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Abstract 

The purpose of developing Computer-Aided Detection (CAD) schemes is to assist 

physicians (i.e., radiologists) in interpreting medical imaging findings and reducing inter-reader 

variability more accurately. In developing CAD schemes, Machine Learning (ML) plays an 

essential role because it is widely used to identify effective image features from complex 

datasets and optimally integrate them with the classifiers, which aims to assist the clinicians to 

more accurately detect early disease, classify disease types and predict disease treatment 

outcome. In my dissertation, in different studies, I assess the feasibility of developing several 

novel CAD systems in the area of medical imaging for different purposes. The first study aims 

to develop and evaluate a new computer-aided diagnosis (CADx) scheme based on analysis of 

global mammographic image features to predict the likelihood of cases being malignant. CADx 

scheme is applied to pre-process mammograms, generate two image maps in the frequency 

domain using discrete cosine transform and fast Fourier transform, compute bilateral image 

feature differences from left and right breasts, and apply a support vector machine (SVM) 

method to predict the likelihood of the case being malignant. This study demonstrates the 

feasibility of developing a new global image feature analysis based CADx scheme of 

mammograms with high performance. This new CADx approach is more efficient in 

development and potentially more robust in future applications by avoiding difficulty and 

possible errors in breast lesion segmentation. In the second study, to automatically identify a 

set of effective mammographic image features and build an optimal breast cancer risk 

stratification model, I investigate advantages of applying a machine learning approach 

embedded with a locally preserving projection (LPP) based feature combination and 

regeneration algorithm to predict short-term breast cancer risk. To this purpose, a computer-

aided image processing scheme is applied to segment fibro-glandular tissue depicted on 

mammograms and initially compute 44 features related to the bilateral asymmetry of 
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mammographic tissue density distribution between left and right breasts. Next, an embedded 

LLP algorithm optimizes the feature space and regenerates a new operational vector with 4 

features using a maximal variance approach. This study demonstrates that applying the LPP 

algorithm effectively reduces feature dimensionality, and yields higher and potentially more 

robust performance in predicting short-term breast cancer risk. In the third study, to more 

precisely classify malignant lesions, I investigate the feasibility of applying a random projection 

algorithm to build an optimal feature vector from the initially CAD-generated large feature pool 

and improve the performance of the machine learning model. In this process, a CAD scheme is 

first applied to segment mass regions and initially compute 181 features. An SVM model 

embedded with the feature dimensionality reduction method is then built to predict the 

likelihood of lesions being malignant. This study demonstrates that the random project 

algorithm is a promising method to generate optimal feature vectors to improve the performance 

of machine learning models of medical images. The last study aims to develop and test a new 

CAD scheme of chest X-ray images to detect coronavirus (COVID-19) infected pneumonia.  

To this purpose, the CAD scheme first applies two image preprocessing steps to remove the 

majority of diaphragm regions, process the original image using a histogram equalization 

algorithm, and a bilateral low-pass filter. Then, the original image and two filtered images are 

used to form a pseudo color image. This image is fed into three input channels of a transfer 

learning-based convolutional neural network (CNN) model to classify chest X-ray images into 

3 classes of COVID-19 infected pneumonia, other community-acquired no-COVID-19 infected 

pneumonia, and normal (non-pneumonia) cases. This study demonstrates that adding two image 

preprocessing steps and generating a pseudo color image plays an essential role in developing 

a deep learning CAD scheme of chest X-ray images to improve accuracy in detecting COVID-

19 infected pneumonia. 

In summary, I developed and presented several image pre-processing algorithms, feature 

extraction methods, and data optimization techniques to present innovative approaches for 
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quantitative imaging markers based on machine learning systems in all these studies. The 

studies' simulation and results show the discriminative performance of the proposed CAD 

schemes on different application fields helpful to assist radiologists on their assessments in 

diagnosing disease and improve their overall performance.
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1 Introduction 

Medical image interpretation is the principal undertaking of radiologists to detect and 

diagnose diseases at their early stages and treat them before late. While the quality of the image 

and image interpretation are two main factors, image interpretation by radiologists is limited by 

distractions like visual search pattern, fatigue, noise, and even analyzing a large number of 

images in the dataset, which makes it nearly impossible to analyze them by radiologists. So, the 

demand for a machine or computational method as a "second-reader" to analyze medical images 

faster and assist radiologists became obvious. Hence, the early disease diagnosis and prognosis 

assessment have attracted great clinical research interest over the past decades, facilitating 

patients' subsequent clinical management. The importance of diagnosing the presence of 

diseases for patients at an early stage has led many research teams in the biomedical imaging 

informatics field to study different techniques to develop new computer-aided detection and 

diagnosis schemes (CAD) of medical images and improve their performance in the field. The 

purpose of developing computer-aided detection (CADe) schemes is to assist physicians (i.e., 

radiologists) to more accurately interpret medical imaging findings and reduce inter-reader 

variability [1]. Although previous observer performance studies reported that using CADe 

might help radiologists detect more diseases that may be previously missed or overlooked by 

radiologists (i.e., [2]), the clinical data analysis studies showed that using CADe increased false-

positive recalls and reduced radiologists’ performance measured by areas under the receiver 

operating characteristics curves (i.e., [3]). Thus, the specificity of current medical imaging 

schemes remains lower in clinical practice. The higher false-positive recall rates add anxiety 

with potentially long-term psychosocial consequences [4] and physical harm to many people 

who participate in multiple screening and unnecessary biopsies [5]. The high false-positive 

recall rates also associate with a high economic burden on the healthcare system [6]. Thus, in 

order to further improve the efficacy of screening systems, developing the computer-aided 
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diagnosis (CADx) schemes that aim to assist radiologists in their decision-making to better 

assess the risk of the detected suspicious area as the area of infection and reduce the unnecessary 

biopsies of clean lesions have been attracted broad research interest for the last two decades [7]. 

Despite excellent research effort, CADx schemes have not been broadly accepted and 

utilized in clinical practice. It still faces multiple technical challenges to improve CADx 

performance and robustness. For instance, previous strategies, which are popular as radiomics 

methods, typically include three steps, each with a wide range of challenges, namely (1) 

collecting data, implementing image processing algorithms, and segmenting the region of 

interest depicting on medical images, (2) computing hand-crafted image features from the 

segmented regions, and (3) train multi-feature fusion-based machine learning classifiers for 

training and validation to predict a specific clinical endpoint like tumor segmentation, response 

to treatment, or risk prediction [8]. 

Radiomics is a term presented by Lamb in [9] to represent image feature extraction from 

radiological data. The goal of radiomics feature extraction is to connect the human vision 

system, features, and outcomes in a meaningful way to improve precision and provide trustable 

results. In radiomics based methods, we actually derive many features from medical images to 

mimic the characteristics of the diseases that are hard to get by naked eyes, which would be 

considered complementary information. However, due to different medical image challenges, 

accurate lesion segmentation is often tricky and unreliable, which can substantially affect the 

performance and robustness of CADx schemes [10]. Despite promising outcomes that recent 

efforts have led to significant developments on any of these aspects, radiomics methods have 

yet to be efficiently applicable in clinical practices since the complexity of these methods' 

workflow has ended in a lack of standardization. The feature extraction techniques, strategies, 

and the number of features are all involving constantly without any established standard behind 

them in these methods. Hence, numerous obstacles like dimensional reduction, object 

segmentation, and redundancy interpretations remained open problems to the researchers [11]. 
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To overcome this difficulty, researchers recently investigated and applied deep learning 

techniques to develop CADx schemes without lesion segmentation and hand-crafted feature 

computation as two main challenges [12, 13]. Although deep learning approaches can avoid 

difficulty in lesion segmentation and manually defining image features, they require a large and 

diverse image dataset of one of the radiology imaging modalities to train the scheme to 

minimize the risk of overfitting, and validate its performance, which is another tedious task 

hard to get. The reason is that in the area of medical imaging, radiology imaging modalities are 

not that much large and diverse in comparison to the other area. Considering the fact that based 

on the specific purpose that radiologists have, they use a particular imaging modality to screen 

inside the body. 

1.1 Radiology Imaging Modalities 

Radiology imaging modalities are practical to screen internal body structure for different 

purposes like diagnosing disease, analyze the body's response to a particular treatment, cancer 

staging, and detection, bone injury, brain injury discovery, etc. The most well-known radiology 

imaging modalities are plain x-ray, magnetic resonance imaging (MRI), computed tomography 

(CT), ultrasound imaging, and positron emission tomography (PET). 

In X-ray imaging systems, X-ray beams, which are high-energy electromagnetic radiations, 

pass through the body, and in their route, depending on the density of the material they pass 

through, they will be absorbed in different amounts. The passed-through part of the beams will 

reach the detector and produce a 2D X-ray image. 

CT is a combination of X-ray images projected from different angles. With computer 

processing algorithms, all these images are putting together to create 3D images from structures 

inside the body. Thus, it is clear that CT images provide information with more details from 

inside the body compared to 2D X-ray. Muscles and bone structures, internal bleeding, and 

surgical procedures are all possible to screen with CT imaging. CT imaging is a popular imaging 
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modality in the medical imaging field for diagnosing diseases, which has also resulted in the 

enormous increase in applying CT imaging to screen, detect, and diagnose lung cancer and 

other lung diseases (i.e., COPD). The challenge and difficulty of detecting and classifying 

subtle lung nodules by radiologists have promoted broad research interests in developing 

computer-aided detection and/or diagnosis (CAD) schemes of thoracic CT images [14]. 

MRI is a medical imaging method that provides an image from inside the body's organs 

and tissues based on a magnetic field, magnetic field gradient, and radio waves. This process 

happens in large and tube-shaped machines. MRI typical is beneficial to diagnose tissues and 

skeletal system. 

Ultrasound uses high-frequency sound waves with frequencies higher than the upper limit 

of human hearing to produce images from organs inside the body. In this technique, the 

ultrasound machine connected to a transducer sends high-frequency sound waves to the body, 

then the organs inside the body reflect the waves, the device captures them and with a computer 

algorithm generates real-time images of the organs. 

PET scan is a type of imaging technique that uses radioactive substance injected through a 

vein as a tracer to track the disease inside the body and figure out how organs and tissues are 

working. The radioactive substance will be absorbed into the target area, which is essential for 

the radiologist to see details clearly. After the injection, the patient will go to the PET scanner, 

and the PET detects signals coming from the tracer. With computer algorithms, the signals will 

be processed as 3D images. 

Each of these imaging modalities has its negative sides while provides valuable 

information for specific diseases. For instance, x-ray images are easy to operate, while x-ray 

has the risk of radiation exposure to patients. In contrast, there is no radiation exposure to the 

patients under ultrasound imaging, but low penetration through bone makes it tricky to interpret. 

If the radiologist aims to track anatomical variations in the tissues, MRI and CT imaging are 
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appropriate options. MRI presents a better resolution for soft tissues, but it has a time-

consuming scanning process, so for patients in need of urgent care, it may not be advisable. If 

the purpose is to capture biochemical variations, PET imaging is the right preference [15]. 

Therefore, it is rational that radiologists, based on the purpose and the available resources, 

utilize each of which for their prognoses. 

CAD schemes have been developed to help address many challenging tasks based on any 

of these imaging modalities. For instance, pulmonary embolism segmentation with computed 

tomographic (CT) angiography [16], polyp diagnosis with virtual CT or colonoscopy in the 

setting of colon tumor [17], breast cancer detection and diagnosis with mammography [18], 

brain tumor segmentation with magnetic resonance (MR) imaging [19], tumor treatment 

efficacy assessment of mouse model using ultrasound images [20], brain abnormality detection 

from PET images [21], or early diagnosis of Alzheimer’s disease (AD) based on machine 

learning techniques on PET and MRI based features [22], and diagnosis of the cognitive state 

of the brain with functional MR imaging to diagnose neurologic disorders [23]. 

In developing CAD schemes, Artificial Intelligence (AI) plays a critical role because it is 

widely used to identify effective image features from complex datasets and optimally integrate 

them with the classifiers, which aims to assist the clinicians to more precisely detect early 

disease, classify disease types and predict disease treatment consequence. For example, in [24], 

with the application of machine learning techniques, the accuracy of cancer prediction 

outcomes has significantly improved by 15%–20% during the last years. 

1.2  Artificial Intelligence (AI) in the area of medical imaging 

The development of computers and the advance in imaging have made the emergence of 

artificial intelligence (AI) impressive in the area of medical imaging. The artificial neural 

network (ANN) is a resolution to machine learning (ML) and deep learning (DL), which could 

be basically a combination of structural layers of connected nodes [25]. The input to an ANN 
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could be radiomics features that have been derived from medical images, or it could be the 

whole medical image if we take advantage of convolutional neural networks (CNN). 

The capability of AI in the area of medical imaging includes a wide range of applications 

on lesion detection/classification, medical imaging analysis/segmentation, image retrieval, 

image reconstruction, and radiomics feature extraction to extract abstract features that the vision 

system is not capable of tracking them. To do so, ML conducts a more specific interpretation 

to consolidate more data capable of representing a higher level of generality. For the plan, an 

ANN will be configured based on the nodes of an appropriate number of layers. Nodes in the 

deeper layers get information from previous nodes, and combine them to get to the output as 

the last layer. The purpose, which is maximizing the accurate answer based on ground truth, is 

achieved by adjusting the nodes' weights with optimization algorithms under different 

iterations. The error associate with the precise answer is calculated under a pre-defined loss 

index, and it will be optimized during the training process. 

1.2.1 Machine learning 

As a division of Artificial Intelligence (AI), machine learning is proper to address and 

determine the problem of learning patterns from data samples to the general concept of 

inference [26]. Every learning process consists of two main phases: (i) estimation of unknown 

dependencies in a scheme from a provided dataset and (ii) management of estimated 

dependencies to predict new outputs of the scheme. During the implementation of an ML 

method, data samples are provided to develop the essential components. Every instance is 

described with several features, and every feature can hold a wide range of values. Figure 1-1 

shows one broadly-accepted illustration of a machine learning scheme: If a machine learning 

algorithm is implemented for a set of data (and in a supervised manner to some knowledge 

about these data, for example, benign or malignant tumors), then the algorithm scheme can 

learn from the training data and take advantage of what it has learned to make a 
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prediction/classification on the future data [27]. We commonly train the designed ML on a 

generally large and diverse dataset with a loss function. Then, a second independent dataset is 

prepared to validate the performance of ML if it is trained well or not. Although the loss 

function estimates the error between the outputs and the ground-truth of training data, under a 

large and diverse training dataset, this error will be generalized to the new data, and the ML 

would work well for any further test data [28]. Typically, in the training and validation process, 

the training phase has high performance (from the loss function point of view) and better than 

the test phase. When this difference is small, results show the ML is trained well and not 

suffering from overtraining. 
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Figure 1-1 Machine learning development and application model for medical image classification 

tasks. For training, the machine learning scheme utilizes a set of input images to identify the image 

features useful to result in the correct classification of the image like depicting benign or malignant 

tumor. (b) For predicting, once the scheme has trained in the training images, the optimal model 

will be applied to the test set to assist radiologists in identifying the tumor type [27] . 

However, robust trained ML models are hard to get because of different limitations 

identified in the area of medical imaging—first, a perfect image segmentation that is like a 

bottleneck to any excellent radiomics analyses. Second, the large number of handcraft features, 

since for small datasets, the larger size of feature set reduces performance reliability. In other 

words, for each extracted feature, we should have at least 5 cases per class to do a reliable 

learning process. Hence, since providing large datasets in the medical imaging area is a 

challenge itself, we need to figure out how to select the feature-set from thousands radiomics 

features optimally [11]. Consequently, the determination and optimization of ML for model 

training and validation remain an open problem. Meanwhile, different studies have shown that 

while there is not a single best classifier with optimal parameters across all datasets, choosing 
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an appropriate classifier, a proper training style, and an appropriate selection of features (feature 

engineering) can provide more trustable results [29, 30]. 

1.2.1.1 Classifiers and training styles 

Machine learning algorithms can be categorized based on training styles: supervised, 

unsupervised, semi-supervised, and reinforcement learning. When it is about supervised 

learning, we have a dataset along with the labels. Labels are used as answer keys to the 

algorithm during the training process to evaluate the training data's accuracy and optimize the 

model as far as possible. In unsupervised learning, on the other hand, training happens based 

on an unlabeled dataset. During the training process, the algorithm attempts to make sense of 

the dataset by independently deriving features and patterns. Semi-supervised learning is like a 

middle-ground process; it uses a small amount of labeled data and a large amount of unlabeled 

data for the training process. Reinforcement learning does the training step based on a 

rewarding system to provide feedback for the best purpose in particular situations. Hence, the 

optimal strategies are gained based on an optimal way to accomplish one specific goal. More 

specifically, reinforcement learning is based on interaction with the environment. 

It is possible to employ support vector machine, decision tree, linear regression, logistic 

regression, naive Bayes, k-nearest neighbor, random forest, AdaBoost, and neural network 

methods for supervised learning algorithms. In comparison, unsupervised learning algorithms 

are habitually based on K-means, mean shift, hierarchical clustering, affinity propagation, 

DBSCAN (density-based spatial clustering of applications with noise), Markov random fields, 

Gaussian mixture modeling, ISODATA (iterative self-organizing data), and fuzzy C-means 

schemes. General adversarial network (GAN) is a popular scheme for the semi-supervised 

learning process, and finally, for the reinforcement learning category, we can mainly consider 

deep learning approaches [31-33]. Overall, based on the amount of data assembled and, most 
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importantly, their corresponding labels, we should select an appropriate classifier and the proper 

training style to achieve optimal results. 

1.2.1.2 Feature engineering 

In the process of feature extraction step, some data-related issues refer to the quality of the 

data, and the preprocessing steps are required to make them more suitable for ML. Data quality 

issues include the appearance of noise, outliers, missing or duplicate data, saturated data, and 

data that is biased-unrepresentative. Several distinct techniques and strategies exist in the 

medical imaging informatics field, referring to feature preprocessing that focuses on 

transforming the data to fit a specific ML method better. Among these ways, some of the most 

critical approaches include feature extraction, dimensionality reduction, and feature selection. 

For the feature extractions, there are three foremost types of features for image analysis.  

The first one is the geometric features, such as geometric shape features, radius features, profile 

features, the boundary and circularity information, major and minor axes and their ratio, etc. 

The second type of features is textural features, such as run-length features, local binary patterns 

(LBP), cooccurrence features, vector quantization generating texture descriptor, the histogram 

of oriented gradients (HOG) features, and wavelets. The third category of features is intensity-

based ones. Like gradient magnitude features, edge-gradient features, CT value histogram 

(CVH), and intensity distributions [34-36]. 

Although it is feasible to compute many features from an image, driving too many features 

can push the scheme to overfit rather than learning the actual support of a determination. The 

process of choosing the subset of features that are utilized to obtain the best prognostications is 

known as feature selection [37]. There are many advantages regarding the dimensionality 

reduction and feature selection when we extract a large number of features. ML algorithms 

accomplish better when the dimensionality is lower. Additionally, the reduction of 

dimensionality can exclude irrelevant features, reduce noise, and can generate more robust 
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learning paradigms due to the involvement of fewer features. In general, if the dimensionality 

reduction happens by choosing new features that are a subset of the former ones, it is identified 

as feature selection. Three main techniques are available for feature selection, namely 

embedded, filter, and wrapper strategies. 

Wrapper techniques assess the utility of feature subsets utilizing the results of a defined 

classifier. These methods recognize the possible interactions between variables. Then, an 

exploration procedure within the possible feature subsets space is done. As the number of 

subsets expands exponentially with the number of features, a heuristic or a sequential selection 

algorithm is used for search purposes. The two principal disadvantages of these techniques are 

the increasing overfitting risk when the number of observations is inadequate and the 

meaningful computation time when the number of variables is considerable [38]. 

Embedded methods diminish computational time compared to wrapper methods by 

incorporating feature selection in a classifier's training process. They are very sensitive to the 

learning algorithm employed to set feature subsets. Support Vector Machine (SVM) based 

approaches or decision-tree-based algorithms are some examples appropriate for embedded 

methods [39]. 

Filter methods do not depend on any classifier but can be acknowledged pre-processing 

steps based on particular criteria to evaluate features' relevance. One of these approaches' main 

disadvantages is that they ignore the interaction between features and may not remove 

redundant features. The most recommended techniques are univariate. This means that each 

component is considered in the evaluation process separately, for instance, on mutual 

information [40]. 

1.2.2 Deep Learning 

A new class of AI has proposed and developed in 2007 is named deep learning algorithm. 

They became famous in 2012 while one of the approaches based on CNN won the best computer 
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vision competition, ImageNet [41]. They are different from classical ML that is based on 

extracted features as their input. DL inputs are images and use pixel values in the images 

directly rather than feature calculation; thus, they don't require segmentation, feature extraction, 

and feature optimization techniques still known as challenging open problems in the area of 

medical imaging. For instance, for complicated lesions in a complex background, a perfect 

automatic segmentation is always challenging, or calculating relevant handcraft features for a 

given task is hard to get. While DL can avoid relevant errors caused by these steps; hence, DL's 

performance is generally higher than classical ML methods. In DL-based algorithms, all 

required steps to the given task are done in multiple nonlinear hidden layers. In other words, 

DL bypasses all segmentation, feature calculation, and optimization steps to ascertain high-

level features for the relevant task. Gradually under different iterations, a distinguished 

representation of the task is determined by DL. DL is named end-to-end algorithm, since it does 

the whole process from input images to the final classification fully automatic. 

Convolutional Neural Network (CNN) is a subclass of deep learning typically utilized to 

analyze images. A general architecture of CNN is illustrated in Figure 1-2. As explained earlier, 

the inputs are images, and the outputs could be either class categories or a segmented part of 

the input images. The layers of CNN are connected either with local shift-invariant pooling and 

convolutional layers. The neurons in every layer are connected to the local neurons in the 

previous layer. So, the forward propagation data are like a shift-invariant convolutional 

operation [42]. Convolutional layers in CNN act like feature extraction filters. Each CNN takes 

advantage of multiple convolutional layers produced by kernels. Feature maps generated by 

these layers are passed through activation functions to reduce the change of saturation. Then 

with pooling layers, the feature maps would be down-sampled to reduce the computational 

requirements. A sequence of multiple of these layers will make the core of CNN, then by fully 

connected layer, the results provided by all convolution/pooling layers are put to getter to 
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deliver the classification purpose [25]. The most famous CNNs to date are VGG16/19 [43], 

ResNet [44], Xception [45] , Inception [46], NasNetLarge [47]. 

 

Figure 1-2 A general architecture of CNN. The input is generally an image, and the output could be 

the image class [42]. 

For the training process, to have a proper convergence for CNN models, we need to 

determine hyperparameters like learning rate, optimization algorithm, dropout rate, batch size, 

and regularization parameters properly. Moreover, the introduction of backpropagation was 

helpful as an efficient way to optimize the training loss concerning the model parameters. 

However, the size of the dataset is a challenge to train DL models. In other words, since the 

number of trainable parameters in DL systems is considerably large (VGG16, 138 million, 

Resnet152, 60 million, NASNetLarge 89 million), so for small datasets, there is a risk of 

overfitting, and the DL will memorize the training dataset instead of learning the actual pattern 

for the task. 

One straightforward way to deal with overfitting to the dataset for CNNs is by collecting 

more data. However, since datasets are not that much large in radiology, training CNNs from 

scratch is often not possible for CADe/x for medical imaging purposes. Hence transferring 

genetic features (i.e. shape, edge, and general characteristics) of CNN already trained on natural 
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scenes, utilizing them as initial values of the features of the CNN as a classifier focused on the 

medical imaging task, has shown breakthrough in recent years [48]. This technique has two 

main advantages. The first one is overcoming the shortage of large datasets in the area of 

medical imaging, and the second one is the computational cost requirement of the CNN for the 

training process. Another practical way is data augmentation [49] techniques like shearing, 

shifting, cropping, additive noise, flipping, rotation, etc., proposed for DL-based models to 

increase the training dataset's size.  

In the medical imaging area, CNN has been developed for different tasks, including colonic 

polyps detection [50], or long decease diagnosis [51] using CT images, breast tomosynthesis 

analysis using x-ray [52], ultrasound [53], MRI [54], etc. 

1.3 Organization of the Dissertation 

Previous studies have been conducted to improve overall CAD scheme's performances by 

optimizing their every stage performance discussed in the previous subsections. In the next 

chapter, I will review and discuss the state-of-the-art research approaches on feature extraction 

and feature selection techniques and performance optimization of ML/DL applications to 

improve the CAD performance schemes presented in the recent medical imaging informatics 

studies field scheme. Besides, I have conducted many research pieces in the last several years 

at the University of Oklahoma CAD lab on the related topics. I will present them as my solutions 

to the challenges. 

This dissertation reports four applications of developing CAD schemes using medical 

imaging modality to segment disease regions (ROIs), extract and optimize features, and apply 

different machine learning algorithms to perform the classification tasks (Chapter. 3,4,5,6). 

Specifically, in Chapter 2, a brief of previous studies will be reported on each challenge, then I 

will propose some solutions to some of the open problems as well. After that, in the next 

chapters, I will explain each of my recommendations in detail. 
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In Chapter 3, a new quantitative image processing and feature extraction method will be 

developed and assessed to classify benign and malignant lesions in mammograms. Chapter 4 

will mainly focus on the feature optimization technique and propose a new quantitative global 

breast feature analysis scheme developed to predict tumors in the next screening of breast 

images. In Chapter 5, a computer-aided detection tool is generated and optimized based on a 

random projection algorithm to classify breast lesions using mammogram images. In Chapter 

6, a computer-aided detection scheme based on a deep neural network is developed to 

automatically identify the presence of Covid-19 in chest x-ray images. Last, in Chapter 7, a 

summary of these new CAD schemes and their future application potentials are discussed, 

which generates this dissertation's conclusion, including this candidate's future work. 
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2 Research Objective and Hypothesis 

In short, in the previous chapter, I presented that the purpose of developing CAD schemes 

is to assist physicians (i.e., radiologists) in interpreting medical imaging findings and reducing 

inter-reader variability more accurately. ML plays an essential role in developing CAD schemes 

because it is widely used to identify compelling image features from complex datasets and 

optimally integrate them with the classifiers, which aims to assist the clinicians in more 

precisely detecting early disease, classify disease types and predict disease treatment outcome. 

In the process of designing ML applications on medical images, it is critical to recognize 

the central application around which ML is to be designed. Then we need to optimize the whole 

system for the purpose [55]. There are many applications possible to develop based on ML 

algorithms. For instance, it is possible to develop ML for image acquisition to reduce the 

processing time by recognizing the target lesion and suggest modification and improvements 

during the acquisition [56]. For automated detection applications, ML is performed to detect 

fractures, and organ laceration [57]. ML has also been developed to reduce pulmonary nodules' 

false-positive results [58], or prostate cancer detection based on MRI [59]. Bone age analyses 

are another category of applications that can be developed based on ML algorithms to help 

replace manual workflow [60].  

Another potential use of machine learning is for improving the interpretation of findings 

for breast cancer diagnosis [61], Pulmonary image analysis for different determinations of 

classification, detection, and segmentation [62], breast lesion detection, segmentation, staging, 

prediction in digital mammograms and MR imaging [63, 64], lung cancer detection, 

classification using PET/CT/Microscopic images [65], lesion image synthesis using X-ray/CT 

images [66], automatic segmentation of multiple organs using 3D CT images [67], skin disease 
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abnormality analysis based on OCT imaging [68], echocardiography view classification using 

ultrasound images [69], etc. 

It is even possible to take advantage of machine learning to extract related lost information 

of CT images from MRI images [70]. Medical image registration [71], quantitative assessment 

of structures [72], and automatic segmentation for brain MRI images [73]. They are all the other 

applications possible to develop based on machine learning techniques and algorithms. Each of 

these applications has its barriers and challenges.  

To present a robust and reliable ML algorithm for any of these applications, optimizing the 

performance related to each of the three main stages is worthy of consideration. These stages 

are (1) image processing and segmentation for a proper feature extraction domain and identify 

practical medical imaging features, (2) feature optimization and data reduction techniques, and 

(3) optimizing parameters of ML/DL-based models to improve CAD performance. To present 

practical algorithms for optimizing each of these steps and make a positive impact on the 

outputs, we have to initially define an overflow of the application, and the purpose of the 

application, then discover what would be the difficulties and challenges that mainly overpower 

the efficacy of the CAD scheme, and finally develop an optimal method or strategy to solve the 

problem. In the following section, I will present the current challenges that ML-based 

techniques are faced with for each of these steps. Then I will discuss some of the challenges 

based on some already available research and studies and present their solutions. Finally, I will 

provide my proposed hypothesis and solution briefly and then discuss them in more detail in 

the next chapters. 

2.1 Current Status and Challenges of Machine Learning in Medical Imaging 

Informatics 

The development of CAD schemes is based on machine learning algorithms as their core. 

When the core is a conventional machine learning method, it is necessary to present practical 
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image processing algorithms to remove redundant information, noise, and artifacts and improve 

the disease pattern's quality compared to the background. In this way, it is much easier to 

distinguish different types of structures, and textural information in the images, and extract 

powerful features that are capable of modeling these differences much better. Then, the next 

challenge for developers is designing feature extraction techniques based on the domain 

knowledge to present an appropriate CAD scheme. For both of these two steps, the imaging 

modality initially creates several obstacles. For instance, image processing objections for 3D 

CT images are much different from 2D X-ray images, so the solution that works well on one of 

them may or may not help the other modality. It means each CAD scheme based on each of the 

imaging modalities has many barriers for the ML-based strategy to work well. Some of the 

challenges are general, but some are specifically for the proposed method that has to investigate 

well.   

Each imaging modality provides images from the body or the lesion area with varying 

qualities. Besides, sometimes for the same imaging modality, various imaging machines in 

different sites may give different image quality because of setups and their imaging 

performance. Furthermore, structures and patterns of lesions in different imaging modalities 

would be distinct. For instance, in CT images, pixel values for the body's tissues like bone, fat, 

and organs have a particular range, while in x-ray images, it is not the same, or the level of 

noise on X-ray images is higher than CT images, so the lesion pattern may not be that much 

clear. Also, in 3D CT images, it is possible to find the exact location of the lesion in the body, 

or examine the volume of the lesions and extract 3D-related features for the ML algorithm, or 

it is even possible to analyze inter-frame features and characteristics, while it is not possible in 

2D x-ray images to go for these categories of features. Thus, the imaging modalities' limitations 

are different, and it is nearly impossible to propose a unique general image processing or feature 

extraction method applicable to all these imaging modalities. Even on a particular imaging 

modality, ML-based schemes are developed to detect, classify, or diagnose different patterns, 
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lesions, and abnormalities that have not the same characteristics. In other words, based on the 

purpose, the image processing algorithm would be different. It signifies that we have to review 

each imaging modality's capability, negative and positive points, then present a practical image 

processing solution to that modality's challenges to improve the proposed method's robustness 

in the clinical practices experiences. 

Furthermore, in the feature extraction step, there are many challenges to face with.  For 

instance, since the pixel range of different imaging modalities is different, initial setups for PDF 

and textural-related feature extraction should be different. After making the matrix of features, 

since they are handcraft features and many parameters are not evaluated well, feature 

engineering and evaluation are worthy of consideration. In fact, because of possible artifacts, 

noise, unrelated patterns, and many other unexpected parameters during feature extraction, 

some of the features may not have related information. They may act like noise with a negative 

impact on the results, so it would be necessary to find and remove them from the initial feature 

set. There is a wide range of feature optimization techniques and algorithms appropriate for 

analyzing the feature sets, all with negative and positive sides. Since the logic behind their 

operational algorithm is not the same, and they are sometimes dependent on the input feature 

vector or the selected ML scheme, or even the training algorithm, so it is another open problem 

for developers to distinguish the optimal data optimization technique to analyze the initial 

feature vector and optimize it for the CAD scheme. 

Another category of challenges comes with choosing a suitable machine learning algorithm 

for the CAD scheme. For example, if the dataset is not initially annotated, we have to pick 

unsupervised learning algorithms like C-means and K-means. Similarly, based on the amount 

of annotated data, different semi-supervised and supervised learning methods are available, 

which going for appropriate classifier and even learning algorithm is still an open problem. 

Also, even for a particular ML method developing an optimal strategy for hyperparameter 

tuning during the training step is another challenge. 
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While DL-based CAD schemes are presented to bypass the image processing and feature 

extraction steps and their challenges, they bring a new division of objections for developers. 

For instance, in DL, the chance of underfitting because of not enough data, overfitting because 

of learning too many details and noise in the data, overtraining to one of the classes because of 

imbalance dataset, and memorizing the training dataset instead of the actual pattern because of 

the large size of trainable parameters in DL algorithms is high in comparison with classical ML 

systems. Also, the process of tuning and achieving the optimal hyperparameters is sometimes 

unapproachable in DL-based techniques since the number of hyperparameters is much more 

compared with ML algorithms. Besides, defining a perfect loss function to converge the DL 

algorithm to the optimal results is another difficult task that needs precise analyses to tackle. 

Furthermore, DL-based CAD schemes' training process is time-consuming and hard to get with 

conventional computers, so powerful GPU hardware is necessary for them. 

Moreover, in the area of medical imaging, datasets are a big challenge to DL-based 

algorithms. In medical imaging informatics, because of the limitations like patient privacy and 

data collection process, datasets are not that large and diverse like the other area of researches. 

Also, since the number of patients with the disease is usually much less than normal cases, 

imbalanced data is a vital objection for DL-based algorithms. Imbalance data can cause 

overtraining to the larger class, or when the number of cases in the smaller class is much less, 

it can cause undertraining, which both means a system that is not trained well. Hence, directly 

utilizing DL-based algorithms to the dataset to provide CAD schemes may not present trustable 

outcomes. Figuring out how to deal with each of these obstacles and challenges to overcome 

the adverse effects and develop high-performance CAD schemes acceptable by radiologists 

opens many research areas to the developers. 

In my dissertation, I am going to investigate some of these challenges for different purposes 

and applications in more detail, then propose my own hypothesis for an approach and analyze 

how my solution can overcome the challenge on one of the image modalities. 
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2.2 New Image Features Applying to Computer-aided Detection (CAD) 

In the previous part, I explained that proper feature extraction methods play a critical role 

in presenting a robust CAD scheme. Still, a wide range of obstacles should be tackled to 

accomplish practical and effective features. In this part, first, I will present some schemes that 

their main contribution is on feature extraction techniques. Then, in more detail, I will describe 

two different studies that are basically based on feature extraction ways on mammography, and 

ultrasound images as two separate medical imaging modalities. One of them mainly offers a 

segmentation technique prior to the feature extraction step to derive more accurate features. The 

other explains achieving perfect segmentation is impossible, then selects ROI manually and 

extracts features from the ROI area. After that, I will present my solution for feature extraction 

to deal with the challenge from a different perspective. 

2.2.1 Background 

Many feature extraction techniques and algorithms are presented for breast lesion 

detection, segmentation, staging, or prediction in digital mammograms [74, 75]. Earlier studies 

usually compute global image features from the entire breast areas segmented from the 

mammograms to predict/detect cancer [76-79]. In other words, for the image processing step 

since an accurate segmentation, because of the chest wall, different sizes of breasts, and the 

other artifacts, is hard to get, the studies preferred to extract global image features for their 

analyses. The study in [79] is based on dynamic contrast-enhanced breast magnetic resonance 

imaging (DCE-MRI). While this study presents a global feature extraction technique, they 

prefer DCE-MRI for the imaging modality since more subtle cancers are possible to detect in 

this imaging modality in comparison with mammography. The contract's enhanced 

characteristic of this imaging modality helps them bypass the segmentation step and overcome 

this challenge. However, in order to investigate whether applying the local features computed 
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from mammograms can improve the accuracy of predicting breast cancer risk, the researchers 

in [18] present a new idea for local image feature extraction that is briefly described below.  

In this approach, the entire breast area is first segmented into nine strip-based local regions. 

CAD scheme computes both global- and local-based bilateral asymmetrical image features. An 

initial feature pool includes 190 features. It contains the features related to the spatial 

distribution and structural similarity of grayscale values computed from the original images and 

the features related to the magnitude and phase responses calculated from the images being 

filtered by multidirectional Gabor filters and difference of Gaussian filters. An overall view of 

this method is shown in Figure 2-1.  

For the feature extraction domain, the authors first apply a CAD scheme to distinguish the 

nipple as referenced point and the breast skin-line, employing the available methods in [80, 81]. 

The CAD scheme then segments the global breast region and several local regions, including 

horizontal strips, vertical strips, and DoG (difference of Gaussian) primary element regions. 

Specifically, the global breast region is derived by extracting the largest rectangles enclosed in 

the whole breast region. For strips, nine horizontal strips are segmented. Nine vertical strips are 

also segmented parallel to the chest wall. Then, the DoG basic element regions are segmented 

with DoG filters and a morphology approach. 
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Figure 2-1Flowchart of the procedure for short-term breast cancer risk [18]. 

This study shows that local image features relayed on a perfect segmentation technique 

yield higher performance than global features, and image features extracted from the global and 

the matched local regions are complementary (not highly correlated). Although the method of 

extracting local features, and combining them with global features is impressive, and the results 

show it can significantly increase performance, the AUCs are still not high enough for clinical 

practice. This paper also uses the method in [81] for nipple detection, which is the base of this 

paper's segmentation step. This method for nipple detection is not accurate enough in 

challenging conditions. Hence, achieving a precise segmentation may not be possible for these 

conditions. Accordingly, in recent years, multi-classes feature extraction techniques from local 

areas have been explored to aid in ultrasound imaging analysis and help the radiologist 

concentrate multiple frames for examinations instead of one pre-selected frame. In [82], the 

authors discussed developing a scheme based on local feature extraction techniques to assist 

radiologists in diagnosing breast cancer based on ultrasound imaging. In this study, they prefer 
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local feature extraction because of global artifacts, while automatic ROI segmentation, 

especially for ultrasound images, because of low contrast, is hard to get, and handcraft 

segmentation should be a solution to present generally accepted methods. Despite great research 

efforts on the challenge of feature extraction, ML-based CADx schemes of mammograms have 

not been accepted and used in clinical practice. It still faces multiple technical challenges to 

improve CADx performance and robustness. For instance, as discussed, due to the imaging 

system's quality (like ultrasound images) or the overlap of dense fibro-glandular tissues on 

mammograms, accurate lesion segmentation is often tricky and unreliable, which can 

substantially affect the performance and robustness of CADx schemes [10]. 

2.2.2 Hypothesis and Proposed Approach 

To deal with global and local feature extraction objections and extract practical global 

features and find local lesions patterns to drive local features from them, I developed a CADx 

scheme that focuses on the frequency-domain characteristic for global analyses. In contrast, it 

forms a tree-based structural SSIM feature extraction with no need for an initial segmentation 

procedure, when it is about lesion investigations. In my method, I will explain that under 

frequency domain analyses for global feature extraction, it is possible to overcome the adverse 

effects of artifacts on the final feature vector as much as possible. Besides, with the tree-based 

structural method for SSIM calculation, the chance of segmentation error rate on the local 

analyses will be reduced. The premise of my idea is that by avoiding difficulty and errors in 

lesion segmentation, it is possible to develop and apply the global image feature analysis 

schemes in the CAD-related quantitative image informatics field, which has the potential to be 

more efficient and robust [83]. 

In this study, I hypothesized that global image feature analysis schemes could be developed 

and applied to predict the likelihood of cases being malignant if the radiologists detect the 

suspicious lesions (i.e., soft tissue-based masses) on mammograms. Thus, I proposed 
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investigating a new CADx scheme with two unique approaches—first, global image feature 

extraction. Second, taking advantage of bilateral asymmetrical characteristics computed from 

left and right breasts. If successful, this new approach may be able to provide radiologists a new 

CADx-generated image marker or risk prediction score to support their decision-making in 

classifying malignant and benign lesions to increase diagnostic accuracy. Thus, this study's 

objective is to test my hypothesis using a relatively large and diverse digital mammography 

image dataset. Compared to already available studies, this study will demonstrate the feasibility 

of developing a new global image feature analysis based CADx scheme of mammograms with 

high performance. This new CADx approach will be more efficient in development and 

potentially more robust in future applications by avoiding difficulty and possible breast lesion 

segmentation errors. 

This study's unique contribution is that we demonstrate the feasibility of developing a new 

image feature analysis-based CADx scheme to predict the likelihood of mammography cases 

being malignant without lesion segmentation. The details of this study will be in chapter three. 

2.3 Feature optimization/selection and their impacts on CAD performance  

In chapter two, I presented the standard feature optimization methods and the logic behind 

their functional procedure. Then, in part 2.1, I explained that many parameters are involved in 

the process of feature optimization, and achieving an optimal feature-set out of initial features 

is still a challenging trial. Researchers commonly use feature evaluation techniques to develop 

the most prominent group of the initial extracted features to achieve the best performance of 

ML embedded CAD schemes of medical images. In this part, I will present some of the already 

available research and studies on this step, then propose two different hypotheses as prominent 

solutions to handle it well. 
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2.3.1 Background 

T-test and F-test are two statistical feature selection methods utilized in the medical 

imaging area like the other areas to derive relevant features from the initial feature matrix. 

Authors in [84] propose a mammogram classification scheme to classify the breast tissues as 

normal, benign, or malignant based on these feature selection methods. To this aim, first, a 

feature matrix is formed employing GLCM to all the complex components from 2D DWT of 

the ROI of mammography images.  

Then, they utilize t-test and f-test on the feature space separately. The relevant features are 

used to train a backpropagation neural network (BPNN) classifier for classification. It is shown 

in this paper that using the image features selected by the t-test approach outperforms using the 

features determined by the f-test method. They also compare their method with another scheme 

in [85] based on PCA, which the results show t-test exceeds PCA as well. Another study in [86] 

proposed a scheme for the diagnosis of breast cancer from mammogram images. In this study, 

the T-test and F-test performances are compared, and the results show based on the provided 

matrix of features, size of the feature-set, and initial combination of the features, they can 

present superior outcomes to each other. 

 The negative point about the t-test is that t-test fails when there is a small number of cases 

in the dataset, or the estimated variances are not similar between different classes. However, 

this study's experiments and results show the importance of the feature selection method and 

proper machine learning scheme for a classification problem. 

Another scheme based on the filter-based feature selection method is presented in [39] to 

promote early detection of Alzheimer's. The main idea is based on filtering the best combination 

of initial features on voxels and then filtering the best combination of healthy or Alzheimer 

subjects' voxels in a supervised manner. Like the other methods, segmentation is done for 

Volumes-Of-Interest (VOIs), and statistical moments are extracted as features. Then, a 
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supervised filter-based feature selection process is developed. It enables to pick the best feature 

subset and rank them according to the (AUC) values.  

To validate the effectiveness of this feature selection method, the authors perform 

experiments using a comparison with the state-of-art of Feature Selection methods (FS), 

including Student's t-Test analysis [87], Fisher score [88], Support Vector Machine feature 

elimination (SVM-RFE) [89], feature selection with Random Forest [88], minimum 

Redundancy Maximum Relevance (mRMR) [90] and ReliefF [91]. The Voxel-Based Analysis 

(VBA), considered as a baseline classification approach, is used for comparison purposes. 

Experiments show the method in this paper could outperform all other feature selection 

techniques. 

While the scheme in [39] outperforms different feature selection techniques, filter-based 

methods fail to model the relationship between the features, which can effectively boost the 

performance. On the other hand, embedded methods can overcome this weakness by modeling 

possible features' relationships and acting as a solution to this obstacle. As an embedded 

technique for feature selection, [14] proposes a new feature selection method based on Fisher 

criterion and genetic optimization, called FIG for short, to tackle the common CT imaging signs 

of lung diseases (CISL) recognition problem. In the FIG feature selection method, the Fisher 

criterion is applied to evaluate feature subsets, based on which a genetic optimization algorithm 

is developed to find out an optimal feature subset from the candidate features. The researchers 

use the FIG method to select the CISL recognition features from various types of features, 

including bag-of-visual-words [92] based on the histogram of oriented gradients, the wavelet 

transform-based features, the local binary pattern, and the CT value histogram. Then, the 

selected features cooperate with each of five commonly used classifiers, including support 

vector machine (SVM), Bagging (Bag), Naive Bayes (NB), k-nearest neighbor (k-NN), and 

AdaBoost (Ada) to classify the regions of interests (ROIs) in lung CT images into the CISL 
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categories. For all the considered classifiers, the FIG method brought better recognition 

performance than the full set of original features and any single type of feature. 

2.3.2 Hypothesis and Proposed Approach 

Based on the idea of embedded methods, I developed two different CAD schemes 

established for feature optimization, which are not just based on removing less functional 

features, but also on considering the most practical combination of features for the purpose that 

we have. In other words, in these two studies comparing to all previous studies, I try to 

regenerate the best group of final features out of the initial feature vector. In other words, the 

main contributions of my studies are not about features selection; they are about optimization 

of the features as far as possible either by regenerating a new group of features out of the initial 

feature vector, or by considering the fact of more robust and reliable classification under 

preserving the distance of the points in lower dimension spaces of features. Two different tasks 

are supposed to evaluate the performance of my proposed schemes. The first one is on the 

application of predicting the risk of cancer in the next sequence of mammography images. The 

second technique is on the assignment of classifying benign cases from malignant ones. 

For the first task, in order to automatically identify a set of compelling mammographic 

image features and build an optimal breast cancer risk stratification model, I investigate the 

advantages of applying a machine learning approach embedded with a locally preserving 

projection (LPP) based feature combination and regeneration algorithm as a prerequisite to 

predict short-term breast cancer risk. 

This study aims to develop and apply a new machine learning approach to create a small 

effective feature vector to build an optimal machine learning classifier using a relatively small 

training image dataset. Inspired by the deep learning technology, which directly uses input 

images to generate an efficient feature vector for classification [93], I propose to apply a locally 

preserving projection (LPP) based feature combination algorithm [94] to reduce the 
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dimensionality of feature space and then build a new image features based short-term breast 

cancer risk prediction model. Unlike the conventional feature selection methods that filter and 

select a set of existing optimal features from the initial feature pools, LPP generates a new 

optimal feature vector involving components that are different from any original features in the 

existing feature pool. But like embedded methods, it can overcome the weakness of feature 

dependence and correlation by modeling possible feature relationships. In this study, I 

demonstrate that applying the LPP algorithm effectively reduces feature dimensionality and 

yields higher and potentially more robust performance in predicting short-term breast cancer 

risk [95]. 

In this study, I mainly focus on dimensional reduction with regeneration techniques on the 

initial feature set inspired by deep learning techniques. Results of this analysis show 

significance of this stage on any ML-based CAD scheme. The details of this study will be 

presented in chapter four. 

For the second study on feature optimization, to better address this challenge and more 

reliably regenerate image feature vector for developing CAD schemes of medical images, I 

investigate and test another feature regeneration method namely, a random projection algorithm 

(RPA), which is an efficient way to map features into a space with a lower-dimensional 

subspace, while preserving the distances between points under better contrast [96]. In fact, since 

RPA has been tested and implemented in a wide range of engineering applications, including 

handwriting recognition [97], face recognition and detection [98], visual object tracking and 

recognition [99, 100], and car detection [101]. Thus, motivated by the success of applying RPA 

to the complex and nonlinear feature data used in many engineering application domains, I 

hypothesize that RPA also has advantages when applying to medical images with 

heterogeneous feature distributions. To test my hypothesis, I conduct this study to investigate 

feasibility and potential advantages of applying RPA to build optimal feature vector and train 

ML model implemented in a new CAD scheme to classify between malignant and benign breast 
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lesions depicting on digital mammograms. This study demonstrates that the random project 

algorithm is a promising method to generate optimal feature vectors to help improve the 

performance of machine learning models of medical images.  Details of this method is available 

in chapter five. 

2.4 Application of Deep Learning for Optimal Feature Extraction and Classification 

In recent developments, deep learning technology based on CNN's becomes the state of the 

artificially intelligent medical imaging approach for all the areas covered by classical machine 

learning schemes. We can take advantage of deep learning strategies to bypass image 

processing and handcraft feature extraction steps and put all the related challenges behind. 

Strictly speaking, DL algorithms extract automatic features from the original images under 

different iterations in an end-to-end way.  It is possible to apply them directly to a Softmax 

classifier, or a classical machine learning scheme like SVM, or optimize them first with one of 

the previously mentioned feature optimization techniques and then apply them to a 

classification scheme [102]. In this section, I will present some already available DL-based 

research and studies on the area of medical imaging and then present my hypothesis as a 

practical way to utilize DL-based algorithms and handle some data-related challenges in the 

area of medical imaging. 

2.4.1 Background 

There are many available types of CNN-based CAD schemes in the area of medical 

imaging for many purposes like diagnosis, detection, classification, or segmentation of disease 

patterns [102-108]. For instance, in [106] which is presented for malignant and benign 

classification, ROIs of mammogram images are fed into a modified version of AlexNet for 

classification purposes. The results are compared with GoogleNet as a more advanced version 

of CNNs. The simulations show the superiority of AlexNet in this classification. The results 

show although GoogleNet is a more updated version of CNN's compared to AlexNet, that does 
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not mean it will always make better results. In another study in [108], a fully integrated CAD 

diagnosis scheme is presented to detect, segment, and classify lesions. In other words, a You-

Look-Only-Once (YOLO) [109] approach is utilized for mass detection, a full resolution 

convolutional network (FrCN) is used for mass segmentation. Finally, a CNN is employed for 

the classification step. While it is a fully automatic diagnosis process, three stages with different 

CNNs make the overall system complicated and the training process so time-consuming. 

There is a recent publication that is a fascinating study based on a combination of feature 

extraction, feature optimization, and ensemble learning. Ensemble learning is a process in 

which better predictive performance is obtained by combining the results from multiple 

classification models into one high-quality classifier. This is another way of optimizing 

outcomes by error compensation out of different classifiers. In [105], a new method for 

classifying medical images is introduced that uses an ensemble of different CNN architectures. 

Since different CNN architectures learn different semantic image representation levels, an 

ensemble of CNNs will enable higher quality features appropriate for classification. In this 

paper, the feature extraction scheme is CNN-based. A PCA optimization technique is applied 

to them to make them more efficient, and classical classifiers are used to extract the final results. 

An overview of this ensemble learning is shown in Figure 2-2. 
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Figure 2-2 Overview of an ensemble method [67]. 

As this figure shows, two CNN architectures (AlexNet [41], and GoogleNet [110]) that has 

been pre-trained (initialized) on natural image data are fine-tuned first. Then, each of the fine-

tuned CNNs is utilized in two ways: 1) as an image feature extractor with the independent 

feature vectors concatenated to train multiclass SVMs, and 2) as a classifier forming SoftMax 

probabilities. The following probabilities from the SVMs and SoftMax classifiers' ensemble are 

prepared to determine the image's class. 

From AlexNet, 4096, and GoogleNet, 1024 features are extracted using the activations of 

the last fully connected layer of the fine-tuned network. For efficient classifier training, the 

dimensionality of AlexNet features is reduced to 459, and the dimensionality of GoogleNet 

features is reduced to 108 using PCA. SVM and Softmax classifiers are applied to each of these 

PCA's output features separately, and SVM is applied to a concatenation of these features that 

have 508-D. Then the posterior probability of the whole scheme is defined based on all these 

five classifiers' outputs. This study's experimental results present this method outperforms 

techniques that simply utilize ResNet, GoogleNet, and VGGNet for classification purposes. 
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Another similar ensembling technique is developed in [107] for the classification of 

mammograms. It used five different states of the art CNNs for the feature extraction phase and 

a neural network for the classification phase. The difference with the previous study is that in 

this study, instead of using PCA for feature optimization, the concatenated features are applied 

to a neural network for overall optimization. Hence, the neural network 

Results of both these researches show even on deep learning schemes that are entirely 

automatic for classification in the medical imaging informatics field and have a high level of 

performance on classification; we can either come up with new ideas on reducing features-

dimensionality with data reduction and feature selection techniques like PCA, and use classical 

machine learning schemes like SVM to combine results of these schemes to achieve better 

results than baseline methods in the area, or utilize a neural network for an optimal 

segmentation, learning and classification purpose. 

2.4.2 Hypothesis and Proposed Approach 

Despite the promising results reported in previous studies, many issues have not been well 

investigated and addressed regarding how to train deep learning models optimally. For instance, 

practical solutions for the challenge of small datasets, and imbalanced data in medical imaging 

since usually the number of patients with the disease is much less than normal cases. Besides, 

whether applying image preprocessing algorithms can improve the performance and robustness 

of the deep learning models. To better address some of the challenges or technical issues, I 

develop and test a new DL-based CAD scheme of chest X-ray radiography images. The 

hypothesis in this study is that instead of directly using the original chest X-ray images to train 

deep learning models, it is practical to apply image processing algorithms to remove the 

majority of diaphragm regions, normalize image contrast and reduce image noise, and generate 

a pseudocolor image based on them to feed in 3 input channels of the existing deep learning 

models that are pre-trained using color (RGB) images in the transfer learning process. 
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The premise to present the CNN-based technique for Covid-19 classification is based on 

the idea that, like posterior processing as a way of improving the performance of baseline 

CNNs, it is possible if we work on preprocessing steps and enhance the quality of the images 

before applying them to the CNNs. The study will demonstrate that adding two image 

preprocessing steps and generating a pseudo-color image plays an essential role in developing 

deep learning CAD schemes. Furthermore, I compare the proposed method with other already 

available methods as baselines to show my approach's superiority and the effectiveness of pre-

processing techniques on CNN-based algorithms [111]. The details of the study will be 

presented in chapter six.  
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3 Development and Assessment of a New Global 

Mammographic Image Feature Analysis Scheme to Predict 

Likelihood of Malignant Cases 

3.1 Introduction 

Mammography is the only clinically acceptable imaging modality to detect breast cancer 

in current population-based breast cancer screening [112, 113]. Due to the quite low cancer 

detection yield (i.e., detecting 3.6 cancers per 1000 (0.36%) mammography screenings [114, 

115]) and higher recall rate (i.e., ~10%) in breast cancer screening environment, reading and 

interpreting screening mammograms is difficult and time-consuming for radiologists [116]. To 

assist radiologists more accurately and efficiently reading mammograms and reducing inter-

reader variability, computer-aided detection (CADe) schemes of mammograms have been 

developed and used in the clinical practice as “a second reader” for the last two decades [1]. 

Although previous observer performance studies reported that using CADe might help 

radiologists detect more cancers that may be previously missed or overlooked by radiologists 

(i.e., [2]), the clinical data analysis studies showed that using CADe increased false-positive 

recalls and reduced radiologists’ performance measured by areas under the receiver operating 

characteristics curves (i.e., [3]). Thus, the specificity of current mammographic imaging 

remains lower in clinical practice. Approximately only one in four lesion biopsies are proved 

to be malignant [117]. The higher false-positive recall rates add anxiety with potentially long-

term psychosocial consequences [4] and physical harm to many cancer-free women who 

participate in mammography screening due to cumulative x-ray radiation and unnecessary 

biopsies [5]. The high false-positive recall rates also associate with a high economic burden on 

the healthcare system [6, 118]; thus, in order to help improve the efficacy of mammography 

screening, developing the computer-aided diagnosis (CADx) schemes that aim to assist 



 

 36  

 

radiologists in their decision-making to better assess the risk of the detected suspicious breast 

lesions being malignant and reduce the unnecessary biopsies of benign lesions have been 

attracted broad research interest for the last two decades [7, 119]. 

Despite great research effort, CADx schemes of mammograms have not been accepted and 

used in clinical practice. It still faces multiple technical challenges to improve CADx 

performance and robustness. For example, previous schemes typically include 3 steps which 

(1) apply image processing algorithms to segment suspicious lesions depicting on 

mammograms, (2) compute images features from the segmented regions, and (3) train multi-

feature fusion-based machine learning classifiers [8]. However, due to the overlap of dense 

fibro-glandular tissue on mammograms, accurate lesion segmentation is often difficult and 

unreliable, which can substantially affect the performance and robustness of CADx schemes 

[10]. To overcome this difficulty, researchers recently investigated and applied deep learning 

techniques to develop CADx schemes without lesion segmentation and hand-crafted feature 

computation [12, 13]. Although DL approach can avoid difficulty in lesion segmentation and 

manually defining image features, it requires a large and diverse image dataset to train the 

scheme to minimize the risk of overfitting and validate its performance, which is another 

difficult task. 

To address these challenges, we recently investigated the feasibility of developing new 

computer-aided quantitative image feature analysis schemes or machine learning models based 

on the global mammographic image features to predict the risk of developing breast cancer in 

a short-term [76, 95] or risk of depicting suspicious lesions on mammograms [120]. Similar 

global image feature analysis schemes can also be developed using different imaging modalities 

to predict other clinical outcomes, such as the response of breast cancer patients to neoadjuvant 

chemotherapies using breast MRI [121] and the response of ovarian cancer patients to 

chemotherapy using CT images [122]. By avoiding difficulty and errors in lesion segmentation, 

our studies have demonstrated the advantages of developing and applying the global image 
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feature analysis schemes in the CAD-related quantitative image informatics field, which has 

the potential to be more efficient and robust.  

In this study, we hypothesized that similar global image feature analysis schemes could be 

developed and applied to predict the likelihood of cases being malignant if the suspicious 

lesions (i.e., soft tissue-based masses) are detected by the radiologists on mammograms. Thus, 

we proposed to investigate a new CADx scheme with 2 unique approaches. First, the new 

CADx scheme identifies and selects image features computed from the entire breast area 

depicting on the mammograms of left and right breasts. This global approach is different from 

previous local region or lesion-based CADx schemes that either require lesion segmentation or 

define regions of interest (ROI) with the fixed size to cover the suspicious lesions. Second, the 

new CADx scheme uses the bilateral asymmetrical image features computed from left and right 

breasts. As a result, unlike the conventional single-image-based CADx scheme, this is a multi-

image fusion-based CADx scheme. Although this is a new approach, the advantages of 

developing multi-image fusion-based CADe schemes over the single-image-based CADe 

schemes have been demonstrated in previous studies (i.e.,[123]).  If successful, this new 

approach may enable to provide radiologists a new CADx-generated image marker or risk 

prediction score to support their decision-making in classifying between malignant and benign 

lesions to increase diagnostic accuracy (including reduction of false-positive recalls and 

unnecessary biopsies of benign lesions). Thus, the objective of this study is to test our 

hypothesis using a relatively large and diverse digital mammography image dataset. 

3.2 Materials and Methods 

3.2.1 Image Dataset  

We retrospectively assembled a full-field digital mammography (FFDM) image dataset, 

which involves the fully anonymized images acquired from 1,959 patients who underwent 

routine annual mammography screening with age ranging from 35 to 80 years old. In these 
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patients, suspicious lesions were detected by radiologists in the original mammogram reading 

and diagnosis. All detected suspicious lesions were recommended, and performed biopsy. 

Based on the histopathology examinations of the biopsy-extracted lesion specimens, 737 cases 

were confirmed as positive for cancer, while other 1,222 cases had biopsy-approved benign 

masses. 

Table 3-1 Case numbers and percentage distribution of patients' age and mammographic density rate 

by radiologists using BIRADS guidelines. 
 

Subgroup Malignant 

Cases 

Benign 

Cases 

Density BIRADS  

1 

 

39 (5.3%) 

 

58 (4.7%) 

 2 286 (38.8%) 412 (33.7%) 

 3 401 (54.4%) 702 (57.4%) 

p-value = 0.878 4 11 (1.5%) 50 (4.1%) 

Age of Patients  

(years old) 

 

 

A < 40 

 

 

25 (3.4%) 

 

 

50 (4.1%) 

 40 ≤ A < 50 141(19.2%) 561(45.9%) 

 50 ≤ A < 60 189(25.6%) 335(27.4%) 

 60 ≤ A < 70 180(24.4%) 187(15.3%) 

 70 ≤ A 202(27.4%) 89(7.3%) 

Each mammography case involves 4 images of craniocaudal (CC) and mediolateral oblique 

(MLO) view of the left and right breasts. The original FFDM images have a pixel size of 70𝜇𝑚. 

Like the conventional CAD schemes of mammograms, all images were subsampled using a 

pixel averaging method with a 5 × 5 pixel frame to make the image size of 818 × 666 pixels 

and 12-bit pixel depth. Each pixel size is increased to 0.35𝑚𝑚 [124]. Table 3-1 summarizes 

and compares case distribution of patient age and mammographic density rated by radiologists 

using BIRADS guidelines. The patients in benign groups are relatively younger than those in 

malignant groups, but there is no significant difference in BIRADS density rating (p=0.878).   

3.2.2 Background of Image Features  

After segmenting the breast area from the surrounding area region depicting on each 

mammogram [95], we applied a computerized scheme to extract and compute global image 



 

 39  

 

features from the original mammograms in the spatial domain and the transformed maps in the 

frequency domain. Specifically, the feature extraction algorithm relies on the basic fact that 

mammography images are highly structured, which means their pixels exhibit strong 

dependences. Under the presence of cancer, the pixel dependency would change not only in the 

region of lesions, but also the surrounding parenchymal tissues in the breast area. In addition, 

since radiologists are quite sensitive to bilateral image feature differences related to the 

structural information between left and right breasts in detecting suspicious lesions and 

distinguish malignancy cases from benign ones, we will extract and compute the global bilateral 

image feature difference between the left and right CC or MLO view images to build the 

machine learning model for predicting the risk of the cases being malignant.  

From the original FFDM images, we computed image features and applied the structural 

similarity index (SSIM) to measure the similarity between 2 bilateral images of the left and 

right breasts. SSIM was originally proposed to assess image quality based on structural 

similarity [125]. It has been widely utilized in the medical imaging field with higher correlation 

to the human visual system adapted to extract structural information of images, including our 

previous studies (i.e., [76]). For the SSIM assessment, if we assume two nonnegative image 

signals like 𝒙 =  {𝑥𝑖|𝑖 = 1,2, … ,𝑀} and 𝒚 =  {𝑦𝑖|𝑖 = 1,2, … ,𝑀} as two patches of each image 

that have been aligned to each other, we can calculate SSIM index using the following equation 

[126]: 

𝑆𝑆𝐼𝑀(𝑥, 𝑦) =  
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥2 + 𝜇𝑦2 + 𝐶1)(𝜎𝑥2 + 𝜎𝑦2 + 𝐶2)
 3-1 

where 𝜎𝑥𝑦 = 
1

𝑀
∑ (𝑥𝑖 − 𝜇𝑥)(𝑦𝑖 − 𝜇𝑦)
𝑀
𝑖=1 , 𝜇𝑥 = 

1

𝑀
∑ 𝑥𝑖
𝑀
𝑖=1 ,  𝜎𝑥 = 

1

𝑀
∑ (𝑥𝑖 − 𝜇𝑥)

2𝑀
𝑖=1 , 𝜎𝑦 =

 
1

𝑀
∑ (𝑦𝑖 − 𝜇𝑦)

2𝑀
𝑖=1 , and 𝐶1, 𝐶2 are two positive constant.  
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Thus, SSIM index values range between zero and one. The maximum value is achieved 

when the input images are identical. The more the two input images are bilaterally different to 

each other, the smaller the corresponding calculated SSIM index values are. 

In addition, to take advantage of computer vision that can be relatively easy to acquire and 

analyze image features in the frequency domain, we performed two transformations to compute 

bilateral image feature differences in the frequency domain. Specifically, we applied discrete 

cosine transform (DCT), and fast Fourier transform (FFT) as two similar and complementary 

ways to facilitate detecting and analyzing useful image contents change across the whole image 

just in a small number of components. In general, under these transformations lower spatial 

frequency coefficients contain more information than higher frequency components. 

For DCT transformation, by assuming 𝑓(𝑥, 𝑦) as an image with size 𝑀 𝑏𝑦 𝑁, we applied 

the following general equation to the image to calculate 2D DCT of the input image: 

𝐹(𝑚, 𝑛) =  2
√𝑀𝑁
2⁄  𝐶(𝑚)𝐶(𝑛)

∗ ∑ ∑ 𝑓(𝑥, 𝑦) cos (
(2𝑥 + 1)𝑚𝜋

2𝑀⁄ ) ∗ cos (
(2𝑦 + 1)𝑛𝜋

2𝑁
⁄ )  

𝑁−1

𝑦=0

𝑀−1

𝑥=0

 

3-2 

In this equation 𝐶(𝑚) = 𝐶(𝑛) =  1
√2
⁄  for 𝑚, 𝑛 = 1 and 𝐶(𝑚) = 𝐶(𝑛) = 1 otherwise. 

DCT transforms the information contained in pixels of special domain to frequency 

domain. The element in the top left corner of 2D DCT matrix is the DC term and have a value 

that is almost always of a large magnitude, which is summation of all pixel values. On a zigzag 

scanning from the top left to the bottom right corner, the farther away from the DC term, it will 

have components with the higher frequency with the smaller corresponding magnitude [127]. 

FFT transformation computes the discrete Fourier transform of its input sequence. If the 

input image has a specific pattern, this transform can detect it in the magnitude spectrum 
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components. By assuming 𝑓(𝑥, 𝑦) as an image with size 𝑀 𝑏𝑦 𝑁, we used the following general 

equation to calculate 2D discrete Fourier transform of the input images: 

𝐹(𝑢, 𝑣) =  
1

𝑀𝑁
∑ ∑𝑓(𝑥, 𝑦) exp [2𝜋𝑖 (

𝑥𝑢

𝑀
+
𝑦𝑣

𝑁
)]

𝑁−1

𝑦=0

𝑀−1

𝑥=0

;  {
𝑢 =  0 , 1 , … ,𝑀 − 1
𝑣 =  0 ,1 , … , 𝑁 − 1

 
3-3 

 

where 𝑢, 𝑣 are special frequencies and |𝐹(𝑢, 𝑣)| =  √𝐹𝑅𝑒
2 (𝑢, 𝑣) + 𝐹𝐼𝑚

2 (𝑢, 𝑣) represents 

magnitude spectrum, which is useful to extract specific patterns [128]. 

Texture of each image shows important properties of distribution pattern of the fatty and 

fibro glandular tissues of breast. Texture also determines the local spectral or frequency content 

of an image. In the frequency domain, it is mostly projected to the low-frequency coefficients. 

On the other hand, the noise unrelated to any specific pattern (like additive noise pattern) 

because of their randomness nature are mostly projected to the high-frequency components. 

Furthermore, in [129] it has been shown that if scanning DCT coefficients in a zigzag order, 

the absolute DCT coefficient values are somehow correlated to each other, which means that 

the absolute DCT coefficient values are horizontally, vertically, and diagonally correlated to 

each other. Magnitude spectrums of FFT components also have the same characteristics in each 

local area. We will take advantage of these attributes for feature extraction. 

Moreover, because of particular characteristics of benign and malignant tumors like 

intensity, shape, and texture [130], the structural patterns of breasts depicting benign or 

malignant tumors would be different. The larger or higher grade of the malignant tumor for a 

case is, the larger disturbance or bilateral structural differences caused by cancer manifests 

become more obviously. The disturbance can be enlarged in the difference of absolute value of 

extracted image features from the frequency coefficients of left and right breast by considering 

the fact that the presence of a tumor can disturb the correlation of frequency coefficients. 
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3.2.3 Data Preprocessing 

CADx scheme applies an image preprocessing phase to the whole FFDM images. This step 

includes two algorithms namely, a cropping operation and an image enhancement. Cropping is 

just applied to the MLO view to detect and remove chest wall area, and enhancement is done 

on both CC and MLO views of images to remove or reduce image noise on the black 

background area as well as written labels.   

 

Figure 3-1 Preprocessing phase. a) the original image, b) chest wall removal step, c) denoising black 

area, and written labels removal. 

MLO view images typically have advantages over CC view because almost all the breast 

area is visible, which means we can extract more information from this view, especially for the 

global feature extraction methods. The primary disadvantage of this view is that images also 

include chest wall and part of the pectoral muscle regions. The pectoral muscle area is typically 

brighter compared to the breast tissue and will have a negative effect on the extracted features. 

Due to the great variation or heterogeneity of mammograms in different cases, although 

developing automated schemes to segment pectoral muscle has been tried before (i.e., [131]), 

it remains difficult to achieve robust results when applying to a large and diverse dataset. In 

this study, we used a hand craft method to remove the pectoral muscle area. For each MLO 

image, two points are determined at the margin of the chest wall, then by plotting a straight line 

between these two points, the chest wall is determined, and the pectoral muscle region is deleted 

to select the remaining breast region for further analysis. Other non-breast areas (i.e., labels) 
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are also automatically deleted. An example of this preprocessing phase is given in Figure 3-1. 

After the pre-processing phase, all images in the dataset are saved in Portable Network Graphics 

(PNG) format of a lossless mode for the feature extraction phase. 

3.2.4 Image Feature Extraction 

After image pre-processing, the computer-aided scheme is applied to extract and compute 

relevant image features from the entire breast area segmented on FFDM images. These features 

are divided into 3 subgroups from both spatial domain and frequency domain. First, from the 

original FFDM images (spatial domain), the scheme computes SSIM-related features of left 

and right images of CC or MLO view in a tree structural shape base, which is inspired by the 

commonly used hierarchical methods in video data processing area for motion estimation 

purpose [132]. Since each FFDM image has an original size of 818 × 666 pixels, each left and 

right image is first divided into 4 sub-blocks with a size of 409 × 333 pixels each. SSIM is 

computed using Equation (3-1) for all pairs of 4 sub-blocks in the matched position of the left 

and right breast. The sub-block with the smallest SSIM value, which means the highest bilateral 

asymmetry among these 4 pairs of the matched sub-blocks, is selected. Next, the scheme 

continues to divide the selected sub-blocks into 4 sub-blocks again with a size of 205 × 167 

pixels each. Four SSIM indices are computed and the new sub-block with the smallest SSIM 

index value is selected again. Such a process is repeated 6 times or iterations. In the last 

iteration, the size of the sub-block is reduced to 13 × 11 pixels. From these 6 iterations, the 

scheme selects 6 SSIM index values representing the highest bilateral asymmetry of breast 

tissue patterns with gradually deceased sub-block size. Figure 3-2 illustrates a block diagram 

of this process. 
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Figure 3-2 Block diagram of the proposed method for SSIM feature extraction. 

In computing SSIM index value, several parameters need to be determined by the 

experiments. Based on our experimental results in computing SSIM of bilateral FFDM images 

for cancer risk assessment [76], the default parameter values are set up as 0.05 for constants 

𝐶1 and 𝐶2, and 8 for window size used in Equation (3-1). Additionally, due to the heterogeneity 

of clinical cases (i.e., the variation lesion size and surround parenchymal tissues), it is not 

possible to predetermine an optimal sub-block size to compute SSIM index. Thus, in this study, 

we selected all 6 smallest SSIM index values computed in the above iterations to build an SSIM 

feature pool or vector. 

Second, after DCT and FFT transformation, the scheme computes 2 two-dimensional (2D) 

DCT and FFT matrixes of the whole input image using Equations (2) and (3), respectively. 

Hence, each image has a 2D matrix of DCT coefficients and a 2D matrix of FFT coefficients. 

By filtering out the last 10 percent of high-frequency components, the redundant information is 

mostly filtered out with respect to the information related to the pattern of the breast. In this 

way, frequency domain coefficients are more suitable for feature extraction rather than pixel 

domain coefficients [133]. 
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After preprocessing on the frequency coefficients, the 2D matrixes are changed to row 

format to reduce the computational complexity of the feature extraction phase. Hence, a 

sequence like 𝑋 = (𝑥1, 𝑥2, … , 𝑥𝐾) represents these coefficients in row format. Then, the 

following features are extracted and computed. 

From the DCT and FFT frequency domain, our scheme computed the following statistical 

moments-related features. Based on [134], by assuming that a sequence like 𝑋 =

(𝑥1, 𝑥2, … , 𝑥𝑁) is a finite population of size 𝑁, the  scheme can compute an unknown probability 

density function (PDF) р(x) for this targeted population. The nth row moment for this population 

is given by: 

�̂�𝑛 = 
1

𝑁
∑𝑥𝑖

𝑛

𝑁

𝑖=1

 3-4 

where the 1st row moment (𝑛 = 1) is the mean (𝜇) of this population. By centralizing this 

equation, the scheme calculates the next centralized momentums for the population with: 

�̂�𝑛 = ∑𝑝𝑖(𝑥𝑖 −  𝜇)
𝑛

𝑁

𝑖=1

 3-5 

That is an unbiased estimate of nth moment: 

𝑚𝑛 = 𝐸𝑋
𝑛 = ∫ 𝑝(𝑥)𝑥𝑛𝑑𝑥

∞

−∞

 3-6 

According to Equation (3-6), 𝑝(𝑥) is weighted by 𝑥𝑛, so that any change in the р(x) is 

polynomially reinforced in the statistical moments. Thus, by considering DCT and FFT 

components as finite populations of the input images, any changes in their PDF due to the 

presence of malignant lesions is polynomially reinforced in the statistical moments of the 

computed coefficients. In this study, we utilized the statistical moments to catch bilateral image 
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feature differences in both DCT and FFT maps of left and right breasts. Using Equation (3-4), 

the scheme computes the mean of the frequency components, and using Equation (3-5) for 𝑛 =

 2,3,4, the scheme computes variance, skewness, and kurtosis of the frequency components. 

Additionally, the scheme also computes other popular statistical features, including entropy, 

correlation, energy, root mean square level, uniformity, max, min, median, range, and mean 

absolute deviation from the DCT and FFT maps. Then, the absolute differences of these 

matched image features from the left and right view maps are computed to represent global 

bilateral differences of the left and right breasts in DCT and FFT-based frequency domains. 

Table 3-2 also lists the 14 features computed from DCT and FFT maps.  

Table 3-2 The computed SSIM, DCT, and FFT image Features. 

Feature category Feature Description  

SSIM features computed from 

original FFDM images 

Six SSIM indices computed using Equation (3-1) from the six 

pairs of sub-blocks with the gradually reduced size. 

Features computed from 

frequency domain of DCT and 

FFT transformed maps 

1.Mean, 2. variance, 3. skewness, 4. kurtosis, 5. entropy, 6. 

correlation, 7. energy, 8. root mean square level, 9. uniformity, 

10. max, 11. min, 12. median, 13. range, 14. mean absolute 

deviation 

In summary, our scheme computes 34 features from two bilateral images or maps of the 

left and right breasts (as shown in Table 3-2). Since each case has two sets of bilateral images 

acquired from CC and MLO view, the total computed image features are 68.  

Figure 3-3 shows a schematic diagram of the feature extraction phase to show how the 

scheme extracts each sub-group of features from each of 4 individual images (LCC, RCC, LML, 

RML) of a case and combine them to create the final feature vector (𝐹𝑓𝑢𝑠𝑖𝑜𝑛) of 34 features in 

each of CC or MLO views. Specifically, 𝑙𝑐𝑐𝐹𝑑𝑐𝑡 and 𝑙𝑐𝑐𝐹𝑓𝑓𝑡 are DCT and FFT features 

computed from CC view image of left breast, while 𝑟𝑐𝑐𝐹𝑑𝑐𝑡, 𝑟𝑐𝑐𝐹𝑓𝑓𝑡 are DCT and FFT features 

computed from the CC view image of the right breast. Similarly, 𝑙𝑚𝑙𝐹𝑑𝑐𝑡, 𝑙𝑚𝑙𝐹𝑓𝑓𝑡 and 𝑟𝑚𝑙𝐹𝑑𝑐𝑡, 

𝑟𝑚𝑙𝐹𝑓𝑓𝑡 are DCT and FFT features computed from MLO view images of left and right breast, 

respectively. Last, 𝐹𝑠𝑠𝑖𝑚𝑐𝑐 is vector of SSIM features related to two bilateral CC view images 
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(LCC, and RCC), and 𝐹𝑠𝑠𝑖𝑚𝑚𝑙 is vector of SSIM features related to two bilateral MLO view 

images (LML and RML). 

After computing these 34 image features from the bilateral images of one view, we 

computed and generated 2 correlation matrices for CC and MLO view (Figure 3-4). The results 

indicate that majority of these features are not highly correlated (i.e., 𝑟 < |0.25| as shown by 

the light to dark blue color in  Figure 3-4), which can provide complementary information to 

predict the likelihood of the case being malignant. 

LCC 
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𝑙𝑐𝑐𝐹𝑓𝑓𝑡 = [𝑓1𝑐 , 𝑓2𝑐, … , 𝑓14𝑐] 

𝐹𝑠𝑠𝑖𝑚𝑐𝑐 = [𝑓1𝑐, 𝑓2𝑐, … , 𝑓6𝑐] 
𝐹𝑓𝑓𝑡𝑐𝑐

= 𝑎𝑏𝑠(𝑙𝑐𝑐𝐹𝑓𝑓𝑡 − 𝑟𝑐𝑐𝐹𝑓𝑓𝑡) 
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= [𝑓1𝑚, 𝑓2𝑚, … , 𝑓6𝑚] 𝑟𝑚𝑙𝐹𝑓𝑓𝑡 = [𝑓1𝑚
′, 𝑓2𝑚

′, … , 𝑓14𝑚
′] 

Figure 3-3 Feature extraction phase of the proposed method. 

3.2.5 Classification Phase 

In this phase, we built multiple feature fusion-based machine learning models to predict 

the likelihood of the cases being malignant. Although many different types of machine learning 

classifiers (i.e., artificial neural network, Bayesian belief network, and logistic regression 

model) can be used for this purpose, based on our previous experience in developing the variety 
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of CAD schemes of medical images, we chose to train and build support vector machine (SVM) 

based machine learning models to predict the likelihood of the cases being malignant. To 

achieve high robustness, a popular RBF kernel was selected to build the SVM model, which 

has demonstrated good performance and low computational cost in our previous studies [135, 

136]. Specifically, in each CC or MLO view images, we built 4 SVM models using image 

features computed from (1) the original FFDM image (6 SSIM based features), (2) DCT maps 

(14 features), (3) FFT maps (14 features), and fusion of 34 features computed. After comparing 

the performance of the SVMs trained using only one view images, we also fuse the image 

features computed from the two view images to retrain and test 4 new SVM models. 
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Figure 3-4 Correlation coefficient matrices of 34 image features computed from CC (top) and MLO 

(bottom) view images. 

Each SVM-based prediction model is applied to the entire image dataset of 1,959 cases to 

predict the likelihood of the cases being malignant. To train each SVM and assess its 

performance, we applied a 10-fold cross-validation method. The SVM model produces 

likelihood or prediction scores ranging from 0 to 1 in the testing phase. The higher score 

indicates the higher risk or likelihood of the case being malignant. Using the prediction scores 

computed from all 1,959 cases, a receiver operating characteristic (ROC) curve is generated 

and the area under the ROC curve (AUC value) is computed as an evaluation index.  

Then, to evaluate an absolute classification accuracy for the proposed scheme, we also 

applied an operating threshold (T = 0.5) on the SVM-generated prediction scores. All cases are 

divided into two malignant and benign classes to generate a confusion matrix. From the 

confusion matrix, the overall prediction or classification accuracy, sensitivity, specificity and 

odds ratio (OR) are calculated as well. Furthermore, we sort the SVM-generated detection 

scores for all cases in an ascending order and select 5 threshold values to segment all cases into 

5 sub-groups. Then, based on the available multivariate statistical model included in a statistical 

software package (R version 2.1.1, http://www.r-project.org), we calculated the adjusted OR 

values and detected the possible ORs increasing trend with the increased classification scores.  

http://www.r-project.org/
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In addition, to test whether we can further reduce the dimensionality of the feature space 

to identify better features, we applied Principal Component Analysis (PCA) as a feature analysis 

and regeneration method to reduce feature vector size and train SVM models. The performance 

levels of the SVM models trained with and without applying the PCA method were compared. 

All computation tasks were conducted using the MATLAB R2019a package. Figure 3-5 

illustrates a complete block diagram of the proposed scheme and testing method. 

 

Figure 3-5 A summarized block diagram of the proposed scheme for classification of benign and 

malignant tissues in mammography imaging. 

3.3 Results 

Figure 3-6 shows CC and MLO images of one malignant and one benign case. Using the 

global bilateral image feature analysis, the SVM-generated prediction scores are 0.82 and 0.37 

in these 2 cases, respectively. Table 3-3 shows and compares AUC values and overall 

classification accuracy after applying the operation threshold (T = 0.5). The results show that 

using the image features computed from the bilateral MLO view images yielded significantly 

higher performance than using image features computed from bilateral CC view images (𝑝 <

0.05).  
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Figure 3-6 Illustration of one malignant case (the first row) and one benign case (the second row). 

The detected masses are circled (Green Color) in the images. 

 

Figure 3-7 Comparison of 4 ROC curves generated by four SVMs trained using image features 

computed from both CC and MLO view images. 

Table 3-4 summarizes and compares the computed AUC values of 4 SVM models trained 

using image features computed from both CC and MLO view images. Figure 3-7 shows 4 

corresponding ROC curves. The results indicate that using 3 subgroups of features computed 

from the original FFDM images and 2 transformation maps, AUC values range from 0.85 to 

0.91. After fusion of all image features computed from 3 subgroups, the AUC value of the 4th 

SVM model significantly increases to 0.96±0.01 (with p<0.01). In addition, the standard 

deviation after fusion of 3 subgroups of image features is also substantially decreased as 
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comparing to the use of one subgroup of image features, which indicates the increase of 

reliability of the 4th SVM model performance (AUC value).  

Table 3-5 shows and compares 4 confusion matrices generated by the SVM-generated 

prediction scores after applying an operational threshold (T = 0.5). From these confusion 

matrices, additional performance indices can be computed, as shown in Table 3-6. It shows that 

SVM trained using the subgroup of DCT features yields the highest overall prediction accuracy 

as comparing to the other two SVMs trained using SSIM and FFT features. However, by fusion 

of all 68 features, the SVM model yields further increased overall prediction accuracy (92%). 

After dividing 1,959 testing cases into 5 subgroups of an approximately equal number of 

cases (~392) based on the SVM-generated prediction scores (Table 3-7), the adjusted odds 

ratios (OR) increased from 1.0 in the baseline subgroup with the lowest classification scores to 

25,220 in the 5th subgroup with the highest prediction scores (the highest chance of being 

malignant). Regression analysis of the adjusted OR data also shows an increasing trend of odds 

ratios with the increase in SVM-generated prediction scores. The slope of the regression trend 

line between the adjusted ORs and SVM-generated scores is significantly different from zero 

slope (p < 0.01). 

By applying a PCA algorithm to reduce feature space dimensionality, we trained and tested 

SVM models with the increased number of the PCA-regenerated features. The highest AUC 

value is 0.94, and the highest overall prediction accuracy after applying the same operation 

threshold of T = 0.5 is 91%, which involves 65 numeric components produced by the PCA 

algorithm. The performance is slightly lower than the SVM trained using all 68 features, as 

shown in Table 3-4 and Table 3-6. 
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Table 3-3 AUC and Accuracy for different sub-group of features on CC view in compare with MLO 

view. 

Feature  

sub-groups 

Number of 

features 

AUC 

 ± STD 

Accuracy 

 (%) 

FFT, CC view 14 0.63 ± 0.025 66 

FFT, MLO view 14 0.84 ± 0.017 77 

DCT, CC view 14 0.62 ± 0.026 64 

DCT, MLO view 14 0.89 ± 0.015 83 

SSIM, CC view 6 0.53 ± 0.026 63 

SSIM, MLO view 6 0.78 ± 0.021 71 

Fusion, CC view 34 0.65 ± 0.027 67 

Fusion, MLO view 34 0.94 ± 0.009 89 

 

Table 3-4 Computed area under ROC curve using individual group of features on both CC and MLO 

views. 

Feature sub-

group 

Num. of 

features 

AUC STD 95% CI 

FFT features 28 0.85 0.018 [0.80, 0.90] 

DCT features 28 0.91 0.013 [0.89, 0.95] 

SSIM features 12 0.89 0.016 [0.85, 0.92] 

Fusion of all 

features 

68 0.96 0.007 [0.95, 0.97] 
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Moreover, to test the significance of preprocessing phase (as shown in Figure 3-1) of 

whether removal of pectoral muscle regions can boost the performance of the CADx scheme, 

we recomputed all image features from the bilateral MLO view images without removing the 

pectoral muscle and retrained SVM classification models. Table 3-8 compares the classification 

performance of the SVM models trained and tested using the image features computed from 

MLO view images with and without removing pectoral muscle areas depicted on the images. 

The result shows significant improvement of classification performance by removing the 

pectoral muscle areas from the MLO view images (p<0.05). For example, the AUC value of 

the SVM model using all image features computed from the original mammograms, and two 

transformation maps increase more than 15% (from 0.79 to 0.94).  

Table 3-5 Four confusion matrices generated using 4 SVMs trained using features computed from 

both CC and MLO view. 

Feature Group Predicted Actual Positive Actual Negative 

SSIM Positive 528 106 

 Negative 209 1116 

DCT Positive 501 54 

 Negative 1168 236 

FFT Positive 437 135 

 Negative 300 1087 

Fusion Positive 656 61 

 Negative 81 1161 
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Table 3-6 Accuracy, sensitivity, specificity, and odd ratio of using 4 SVMs trained using different 

features computed from both CC and MLO views. 

Feature sub-

group 

Accuracy (%) Sensitivity 

(%) 

Specificity (%) Odds 

Ratio 

FFT features 78 59 89 11.47 

DCT 

features 

85 68 96 52 

SSIM 

features 

83 71 90 24 

Fusion  92 89 95 154 

 

Table 3-7 Adjusted odds ratios (ORs) and 95% confidence intervals (CIs) at five subgroups with 

increasing values of SVM-generated prediction scores. 

Subgroup 

(bin) 

Number of Cases (Positive/Negative) Adjusted OR 95 % CI 

1 2-390 1.00 Reference 

2 9-383 4.58 0.93-21.34 

3 41-351 22.78 5.47-94.85 

4 297-95 609.6 

149.05-

2493.35 

5 388-3 25220 

4190.90-

151766.40 
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Table 3-8 Comparison of prediction performance of SVMs trained with and without removal of 

pectoral muscle area in MLO view images. 

Feature sub-group 

Number of 

features 

AUC ± STD Accuracy (%) 

FFT without chest removal 14 0.70 ± 0.021 72 

FFT with chest removal 14 0.84 ± 0.017 77 

DCT without chest removal 14 0.68 ± 0.022 69 

DCT with chest removal 14 0.89 ± 0.015 83 

SSIM without chest removal 6 0.62 ± 0.026 61 

SSIM with chest removal 6 0.78 ± 0.021 71 

Fusion without chest removal 34 0.79 ± 0.017 83 

Fusion with chest removal 34 0.94 ± 0.009 89 

 

3.4 Discussion 

This study has several unique characteristics and generates several new interesting 

observations. First, although many CADx schemes of mammograms (i.e., as reviewed in [8]) 

have been previously developed and tested to classify between malignant and benign lesions, 

their performance is often limited by the difficulty and errors of lesion segmentation due to the 

fuzziness of lesion boundary and irregular tissue overlap in 2D mammograms [10]. Since, 

unlike CADe schemes that aim to automatically detect suspicious lesions in which correctly 

cuing location of the lesion is important, CADx schemes apply to the cases in which suspicious 

lesions and their locations have already been detected by radiologists. The important issue in 

CADx schemes is to determine the likelihood of the case or the detected lesion being malignant. 
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However, accurately predicting the likelihood of the detected suspicious lesions being 

malignant remains a difficult task for radiologists, which results in higher false-positive recall 

rates and higher rates of benign biopsy in current clinical practice. Thus, developing a more 

accurate and robust CADx scheme as an assistant tool to support radiologists in their decision-

making is important, no matter whether the CADx scheme uses local (region) or global image 

feature analysis. In this study, we explored a new approach to develop a unique case-based 

CADx scheme based on the detection, computation, and analysis of globally asymmetrical 

image features computed from two bilateral images of left and right breasts and assessed its 

performance using a relatively large image dataset of 1,959 cases. Thus, this new CADx scheme 

is a multiply image-based scheme that integrates image feature differences computed from 4 

view images, which makes it significantly different from other previously single or region-

based CADx schemes. 

Second, we explored and tested 3 types or subgroups of global image features computed 

from the original FFDM images and their transformation maps, aiming to more accurately 

predict the likelihood of cases being malignant. From a pair of bilateral mammograms, SSIM 

is used in a quadratic-tree-based format that searches through different sub-blocks of original 

images (in a spiral way) to select areas with the highest level of bilateral asymmetry between 

left and right images of each case. In this way, the area outside of the breasts is removed 

automatically because of high SSIM values, while the area with the smallest SSIM value, which 

represents the highest bilateral difference, is selected. The physical meaning of the proposed 

SSIM-based algorithm can be well described to mimic the image features used by radiologists 

to assess and interpret tumors in the clinical practice. However, there is a large variation of 

lesion size and asymmetrical structure of the surrounding parenchymal tissue patterns in the 

different clinical cases. In order to automatically compensate such variations, we used an 

iteration approach to compute an SSIM vector with 6 SSIM index values, which represent 6 

pairs of the matched sub-blocks with gradually reduced size (from 409 × 333 to 13 × 11 pixels).   
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The correlation coefficients of these 6 SSIM index values are relatively low (as shown in Figure 

5-4). Thus, the fusion of these 6 SSIM features can increase the prediction power of using SSIM 

applying to a large and diverse image dataset.  

 Third, to further take the potential advantages of computer vision over human vision, we 

explored image features computed from the frequency domain. For example, FFT and DCT 

have been widely used as two popular frequency domains for image feature extraction in many 

CADx schemes to classify between malignant and benign lesions (i.e., [10]), and predict tumor 

response to chemotherapy (i.e., [137]). In this study, we extracted absolutely asymmetrical 

feature values computed from two bilateral view images (CC or MLO view of the left and right 

breasts) and investigated their feasibility to predict the likelihood of cases being malignant, 

which is also a new approach in CADx schemes of mammograms. We observed that the DCT-

based features yielded the highest AUC value (as shown in Table 3-4), which shows the 

importance of identifying an optimal transformation map in the frequency domain for image 

feature extraction. 

Fourth, the previous studies have reported that quantitatively detect and analysis of image 

features computed from MLO view images typically yielded higher performance than using 

image features computed using CC view images, such as applying CAD schemes to predict 

breast cancer risk [77] and detect suspicious lesions [138]. In this study, we systematically 

analyzed and compared correlation coefficients of image features computed from CC and MLO 

view images. The results showed that the image features computed from the MLO view images 

had lower distribution of the correlation coefficients than the image features computed from 

CC view images (Figure 3-4). This supports the results that SVMs trained using MLO view 

images yield higher prediction accuracy than the SVMs trained using CC view images (i.e., 

Table 3-3). In addition, by applying a PCA algorithm to search for and regenerate the optimal 

feature vectors, the best prediction performance yielded when using 65 numeric components 

produced by the PCA algorithm remains lower than the SVM trained using all 68 image features 
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computed in 3 subgroups. The results indicate that although 68 features build a relatively large 

feature vector or space, when considering the size of our dataset of 1,959 cases, the ratio 

between the numbers of the cases per class and image features remains relatively bigger (i.e., 

>10 per class). Thus, this size of the feature vector is acceptable in this study.  

Fifth, the study also shows that image features computed from the original mammograms 

and transformation maps contain complementary information or discriminatory power. Thus, 

optimally combining or fusing multiple features computed from different feature domains to 

build a machine learning model or a classifier can further significantly increase CADx 

prediction performance (i.e., AUC value and overall accuracy after applying an operating 

threshold). Automatically and optimally integrating image features from the different domains 

is an advantage of using ML-based schemes over human observers. Additionally, the study 

results also show that removing pectoral muscle regions from the MLO view images can help 

increase prediction power to distinguish between malignant and benign cases more accurately. 

Thus, it is still important to develop algorithms that can more accurately and robustly detect 

chest walls and remove pectoral muscle regions in mammograms [131].  

Sixth, many CADx studies have been previously reported in the literature to classify 

malignant and benign lesions. For example, reference [8] presents a table that summarizes 8 

previous CADx studies, which used image datasets ranging from 38 to 1,200 cases and yielded 

performance of AUC values ranging from 0.70 to 0.86. Another CADx scheme that used a 

dataset of 560 regions of interest and a deep learning model to classify malignant and benign 

breast masses reported an AUC of 0.79 [12]. This study used a larger dataset involving 1,959 

cases. Although we cannot directly compare the performance between this new case-based 

CADx scheme and previous CADx schemes reported in the literature due to the use of different 

image datasets, the high prediction or classification result (i.e., AUC value) of this study is 

encouraging. Unlike CADe schemes, which detect specific lesions and information of lesion 

location is important, determining lesion location is less important in CADx schemes because 
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the suspicious lesions have been visually detected and located by radiologists. Thus, both the 

conventional CADx schemes based on analysis of the image features computed from the 

segmented lesions and this new CADx scheme based on analysis of the global image feature 

difference can play the same role to support radiologists in their decision-making of predicting 

the likelihood of the detected lesions being malignant. By avoiding the difficulty and possible 

errors of breast lesion segmentation, developing a new CADx scheme based on the global 

mammographic image feature analysis approach can potentially be more efficient and robust.   

Last, despite the encouraging results and many new observations, we recognize that this is 

a laboratory-based retrospective data analysis study with several limitations. First, although we 

assembled a relatively large and diverse image dataset, case selection bias is always an issue of 

concern. Second, the ratio between malignant and benign classes does not represent the actual 

cancer prevalence ratio in the general clinical practice. Hence, the performance and robustness 

of this new CADx scheme need to be further assessed and validated in future studies with new 

image datasets that better represent clinical practice. Third, based on the experience of our 

previous studies, we only explored and tested the limited numbers and types of image features, 

as well as the simple SVM models in this study. This may not be an optimal approach. How to 

identify and select optimal features and machine learning models need to be further investigated 

in future studies. Furthermore, this is a primary technology development study. Its clinical 

utility or impact on radiologists’ performance in the diagnosis of breast cancer using 

mammograms has not been tested. In summary, despite these limitations, this study has 

presented a new and novel approach to develop CADx scheme based on the global image 

feature analysis to predict the likelihood of cases being malignant once the suspicious lesions 

are detected by the radiologists and demonstrated feasibility of this new approach, which may 

create a new opportunity for researchers in the CAD-related medical imaging informatics field 

to develop and optimize new computer-aided decision-making supporting tools for future 

clinical applications.   
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4 Prediction of Breast Cancer Risk Using a Machine Learning 

Approach Embedded with a Locality Preserving Projection 

Algorithm 

4.1 Introduction 

In spite of the heterogeneity of breast cancer, mammographic screening is widely 

considered the most effective approach to detect breast cancer at an early stage and help reduce 

the cancer mortality rate [139]. Among the existing screening methods, mammography is the 

only clinically accepted screening modality applied to the general population to date [140]. 

Despite significant advantages of mammography screening (i.e., relatively lower cost, wide 

accessibility, and short examination time), controversy about the population-based 

mammography screening remains [141] because of its lower sensitivity among a number of 

groups of women (i.e., women who are younger than 50 years old and have dense breasts [142]) 

and high false-positive recall rates [117, 143]. Thus, in order to improve efficacy of 

mammography screening, establishing a new personalized breast cancer screening paradigm 

has recently been attracting extensive research interests [144, 145]. One of the important 

prerequisites for realizing this goal is to identify and develop effective clinical markers or 

prediction tools, which have higher discriminatory power to predict the risk or likelihood of 

individual women having or developing image-detectable cancer in a short-term (i.e., < 2 to 5 

years after a negative screening) [146].          

Although a number of epidemiology-based breast cancer risk prediction models (i.e., [147, 

148] models) have been developed and used to identify high-risk women, these models have 

low positive predictive values to help determine who should be screened in the short-term and 

who can be screened at longer intervals in order to increase cancer detection yield and reduce 
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unnecessarily frequent screening and the associated false-positive recalls with mammography 

[149]. Therefore, it requires identifying and developing more effective cancer risk prediction 

markers, including those generated from genomic tests [150] and image analysis [151, 152]. In 

the medical imaging field, breast density assessed from mammograms is considered an imaging 

marker or risk factor with much higher discriminatory power than most of the other risk factors 

used in the existing breast cancer risk prediction models [153]. However, subjectively rating 

mammographic density by radiologists based on the Breast Imaging Reporting and Data System 

(BIRADS) guideline is often not reliable due to large intra- and inter-reader variability [154]. 

In order to produce more robust results in assessing mammographic density and identifying 

new imaging markers to predict breast cancer risk, a number of computer-aided image 

processing schemes have been developed to segment and compute Volumetric Breast Density 

(VBD) from mammograms to predict breast cancer risk (e.g., [155]). However, whether the 

computed mammographic density can accurately represent breast density remains controversial 

[156]. The assessed mammographic density may vary due to the change of the imaging 

machines, imaging acquisition protocol and life cycle of the women. 

In order to avoid or minimize the impact of inconsistency when using mammographic 

density as a breast cancer risk factor, we recently explored a new breast cancer risk factor or a 

quantitative imaging marker based on the bilateral asymmetry of mammographic tissue density 

between the left and right breasts to predict short-term breast cancer risk ([146, 157]). Since 

two bilateral mammograms are acquired from the same woman at one mammography 

screening, the relative mammographic density asymmetry is likely to remain highly consistent. 

From bilateral mammograms, we are able to compute a large number of image features to 

represent the difference in mammographic tissue density patterns. Thus, how to identify and 

assemble an optimal set of effective and non-redundant image features from the initial feature 

pool with a large number of computed image features remains a technical challenge. In order 

to address this challenge, the objective of this study is to develop and apply a new machine 
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learning approach to create a small effective feature vector for the purpose of building an 

optimal machine learning classifier using a relatively small training image dataset. Inspired by 

the deep learning technology, which directly uses input images to generate an efficient feature 

vector for classification [93], we proposed to apply a locally preserving projection (LPP) based 

feature combination algorithm [94] to reduce the dimensionality of feature space and then build 

a new image features based short-term breast cancer risk prediction model. Unlike the 

conventional feature selection methods that filter and select a set of existing optimal features 

from the initial feature pools, LPP generates a new optimal feature vector involving features 

that are different from any original features in the existing feature pool. The details of the 

proposed LLP approach, our image dataset, experiment and data analysis results are presented 

in the following sections of this article. 

4.2 Materials & Method 

4.2.1 Image Dataset 

A testing image dataset was retrospectively assembled for this study, which includes two 

sets of sequential full-field digital mammography (FFDM) images acquired from 500 women 

participated in mammography screening. In the first set of FFDM screening, all images were 

determined negative by the radiologists. These negative images are named as “prior” images in 

this study. In the second set of FFDM screening, 250 cases were positive with cancer detected 

by the radiologists and verified by biopsy and histopathology tests, while the other 250 cases 

remained negative. All negative cases remained cancer-free for at least two more subsequent 

FFDM screenings. Images in the second set of screening are named as “current” images. The 

time interval between the “prior” and “current” mammography screenings ranged from 12 to 

18 months. Although all “prior” FFDM screenings were negative, we divided 500 cases into 

two classes. The first class includes 250 high-risk cases in which cancer was developed and 
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detected in the “current” FFDM screening. The second class includes 250 low-risk cases that 

remained negative in the “current” FFDM screening.  

Table 4-1 summarizes additional dataset information, which includes distribution of 

women's age and mammographic density rated by radiologists based on BIRADS guidelines. 

In this dataset, ages ranged between 38 and 88 years old. This is also an age-matched image 

dataset (≤ 1 year difference between the two classes of the cases). Thus, it has no statistically 

significant difference of ages between the high and low-risk case classes (p = 0.12). There is 

also no significant difference in BIRADS based mammographic density ratings between the 

two classes. In this study, two “prior” negative FFDM images acquired from bilateral 

craniocaudal (CC) view of left and right breasts were selected and used. 

Table 4-1 Distribution of age and density BIRADS of cases in the dataset. 

 High Risk Class Low Risk Class 

Age  Mean 58.84 57.39 

> 65 years old 57 48 

ears old 174 170 

< 45 years old 19 32 

BIRADS Extremely dense 

(4) 

6 7 

Heterogenous (3) 133 131 

Scattered (2) 100 99 

Fatty tissue (1) 11 13 

 

4.2.2 A Computer-aided Imaging Processing Scheme 

We developed and applied a computer-aided image processing scheme to automatically 

segment dense fibro-glandular breast tissue regions depicted on each mammogram, and then 

computed bilateral mammographic tissue density and feature asymmetry between the left and 

right CC view images. Figure 4-1 shows a graphic user interface (GUI) of the image processing 

scheme. After a user selects a testing case by pointing the computer mouse to one image name 



 

 65  

 

of the case and clicking the mouse button, a pair of two bilateral CC view images is uploaded 

into the GUI simultaneously. From each originally digital mammogram, the scheme 

automatically segments the breast region and generates several image maps. 

 

Figure 4-1 Illustration of the graphic user interface of our computer-aided imaging processing 

scheme to detect bilateral mammographic image feature asymmetry and predict short-term breast 

cancer risk. 

First, a fibro-glandular tissue (FGT) density map is generated from each original 

mammogram as shown in Figure 4-2 (a). The percentage of FGT on each mammogram can be 

quantitative computed. In addition, since mammograms are two-dimensional projection 

images, each pixel value (or gray level) represents a percentage of the fibro-glandular tissues 

along the projection line (or path) of the X-ray. In order to increase the visual sensitivity to the 

tissue density variation, a pseudo color coding is applied to the FGT density map displayed in 

GUI. Second, from the FGT map, the scheme searches and segments focally dense regions as 

shown in Figure 4-2(b). Third, the scheme generates a local density fluctuation map as shown 

in Figure 4-2(c) using the method reported in our previous studies of developing computer-

aided detection (CAD) scheme of mammograms [158] and mammographic image feature based 
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cancer risk prediction model [159]. Last, the scheme applies a difference of Gaussian (DOG) 

bandpass filter to generate a map showing the distribution of locally isolated small dense 

regions (or blobs). A similar DOG filtering map has been used in the previous CAD scheme of 

mammograms as the first step to detect suspicious lesions [160].  

 

Figure 4-2 An example of showing the intermediate results of image processing steps including (a) 

computed breast tissue density maps, (b) detected focal density regions, (c) local density (pixel value) 

fluctuation maps, and (d) image maps generated using Gaussian bandpass filtering. Color bars show 

volumetric density level of the pixel values.   

4.2.3 Image Feature Computation  

Since early breast cancer usually develops in one breast, the bilateral asymmetry of 

mammographic tissue density or feature patterns is typically the first importantly visual sign 

for radiologists to detect breast abnormalities that have a high risk of leading to the cancer 

development. Based on the observation of how radiologists read and interpret mammograms, 
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we identified a new quantitative imaging marker to predict short-term breast cancer risk. Our 

previous study has demonstrated a trend of increasing bilateral asymmetry of the computed 

bilateral mammographic density features as the time lag between the negative and positive 

mammography screening reduces [76].   

First, our computer-aided scheme calculated a series of global statistical image features 

related to the pixel value distribution of each image or map, which include mean, standard 

deviation, skewness and kurtosis of pixel value distribution in one original digital mammogram 

(as shown in Figure 4-1) and 4 sets of computer-processed image maps (as shown in Figure 

4-2). Then, the scheme computed each bilateral asymmetry (or difference) of the image feature 

value by combining two corresponding feature values computed from the two bilateral images 

or maps between the left and right breasts. Typically, for each feature, the scheme computes 

and generates three combined features. First, an average feature value, 𝐹𝑎𝑣𝑒 =
1

2
× (𝐹𝑙𝑒𝑓𝑡 +

𝐹𝑟𝑖𝑔ℎ𝑡) , represents a global mammographic density related feature of each testing case. For 

example, a case with dense breasts has higher average pixel values computed from the original 

mammograms and FGT maps than a case of fatty breasts. Second, an absolute feature difference 

value, 𝐹𝑎𝑑 = |𝐹𝑙𝑒𝑓𝑡 − 𝐹𝑟𝑖𝑔ℎ𝑡|,  or difference ratio, 𝐹𝑎𝑑𝑟 = |𝐹𝑙𝑒𝑓𝑡 − 𝐹𝑟𝑖𝑔ℎ𝑡| (𝐹𝑙𝑒𝑓𝑡 + 𝐹𝑟𝑖𝑔ℎ𝑡)⁄  , 

indicates bilateral feature asymmetry between left and right breasts. Third, a multiplication 

value of the above 2 features, 𝐹𝑀 = 𝐹𝑎𝑣𝑒 × 𝐹𝑎𝑑, considers the contribution of these two factors. 

For example, the contribution of the bilateral asymmetry levels to the cancer risk at breasts with 

different mammographic density may be different. Table 4-2 lists the 44 computed image 

features and their definition. 
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Table 4-2 Description of 44 computed image features in the initial feature pool. 

Image 
Feature 

Number 
Feature Description 

Original 

FFDM 

image 

1 – 3 
Average and absolute difference of density values, and multiplication 

of above 2 features. 

FGT map 4 - 7 
Average and absolute difference of mean high density value, difference 

ratio and multiplication of the first 2 features.  

 8 - 10 
Average and absolute difference of FGT volume, and multiplication of 

above two features. 

 11 - 13 
Average and absolute difference of standard deviation of pixel values, 

and multiplication. 

 14 - 17 
Average and absolute difference of skewness and kurtosis of pixel 

values. 

Focal 

density 

map 

18 - 21 
Average and absolute difference of focal density value, difference ratio 

and multiplication of the first 2 features. 

 22 - 29 

Average and absolute difference of mean, standard deviation, 

skewness, and kurtosis of detected and segmented focal density 

regions. 

Local 

fluctuation 

map 

29 – 33 
Average of mean, standard deviation, skewness and kurtosis of pixel 

values. 

 34 - 37 
Absolute difference of mean, standard deviation, skewness and kurtosis 

of pixel values. 

 38 - 41 
Multiplication of average and absolute difference of mean, standard 

deviation, skewness and kurtosis of pixel values 

DOG map 42 - 44 
Average and absolute difference of mean pixel values, multiplication of 

above 2 features. 

 

4.2.4 Machine Learning Generated Imaging Marker 

Applying a machine learning method to generate an optimal and robust multi-feature 

fusion-based imaging marker or prediction model depends on two factors namely, (1) a set of 

effective and non-redundant image features, and (2) a relatively large and diverse dataset. 

Figure 4-3 compares 3 types of machine learning methods. First, in conventional machine 

learning as shown in Figure 4-3(a), segmentation and feature extraction steps are indispensable. 

A specific number of features from the initial feature pool are selected based on a predefined 
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evaluation method and index. Then, the selected features are used to build the classifier. Second, 

a deep learning technique does not require handcrafted features computed from the well-

segmented regions. It automatically identifies features by directly learning and analyzing input 

images, as shown in Figure 4-3(b). However, in order to achieve robust results, the deep 

learning method typically requires a very large training dataset, which is often not available to 

provide in the cancer imaging field.  

It is clear by comparing between conventional and deep machine learning methods, each 

has advantages and disadvantages. Conventional machine learning uses handcrafted image 

features, wherein it is often difficult to identify an optimal set of features that can be most 

effectively fused together to achieve the best performance. However, conventional machine 

learning is relatively easy to train using small dataset. Deep learning has the capability to 

automatically determine more effective features and their combination by directly learning from 

the input images, but its performance heavily depends on the size and diversity of the training 

dataset.  

 Figure 4-3(c) shows a new two-step approach tested in this study, which aims to take 

advantages of both conventional and deep machine learning approaches. Similar to a 

conventional learning method, this approach includes a regular region segmentation and feature 

extraction step to compute image features and build an initial feature pool. Then, the approach 

applies an LLP algorithm to learn and analyze the initially computed image features and 

automatically regenerate a new feature vector. This is similar to the deep learning approach, 

which is possible to extract new features using a deep convolution neural network (CNN) model 

for direct image feature learning and pass the CNN-generated features to the input layer of a 

conventional machine learning model, such as a support vector machine (SVM), to perform a 

specific classification task. However, comparing to the direct image-based deep learning 

technique, the number of inputs (44 features as shown in Table 4-2 as comparing to large pixel 

number of an input image) is significantly reduced in this study, so that a conventional machine 
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learning classifier embedded with the LPP image feature regeneration algorithm has potential 

to be more robustly trained and tested using a relatively small dataset.  
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Figure 4-3 Block Diagram of three types of risk model systems, (a) conventional systems for feature 

selection and classification, (b) deep learning techniques for feature generation and classification, (c) 

proposed method for feature extraction, regeneration, and classification. 

Thus, we first used a locally preserving projection (LPP) based feature combination 

algorithm [94] to generated new features. LPP is an unsupervised subspace learning method 

and a linear approximation of non-linear Laplacian eigenmaps. It involves linear projective 

maps to find a graph of embedding in a specific way to preserve local structure information. It 

has been tested and demonstrated high performance and advantages in feature dimensionality 

reduction, information retrieval and pattern classification or recognition. It models the manifold 

structure directly by constructing the nearest-neighbor graph of neighborhood information of 

the dataset. This graph reveals the neighborhood relations of data samples. By using the 

Laplacian technique, the transformation matrix of the dataset is generated to map the originally 
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big feature space to a much compact and more effective subspace. This linear procedure also 

preserves local neighborhood information of the input dataset. The design of LPP can be 

summarized as the following three steps [94]. 

1. Construct adjacent graph using ε-neighborhood or k-neighborhood. 

ε-neighborhood. The system connects nodes 𝑖 and 𝑗 by an edge if |𝑥𝑖 − 𝑥𝑗|
2
<  ε. 

a) k-neighborhood: The system connects nodes 𝑖 and 𝑗 by an edge if 𝑖 is in 𝑘 NNs of 𝑗 or 

𝑗 is in 𝑘 NNs of 𝑖. 

Compute weight matrix 𝑊 by using either uniform weight or Gaussian weight of Euclidean 

distance. If nodes 𝑖 and 𝑗 are connected, then: 

𝑤𝑖𝑗 = {
exp (‖𝑥𝑖 − 𝑥𝑗‖

2
𝑡⁄ ) ;  𝑥𝑗 ∈ 𝑁𝑘(𝑥𝑖),   𝑜𝑟 𝑥𝑖 ∈  𝑁𝑘(𝑥𝑗)

0                                                                              𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 4-1 

where parameter 𝑡 is a positive constant and 𝑡 ∈ 𝑅, and 𝑁𝑘(𝑋𝑖) or 𝑁𝑘(𝑋𝑗) denotes a set of 

the 𝑘 NNs of the sample 𝑥𝑖 or 𝑥𝑗. 

Construct the final Eigenmap. The transformation matrix 𝑃 is optimized by computing the 

minimum eigenvalue solution to the generalized eigenvalue problem as (2): 

𝑋𝐿𝑋𝑇𝑃 =  𝜆𝑋𝐷𝑋𝑇𝑃 
4-2 

where 𝐷 is a diagonal matrix. A summation on the column of 𝑊 makes elements of 𝐷, 

𝐷𝑖𝑖 = ∑𝑊𝑗𝑗   . 𝐿 = 𝐷 −𝑊 is the Laplacian matrix. In this equation, 𝑃 is composed of the 

optimal 𝑟 projection vectors corresponding to the 𝑟 smallest eigenvalues, i.e. 𝜆1 ≤ 𝜆2 ≤ ⋯ ≤

𝜆𝑟.  

Next, we applied a conventional machine learning tool to generate a new imaging marker 

by optimally fusing the LPP-created new features. The learning tool was trained using our 

limited image dataset. In this study, we chose and compared two popular machine learning tools 

used in medical imaging informatics field. They are a k-nearest neighbor (KNN) algorithm and 
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a support vector machine (SVM), which use totally different learning concepts [161]. KNN is 

an instance-based “lazy” machine learning technique to build an optimal classification function 

locally. It searches for the k nearest training examples to classify the test sample in a pre-

determined feature space and presents the class membership as the output [162]. In the KNN 

classifier, each test case is classified by a voting technique of its neighbors. Then, based on a 

distance measurement function, the case is assigned to the class most common among 

its k nearest neighbors. The Euclidean distance is used to search for the similar or nearest 

neighbor cases, which uses the following equation to compute distance between a queried or 

test case (𝑥𝑞) and a selected nearest neighbor case (𝑥𝑖) in a multi-feature (n) dimensional space: 

𝑑(𝑦𝑞 , 𝑥𝑖) = √∑[𝑓𝑟(𝑥𝑞) − 𝑓𝑟(𝑥𝑖)]
2

𝑛

𝑟=1

 4-3 

A weighting factor is defined as: 

𝑤𝑖 =
1

𝑑(𝑥𝑞 , 𝑥𝑖)
2 

4-4 

Then, a risk prediction score or probability of the test case being a high risk (HR) case is 

computed as: 

𝑆 = 𝑝(𝐻𝑅|𝑥𝑞) =
∑ 𝑤𝑖 × 𝐼(𝑥𝑖 = 𝐻𝑅)𝐾
𝑖=1

∑ 𝑤𝑖
𝐾
𝑖=1

    4-5 

In Equation (4-5), K indicates the number of selected nearest neighbors in the KNN 

prediction model and 𝐼(𝑥𝑖 = 𝐻𝑅) = 1, when this selected nearest neighbor (𝑥𝑖) is a high-risk 

case; otherwise, 𝐼(𝑥𝑖 ≠ 𝐻𝑅) = 0. Therefore, the risk prediction scores range from 0 (if all 

nearest neighbors are low-risk cases) to 1 (if all nearest neighbors are high-risk cases).  



 

 73  

 

On the other hand, SVM is an “eager” machine learning method, which is trained utilizing 

the entire training images to build a global model of fitting the training data to predict whether 

a new test sample falls into one class or another [163]. Each SVM model is a representation of 

the data samples as points in the multi-feature space. In this space, the cases in each class are 

divided or separated using a hyperplane with margin of support vectors in two classes as wide 

as possible. Then, a new testing case is mapped to a class based on its location and distance to 

the hyperplane of the SVM model. Specifically, for a training data 𝑥𝑖 ; (𝑖 = 1, … , 𝑁), function 

of classifier 𝑓(𝑥𝑖) is introduced as (6): 

𝑓(𝑥𝑖): {
  ≥ 0  ⇒   𝑦𝑖 = +1
  < 0   ⇒  𝑦𝑖 = −1

 4-6 

where 𝑦𝑖 is the output of the system corresponding to 𝑥𝑖. 𝑓(𝑥) can be a linear function or 

other types of nonlinear functions. For instance, in linear classification, 𝑓(𝑥) can be 

considered as (7): 

𝑓(𝑥) =  𝑊𝑇 𝑥 + 𝑏 4-7 

where 𝑊 is weight vector and 𝑏 is the bias. Among many “eager” types of machine learning 

classifiers (i.e., artificial neural network), SVM has advantages of building a more robust global 

optimization model.  

In order to compute a risk prediction score of a testing case (𝑥𝑞) using an SVM-based 

prediction model, the case is projected onto the hyperplane normal of the model. The sign 

distance from 𝑥𝑞 to the decision boundary of the SVM hyperplane represents the risk prediction 

score of the testing case, which is computed by (8): 

𝑆 =∑ 𝑎𝑗𝑦𝑗𝐺(𝑥𝑗 , 𝑥𝑞) + 𝑏
𝑛

𝑗=1
 4-8 
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In this equation 𝑎𝑗(𝑗 = 1,… , 𝑛), 𝑏 are the estimated parameters of the SVM model, and 

𝐺(𝑥𝑗 , 𝑥𝑞) represents the dot product between 𝑥𝑞 and the (n) support vectors (𝑥𝑗). Thus, the 

computed risk prediction score in SVM for each testing case is its significant distance to the 

hyperplane. The risk prediction scores are then normalized to the range from 0 to 1 based on 

the maximum margin determined by the support vectors of two classes in the feature space. The 

higher score also indicates that the testing case is a higher risk case. 

We took the following steps to combine the LPP algorithm and a machine learning 

classifier (either a KNN or an SVM). First, we applied the LPP algorithm to decrease the 

dimensionality of the feature space and rebuild the most efficient structure of features. The 

LLP-generated new feature vector was used as input features to build a KNN and an SVM 

classifier. Second, in order to reduce bias in case partitions or selection, we used a leave-one-

case-out (LOCO) based cross-validation method [164] to train the classifier and test its 

performance. In addition, to further reduce the possible bias in the feature or data reduction and 

classifier training, the LPP based feature or data reduction process was embedded in the LOCO-

based classifier training process to make the LPP-regenerated feature vectors independent of 

the testing cases. Thus, in each LOCO training and testing iteration, one case was selected from 

the dataset as a testing case that does not involve in the training process. LPP data reduction 

method was applied to the remaining training samples (i.e., 499 out of 500 samples in this 

study). The “best” or optimal group of features, which would be a mixture of input features to 

the classifier, was created by LPP to make an input feature vector for the classifier (i.e., KNN 

or SVM) in each training cycle. Then, the trained classifier was tested on an independent testing 

case by generating a risk prediction score. The higher score indicates the higher likelihood of 

the woman having or developing mammography-detectable breast cancer in the next 

subsequent mammography screening. As a result, output results are independent of input data, 

and results are unbiased. Similar LOCO cross-validation method with embedded feature 

selection or reduction has been applied and reported in our previous studies [121, 165]. 
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4.2.5 Experiments and Performance Evaluation 

In order to demonstrate potential advantages of achieving higher prediction performance 

using the proposed new method, we conducted a number of experiments. First, without feature 

selection, we trained and built the KNN and SVM-based machine learning prediction models 

using all 44 image features stored in the initial feature pool. Second, in order to remove low-

performed image features, we computed 44 AUC values when using each of image features to 

predict short-term cancer risk. By sorting the computed AUC values, we selected 10 features 

among the top 10 AUC value list and built a new machine learning classifier. Third, we 

performed an exhaustive search to determine the best size of the LPP-generated feature vector. 

For example, in KNN, from each of K number (i.e., from 2 to 10), we systematically increased 

the size of the LPP-generated feature vector from 2 to 10 to search for the optimal learning 

parameters. Last, we tested different parameters or learning kernels used in the machine 

learning classifier. For example, we tested different SVMs built based on different kernel 

functions, including Linear, RBF, Gaussian, and Polynomial functions. Finally, the 

experimental results were tabulated and compared. 

To evaluate the performance of the new machine learning scheme-generated risk prediction 

model or imaging marker, we used the following evaluation methods and indices. First, we 

conducted data analysis using a receiver operating characteristic (ROC) method. The area under 

ROC curve (AUC value) was computed and used as the evaluation index. Second, by applying 

an operating threshold on risk prediction scores (𝑇 = 0.5) to the testing data, we generated a 

confusion matrix with 4 parameters namely, (1) TP – true positive (high risk), (2) TN – true 

negative (low risk), (3) FP – false positive, and (4) FN – false-negative. From the confusion 

matrix, we computed overall risk prediction accuracy using the following equation.  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
(𝑇𝑃 + 𝑇𝑁)

𝑇𝑜𝑡𝑎𝑙 𝑛𝑎𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠
 4-9 
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Third, we sorted the risk prediction scores in an ascending order and selected 5 threshold 

values to divide all 500 testing cases into 5 subgroups (100 each). We computed adjusted odds 

ratios (ORs) and the 95% confidence intervals based on a multivariate statistical model using a 

publically available statistics software package (R version 2.1.1, http://www.r-project.org). An 

increasing trend between ORs and the classifier-generated breast cancer risk prediction scores 

was also computed and analyzed.  

4.3 Results 

When using all 44 image features included in our initial feature pool to train KNN and 

SVM based risk prediction classifiers, Figure 4-4 plots the distribution of cancer risk prediction 

accuracy when the number of neighbors (K) in the KNN classifier increases from 2 to 10, while 

Table 4-3 compares the difference of cancer risk prediction accuracy of applying 4 SVMs using 

4 different learning kernel functions. Results showed that using K = 5 and RBF-based learning 

kernel yielded the highest prediction accuracy of 63.2% and 60.8% for KNN and SVM 

classifiers, respectively. Using these two parameters, AUC values were 0.62 and 0.60 for KNN 

and SVM, respectively. Thus, KNN yielded higher prediction accuracy than SVM when 

applying to the image dataset assembled in this study. Next, after reducing the number of input 

image features from 44 to 10, which are listed as top performed features, a new KNN model 

yielded an increased risk prediction performance with AUC = 0.64 and overall accuracy of 

64.7%.        

Through the exhaustive search, we identified the best parameters to develop the proposed 

LPP-KNN based hybrid machine learning approach (as shown in Figure 4-3c) in which (1) LPP 

regenerated a new feature vector with 4 features from the original feature pool of 44 features 

and (2) the number of neighbors in the KNN model was K = 5. Table 4-4 is a confusion matrix 

generated by using the optimal LPP-KNN model. Using this new prediction model, the overall 

cancer risk prediction accuracy further increased to 68.2%. Figure 4-5 shows the ROC curve of 

http://www.r-project.org/
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using this optimal LPP-KNN model with AUC = 0.68 in comparison with the initial KNN 

model of using all 44 features. The increased AUC value when using this LPP-embedded 

machine learning approach is demonstrated. 

Table 4-3 Accuracy (%) of the whole 44 feature vector for SVM classifiers with different kernel 

functions. 

Kernel RBF Gaussian Polynomial Linear 

Accuracy (%) 60.80 60.20 51.02 56.4 

 

Table 4-4 Confusion matrix of the proposed risk model on 500 cases with Threshold = 0.5. 

Actual low-risk Cases high-risk Cases 

low-risk Cases 170 79 

high-risk Cases 80 171 

 

Table 4-5 Odds and Risk Ratio of the proposed KNN-LPP method. 

Significance level 95 % 

Risk Ratio 1.7597< 2.1519 <2.6316 

Absolute risk reduction 36.4% 

Relative risk reduction 53.5% 

Odds Ratio 3.1568< 4.5997 <6.7021 

Phi 0.3600 

Critical Odds Ratio (COR) 1.1006 
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Table 4-6 Adjusted ORs and 95 % CIs for five subgroups of cases. 

Number of Cases  

(Positive- Negative) 

 

Adjusted OR 

 

95 % CI 

23-77 1.00 Reference 

49-51 3.21 1.75-5.91 

46-54 2.85 1.55-5.24 

55-45 4.092 2.22-7.53 

77-23 11.20 5.8-21.65 

 

Table 4-5 summarizes several other parameters or assessment indices commonly computed 

and used in epidemiology studies to predict breast cancer risk. Using the threshold of (T = 0.5) 

to divide all testing cases into two risk classes, the odds ratio is 4.60 with a 95% confidence 

interval of [3.16, 6.70]. The data may indicate that women in the high-risk group have more 

than 4 times higher short-term breast cancer risk or probability of having or developing 

mammography-detectable cancer in the next subsequent breast cancer screening, which means 

12 to 18 months after the “prior” negative screening of interest, than the women classified in 

the low-risk group.  

In addition, after dividing 500 testing cases into 5 subgroups of 100 cases based on the 

LPP-KNN model generated cancer risk prediction scores (as shown in Table 4-6), the adjusted 

odd ratios increased from 1.0 in the 1st baseline subgroup of 100 cases with low-risk prediction 

scores to 11.2 in the 5th subgroup of 100 cases with the high-risk scores. Regression analysis 

result also demonstrated an increasing trend of the odds ratios with the increase in LPP-KNN 

model-predicted risk scores. The slope of the regression trend line between the adjusted odds 

ratios and the predicted risk scores is significantly different from the zero slope (p < 0.01). 
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Figure 4-4 Accuracy of 44 elements feature vector with KNN classifier system for 10 different K. 

 

Figure 4-5 Comparison of two ROC curves generated by the original KNN model using the initial 44 

features and the optimal LPP-KNN model using 4 features. 
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4.4 Discussion 

In this study, we proposed and tested a new approach to develop a computer-aided image 

processing, quantitative feature analysis, and machine learning scheme for predicting short-

term breast cancer risk, or the likelihood of women having or developing imaging detectable 

early breast cancer in the next subsequent mammography screening. This study has a number 

of unique characteristics compared to the previous studies reported in the literature to help 

improve efficacy in predicting short-term breast cancer risk and/or eventually establish a more 

effective personalized breast cancer screening paradigm.  

First, as shown in Figure 4-3(a) and (b), two types of ML methods are commonly applied 

in the medical imaging informatics field to date. The main disadvantage of a conventional 

machine learning method is requiring many subjectively defined or “handcrafted” image 

features. Although deep learning (DL) can automatically define DL-generated image features 

by directly learning from the sample images, which may more effectively define or represent 

the internal structure of image data, training a robust DL model typically requires a very large 

image dataset. In this study, we tested a third approach, which partially takes advantage of deep 

learning while also maintains the advantage of the conventional machine learning to be trained 

using a relatively small image dataset. In our approach, as shown in Figure 4-3(c), an LPP-

based feature regeneration algorithm was used to automatically learn and generate a small set 

of new features from a relatively large pool of initially computed image features. This process 

is different from the conventional feature selection, which selects optimal features from the 

initial feature pool (i.e., using a sequential forward floating selection (SFFS) feature selection 

method [136]. LPP aims to learn and redefine the effective features, which are different from 

any of the existing image features in the initial feature pool. Our study results demonstrated that 

using this LPP-based feature regeneration approach enabled us to create a smaller or compact 
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new feature vector and yield higher prediction performance than using either all initial image 

features or a set of selected highly performed features.   

Second, patient age is a well-known breast cancer risk factor with the highest 

discriminatory power in the existing epidemiology-based breast cancer risk models [153]. Our 

previous studies may have bias by using the datasets in which the average age of women in the 

higher risk group was significantly higher than the average age in the lower risk group [146]. 

In order to overcome this potential bias, we in this study assembled an age-matched image 

dataset (as shown in Table 4-1). As a result, we removed a potential biased impact factor. The 

study result is encouraging by comparing to the previous studies. Specifically, although the 

highest adjustable odds ratio yielded in this study was very comparable or slightly higher than 

the results reported in our previous studies (i.e., 11.2 vs. 9.1 in [157] or 11.1 in [76]), using an 

age-matched dataset in this study may be important to demonstrate the robustness of developing 

a new optimal imaging marker based on bilateral asymmetry of mammographic tissue density 

between the left and right breasts.  

Third, although computer-aided image processing and breast cancer risk prediction 

schemes had been previously developed and tested by different research groups including our 

own using an “eager” machine learning methods or models (i.e., artificial neural network and 

support vector machine), we in this study also tested a “lazy” learning method using a KNN 

algorithm for the purpose of predicting short-term breast cancer risk. Our study results showed 

that KNN can be used not only to predict cancer risk, but also to yield higher prediction 

accuracy that an optimized SVM model using the same testing dataset and cross-validation 

method. This result is quite interesting and may be worth further investigation. Using a local 

instance-based learning method (i.e., a KNN algorithm) can provide great flexibility to develop 

a new ML-based imaging marker or prediction mode because it will be relatively easy to 

periodically add new image data to increase size and diversity of the reference database for the 
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instance-based learning model, without a complicated retraining to produce a global 

optimization function, which is required by all other “eager” learning methods ([8, 166]).  

In addition, we can also make a number of potentially interesting observations from our 

experimental results. For example, the highest AUC value using all 44 features was 0.62. While 

keeping K = 5 in the KNN learning model, removing 34 lower performed features enabled an 

increase of AUC value by 3.2% from 0.62 to 0.64. Furthermore, when adopting an LPP-KNN 

model using 4 LPP-regenerated features, AUC increased to 0.68 (representing a 9.7% increase). 

Thus, the results confirmed that although a large number of image features can be initially 

computed, removing lower performed and redundant features, as well as generating more 

effective features, played an important role to increase the performance of multi-feature fusion-

based machine learning models. Applying LPP does not only reduce the dimension of feature 

space, but also it is able to reorganize the new feature vector to achieve lower amount of 

redundancy and maximum variance. Hence, the LPP-regenerated feature vector represents an 

optimal combination of the highly effective parts of all input features.  

Fourth, although the size of our dataset is limited to 500 or 250 per class, applying the LPP 

feature regeneration approach also helped to increase the robustness of the testing result. 

Specifically, using the LPP approach increased the ratio between the training cases per class 

and image features from the original 5.7 (250/44) using all 44 features in the initial feature pool 

to 62.5 (250/4) using only 4 LPP-regenerated features. Thus, based on the machine learning 

theory, increasing this ratio will increase the robustness of the machine learning classifier to 

reduce the risk of overfitting. In addition, we used a leave-one-case-out (LOCO) cross-

validation method to train and test the classifier, which also eliminates the bias of case partition 

or selection.   

Despite the encouraging results, this is a proof-of-concept type study with several 

limitations, which need to be addressed and/or overcome in future studies. First, although LPP 
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is able to regenerate an optimal image feature vector, its ultimate performance depends on the 

quality of initial feature pool. The initial feature pool with 44 features used in this study may 

not have been an optimal feature pool. Thus, we will continue our efforts to improve the 

computer-aided image processing scheme to more accurately and robustly segment dense 

mammographic tissue regions and compute image features. Second, due to the potential 

compression difference between left and right breasts, breast sizes and density overlapping ratio 

(or pixel values) depicting on two bilateral images may not be the same. In order to reduce the 

potential errors in computing feature difference, we need to continue investigating new methods 

to compensate the difference and reduce the errors. Third, since the regions near breast skin and 

behind chest wall have high pixel values in mammograms, in order to avoid adding them into 

the dense fibro-glandular tissue volume, we need to develop a more accurate method to 

automatically remove these regions without losing significant information of breast area. 

Fourth, it is also important to more effectively detect and compensate other types of image 

noise, which may exist and vary in screening mammograms due to the variety of technical 

issues in conducting mammography examinations on different individual women. The goal is 

to develop a more robust computer-aided image processing scheme to achieve high accuracy in 

mammographic dense tissue segmentation. Last, this study only used and analyzed images 

acquired from one “prior” mammography screening. In the future studies, we will collect more 

cases with multiple “prior” mammography screenings and investigate the feasibility of 

improving the performance of short-term breast cancer risk prediction by combining the image 

feature variation trend among the multiple mammography screenings into the risk prediction 

models.  
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5 Applying a Random Projection Algorithm to Optimize 

Machine Learning Model for Breast Lesion Classification  

5.1 Introduction 

Developing Computer-aided detection and diagnosis (CAD) schemes of medical images 

have been attracting broad research interest in order to detect suspicious diseased regions, 

classify between malignant and benign lesions, quantify disease severity, and predict disease 

prognosis or monitor treatment efficacy. Some CAD schemes have been used as “a second 

reader” or quantitative image marker assessment tools in clinical practice to assist clinicians 

(i.e., radiologists) aiming to improve image reading accuracy and reduce the inter-reader 

variability [167]. Despite of extensive research effort and progress made in the CAD field, 

researchers still face many challenges in developing CAD schemes for clinical applications [1, 

168, 169]. For example, in developing CAD schemes, machine learning plays a critical role, 

which use image features to train classification models to predict the likelihood of the analyzed 

regions depicting or patterns representing diseases. However, due to the great heterogeneity of 

disease patterns and the limited size of image datasets, how to identify a small and optimal 

image feature vector to build the highly performed and robust machine learning models remains 

a difficult task.  

In current CAD schemes, after image preprocessing to reduce image noise, detecting and 

segmenting suspicious regions of interest (ROIs), CAD schemes can compute many image 

features from the entire image region or the segmented ROIs [170]. Recently, two methods have 

attracted broad research interest to compute image features. One uses a deep transfer learning 

model as an automated feature extractor (i.e., extracting 4,096 features in a fully connected 

layer (FC6 or FC7) of an AlexNet). The disadvantage of this approach is requiring very big 

training and validation image datasets, which are often not available in medical image fields. 
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Another approach uses radiomics concept and method to compute and generate an initial feature 

pool. Although Radiomics typically computes smaller number of features than deep learning 

based feature extractors, it may still compute many features (i.e., >1,000 image features, which 

mostly represent texture patterns of the segmented ROIs in variety of scanning directions as 

reported in previous studies [171, 172]). However, due to the limited size of the training 

datasets, such large number of image features can often drive to overfit machine learning 

models and reduce model robustness. Thus, it is important to build an optimal feature vector 

from the initially large feature pool in which the generated features should not be redundant or 

highly correlated [37, 173]. Then, machine learning models can be better trained to achieve the 

enhanced performance and robustness. In general, if the feature dimensionality reduction 

happens with choosing the most effective image features from the initial feature pool, it is 

known as feature selection (i.e., using sequential forward floating selection (SFFS) [136]). On 

the other hand, if the dimensionality reduction comes from reanalyzing the initial set of features 

to produce a new set of orthogonal features, it is known as feature regeneration (i.e., principal 

component analysis (PCA) and its modified algorithms [95]). Comparing between these two 

methods, feature regeneration method has advantages to more effectively eliminate or reduce 

redundancy or correlation in the final optimal image feature vector. However, most of medical 

image data or features have very complicated or heterogeneous distribution patterns, which may 

not meet the precondition that all feature variables are linear to optimally apply PCA-type 

feature regeneration methods.  

In order to better address this challenge and more reliably regenerate image feature vector 

for developing CAD schemes of medical images, we investigate and test another feature 

regeneration method namely, a random projection algorithm (RPA), which is an efficient way 

to map features into a space with a lower-dimensional subspace, while preserving the distances 

between points under better contrast. This mapping process is done with a random projection 

matrix. In the lower space since the distance is preserved, it will be much easier and reliably to 
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classify between two feature classes. Because of its advantages and high performance, RPA has 

been tested and implemented in a wide range of engineering applications including handwrite 

recognition [97], face recognition and detection [98], visual object tracking and recognition [99, 

100], and car detection [101].  

Thus, motivated by the success of applying RPA to the complex and nonlinear feature data 

used in many engineering application domains, we hypothesize that RPA also has advantages 

when applying to medical images with the heterogeneous feature distributions. To test our 

hypothesis, we conduct this study to investigate feasibility and potential advantages of applying 

RPA to build optimal feature vector and train machine learning model implemented in a new 

computer-aided diagnosis (CAD) scheme to classify between malignant and benign breast 

lesions depicting on digital mammograms. The details of the assembled image dataset, the 

experimental methods of feature regeneration using RPA and a support vector machine (SVM) 

model optimization, data analysis and performance evaluation results are presented in the 

following sections.  

5.2 Materials and Methods 

5.2.1 Image Dataset 

A fully anonymized dataset of full-field digital mammography (FFDM) images acquired 

from 1,487 patients are retrospectively assembled and used in this study. All cases were 

randomly selected by an institutional review board (IRB) certified research coordinator from 

the cancer repository and picture archive and communication system (PACS). All selected cases 

have suspicious soft-tissue mass type lesions previously detected by the radiologists on the 

mammograms. Based on lesion biopsy results, 644 cases depict malignant lesions and 843 cases 

had benign lesions. These patients have an age range from 35 to 80 years old. Table 5-1 

summarizes and compares case distribution information of patients’ age and mammographic 

density rated by radiologists using breast imaging reporting and data system (BIRADS) 
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guidelines. As shown in the table, patients in benign group are moderately younger than the 

patients in the malignant group. However, there is not a significant difference of 

mammographic density between the two groups of patients (𝑝 = 0.576).  

Table 5-1 Case numbers and percentage distribution of patients' age and mammographic density 

rated by radiologists using BIRADS guidelines. 
 

Subgroup Malignant 

Cases 

Benign 

Cases 

Density BIRADS  

1 

 

25 (3.9%) 

 

58 (6.9%) 

 2 186 (28.8%) 262 (31.1%) 

 3 401 (62.3%) 502 (59.5%) 

p-value = 0.576 4 32 (5.0%) 21 (2.5%) 

Age of Patients  

(years old) 

 

 

A < 40 

 

 

11 (3.4%) 

 

 

71 (8.4%) 

 40 ≤ A < 50 109(19.2%) 158(18.7%) 

 50 ≤ A < 60 167(25.6%) 285(33.8%) 

 60 ≤ A < 70 180(24.4%) 192(22.8%) 

 70 ≤ A 177(27.4%) 137(16.3%) 

All FFDM images were acquired using one type of digital mammography machines 

(Selenia Dimensions made by the Hologic Company), which have a fixed pixel size of 70𝜇𝑚 

in order to detect microcalcifications. Since in this study, we only focus on classification of soft 

tissue mass type lesions, all images are thus subsampled using a pixel averaging method with a 

5 × 5 pixel frame, so that the pixel size of the subsampled images increases to 0.35mm. This 

subsample method has been used and reported in many of our previous CAD studies (i.e., [83, 

124]). Additionally, in this dataset, the majority of cases have two craniocaudal (CC) and 

mediolateral oblique (MLO) view mammograms of either left or right breast in which the 

suspicious lesions are detected by the radiologists, while small fraction of cases just have one 

CC or MLO image in which the lesions were detected. Overall, 1,197 images depicting 

malignant lesions and 1,302 images depicting benign lesions are available in this image dataset. 

All lesion centers are visually marked by the radiologists using a custom-designed interactive 

graphic user interface (GUI) tool. The marked lesion centers are recorded and used as “ground-

truth” to evaluate CAD performance [124].   
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5.2.2 Initial Image Feature Pool with a High Dimensionality 

In developing CAD schemes to classify between malignant and benign breast lesions, many 

different approaches have been investigated and applied to compute image features including 

those computed from the segmented lesions [10], the fixed regions of interest (ROIs) [174] and 

the entire breast area [83]. Each approach has advantages and disadvantages. However, their 

classification performance may be quite comparable with an appropriate training and 

optimization process. Thus, since this study focus on investigating the feasibility and potential 

advantages of a new feature dimensionality reduction method of RPA, we will use a simple 

approach to compute the initial image features from both the fixed ROI and the segmented 

lesion regions. 

Since classification between malignant and benign lesions is a difficult task, which depends 

on optimal fusion of many image features related to tissue density heterogeneity, speculation 

of lesion boundary, as well as variation of surrounding tissues. Previous studies have 

demonstrated that statistics and texture features can be used to model these valuable image 

features including intensity, energy, uniformity, entropy, and statistical moments, etc. Thus, 

like most CAD schemes using the ROIs with a fixed size as classification targets (including the 

schemes using deep learning approaches [12]), this CAD scheme also focuses on using the 

statistics and texture-based image features computed from the defined ROIs and the segmented 

lesion regions. For this purpose, following methods are used to compute image features that are 

included in the initial feature pool. 

First, from a ROI of an input image, gray level difference method (GLDM) is used to 

compute the occurrence of the absolute difference between pairs of gray levels divided in a 

particularly defined distance in several directions. It is a practical way for modeling analytical 

texture features. The output of this function is four different probability distributions. For an 

image 𝐼(𝑚, 𝑛), we consider displacement in different directions like 𝛿(𝑑𝑥, 𝑑𝑦), then 𝐼(𝑚, 𝑛) =
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|𝐼(𝑚, 𝑛) − 𝐼(𝑚 + 𝑑𝑥, 𝑛 + 𝑑𝑦)| estimates the absolute difference between gray levels, where 

𝑑𝑥, 𝑑𝑦 are integer values. Now it is possible to determine an estimated probability density 

function for 𝐼(𝑚, 𝑛) like 𝑓(. |𝛿) in which 𝑓(𝑖|𝛿) = 𝑃(𝐼(𝑚, 𝑛) = 𝑖). It means for an image with 

𝐿 gray levels, the probability density function is 𝐿-dimensional. The components in each index 

of the function show the probability of 𝐼(𝑚, 𝑛) with the same value of the index. In the proposed 

method implemented in this CAD study, we consider 𝑑𝑥 = 𝑑𝑦 = 11, which is calculated 

heuristically [175]. The probability functions are computed in four directions (𝜑 = 0, 𝜋/4,

𝜋/2, 3𝜋/4), which signifies that four probability functions are computed to provide the 

absolute differences in four primary directions that each of which is used for feature extraction. 

Second, a gray-level co-occurrence matrix (GLCM) estimates the second-order joint 

conditional probability density function. The GLCM carries information about the locations of 

pixels having similar gray level values, as well as the distance and angular spatial correlation 

over an image sub-region. To establish the occurrence probability of pixels with the gray level 

of 𝑖, 𝑗 over an image along a given distance of 𝑑 and a specific orientation of 𝜑, we have 

𝑃(𝑖, 𝑗, 𝑑, 𝜑). In this way, the output matrix has a dimension of the gray levels (𝐿) of the image 

[176]. Like GLDM, we compute four co-occurrence matrices in four cardinal directions (𝜑 =

0, 𝜋/4, 𝜋/2, 3𝜋/4). GLCM is rotation invariant. We combine the results of different angles 

in a summation mode to obtain the following probability density function for feature extraction, 

which is also normalized to reduce image dependence. 

𝑃(𝑖, 𝑗) =  ∑ 𝑃(𝑖, 𝑗, 𝑑 = 2, 𝜑)

𝜑=0,𝜋/4,𝜋/2,3𝜋/4

 

𝑃(𝑖, 𝑗) =
𝑃(𝑖, 𝑗)

∑ ∑ 𝑃(𝑖, 𝑗)𝑗𝑖
; 𝑖, 𝑗 = 1,2,3, … , 𝐿 

5-1 

 

Third, a gray level run length matrix (GLRLM) is another popular way to extract textural 

features. In each local area depicting suspicious breast lesion, a set of pixel values are searched 
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within a predefined interval of the gray levels in several directions. They are defined as gray 

level runs. GLRM calculates the length of gray-level runs. The length of the run is the number 

of pixels within the run. In the ROI, spatial variation of the pixel values for benign and 

malignant lesions may be different, and gray level run is a proper way to delineate this variation. 

The output of a GLRM is a matrix with elements that express the number of runs in a particular 

gray level interval with a distinct length. Depending on the orientation of the run, different 

matrices can be formed [177]. We in this study consider four different directions (𝜑 = 0,

𝜋/4, 𝜋/2, 3𝜋/4) for GLRM calculations. Then, just like GLCM, GLRM is also rotation 

invariant. Thus, the output matrices of different angles in a summation mode are merged to 

generate one matrix. 

Fourth, in addition to the computing texture features from the ROI of the original image in 

the spatial domain, we also explore and conduct multiresolution analysis, which is a reliable 

way to make it possible to perform zooming concept through a wide range of sub-bands in more 

details [178]. Hence, textural features extracted from the multiresolution sub-bands manifest 

the difference in texture more clearly. Specifically, a wavelet transform is performed to extract 

image texture features. Wavelet decomposes an image into the sub-bands made with high-pass 

and low-pass filters in horizontal and vertical directions followed by a down-sampling process. 

While down-sampling is suitable for noise cancelation and data compression, high-pass filters 

are beneficial to focus on edge, variations, and the deviation, which can show and quantify 

texture difference between benign and malignant lesions. For this purpose, we apply 2D 

Daubechies (Db4) wavelet on each ROI to get approximate and detailed coefficients. From the 

computed wavelet maps, a wide range of texture features is extracted from principal 

components of this domain. 

Moreover, analyzing geometry and boundary of the breast lesions and the neighboring area 

is another way to distinguish benign and malignant lesions. In general, benign lesions are 

typically round, smooth, convex shaped, with well-circumscribed boundary, while malignant 
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lesions tend to be much blurry, irregular, rough, with non-convex shapes [179]. Hence, we also 

extract and compute a group of features that represent geometry and shape of lesion boundary 

contour. Then, we add all computed features as described above to create the initial pool of 

image features. 

5.2.3 Applying Random Projection Algorithm (RPA) to Generate Optimal Feature Vector 

Before using RPA to generate an optimal feature vector from the initial image feature pool, 

we first normalize each feature to make its value distribution between [0, 1] to reduce case-

based dependency and weight all features equally. Thus, for each case, we have a feature vector 

of size 𝑑, which is valuable to determine that case based on the extracted features as a point in 

a 𝑑 dimensional space. For two points like 𝑋 = (𝑥1, … , 𝑥𝑑), and 𝑌 = (𝑦1, … 𝑦𝑑), the distance 

in 𝑑 dimensional spaces define as: 

|𝑋 − 𝑌| = √∑(𝑥𝑗 − 𝑦𝑗)2
𝑑

𝑗=1

 

5-2 

 

In addition, it is also possible to define the volume 𝑉 of a sphere in a 𝑑 dimensional space 

as a function of its radius (𝑟) and the dimension of the space as (3). This equation is proved in 

[180]. 

𝑉(𝑑) =  
𝑟𝑑𝜋

𝑑
2

1
2𝑑Γ(

𝑑
2)

 
5-3 

 

The matrix of features is normalized between [0, 1]. It means a sphere with 𝑟 = 1 can 

encompass all the data. An interesting fact about a unit-radius sphere is that as equation (5-4) 

shows, as the dimension increase, the volume goes to zero. Since 𝜋
𝑑

2 is an exponential of 
𝑑

2
, 

while growing rate of Γ(
𝑑

2
) is a factorial of 

𝑑

2
. At the same time, the maximum possible distance 

between two points stays at 2.  
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lim
𝑑→∞

(
𝜋
𝑑
2

𝑑
2 Γ (

𝑑
2)
) ≅ 0 

5-4 

 

Moreover, based on the heavy-tailed distribution theorem, for a case like 𝑋 = (𝑥1, … , 𝑥𝑑) 

in the space of features, suppose with an acceptable approximation features are independent, or 

nearly perpendicular variables as mapped to different axes, with 𝐸(𝑥𝑖) = 𝑝𝑖, ∑ 𝑝𝑖 = 𝜇𝑑
𝑖=1  and 

𝐸|(𝑥𝑖 − 𝑝𝑖)
𝑘| ≤ 𝑝𝑖 for 𝑘 = 2,3, … , ⌊𝑡2/6𝜇⌋, then, the previous study [181] has proven that: 

𝑝𝑟𝑜𝑏(|∑𝑥𝑖 − 𝜇

𝑑

𝑖=1

| ≥ 𝑡) ≤ 𝑀𝑎𝑥 (3𝑒
−𝑡2

12𝜇, 4 × 2
−𝑡
𝑒 ) 

5-5 

 

We can perceive that the farther the value of 𝑡 increases, the smaller the chance of having 

a point out of that distance, which means that 𝑋 would be concentrated around the mean value. 

Overall, based on equations (5-4), and (5-5) with an acceptable approximation, all data are 

encompassed in a sphere of size one, and they are concentrated around their mean value. As a 

result, if the dimensionality is high, the volume of the sphere is close to zero. Hence, the contrast 

between the cases is not enough for a proper classification. 

Above analysis also indicates the more features included in the initial feature vector, the 

higher the dimension of the space is, and the more data is concentrated around the center, which 

makes it more difficult to have enough contrast between the features. A powerful technique to 

reduce the dimensionality while approximately preserves the distance between the points, 

which implies approximate preservation of the highest amount of information, is the key point 

that we are looking for. If we adopt a typical feature selection method and randomly select a k-

dimensional sup-space of the initial feature vector, it is possible to prove that all the projected 

distances in the new space are within a determined scale-factor of the initial d-dimensional 

space [182]. Hence, although some redundant features are removed, the final accuracy may not 

increase, since contrast between the points may still be not enough to present a robust model. 
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To address this issue, we take advantage of Johnson-Lindenstrauss Lemma to optimize the 

feature space. Based on the idea of this lemma, for any 0 < 𝜖 < 1, and any number of cases as 

𝑁, which are like the points in 𝑑-dimensional space (ℝ𝑑), if we assume 𝑘 as a positive integer, 

it can be computed as: 

𝑘 ≥ 4
ln𝑁

(
𝜖2

2 −
𝜖3

3 )
 

5-6 

 

Then, for any set 𝑉 of 𝑁 points in ℝ𝑑, for all 𝑢, 𝑣 ∈ 𝑉, it is possible to prove that there is 

a map, or random projection function like 𝑓:ℝ𝑑 → ℝ𝑘, which preserves the distance in the 

following approximation [183], which is known as Restricted Isometry Property(RIP): 

(1 −  𝜖)|𝑢 − 𝑣|2 ≤ |𝑓(𝑢) − 𝑓(𝑣)|2 ≤ (1 + 𝜖)|𝑢 − 𝑣|2 5-7 

Another arrangement of this formula is like: 

|𝑓(𝑢) − 𝑓(𝑣)|2

(1 +  𝜖)
≤ |𝑢 − 𝑣|2 ≤

|𝑓(𝑢) − 𝑓(𝑣)|2

(1 − 𝜖)
 5-8 

As these formulas show the distance between the set of points in the lower-dimension space 

is approximately close to the distance in high-dimensional space. This Lemma states that it is 

possible to project a set of points from a high-dimensional space into a lower dimensional space, 

while the distances between the points are nearly preserved. 

It implies that if we project the initial group of features into a space with a lower-

dimensional subspace using the random projection method, the distances between points are 

preserved under better contrast. This may help better classify between two feature classes 

representing benign and malignant lesions with low risk of overfitting.  

It should be noted that for an input matrix of features like Χ ∈ ℝ𝑛×𝑑, 𝑛 and 𝑑 represent the 

number of training samples and features, respectively. Unlike the principal component analysis 

(PCA) that assumes relationship among feature variables are linear and intends to generate new 

orthogonal features, RPA aims to preserve distance of the points (training samples) while 
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reducing the space dimensionality. Thus, using RPA will create a subspace Χ̃ = ΧR in which 𝑅 

satisfies the RIP condition, and 𝑅 ∈ ℝ𝑑×𝑘, Χ̃ ∈ ℝ𝑛×𝑘. Since the subspace's geometry is 

preserved, previous studies [184, 185] proved that a SVM based machine learning classifier 

could better preserve the characteristics of the image dataset to build the optimal hyperplane 

and thus reduce the generalization error. In other words, if an SVM classifier makes the 

resulting margin 𝛾∗ = 1 ‖𝑤∗‖2⁄  for its optimal hyperplane (𝑤∗) after solving the optimization 

problem on the initial feature space of Χ, and on the subspace of Χ̃, it makes the resulting margin 

�̃�∗ = 1 ‖�̃�∗‖2⁄  for the respective optimized hyperplane (�̃�∗). Another study [186] proved that 

hinge loss (for margin �̃�∗) of the classifier trained on the subspace data (Χ̃) is less than that (𝛾∗) 

of the classifier trained on the original data (Χ). Strictly speaking, the trained classifier's error 

rate on the optimized subspace generated using RPA is lower than that of the classifier trained 

on the original space. It indicates that training a machine learning classifier using an optimal 

subspace under RIP condition can build a more accurate and robust model for the classification 

purpose. 

In this study, we investigate and demonstrate whether using RPA can yield better results 

as compared to other popular feature dimensionality reduction approaches (i.e., PCA). 

5.2.4 Experiment of Feature Combination and Dimensionality Reduction 

First, the proposed CAD scheme applies an image preprocessing step to the whole images 

in the dataset to read them one by one, and based on the lesion centers pre-marked by the 

radiologists to extract a squared ROI area in which the centers of the lesion and ROI overlap. 

In order to identify the optimal size of the ROIs, a heuristic method is applied to select and 

analyze ROI size. Basically, the different ROI sizes (i.e., in the range from 128×128 to 180×180 

pixels) are examined and compared. From the experiments, we observe that the ROIs with size 

of 150×150 pixels generate the best classification results applying to this large and diverse 
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dataset, which reveals that this is the most efficient size to cover all mass lesions included in 

our diverse dataset, which corresponds to use the ROI of 52.5 × 52.5𝑚𝑚2. Figure 5-1 shows 

examples of 4 ROIs depicting two malignant lesions and two benign lesions. After ROI 

determination, all the images in the dataset are saved in Portable Network Graphics (PNG) 

format with 16 bits in the lossless mode for the feature extraction phase. 

a) 

 

b) 

 

c) 

 

d) 

 

Figure 5-1 Example of 4 extracted ROIs with the detected suspicious soft-tissue masses (lesions) in 

ROI center. a,b) 2 ROIs involving malignant lesions and c,d) 2 ROIs involving benign lesions. 

Next, the CAD scheme is applied to segment lesion from the background. For this process, 

CAD applies an unsharp masking method in which a low-pass filter with a window-size of 30 

is first applied to filter the whole ROI. Next, CAD computes the absolute pixel value difference 

between the original ROI and the filtered ROI to produce a new image map that highlights the 

lesion and other regions (or blobs) with locally higher and heterogeneous tissue density. Then, 

CAD applies morphological filters (i.e., opening and closing) to delete the small and isolated 

blobs (with the pixel members less than 50), and repair boundary contour of the lesion and other 

remaining blobs with higher tissue density. Since in this study, the user clicks the lesion center 

and the ROI is extracted around this clicked point, the blob located in the center of ROI 

represents the segmented lesion. Figure 5-2 shows an example of applying this algorithm to 

locate and segment suspicious lesion from the surrounding tissue background. 
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(a) (b) (c) 

   

(d) (e) (f) 

 

Figure 5-2 Example to illustrate lesion segmentation, which include a) the original ROI, b) absolute 

difference of ROI from low-pass filtered version, c) combination of (a) and (b) which gives the 

suspicious regions better contrast to the background, d) output of of morphological filtering, e) blob 

with the largest size is selected (a binary version of the lesion), and f) finally segmented lesion area. It 

is output of mapping (e) to (a). 

Table 5-2 List of computed features on ROI area 

Feature category Feature Description 

Density related 

features 

1.Mean, 2. variance, 3. skewness, 4. kurtosis, 5. entropy, 6. correlation, 7. 

energy, 8. root mean square level, 9. uniformity, 10. max, 11. min, 12. 

median, 13. range, 14. mean absolute deviation, 15. Contrast, 16. 

homogeneity, 17. smoothness, 18. inverse difference movement, 19. 

suspicious regions volume, 20. standard deviation. 

After image segmentation, CAD scheme computes several sets of the relevant image 

features. The first group of features are the pixel value (or density) related statistics features as 

summarized in Table 5-2. These 20 statistics features are repeatedly computed from three types 

of images namely, 1) the entire ROI of the original images (as shown in Figure 5-2(a)), 2) the 

segmented lesion region (as shown in Figure 5-2(f)), and 3) all highly dense and heterogeneous 

tissue blobs (as shown in Figure 5-2(d)). Thus, this group of features includes 60 statistics 

features. 

The second group of features is computed from the GLRLM matrix of the ROI area. For 

this purpose, 16 different quantization levels are considered to calculate all probability 

functions in four different directions from the histograms. After combining the probability 
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functions, on rotation invariance version of them, the following group of features is computed. 

Features are short-run emphasis, long-run emphasis, gray level non-uniformity, run percentage, 

run-length non-uniformity, low gray level run emphasis, and high gray level run emphasis. 

Hence, this group of features includes seven GLRM-based features. 

The third group of features includes GLDM based features computed from the entire ROI. 

Specifically, we select a distance value of 11 pixels for the inter-sample distance calculation. 

CAD computes four different probability density functions (PDFs) based on the image 

histogram calculation in different directions. The PDF (𝑝) with (𝜇) as the mean of the 

population, standard deviation, root mean square level, and the first four statistical moments 

(𝑛 = 1, 2, 3, 4) with the following equation are calculated as features. 

�̂�𝑛 = ∑𝑝𝑖(𝑥𝑖 −  𝜇)
𝑛

𝑁

𝑖=1

 5-9 

It is an unbiased estimate of nth moment possible to calculate by: 

𝑚𝑛 = ∫ 𝑝(𝑥)𝑥𝑛𝑑𝑥

∞

−∞

 5-10 

As shown in equation 10, 𝑝(𝑥) is weighted by 𝑥𝑛. Hence, any change in the р(x) is 

polynomially reinforced in the statistical moments. Thus, any difference in the four PDFs 

computed from malignant lesions is likely to be polynomially reinforced in the statistical 

moments of the computed coefficients. Six features from each of four GLDM based PDFs make 

this feature group, which has total 24 features. 

The fourth group of features computes GLCM based texture feature. Based on the method 

proposed in the previous study [187], our CAD scheme generates a matrix of 44 textural 

features computed from GLCM matrix based on all GLCM based equations proposed in [176]. 
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In this way any properties of the GLCM matrix proper for the classification purpose is granted. 

Hence, this group contains 44 features computed from the entire ROI. 

 

Figure 5-3 Wavelet based feature extraction. Wavelet decomposition is applied three times to make 

the images compress as possible. Then PCA is adopted as another way of data compression. 

 

Table 5-3 List of Wavelet-based extracted features. 

Feature category Feature Description  

Wavelet-based 

features 

1. Contrast, 2. Correlation, 3. Energy, 4. Homogeneity, 5. Mean, 6. Standard 

deviation, 7. Entropy, 8. Root mean square level, 9. Variance, 10. Smoothness, 

11. Kurtosis, 12. Skewness, 13. IDM 

 

Table 5-4 List of Geometrical-based extracted features. 

Feature category Feature Description  

Geometrical based 

features 
1. Area, 2. Major Axis Length, 3. Minor Axis Length, 4. Eccentricity, 5. 

Orientation, 6. Convex Area, 7. Circularity, 8. Filled Area, 9. Euler Number, 

10. Equivalent Diameter, 11. Solidity, 12. Extent, 13. Perimeter, 14. Perimeter 

Old,15. Max Feret Diameter,16. Max Feret Angle,18. Min Feret Diameter,19. 

Min Feret Angle, 20. Roundness Ratio. 

The fifth group of features includes wavelet-based features. The Daubechies wavelet 

decomposition is accomplished on the original ROI (i.e., Figure 5-2(a)). Figure 5-3 shows a 

block diagram of the wavelet-based feature extraction procedure. The last four sub-bands of 

wavelet transform are used to build a matrix of four sub-bands in which principal components 

of this matrix are driven for feature extraction and computation. The computed features are 

listed in Table 5-3. We also repeat the same process to compute wavelet-based feature from the 
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segmented lesion (i.e., Figure 5-2(f)). As a result, this feature group includes 26 wavelet-based 

image features. 

Last, to address the differences between morphological and structural characteristics of 

benign and malignant lesions, another group of geometrical based features is derived and 

computed from the segmented lesion region. For this purpose, a binary version of the lesion, 

like what we showed in Figure 5-2 (e), is first segmented from the ROI area. Then, all the 

properties listed in Table 5-4 are calculated from the segmented lesion region in the image using 

the equations reported in [188]. 

By combining all features computed in above 6 groups, CAD scheme creates an initial pool 

of 181 image features. Then, RPA is applied to reduce feature dimensionality and generate an 

optimal feature vector. For this purpose, we utilize sparse random matrix as the projection 

function to achieve the criteria as defined in equation (5-7). Sparse random matrix is a memory 

efficient and fast computing way of projecting data, which guarantees the embedding quality 

of this idea. To do so, if we define 𝑠 = 1/𝑑𝑒𝑛𝑠𝑖𝑡𝑦, in which 𝑑𝑒𝑛𝑠𝑖𝑡𝑦 defines ratio of non-zero 

components in the RPA, the components of the matrix as random matrix elements (RME) are:  

𝑅𝑀𝐸 =  

{
 
 
 

 
 
 −√

𝑠

𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
,                          1 2𝑠⁄

0 ,          𝑤𝑖𝑡ℎ 𝑝𝑟𝑜𝑏𝑎𝑏𝑖𝑙𝑖𝑡𝑦    1 − 1 𝑠⁄

√
𝑠

𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠
,                              1 2𝑠⁄

 5-11 

In this process, we select 𝑛𝑐𝑜𝑚𝑝𝑜𝑛𝑒𝑛𝑡𝑠, which is the size of the projected subspace. As 

recommended in [189], we consider number of non-zero elements to the minimum density, 

which is: 1
√𝑛_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠⁄  . 
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5.2.5 Development and Evaluation of Machine Learning Model 

After processing images and computing image features from all 1,197 ROIs depicting 

malignant lesions and 1,302 ROIs depicting benign lesions, we build machine learning model 

to classify between malignant and benign lesions by taking following steps or measures. Figure 

5-4 shows a block diagram of the machine learning model along with the training  

and testing process. First, although many machine learning models (i.e., artificial neural 

networks, K-nearest neighborhood network, Bayesian belief network, support vector machine) 

have been investigated and used to develop CAD schemes, based on our previous research 

experience [83], we adopt the support vector machine (SVM) to train a multi-feature fusion 

based machine leaning model to predict the likelihood of lesions being malignancy in this study. 

Under a grid search and hyperparameter analyses, linear kernel implemented in SVM model 

can achieve a low computational cost and high robustness in prediction results as well. 

 

Figure 5-4 Illustration of the overall classification flow of the CAD scheme developed and tested in 

this study. 

Second, we apply the RPA to reduce the dimensionality of image feature space and map to 

the most efficient feature vector as input features of the SVM model. To demonstrate the 

potential advantages of using RPA in developing machine learning models, we build and 

compare 5 SVM models, which using all 181 image features included in the initial feature pool, 

and embedding 4 other feature dimensionality reduction methods including (1) random 



 

 101  

 

projection algorithm (RPA), (2) principal component analyses (PCA), (3) nonnegative matrix 

factorization (NMF), and (4) Chi-squared (Chi2).   

Third, to increase size and diversity of training cases, as well as reduce the potential bias 

in case partitions, we use a leave-one-case-out (LOCO) based cross-validation method to train 

SVM model and evaluate its performance. All feature dimensionality reduction methods 

discussed in the second step are also embedded in this LOCO iteration process to train the SVM. 

This can diminish the potential bias in the process of feature dimensionality reduction and 

machine learning model training as demonstrated in our previous study [121]. When the RPA 

is embedded in the LOCO based model training process, it helps generate a feature vector 

independent of the test case. Thus, the test case is unknown to both RPA and SVM model 

training process. In this way, in each LOCO iteration cycle, the trained SVM model is tested 

on a truly independent test case by generating an unbiased classification score for the test case. 

As a result, all SVM-generated classification scores are independent of the training data. In 

addition, other N-fold cross-validation methods (i.e., 𝑁 = 3, 5, 10) are also tested and compared 

with LOCO method in the study. 

Fourth, since majority of lesions detected in two ROIs from CC and MLO view 

mammograms, in the LOCO process, two ROIs representing the same lesion will be grouped 

together to be used for either training or validation to avoid potential bias. After training, ROIs 

in one remaining case will be used to test the machine learning model that generates a 

classification score to indicate the likelihood of each testing ROI depicting a malignant lesion. 

The score ranges from 0 to 1. The higher score indicates a higher risk of being malignant. In 

addition to the classification score of each ROI, a case-based likelihood score is also generated 

by fusion of two scores of two ROIs representing the same lesion depicting on CC and MLO 

view mammograms. 
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Fifth, a receiver operating characteristic (ROC) method is applied in the data analysis. Area 

under ROC curve (AUC) is computed from the ROC curve and utilized as an evaluation index 

to evaluate and compare performance of each SVM model to classify between the malignant 

and benign lesions. Then, we also apply an operating threshold of T = 0.5 on the SVM-

generated classification scores to classify or divide all testing cases into two classes of 

malignant and benign cases. By comparing to the available ground-truth, a confusion matrix for 

the classification results is determined for each SVM. From the confusion matrix, we compute 

classification accuracy, sensitivity, specificity, and odds ratio (OR) of each SVM model based 

on both lesion region and case. In the region-based performance evaluation, all lesion regions 

are considered independent, while in the case-based performance evaluation, the average 

classification score of two matched lesion regions (if the lesions are detected and marked by 

radiologists in both CC and MLO view) is computed and used. In this study, all pre-processing 

and feature extraction steps to make the matrix of features are conducted using the MATLAB 

R2019a package. 

5.3 Results 

Figure 5-5 shows a malignant case as an example in which radiologists annotate the lesion 

center in both CC and MLO view mammograms. Based on the marked center, we plot two 

square areas on two images in which the CAD scheme computes image features. Using the 

whole feature vector of 181 image features, the SVM-model generates the following 

classification scores to predict the likelihood of  two lesion regions on two-view images being 

malignant, which are 𝑆𝐶𝐶𝑣𝑖𝑒𝑤 = 0.685, and 𝑆𝑀𝐿𝑂𝑣𝑖𝑒𝑤 = 0.291. The case-based classification 

score is 𝑆𝐶𝑎𝑠𝑒 = 0.488. When using the feature vectors generated by the RPA, the SVM-model 

generates two new classification scores of these two lesion regions, which are 𝑆𝐶𝐶𝑣𝑖𝑒𝑤 = 0.817, 

and 𝑆𝑀𝐿𝑂𝑣𝑖𝑒𝑤 = 0.375. Thus, the case-based classification score is 𝑆𝐶𝑎𝑠𝑒 = 0.596. As a result, 

using the SVM model trained using all 181 image features misclassifies this malignant lesion 
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into benign when an operating threshold (T = 0.5) is applied, while the SVM model trained 

using the embedded RPA increases the classification scores for both lesion regions depicting 

on CC and MLO view images. As a result, it is correctly classified as malignant with the case-

based classification score greater than the operating threshold. 

Table 5-5 summarizes the performance of using the original features computed in 6 

categories to classify between the malignant and benign lesions. As shown in this table, using 

the group of statistical features yields the highest classification accuracy among 6 categories of 

features. Figure 5-6 shows a curve indicating the variation trend of the AUC values of the SVM 

models trained and tested using different number of features (ranging from 50 to 100) generated 

by the proposed RPA. The trend result indicates that using a reduced feature dimensionality 

with 80 features, the SVM yields the highest AUC value of 0.84. 

 

Figure 5-5 A malignant case annotated by radiologists in both CC and MLO views. The annotated 

mass is squared in each view. 

Table 5-5 Accuracy of the SVM models for case-based classification based on six different categories 

of the original features. 

Feature category Number of features Accuracy (%) 

Statistical features 60 66 

GLRLM 7 59 

GLDM 24 56 

GLCM 44 61 

Wavelet-based 26 60 

Geometrical based 20 63 
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Figure 5-6 A trend of the case-based classification AUC values generated by the SVM models trained 

using different number of features (NF) generated by the RPA. 

Table 5-6 shows and compares the average number of the input features used to train 5 

SVM models with and without embedding different feature dimensionality reduction methods, 

lesion region-based and case-based classification performance of AUC values. When 

embedding a feature dimensionality reduction algorithm, the size of feature vectors in different 

LOCO-based SVM model training and validation cycle may vary. Table 5-6 shows that average 

number of features is reduced from the original 181 features to 100 or less. When using RPA, 

the average number of features is 80. From both Table 5-6 and Figure 5-7, which show and 

compare the corresponding AUC values and ROC curves, we observe that an SVM model 

trained using an embedded RPA feature dimensionality reduction method produces the 

statistically significantly higher or improved classification performance, including a case-based 

AUC value of 0.84±0.01 as compared to all other SVM models (p < 0.05) including the SVM 

trained using the initial feature pool of 181 features and other SVM models embedded with 

other three feature dimensionality reduction methods namely, principal component analyses 

(PCA), nonnegative matrix factorization (NMF) and Chi-squared (Chi2) in the classification 

model training process. In addition, the data in Table 5-6 and ROC curves in Figure 5-7 also 

indicate that the case-based lesion classification yields higher performance than the region-

based classification performance, which indicates that using and combining image features 

computed from two-view mammograms has advantages. 
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Table 5-6 Summary of the average number of image features used in 5 different SVM models and 

classification performance (AUC) based on both region and case-based lesion classification. P-value 

compares the results of each model to the last one (RPA) as the optimal method. 

Feature  

sub-groups 
Number of features AUC 𝒑 value 

Original features, region based 181 0.72  0.004 

Original features, case based 181 0.74  0.005 

NMF, region based 100 0.73  0.005 

NMF, case based 100 0.77 0.023 

Chi2, region based 76 0.73  0.005 

Chi2, case based 76 0.75  0.015 

PCA, region based 83 0.75  0.011 

PCA, case based 83 0.79  0.041 

RPA, region based 80 0.78 0.035 

RPA, case based 80 0.84 --- 

 

Figure 5-7 Comparison of 10 ROC curves generated using 5 SVM models and 2 scoring (region and 

case-based) methods to classify between malignant and benign lesion regions or cases. 

Table 5-7 presents 5 confusion matrices of lesion case-based classification using 5 SVM-

models after applying the operating threshold (T = 0.5). Based on this table, several lesion 

classification performance indices like sensitivity, specificity, and odds ratio are measured and 

shown in Table 5-8. This table also shows that the SVM model trained based on the feature 

vector generated by the RPA yields the highest classification accuracy compared to the other 4 
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SVM models trained using feature vectors generated based on the other three dimensionality 

reduction methods or the original feature pool of 181 features. 

Table 5-7 Five comparison matrices of case-based lesion classification using five different SVM 

models to classify benign and malignant cases. 

Feature Group Predicted Actual Positive Actual Negative 

Original features Positive 399 212 

Negative 245 631 

NMF Positive 406 173 

Negative 238 670 

Chi2 Positive 405 194 

Negative 239 649 

PCA Positive 436 197 

Negative 208 646 

RPA Positive 452 177 

Negative 192 666 

 

Table 5-8 Summary of the lesion case-based classification accuracy, sensitivity, specificity, and odds 

ratio of using five SVMs trained using different groups of optimized features. 

Feature sub-

group 

Accuracy (%) Sensitivity (%) Specificity (%) Odds 

Ratio 

Original 

features 

69.3 62.0 75.0 4.85 

NMF 72.4 63.1 79.5 6.61 

Chi2 70.9 63.0 77.1 5.67 

PCA 72.8 68.0 76.6 6.87 

RPA 75.2 70.2 79.0 8.86 

Table 5-9 shows and compares the classification results using four different cross-

validation methods (𝑁 = 3, 5, 10 and LOCO). The results show two trends of performance 

decrease and standard deviation increase (in both AUC and accuracy) as the number of folds 

decreases from the maximum folds (LOCO) to the smallest folds (𝑁 = 3). This indicates that 

using LOCO yields not only the highest performance, but also probably the highest robustness 

due to the smallest standard deviation. 
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Table 5-9 Summary of the case-based lesion classification for the proposed method (RPA) under 

different cross-validation (CV) techniques. 

CV AUC Accuracy 

LOCO 0.84±0.04 75.2±4 

10-fold 0.83±0.05 74.0±4 

5-fold 0.82±0.07 73.1±5 

3-fold 0.80±0.10 70.8±9 

Additionally, to assess the reduction of feature redundancy after applying RPA, we create 

a feature correlation matrix, 𝑐𝑜𝑟𝑟(𝑖, 𝑗) with the number of 𝑀 features. Then, we compute a 

mean absolute value of the correlation matrix: 

𝑚𝑒𝑎𝑛 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛 =  
1

𝑀 ×𝑀
∑|𝑐𝑜𝑟𝑟(𝑖, 𝑗)|

𝑀

𝑖,𝑗=1

 5-12 

Two mean values of correlation computed from two correlation matrices generated using 

the feature space (or pools) before and after applying RPA are 0.49 and 0.31, respectively, 

which indicates that feature correlation coefficients after using RPA are reduced. Thus, using 

RPA can reduce not only the dimensionality of feature space, but also the redundancy of the 

feature space. 

Last, the computational processing tasks of applying RPA to generate optimal features and 

train the SVM model are performed using a Dell computer (Processor: Intel(R) Xeon CPU E5-

1603 v3, 2.8 GHz, and 16 GB RAM) and Python-based software package. For cross-validation 

process, we use the Sklearn-model library. For example, in the 10-fold cross-validation, the 

average computation time to complete one cross-validation iteration is approximately 38.12 

seconds.  

5.4 Discussion 

Mammography is a popular imaging modality used in breast cancer screening and early 

cancer detection. However, due to the heterogeneity of breast lesions and dense fibro-glandular 
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tissue, it is difficult for radiologists to accurately predict or determine the likelihood of the 

detected suspicious lesions being malignant. As a result, mammography screening generates 

high false-positive recall rates, and the majority of biopsies are approved to be benign [190]. 

Thus, to help increase breast lesion classification specificity and reduce unnecessary biopsies, 

developing CAD schemes to assist radiologists more accurately and consistently classifying 

malignant and benign breast lesions remains an active research topic [191]. In this study, we 

develop and assess a new CAD scheme of mammograms to predict the likelihood of the 

detected suspicious breast lesions being malignant. This study has the following unique 

characteristics as compared to other previous CAD studies reported in the literature.  

First, previous CAD schemes of mammograms computed image features from either the 

segmented lesion regions or the regions with a fixed size (i.e., squared ROIs to cover lesions 

with varying sizes). Both approaches have advantages and disadvantages. Due to the difficulty 

to accurately segment subtle lesions with fuzzy boundary, the image features computed from 

the automatically segmented lesions may not be accurate or reproducible, which reduces the 

accuracy of the computed image features to represent actual lesion regions. When using the 

fixed ROIs (including most DL-based CAD schemes [12, 192]), although it can avoid the 

potential error in lesion segmentation, it may lose and reduce the weight of the image features 

that are more relevant to the lesions due to the potential heavy influence of irregular fibro-

glandular tissue distribution surrounding the lesions with varying sizes. In this study, we tested 

a new approach that combines image features computed from both a fixed ROI and the 

segmented lesion region. In addition, comparing to the most of previous CAD studies as 

surveyed in the previous study, which used several hundreds of malignant and benign lesion 

regions [8], we assemble a much larger image dataset with 1,847 cases or 2,499 lesion region 

(including 1,197 malignant lesion regions and 1,302 benign lesion regions). Despite using a 

much larger image dataset, this new CAD scheme yields a higher classification performance 

(AUC = 0.84±0.01) as comparing to AUC of 0.78 to 0.82 reported in our previous CAD studies 
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that using much smaller image dataset (<500 malignant and benign ROIs or images) [12, 78]. 

Thus, although it may be difficult to directly compare the performance of CAD schemes tested 

using different image datasets as surveyed in [8], we believe that our new approach to combine 

image features computed from both a fixed ROI and the segmented lesion region has advantages 

to partially compensate the potential lesion segmentation error and misrepresentation of the 

lesions related image features, and enable to achieve an improved or very comparable 

classification performance. 

Second, since identifying a small but adequate and non-redundant image feature vector 

plays a vital role in CAD development to train machine learning classifiers or models, many 

feature selection or dimensionality reduction methods have been investigated and applied in 

previous studies. Although these methods can exclude many redundant and low-performed or 

irrelevant features in the initial pool of features, the challenge of how to build a small feature 

vector with orthogonal feature components to represent the complex and non-linear image 

feature space remains. For the first time, we in this study introduce the RPA to the medical 

imaging informatics field to develop CAD schemes. RPA is a technique that maximally 

preserves the distance between the sub-set of points in the lower-dimension space. As explained 

in the Introduction section, in the lower space under preserving the distance between points, 

classification is much more robust with a low risk of overfitting. This is not only approved by 

the simulation or application results reported in previous studies, it is also confirmed by this 

study. The results in Table 5-6 show that by using the optimal feature vectors generated by 

RPA, the SVM model yields significantly higher classification performance in comparison with 

other SVM models trained using either all initial features or other feature vectors generated by 

other three popular feature selection and dimensionality reduction methods. Using the RPA 

boosts the AUC value from 0.72 to 0.78 in comparison with the original feature vector in the 

lesion region-based analysis, and from 0.74 to 0.84 in the lesion case-base evaluation, which 

also enhances the classification accuracy from 69.3% to 75.2%, and approximately doubling 
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the odds ratio from 4.85 to 8.86 (Table 5-8). Thus, the study results confirm that RPA is a 

promising technique applicable to generate optimal feature vectors for training machine 

learning models used in CAD of medical images. 

Third, since the heterogeneity of breast lesions and surround fibro-glandular tissues 

distributed in 3D volumetric space, the segmented lesion shape and computed image features 

often vary significantly in two projection images (CC and MLO view), we investigate and 

evaluate CAD performance based on single lesion regions and the combined lesion cases if two 

images of CC and MLO views were available and the lesions are detectable on two-view 

images. Table 5-6 shows and compares lesion region-based and case-based classification 

performance of 5 SVM models. The result data clearly indicates that instead of just selecting 

one lesion region for likelihood prediction, it would be much more accurate when the scheme 

processes and examines two lesion regions depicting on both CC and MLO view images. For 

example, when using the SVM trained with the feature vectors generated by the RPA, the lesion 

case-based classification performance increases 7.7% in AUC value from 0.78 to 0.84 as 

comparing to the region-based performance evaluation. 

Last, although the study has tested a new CAD development method using an RPA to 

generate optimal feature vector and yielded encouraging results to classify between the 

malignant and benign breast lesions, we realize that the reported study results are made on a 

laboratory-based retrospective image data analysis process with several limitations. First, 

although the dataset used in this study is relatively large and diverse, whether this dataset can 

sufficiently represent the real clinical environment or breast cancer population is unknown or 

not tested. All FFDM images were acquired using one type of digital mammography machines. 

Due to the difference of the image characteristics (i.e., contrast-to-noise ratio) between FFDM 

machines made by different vendors, the CAD scheme developed in this study may not be 

directly and optimally applicable to mammograms produced by other types of FFDM machines. 

However, we believe that the concept demonstrated in this study is valid. Thus, the similar CAD 
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schemes can be easily retrained or fine-tuned using a new set of digital mammograms acquired 

using other different types of FFDM machines of interest. Second, in this retrospective study, 

the image dataset has a higher ratio between the malignant and benign lesions, which is different 

from the false-positive recall rates in the clinical practices. Thus, the reported AUC values may 

also be different from the real clinical practice, which needs to be further tested in future 

prospective clinical studies. Third, in the initial pool of features, we only extracted a limited 

number of 181 statistics, textural and geometrical features, which are much less than the number 

of features computed based on recently developed radiomics concept and technology [171, 

172]. Thus, more texture features can be explored in future studies to increase the diversity of 

the initial feature pool, which may also increase the chance of selecting or generating more 

optimal features. Additionally, many deep transfer learning models have been recently tested 

as feature extractors in the medical imaging field, which produce a much larger number of 

features than the radiomics approaches. Thus, whether using RPA can also help significantly 

reduce the dimensionality of these feature extractors to more effectively and robustly train or 

build the final classification layer of the DL models should be investigated in future studies.  
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6 Improving the performance of CNN to predict the 

likelihood of COVID-19 using chest X-ray images with 

preprocessing algorithms  

6.1 Introduction 

From the end of 2019, a new coronavirus namely COVID-19, was confirmed in human 

bodies as a new category of diseases that cause dangerous respiratory problems, heart infection, 

and even death. To more effectively control COVID-19 spread and treat patients to reduce 

mortality rate, medical images can play an important role [193, 194]. In current clinical practice, 

chest X-ray radiography and computed tomography (CT) are two imaging modalities to detect 

COVID-19, assess its severity, and monitor its prognosis (or response to treatment). Although 

CT can achieve higher detection sensitivity, chest X-ray radiography is more commonly used 

in clinical practice due to the advantages, including low cost, low radiation dose, easy-to-

operate and wide accessibility in the general or community hospitals [195, 196]. However, 

pneumonia can be caused by many different types of viruses and bacterial. Thus, it may be 

time-consuming and challenging for general radiologists in the community hospitals to read a 

high volume of chest X-ray images to detect subtle COVID-19 infected pneumonia and 

distinguish it from other community-acquired non-COVID-19 infected pneumonia. It is 

because there are many similarities between pneumonia infected by COVID-19 and other types 

of viruses or bacteria. Thus, this is a clinical challenge faced by the radiologists in this pandemic 

[197]. 

To address this challenge, developing computer-aided detection or diagnosis (CAD) 

schemes based on medical image processing and machine learning has been attracting broad 

research interest, which aims to automatically analyze disease characteristics and provide 
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radiologists valuable decision-making supporting tools for more accurate or efficient detection 

and diagnosis of COVID-19 infected pneumonia. To this aim, studies may involve the 

following steps of preprocessing images, segmenting regions of interest (ROIs) related to the 

targeted diseases, computing and identifying effective image features, and building multiple-

feature fusion-based machine learning models to detect and classify cases. For example, one 

study [198] computed 961 image features from the segmented ROIs depicting chest X-ray 

images. After applying a feature selection algorithm, a KNN classification model was built and 

yielded an accuracy of 96.1% to classify between COVID-19 and non-COVID-19 cases. 

However, due to the difficulty in identifying and segmenting subtle pneumonia-related 

disease patterns or ROIs on chest X-ray images, recent studies have demonstrated that 

developing CAD schemes based on deep learning algorithms without segmentation of 

suspicious ROIs and computing handcrafted image features is more efficient and reliable than 

the use of the classical machine learning methods. As a result, many deep learning models have 

been reported recently in the literature to detect and classify COVID-19 cases [195, 199-207]. 

Although some deep learning convolution neural network (CNN) models are applied to CT 

images [199, 200], more studies applied CNN models to detect and classify COVID-19 cases 

using chest X-ray images. They include different existing CNN models (i.e., Resnet50 [195, 

201], MobileNetV2 [202], CoroNet [203], Xception+ResNet50V2 [204]) and several new 

special CNN models (i.e., DarkCovidNet [205], COVID-Net [206] and COVIDX-Net [207]). 

These studies used different image datasets with a varying number of COVID-19 cases (i.e., 

from 25 to 224) among the total number of cases from 50 to 11,302. The reported sensitivity to 

detect COVID-19 cases ranged from 79.0% to 98.6%.       

Despite the promising results reported in previous studies, many issues have not been well 

investigated regarding how to train deep learning models optimally. For instance, whether 

applying image preprocessing algorithms can help to improve the performance and robustness 

of the deep learning models. To better address some of the challenges or technical issues, we in 
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this study develop and test a new DL-based CAD scheme of chest X-ray radiography images. 

The scheme can detect and classify images into 3 classes namely, COVID-19 infected 

pneumonia, the other community-acquired non-COVID-19 infected pneumonia, and normal 

(non-pneumonia) cases. The hypothesis in this study is that instead of directly using the original 

chest X-ray images to train deep learning models, we can apply image processing algorithms 

to remove the majority of diaphragm regions, normalize image contrast and reduce image noise, 

and generate a pseudo color image to feed in 3 input channels of the existing deep learning 

models that were pre-trained using color (RGB) images in the transfer learning process. It may 

help significantly improve model performance and robustness in detecting COVID-19 cases 

and distinguishing them from other community-acquired non-COVID-19 infected pneumonia 

cases. To test this study hypothesis and demonstrate the potential advantages of new 

approaches, we assemble a relatively large chest X-ray image dataset with 3 class cases. Then, 

we select a well-trained VGG16 based CNN model as a transfer learning model used in our 

CAD scheme. The details of the study design and data analysis results are reported in the 

following sections of this article.  

6.2 Materials and Methods 

6.2.1 Dataset 

In this study, we utilize and assemble a dataset of chest X-ray radiography (CXR) images 

that are acquired from several different publicly available medical repositories [208-212]. These 

repositories were initially created and examined by the Allen Institute for AI in partnership with 

the Chan Zuckerberg Initiative, Georgetown University’s Center for Security and Emerging 

Technology, Microsoft Research, and the National Library of Medicine - National Institutes of 

Health, in coordination with The White House Office of Science and Technology Policy. 

Specifically, the dataset used in this study includes 8,474 2D X-ray images in the 

posteroanterior (PA) chest view. Among them, 415 images depict with the confirmed COVID-
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19 disease, 5,179 with other community-acquired non-COVID-19 infected pneumonia, and 

2,880 normal (non-pneumonia) cases. 

6.2.2 Image Preprocessing 

Figure 6-1 shows examples of three chest X-ray images acquired in three classes of normal, 

community-acquired non-COVID-19 infected pneumonia and COVID-19 pneumonia cases 

(from top to bottom). It shows that the bottom part of the images includes a diaphragm region 

with high-intensity (or bright pixels), which may have a negative effect on distinguishing and 

quantifying lung disease patterns using deep learning models. Hence, an image pre-processing 

algorithm is applied to identify and remove diaphragm regions. Specifically, the algorithm 

detects the maximum (the brightest - 𝑉𝑚𝑎𝑥) and minimum (the darkest - 𝑉𝑚𝑖𝑛) pixel value of 

the image, then uses a threshold 𝑇 = 𝑉𝑚𝑖𝑛 + 0.9 × (𝑉𝑚𝑎𝑥 − 𝑉𝑚𝑖𝑛) to segment the original 

image into a binary image,  as shown in Figure 6-1(b). Next, after labeling all connected regions 

in the binary image, the CAD scheme detects the biggest region, fills the holes in this region, 

and deletes all other small regions (if any), as shown in Figure 6-1(c). This detected region 

locates in the diaphragm. Then, morphological filters are applied to smooth the boundary of the 

region, as shown in Figure 6-1(d). Last, the processed binary image is mapped back to the 

original image, the CAD scheme removes overlapped pixels in the corresponding locations on 

the original image, as shown in Figure 6-1(e). Images after this step are named (𝐼𝑝).  
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a b c d e 

Figure 6-1 Example of chest X-ray images in three classes (top – normal, middle – community-

acquired non-COVID-19 pneumonia, and bottom – COVID-19 infected pneumonia case). The figure 

also shows (a) the original Images, (b) the binary images after threshold, (c) images after selecting the 

biggest segmented region, (d) images after applying morphological filtering and (e) the original image 

after removing the majority part of diaphragm region (I_p). 

In the next step, we convert the segmented grayscale images (𝐼𝑝) to 3-channel images 

suitable for fine-tuning an existing CNN model pre-trained using color (RGB) images. To do 

so, we apply an image noise filtering method and a contrast normalization method to preprocess 

the image after removing the diaphragm region. First, since the X-ray images often include 

additive noise, we apply a bilateral low-pass filter (𝐵𝐹) to 𝐼𝑝. This filter is a non-linear filter 

and highly effective at noise removal while preserving textural information compared to the 

other low pass filters. In other words, this filter analyzes intensity values locally and considers 

the intensity variation of the local area to replace the intensity value of each pixel with the 

averaged intensity value of the pixels in the local area. To calculate the weights, we apply a 

Gaussian low-pass filter in the space domain. This step generates a noise-reduction image. 
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Based on our experimental results, we select the following parameters in the bilateral filtering 

(𝑑 = 9 and 𝜎 = 75). Second, chest X-ray images may have different image contrast or 

brightness due to the difference in patient body size and/or variation of X-ray dose. To 

compensate such a potentially negative impact, we apply a histogram equalization (𝐻𝐸) method 

to normalize 𝐼𝑝 images. This filter can enhance lung tissue patterns and characteristics 

associated with COVID-19 infection. Then, as shown in Figure 6-2, three preprocessed images 

namely, 𝐼𝑝, 𝐼𝑏 = 𝐵𝐹(𝐼𝑝) and 𝐼𝑒𝑞 = 𝐻𝐸(𝐼𝑝) form a pseudo color image that is fed into 3 input 

(RGB) channels of the CNN model.  

 

Figure 6-2 A flow diagram to illustrate image pre-processing steps to generate input of a CNN model, 

where (I) is the original Image in the dataset. (I_p) is the diaphragm removed image. (I_eq) is an 

image after applying histogram equalization on (I_p), and (I_b) is an image after applying bilateral 

filtering on (I_p). Three images (I_p), (I_b), and (I_eq) are fed into three channels of the CNN model 

to simulate the RGB image. 

6.2.3 Transfer Learning 

In this study, we adopt a transfer learning approach since the previous studies have shown 

in order to avoid either overfitting or underfitting consequences using a small training dataset, 

a better approach is to take advantage of a CNN initially trained using a large-scale dataset 

Original Image (𝐼) 
Diaphragm removed 

Image (𝐼𝑝) 

 VGG16 - 
CNN 

Model 

Equalized 

Filtered (𝐼𝑒𝑞) 

Bilateral Filtered 

(𝐼𝑏) 

(𝐼𝑝) 

R 

G 

B 𝐼𝑖𝑛3𝐷 is a 3 

channel(RGB) Image, 

resized to 224×224. 
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[213]. Currently, many CNN models have been previously developed and are available for 

different engineering applications. In this study, we select a VGG16 model, which was pre-

trained on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) using a large 

dataset with 14 million images [214]. VGG16 model won the first place on the image 

localization task and second place on the image classification task in the 2014 ILSVRC 

challenge [215]. As shown in Figure 6-3, the VGG16 model has 13 convolutions, 5 max-

pooling, and 3 fully connection layers in 6 blocks, which include over 138 million trainable 

parameters.  

In our transfer learning, the weights between all connected nodes in front or low layers of 

the VGG16 based CNN model maintain unchanged (blocks 1 to 5 as shown in Figure 6-3). 

Next, block 6 in the model is modified by replacing with one flatten layer and two fully 

connected layers, which include 256 and 128 nodes, respectively. In these layers, the rectified 

linear unit (ReLU) [216] is used as their activation function. Then, all trainable weights in all 

connection nodes of the whole modified VGG16 model are fine-tuned using chest X-ray image 

data. In this fine-tuning process, a small learning rate (learning rate = 10−5) is used to make a 

small variation to the pre-trained parameters. In this way, we will preserve the valuable 

parameters as much as possible by avoiding dramatic changes on the pre-trained parameters 

and let the model learn the special characteristics of chest X-ray images. Finally, in the last 

classification layer, Softmax is used as the activation function. As a result, a new transfer 

learning model is built to fulfill a three-class classification task. The complete CNN model is 

compiled with Adam [217] optimizer with a batch size of 4, max epoch = 200, initial learning 

rate = 10−5, and monitoring validation loss for reducing the learning rate every 5 epochs with 

a factor of 0.8. Table 6-1 shows the complete architecture of the transfer learning VGG16 model 

built in this study. 
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Figure 6-3 Illustration of the architecture of VGG16 based CNN model. 

 

Table 6-1 The architecture of the new VGG16 model after transfer learning with new layers (19 to 

22). 

Number Layer Size Activation 

0 Input Image 224 × 224 × 3 --- 

2 2× Convolution (3 × 3) 224 × 224 × 64 ReLu 

3 Max Pooling 112 × 112 × 64 ReLu 

5 2× Convolution (3 × 3) 112 × 112 × 128 ReLu 

6 Max Pooling 56 × 56 × 128 ReLu 

9 3× Convolution (3 × 3) 56 × 56 × 256 ReLu 

10 Max Pooling 28 × 28 × 256 ReLu 

13 3× Convolution (3 × 3) 28 × 28 × 512 ReLu 

14 Max Pooling 14 × 14 × 512 ReLu 

16 3× Convolution (3 × 3) 14 × 14 × 512 ReLu 

18 Max Pooling 7 × 7 × 512 ReLu 

19 Flattening 25088 --- 

20 Fully Connected 256 ReLu 

21 Fully Connected 128 ReLu 

22 Fully Connected 3 SoftMax 

 

6.2.4 Model Training and Testing 

First, the original chest X-ray image has 1,024×1,024 pixels, while the VGG16 model was 

pre-trained using images of 224×224 pixels. Thus, each chest X-ray image is down-sampled to 

224×224 pixels to fit the VGG16 model. Then, for training and evaluating the proposed VGG16 

based transfer learning CNN model, we randomly split the entire image dataset of 8,474 cases 
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into 3 independent subsets of training, validation, and testing. Overall, 10% of cases (848) are 

assigned to the test subset. On the remaining 7,626 cases, 10% cases are assigned to the 

validation subset (757), while 90% cases (6,869) are formed as the training subset. To maintain 

the same case partition ratios for three classes of COVID-19 infected pneumonia, other 

community-acquired non-COVID-19 infected pneumonia and normal cases, the case partition 

or assignment is done on three classes independently. Table 6-2 shows the number of cases in 

each subset. 

Table 6-2 Distribution of cases in three subsets. 

Image Data Subset  Training Validation Testing 

COVID-19 cases 366 37 42 

Other pneumonia cases 4,201 460 518 

Normal cases 2,332 260 288 

Total number of cases 6,899 757 848 

 

Second, there are different available techniques to deal with imbalanced data [218][24]. In 

this study, the class weight technique, as one possible way, is applied during training to reduce 

the potential consequences of imbalanced data. In the class weigh technique, we adjust weights 

inversely proportional to class frequencies in the input data [219]. The weight, 𝜔𝑖 in class 𝑖 is 

computed using the following equation. 

𝜔𝑖 =
(𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠)

(𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑙𝑎𝑠𝑠𝑒𝑠)  × (𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑎𝑠𝑒𝑠 𝑖𝑛 𝑐𝑙𝑎𝑠𝑠(𝑖))⁄  6-1 

The weights of the classes are utilized while fitting the model. Hence, in the loss function, 

we assign higher values to the instances of smaller classes. Therefore, the calculated loss will 

be a weighted average, where the weights of each sample corresponding to each class during 

loss calculation are specified with 𝜔𝑖.  



 

 121  

 

Additionally, in the training data of minority cases (COVID-19 cases), a common 

augmentation technique [220] is applied to increase the training sample size. First, using 

shearing factors (≤0.2), image intensity is sheared based on the shearing angle in a counter-

clockwise direction. Second, using zooming factors (≤0.2), images are randomly magnified. 

Third, using rotation factors (within ±20°), images are randomly rotated. Fourth, using a shift 

factor (≤0.2), images are randomly shifted in 4 directions (up, left, down right). Last, images 

are flipped horizontally in a random base to generate as much augmented data as possible.  

Multiple iteration or epochs are applied to train the VGG16 based CNN model. The model 

is first trained using the data in the training subset and validated using the validation subset. 

During the training process, the optimizer tries to force the architecture to learn more and more 

information to reduce the performance gap between training and validation. To control 

overfitting and maintain training efficiency, we limit model training epochs to 200. Hence, at 

the end of 200 training epoch, the trained model is saved and then tested using the data in the 

testing subset, which does not involve in the model training and validation process.  

To reduce the risk of potential bias in data partition into three subsets of training, validation, 

and testing, we repeat this model training and testing process three times by randomly dividing 

all cases into training, validation, and testing subsets three times using the same case ratios or 

numbers as shown in Table 6-2. In addition, during these three times of case partition, the cases 

assigned to the validation and testing subsets are totally different (no duplication).  Three 

trained models are tested using totally different testing cases. Thus, the total number of testing 

cases increases (as shown in Table 6-2) to 2,544 (848× 3). Figure 6-4 shows a schematic 

diagram that illustrates the complete architecture of this VGG16 transfer learning CNN model, 

as well as the training, validation, and testing phase. 
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Figure 6-4 schematic representing training and validation phase of the proposed scheme. 

 

6.2.5 Performance Assessment 

We perform experiments to analyze two different accuracies. The first one is accuracy for 

a three-class classification to distinguish between COVID-19 infected pneumonia, community-

acquired pneumonia, and normal (non-pneumonia) cases. We compute accuracy values in 

detecting images in 3 classes. We also calculate (1) a macro averaging, which is the average of 

3 accuracy values of 3 classes without considering the proportion of the number of the cases in 

each class (𝐴𝑚𝑎𝑐 = (𝐴1 + 𝐴2 + 𝐴3)/3), and (2) a weighted averaging, which is the weighted 

average of 3 accuracy values weighted with respect to the proportion of the classes (𝐴𝑤 =

Dataset: 8474 images, including 415 Covid-19, 2880 normal, and 5179 pneumonia. 
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Then, The remaining part is randomly split to 90% train and 10% validation. 

1.Validation: 757 
cases 
1.Train: 6869cases  

1.Test set(10%): 848 
cases 

3.Validation: 757 
cases 
3.Train: 6869cases 

2.Validation: 757 
cases 
2.Train: 6869cases 

2.Test set(10%): 848 
cases 3.Test set(10%): 848 

cases 

This process is done three times to make these three subsets. 

Each time from the whole dataset randomly 10% is selected for test set.  
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𝑤1𝐴1 + 𝑤2𝐴2 + 𝑤3𝐴3), where 𝐴1, 𝐴2, 𝐴3 are accuracy values of 3 classes, while 𝑤1, 𝑤2, 𝑤3 are 

weighting factors of 3 classes representing the ratios of cases in 3 classes. Then, for the three-

class classification, a confusion matrix is generated from which several evaluation indices, 

including precision, recall, F1-score, and Cohen's Kappa [221] values are computed to evaluate 

CAD performance. The value of Cohen's kappa coefficients (ranging from zero and one) 

indicates the possibility of the predicted results occurring by chance. The lower Kappa value 

shows the more randomness of the results, while the higher value shows a better similarity and 

higher robustness. 

The second accuracy evaluation refers to the classification between the COVID-19 and 

non-COVID19 cases (including both normal and community-acquired pneumonia cases). In 

this circumstance, we compute true positive (TP) for the cases correctly identified as COVID-

19, false negative (FN) for the COVID-19 cases being incorrectly classified as normal or 

community-acquired pneumonia cases, true negative (TN) for the cases correctly identified as 

non-COVID-19 cases, and false positive (FP) for the normal and community-acquired 

pneumonia cases being incorrectly classified as COVID-19 by the CNN model. Then, the 

accuracy, sensitivity, specificity, recall, and F1-scores of model classification are computed and 

tabulated.  

6.3 Results 

Figure 6-5(a-c) presents trend curves of training and validation accuracy of the new transfer 

learning VGG16 based CNN model in three experiments using different training and validation 

subsets in the left column. Then, by applying the trained models on the corresponding testing 

subsets, three confusion matrices of the models on the testing subsets are shown in the right 

column. All three curves show that as the increase of training iteration epochs during the 

training process, the prediction accuracy of the validation subset varies greatly (with big 

oscillation) initially, and then gradually converges to a higher accuracy level with much small 
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oscillation. Thus, for all three subsets after epoch 75, validation accuracy is following the 

training accuracy, which indicates that learning is happening during different epochs. The trend 

graph also shows that the proposed technique does not suffer significant overfitting or 

underfitting in our transfer learning model. Then, by combining three confusion matrixes of the 

three independent testing subsets, as shown in the second column of (a-c), Figure 6-5(d) 

displays a combined 3-class confusion matrix of 2,544 (3×848) cases. 

a) 

  

b) 

  

c) 
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d) 

 

Figure 6-5 (a-c) Left column show three sets of performance curves applying to the training and 

validation subsets for 3 experiments in 200 training epochs, respectively. The horizontal axis shows 

the number of epochs, and the vertical axis shows the accuracy. The right column show three 

confusion matrices of the corresponding testing results are shown on the right. (d) A combined 

confusion matrix of applying three trained models to three independent testing data subsets with total 

2,544 cases. 

First, based on three confusion matrices as shown in Figure 6-5(a-c), the overall 3-class 

classification accuracy levels are 93.9% (796/848), 94.7% (803/848), and 94.9% (805/848), 

respectively. The difference is approximately 1%. Then, based on the confusion matrix of the 

combined data as shown in Figure 6-5(d), we compute the precision, recall rate, F1-score, and 

prediction accuracy of the new transfer learning VGG16 based CNN model, as shown in Table 

6-3. Among 2,544 testing cases, 2,404 are correctly detected and classified into 3 classes. The 

overall accuracy is 94.5% (2,404/2,544) with 95% confidence interval of [0.93 ,0.96]. In 

addition, the computed Cohen’s kappa coefficient is 0.89, which confirms the reliability of the 

proposed approach to train this new deep transfer learning model to do this classification task.  

Table 6-3 Classification report of the proposed method. 

 Precision Recall F1-score Support cases 

Normal 0.96 0.91 0.93 864 

Other Pneumonia 0.96 0.96 0.96 1,554 

COVID19 0.73 0.98 0.84 126 

Accuracy --- --- 0.95 2,544 

Macro avg 0.88 0.95 0.91 2,544 

Weighted avg 0.95 0.94 0.94 2,544 
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To further evaluate the performance of our CAD scheme in detecting the COVID19 

infected pneumonia cases using chest X-ray images, we place both normal and community-

acquired pneumonia images into the negative class and COVID-19 infected pneumonia cases 

into the positive class. Combining the data in the confusion matrix, as shown in Figure 6-5(d), 

the CAD scheme yields 98.4% detection sensitivity (124/126) and 98.0% specificity 

(2,371/2,418). The overall accuracy is 98.1% (2,495/2,544). 

Next, Table 6-4 shows and compares (1) confusion matrixes generated by four models 

trained and tested using different input images and three data subsets generated from the data 

partition, as well as (2) overall classification accuracy and 95% confidence intervals. The results 

indicate that (1) without using the data augmentation technique, the model accuracy on data of 

the testing subset drops to 82.3% with the kappa score of 0.71. (2) Without applying image 

preprocessing and directly feeding the original chest X-ray images into the VGG16 based CNN 

model (“simple model”), classification accuracy is 88.0% with a Cohen’s kappa score of 0.75. 

(3) Using image filtering and pseudo color images without removing the majority part of 

diaphragm regions, the “filter-based model” yields 91.2% accuracy and a Cohen’s kappa score 

of 0.83. All three models yield lower classification accuracy than the proposed model involving 

data augmentation technique and two steps of image preprocessing. 

In addition, Table 6-5 compares our transfer learning VGG16 based CNN model and 10 

state-of-art models recently reported in the literature to detect and classify COVID-19 cases. 

The table shows the number of cases in the training and testing data subsets, imaging modality 

(CT or X-ray radiography), and reported classification performance, including either 3-class or 

2-class classification for these studies. Although the reported performance of these studies 

cannot be directly compared due to the use of different image dataset and testing methods, the 

presented data clearly demonstrate that our model is tested using a relatively large dataset and 

yields very comparable classification performance as comparing to the state-of-art models 

developed and tested in this research field.   
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Table 6-4 Confusion matrix of four CNN models on X-ray Images. 95% confidence interval (CI) for 

the accuracy is shown in the last column. 

   Normal Pneumonia COVID19 Accuracy 95% CI 

Proposed 

Model 

T
ru

e         L
ab

el 

Normal 788 56 20 

94.5% [0.93,0.96] Pneumonia 35 1492 27 

COVID 19 1 1 124 

Filter-based 

model 

Normal 750 89 25 

91.2% [0.90,0.92] Pneumonia 64 1452 38 

COVID19 2 6 118 

Simple model 

Normal 701 123 40 

88.0% [0.86,0.89] Pneumonia 72 1431 51 

COVID19 6 13 107 

No-

augmentation 

Normal 653 158 53 

82.3% [0.80,0.84] Pneumonia 124 1346 74 

COVID19 8 23 95 

 

Table 6-5 Comparison accuracy results of the proposed method with the other deep learning methods 

on COVID-19 diagnosis. 

 

Approach 
Data 

Type 

Cases number 

(including 

COVID-19 

cases) 

Method utilized 

2 classes 

accuracy 

(%) 

3 classes 

accuracy 

(%) 

COVID-19 

detection 

Sensitivity 

(%) 

Narin et al. 

[195] 
X-ray 100 (50) ResNet50 98.0 --- 96.0 

Sethy et al. 

[201] 
X-ray 50 (25) ResNet50+SVM 95.4 --- 97.0 

Ioannis et al. 

[202] 
X-ray 1,427 (224) MobileNetV2 96.7 93.5 98.6 

Wang et al. 

[199] 
CT 237 (119) M-Inception 82.9 --- 81.0 

Tulin et al. 

[205] 
X-ray 1,127 (127) DarkCovidNet 98.08 87.02 90.6 

Khan et al. 

[203] 
X-ray 221 (29) 

CoroNet 

(Xception) 
98.8 94.52 95.0 

Rahimzadeh 

& attar [204] 
X-ray 11,302 (31) 

Xception+ 

ResNet50V2 
99.5 91.4 80.53 
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Wang et al. 

[206] 
X-ray 300 (100) COVID-Net 96.6 93.3 91.0 

Ying et al. 

[200] 
CT 57 (30) 

DRE-Net 

(ResNet50) 
86 --- 79.0 

Hemdan et al. 

[207] 
X-ray 50 (25) COVIDX-Net 90 --- ---- 

Our new 

method 
X-ray 2,544 (126) VGG16 98.1 94.5 98.4 

6.4 Discussion 

In this study, we developed and tested a novel deep transfer learning CNN model to detect 

and classify chest X-ray images depicting COVID19 infected pneumonia. This study has 

several unique characteristics as compared to the previously reported studies in this field and 

produces several new interesting observations. First, since the deep learning CNN model 

includes a considerable number of parameters that need to be trained and determined, a large 

and diverse image dataset is required to produce robust results [95]. Although we used a 

relatively large image dataset of 8,474 chest X-ray images, the dataset is unbalanced in 3 classes 

of images, and the number of the COVID-19 infected pneumonia cases (415) remains small. 

Thus, in order to build a robust deep learning model, we apply a class weight technique during 

the training process and select a well-trained VGG16 model and apply a transfer learning 

approach. Specifically, the original VGG16 model includes over 138 million parameters. These 

parameters have been trained and determined using a large ImageNet database of over 14 

million images. It is difficult to train so many parameters from scratch robustly using a dataset 

of 8,474 images. Thus, we retrain or fine-tune the pre-trained VGG16 (as shown in Figure 6-3) 

to reduce the overfitting risk. Study results demonstrate that this transfer learning approach can 

yield higher performance with the overall accuracy of 94.5% (2,404/2,544) in the classification 

of 3 classes and 98.1% (2,495/2,544) in classifying cases with and without COVID-19 

infection, as well as the high robustness with a Cohen’s kappa score of 0.89.  

Second, unlike the regular color photographs, chest X-ray images are gray-level images. 

Thus, in order to fully use the pre-trained VGG16-based CNN model, we generate two new 
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gray-level images. Then, instead of applying the original chest X-ray image to the CNN model 

directly, 3 different gray-level images are fed into 3 input (RGB color) channels of the CNN 

model. Specifically, we apply a bilateral low-pass filter to generate a noise-reduced image and 

a histogram equalization method to generate a contrast normalized image. Comparing two 

approaches of using only original chest X-ray image and 3 different images to generate a pseudo 

color image as an input image to the CNN model, our study results show that using a pseudo 

color image approach, overall classification accuracy increases 3.6% from 91.2% to 94.5%, and 

Cohen’s kappa score increases 7.2% from 0.83 to 0.89, respectively. The results demonstrate 

the advantage of using our new approach to fully use 3 input channels of the CNN model pre-

trained using color images because these two filtered gray-level images contain additional 

information, which can enhance image classification capability.  

Third, since in the area of medical imaging, generally, disease’s patterns are not 

comparable to the other existing patterns in the image, preprocessing steps are noteworthy [83]. 

Hence, we apply an image preprocessing algorithm to automatically detect and remove the 

majority part of the diaphragm region from the chest X-ray images. Comparing the approaches 

with and without removing the diaphragm regions, the classification performance of the CNN 

model changes from 94.5% to 88.0% and 0.89 to 0.75 for the overall classification accuracy 

and Cohen’s kappa coefficients, respectively, which indicates a 7.4% increase in the overall 

classification accuracy and 18.7% increase in Cohen’s kappa coefficient by removing the 

majority of diaphragm regions. Thus, although skipping segmentation of the suspicious disease 

regions of interest is one important characteristic of deep learning, our study demonstrates that 

applying an image preprocessing and segmentation algorithm to remove irrelevant regions on 

the image can also play an important role in increasing the performance and robustness of deep 

learning models.  

In addition, we observe and confirm that applying data augmentation in the training data is 

also essential. Without data augmentation to increase training dataset size, the overall 
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classification accuracy of the CNN model significantly reduces to around 82.3%. In summary, 

we in this paper present a new deep transfer learning model to detect and classify the COVID-

19 infected pneumonia cases, as well as several unique image preprocessing approaches to 

optimally train the deep learning model using the limited and unbalanced medical image 

dataset. The similar learning concept and image preprocessing approaches can also be adopted 

to develop new deep learning models for other medical images to detect and classify other types 

of diseases (i.e., cancers [222, 223]).  

Despite encouraging results, this study also has limitations. First, although we used a 

publicly available dataset of 8,474 cases, including 415 COVID-19 cases, due to the diversity 

or heterogeneity of COVID-19 cases, the performance and robustness of this CAD scheme need 

to be further tested and validated using other large and diverse image databases. Second, this 

study only investigates and tests two image preprocessing methods to generate two filtered 

images, which may not be the best or optimal method. New methods should also be investigated 

and compared in future studies. Third, to further improve model performance and robustness, 

it also needs to develop new image processing and segmentation algorithms to more accurately 

remove the diaphragm and other regions outside lung areas in the images. Therefore, more 

research work is needed to overcome these limitations in the future studies.  
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7 Conclusion and future work 

7.1 Summary 

The purpose of developing CAD schemes is to assist physicians (i.e., radiologists) to more 

accurately interpret medical imaging findings and reduce inter-reader variability [224]. In 

developing CAD schemes, ML plays an essential role because it is widely used to identify 

effective image features from complex datasets and optimally integrate them with the 

classifiers, which aims to assist the clinicians to more accurately detect early disease, classify 

disease types and predict disease treatment outcome. To present a robust and reliable ML-based 

CAD scheme, optimizing the performance of three main stages is worthy of consideration. 

These stages are (1) segmentation for a proper feature extraction domain, and extract 

appropriate features, (2) feature optimization and data reduction techniques, and (3) optimizing 

parameters of machine learning/deep learning models to improve CAD performance. 

Although it is possible to compute many features from an image, having too many features 

can lead to overfitting rather than learning the actual basis of a pattern. Besides, in the process 

of the feature extraction step, some data-related issues refer to the quality of the data, and the 

preprocessing steps are needed to make them more suitable for ML. Data quality is affected by 

the issues including the presence of noise, outliers, missing or duplicate data, and data that is 

biased-unrepresentative. Several different techniques and strategies exist in the medical 

imaging informatics field, relevant to data preprocessing that focuses on modifying the data for 

better fitting in a specific ML method [225]. 

Besides initial preprocessing utilized on the medical images to make them more 

appropriate for feature extraction by methods like image quality enhancement, and ROI 

segmentation, it is possible to post-process the extracted features and optimize them for the 

learning process. The process of selecting a subset of features appropriate to make the best 
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predictions is known as feature selection [17]. There are many advantages regarding 

dimensionality reduction and feature selection when the datasets have a large number of 

features. ML algorithms work better and more robust when the dimensionality of feature space 

is lower. Additionally, the reduction of dimensionality can exclude irrelevant features, diminish 

noise and redundant features, and generate more robust learning models due to fewer features. 

In general, if the dimensionality reduction comes by selecting new features which are a subset 

of the old ones, it is known as feature selection. On the other side, if the dimensionality 

reduction comes with combining the initial set of features to regenerate a new sub-set of features 

is known as a dimensional reduction for the optimized set of features [18]. 

In addition to selecting optimal features, optimizing classifier parameters is also essential 

to build a robust classifier. In [23], researchers have presented the study to show that even 

making a change in a classifier's settings after optimizing the feature domain can change the 

accuracy of the scheme. Hence, some techniques that can search in classifiers' parameter 

domain to find the optimal groups of them may present CAD schemes with enhanced 

performance. This parameter optimization process can either utilize on classical machine 

learning systems or deep learning systems as a new generation of AI to acquire optimal values 

for their hyperparameters [226]. 

In the previous chapters of my dissertation, I developed and presented several CAD 

schemes as solutions to some of these challenges that were evaluated for different purposes, 

from the prediction of cancer risk scores to malignancy detection and COVID-19 classification.  

In chapter 3, the idea is mainly around the first critical stage of any robust ML-based CAD 

scheme. I explored a new approach to develop a unique case-based CADx scheme based on the 

detection, computation, and analysis of globally asymmetrical image features computed from 

two bilateral images of left and right breasts and assessed its performance using a relatively 

large image dataset of 1,959 cases. Thus, this new CADx scheme is a multiply image-based 
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scheme that integrates image feature differences computed from 4 view images, making it 

significantly different from other previously single or region-based CADx methods.  

Chapters 4, and 5 are mainly about feature optimization. Specifically, in chapter 4, I 

proposed and tested a new approach to develop a quantitative feature analysis and machine 

learning scheme to predict short-term breast cancer risk, or the likelihood of women having or 

developing imaging detectable early breast cancer in the next subsequent mammography 

screening. The results of this study demonstrated that utilizing the LPP-based feature 

regeneration approach enabled us to create a smaller or compact new feature vector, and yield 

higher prediction performance than using either all initial image features or a set of selected 

highly performed features. Besides, this study showed that applying LPP reduces the dimension 

of feature space and reorganizes the new feature vector to achieve a lower amount of 

redundancy and maximum variance. Hence, the LPP-regenerated feature vector represents an 

optimal combination of the highly effective parts of all input features.  

In chapter 5, I investigated the feasibility of applying a new approach based on the random 

projection algorithm (RPA) to generate the optimal feature vectors for training ML models 

implemented in the CAD schemes of mammograms to classify malignant and benign breast 

lesions. Study results indicate that applying this RPA approach creates a more compact feature 

space that can reduce feature correlation or redundancy and provide a subspace with better 

contrast for the classifier. By comparing with the other three popular feature dimensionality 

reduction methods in this study, the results also demonstrate that using RPA enables to generate 

an optimal feature vector to build a machine learning model, which yields significantly higher 

classification performance. In addition, since creating an optimal feature vector is an essential 

precondition of building optimal machine learning models, the new method demonstrated in 

this study is not only limited to CAD schemes of mammograms, it can also be adopted and used 

by researchers to develop and optimize CAD schemes of other types of medical images to detect 

and diagnose different types of cancers or diseases in the future. 



 

 134  

 

Finally, chapter 6 is mainly about developing CAD schemes based on DL systems and the 

challenges that we have with them in medical imaging, how it is possible to deal with them, 

and the possible solutions to some of these challenges. Thus, I proposed and investigated several 

new approaches to develop a transfer deep learning CNN model to detect and classify COVID-

19 cases using chest X-ray images. Study results demonstrate the value of performing the image 

pre-processing phase to generate better input image data to build deep learning models. This 

phase includes removing irrelevant regions, normalizing the image contrast-to-noise ratio, and 

generating pseudo color images to feed into all three channels of the CNN models in applying 

the transfer learning method. The reported high classification performance is also promising, 

which provides a solid foundation to further optimize the deep learning model to detect COVID-

19 cases and validate its performance and robustness using large and diverse image datasets in 

future studies. 

The effort and contribution of my research during my Ph.D. study in developing ML/DL-

based CAD schemes based on new image processing techniques, feature 

extraction/optimization algorithms, and machine learning systems resulted in the following list 

of publications in which I collaborate as a coauthor in them. The proposed CAD schemes for 

different purposes in my dissertation have been evaluated on large and diverse datasets which 

their promising results are reported in my publications. Thus, my research and study 

demonstrate that it would be applicable to utilize my proposed CAD schemes for different 

medical imaging disease diagnoses and assessments to help radiologists as a second decision-

making application to provide more reliable diagnoses about diseases. 

7.1.1 Journal Papers: 

 

1. Heidari M, Mirniaharikandehei S, Khuzani AZ, Danala G, Qiu Y, Zheng B, Improving 

the performance of CNN to predict the likelihood of COVID-19 using chest X-ray images 
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16. Khuzani AZ, Danala G, Heidari M, Du Y, Mashhadi N, Qiu Y, Zheng B, Applying a new 

unequally weighted feature fusion method to improve CAD performance of classifying 

breast lesions, Proc SPIE 2018; 10575: 105752L. 

17. Wang Y, Heidari M, Mirniaharikandehei S, Gong J, Qian W, Qiu Y, Zheng B, A hybrid 

deep learning approach to predict malignancy of breast lesions using mammograms, Proc 

SPIE 2018; 10579: 105790V. 

18. Mirniaharikandehei S, Zarafshani A, Heidari M, Wang Y, Aghaei F, Zheng B, Applying 

a CAD-generated imaging marker to assess short-term breast cancer risk, Proc SPIE 2018; 

10575: 105753F. 

7.2 Future works 

Despite extensive research efforts and progress made in the CAD field, researchers still 

face many challenges in developing CAD schemes for clinical applications. For example, in 

developing CAD schemes based on classical machine learning algorithms, which use image 

features to train classification models to predict the likelihood of the analyzed regions depicting 

or patterns representing diseases, due to the great heterogeneity of disease patterns and the 

limited size of image datasets,  it is hard to have perfect segmentation algorithms for lesion or 

ROI selection. Also, modeling the human vision system of radiologists in computer vision 

algorithms to extract meaningful features is difficult. Furthermore, identifying a small and 

optimal image feature vector to build highly performed and robust machine learning models 
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remains difficult. It means although the already available CAD schemes present high 

performance, they still need to go for further analyses either in clinical practices or on large 

global and diverse datasets provided from different sites.  

Based on my experience I have got during my Ph.D. study, I will continue my effort to 

explore more general techniques on each of these challenges in the next steps of my research 

life. For instance, since in recent developments, deep learning technology based on 

convolutional neural networks becomes the state of art of artificial intelligence applying in 

medical imaging for all the areas covered by classical machine learning schemes. Also, deep 

learning schemes have shown many promising results in other research fields for the 

segmentation task. Thus, a perfect segmentation algorithm as the initial phase of any ML/DL 

based CAD scheme would be a solution to many available optimization problems. It would be 

helpful if we apply them to the mammograms to remove chest walls, breast surface, nipple, and 

all the other artifacts perfectly and then apply global feature extraction algorithms on the breast's 

interior space. The combination of deep learning systems to do the segmentation part, and 

classical machine learning-based systems to do the classification part of any CAD scheme may 

help better to model human vision system and present more acceptable CAD schemes to 

radiologists. Besides, as we presented in chapter six, we can take advantage of DL schemes to 

either directly develop a new complete DL- based classification scheme from scratch or use the 

deep learning model as a feature extractor to replace the handcrafted features in the 

conventional machine learning approach. The deep learning model can act as a feature 

generator, and then robust extracted features are serviceable for any classical machine learning 

scheme like SVM.   

Besides the research and studies I have done so far, I propose doing additional tasks with 

DL-based techniques like lesion classification or lesion localization as another task hard to get 

with classical ML-based algorithms. DL-based CAD schemes are usually more accurate in 

comparison with the available classical ML-based CAD schemes. I propose to develop and 
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evaluate a new CAD scheme and decision-making supporting tool for radiologists, which will 

be developed based on CNNs. I will then figure out if it is possible to combine it with classical 

data optimization methods, I proposed in my other research for classical ML-based models 

(chapter 4,5). By combining my previous works and additional new work in my Ph.D. 

researches and studies, I can comprehensively investigate different machine learning 

algorithms' challenges as a frame of CAD systems and develop more robust algorithms. Since 

the proposed tasks are in the area of deep learning, which is the state of the art of research in 

the medical imaging field, I believe my research's success will provide a significant contribution 

to the development of CAD systems in the future of medical imaging informatics area. 

Furthermore, my research achievements during my Ph.D. will significantly benefit the research 

work in my academic professional development and future career. 
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