60,584 research outputs found

    Model Reduction Tools For Phenomenological Modeling of Input-Controlled Biological Circuits

    Get PDF
    We present a Python-based software package to automatically obtain phenomenological models of input-controlled synthetic biological circuits that guide the design using chemical reaction-level descriptive models. From the parts and mechanism description of a synthetic biological circuit, it is easy to obtain a chemical reaction model of the circuit under the assumptions of mass-action kinetics using various existing tools. However, using these models to guide design decisions during an experiment is difficult due to a large number of reaction rate parameters and species in the model. Hence, phenomenological models are often developed that describe the effective relationships among the circuit inputs, outputs, and only the key states and parameters. In this paper, we present an algorithm to obtain these phenomenological models in an automated manner using a Python package for circuits with inputs that control the desired outputs. This model reduction approach combines the common assumptions of time-scale separation, conservation laws, and species' abundance to obtain the reduced models that can be used for design of synthetic biological circuits. We consider an example of a simple gene expression circuit and another example of a layered genetic feedback control circuit to demonstrate the use of the model reduction procedure

    Aerospace Medicine and Biology: A continuing bibliography with indexes, supplement 199

    Get PDF
    This bibliography lists 82 reports, articles, and other documents introduced into the NASA scientific and technical information system in October 1979

    Protein-Ligand Scoring with Convolutional Neural Networks

    Full text link
    Computational approaches to drug discovery can reduce the time and cost associated with experimental assays and enable the screening of novel chemotypes. Structure-based drug design methods rely on scoring functions to rank and predict binding affinities and poses. The ever-expanding amount of protein-ligand binding and structural data enables the use of deep machine learning techniques for protein-ligand scoring. We describe convolutional neural network (CNN) scoring functions that take as input a comprehensive 3D representation of a protein-ligand interaction. A CNN scoring function automatically learns the key features of protein-ligand interactions that correlate with binding. We train and optimize our CNN scoring functions to discriminate between correct and incorrect binding poses and known binders and non-binders. We find that our CNN scoring function outperforms the AutoDock Vina scoring function when ranking poses both for pose prediction and virtual screening

    Sustainable approaches for stormwater quality improvements with experimental geothermal paving systems

    Get PDF
    This article has been made available through the Brunel Open Access Publishing Fund.This research assesses the next generation of permeable pavement systems (PPS) incorporating ground source heat pumps (geothermal paving systems). Twelve experimental pilot-scaled pavement systems were assessed for its stormwater treatability in Edinburgh, UK. The relatively high variability of temperatures during the heating and cooling cycle of a ground source heat pump system embedded into the pavement structure did not allow the ecological risk of pathogenic microbial expansion and survival. Carbon dioxide monitoring indicated relatively high microbial activity on a geotextile layer and within the pavement structure. Anaerobic degradation processes were concentrated around the geotextile zone, where carbon dioxide concentrations reached up to 2000 ppm. The overall water treatment potential was high with up to 99% biochemical oxygen demand removal. The pervious pavement systems reduced the ecological risk of stormwater discharges and provided a low risk of pathogen growth

    Learning Petri net models of non-linear gene interactions

    Get PDF
    Understanding how an individual's genetic make-up influences their risk of disease is a problem of paramount importance. Although machine-learning techniques are able to uncover the relationships between genotype and disease, the problem of automatically building the best biochemical model or “explanation” of the relationship has received less attention. In this paper, I describe a method based on random hill climbing that automatically builds Petri net models of non-linear (or multi-factorial) disease-causing gene–gene interactions. Petri nets are a suitable formalism for this problem, because they are used to model concurrent, dynamic processes analogous to biochemical reaction networks. I show that this method is routinely able to identify perfect Petri net models for three disease-causing gene–gene interactions recently reported in the literature
    corecore