50 research outputs found

    Multimodality carotid plaque tissue characterization and classification in the artificial intelligence paradigm: a narrative review for stroke application

    Get PDF
    Cardiovascular disease (CVD) is one of the leading causes of morbidity and mortality in the United States of America and globally. Carotid arterial plaque, a cause and also a marker of such CVD, can be detected by various non-invasive imaging modalities such as magnetic resonance imaging (MRI), computer tomography (CT), and ultrasound (US). Characterization and classification of carotid plaque-type in these imaging modalities, especially into symptomatic and asymptomatic plaque, helps in the planning of carotid endarterectomy or stenting. It can be challenging to characterize plaque components due to (I) partial volume effect in magnetic resonance imaging (MRI) or (II) varying Hausdorff values in plaque regions in CT, and (III) attenuation of echoes reflected by the plaque during US causing acoustic shadowing. Artificial intelligence (AI) methods have become an indispensable part of healthcare and their applications to the non-invasive imaging technologies such as MRI, CT, and the US. In this narrative review, three main types of AI models (machine learning, deep learning, and transfer learning) are analyzed when applied to MRI, CT, and the US. A link between carotid plaque characteristics and the risk of coronary artery disease is presented. With regard to characterization, we review tools and techniques that use AI models to distinguish carotid plaque types based on signal processing and feature strengths. We conclude that AI-based solutions offer an accurate and robust path for tissue characterization and classification for carotid artery plaque imaging in all three imaging modalities. Due to cost, user-friendliness, and clinical effectiveness, AI in the US has dominated the most

    Applying novel machine learning technology to optimize computer-aided detection and diagnosis of medical images

    Get PDF
    The purpose of developing Computer-Aided Detection (CAD) schemes is to assist physicians (i.e., radiologists) in interpreting medical imaging findings and reducing inter-reader variability more accurately. In developing CAD schemes, Machine Learning (ML) plays an essential role because it is widely used to identify effective image features from complex datasets and optimally integrate them with the classifiers, which aims to assist the clinicians to more accurately detect early disease, classify disease types and predict disease treatment outcome. In my dissertation, in different studies, I assess the feasibility of developing several novel CAD systems in the area of medical imaging for different purposes. The first study aims to develop and evaluate a new computer-aided diagnosis (CADx) scheme based on analysis of global mammographic image features to predict the likelihood of cases being malignant. CADx scheme is applied to pre-process mammograms, generate two image maps in the frequency domain using discrete cosine transform and fast Fourier transform, compute bilateral image feature differences from left and right breasts, and apply a support vector machine (SVM) method to predict the likelihood of the case being malignant. This study demonstrates the feasibility of developing a new global image feature analysis based CADx scheme of mammograms with high performance. This new CADx approach is more efficient in development and potentially more robust in future applications by avoiding difficulty and possible errors in breast lesion segmentation. In the second study, to automatically identify a set of effective mammographic image features and build an optimal breast cancer risk stratification model, I investigate advantages of applying a machine learning approach embedded with a locally preserving projection (LPP) based feature combination and regeneration algorithm to predict short-term breast cancer risk. To this purpose, a computer-aided image processing scheme is applied to segment fibro-glandular tissue depicted on mammograms and initially compute 44 features related to the bilateral asymmetry of mammographic tissue density distribution between left and right breasts. Next, an embedded LLP algorithm optimizes the feature space and regenerates a new operational vector with 4 features using a maximal variance approach. This study demonstrates that applying the LPP algorithm effectively reduces feature dimensionality, and yields higher and potentially more robust performance in predicting short-term breast cancer risk. In the third study, to more precisely classify malignant lesions, I investigate the feasibility of applying a random projection algorithm to build an optimal feature vector from the initially CAD-generated large feature pool and improve the performance of the machine learning model. In this process, a CAD scheme is first applied to segment mass regions and initially compute 181 features. An SVM model embedded with the feature dimensionality reduction method is then built to predict the likelihood of lesions being malignant. This study demonstrates that the random project algorithm is a promising method to generate optimal feature vectors to improve the performance of machine learning models of medical images. The last study aims to develop and test a new CAD scheme of chest X-ray images to detect coronavirus (COVID-19) infected pneumonia. To this purpose, the CAD scheme first applies two image preprocessing steps to remove the majority of diaphragm regions, process the original image using a histogram equalization algorithm, and a bilateral low-pass filter. Then, the original image and two filtered images are used to form a pseudo color image. This image is fed into three input channels of a transfer learning-based convolutional neural network (CNN) model to classify chest X-ray images into 3 classes of COVID-19 infected pneumonia, other community-acquired no-COVID-19 infected pneumonia, and normal (non-pneumonia) cases. This study demonstrates that adding two image preprocessing steps and generating a pseudo color image plays an essential role in developing a deep learning CAD scheme of chest X-ray images to improve accuracy in detecting COVID-19 infected pneumonia. In summary, I developed and presented several image pre-processing algorithms, feature extraction methods, and data optimization techniques to present innovative approaches for quantitative imaging markers based on machine learning systems in all these studies. The studies' simulation and results show the discriminative performance of the proposed CAD schemes on different application fields helpful to assist radiologists on their assessments in diagnosing disease and improve their overall performance

    Characterization of neurological disorders using evolutionary algorithms

    Get PDF
    The life expectancy increasing, in the last few decades, leads to a large diffusion of neurodegenerative age-related diseases such as Parkinson’s disease. Neurodegenerative diseases are part of the huge category of neurological disorders, which comprises all the disorders affecting the central nervous system. These conditions have a terrible impact on life quality of both patients and their families, but also on the costs associated to the society for their diagnosis and management. In order to reduce their impact on individuals and society, new better strategies for the diagnosis and monitoring of neurological disorders need to be considered. The main aim of this study is investigating the use of artificial intelligence techniques as a tool to help the doctors in the diagnosis and the monitoring of two specific neurological disorders (Parkinson’s disease and dystonia), for which no objective clinical assessments exist. The evolutionary algorithms are chosen as the artificial intelligence technique to evolve the best classifiers. The classifiers evolved by the chosen technique are then compared with those evolved by two popular well-known techniques: artificial neural network and support vector machine. All the evolved classifiers are not only able to distinguish among patients and healthy subjects but also among different subgroups of patients. For Parkinson’s disease: two different cognitive impairment subgroups of patients are considered, with the aim of an early diagnosis and a better monitoring. For dystonia: two kinds of dystonia patients are considered (organic and functional) to have a better insight in the division of the two groups. The results obtained for Parkinson’s disease are encouraging and evidenced some differences among the cognitive impairment subgroups. Dystonia results are not satisfactory at this stage, but the study presents some limitations that could be overcome in future work

    Models and Analysis of Vocal Emissions for Biomedical Applications

    Get PDF
    The Models and Analysis of Vocal Emissions with Biomedical Applications (MAVEBA) workshop came into being in 1999 from the particularly felt need of sharing know-how, objectives and results between areas that until then seemed quite distinct such as bioengineering, medicine and singing. MAVEBA deals with all aspects concerning the study of the human voice with applications ranging from the neonate to the adult and elderly. Over the years the initial issues have grown and spread also in other aspects of research such as occupational voice disorders, neurology, rehabilitation, image and video analysis. MAVEBA takes place every two years always in Firenze, Italy

    Pattern recognition applied to airflow recordings to help in sleep Apnea-Hypopnea Syndrome diagnosis

    Get PDF
    El SĂ­ndrome de la Apnea Hipopnea del Sueño (SAHS) es un trastorno caracterizado por pausas respiratorias durante el sueño. Se considera un grave problema de salud que afecta muy negativamente a la calidad de vida y estĂĄ relacionada con las principales causas de mortalidad, como los accidentes cardiovasculares y cerebrovasculares. A pesar de su elevada prevalencia (2–7%) se considera una enfermedad infradiagnosticada. El diagnĂłstico estĂĄndar se realiza mediante polisomnografĂ­a (PSG) nocturna, que es un mĂ©todo complejo y de alto coste. Estas limitaciones han originado largas listas de espera. Esta Tesis Doctoral tiene como principal objetivo simplificar la metodologĂ­a de diagnĂłstico del SAHS . Para ello, se propone el anĂĄlisis exhaustivo de la señal de flujo aĂ©reo monocanal. La metodologĂ­a propuesta se basa en tres fases (i) extracciĂłn de caracterĂ­sticas, (ii) selecciĂłn de caracterĂ­sticas, y (iii) procesado de la señal mediante mĂ©todos de reconocimiento de patrones. Los resultados obtenidos muestran un alto rendimiento diagnĂłstico de la propuesta tanto en la detecciĂłn como en la determinaciĂłn del grado de severidad del SAHS. Por ello, la principal conclusiĂłn de la Tesis Doctoral es que los mĂ©todos de reconocimiento automĂĄtico de patrones aplicados sobre la señal de flujo aĂ©reo monocanal resultan de utilidad para reducir la complejidad del proceso de diagnĂłstico del SAHS.Departamento de TeorĂ­a de la Señal y Comunicaciones e IngenierĂ­a TelemĂĄtic

    Utilisation de l’intelligence artificielle pour identifier les marqueurs de la dĂ©mence dans le trouble comportemental en sommeil paradoxal

    Full text link
    La dĂ©mence Ă  corps de Lewy (DCL) et la maladie de Parkinson (MP) sont des maladies neurodĂ©gĂ©nĂ©ratives touchant des milliers de Canadiens et leur prĂ©valence croĂźt avec l’ñge. La MP et la DCL partagent la mĂȘme pathophysiologie, mais se distinguent par l’ordre de manifestation des symptĂŽmes : la DCL se caractĂ©rise d’abord par l’apparition d’un trouble neurocognitif majeur (dĂ©mence), tandis que la MP se manifeste initialement par un parkinsonisme. De plus, jusqu’à 80% des patients avec la MP dĂ©velopperont une dĂ©mence (MPD). Il est dĂ©sormais Ă©tabli que le trouble comportemental en sommeil paradoxal idiopathique (TCSPi) constitue un puissant prĂ©dicteur de la DCL et la MP. En effet, cette parasomnie, marquĂ©e par des comportements indĂ©sirables durant le sommeil, est considĂ©rĂ©e comme un stade prodromal des synuclĂ©inopathies, telles que la MP, la DCL et l'atrophie multisystĂ©mique (AMS). Ainsi, la majoritĂ© des patients atteints d’un TCSPi dĂ©velopperont une synuclĂ©inopathie. MalgrĂ© les avancĂ©es scientifiques, les causes du TCSPi, de la MP et de la DCL demeurent inconnues et aucun traitement ne parvient Ă  freiner ou Ă  arrĂȘter la neurodĂ©gĂ©nĂ©rescence. De plus, ces pathologies prĂ©sentent une grande hĂ©tĂ©rogĂ©nĂ©itĂ© dans l’apparition et la progression des divers symptĂŽmes. Face Ă  ces dĂ©fis, la recherche vise Ă  mieux cerner les phases prĂ©coces/initiales et les trajectoires Ă©volutives de ces maladies neurodĂ©gĂ©nĂ©ratives afin d’intervenir le plus prĂ©cocement possible dans leur dĂ©veloppement. C’est pourquoi le TCSPi suscite un intĂ©rĂȘt majeur en tant que fenĂȘtre d'opportunitĂ©s pour tester l’efficacitĂ© des thĂ©rapies neuroprotectrices contre les synuclĂ©inopathies, permettant d'agir avant que la perte neuronale ne devienne irrĂ©versible. Le TCSPi offre ainsi une occasion unique d'amĂ©liorer la dĂ©tection de la dĂ©mence et le suivi des individus Ă  haut risque de dĂ©clin cognitif. D'oĂč l'importance cruciale de pouvoir gĂ©nĂ©raliser les rĂ©sultats issus de la recherche sur de petites cohortes Ă  l'ensemble de la population. Sur le plan de la cognition, les Ă©tudes longitudinales sur le TCSPi ont montrĂ© que les atteintes des fonctions exĂ©cutives, de la mĂ©moire verbale et de l'attention sont les plus discriminantes pour diffĂ©rencier les individus qui dĂ©velopperont une dĂ©mence de ceux qui resteront idiopathiques. De plus, un grand nombre de patients TCSPi souffrent d’un trouble neurocognitif mineur ou trouble cognitif lĂ©ger (TCL), gĂ©nĂ©ralement considĂ©rĂ© comme un stade prĂ©curseur de la dĂ©mence. Les recherches actuelles sur les donnĂ©es cognitives chez cette population offrent des perspectives prometteuses, mais reposent sur des approches statistiques classiques qui limitent leur validation et gĂ©nĂ©ralisation. Bien qu'elles offrent une prĂ©cision Ă©levĂ©e (80 Ă  85%) pour dĂ©tecter les patients Ă  risque de dĂ©clin cognitif, une amĂ©lioration est nĂ©cessaire pour Ă©tendre l'utilisation de ces marqueurs Ă  une plus large Ă©chelle. Depuis les annĂ©es 2000, l'accroissement de la puissance de calcul et l'accĂšs Ă  davantage de ressources de mĂ©moire ont suscitĂ© un intĂ©rĂȘt accru pour les algorithmes d'apprentissage machine (AM). Ces derniers visent Ă  gĂ©nĂ©raliser les rĂ©sultats Ă  une population plus vaste en entraĂźnant des modĂšles sur une partie des donnĂ©es et en les testant sur une autre, validant ainsi leur application clinique. Jusqu'Ă  prĂ©sent, aucune Ă©tude n'a Ă©valuĂ© les apports de l'AM pour la prĂ©diction de l'Ă©volution des synuclĂ©inopathies en se penchant sur le potentiel de gĂ©nĂ©ralisation, et donc d'application clinique, Ă  travers l'usage d'outils non invasifs et accessibles ainsi que de techniques de validation de modĂšles (model validation). De plus, aucune Ă©tude n'a explorĂ© l'utilisation de l'AM associĂ©e Ă  des mĂ©thodes de gĂ©nĂ©ralisation sur des donnĂ©es neuropsychologiques longitudinales pour Ă©laborer un modĂšle prĂ©dictif de la progression des dĂ©ficits cognitifs dans le TCSPi. L’objectif gĂ©nĂ©ral de cette thĂšse est d’étudier l’apport de l’AM pour analyser l’évolution du profil cognitif de patients atteints d’un TCSPi. Le premier chapitre de cette thĂšse prĂ©sente le cadre thĂ©orique qui a guidĂ© l’élaboration des objectifs et hypothĂšses de recherche. Le deuxiĂšme chapitre est Ă  deux volets (articles). Le premier vise Ă  fournir une vue d'ensemble de la littĂ©rature des Ă©tudes ayant utilisĂ© l'AM (avec des mĂ©thodes de gĂ©nĂ©ralisation) pour prĂ©dire l'Ă©volution des synuclĂ©inopathies vers une dĂ©mence, ainsi que les lacunes Ă  combler. Le deuxiĂšme volet vise Ă  explorer et utiliser pour la premiĂšre fois l'AM sur des donnĂ©es cliniques et cognitifs pour prĂ©dire la progression vers la dĂ©mence dans le TCSPi, dans un devis longitudinal. Enfin, le dernier chapitre de la thĂšse prĂ©sente une discussion et une conclusion gĂ©nĂ©rale, comprenant un rĂ©sumĂ© des deux articles, ainsi que les implications thĂ©oriques, les forces, les limites et les orientations futures.Lewy body dementia (LBD) and Parkinson's disease (PD) are neurodegenerative diseases affecting thousands of Canadians, and their prevalence increases with age. PD and DLB share the same pathophysiology, but differ in the order of symptom manifestation: DLB is characterized first by the onset of a major neurocognitive disorder (dementia), whereas PD initially manifests as parkinsonism. Moreover, up to 80% of PD patients will go on to develop dementia (PDD). It is established that idiopathic REM sleep behavior disorder (iRBD) is a powerful predictor of DLB and PD. Indeed, this parasomnia, marked by undesirable behaviors during sleep, is considered a prodromal stage of synucleinopathies, such as PD, DLB and multisystem atrophy (MSA). Therefore, the majority of patients with iRBD will develop synucleinopathy. Despite scientific advancements, the causes of iRBD, PD, and DLB remain unknown and no treatment has been able to slow or halt neurodegeneration. Furthermore, these pathologies display great heterogeneity in the onset and progression of various symptoms. Faced with these challenges, research aims to better understand the early/initial stages and the progressive trajectories of these neurodegenerative diseases in order to intervene as early as possible in their development. This is why iRBD garners major interest as a window of opportunities to test the effectiveness of neuroprotective therapies against synucleinopathies, enabling action to be taken before neuronal loss becomes irreversible. iRBD thus provides a unique opportunity to improve dementia detection and monitoring of individuals at high risk of cognitive decline. Hence the crucial importance of being able to generalize results of research on small cohorts to the entire population. In terms of cognition, longitudinal studies on iRBD have shown that impairments in executive functions, verbal memory, and attention are the most discriminating in differencing between individuals who will develop dementia from those who will remain idiopathic. In addition, many iRBD patients suffer from a mild neurocognitive disorder or mild cognitive impairment (MCI), generally considered as a precursor stage of dementia. Current research on cognitive data in this population offers promising prospects, but relies on traditional statistical approaches that limit their validation and generalizability. While they provide high accuracy (80 to 85%) for detecting patients at risk of cognitive decline, improvement is needed to extend the use of these markers to a larger scale. Since the 2000s, increased computational power and access to more memory resources have sparked growing interest in machine learning (ML) algorithms. These aim to generalize results to a broader population by training models on a subset of data and testing them on another, thus validating their clinical application. To date, no study has assessed the contributions of ML for predicting the progression of synucleinopathies, focusing on the potential for generalization, and hence clinical application, through the use of non-invasive, accessible tools and model validation techniques. Moreover, no study has explored the use of ML in conjunction with generalization methods on longitudinal neuropsychological data to develop a predictive model of cognitive deficit progression in iRBD. The general objective of this thesis is to study the contribution of ML in analyzing the evolution of the cognitive profile of patients with iRBD. The first chapter of this thesis presents the theoretical framework that guided the formulation of the research objectives and hypotheses. The second chapter is in two parts (articles). The first aims to provide an overview of the literature of studies that have used ML (with generalization methods) to predict the progression of synucleinopathies to dementia, as well as the gaps that need to be filled. The second part aims to explore and use for the first time ML on clinical and cognitive data to predict progression to dementia in iRBD, in a longitudinal design. Finally, the last chapter of the thesis presents a discussion and a general conclusion, including a summary of the two articles, as well as theoretical implications, strengths, limitations, and future directions

    Proceedings of ICMMB2014

    Get PDF
    corecore