17 research outputs found

    A characterization of b-chromatic and partial Grundy numbers by induced subgraphs

    Full text link
    Gy{\'a}rf{\'a}s et al. and Zaker have proven that the Grundy number of a graph GG satisfies Γ(G)≥t\Gamma(G)\ge t if and only if GG contains an induced subgraph called a tt-atom.The family of tt-atoms has bounded order and contains a finite number of graphs.In this article, we introduce equivalents of tt-atoms for b-coloring and partial Grundy coloring.This concept is used to prove that determining if φ(G)≥t\varphi(G)\ge t and ∂Γ(G)≥t\partial\Gamma(G)\ge t (under conditions for the b-coloring), for a graph GG, is in XP with parameter tt.We illustrate the utility of the concept of tt-atoms by giving results on b-critical vertices and edges, on b-perfect graphs and on graphs of girth at least 77

    Grundy Coloring & Friends, Half-Graphs, Bicliques

    Get PDF
    The first-fit coloring is a heuristic that assigns to each vertex, arriving in a specified order ?, the smallest available color. The problem Grundy Coloring asks how many colors are needed for the most adversarial vertex ordering ?, i.e., the maximum number of colors that the first-fit coloring requires over all possible vertex orderings. Since its inception by Grundy in 1939, Grundy Coloring has been examined for its structural and algorithmic aspects. A brute-force f(k)n^{2^{k-1}}-time algorithm for Grundy Coloring on general graphs is not difficult to obtain, where k is the number of colors required by the most adversarial vertex ordering. It was asked several times whether the dependency on k in the exponent of n can be avoided or reduced, and its answer seemed elusive until now. We prove that Grundy Coloring is W[1]-hard and the brute-force algorithm is essentially optimal under the Exponential Time Hypothesis, thus settling this question by the negative. The key ingredient in our W[1]-hardness proof is to use so-called half-graphs as a building block to transmit a color from one vertex to another. Leveraging the half-graphs, we also prove that b-Chromatic Core is W[1]-hard, whose parameterized complexity was posed as an open question by Panolan et al. [JCSS \u2717]. A natural follow-up question is, how the parameterized complexity changes in the absence of (large) half-graphs. We establish fixed-parameter tractability on K_{t,t}-free graphs for b-Chromatic Core and Partial Grundy Coloring, making a step toward answering this question. The key combinatorial lemma underlying the tractability result might be of independent interest

    b-Coloring Parameterized by Clique-Width

    Get PDF
    We provide a polynomial-time algorithm for b-Coloring on graphs of constant clique-width. This unifies and extends nearly all previously known polynomial-time results on graph classes, and answers open questions posed by Campos and Silva [Algorithmica, 2018] and Bonomo et al. [Graphs Combin., 2009]. This constitutes the first result concerning structural parameterizations of this problem. We show that the problem is FPT when parameterized by the vertex cover number on general graphs, and on chordal graphs when parameterized by the number of colors. Additionally, we observe that our algorithm for graphs of bounded clique-width can be adapted to solve the Fall Coloring problem within the same runtime bound. The running times of the clique-width based algorithms for b-Coloring and Fall Coloring are tight under the Exponential Time Hypothesis

    Entropy and Graphs

    Get PDF
    The entropy of a graph is a functional depending both on the graph itself and on a probability distribution on its vertex set. This graph functional originated from the problem of source coding in information theory and was introduced by J. K\"{o}rner in 1973. Although the notion of graph entropy has its roots in information theory, it was proved to be closely related to some classical and frequently studied graph theoretic concepts. For example, it provides an equivalent definition for a graph to be perfect and it can also be applied to obtain lower bounds in graph covering problems. In this thesis, we review and investigate three equivalent definitions of graph entropy and its basic properties. Minimum entropy colouring of a graph was proposed by N. Alon in 1996. We study minimum entropy colouring and its relation to graph entropy. We also discuss the relationship between the entropy and the fractional chromatic number of a graph which was already established in the literature. A graph GG is called \emph{symmetric with respect to a functional FG(P)F_G(P)} defined on the set of all the probability distributions on its vertex set if the distribution P∗P^* maximizing FG(P)F_G(P) is uniform on V(G)V(G). Using the combinatorial definition of the entropy of a graph in terms of its vertex packing polytope and the relationship between the graph entropy and fractional chromatic number, we prove that vertex transitive graphs are symmetric with respect to graph entropy. Furthermore, we show that a bipartite graph is symmetric with respect to graph entropy if and only if it has a perfect matching. As a generalization of this result, we characterize some classes of symmetric perfect graphs with respect to graph entropy. Finally, we prove that the line graph of every bridgeless cubic graph is symmetric with respect to graph entropy.Comment: 89 pages, 4 figures, MMath Thesi

    Topics in graph colouring and extremal graph theory

    Get PDF
    In this thesis we consider three problems related to colourings of graphs and one problem in extremal graph theory. Let GG be a connected graph with nn vertices and maximum degree Δ(G)\Delta(G). Let Rk(G)R_k(G) denote the graph with vertex set all proper kk-colourings of GG and two kk-colourings are joined by an edge if they differ on the colour of exactly one vertex. Our first main result states that RΔ(G)+1(G)R_{\Delta(G)+1}(G) has a unique non-trivial component with diameter O(n2)O(n^2). This result can be viewed as a reconfigurations analogue of Brooks' Theorem and completes the study of reconfigurations of colourings of graphs with bounded maximum degree. A Kempe change is the operation of swapping some colours aa, bb of a component of the subgraph induced by vertices with colour aa or bb. Two colourings are Kempe equivalent if one can be obtained from the other by a sequence of Kempe changes. Our second main result states that all Δ(G)\Delta(G)-colourings of a graph GG are Kempe equivalent unless GG is the complete graph or the triangular prism. This settles a conjecture of Mohar (2007). Motivated by finding an algorithmic version of a structure theorem for bull-free graphs due to Chudnovsky (2012), we consider the computational complexity of deciding if the vertices of a graph can be partitioned into two parts such that one part is triangle-free and the other part is a collection of complete graphs. We show that this problem is NP-complete when restricted to five classes of graphs (including bull-free graphs) while polynomial-time solvable for the class of cographs. Finally we consider a graph-theoretic version formulated by Holroyd, Spencer and Talbot (2007) of the famous Erd\H{o}s-Ko-Rado Theorem in extremal combinatorics and obtain some results for the class of trees

    Subject Index Volumes 1–200

    Get PDF

    The Inverse Eigenvalue Problem of a Graph

    Get PDF
    Historically, matrix theory and combinatorics have enjoyed a powerful, mutually beneficial relationship. Examples include: Perron-Frobenius theory describes the relationship between the combinatorial arrangement of the entries of a nonnegative matrix and the properties of its eigenvalues and eigenvectors (see [53, Chapter 8]). The theory of vibrations (e.g., of a system of masses connected by strings) provides many inverse problems (e.g., can the stiffness of the springs be prescribed to achieve a system with a given set of fundamental vibrations?) whose resolution intimately depends upon the families of matrices with a common graph (see [46, Chapter 7]). The Inverse Eigenvalue Problem of a graph (IEP-G), which is the focus of this chapter, is another such example of this relationship. The IEP-G is rooted in the 1960s work of Gantmacher, Krein, Parter and Fielder, but new concepts and techniques introduced in the last decade have advanced the subject significantly and catalyzed several mathematically rich lines of inquiry and application. We hope that this chapter will highlight these new ideas, while serving as a tutorial for those desiring to contribute to this expanding area
    corecore