3,119 research outputs found

    Survey on Combinatorial Register Allocation and Instruction Scheduling

    Full text link
    Register allocation (mapping variables to processor registers or memory) and instruction scheduling (reordering instructions to increase instruction-level parallelism) are essential tasks for generating efficient assembly code in a compiler. In the last three decades, combinatorial optimization has emerged as an alternative to traditional, heuristic algorithms for these two tasks. Combinatorial optimization approaches can deliver optimal solutions according to a model, can precisely capture trade-offs between conflicting decisions, and are more flexible at the expense of increased compilation time. This paper provides an exhaustive literature review and a classification of combinatorial optimization approaches to register allocation and instruction scheduling, with a focus on the techniques that are most applied in this context: integer programming, constraint programming, partitioned Boolean quadratic programming, and enumeration. Researchers in compilers and combinatorial optimization can benefit from identifying developments, trends, and challenges in the area; compiler practitioners may discern opportunities and grasp the potential benefit of applying combinatorial optimization

    Activity recognition from videos with parallel hypergraph matching on GPUs

    Full text link
    In this paper, we propose a method for activity recognition from videos based on sparse local features and hypergraph matching. We benefit from special properties of the temporal domain in the data to derive a sequential and fast graph matching algorithm for GPUs. Traditionally, graphs and hypergraphs are frequently used to recognize complex and often non-rigid patterns in computer vision, either through graph matching or point-set matching with graphs. Most formulations resort to the minimization of a difficult discrete energy function mixing geometric or structural terms with data attached terms involving appearance features. Traditional methods solve this minimization problem approximately, for instance with spectral techniques. In this work, instead of solving the problem approximatively, the exact solution for the optimal assignment is calculated in parallel on GPUs. The graphical structure is simplified and regularized, which allows to derive an efficient recursive minimization algorithm. The algorithm distributes subproblems over the calculation units of a GPU, which solves them in parallel, allowing the system to run faster than real-time on medium-end GPUs

    Development and demonstration of an on-board mission planner for helicopters

    Get PDF
    Mission management tasks can be distributed within a planning hierarchy, where each level of the hierarchy addresses a scope of action, and associated time scale or planning horizon, and requirements for plan generation response time. The current work is focused on the far-field planning subproblem, with a scope and planning horizon encompassing the entire mission and with a response time required to be about two minutes. The far-feld planning problem is posed as a constrained optimization problem and algorithms and structural organizations are proposed for the solution. Algorithms are implemented in a developmental environment, and performance is assessed with respect to optimality and feasibility for the intended application and in comparison with alternative algorithms. This is done for the three major components of far-field planning: goal planning, waypoint path planning, and timeline management. It appears feasible to meet performance requirements on a 10 Mips flyable processor (dedicated to far-field planning) using a heuristically-guided simulated annealing technique for the goal planner, a modified A* search for the waypoint path planner, and a speed scheduling technique developed for this project

    Code optimizations for narrow bitwidth architectures

    Get PDF
    This thesis takes a HW/SW collaborative approach to tackle the problem of computational inefficiency in a holistic manner. The hardware is redesigned by restraining the datapath to merely 16-bit datawidth (integer datapath only) to provide an extremely simple, low-cost, low-complexity execution core which is best at executing the most common case efficiently. This redesign, referred to as the Narrow Bitwidth Architecture, is unique in that although the datapath is squeezed to 16-bits, it continues to offer the advantage of higher memory addressability like the contemporary wider datapath architectures. Its interface to the outside (software) world is termed as the Narrow ISA. The software is responsible for efficiently mapping the current stack of 64-bit applications onto the 16-bit hardware. However, this HW/SW approach introduces a non-negligible penalty both in dynamic code-size and performance-impact even with a reasonably smart code-translator that maps the 64- bit applications on to the 16-bit processor. The goal of this thesis is to design a software layer that harnesses the power of compiler optimizations to assuage this negative performance penalty of the Narrow ISA. More specifically, this thesis focuses on compiler optimizations targeting the problem of how to compile a 64-bit program to a 16-bit datapath machine from the perspective of Minimum Required Computations (MRC). Given a program, the notion of MRC aims to infer how much computation is really required to generate the same (correct) output as the original program. Approaching perfect MRC is an intrinsically ambitious goal and it requires oracle predictions of program behavior. Towards this end, the thesis proposes three heuristic-based optimizations to closely infer the MRC. The perspective of MRC unfolds into a definition of productiveness - if a computation does not alter the storage location, it is non-productive and hence, not necessary to be performed. In this research, the definition of productiveness has been applied to different granularities of the data-flow as well as control-flow of the programs. Three profile-based, code optimization techniques have been proposed : 1. Global Productiveness Propagation (GPP) which applies the concept of productiveness at the granularity of a function. 2. Local Productiveness Pruning (LPP) applies the same concept but at a much finer granularity of a single instruction. 3. Minimal Branch Computation (MBC) is an profile-based, code-reordering optimization technique which applies the principles of MRC for conditional branches. The primary aim of all these techniques is to reduce the dynamic code footprint of the Narrow ISA. The first two optimizations (GPP and LPP) perform the task of speculatively pruning the non-productive (useless) computations using profiles. Further, these two optimization techniques perform backward traversal of the optimization regions to embed checks into the nonspeculative slices, hence, making them self-sufficient to detect mis-speculation dynamically. The MBC optimization is a use case of a broader concept of a lazy computation model. The idea behind MBC is to reorder the backslices containing narrow computations such that the minimal necessary computations to generate the same (correct) output are performed in the most-frequent case; the rest of the computations are performed only when necessary. With the proposed optimizations, it can be concluded that there do exist ways to smartly compile a 64-bit application to a 16- bit ISA such that the overheads are considerably reduced.Esta tesis deriva su motivación en la inherente ineficiencia computacional de los procesadores actuales: a pesar de que muchas aplicaciones contemporáneas tienen unos requisitos de ancho de bits estrechos (aplicaciones de enteros, de red y multimedia), el hardware acaba utilizando el camino de datos completo, utilizando más recursos de los necesarios y consumiendo más energía. Esta tesis utiliza una aproximación HW/SW para atacar, de forma íntegra, el problema de la ineficiencia computacional. El hardware se ha rediseñado para restringir el ancho de bits del camino de datos a sólo 16 bits (únicamente el de enteros) y ofrecer así un núcleo de ejecución simple, de bajo consumo y baja complejidad, el cual está diseñado para ejecutar de forma eficiente el caso común. El rediseño, llamado en esta tesis Arquitectura de Ancho de Bits Estrecho (narrow bitwidth en inglés), es único en el sentido que aunque el camino de datos se ha estrechado a 16 bits, el sistema continúa ofreciendo las ventajas de direccionar grandes cantidades de memoria tal como procesadores con caminos de datos más anchos (64 bits actualmente). Su interface con el mundo exterior se denomina ISA estrecho. En nuestra propuesta el software es responsable de mapear eficientemente la actual pila software de las aplicaciones de 64 bits en el hardware de 16 bits. Sin embargo, esta aproximación HW/SW introduce penalizaciones no despreciables tanto en el tamaño del código dinámico como en el rendimiento, incluso con un traductor de código inteligente que mapea las aplicaciones de 64 bits en el procesador de 16 bits. El objetivo de esta tesis es el de diseñar una capa software que aproveche la capacidad de las optimizaciones para reducir el efecto negativo en el rendimiento del ISA estrecho. Concretamente, esta tesis se centra en optimizaciones que tratan el problema de como compilar programas de 64 bits para una máquina de 16 bits desde la perspectiva de las Mínimas Computaciones Requeridas (MRC en inglés). Dado un programa, la noción de MRC intenta deducir la cantidad de cómputo que realmente se necesita para generar la misma (correcta) salida que el programa original. Aproximarse al MRC perfecto es una meta intrínsecamente ambiciosa y que requiere predicciones perfectas de comportamiento del programa. Con este fin, la tesis propone tres heurísticas basadas en optimizaciones que tratan de inferir el MRC. La utilización de MRC se desarrolla en la definición de productividad: si un cálculo no altera el dato que ya había almacenado, entonces no es productivo y por lo tanto, no es necesario llevarlo a cabo. Se han propuesto tres optimizaciones del código basadas en profile: 1. Propagación Global de la Productividad (GPP en inglés) aplica el concepto de productividad a la granularidad de función. 2. Poda Local de Productividad (LPP en inglés) aplica el mismo concepto pero a una granularidad mucho más fina, la de una única instrucción. 3. Computación Mínima del Salto (MBC en inglés) es una técnica de reordenación de código que aplica los principios de MRC a los saltos condicionales. El objetivo principal de todas esta técnicas es el de reducir el tamaño dinámico del código estrecho. Las primeras dos optimizaciones (GPP y LPP) realizan la tarea de podar especulativamente las computaciones no productivas (innecesarias) utilizando profiles. Además, estas dos optimizaciones realizan un recorrido hacia atrás de las regiones a optimizar para añadir chequeos en el código no especulativo, haciendo de esta forma la técnica autosuficiente para detectar, dinámicamente, los casos de fallo en la especulación. La idea de la optimización MBC es reordenar las instrucciones que generan el salto condicional tal que las mínimas computaciones que general la misma (correcta) salida se ejecuten en la mayoría de los casos; el resto de las computaciones se ejecutarán sólo cuando sea necesario

    Autonomous flight and remote site landing guidance research for helicopters

    Get PDF
    Automated low-altitude flight and landing in remote areas within a civilian environment are investigated, where initial cost, ongoing maintenance costs, and system productivity are important considerations. An approach has been taken which has: (1) utilized those technologies developed for military applications which are directly transferable to a civilian mission; (2) exploited and developed technology areas where new methods or concepts are required; and (3) undertaken research with the potential to lead to innovative methods or concepts required to achieve a manual and fully automatic remote area low-altitude and landing capability. The project has resulted in a definition of system operational concept that includes a sensor subsystem, a sensor fusion/feature extraction capability, and a guidance and control law concept. These subsystem concepts have been developed to sufficient depth to enable further exploration within the NASA simulation environment, and to support programs leading to the flight test

    GPU 에러 안정성 보장을 위한 컴파일러 기법

    Get PDF
    학위논문 (박사) -- 서울대학교 대학원 : 공과대학 전기·컴퓨터공학부, 2020. 8. 이재진.Due to semiconductor technology scaling and near-threshold voltage computing, soft error resilience has become more important. Nowadays, GPUs are widely used in high performance computing (HPC) because of its efficient parallel processing and modern GPUs designed for HPC use error correction code (ECC) to protect their storage including register files. However, adopting ECC in the register file imposes high area and energy overhead. To replace the expensive hardware cost of ECC, we propose Penny, a lightweight compiler-directed resilience scheme for GPU register file protection. We combine recent advances in idempotent recovery with low-cost error detection code. Our approach focuses on solving two important problems: 1. Can we guarantee correct error recovery using idempotent execution with error detection code? We show that when an error detection code is used with idempotence recovery, certain restrictions required by previous idempotent recovery schemes are no longer needed. We also propose a software-based scheme to prevent the checkpoint value from being overwritten before the end of the region where the value is required for correct recovery. 2. How do we reduce the execution overhead caused by checkpointing? In GPUs additional checkpointing store instructions inflicts considerably higher overhead compared to CPUs, due to its architectural characteristics, such as lack of store buffers. We propose a number of compiler optimizations techniques that significantly reduce the overhead.반도체 미세공정 기술이 발전하고 문턱전압 근처 컴퓨팅(near-threashold voltage computing)이 도입됨에 따라서 소프트 에러로부터의 복원이 중요한 과제가 되었다. 강력한 병렬 계산 성능을 지닌 GPU는 고성능 컴퓨팅에서 중요한 위치를 차지하게 되었고, 슈퍼 컴퓨터에서 쓰이는 GPU들은 에러 복원 코드인 ECC를 사용하여 레지스터 파일 및 메모리 등에 저장된 데이터를 보호하게 되었다. 하지만 레지스터 파일에 ECC를 사용하는 것은 큰 하드웨어나 에너지 비용을 필요로 한다. 이런 값비싼 ECC의 하드웨어 비용을 줄이기 위해 본 논문에서는 컴파일러 기반의 저비용 GPU 레지스터 파일 복원 기법인 Penny를 제안한다. 이는 최신의 멱등성(idempotency) 기반 에러 복원 기법을 저비용의 에러 검출 코드(EDC)와 결합한 것이다. 본 논문은 다음 두가지 문제를 해결하는 데에 집중한다. 1. 에러 검출 코드 기반으로 멱등성 기반 에러 복원을 사용시 소프트 에러로부터의 안전한 복원을 보장할 수 있는가?} 본 논문에서는 에러 검출 코드가 멱등성 기반 복원 기술과 같이 사용되었을 경우 기존의 복원 기법에서 필요로 했던 조건들 없이도 안전하게 에러로부터 복원할 수 있음을 보인다. 2. 체크포인팅에드는 비용을 어떻게 절감할 수 있는가?} GPU는 스토어 버퍼가 없는 등 아키텍쳐적인 특성으로 인해서 CPU와 비교하여 체크포인트 값을 저장하는 데에 큰 오버헤드가 든다. 이 문제를 해결하기 위해 본 논문에서는 다양한 컴파일러 최적화 기법을 통하여 오버헤드를 줄인다.1 Introduction 1 1.1 Why is Soft Error Resilience Important in GPUs 1 1.2 How can the ECC Overhead be Reduced 3 1.3 What are the Challenges 4 1.4 How do We Solve the Challenges 5 2 Comparison of Error Detection and Correction Coding Schemes for Register File Protection 7 2.1 Error Correction Codes and Error Detection Codes 8 2.2 Cost of Coding Schemes 9 2.3 Soft Error Frequency of GPUs 11 3 Idempotent Recovery and Challenges 13 3.1 Idempotent Execution 13 3.2 Previous Idempotent Schemes 13 3.2.1 De Kruijf's Idempotent Translation 14 3.2.2 Bolts's Idempotent Recovery 15 3.2.3 Comparison between Idempotent Schemes 15 3.3 Idempotent Recovery Process 17 3.4 Idempotent Recovery Challenges for GPUs 18 3.4.1 Checkpoint Overwriting 20 3.4.2 Performance Overhead 20 4 Correctness of Recovery 22 4.1 Proof of Safe Recovery 23 4.1.1 Prevention of Error Propagation 23 4.1.2 Proof of Correct State Recovery 24 4.1.3 Correctness in Multi-Threaded Execution 28 4.2 Preventing Checkpoint Overwriting 30 4.2.1 Register renaming 31 4.2.2 Storage Alternation by Checkpoint Coloring 33 4.2.3 Automatic Algorithm Selection 38 4.2.4 Future Works 38 5 Performance Optimizations 40 5.1 Compilation Phases of Penny 40 5.1.1 Region Formation 41 5.1.2 Bimodal Checkpoint Placement 41 5.1.3 Storage Alternation 42 5.1.4 Checkpoint Pruning 43 5.1.5 Storage Assignment 44 5.1.6 Code Generation and Low-level Optimizations 45 5.2 Cost Estimation Model 45 5.3 Region Formation 46 5.3.1 De Kruijf's Heuristic Region Formation 46 5.3.2 Region splitting and Region Stitching 47 5.3.3 Checkpoint-Cost Aware Optimal Region Formation 48 5.4 Bimodal Checkpoint Placement 52 5.5 Optimal Checkpoint Pruning 55 5.5.1 Bolt's Naive Pruning Algorithm and Overview of Penny's Optimal Pruning Algorithm 55 5.5.2 Phase 1: Collecting Global-Decision Independent Status 56 5.5.3 Phase2: Ordering and Finalizing Renaming Decisions 60 5.5.4 Effectiveness of Eliminating the Checkpoints 63 5.6 Automatic Checkpoint Storage Assignment 69 5.7 Low-Level Optimizations and Code Generation 70 6 Evaluation 74 6.1 Test Environment 74 6.1.1 GPU Architecture and Simulation Setup 74 6.1.2 Tested Applications 75 6.1.3 Register Assignment 76 6.2 Performance Evaluation 77 6.2.1 Overall Performance Overheads 77 6.2.2 Impact of Penny's Optimizations 78 6.2.3 Assigning Checkpoint Storage and Its Integrity 79 6.2.4 Impact of Optimal Checkpoint Pruning 80 6.2.5 Impact of Alias Analysis 81 6.3 Repurposing the Saved ECC Area 82 6.4 Energy Impact on Execution 83 6.5 Performance Overhead on Volta Architecture 85 6.6 Compilation Time 85 7 RelatedWorks 87 8 Conclusion and Future Works 89 8.1 Limitation and Future Work 90Docto

    DLAS: An Exploration and Assessment of the Deep Learning Acceleration Stack

    Full text link
    Deep Neural Networks (DNNs) are extremely computationally demanding, which presents a large barrier to their deployment on resource-constrained devices. Since such devices are where many emerging deep learning applications lie (e.g., drones, vision-based medical technology), significant bodies of work from both the machine learning and systems communities have attempted to provide optimizations to accelerate DNNs. To help unify these two perspectives, in this paper we combine machine learning and systems techniques within the Deep Learning Acceleration Stack (DLAS), and demonstrate how these layers can be tightly dependent on each other with an across-stack perturbation study. We evaluate the impact on accuracy and inference time when varying different parameters of DLAS across two datasets, seven popular DNN architectures, four DNN compression techniques, three algorithmic primitives with sparse and dense variants, untuned and auto-scheduled code generation, and four hardware platforms. Our evaluation highlights how perturbations across DLAS parameters can cause significant variation and across-stack interactions. The highest level observation from our evaluation is that the model size, accuracy, and inference time are not guaranteed to be correlated. Overall we make 13 key observations, including that speedups provided by compression techniques are very hardware dependent, and that compiler auto-tuning can significantly alter what the best algorithm to use for a given configuration is. With DLAS, we aim to provide a reference framework to aid machine learning and systems practitioners in reasoning about the context in which their respective DNN acceleration solutions exist in. With our evaluation strongly motivating the need for co-design, we believe that DLAS can be a valuable concept for exploring the next generation of co-designed accelerated deep learning solutions

    Enhanced applicability of loop transformations

    Get PDF
    corecore