221 research outputs found

    An identification of the tolerable time-interleaved analog-to-digital converter timing mismatch level in high-speed orthogonal frequency division multiplexing systems

    Get PDF
    High-speed Terahertz communication systems has recently employed orthogonal frequency division multiplexing approach as it provides high spectral efficiency and avoids inter-symbol interference caused by dispersive channels. Such high-speed systems require extremely high-sampling time-interleaved analog-to-digital converters at the receiver. However, timing mismatch of time-interleaved analog-to-digital converters significantly causes system performance degradation. In this paper, to avoid such performance degradation induced by timing mismatch, we theoretically determine maximum tolerable mismatch levels for orthogonal frequency division multiplexing communication systems. To obtain these levels, we first propose an analytical method to derive the bit error rate formula for quadrature and pulse amplitude modulations in Rayleigh fading channels, assuming binary reflected gray code (BRGC) mapping. Further, from the derived bit error rate (BER) expressions, we reveal a threshold of timing mismatch level for which error floors produced by the mismatch will be smaller than a given BER. Simulation results demonstrate that if we preserve mismatch level smaller than 25% of this obtained threshold, the BER performance degradation is smaller than 0.5 dB as compared to the case without timing mismatch

    Architectural Improvements Towards an Efficient 16-18 Bit 100-200 MSPS ADC

    Get PDF
    As Data conversion systems continue to improve in speed and resolution, increasing demands are placed on the performance of high-speed Analog to Digital Conversion systems. This work makes a survey about all these and proposes a suitable architecture in order to achieve the desired specifications of 100-200MS/s with 16-18 bit of resolution. The main architecture is based on paralleled structures in order to achieve high sampling rate and at the same time high resolution. In order to solve problems related to Time-interleaved architectures, an advanced randomization method was introduced. It combines randomization and spectral shaping of mismatches. With a simple low-pass filter the method can, compared to conventional randomization algorithms, improve the SFDR as well as the SINAD. The main advantage of this technique over previous ones is that, because the algorithm only need that ADCs are ordered basing on their time mismatches, the absolute accuracy of the mismatch identification method does not matter and, therefore, the requirements on the timing mismatch identification are very low. In addition to that, this correction system uses very simple algorithms able to correct not only for time but also for gain and offset mismatches

    Offset mismatch calibration for TI-ADCs in high-speed OFDM systems

    No full text
    Time-interleaved analog-to-digital converters (TIADCs) are widely used for multi-Gigabit orthogonal frequency division multiplexing (OFDM) based systems because of their attractive high sampling rate and high resolution. However, when not perfectly calibrated, mismatches such as offset mismatch, gain mismatch and timing mismatch between parallel sub-ADCs can significantly degrade the system performance. In this paper, we focus on offset mismatch. We analyze two calibration techniques for the offset mismatch, based on the least-squares (LS) and linear minimum mean-squared error (LMMSE) algorithms assuming an AWGN channel. The simulation results show that our method is capable of improving the BER performance. As expected, the LMMSE estimator outperforms the LS estimator. However, at large offset mismatch levels or low noise level, both estimators converge. In this paper, we derive the condition on the mismatch level for convergence between the two estimators

    Analog‐to‐Digital Conversion for Cognitive Radio: Subsampling, Interleaving, and Compressive Sensing

    Get PDF
    This chapter explores different analog-to-digital conversion techniques that are suitable to be implemented in cognitive radio receivers. This chapter details the fundamentals, advantages, and drawbacks of three promising techniques: subsampling, interleaving, and compressive sensing. Due to their major maturity, subsampling- and interleaving-based systems are described in further detail, whereas compressive sensing-based systems are described as a complement of the previous techniques for underutilized spectrum applications. The feasibility of these techniques as part of software-defined radio, multistandard, and spectrum sensing receivers is demonstrated by proposing different architectures with reduced complexity at circuit level, depending on the application requirements. Additionally, the chapter proposes different solutions to integrate the advantages of these techniques in a unique analog-to-digital conversion process

    A jittered-sampling correction technique for ADCs

    Get PDF
    In Analogue to Digital Converters (ADCs) jittered sampling raises the noise floor; this leads to a decrease in its Signal to Noise ratio (SNR) and its effective number of bits (ENOB). This research studies a technique that compensate for the effects of sampling with a jittered clock. A thorough understanding of sampling in various data converters is complied

    Parallel-sampling ADC architecture for power-efficient broadband multi-carrier systems

    Get PDF

    Modeling and Design of Architectures for High-Speed ADC-Based Serial Links

    Get PDF
    There is an ongoing dramatic rise in the volume of internet traffic. Standards such as 56Gb/s OIF very short reach (VSR), medium reach (MR) and long reach (LR) standards for chip to chip communication over channels with up to 10dB, 20dB and 30dB insertion loss at the PAM 4 Nyquist frequency, respectively, are being adopted. These standards call for the spectrally efficient PAM-4 signaling over NRZ signaling. PAM-4 signaling offers challenges such as a reduced SNR at the receiver, susceptibility to nonlinearities and increased sensitivity to residual ISI. Equalization provided by traditional mixed signal architectures can be insufficient to achieve the target BER requirements for very long reach channels. ADC-based receiver architectures for PAM-4 links take advantage of the more powerful equalization techniques, which lend themselves to easier and robust digital implementations, to extend the amount of insertion loss that the receiver can handle. However, ADC-based receivers can consume more power compared to mixed-signal implementations. Techniques that model the receiver performance to understand the various system trade-offs are necessary. This research presents a fast and accurate hybrid modeling framework to efficiently investigate system trade-offs for an ADC-based receiver. The key contribution being the addition of ADC related non-idealities such as quantization noise in the presence of integral and differential nonlinearities, and time-interleaving mismatch errors such as gain mismatch, bandwidth mismatch, offset mismatch and sampling skew. The research also presents a 52Gb/s ADC-based PAM-4 receiver prototype employing a 32-way time-interleaved, 2-bit/stage, 6-bit SAR ADC and a DSP with a 12-tap FFE and a 2-tap DFE. A new DFE architecture that reduces the complexity of a PAM-4 DFE to that of an NRZ DFE while simultaneously nearly doubling the maximum achievable data rate is presented. The receiver architecture also includes an analog front-end (AFE) consisting of a programmable two stage CTLE. A digital baud-rate CDR’s utilizing a Mueller-Muller phase detector sets the sampling phase. Measurement results show that for 32Gb/s operation a BER < 10⁻⁹ is achieved for a 30dB loss channel while for 52 Gb/s operation achieves a BER < 10⁻⁶ for a 31dB loss channel with a power efficiency of 8.06pj/bit

    DESIGN OF LOW-POWER LOW-VOLTAGE SUCCESSIVE-APPROXIMATION ANALOG-TO-DIGITAL CONVERTERS

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH
    corecore