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Abstract

This project consists of the case study of a smart microgrid district in a spanish town. The smart energy

microgrid district consists of several households and a public use building (school) that includes renewable

energy sources (photovoltaic), li-ion batteries for electric energy storage, domestic hot water heaters acting

as thermal energy storage, a pool for balancing energy consumptions and supplies, and the connection to

the electric grid. The problem has been modelled as a non-linear mathematical programming model that

is linearly approximated using special ordered sets of type 2. The linear approximation is solved using

Gurobi optimization software providing close-to-the-optimum solutions within an interval of 15 minutes that

allows near real time operation of the smart energy district. The obtained results allow to advance within

the net zero energy neighbourhood concept in all the evaluated scenarios within a daily horizon, and a

positive energy balance in wider horizons. Even if these results are obtained in part due to the magnificent

insolation conditions of this particular town, they allow to justify that the appropriate use of renewable

energy resources, energy storage systems together with balancing mechanism at district level (as the pool in

our case study) may lead to nearly net zero energy neighbourhood in other geographical locations too.

9
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1 Scope

The main goal of the present project is the description of a holistic non-linear mathematical programming

model for the scheduling of the energy sources of a neighbourhood, which includes a group of households

and a school. Previous studies addressed the need to review current generation and operation strategies

in order to thrive towards wider and more comprehensive concepts like energy systems. Studies have also

researched the paradigm of zero energy buildings (ZEBs), concluding that the concept still needs a consistent

definition and standarization. They have also looked into the reliability and flexibility of buildings sustained

by renewable energy sources, and ways to guarantee their energy supply. They have pointed out the necessity

to develop operating patterns for energy storage devices in order to prevent their lifetime from shortening at

an early stage. Moreover, these studies address the need to assess the economical viability of these solutions,

for which a correct design and sizing of the energy resources is required.

Despite the recent efforts, the current evolution towards the smart district or neighbourhood microgrid

concept requires additional research efforts. Even more, the concept is now evolving to a wider scope by

the consideration of (nearly) net zero energy neighbourhoods (NZEN) in which several buildings (including

households, buildings of public use such as schools, hospitals, and commercial centres amongst others)

constitute a neighbourhood with an energy consumption near to zero by compensating the consumptions

and generation among them and considering the day (or week) horizon to achieve a net zero (López, et al.

2015).

It is in this context where the present work lies. The main points of this project are: (i) the consideration

of a smart energy microgrid district with several households and public use buildings that include renewable

energy sources (photovoltaic), li-ion batteries for electric energy storage, domestic hot water heaters acting

as thermal energy storage, a pool for balancing energy consumptions and supplies, and the possible use of

the electric grid in order to apply innovative schemes to save energy in conjunction with exploiting natural

energy resources in pursuit of ultimate sustainability and reliability at district level; (ii) the introduction of a

holistic non-linear mathematical programming model that considers the modelling of the battery degradation

and the operation of domestic hot water heaters; and (iii) the solution of such model by implementing its

linearization using special ordered sets of type 2 that allows to reach near-optimal solutions of the linear

model in near-real time (less than a slot of 15 minutes) and its application to a real case study (a district

in a spanish town). The solution obtained guarantees the optimal operating pattern of the storage devices,

ensuring that the minimum replacements are carried out within the lifespan of the energy system and the

installation is cost effective.

The rest of the project follows with an introduction in section 2, a summary of the state of the art in Section

3; the description of the problem in Section 4; the specific details associated to the technical considerations

of the li-ion battery degradation model and the energy storage model in the domestic hot water heaters

in Section 5; the non-linear mathematical programming model that defines the problem in terms able to

be optimized and its corresponding linearization by using special ordered sets of type 2 in Section 6; the
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experimental results for the spanish town case study in Section 7. Finally, the conclusions are presented

in the last section and an appendix providing the theoretical details of the special ordered sets of type 2

linearization is also included.
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2 Introduction

Nowadays, energy efficiency is a political priority of increasing attention, together with the increasing concern

on the climate change, the reduction of fossil fuel consumption and the efficient use of the energy. Currently,

in the European Union, 28 countries consume around 3,400 TWh of electricity and 2,600,000 TJ of heat per

year, as noted by Eurostat (http://ec.europa.eu/eurostat).

In addition, the concept of energy efficiency emerged as a cornerstone is intimately linked to most of the

concepts that currently receive attention in terms of energy such as the use of clean energies, the security in

the use of the energy, the economic and social impacts due to the raise of the energy prices, and the concern

for climate change. At the same time, increasing energy efficiency allows increasing competitiveness of the

companies, while promoting the welfare of consumers.

Moreover, regarding the previously mentioned 3,400 TWh of EU consumed electricity, nearly 25% corre-

sponds to the residential sector. During the last 20 years, total energy consumption in households increased

by 35% as a result of a large number of factors, including the increase in population and the number of

occupied dwellings, changes in the size of the dwelling, the existence of more electrical appliances, and the

increase of wealth. On the other hand, the consumption of such dwellings is not produced at the same time

and can follow different profiles that can also be compensated with other consumptions at buildings of public

use that are produced at different hours. Consequently, holistic approaches considering the optimization of

the energy network operation as a whole at the level of district or neighbourhoods will lead to improvements

in terms of energy efficiency, leading to the concept of smart energy microgrids. In addition, the energy

generation in renewable energy resources such as wind and solar are an important component of such smart

microgrids, although the inherent intermittency and variability of such resources complicates microgrid op-

erations. Therefore one of the major elements is the interconnection of renewable generation and how that

generation is managed in order to meet the demand. Also, the progressive improvement of the performance

and efficiency in electric batteries allows their consideration as another distributed energy resource.

Demand response techniques for demand and supply balancing are a matter of interest in current studies. At

the moment customers have few ways of getting information about the state of the grid, and therefore cannot

react adjusting their energy use to maximize efficiency. The main goals of demand response techniques is to

achieve a reduction of peak load and the ability to control consumption depending to generation. This means

that there could be a way for end-use appliances to know and react when renewable energy is available or

when there is a shortage of electric supply.
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3 Literature review

In the following section a literature review of the issue under study is presented. The topics covered include

the concept of smart energy grids and its evolution to the wider concept of smart energy systems and the

integration of renewable energy sources within the current energy supply system and how to ensure its

sustainability. The literature also addresses the lack of consensus regarding the definition and standarization

of the concept of ZEBs and ways to assess its correct operation and propose methodologies for this purpose.

However, in order to be cost effective and guarantee benefits for the environment, energy systems that include

distributed and renewable energy sources need to be operated and sized in an optimal manner. To achieve

this, several optimization strategies are also presented in the scientific literature.

In this line, several authors show that the existing energy infrastructures and also generation and operation

strategies need to be reviewed and encompassed to the new concept of smart energy network going beyond the

limitations of distributed generation. This means that the paradigm of smart grid needs to evolve to the new

concept of smart energy network or smart energy systems, not only integrating energy sources into the electric

network, but also including management, operation and communication into it. In particular, Lund et al.

(2012) address the challenge of large-scale integration of renewable energy sources into already existing energy

systems. Within these, fluctuating and intermittent renewable energy production must be coordinated with

the rest of the energy system in order to meet the electricity demand and guarantee stability and reliability.

Especially with regard to electricity production, facing this challenge is essential since electricity systems

depend on an exact balance between demand and supply at any time. Electricity smart grids would act

in cooperation with other sectors such as heat supply, transportation and energy conservation. This article

states that the operation and regulation of flexible combined heat and power (CHP) plants would be an

efficient way of facilitating the large-scale integration of renewable energy power since they would ensure

voltage and frequency stability of the electricity supply. It also explains the necessity to focus on the design

of energy systems with a high capability of utilising intermittent renewable energy sources. They present a

case study to compare several systems depending on this capability, finally concluding that the performance

of a small CHP plant equipped with CHP units, heat storage and electric boilers can provide valuable grid

stabilisation at very low additional investment and operating expenses. Mathiesen et al. (2015) outline

how to integrate renewable energy sources into energy grids using the smart energy system approach and

addresses the lack of knowledge in the previous literature about how to do so. The way to achieve this

is by focusing on merging all the sectors involved and incorporating energy storage devices to ensure the

flexibility and reliability lacking in these fluctuating energy sources. The main goal is to discuss the possible

integration of smart electricity, smart thermal and smart gas grids to enable 100% renewable energy. For

the same purpose, the smart energy system should be managed not only from the supply side but also from

the consumption side. This work presents the development, design, analysis and results of a 100% renewable

energy system which consists of wind power, photovoltaics (PV), wave power and run-of-river hydro power

to assess its impact in terms of economic growth and health benefits. If this methodology is carried out,

energies like biomass would only be used at a sustainable level.
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Mathiesen et al. (2011) present the design and results of a 100% renewable energy system. The results reveal

how implementing energy savings, renewable energy and more efficient conversion technologies can have a

positive socio-economic effect. It also assesses and quantifies the potential environmental benefit in climate

change mitigation that a transition to 100% renewable could bring. In conclusion, the results indicate the

possibility for continued economic growth while implementing climate mitigation strategies.

Tan et al. (2012) give a thorough insight of the progression of microgrid-oriented energy storage technologies.

It provides the state of the art in the area of applications, principles, interfaces , control strategies and new

emerging research line. It highlights the importance of energy storage systems (EESs) as power buffers in

microgrid.

The concept of smart energy network will contribute to progress towards the concept of net zero energy

buildings (ZEB) that has attracted the attention in the last years. The previous scientific literature provides

an useful insight towards the actions required for developing building assessment methodologies in order

to achieve the envisioned smart cities in Europe, all in terms of design for the environment and building

practices, renewable energy sources, technical building systems and intelligent energy management (Kylili

et al., 2015). In the same line, as Scognamiglio et al. 2014 identify, there are some commonly documented

limitations of the current research and development that may be considered the drivers for future NZEB

growth, such as a lack of an universally agreed definition and its consequent difficulty for establishing

strategies for achieving it and inconsistent energy efficiency standards. The most important definitions for

ZEB are:

• Net zero site energy use

• Net zero source energy use

• Net zero energy emissions

• Net zero cost

• Off-grid

• Energy-plusA

To summarize, a NZEB can be broadly defined as a building with characteristics such as equal energy

generation to usage, significantly reduced energy demands and energy costs equalling zero or net zero green

house gas emissions. The common denominator for the different possible Net ZEB definitions in the presented

framework is the balance between weighted demand and supply. The balance may be calculated in different

ways, depending on the quantities that are of interest and available. A review of past scientific literature

indicated that buildings can make the transition to ZEBs by reducing their energy consumption by at

least two-thirds compared to their current energy consumption. This article concludes that ZEBs will

make a significant contribution to smart cities on the energy efficiency, energy conservation and renewable

energy generation aspects. Innovative methodologies that promote a holistic approach, incorporating a
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combination of technologies and solutions of real time energy management, lifecycle and social considerations,

and progressive economic feasibility considerations should be adopted. Adopting these kind of methodologies

will contribute more effectively and quicker than excepted to the achievement of the target for the transition

to smart European cities.

However, it also refers to the controversy arised due to the possible unsustainability of ZEBs on topics such

as Life Cycle Assessment (LCA), rebound effect and social, as well as climate change considerations, all

of which require further efforts for their research and development. This is because most of the studies

carried out take into consideration only the energy during the use phase of the building, however, there is a

considerable amount of energy embodied in the construction materials that has been hardly given attention

to or taken into account in literature. Because of this issue, the article also points out the necessity to

consider the further development of the current ZEB concept in order to achive a more comprehensive one

that not only considers the energy consumption of the use phase of the buildings in its definition and that

provides a consistent energy efficiency criteria.

Pikas et al. (2014) point out the lack of previous studies focused on cost optimality of technical solutions.

Instead, they mostly focus on energy efficiency issues.

Sartori et al. (2012) present a framework for setting ZEB definitions. Possible indicators are presented and

the concept of grid interaction flexibility is introduced as a desirable target in the building energy design.

Evaluation of the criteria and selection of the related options becomes a methodology for elaborating Net

ZEB definitions in a systematic, comprehensive and consistent way. This can create the basis for legislations

and action plans to effectively achieve the political targets.

Wells et al. (2018) follow the previous research lines presenting a potential contribution of the ZEB principle

towards achieving smart cities in Europe and provides guidelines for the design of building assessment

methodologies. The analysis undertaken concluded that the concept of ZEB will contribute to smart cities

in aspects such as energy efficiency and energy conversion. Their conclusion agree with the previous literature:

some aspects regarding life cycle should be assessed and solid methodologies should be designed and adopted

in order to ensure a rapid achievement of the transition to smart cities.

Even though the expected high insertion of distributed micro-generation facilities based on renewable energy

can help reduce the environmental footprint of buildings and households, the complexity of managing effec-

tively the electric grid grows dramatically under these conditions. Future districts or neighbourhoods should

include the energy planning for communities as a key aspect to achieve more efficient energy networks.

Energy saving issues and growing environment protection awareness has intensified the interest for Dis-

tributed Energy Systems. They are expected to increase largely the efficiency of energy supply and to fix

some of the addressed environmental problems. Di Somma et al. (2016) propose a multi-objective opti-

mization problem to reduce both the energy costs and environmental impacts of the operation strategy of

a distributed energy system. The Pareto front includes the best possible trade-offs that can be obtained

between the costs and environmental objectives. The problem is solved by minimizing a weighted sum of
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the total energy costs and CO2 emissions. The results of the study prove that an optimized operation of

the distributed energy system decreases energy costs and emissions when compared to conventional energy

supply systems.

In this line, demand side management (DSM) is expected to contribute significantly to attain the NZEN

concept as well. DSM refers to mechanisms that encourage consumers to adapt their energy use depending

on the daily period to shifting of energy consumption from peak to non-peak hours. DSM enables consumers

to control their energy profile to reap economic benefits. It also aids energy providers to reduce the peak

average ratio (PAR) by leveraging the flexibility of distributed energy resources (DERs) and renewable-

energy resources (RESs) to supplement grid power, thereby avoiding the use of expensive peak-power plants.

The literature outlines the lack of previous research studies in the role of consumers in the paradigm of zero

emission strategies (Throne-Holst et al. 2007). Gelazanskas and Gamage (2014) focus on the changes at the

user side that could contribute to the renewal of the electricity grid. It proposes a method that would enable

user side load control. This would potentially balance demand side with supply side more effectively and

reduce peak demand to make the whole system more efficient. The proposed optimisation algorithm intends

to shape the final load curve as close as possible to the desired load curve. The restriction of this strategy

is compliance in the number of shiftable loads in the system, which users are willing to use at a different

time, where user behaviour is estimated using statistical data. Customers will have the most flexibility and

choice controlling their load pattern. Only customer and his willingness to pay certain price at different

times define individual load shape. A good strategy commonly found in the literature is to set price based

incentives and stablish a two-way communication.

Fernández et al. (2018) present a game-theoretic DSM framework for a neighbourhood area to provide cost

savings for the consumer and reduce the PAR for the neighbourhood, while maintaining an optimal comfort

level for the consumer and satisfying consumption constraints. The proposed DSM framework utilizes the

flexibility of distributed energy resources and renewable energy sources to allow neighbours to share excess

energy production and avoid demand peaks. It leverages the flexibility of distributed energy resources in

order to avoid the use of expensive peak power plants. To prove this, the article proposes a comparison

of algorithms applied to scenarios in which neighbours share information about their consumption habits

and scenarios in which they don’t, in order for the system to be scheduled to satisfy their demands with an

optimal cost, proving that PAR is reduced in those scenarios where users are willing to share information.

Indeed, the concept of net zero previously mentioned energy turns critical in small inland contexts. It is the

case of the standalone microgrid case presented at Zhao et al. (2013), that proposed a genetic algorithm to

solve a multi-objective optimization problem aiming to minimize the power generation cost and to maximize

the useful life of lead–acid batteries. The optimization model includes battery life loss cost, operation and

maintenance cost, fuel cost, and environmental cost is established to obtain a set of optimal parameters

of operation strategy. The NSGA-II algorithm was used to find solutions for the multi-objective problem

and two typical scenarios where used: abundance and shortage of renewable sources. In a similar context,

the comparison of such energy management systems of standalone and grid-connected microgrids was also
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considered by Jiang et al. (2013), where a double layer coordinated control approach for optimization of

grid connected and standalone microgrids is developed. This approach prioritizes reliable power supply

instead of economic benefit, so that it maximizes satisfaction rate of load with minimum operation cost

in stand-alone mode. These two layers are the schedule layer and the dispatch layer. The schedule layer

obtains an economic operation scheme based on forecasting data, while the dispatch layer provides power of

controllable units based on real-time data. Errors between the forecasting and real-time data are resolved

through coordination control of the two layers by reserving adequate active power in the schedule layer, then

allocating that reserve in the dispatch layer to deal with the indeterminacy of uncontrollable units.

As previously mentioned, the efficient management and operation of smart microgrids is receiving increasing

attention in the scientific literature. In this line, Risbeck et al. (2017) presented a mixed-integer linear

programming model for real-time cost optimization of building heating, ventilation, and air conditioning

equipment. The model considers chillers, chilled water pumps, boilers, hot water pumps, heat-recovery

chillers and storage systems. This framework accounts for time-varying utility prices, demand charges,

occupant comfort constraints, and on/off equipment dwell times. The overall problem is as follows: given

forecasts of hourly utility prices, ambient conditions and building occupancy, decide how to operate the

HVAC system at lowest economic cost via decisions such as what the temperature profile of each zone

should be, when the energy storage should charge or discharge, weather each equipment is running or not

at a certain time interval and how much chilled and hot water is being produced. Also, in the context of a

commercial building microgrid, Wang et al. (2016) proposed a mixed integer programming model considering

solar generation, and several forms of electric storage (stationary battery energy management system and

gridable electric vehicle integration). At the same scale level, Cortés et al (2018) proposed a non-linear

model to optimize the operating costs of electricity and and heating in buildings considering distributed

energy generation and storage. This paper deals with the optimization of the operating costs of electricity

and heating networks in building with distributed energy generation and electric storage. The aim of the

article is to obtain the optimal configuration of energy supply from the energy sources. The problem is solved

via linear optimization and by the use of metaheuristics. This paper addresses and demonstrates very well

how soft computing techniques such as genetic algorithms can deal with large real-life problems requiring a

quasi-real-time response when traditional and mathematical approaches or even commercial software could

not be able to manage. This article makes a great contribution to the scientific literature by the application

of genetic algorithms to deal with a distributed energy generation network with storage capabilities, which

hadn’t been considered in the literature previously.

Bordin et al. (2017) present a linear programming model for a system that includes batteries and solar

photovoltaic energy. Its major contribution is the methodology to model the battery degradation using a

linear approximation. They propose sensitivity analyses to investigate how degradation costs and different

operational patterns relate to each other. The objective is to show the combinations of battery costs and

performance that makes the system more economic. Their analyses shows that lead acid batteries become

viable when their degradation cost per kWh drops below a certain percentage bellow the current diesel cost,

which would be the energy alternative, highlighting the importance of the operating pattern chosen to meet
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the electricity requirements, leading to fewer battery replacements which increase the cost of maintaining

off-grid systems. Fully off-grid systems at present will be expensive and require good management and

control strategies to prolong the life of the batteries. The article also addresses how battery degradation

issues and costs are often neglected in previous articles and emphasize the need for further investigation on

analysis on degradation costs since current manufacturer data on degradation are not ideal for predicting

the cost of lifetime reduction.

Harkouss et al. (2018) address the importance of correctly sizing the energy sources: It is agreed that the

conventional design methods for ZEBs can easily lead to oversized RE systems or unacceptable performance

of different design conditions, even though the zero energy balance is attained. The challenge in ZEB design

is to find the best combination of passive, energy efficient and RE systems design strategies that would

face the energy performance problems of a particular building. The proposed optimization methodology is

a powerful and useful tool to enhance NZEBs design and to facilitate decision-making in early phases of

building design.

Karunathilake et al. (2018) propose a renewable energy planning framework for community development

projects. According to this study, identifying the optimal renewable energy investment for plans related to

neighbourhoods is an issue that needs to be addressed. This study would benefit developers in formulating

their energy strategy the most effective way. An increase in investments does not necessarily lead to a high

GHG emission reduction. The suitability of renewable options depends on factors such as the local situation,

availability of energy resources and the existing energy mix in a given location. To evaluate the feasibility

of emissions reduction and to estimate the potential benefits of RE integration, it is necessary to study the

regional energy mix pertaining to the intended site location of a proposed community.

Ali AlAjmi et al. (2016) outline energy efficient measures that should be implemented as a first step to

achieving NZEB. Energy efficiency measures attempt to reduce the building energy consumption . These

measures are formulated for the HVAC system and the building itself, which are the main sources of ineffi-

ciency. design three scenarios to evaluate under which conditions the NZEB can be achieved. They take into

account the levelized cost of energy, smallest payback period and reasonable avoided CO2 emission. One

the final conclusions is that NZEBs should ideally be designed to function in synergy with the local utility

grid and not putting extra stress on the existing power infrastructure. Existing buildings can be converted

to NZEB by implementing EEMs in the building, installing efficient equipment and integrating competent

PV modules. Costs of PV modules and related equipment are expected to decrease considerably in the near

term future. In addition, the efficiency of the PV modules is improving over the years. These factors will

make PV systems more cost-effective in the near future.

In similar line, Grover-Silva et al. (2018) take into consideration also batteries and solar photovoltaic. This

paper proposes a multi period stochastic optimization method for day ahead dispatch of flexible resources

within a microgrid, considering the uncertainty of PV and load demand. The DERs considered are electric

storage and controllable (CL) buildings’ water and space heating/cooling loads, such as EWH and commercial

HVAC units. This stochastic approach considers uncertainty in the baseline uncontrollable loads (UL) (such
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as lighting, cooking appliances, electronic devices and phantom loads), PV generation, ambient temperature

and hot water consumption. These uncertainties are considered in the form of forecast scenarios which

are generated from probabilistic forecasts taking into account the spatial and temporal correlations in the

processes. The methodology consists of comparing the expected value of perfect information (EVPI) given the

stochastic solution and the deterministic average solution. The study concluded that the use of a stochastic

approach resulted in a reduction of the microgrid operation costs in comparison with the deterministic

strategy, especially in periods where weather conditions and baseline load deviate from the average. However,

meeting comfort constraints in all possible scenarios can lead to extreme conservative scheduling solutions

with higher costs.

Stochastic programming was also considered by Zakariazadeh et al. (2014). In this paper, a novel stochastic

energy and reserve scheduling method for a microgrid (MG) which considers various type of demand response

(DR) programs is proposed including multiple types of demand response programs in order to facilitate the

participation of different types of customers in energy and reserve scheduling. Demand side response would

act as an active energy input into the system. In order to analyze the effects of demand side participation

in the MG energy and reserve scheduling, the proposed model is tested in the following two difference cases:

Case 1: without considering demand response programs.

Case 2: considering demand response programs.

In order to evaluate the effect of uncertainty of renewable generations on reserve scheduling, a specific

scenario in which wind and solar power shortages happen is analyzed. To model the wind and PV power

generation uncertainties within the MG energy and reserve scheduling, a two-stage stochastic programming

framework is developed. In the stochastic method, all plausible states of wind and solar generation in each

hour are modelled by generating different scenarios. The scheduling of energy resources is carried out for all

scenarios in order to analyze the changes in power requirements while each of scenarios happens. The output

result of this scheduling method is defined as the optimum solution that has the minimum operational cost

if each of scenarios occurs in real time. So, the output result variables are different from scenario variables

and are located in the first stage of objective function. The difference between output variables and scenario

variables of DGs and responsive loads are defined as reserve. In other words, reserve is used in order to

match the power shortage while renewable power generations suddenly decrease.

It demonstrates that the adoption of demand response programs can reduce total operation costs of microgrid

and determine a more efficient use of energy resources

Another novel energy management system strategies have been presented in the scientific literature. An

example of this is the methodology developed in Palma-Behnke et al. (2013), consisting of a rolling horizon

strategy where a mixed integer optimization problem based on forecasting models is solved. As shown in the

article, the rolling horizon presents the advantage of dealing with updated data from the forecast variables.
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4 Description of the problem

The problem consists of a smart energy microgrid including several households equipped with solar photo-

voltaic systems, batteries and domestic hot water heaters and a school with solar photovoltaic and batteries

as well. The demand of the households includes the HVAC system, the home appliances and the lighting.

The school has also a HVAC system and includes several appliances and lighting. The microgrid includes

a pool allowing the interchange and rebalance of the energy among the households, the school and also

connected to the electric grid. Figure 1 depicts the considered smart energy microgrid.

Figure 1: Conceptual microgrid architecture

The so-described system can be modelled as a graph (Figure 2), where the flow balance among all the

systems in the microgrid is represented. The origin node in the graph is described as node ”0”. It represents

the total amount of energy coming from the solar photovoltaic energy source installed at the housings and

the electrical grid.

The incoming energy flows are used for charging the batteries, supplying the energy demand at the households

for lighting, appliances, the HVAC systems and for pre-heating de domestic hot water heaters (DHWH).

Batteries and DHWH act as a buffer to adjust the imbalance between energy demand and supply, so that

energy produced in peak production times can be stored and consumed in peak demand times.

The so-called pool is another balancing element in the microgrid. It allows to interchange the energy flows

among the different households and the school in the community, in the same time slot. So, in those cases

with an energy demand at a household exceeding its own supply capabilities, the household can be supplied
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with the excess of energy from other households or from the school. In those cases, with an energy production

level not being consumed or stored in a given time slot, this excess of energy can be sold to the grid.

Inside each household or the school, the battery can be fed with solar photovoltaic energy, with the grid

energy or with the excess of energy coming from the pool. In turn, the stored energy is used to supply the

DHWH or to supply the household energy demand. The DHWH is also fed with solar photovoltaic energy,

with the grid energy, with the battery or with the excess of energy from the pool. The stored energy is used

to supply the thermal demand and also includes the losses to the environment.

Figure 2: Energy flow diagram
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5 Technical considerations

Over the last few decades the usage of distributed energy systems has experienced a major growth and

therefore there has also been an increment in the usage of storage systems such as batteries or water heaters

that are used as a buffer to match the energy demand and supply in different time periods.

Therefore, previous to the definition of the mathematical programming model, it is necessary to clarify some

relevant aspects associated to the batteries and the DHWH operation and performance. So, this section

is devoted to specifying the technical considerations, hypothesis and modelling process associated to the

domestic hot water heater and the battery of the energy model.

5.1 Domestic hot water heater operation.

This subsection details the modelling of the DHWH at the different households of the district. In this line,the

reference followed were Kleppinger et al. (2015), who have researched on modelling DHWH and present a

model based on demand side management, where the users can shift their demand to low peak times in

order to reduce the costs associated to the supply of electrical energy from the electric grid. The aim of their

article is to determine on-site the optimal strategy for operating the DHWH based of the expected demand

and the cost function, which considers the purchasing price of electricity from the grid in each moment.

The DHWH thermal operation model is stated by applying an energy balance on each layer of the tank,

which is considered as an open system (Kleppinger et al., 2015). Hence, the variation of thermal energy of the

DHWH is given by the sum of the electrical energy input, the losses to the environment, the energy transfer

due to the hot water consumption at the housing and the diffusion between adjacent layers. Therefore, the

energy balance is given by a system considering as many differential equations as the number of adjacent

layers in the tank. To model the controller of the DHWH system, Kleppinger et al. (2015) assume the

hypothesis of a fully mixed DHWH, which allows to model the balance of energy in the DHWH as equation

(1) states.

ρ · V · Cp · dT
dt

= Ẇel(t)− ˙d DHWH(t)− UA · (T (t)− T ext) (1)

Where the left hand side of (1) is the variation of thermal energy that is calculated as the product of the

total mass of water, the thermal capacity of the water and the differential increment of the temperature in

the tank. The parameter ρ is the density of the water in the tank, V is the volume of the tank and Cp the

thermal capacity of the water expressed in J/(kg K).

On the right hand side, ˙d DHWH(t) is the rate of energy demand due to hot water consumption and Ẇel(t)

is the binary switch function controlling the resistive heating element. These two elements are given by the

equations (2) and (3).
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˙d DHWH(t) = Cp · ṁt · (Tout − Tin) (2)

Ẇel(t) = Pel · u(t), u(t) ∈ {0, 1} (3)

In equation (2) Cp is the thermal capacity of water, Tout is the hot water draw temperature and Tin is the

inlet temperature, and ṁt is the mass flow rate at the inlet (kg/s). In equation (3), Pel is the electrical

power of the resistive element of the DHWH, and u(t) is a binary switch function controlling the resistive

heating element that is represented as a step function which takes values between 0 and 1.

The last term of the right hand side of equation (1) represents the energy losses across insulation. It is

calculated as the difference between the external temperature and the average inner temperature of the

tank. Approximating the partial derivative using finite differences, the energy balance can be written as (4).

ρ · Vi · Cp · (T (t)− T (t− 1)) = Ẇel(t) ·∆t− ˙d DHWH(t) ·∆t− UA · (T (t)− T ext) ·∆t (4)

5.2 Battery operation and degradation.

Despite the increasing research and technical work in batteries ad energy storage systems, the extension of

the usage of batteries has been limited due to the high investment costs that they require and due to its high

dependency on the operating conditions. In fact, a good knowledge of the effect of these aspects is essential

for determining the viability of its implementation. Weitzel et al. (2018) review the existing literature

related to this topic, and concludes that although there are many studies that integrate battery degradation

models into optimization microgrid problems, such studies do not reflect the battery ageing adequately due

to several reasons: (i) a non-appropriate simplification of the system, (ii) the lack of consideration on how

such degradation affects the microgrid operation, or (iii) because they do not avoid an excessive usage in

adverse operating conditions. Another problem found in the literature, according to Bordin et al. (2017),

lies in the fact that many models use the operating conditions as input parameters and not as optimisation

variables, so they do not reflect the trade-off between degradation costs and energy purchasing costs from

the grid. According to Sarasketa-Zabala et al. (2016), the models developed in the literature cannot always

be extrapolated to other operating conditions.

Battery ageing is usually associated to deep discharges (Guena et al., 2006) or to keeping the battery charge

at too high or too low levels (Ju et al., 2018). In the literature it is not common to find mathematical models

reflecting the effects of these conditions, it is more usual to find results of experimental tests allowing to fit

an approximate curve based on them.

Weitzel et al. (2018) propose a mixed integer linear programming model with the aim of solving the scheduling
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(a) Time-dependent degradation percentage (b) Degradation percentage per ampere hour through-
put

Figure 3: Degradation

problem of a hybrid microgrid and minimizing its operating costs. The study considers the costs associated to

the ageing of batteries based on previous literature, which was one of the most significant contributions of the

paper. The proposed approach is based on the parametric ageing model described in Sarasketa-Zabala et al.

(2016). The article intends to develop a degradation model that can be applied to diverse operating profiles,

and tries to find a balance between the accuracy of the model and the experimentation computational effort.

The ageing model differentiates between time-dependent and usage-dependent components, which are com-

bined to obtain the total degradation cost as a percentage of the initial battery investment expenditure.

This model assumes the hypothesis that the degradation effect is only due to the operation conditions at

that moment without taking into consideration the previous state and history of the battery degradation.

The time-dependent factor links the ageing of the battery with the storage of energy at high levels or high

temperatures. According to equation (5) the percentage of battery lifetime loss is obtained based on the

state of charge (SOC) and the temperature at a certain time interval, ∆t. The state of charge is obtained

as the ratio between the stored energy at the battery and its full capacity.

εcal,t =
(A · exp(α · SOCt) · exp(−β · T−1)

20%

) 1
γ ·∆t (5)

Where SOC is the state of charge, T the operating temperature, assumed to be constant and equal to 25oC

and α, β, A and z are fitting parameters. Figure 3.a shows a graphical representation of this behaviour. The

value for these parameters can be found in Appendix I.

Regarding battery ageing due to usage, this model is based on the idea that the battery is degraded per

each flowed energy unit (ampere hour throughput), since the batteries can be charged and discharged just a

certain number of times until they reach their end-of-life, which is usually considered when the battery loses

a 20% of its initial capacity. So, the percentage of lifetime loss is obtained as a function of the maximum
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depth of discharge and the total energy throughput, measured in ampere-hour.

εcyc,t =
(f(T,CR,DOD,SOC)

20%

) 1
z ·∆Ah (6)

Where T is the operating temperature of the battery, SOC is the state of charge of the battery, DOD is the

depth of discharge and CR is the current rate, which is assumed to be constant and equal to 1. For rates of

charge in such order of magnitude, the temperature effect can be removed. Therefore, f(T,CR,DOD,SOC)

can be expressed as equation (7), being αi and βj fitting parameters.Figure 3.b shows a graphical represen-

tation of this behaviour. The value for these parameters can be found in Appendix I.

f(CR,DOD) = B · (α1 + α2 ·DOD + α3 ·DOD0.5 + α4 · ln(DOD)) · (β1 · CR2 + β2 · CR+ β3) (7)

The lifetime loss degradation has a non-linear expression. However, it can be linearized using special ordered

sets of type 2. The procedure is detailed in Appendix II and is used to construct the linearized model that

is presented in the next section.
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6 The model

This section presents the non-linear mathematical programming model associated to the problem and its

corresponding linearization when using special ordered sets of type 2 (see Appendix II).

6.1 The non-linear model

First, the notation of the model is introduced and then the constraints and the objective function are

described. So, indices, data and parameters and variables are described next.
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Table 1: Table of Notation: Indices and parameters

Indices

i , Index for each household and school (SC)

t , Index for each time interval

Parameters

N , Number of households and the school

T , Number of time intervals

Dit , Household energy demand during the time interval t for lighting, appliances and
heating, ventilation and air conditioning (HVAC) (kWh)

PV prodit , Forecasted energy to be supplied by the photovoltaic energy source of household i in
time interval t. (kWh)

b costi , Purchase price of the battery in household i (e)

cgrid− , Excess energy selling price (e/kWh)

cgrid+,t , Grid energy purchase price in time interval t (e/kWh)

Vi , Volume of the DHWH tank in household i (liters)

d DHWHit , Hot water demand in household i in time interval t (kWh)

Textt , Ambient temperature in time interval t (oC)

Tmax , Maximum design temperature of each DHWH tank (oC)

Tmin , Minimum design temperature of each DHWH tank (oC)

U , Overall heat transfer coefficient across insulation area(kW/(m2K))

A , Surface area of the DHWH tank (m2)

Cp , Thermal capacity of water (kWh/(kg·K)

ρ , Density of water (kg/l)

Pmaxi , Maximum electric power of the resistive heating element of the DHWH in household
i (kW)

P d maxi , Maximum discharge power of the battery in household i (kW)

P c maxi , Maximum charge power of the battery in household i (kW)

volt n , Nominal working voltage of each battery (kV)

b capacity , Capacity of the battery in household i (kWh)

ηb , Square root of the round trip efficiency (adim.)

σ , Self discharge rate of each battery (adim.)

UB , Upper bound

A,α, β, T, γ , Fitting parameters for the time-dependent ageing function

B,CR, z, β1, β2, β3 , Fitting parameters for the usage-dependent ageing function
α1, α2, α3, α4
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Table 2: Table of Notation: Variables

grid instit , Grid energy supplied to the electrical installation of household i in time interval t
(kWh)

grid bit , Grid enery used flowed to the battery in household i in time interval t (kWh)

grid DHWHit , Grid energy flowed to the DHWH in household i in time interval t (kWh)

PV instit , Photovoltaic electricity production flowed to the appliances in household i in time
interval t (kWh)

PV bit , Photovoltaic electricity production flowed to the battery in household i in time interval
t (kWh)

PV DHWHit , Photovoltaic electricity production flowed to the DHWH in household i in time inter-
val t (kWh)

pool instit , Pool energy flowed to the appliances in household i in time interval t (kWh)

pool bit , Pool energy flowed to the battery in household i in time interval t (kWh)

pool DHWHit , Pool energy flowed to the DHWH in household i in time interval t (kWh)

pool gridt , Pool energy sold to the grid in time interval t (kWh)

exc poolit , Excess energy in household i time interval t flowed to the pool (kWh)

Tit , Temperature of the water stored in the DHWH tank in household i in time interval
t (oC)

Tsit , Equilibrium temperature of the water stored in the DHWH tank of household i in
time interval t (oC)

Peit , Electric power of the resistive heating element of household i in a time interval t (kW)

b instit , Demand for electrical energy of the appliances in household i served by its own battery
in a time interval t (kWh)

b DHWHit , Energy demanded by the DHWH system in household i served by the battery in a
time interval t (kWh)

SOCit , State of charge of the battery in household i at a time interval t. It is calculated as
a ratio of the stored energy (kWh) to the battery capacity (kWh)

P cit , Electrical power for charging the battery in household i in a time interval t (kW)

P dit , Electrical power for discharging the battery in household i in a time interval t (kW)

DODi , Daily maximum depth of discharge of the battery in household i (kW)

Ah totali , Total energy cycled through the battery in household i (Ah)

SOCMINi , Minimum state of charge of the battery in household i (kWh)

SOCMAXi , Maximum state of charge of the battery in household i (kWh)

ρ maxit ,

 1, If the maximum state of charge of the battery in household i
happens in time interval t.

0, otherwise

ρ minit ,

 1, If the minimum state of charge of the battery in household i
happens in time interval t.

0, otherwise

ε cali,t(SOCit) , Percentage of lifeloss that the battery faces due to staying at a certain SOCit during
a time interval t

ε cyci(DODi,∆Ahi) , Percentage of lifeloss due to all the energy throughput in the day at a certain depth
of discharge.
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6.1.1 Model

max

T∑
t=1

pool gridt · cgrid− −
N∑
i=1

(ε cyci(DODi,∆Ahi) +

T∑
t=1

ε cali,t(SOCit)) · b costi

−
T∑
t=1

N∑
i=1

(grid instit + grid DHWHit + grid bit) · cgrid+,t (8)

s.t.

Dit + exc poolit = b instit + grid instit + PV instit + pool instit, ∀i∀t, (9)

PV prodit = PV instit + PV DHWHit + PV bit, ∀i∀t, (10)

N∑
i=1

exc poolit =

N∑
i=1

(pool bit + pool instit + pool DHWHit) + pool gridt, ∀t, (11)

ρ · Vi · Cp · (Tit − Tit−1) = Peit ·∆t− d DHWHit − UA · (Tsit − Textt) ·∆t, ∀i \ {SC},∀t, (12)

Peit ·∆t = b DHWHit + grid DHWHit + PV DHWHit + pool DHWHit, ∀i \ {SC},∀t, (13)

Peit ≤ Pmaxi, ∀i \ {SC},∀t, (14)

Tsit =
Tit + Tit−1

2
, ∀i \ {SC},∀t, (15)

Tmin ≤ Tit ≤ Tmax, ∀i \ {SC},∀t, (16)

SOCit = SOCit−1 · (1− σ)− 1

ηb
· P dit ·∆t
b capacityi

+ ηb ·
P cit ·∆t
b capacityi

∀i∀t, (17)

0 ≤ SOCit ≤ 1, ∀i∀t, (18)

P cit ·∆t = grid bit + PV bit + pool bit ∀i∀t, (19)

P dit ·∆t = b instit + b DHWHit, ∀i∀t, (20)

P dit ≤ P d max, ∀i∀t, (21)

P cit ≤ P c max, ∀i∀t, (22)

DODi = SOCMAXi − SOCMINi, ∀i, (23)

SOCMINi ≤ SOCit ≤ SOCMINi + UB · (1− ρ minit), ∀i∀t, (24)

SOCMAXi − UB · (1− ρ maxit) ≤ SOCit ≤ SOCMAXi, ∀i∀t, (25)

T∑
t=0

ρ minit = 1, ∀i, (26)

T∑
t=0

ρ maxit = 1, ∀i, (27)

∆Ah totali =

T∑
t=1

( 1
ηb
· P dit + ηb · P cit) ·∆t

volt n
, ∀i, (28)

ε cali,t(SOCit) = (
A · exp(α · SOCit) · exp(−β · T−1)

0.2
)1/γ ·∆t, ∀i∀t, (29)

ε cyci(DODi,∆Ah totali) = (
f(CR,DODi)

0.2
)1/z ·∆Ah totali, ∀i, (30)
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f(CR,DODi) = B · [α1 + α2 ·DODi + α3 ·DOD0.5
i +

+ α4 · ln(DODi)] · [β1 · CR2 + β2 · CR+ β3], (31)

ρ minitε{0, 1}

ρ maxitε{0, 1}

grid instit, grid bit, grid DHWHit ≥ 0 ∀i∀t

PV instit, PV bit, PV DHWHit ≥ 0 ∀i∀t

pool instit, pool bit, pool DHWHit, pool gridt, exc poolit ≥ 0 ∀i∀t

Tit, T sit, P eit ≥ 0 ∀i∀t

b instit, b DHWHit ≥ 0 ∀i∀t

SOCit, P cit, P dit, DODi ≥ 0 ∀i∀t

Ah totali, SOCMINi, SOCMAXi, ε cali,t(SOCit), ε cyci(DODi,∆Ahi) ≥ 0 ∀i∀t

The objective function of the model and the different constraints are described next.

(8) Objective function: The first term corresponds to the energy sold to the grid in every time interval t

by its selling price. The second term corresponds to the sum of the degradation cost of each battery.The

ageing effects are separated into two components: ε calit, which is the percentage of lifeloss due to staying

at certain state of charge (SOCit) during a time interval t, and ε cyci, which is the percentage of lifeloss for

every energy throughput unit, both measured in ampere hours, at a certain depth of discharge (DODit).

The third term corresponds to the cost of energy that is required from the electric grid multiplied by the

grid energy purchase price.

(9) Balance equation of household i in each time interval t. Every energy source in each household can

provide energy to meet its own electricity demand or to be flowed to the pool.

(10) The photovoltaic energy production in household i in each time interval t is used to meet its own energy

demand or flowed to the battery or DHWH.

(11) The total energy excess can be flowed back to any household in that exact time interval or sold to the

grid.

(12) The rate of change of internal energy of the DHWH is given by the sum of the energy input,the hot

water consumption and the losses to the environment across the insulation area. This model is detailed in

the technical considerations’ section.

(13) The electrical power input of the DHWH in household i during a time interval is fed from the battery,
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photovoltaic system, grid or pool.

(14) The electrical power of the DHWH in household i in time interval t must be lower than the maximum

design value.

(15) The equilibrium temperature of the water in the DHWH in household i in time interval t is the average

value of the temperature at the beginning and at the end of the time interval.

(16) The temperature of the DHWH must be between the minimum and maximum design values.

(17) The state of charge (SOCit) of the battery in household i at the end of the time interval t is the state of

charge in the former time interval, considering self-discharge losses minus the energy drawn from the battery

and the energy supplied to the battery considering conversion losses for these processes. In this manner, only

a percentage of the energy drawn from the battery will be use to meet the energy demands of the household

and to heat up the DHWH, and only a percentage of the energy supplied to the battery will indeed charge

it. Efficiencies are assumed constant over time.

(18) The state of charge of each battery must be between 0% and 100% in every time interval.

(19) The electrical power for charging the battery in household i during a time interval t comes from either

the grid energy, photovoltaic cells or pool.

(20) The electrical power for discharging the battery in household i during a time interval t is the amount of

energy discharged from the battery used to meet the energy demands of household i or flowed to the DHWH.

(21-22) Both the charge and discharge power of each battery must be lower than a maximum design value.

(23) The maximum depth of discharge of the battery in household i is the maximum state of charge of all

the time intervals minus the minimum state of charge of all the time intervals.

(24) If the state of charge of the battery in household i during a certain time interval t (SOCit) is the

minimum state of charge in the whole period, then SOCMINi will be equal to SOCit and ρ minit will be

equal to 1.

(25) If the state of charge of the battery in household i during a certain time interval t (SOCit) is the

maximum state of charge in the whole period, then SOCMAXi will be equal to SOCit and ρ maxit will be

equal to 1.

(26) Since ρ minit determines whether the battery in household i reaches its minimum state of charge in

time interval t, ρ minit can be non-zero for only one time interval for each household.

(27) Since ρ maxit determines whether the battery in household i reaches its maximum state of charge in

time interval t, ρ maxit can be non-zero for only one time interval for each household.

(28) The total energy cycled through the battery in household i measured in Ampere hour is equal to the

energy charged and discharged from the battery in every time interval t divided by the nominal voltage
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(29) Percertange of lifeloss of the battery in household i in time interval t due to its state of charge.

(30-31) Percentage of lifeloss of the battery in household i per energy unit throughput.

6.2 The linearized model using special ordered sets of type 2

The restrictions that model the degradation behaviour of the batteries include non-linearities that need to

be transformed in order to be solved using an optimization program.

To construct the linearized model, the additional notation in table 3 and 4 table needs to be introduced (see

indices, parameters and variables).

In the linearized model, the fitting parameters for the ageing function are excluded, and the following

parameters required by the special ordered sets of type 2 are added. The variables associated with the

percentage of the battery lifetime loss, ε cali,t(SOCit) and ε cyci(DODi,∆Ahi) are substituted by the ones

that appear in table 4:

Table 3: Table of Notation: Indices and parameters for the linearized model

Indices

s , Index for each SOC breakpoint in the linearization

d , Index for each DOD breakpoint in the linearization

a , Index for each Ah breakpoint in the linearization

Parameters

nSOC , Number of breakpoints across the range of values of SOC

nDOD , Number of breakpoints across the range of values of DOD

nAh , Number of breakpoints across the range of values of Ah total

SOCs , S-th breakpoint in the range of values of SOC

DODd , D-th breakpoint in the range of values of DOD

Aha , A-th breakpoint in the range of values of Ah

ε cals , Value of function ε cal for each breakpoint in vector SOCs

ε cyca,d , Value of function ε cyc for each breakpoint in vectors SOCs and Aha



36 6 THE MODEL

Table 4: Table of Notation: Variables for the linearized model

Variables

λs,i,t , Linear combination factors of SOCi,t. The variables take values between 0 and 1 if

SOCi,t is a linear combination of SOCs

ψa,d,i , Linear combination factors for Ahi. Each variable takes values between 0 and

1 if Ah totali is a linear combination of the breakpoints Aha for the interval

[DODd−1, DODd]

γd,i ,

 1, If DODi lies between the interval [DODd−1, DODd].

0, otherwise

E cyci , Percentage of lifeloss that the battery faces due to staying at a certain SOCit during

a time interval t

E calit , Percentage of lifeloss due to all the energy throughput in the day at a certain depth

of discharge.

6.2.1 Linearized model

The linearization of the model implies the substitution of the objective function and equations (29-31) by a

new expression of the objective function and new equations (32-40).

max

T∑
t=1

pool gridt · cgrid− −
N∑
i=1

(E cyci +

T∑
t=1

E calit) · b costi

−
T∑
t=1

N∑
i=1

(grid instit + grid DHWHit + grid bit) · cgrid+,t (32)

s.t.

SOCit =

nSOC∑
s=1

λs,i,t · SOCs, ∀i∀t, (33)

nSOC∑
s=1

λs,i,t = 1, ∀i∀t, (34)

E calit =

nSOC∑
s=1

λs,i,t · ε cals, ∀i∀t, (35)
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nDOD∑
d=2

γd,i = 1, ∀i, (36)

γd,i ·DODd−1 ≤ DODi ≤ DODd + UB · (1− γd,i), ∀i, d = 2, .., nDOD, (37)

Ah totali =

nAh∑
a=1

nDOD∑
d=2

ψa,d,i ·Aha, ∀i, (38)

nAh∑
a=1

ψa,d,i = γd,i, ∀i, d = 2, .., nDOD, (39)

E cyci =

nAh∑
a=1

nDOD∑
d=2

ψa,d,i · ε cyca,d, ∀i (40)

{
λs,i,t

}nSOC
s=1

es SOS2{
ψa,d,i

}nAh
a=1

es SOS2

γd,iε{0, 1}

The objective function of the model and the different constraints are described next.

(32) Objective function: The first term corresponds to the energy sold to the grid in every time interval t

by its selling price. The second term is the sum of the degradation cost of each battery. Ageing effects are

separated into two components: E calit, which is the percentage of lifeloss due to staying at certain state

of charge (SOC) during a time interval t, and E cyci which is the percentage of lifeloss for every energy

throughput unit, measured in ampere hours, at a certain depth of discharge (DODit). These components

are obtained by a piecewise linear approximation of the degradation functions ε cyci and ε cali,t using a

convex combination model. A detailed description of such linearization process is described in Weitzel et

al. (2017). Last, the third term corresponds to the cost of the energy that is required from the electric grid

multiplied by the grid purchase price.

(33) The state of charge of the battery in household i in the time interval t is a linear combination of

the breakpoints of (SOCit) in SOCs. The variables λs,i,t determine the weight of each point in the linear

combination. This type of variable is known as special ordered set of type 2, so only two neighbouring

variables can adopt non-zero values.

(34) The sum of the weighting factors for each household and each time interval must be equal to one.

(35) The percetange of lifeloss due to staying at a certain state of charge is a linear combination of the

evaluations of each breakpoint in vector SOCs in the original function ε cal.

(36) Since γd,i determines whether the depth of discharge lies between the breakpoints DODd−1 and DODd,

only one component can be non-zero for each household. γd,i is a matrix of binary variables .



38 6 THE MODEL

(37) If γd,i is equal to 1, then DODi lies in the segment [DODd−1, DODd].

(38) ∆Ah totali is a linear combination of the breakpoints in the range value of Aha. The weighting factors

ψa,d,i are variables of a type known as special ordered set variable of type two.

(39) If DODi lies in the segment [DODd−1, DODd] then γd,i is equal to 1, so only the weighting factors

ψa,d,i related to that breakpoint interval will take non-zero values.

(40) The percentage of lifeloss associated to the energy throughput and the depth of discharge is a linear

combination of the evaluations in the original function ε cyc of every combination of the breakpoints in the

range of Aha and DODi.
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7 Experimentation

The model is tested in a real case study in a spanish town. The district is composed of 25 households

equipped with solar photovoltaic systems, batteries and domestic hot water heaters, a school with solar

photovoltaic and batteries and a pool for energy balancing in the microgrid that act as distributed energy

resources. It is also connected to the grid making possible to purchase electricity to the grid or selling the

energy excess.

7.1 Case study research data

To analyze the obtained results, five representative scenarios were selected:

1. Day 139: The day with the highest difference between the photovoltaic energy production and the

energy demand in the district.

2. Day 162: The day with the highest photovoltaic energy production in the year.

3. Day 196: The day with the highest difference between the energy demand in the district and the

photovoltaic energy production.

4. Day 224: The day with the highest energy demand in the district in the year.

5. Day 292: That day representing an average production of photovoltaic energy production and energy

demand in the district.

Figure 4 shows the aggregate energy demand in the district for lighting and appliances, hot water and HVAC.

The photovoltaic energy production is also overlaid in the graphic. Demand for lighting and appliances and

HVAC is evenly distributed throughout the year whereas HVAC is only demanded during the summer

season. Particularly in the school, the demand for lighting drops during the summer and Christmas season,

and HVAC is only demanded during the months of June and September. It can be drawn from the graph that

the photovoltaic energy production is overall higher than the energy demand due to the special insolation

conditions of this spanish town. However, as it will be shown later, all the photovoltaic energy produced

cannot be consumed or stored, and it has to be sold to the grid.
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Figure 4: Energy demand in the district during the year

Figure 5 depicts the demand for lighting, appliances and HVAC in the school throughout the year. It can

be observed how the demand for energy drops during summer and Christmas season, and how the demand

is not evenly spread throughout the year, but presents some peaks. This heterogeneity can result in very

different operation schemes and therefore in very different operating costs for each day of the year.
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Figure 5: Aggregate energy demand for the school

Also Figure 6 depicts the aggregate demand for each household and the school (instance No. 26) in each

scenario. The aggregate demand is composed of the demand for lighting and appliances, demand for hot

water and demand for HVAC.

Next figure 7 depicts the average purchase and selling price of the grid energy. The purchase price depends

on peak and off-peak hours. Peak hours start at 12-13pm and finish around the midnight. The purchase

price is always higher than the selling price, which is constant through the day.
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(a) (b)

(c) (d)

(e)

Figure 6: Total energy demand in each household in each scenario
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Figure 7: Purchase and selling prices from the electric grid
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7.2 Results

Experimentation was undertaken in an Intel(R) Core (TM) i1-4500 CPU @1.8GHz 2.39GHz RAM 8GB

platform. We used Gurobi optimization software version 8.1.0 to solve the linearized model.

First, we present the results obtained for each scenario in terms of total energy purchased by the district to

the grid, total energy sold to the grid, the total cost (which includes the energy purchase price in each time

slot, the energy selling price and the degradation cost of the battery due to the two different factors), the

solving time required by Gurobi optimizer software and the gap provided by the optimization software. See

table 5.

Table 5: Global obtained results for each scenario day

Scenario Total sold energy Total purchased energy Cost (profit) Time Gap

Day 139 488.41 kWh 65.45 kWh (13.96 e) 620.46 s optimum
Day 162 431.77 kWh 108.70 kWh (2.5 e) 900 s 0.3547%
Day 196 0 kWh 386.79 kWh 60.5 e 900s 0.185%
Day 224 207.97 kWh 191.041 kWh 23.9 e 900s 0.0234%
Day 292 230.47 kWh 112.40 kWh 9.07 e 900s 0.0742%

Table 5 shows that a very closed to the optimum result was obtained for all the scenarios (even scenario 1

provided the optimum of the linearized model). We selected 900 seconds (15 minutes) to stop the optimization

process of the solver, since this is the time slot we stated to take the optimal decisions of the system (a 15-

minute slot to state a near real time control system). Note that a rolling horizon scheme is considered allowing

to update the input data information periodically. Given this type of rolling horizon the calculations are

made for a full day of time intervals ahead. The decisions are taken only for the first period of 15 minutes,

since for the next ones the calculations will be carried out again with a full horizon of 96 periods of 15 minutes

ahead, and the process will continue on such continuous basis. The consideration of one day horizon (96

periods of 15 minutes) allows reliable photovoltaic energy production forecasting and enough computational

capability for the optimizer to provide near-real-time solutions. In those cases, in which the optimum could

not be guaranteed, a very tight gap was provided by the optimizer. It demonstrates that the optimizer can

manage the operation of the system in near real time.

Table 6 provides the results for a monthly scenario. It can be viewed how for every month the amount of

energy purchased to the grid is lower than the energy sold to the grid. The difference between the obtained

costs and profits is due to the difference between the purchase and selling prices. A (limited) profit was

obtained only for months 4 and 5, which are those months with a greater difference between the sold energy

and the purchased energy. Regarding the computation of the Gurobi optimizer software, we used as stop

criterion a tolerance equal to 0.007. This value provides the computational time and the gap that are shown

in the table. The gaps provided by the optimizer show solutions very near to the optimum of the linearized

model. The computational time is provided just at the level of informing about the computational effort

since the optimizer is not going to work with a so long horizon ever. Being the day a more appropriate
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horizon.

Table 6: Global obtained results for monthly scenarios

Month Total sold energy Total purchased energy Cost (profit) Time Gap

1 5616.87 kWh 3863.01 kWh 468.79e 1951.01s 0.76%

2 7613.46 kWh 3938.34 kWh 269.97 e 12510.32 s 0.6%

3 8768.47 kWh 3605.84 kWh 130.01 e 12395.17s 0.36%

4 10578.40 kWh 2667.90 kWh (67.82) e 14545.21s 0.75%

5 11158.02 kWh 2776.76 kWh (74.12) e 39449.83s 0.20%

6 10821.18 kWh 4390.34 kWh 257.89 e 7007.85s 0.23%

7 9292.65 kWh 5275.23 kWh 498.11 e 3124.62s 0.75%

8 8755.19 kWh 6094.28 kWh 667.49 e 3045.84s 0.65%

9 7117.69 kWh 5926.7 kWh 716.73 e 2995.78s 0.474%

10 6713.74 kWh 4001.69 kWh 402.08 e 7989.66s 0.53%

11 5530.53 kWh 4102.35 kWh 459.7 e 4501.2s 0.58%

12 4607.84 kWh 4075.11 kWh 469.96 e 15133.70s 0.53%

Next figure 8 shows the energy sources used for the lighting, appliances and HVAC for the average values

of the households and the school. The figure depicts how the households use the grid energy in the night,

while they take the energy form the photovoltaic cells during the day and the energy stored at the batteries

during the last periods of the afternoon. The energy is sold to the grid in the evening. The pool compensates

the energy excess from some households with the lack of energy in others, particularly during the first and

last periods of photovoltaic production and during the periods of battery energy usage. The figure shows

the results for the following scenarios: Day 139, Day 196 and Day 292 that are considered as the most

representative.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Demand supply at the households and the school for scenarios 1, 3 and 5
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Figure 9 represents the use of photovoltaic energy during the day of each scenario. Photovoltaic energy

is used for lighting, appliances, HVAC, DHWH preheating and battery charging. The latter frequently in

the last periods of photovoltaic production. The gap between the bars and the production curve shows

the amount of energy exported to the pool, whether it is to be sold or to be flowed back into a different

household. Graphics are depicted also for scenarios 1 (Day 139), 3 (Day 196) and 5 (Day 292) and they are

shown for the average value of the households and the school.

The generic behaviour of the batteries is shown in figure 10. These graphics show the charge and discharge

power of the battery in an average household through the day of each scenario. Figure 11 shows the state of

charge of the batteries in each time interval. Generally, batteries are discharged during the last few hours,

when there is no more photovoltaic production and the peak-time tariff for grid energy is applied and are

charged during the first hours of the afternoon. This is because batteries are best charged closer to the time

of discharge because of the self-discharge they suffer. In scenario 3 (Day 196), where demand is significantly

higher than the photovoltaic production, batteries are charged during the peaks of solar production, when

there’s excess energy. Results are shown for an average household.

In addition, the thermal storage at the DHWH is depicted in figure 12. DHWH are generally switched on at

the minimum power to maintain the temperature at their required minimum bound. Around midday, when

there is an excess of photovoltaic energy, they are switched on to their maximum power in order to preheat

the tank, so the temperature stays between its upper and lower design temperature specifications. The

temperature decreases until midnight, when it reaches its minimum temperature and therefore the DHWH

is again switched on using grid energy at off-peak tariff. Picture 13 shows the origin of the energy used for

heating the tank. It can be observed how in most scenarios the tank is preheated using excess photovoltaic

energy around midday and how it uses grid energy in peak hours in order for the temperature to stay within

its bounds. On day 196, grid energy at off-peak tariff is use to preheat the tank in order require the least

energy during peak hours. Results are shown for an average household.

The use of the grid is depicted in figure 14. Grid energy is generally used during night time for lighting,

appliances and the HVAC and for keeping the DHWH in its bounds. It is rarely used for battery charging

except in the scenario of day 196, when it is charged using grid energy if off-time tariff and used in peak

times. Results are shown for an average household.

Finally, figure 15 shows the use of the energy that is sent to the pool and that is not sold to the grid.
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(a) (b)

(c) (d)

(e) (f)

Figure 9: Use of the photovoltaic energy production at an average household and the school for scenarios 1,
3 and 5
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(a) (b)

(c) (d)

(e)

Figure 10: Battery charge and discharge at an average household
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(a) (b)

(c) (d)

(e)

Figure 11: Battery charge and discharge at an average household
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(a) (b)

(c) (d)

(e)

Figure 12: Temperature evolution of the DHWH at an average household
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(a) (b)

(c) (d)

(e)

Figure 13: Origin of DHWH energy at an average household
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(a) (b)

(c) (d)

(e)

Figure 14: Use of grid energy at an average household
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(a) (b)

(c) (d)

(e)

Figure 15: Use of pool energy at an average household
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8 Conclusions

The presented project considered a smart energy microgrid district with several households and a public use

building (school) that includes renewable energy sources (photovoltaic), li-ion batteries for electric energy

storage, domestic hot water heaters as thermal energy storage, a pool for balancing energy consumptions

and supplies, and the connection to the electric grid. This configuration allows applying innovative strategies

to save energy in conjunction with exploiting natural energy resources in pursuit of ultimate sustainability

at district level. A global non-linear mathematical programming model that considers the modelling of

the battery degradation and the operation of domestic hot water heaters has been introduced. Its linear

approximation using special ordered sets of type 2 was solved using Gurobi optimizer. The solver allows

reaching near-optimal solutions of the linear model allowing a near real time operation of the whole system

(less than a slot of 15 minutes). The experimentation was made in a real case study.

The obtained results allow us to identify the logical behaviour of the different distributed energy resources,

showing how the batteries are discharged when the photovoltaic energy is not available or how the water in

the tank of the DHWHs is pre-heated to take advantage of the thermal inertia. In a similar logical line, it

can be viewed how the electric grid resource is just used during night time for lighting, appliances and the

HVAC and for keeping the DHWH in its bounds.

The magnificent insolation conditions at this particular town allows to reach the paradigm of net zero energy

neighbourhoods in all the evaluated scenarios within a daily horizon, and a positive energy balance in wider

horizons. It is clear that other locations with lower capabilities of photovoltaic energy production would

require more ambitious equipment and even demand side management approaches, but allow to justify that

the appropriate use of renewable energy resources, energy storage systems together with balancing mechanism

at district level (as the pool in our case study) may lead to nearly net zero energy neighbourhood in other

geographical locations too.

Possible future research lines can focus on approaching directly the non-linear model using soft computing

algorithms, such as genetic algorithms and tabu search. In addition, the optimal solution of the non-linear

model could be approached for specific simplified scenarios in order to obtain indexes able to assess the

performance of the algorithms.



56 8 CONCLUSIONS



57

Appendix I: Parameters

Table 7: Table of parameters

A = 165400

α = 1

β = 414.8

T = 25

γ = 0.5

B = 0.0384

CR = 1

z = 0.8

β1 = 0.48

β2 = -2.42

β3 = 1.57

α1 = -0.14

α2 = -0.08

α3 = 1.92

α4 = -2.51
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Appendix II: Special ordered sets of type 2: linear approximation

of non linear functions.

As can be viewed from equations (22-24) in section 4.1.1, the percentage of lifetime loss follows a non linear

type dependence of the depth of discharge (DODi) and state of charge (SOCit). This appendix details the

procedure to linearize these functions using special ordered sets in order to approximate a linear optimization

model of the problem.

First, the function is discretized in a certain number of segments depending on the desired accuracy, and

the points describing theses fragments are stored in a table. The operating conditions lying between these

points are obtained as a linear combination of the two adjacent points. Two types of special ordered set

can be distinguished: the so-called SOS1 and the SOS2. According to the former, only one element in the

set can be non-zero; according to the latter, a maximum of two adjacent elements can be non-zero. This

way, depending on the value taken by these element, a tabled value of the function or the interpolation of

two consecutive values will be selected. For example, if the range of values of the state of charge (SOC) are

discretized in a 10% step, then the percentage of lifeloss associated with a SOC of 35% will be obtained by

interpolating the tabled valued for the degradation function for a SOC of 30% and 40%.

The implementation of this kind of variables in a linear programming model is easy by specifying them as

SOS1 or SOS2 and the solver software models them using auxiliary binary variables.

SOS2 approximation in one dimension

Asuming f is a continuous function, and using the set of breakpoints {xi, i = 1, .., N}, the piecewise linear

approximation of f can be obtained as follows (41):

f̃(x) =

N∑
i=1

λi · f(xi), (41)

where (λi)1≤i≤N is a set of positive weighting factors. The independent variable must also be expressed as

a function of λi (42):

x =

N∑
i=1

λi · xi, (42)

Additionally, condition (43) is added to state that the sum of all the weights amount 1.
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N∑
i=1

λi = 1, (43)

SOS2 approximation in two dimensions

Assuming f is a continuous function of two variables x e y. The linear piecewise linear approximation can

be expressed as follows (44):

f̃(x, y) =

Nx∑
i=1

Ny∑
j=1

Ωij · f(xi, yj), (44)

Where Ωij is the set of weighting factors, Nx is the number of breakpoints of x, Ny is the number of

breakpoints of y, and the indices i and j refer to the i-th and j-th breakpoints. Following the same way as

in one dimension, the independent variables are expressed as follows (45-46).

x =

Nx∑
i=1

Ny∑
j=1

Ωij · xi, (45)

y =

Nx∑
i=1

Ny∑
j=1

Ωij · yj , (46)

Additionally, condition (47) is added to state that the sum of all the weights amount 1.

Nx∑
i=1

Ny∑
j=1

Ωij = 1, (47)

And defining two special ordered sets φi and ψi as follows (48-49).

φi =

Ny∑
i=1

Ωij , ∀i (48)

ψj =

Nx∑
j=1

Ωij , ∀j (49)
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