chip,” in DAC, pp. 845 – 848, 2006.

[113] G. Michelogiannakis, D. Sanchez, W. Dally, and C. Kozyrakis, “Evaluating Buffer-

less Flow Control for On-chip Networks,” in Fourth ACM/IEEE International Sym-

posium on Networks-on-Chip (NOCS), pp. 9 – 16, 2010.

[114] G.-M. Chiu, “The Odd-Even Turn Model for Adaptive Routing,” IEEE Transactions

on Parallel and Distributed Systems, vol. 11, no. 7, pp. 729 –738, 2000.

[115] W. Dally and C. Seitz, “Deadlock-Free Message Routing in Multiprocessor Inter-

connection Networks,” IEEE Transactions on Computers, vol. C-36, no. 5, pp. 547

– 553, 1987.

[116] N. Kamaci and Y. Altunbasak, “Performance Comparison of The Emerging H.264

Video Coding Standard with The Existing Standards,” in International Conference

on Multimedia and Expo (ICME), vol. 1, pp. 345 – 348, 2003.

[117] “Video Traces.” http://trace.eas.asu.edu/yuv/index.html, accessed on

May 20, 2012.

[118] S. Brennan, A. Mielke, D. Torney, and A. Maccabe, “Radiation detection with dis-

tributed sensor networks,” Computer, vol. 37, no. 8, pp. 57 – 59, 2004.

[119] Y. Yang, Y. Ju, H. Xia, W. Zhao, and Y. Zhen, “A Network Protocol Stack Based

Radiation Sensor Network For Emergency System,” IJCSNS, vol. 8, no. 8, pp. 312 –

318, 2008.

[120] E. Culurciello and P. Weerakoon, “Three-Dimensional Photodetectors in 3-D

Silicon-On-Insulator Technology,” Electron Device Letters, IEEE, vol. 28, no. 2,

http://trace.eas.asu.edu/yuv/index.html

182

pp. 117 –119, 2007.

[121] A. Ephremides, “Book Review [review of Algorithmic Information Theory: Mathe-

matics of Digital Information Processing (Seibt, P.; 2006)],” Signal Processing Mag-

azine, IEEE, vol. 24, pp. 128 –129, july 2007.

[122] Z. Yu and B. Baas, “High Performance, Energy Efficiency, and Scalability With

GALS Chip Multiprocessors,” Very Large Scale Integration (VLSI) Systems, IEEE

Transactions on, vol. 17, no. 1, pp. 66 –79, 2009.

[123] S. Sridhara and N. Shanbhag, “Coding for system-on-chip networks: a unified

framework,” Very Large Scale Integration (VLSI) Systems, IEEE Transactions on,

vol. 13, no. 6, pp. 655 –667, 2005.

[124] J. W. Cooley and J. W. Tukey, “An Algorithm for the Machine Calculation of Com-

plex Fourier Series,” Mathematics of Computation, vol. 19, no. 90, pp. 297–301,

1965.

[125] ARM, “AMBA Open Specification.” http://www.arm.com/products/

system-ip/amba/amba-open-specifications.php, accessed on May 20,

2012.

[126] T. Instruments, “TI TMS320C62x DSPs C62x Core Benchmarks.” http://www.

ti.com/lsds/ti/dsp/home.page, accessed on May 20, 2012.

[127] T. Instruments, “TI TMS320C67x Floating Point DSPs C67x Core Benchmarks.”

http://www.ti.com/lsds/ti/dsp/home.page, accessed on May 20, 2012.

[128] T. Instruments, “TI FFT hardware accelerator (HWAFFT) .” http://www.ti.com/

lit/an/sprabb6a/sprabb6a.pdf, accessed on May 20, 2012.

http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.arm.com/products/system-ip/amba/amba-open-specifications.php
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lit/an/sprabb6a/sprabb6a.pdf
http://www.ti.com/lit/an/sprabb6a/sprabb6a.pdf

183

[129] Tensilica, “ConnX D2 DSP Engine.” http://www.tensilica.com/uploads/

pdf/connx_d2_pb.pdf, accessed on May 20, 2012.

[130] T. Instruments, “TI TMS320C55x DSP Benchmarks.” http://www.ti.com/lsds/

ti/dsp/home.page, accessed on May 20, 2012.

[131] Xilinx, “ML605 Hardware User Guide.” http://www.xilinx.com/support/

documentation/boards_and_kits/ug534.pdf, accessed on May 20, 2012.

http://www.tensilica.com/uploads/pdf/connx_d2_pb.pdf
http://www.tensilica.com/uploads/pdf/connx_d2_pb.pdf
http://www.ti.com/lsds/ti/dsp/home.page
http://www.ti.com/lsds/ti/dsp/home.page
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf
http://www.xilinx.com/support/documentation/boards_and_kits/ug534.pdf

184

VITA

Yoon Seok Yang received his B.S. and M.S. degree from Hanyang University, Korea,

in February 1998 and 2000. He also received his M.S. degree in Electrical Engineering and

Computer Science from University of California, Irvine, USA, in March 2008. He received

his Ph.D. degree in Electrical and Computer Engineering from Texas A&M University in

August 2012. His research interests include a unified architecture for communication and

multimedia systems and high-performance, low-power interconnection design for on-chip

networks. He is a student member of IEEE.

Yoon Seok Yang may be reached in the Department of Electrical and Computer En-

gineering at Texas A&M University, 214 Zachry Engineering Center TAMU 3128, Texas

77843-3128 USA. His email address is yoonseoky@gmail.com.

	I Introduction
	A. Joint Source Channel Decoding Method for Low-Power Portable and Wireless SoC Systems
	B. Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design
	C. Data Processing Accelerator Architecture for Low-Power SoCs in Distributed Sensor Network Systems

	II Joint Source Channel Decoding Method for Low-Power Portable and Wireless SoC Systems
	A. Joint Source Channel Decoding Method Using Unequal Error Protection and LDPC Check Error Levels
	1. Background: H.264 Unequal Error Protection and LDPC Channel Decoding
	a. H.264 Video Coding
	b. LDPC Coding

	2. Proposed Low-Power JSCD Scheme Using DVFS
	a. Runtime Process
	b. Low-Power JSCD Implementation

	3. Results and Discussion
	a. Simulation Environment
	b. Simulation Results

	B. Optimal Configuration Search Method for Low-Power Channel Decoder in Embedded LDPC-H.264 Joint Decoding Architecture
	1. Proposed Optimal Configuration Search Method
	a. Overview of the proposed search scheme
	b. Coarse binary search process
	c. Fine search process using the UEP scheme

	2. Energy Minimization Using DVFS
	3. Results and Discussion

	C. Optimal Configuration Search Method for Low-Power MIMO Detector in Embedded MIMO-H.264 Joint Decoding Architecture
	1. Background: MIMO Detection
	2. The Proposed Low-Power MIMO-H.264 Joint Decoder Design
	a. Coarse Search Process
	b. Refining the Coarse Search Using UEP

	3. Results and Discussion

	D. Conclusions

	III Low-Latency On-Chip Interconnect Architecture for System-On-Chip Design
	A. Link-Level QoS for Low-Power On-Chip Network
	1. TransSync-RecSync Technique
	2. UEP with TransSync-RecSync on NoC
	3. Results and Discussion
	a. Simulation Environment
	b. UEP Results

	B. WaveSync: Low-Latency Source Synchronous Bypass Network-On-Chip Architecture
	1. WaveSync Design
	a. Clock Distribution
	b. Router Microarchitecture
	c. De-skewer for suppressing intra-flit skew on links
	d. Synchronizer architecture for half cycle synchronization latency

	2. Experiments and Evaluation
	a. Simulation methodology
	b. Synthetic workloads
	c. Realistic workloads

	3. Design Implementation

	C. SDPR: Exploiting Path Diversity for Low-Latency through Simultaneous Dual Path Routing
	1. Related Work
	2. Dual-Path Network Architecture
	a. Dual-Path Routing Scheme
	b. Network Adapter
	c. Baseline Router
	d. SDPR Router

	3. Experiments and Evaluation
	a. Methodology
	b. Results
	c. Discussion

	4. Synthesis Results

	D. Conclusions

	IV Data Processing Accelerator Architecture for Low-Power SoCs in Distributed Sensor Network Systems
	A. Data Processing Logic for Stacked Wafer-Scale CMOS Radiation Sensor Network
	1. Data Processing Logic
	a. Overall Architecture of Data Processing Unit
	b. Proposed Data Compression Algorithm
	c. Data Compression Unit

	2. On-chip Router Design
	3. Experiments

	B. DSP Accelerator for Low-Power Sensor Hub SoCs
	1. Background: DSP Algorithms
	a. Vector Dot Product
	b. 3-Dimensional Cross Product
	c. Fast Fourier Transform (FFT)

	2. DSP Accelerator Features
	3. DSP Accelerator Architecture
	a. Address generate unit (AGU)
	b. Data path unit (DPU)
	c. Control unit (CU)
	d. Command memory
	e. Control register
	f. Status register
	g. Address register and map
	h. Pipeline architecture

	4. DSP Accelerator Operations
	a. 16-/32-Bit MACs
	b. 8-/16-/32-Bit Cross Product
	c. FIR Operation
	d. FFT Operation

	5. Experiment Results

	C. Conclusions

	V Conclusions
	REFERENCES
	VITA

