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Abstract—The identification of maximum tolerable levels for
potential mismatches is critical when designing communication
systems. In this paper, we derive maximum tolerable levels
for time-interleaved analog-to-digital-converter (TI-ADC) gain
mismatch in orthogonal frequency division multiplexing (OFDM)
systems. To this end, we first analytically evaluate the bit
error rate (BER) for square quadrature amplitude modulated-
OFDM (QAM-OFDM) systems that are impaired by (i) the gain
mismatch of a TI-ADC and (ii) the channel estimation errors
(CEEs) of a zero-forcing equalizer. Our analysis includes the
cases of a frequency-selective Rayleigh fading channel and a
wired channel. Next, built on the obtained BER expressions, a
threshold is established on the gain mismatch level, at which
an error floor caused by the gain mismatch is below a given
BER value at high signal-to-noise ratios (SNRs) in the absence
of CEEs. Finally, numerical results further show that if and only
if we set the gain mismatch level below 0.25 of this threshold,
there is essentially no BER performance degradation compared
with the mismatch-free case.

Index Terms—Bit error rate, OFDM, TI-ADC, gain mismatch,
channel estimation error, square QAM, Rayleigh channels, wired
channels.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) is an
efficient data modulation technique that is extensively used for
many broadband wired and wireless communication systems
to mitigate the effects of delay spread in dispersive channels
[1]. For instance, current multi-Gigabit fiber-optic communica-
tion systems employ OFDM to increase the data transmission
rates to 100 Gbps and beyond [2]. OFDM has also received
growing attention in emerging ultra-high speed wireless com-
munication systems including ultra-wideband systems in the
3.1-10.6 GHz band [3] and millimeter-wave systems in the
60 GHz band (e.g., unlicensed spectrum from 57-64 GHz
available in the US) [4]. Such high-speed OFDM systems
require that the receiver is equipped with a high sampling rate
analog-to-digital converter (ADC), which is placed prior to the
baseband digital signal processing unit. Since the operating
sampling rate of a regular ADC is limited by the physical
constrains of the current technology [5], a time-interleaved
(TI) architecture is frequently employed.

To obtain a sampling rate 1
Ts

, a TI-ADC is constructed
with L identical sub-ADCs, each sampling the analog input
signal at a lower rate 1

LTs
, i.e., the l-th sub-ADC samples

the input signal at time instants t(l)k = lTs + kLTs, where
l = 0, 1, ..., L − 1, k = 0, 1, 2, .... Unfortunately, due to
component inequalities and tiny asymmetries in ADC chip

layouts causing unknown offset, gain and timing mismatches
between the sub-ADC outputs, the use of a TI-ADC can
significantly degrade the overall system performance. The ef-
fect of these mismatches and mismatch calibration approaches
have been intensively studied for single-carrier systems over
the past decades [6]–[13]. More recently, these issues have
also been investigated for high-speed OFDM systems [14]–
[17]. In general, it was shown that TI-ADC mismatches affect
OFDM systems in quite a different way than single-carrier
systems. Most of these works, however, have investigated the
effect of TI-ADC mismatches on OFDM bit error rate (BER)
through numerical simulation only. This motivated further
research on approaches to derive simple TI-ADC mismatch-
impaired BER expressions which can be evaluated efficiently
and which can be investigated by analytical means in order
to understand some of the main processes at work. As a first
step, a full study on the effect of offset mismatch was reported
in [18]. As a follow-up, the present paper is concerned with
the impact of gain mismatch. As opposed to offset mismatch,
gain mismatch causes inter-carrier interference (ICI) [15],
[17], [19] which can severely degrade the performance of an
OFDM transmission. Hence, the impact of gain mismatch is
potentially larger than that of offset mismatch. Parts of the
work on gain mismatch have been published previously [19],
[20]. In [19], we used a Gaussian approach (GA) to the ICI
caused by gain mismatch. The study considered an additive
white Gaussian noise (AWGN) channel only, in which case
the GA was seen to produce an inaccurate estimate of the
true BER for small values of L. As an alternative, in [20], we
proposed to use a semi-analytic approach (SA). Simulation
results in [20] have confirmed the accuracy of the SA for any
value of L and for AWGN as well as for frequency-selective
fading channels. Major drawbacks of the SA as compared to
the GA are (i) the complexity of the associated BER evaluation
procedure and (ii) the lack of insight provided by the obtained
BER expressions. We note that, until now, the accuracy of the
GA has never been investigated for frequency-selective fading
channels, while OFDM systems are often specifically designed
for such channels [1]. In OFDM systems, a frequency-selective
channel is converted into a collection of flat fading channels,
and therefore its effect can be compensated by simply using
a one-tap frequency-domain equalizer per sub-carrier [2]. As
in many coherent communication systems, channel estimation
errors (CEEs) have a direct impact on the bit error rate (BER)
performance of the OFDM system. The isolated influence of
such CEEs on the BER performance for some modulation



TABLE I
NOTATIONS AND CONVENTIONS

Notation Meaning
x∗ complex conjugate of x
XT transpose of vector X
N FFT size
NCP cyclic prefix length
L number of sub-ADCs
Es symbol energy
IN {0, 1, ..., N − 1}
IL {0, 1, ..., L− 1}
N0 noise power spectral density
dgl gain error for the lth sub-ADC

dgx%l
gain error for the lth sub-ADC if mismatch level is
at x%

X ∼ ℵ
(
µ, 2σ2

) X is complex-valued circularly symmetric Gaussian
distributed with mean µ and variance σ2 per
dimension

px(x) probability density function (pdf) of x
<{x} real part of x
={x} imaginary part of x
δk Kronecker delta function

mod (x, y)
value in [0, y) such that x = iy +mod (x, y) with
i integer

|x| absolute value of x

orders and types, i.e., if no other disturbances are present
except the CEE, was studied in [21]–[23] for single-carrier
systems, and in [24]–[26] for multi-carrier systems. In partic-
ular, in [26], an approximate closed-form BER expression in
the presence of CEEs was derived for square QAM-OFDM
systems, but this approximation is valid for a small range of
the CEE variance only.

In this paper, we consider the joint effect of TI-ADC gain
mismatch and CEEs on the OFDM BER performance in
frequency-selective Rayleigh fading and wired channels. To
this end, we use the GA. We show that the obtained BER
expressions can be evaluated efficiently, while providing a
good approximation of the true BER. Regarding the impact
of the CEEs, the derived BER expression is more accurate
than the one proposed in [26]. Further, as far as TI-ADC
gain mismatch is concerned, the analytical BER expression
for wired channels is less accurate than for Rayleigh channels.
The difference between the Rayleigh channels and the wired
channels is thoroughly discussed. As top of the bill, we
derive a rule-of-thumb for determining the maximum tolerable
gain mismatch level (in the absence of CEEs). This is the
largest gain mismatch level for which the BER performance
degradation with respect to the mismatch-free case remains
below an acceptable limit. Maximum tolerable gain mismatch
levels serve as important guidelines for circuit-and-system
design engineers to compensate the gain mismatch through
hardware calibration or digital signal processing [15], [27],
[28].

The paper is organized as follows. First, Table I lists the
notations used throughout the paper. Then, Section II describes
the system model. The BER expressions for Rayleigh and
wired channels are derived in Section III. Square QAM and
binary reflected Gray code (BRGC) bit mapping [29] are
assumed. The results for pulse amplitude modulation (PAM)
follow as a special case. In Section IV, we validate the accu-
racy of the obtained expressions by comparing their numerical
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Fig. 1. Block diagram of an OFDM system with a TI-ADC at the receiver.

evaluation with the results of a brute-force Monte Carlo
(MC) simulation. We derive a rule-of-thumb for a tolerable
gain mismatch level inducing a negligible BER performance
degradation in the case of fixed gain mismatch in Section
V, and in the case of random gain mismatch in Section VI.
Finally, Section VII presents the conclusions of the study.

II. SYSTEM MODEL

A. Transmitter

The OFDM system under consideration is shown in Fig. 1.
The receiver is assumed to employ a TI-ADC. The different
sub-ADCs of the TI-ADC experience different gain errors. To
simplify the notations, we consider the transmission of a single
OFDM block X consisting of N complex-valued data symbols
in the frequency domain, i.e., X = (X0, X1, ..., XN−1)

T that
are taken from a unit-energy square M2-QAM constellation
Ω. Each complex-valued constellation symbol is equivalent to
the orthogonal superposition of 2 real-valued PAM symbols
(I and Q components), each corresponding to a sequence
of m = log2M input data bits according to the BRGC
mapping rule [29]. The vector X is applied to an inverse
discrete Fourier transform (IDFT) of size N . The resulting
time-domain samples are extended with a cyclic prefix (CP)
of length NCP , which protects the received OFDM symbol
against inter-symbol interference (ISI) caused by the frequency
selectivity of the channel. The time-domain samples sk are
given by

sk =
1√
N

∑
n∈IN

Xne
j2π nkN ,−NCP ≤ k ≤ N − 1. (1)

Before transmitting over the channel hk and adding an AWGN
noise wk, these samples are passed through a digital-to-analog
converter (DAC) and a transmit filter.

B. Receiver

At the receiver, we assume perfect timing synchronization
and matched filtering. After passing through the receive filter,
the received waveform is sampled at the Nyquist rate 1

Ts
by a

TI-ADC with L parallel sub-ADCs. The TI-ADC is assumed
to have a sufficiently high resolution, so the quantization noise
can be neglected [8], [15], [30]. Further, since in practice, the
gain errors of the sub-ADCs in a TI-ADC vary only very
slowly with time [15], we model them as constants over an
OFDM symbol period. Using the model from [15], the output
of the TI-ADC with gain mismatch can be written as

rk = (1 + dgl) yk, −NCP ≤ k ≤ N − 1, (2)



where l = mod (k, L), dgl is the gain error of the l-th sub-
ADC, expressed relative to the transmitted symbol energy Es,
and yk is given by

yk =
√
Es

NCP−1∑
m=0

hmsk−m + wk

=
√
Es√
N

∑
n∈IN

Xn

NCP−1∑
m=0

hme
−j2πmnN ej2π

nk
N

+ 1√
N

∑
n∈IN

Wne
j2π nkN

= 1√
N

∑
n∈IN

(√
EsXnHn +Wn

)
ej2π

nk
N .

(3)

Here, wk = 1√
N

∑
n∈IN Wne

j2π nkN , with Wn ∼ ℵ (0, N0)
independent and identically distributed (i.i.d.) Gaussian noise
samples, and Hn =

∑NCP−1
m=0 hme

−j2πmnN are the channel
coefficients in the frequency domain. In this paper, we consider
the cases of a slowly-varying multi-path Rayleigh fading
channel and a wired channel. In both cases, the channel
remains roughly constant over an OFDM symbol duration.

The receiver removes the CP and converts the remaining
N samples to the frequency domain using a discrete Fourier
transform (DFT). Before data detection, the receiver employs
a zero-forcing (ZF) equalizer to compensate for the channel
[25]. The output of the equalizer at the n-th sub-carrier is
given by

Rn =
1

Ĥn

√
N

∑
k∈IN

rke
−j2π knN , (4)

where Ĥn denotes the estimate of Hn. The quantities Rn
(4) are used to perform bit sequence detection by mapping
them to the nearest constellation point and applying the inverse
mapping rule.

III. APPROXIMATE BER EXPRESSION USING GA

In this section, we derive a simple approximate BER
expression for the considered system. In the derivation, we
need appropriate statistical models for the ICI caused by gain
mismatch and for the CEE caused by channel estimation, and
this for given data symbols Xn and channel estimates Ĥn.

A. Channel estimation error

Let us consider a fixed gain mismatch, and a given but
further unspecified estimator. We employ a general additive
estimation error model for the channel estimate Ĥn in (4)
[25], i.e.,

Ĥn = Hn + Un, (5)

where the independent CEE Un ∼ ℵ
(
0, 2σ2

U

)
, and Un is

statistically independent of Hn and Ĥn [25], [26]. The value
of σ2

U reflects the level of the channel estimation accuracy.
Depending on the type of channel, we distinguish two cases:

1) In the case of a wireless RF communication system,
where the channel can be described by a Rayleigh fading
channel, with Hn ∼ ℵ

(
0, 2σ2

H

)
, the channel estimates

Ĥn (5) can be modelled as circularly symmetric complex
Gaussian random variables with zero mean and variance
σ2
Ĥ

per dimension, with σ2
Ĥ

= σ2
H + σ2

U . As a result,

∣∣∣Ĥn

∣∣∣ has a Rayleigh distribution with probability density
function (pdf)

p|Ĥn|
(∣∣∣Ĥn

∣∣∣) =

∣∣∣Ĥn

∣∣∣
σ2
Ĥ

e
−|Ĥn|

2

2σ2
Ĥ . (6)

2) In the case of a fibre-optic or wired RF communication
system, the channel can be modelled as a static channel
over multiple OFDM symbols, i.e., Hn are constants. In
that case, the channel estimates Ĥn (5) can be modelled
as independent circularly symmetric complex Gaussian
random variables with mean Hn and variance σ2

U per
dimension. Consequently,

∣∣∣Ĥn

∣∣∣ has a Rice distribution
with pdf

p|Ĥn|
(∣∣∣Ĥn

∣∣∣) =

∣∣∣Ĥn

∣∣∣
σ2
U

e
−|Ĥn|

2+|Hn|2

2σ2
U J0

(
|Hn|
σ2
U

∣∣∣Ĥn

∣∣∣) ,
(7)

where J0 (z) is the modified zero-th order Bessel func-
tion of the first kind.

B. Interference-plus-noise and CEE terms

In this subsection, we derive a simple statistical model for
the ICI term that results from substituting (2) and (3) into
(4). In order to derive a closed-form expression for this term,
we first introduce the window function πk that equals 1 for
k ∈ IN and 0 otherwise, and whose discrete-time Fourier
transform (DTFT) Π (F ) is given by

Π (F ) = N
∞∑

k=−∞
sinc (N (F − k)) e−jπN(F−k)

≈ Nsinc
(

[NF ]−N2 ,
N
2

)
e
−jπ[NF ]−N

2
, N

2

(8)

for large N , where [x]−N2 ,
N
2

denotes mod
(
x+ N

2 , N
)
− N

2 .
Substituting (2) and (3) into (4), using πk to extend the
summation over k to k ∈ [−∞,∞], and replacing this
summation by a summation over qL+ l with q ∈ [−∞,+∞]
and l ∈ IL, we obtain

Rn = 1
ĤnN

∑
a∈IN

(√
EsXaHa +Wa

)
×
∑
l∈IL

(1 + dgl)e
−j2π (n−a)l

N

+∞∑
q=−∞

πqL+le
−j2π (n−a)Lq

N .

(9)
Taking into account that the last summation in (9) is the DTFT
of a sub-sampled and time-shifted version of πk evaluated in
F = (n−a)L

N , we obtain

e−j2π
(n−a)l
N

+∞∑
q=−∞

πqL+le
−j2π (n−a)Lq

N

= 1
L

∑
i∈IL

Π
(

(n−a)
N − i

L

)
e−j2π

il
L .

(10)
Substituting (8) and (10) into (9), we obtain after appropriate
rearrangements

Rn ≈ 1
Ĥn

(1 +DG0)
(√
EsXnHn +Wn

)
+ 1
Ĥn

∑
i∈IL\0

DGi
∑

a∈IN ,a 6=n

(√
EsXaHa +Wa

)
f (a− pi,n) ,

(11)



where the approximation holds for large N and large N
L . In

(11), DGi, f(z) and pi are defined as

DGi =
1

L

∑
l∈IL

dgle
−j2π ilL , (12)

f (z) =
sin (πz)

πz
e−jπz (13)

and

pi,n = mod

(
n− iN

L
,N

)
, (14)

respectively. Further, in arriving at (11), we have neglected the
term

∑
i∈IL\0

DGif (n− pi,n) which is very small in the usual

case of large N
L .

Substituting (5) into (11), Rn in (11) can be further simpli-
fied as

Rn ≈
√
Es (1 +DG0)Xn + Λn. (15)

In (15), the interference-plus-noise term Λn is given by

Λn = Λ1,n + Λ2,n + Λ3,n, (16)

where the interference term Λ1,n and the noise term Λ2,n

caused by the gain mismatch only, and the interference term
Λ3,n caused by both CEE and gain mismatch, are defined as

Λ1,n =

√
Es

Ĥn

∑
i∈IL\0

DGi
∑

a∈IN ,a 6=n

XaHaf (a− pi,n), (17)

Λ2,n = 1
Ĥn

(1 +DG0)Wn

+ 1
Ĥn

∑
i∈IL\0

DGi
∑

a∈IN ,a 6=n
Waf (a− pi,n) (18)

and

Λ3,n = −
√
Es

Ĥn

(1 +DG0)XnUn, (19)

respectively. Note that for integer ratios N
L , pi,n is integer

valued. As a result, f(a−pi,n) = δa−pi,n . Hence, (17) and (18)
reduce to Λ1,n =

√
Es
Ĥn

∑
i∈IL\0DGiXpi,nHpi,n and Λ2,n =

1
Ĥn

(1 +DG0)Wn + 1
Ĥn

∑
i∈IL\0DGiWpi,n .

Modelling Xn as i.i.d. random variables with zero mean
and unit variance, and as Ĥn is assumed to be independent of
Hn′ for n 6= n′1, it immediately follows that (for a given Xn

and Ĥn) Λn is (approximately) circularly symmetric complex
Gaussian distributed with zero mean and variance σ2

Λ per
dimension. Indeed:

1) Λ1,n, Λ2,n and Λ3,n are statistically independent with
zero mean.

2) Λ1,n is (approximately) circularly symmetric complex
Gaussian distributed.
• In the case of Rayleigh fading channels (i.e., Hn ∼
ℵ
(
0, 2σ2

H

)
), the terms in (17) are Gaussian dis-

tributed (as the product of a Gaussian and a discrete
random variable). As a result, Λ1,n itself has a
Gaussian distribution.

1Hence, we have E
{

Hn′
Ĥn
|Ĥn

}
= 1

Ĥn
E {Hn′} for n 6= n′.

• In the case of static channels (i.e., Hn are constants),
(17) is a linear combination of i.i.d. discrete ran-
dom variables. Taking into account the generalized
central limit theorem [31], Λ1,n can nevertheless
be approximated as a complex Gaussian distributed
random variable, if for non-integer ratios N

L , either
L or N is sufficiently large; and for integer ratios
N
L , L is sufficiently large. In Section IV, we study
what happens if these conditions are not fulfilled.

The variance of Λ1,n is given by

σ2
Λ1,n

= Es

|Ĥn|2
∑

i1,i2∈IL\0
DGi1(DGi2)

∗

×
∑

a∈IN ,a6=n
Aaf (a− pi1,n)f (a− pi2,n)

(20)
per dimension, where

Aa =

{
σ2
H ,Rayleigh channel

1
2 |Ha|2 ,wired channel.

(21)

3) Λ2,n and Λ3,n are circularly symmetric complex Gaus-
sian distributed random variables with respective vari-
ances per dimension

σ2
Λ2,n

= N0

2|Ĥn|2 (1 +DG0)
2

+ N0

2|Ĥn|2
∑

i1,i2∈IL\0
DGi1(DGi2)

∗

×
∑

a∈IN ,a 6=n
f (a− pi1,n) f (a− pi2,n)

(22)
and

σ2
Λ3,n

=
Es∣∣∣Ĥn

∣∣∣2 (1 +DG0)
2|Xn|2σ2

U . (23)

It follows that

σ2
Λ

(
Xn, Ĥn

)
= σ2

Λ1,n
+ σ2

Λ2,n
+ σ2

Λ3,n
(24)

per dimension. For Rayleigh channels, this model is exact. For
wired channels, this model is only an approximation.

C. BER expression

In this subsection, we derive the BER of an OFDM system
in a Rayleigh or wired channel for fixed gain errors and a
fixed CEE variance. If Λn ∼ ℵ

(
0, 2σ2

Λ

(
Xn, Ĥn

))
, then for

given Xn, given {DGi}i∈IL and given Ĥn, the conditional
BER for a given channel estimate vector Ĥ can be obtained
straightforwardly according to the well-established error-rate
results for an AWGN channel [19], [32]. Assuming Nd data-
modulated sub-carriers2, we obtain

BER|Ĥ =
1

NdmM2

∑
n,u,Xn,y

λu,<{Xn},yerfc(Υu,Xn,y(|Ĥn|)),

(25)

2In practice, in many OFDM systems, not all N sub-carriers are used for
data transmission. For instance, a few sub-carriers near the edges (i.e., the
guard band) are not modulated to achieve a sufficient transition band at the
bandwidth boundaries [33].



where the summation runs over the set of modulated sub-
carriers n ∈ Id ⊂ IN , u ∈ {1, 2, ...,m}, Xn ∈ Ω and y ∈{

1, 2, ..., Fu,<{Xn}
}

with

Fu,<{Xn} =

⌊(
<{Xn}
d

+M

)
2−(m−u+2) + 2−1

⌋
. (26)

In (26), bzc denotes the largest integer smaller than z, and d
is the half minimum Euclidean distance between the points in
Ω [32]. Further, the pre-factor λu,<{Xn},y in (25) equals

λu,<{Xn},y = (−1)b2
u−2−m·((<{Xn}−∆u,y)/d−1)c, (27)

where ∆u,y are the positions of the decision boundaries, given
by [19]

∆u,y =
(
(2y − 1) · 2m−u+1 −M

)
d

∆
= Bu,yd. (28)

Finally, the argument Υu,Xn,y

(∣∣∣Ĥn

∣∣∣) of the complementary
error function (erfc-function) is given by

Υu,Xn,y

(∣∣∣Ĥn

∣∣∣)
= ((1 +DG0)<{Xn} −∆u,y)

√
Es

2σ2
Λ(Xn,Ĥn)

,

(29)
where σ2

Λ

(
Xn, Ĥn

)
is defined in (24). As the BER of the I

and Q components of an M2-QAM constellation is the same,
the obtained BER expression will also hold for an M -PAM
constellation.

To obtain the overall BER, the BER|Ĥ from (25) needs to

be averaged over the statistics of
{∣∣∣Ĥn

∣∣∣}, i.e.,

BER =

+∞∫
0

BER|Ĥp|Ĥn|
(∣∣∣Ĥn

∣∣∣)d ∣∣∣Ĥn

∣∣∣ , (30)

where p|Ĥn|
(∣∣∣Ĥn

∣∣∣) is the pdf of
∣∣∣Ĥn

∣∣∣. Depending on the
type of channel, we have:

1) Rayleigh channels: Using (6) and [34], the integration
in (30) can be simplified to

BER = 1
NdmM2

∑
n,u,Xn,y

λu,<{Xn},y

×

(
1− ((1 +DG0)<{Xn} −∆u,y)

√
σ2
Ĥ
Es

Du,Xn,y

)
,

(31)
where Du,Xn,y is given by:

Du,Xn,y = σ̂2
Λ1,n

+ σ̂2
Λ2,n

+ σ̂2
Λ3,n

+Esσ
2
Ĥ

((1 +DG0)<{Xn} −∆u,y)
2
,
(32)

with σ̂2
Λ1,n

= |Ĥn|2σ2
Λ1,n

, σ̂2
Λ2,n

= |Ĥn|2σ2
Λ2,n

and
σ̂2

Λ3,n
= |Ĥn|2σ2

Λ3,n
. The expression (31) provides an

efficient and fast approach to evaluate the BER perfor-
mance compared to a brute-force Monte-Carlo (MC)
computation, which can be very time consuming. A
quick count learns that evaluating (31) for K signal-
to-noise ratio (SNR) values requires O

(
M2
)

+O (L)+
O (K ) elementary operations, whereas a MC method
would require

∑K
i=1 Ψi · (O (M) +O (L)) operations.

TABLE II
SIMULATION PARAMETERS

Parameters Reference values
Es 1
N 64, 128, 512, 2048
L 2, 3, 4, 6, 7, 8

dg100%l [0.61,−0.75,−0.31, 0.26, 0.82,−0.55,−0.16,−0.95]

DG100%
i

[−0.1288,−0.1509− 0.0705j, 0.2375 + 0.0763j
0.0984− 0.1080j, 0.3688, 0.0984 + 0.1080j,

0.2375− 0.0762j,−0.1509 + 0.0705j]

Here, Ψi denotes the number of system simulations
required for the MC simulation to obtain a good approx-
imation of the BER at the i-th SNR value. For example,
to evaluate the BER of an optical communication system
of 10−9 (or lower) [2], we need to generate at least
1010 transmitted bits in case of brute-force MC method.
Hence, for a given SNR, the number of the required op-
erations for MC equals 1010

2N log2M
(O (M) +O (L)). This

number is much larger than the number of operations
required for evaluating (31), which equals O

(
M2
)

+
O (L) for a given SNR.

2) Wired channels: Using (7), the BER can be obtained by
the numerical integration of (30).

IV. NUMERICAL VALIDATION AND DISCUSSION

In this section, we validate the accuracy of the derived BER
expression for Rayleigh fading and wired channels by compar-
ing the numerical evaluation of our analytical expressions with
brute-force MC simulation results for various constellations,
and different L, σ2

U and mismatch levels. We assume all sub-
carriers are modulated, i.e., Nd = N . Further, we generate
8 independent gain errors dg100%

l according to a uniform
distribution over the interval [−1, 1] [15] and keep these gain
errors fixed. These L values can be interpreted as 100% of
the gain mismatch level of a particular TI-ADC realization.
Moreover, when L < 8, only the first L values of the 8 fixed
gain errors will be employed. The simulation parameters are
summarized in Table II. The level of mismatch will be varied
by scaling the dg100%

l gain errors, i.e., for an x% mismatch
level, we use as the gain errors: dgx%

l = x
100dg

100%
l , and

DGx%
i = x

100DG
100%
i . The obtained BER is plot against

the SNR per bit, i.e., Eb
N0

. The relationship between the SNR
per symbol (EsN0

) and the SNR per bit (EbN0
) is given by:

Es
N0

= 2mEb
N0

for QAM and Es
N0

= mEb
N0

for PAM. The channel
impulse response is modelled as

hk = Ce−
1
2ξAk, k = 0, 1, ...., ξ − 1, (33)

where ξ denotes the number of channel taps. Depending on
the type of channel, we distinguish two cases:

1) A Rayleigh channel: Ak are independently complex-
valued random variables with standard normal distribu-
tion, i.e., Ak ∼ ℵ (0, 1), and C is the normalization
constant so that

∑ξ−1
k=0E

{
|hk|2

}
= 1. In this case, it

is easily verified that the frequency channel coefficients
Hn are independently complex-valued random variables
with standard normal distribution, i.e., Hn ∼ ℵ (0, 1),



and Hn is also statistically independent from Ĥn′ for
n 6= n′.

2) A wired channel: the deterministic complex-valued co-
efficients Ak ∼ ℵ (0, 1) are generated once and kept
fixed over the simulations, and C is the normalization
constant so that

∑ξ−1
k=0 |hk|

2
= 1.

The obtained BER curves reflect the error performance of
a given TI-ADC realization and a given channel estimator.

A. Rayleigh channel

We first consider a Rayleigh fading channel. In Fig. 2, the
BER performance of a system impaired by gain mismatch and
CEE is shown for different constellations, L and mismatch
levels. For comparison, the BER of a system without gain
mismatch and CEE is also provided. It can be observed from
Fig. 2 that when either the modulation order or the mismatch
level increases, the BER performance significantly deterio-
rates, i.e., the induced error floors strongly increase. Most
importantly, Fig. 2 shows that the analytical BER curves are in
excellent agreement with the simulated BER curves. We also
investigated numerous other parameter settings (results not
shown in this paper), and found the same excellent agreement
between analytical expression and simulations. Such a good
agreement was to be expected considering that in the case of
Rayleigh fading no approximation is involved in the derivation
of the analytical BER expression (31).

Next, we compare our approach with the approach from
[26]. Assuming a Rayleigh fading channel, Fig. 3 depicts
the BER curves for 4-QAM, 16-QAM and 64-QAM when
N = 2048, L = 8 and for 0% gain mismatch. CEE variances
σ2
U equal to 0 (no CEE), 10−4, 10−3, 10−2, 10−1 and 1 are

considered. For large σ2
U , the BER expression proposed in

[26] does not match the simulations. The observed deviation
is a result of the fact that the derivation in [26] considers the
dominating BER terms only. In contrast, as is evident from Fig.
3, the theoretical BER derived in this paper exactly predicts
the simulated BER for any value of the CEE variance.

B. Wired channel

We now evaluate the derived BER expressions for wired
channels. In Fig. 4, the BER curves are provided for different
constellations, values of L, mismatch levels and CEE variances
σ2
U . For the sake of comparison, the BER without gain

mismatch and CEE is also shown. We make the following
observations:
• Integer N

L , no CEE: Fig. 4(a) shows that the analytical
BER curves do not match the simulated BER curves
when L is small, i.e., L = 2, 4. However, when L
increases, the deviation between theory and simulation
decreases. When L = 8, the analytical result is in good
agreement with the simulation. The deviation between
analytical result and simulation can be explained as
follows. With integer ratios N

L , we have that Λ1,n =√
Es
Ĥn

∑
i∈IL\0DGiXpi,nHpi,n (see (17)), i.e., Λ1,n is the

summation of only L terms. Hence, Λ1,n can only be
approximated as a Gaussian random variable for large
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Fig. 2. BER curves for a Rayleigh channel with N = 2048
(a) L = 8, 1% mismatch and σ2

U = 10−4 for square QAM and PAM
(b) 16-QAM, 2% mismatch level and no CEE when L equals 2, 6 and 8
(c) 8-PAM, L = 7 and no CEE with different mismatch levels

enough values of L. Otherwise, the generalized central
limit theorem does not apply.

• Non-integer N
L , no CEE: Fig. 4(a) shows that the analyt-

ical BER curve is in good agreement with the simulated
BER curve even when L is as small as 3. This can be
explained by the fact that with non-integer ratios N

L , the
contribution of the gain mismatch is spread over all sub-
carriers. In contrast to the case of integer ratios N

L , in (17)
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Fig. 3. BER curves for a Rayleigh fading channel for N = 2048, L = 8
and 0% gain mismatch with different values of CEE variance: (a) 4-QAM,
(b) 16-QAM and (c) 64-QAM.

the summation over N does not disappear. Therefore,
Λ1,n consists of a summation over a large number of
terms, implying that it can be approximated as a Gaussian
random variable as soon as N is sufficient large. Further,
Fig. 4(b) indeed reveals that analytical BER curves do
not match the simulations when N = 64, 128, i.e., the
Gaussian approximation no longer holds. The deviation
between theory and simulation reduces as N increases.
For N = 512, the analytical BER curve matches well the
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Fig. 4. BER curves for a wired channel
(a) 16-QAM, N = 2048, no CEE and 10% mismatch with different L
(b) 16-QAM, L = 3, no CEE and 10% mismatch with different N
(c) 16-QAM, N = 2048, L = 8, 0% mismatch with different values of CEE
variance

simulated BER curve in Fig. 4(b).
• No gain mismatch, only CEE: Fig. 4(c) shows a good

agreement between analytical expression and simulation
in the absence of gain mismatch because in this case there
is no approximation involved in the derivation of the BER
expression: Λn = −

√
Es
Ĥn

XnUn + Wn

Ĥn
is indeed Gaussian

distributed for a given Xn and Ĥn.



Note that the results for an AWGN channel presented in [19]
depicted a similar BER behaviour. This was to be expected
since an AWGN channel is a special case of a wired channel,
i.e., Hn = 1 and σ2

U = 0.
Last but not least, it should be noticed that 1) the high-

speed OFDM systems that are usually employed for broadband
applications typically have thousands of active sub-carriers
[35] and 2) in the coming years, the number of sub-ADCs in
TI-ADC architectures will further increase to obtain extremely
high sampling rates. Under these circumstances, the approx-
imate BER expression derived in this paper is a useful tool
to evaluate the BER performance in wired channels. Finally,
we would like to point out that even when the obtained BER
for wired channels is less accurate for integer ratios N

L and
small L, or for non-integer ratios N

L , small L and small N ,
the derived BER expression can still serve as a useful upper
bound on the true BER.

V. RULE-OF-THUMB FOR A TOLERABLE GAIN MISMATCH
LEVEL

In the previous section, we focused on the accuracy of
the derived BER expressions. Although this assessment of
the accuracy is important, the circuit design engineer is
more interested in identifying the tolerable level of the gain
mismatch and the CEE that cause an acceptable level of
BER performance degradation. The derivation of tolerable gain
mismatch levels in the presence of a CEE is not trivial and
out of the scope of this paper. The reason for this is that, in
practical systems, a higher level of TI-ADC gain mismatch
may result in more severe channel estimation errors, which in
turn result in a higher BER. This leverage effect is difficult
to model and depends on the estimator used. To simplify
the analysis, we derive tolerable gain mismatch levels in the
absence of a CEE, i.e., Ĥ = H and σ2

Λ3,n
(23) equals 0. The

tolerable level of the CEE has already been investigated in the
literature separately [36], [37].

We define the tolerable level of gain mismatch γ̃F% as
the maximum level of gain mismatch for which the BER
degradation as compared to the case without gain mismatch
is smaller than 0.5 dB at a target BER, i.e., BERt. We first
derive this tolerable level for a wired channel (i.e., fixed Hn),
and later extend the results to a Rayleigh channel. In the
derivation, the gain errors are assumed to be fixed and the
level of mismatch is varied by scaling the dg100%

l gain errors.
The results shown in this paper demonstrate that a gain mis-

match always introduces an error floor at high Eb
N0

. Therefore,
γ̃F% will evidently be lower than the maximum level γF%
of the gain mismatch for which the error floor at high Eb

N0
is

smaller than BERt. Taking into account (25), to guarantee an
error floor below BERt at high SNRs (i.e., σ2

Λ2,n
is negligible

in (24)) so that σ2
Λ (Xn, Hn) equals σ2

Λ1,n
(20)), it is sufficient

to demand that

A max
n,u,v,y

Ψ (γ̃F%) ≤ BERt, (34)

where n ∈ IN , u ∈ {1, 2, ...,m}, v ∈ {0, 1, ...,M − 1}, y ∈{
1, 2, ..., Fu,<{Xn}

}
with Fu,<{Xn} (26), A = M−1

Mm denotes

the number of dominating BER terms at high Eb
N0

in (25) [32],
and Ψ (γ̃F%) is given by

Ψ (γ̃F%)

= erfc

((
Svd−Bu,yd+DGγ̃F%

0 Svd
)
|Hn|

√
Es

2σ̂2
Λ1,n

(γ̃F%)

)
(35)

with

Svd
∆
= <{Xn} = (2v + 1−M) d, (36)

Bu,y as defined in (28), and σ̂2
Λ1,n

(γ̃F%) given by

σ̂2
Λ1,n

(γ̃F%) = |Hn|2σ2
Λ1,n

(γ̃F%)

= Es
∑

i1,i2∈IL\0
DGγ̃F%

i1

(
DGγ̃F%

i2

)∗
×

∑
a∈IN ,a 6=n

Aaf (a− pi1,n)f (a− pi2,n) .

(37)
As the complementary error function erfc(z) is a monoton-

ically decreasing function of its argument z, we can rewrite
(34) as

min
n,u,v,y

{(
Svd−Bu,yd+DGγ̃F%

0 Svd
)
|Hn|

√
Es

2σ̂2
Λ1,n

(γ̃F%)

}
≥ KF ,

(38)
where KF = erfc−1

(
BERt
A

)
, with erfc−1 (z) the inverse com-

plementary error function. In (38), Svd−Bu,yd corresponds
to a distance between received constellation points and bit
decision boundaries. The minimum value of these distances is
d, so (38) can be rewritten as



d+DGγ̃F%
0 dmin

v
Sv ≥ KF

min
n

{
|Hn|

√
Es

2σ̂2
Λ1,n

(γ̃F%)

}
, ifDG0 ≥ 0

d+DGγ̃F%
0 dmax

v
Sv ≥ KF

min
n

{
|Hn|

√
Es

2σ̂2
Λ1,n

(γ̃F%)

}
, ifDG0 < 0

.

(39)
As min

v
Sv = 3 − M and max

v
Sv = M − 1, it follows

that d +
∣∣∣DGγ̃F%

0

∣∣∣ dmin
v
Sv > d −

∣∣∣DGγ̃F%
0

∣∣∣ dmax
v

Sv =

d−
∣∣∣DGγ̃F%

0

∣∣∣ d (M − 1). As a result, we obtain the sufficient
condition

KF(
d−

∣∣∣DGγ̃F%
0

∣∣∣ d (M − 1)
)

min
n

{
|Hn|

√
Es

2σ̂2
Λ1,n

(γ̃F%)

} ≤ 1.

(40)
The inequality (40) depends on the gain mismatch level
through the terms DGγ̃F%

0 and σ̂2
Λ1,n

(γ̃F%). Taking into
account that DGγ̃F%

0 = γ̃F
100DG

100%
0 and σ̂2

Λ1,n
(γ̃F%) =(

γ̃F
100

)2

σ̂2
Λ1,n

(100%), the largest value of γ̃F% for which (40)
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Fig. 5. Analytical BER curves in a wired channel for 16-QAM, N = 2048,
L = 8, σ2

U = 0 and different mismatch levels.

holds is given by

γF%

=
100×dmin

n

{
|Hn|

√
Es

2σ̂2
Λ1,n

(100%)

}

KF+|DG100%
0 |d(M−1) min

n

{
|Hn|

√
Es

2σ̂2
Λ1,n

(100%)

}%.

(41)
To demonstrate the accuracy of this threshold, we consider

the BER for 16-QAM in a wired channel3, where the target
BER4 equals BERt = 10−9, N = 2048 and L = 8. From (41)
and Table II, we obtain γF% = 1.3245%. In Fig. 5, we show
the BER computed with our approximation for the simulation
parameters outlined in Table II and different values of γ̃F%.
As can be observed, for γ̃F% = 1.31% and γ̃F% = 1.32%,
the error floor is below BERt = 10−9, while for γ̃F% =
1.33% and γ̃F% = 1.35%, the BER floor exceeds BERt.
We also considered other constellation types, other numbers
of sub-ADCs, other gain errors and other wired channels, and
found the same accuracy of the threshold γF%. Hence, we
can conclude that the threshold (41) is a sufficient condition
to force the error floor caused by gain mismatch below BERt
in a wired channel.

Starting from the threshold level γF% (41), we now search
for the maximum gain mismatch level γ̃F% that causes a
degradation of less than 0.5 dB at the target BER of BERt.
To this end, we evaluate for the simulation parameters outlined
in Table II and for several values of γ̃F% ≤ γF% the BER
degradation compared to the case without gain mismatch. The
result is shown in Fig. 6 for N = 2048, L = 8 and σ2

U = 0.
For each of the constellation sizes considered in Fig. 6, the
value of γF% is different, but the figure reveals that in all
considered cases, if γ̃F% is below 0.25γF%, the degradation
at the BER of 10−9 is at a tolerable level. This is successfully
checked for other modulation types and orders, other number
of sub-ADCs, and for other wired channels (without CEE).

3This wired channel in Fig. 5 is the same as the wired channel used in Fig.
4.

4This BER value is the standard target BER for optical communication
systems [2].
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Fig. 6. Analytical BER curves in a wired channel for N = 2048, L = 8,
σ2
U = 0, different modulation orders and mismatch levels.

Hence, as a rule-of-thumb, for wired channels, the tolerable
level of gain mismatch is below 25% of the threshold γF%
(41); i.e.,

γ̃F% ≤ 0.25γF%. (42)

Now we will extend the derivation of the tolerable gain
mismatch level to the case of a Rayleigh channel (also
without CEE, i.e., σ2

U = 0). Similarly as in the case of the
wired channel, we will first derive the threshold γR% as the
maximum level of gain mismatch for which the BER floor is
lower than a target BERt, and later investigate a maximum
tolerable gain mismatch level γ̃R% ≤ γR% that causes a BER
performance degradation of less than 0.5 dB at BERt. Taking
into account (25) and (30), to obtain an error floor at high Eb

N0

(i.e., N0 = 0) is lower than BERt, it is sufficient to demand
that

A max
n,u,v,y

+∞∫
0

Ψ (γ̃R%) × |Hn|
σ2
H

e
− |Hn|

2

2σ2
H d |Hn| ≤ BERt,

(43)
where A = M−1

Mm , Ψ (γ̃R%) is defined as Ψ (γ̃F%) (35) with
DGγ̃F%

0 replaced by DGγ̃R%
0 and σ̂2

Λ1,n
(γ̃F%) replaced by

σ̂2
Λ1,n

(γ̃R%). In the following, we assume that A is larger
than BERt, as is typically the case. This implies that if Svd−
Bu,yd+DGγ̃R%

0 Svd ≤ 0, the condition (43) can never be met
because the left hand side of the inequality (43) becomes ςA
with ς ≥ 1 (as erfc (z) ≥ 1 when z ≤ 0), so that a tolerable
gain mismatch level does not exist in this case. To satisfy (43),
it is therefore required that

Svd−Bu,yd+DGγ̃R%
0 Svd > 0. (44)

Taking into account (44) and using the integration formula in
[34], (43) becomes

max
n,u,v,y

{
1−

√ (
Svd−Bu,yd+DG

γ̃R%

0 Svd
)2
σ2
HEs

σ̂2
Λ1,n

(γ̃R%)+σ2
HEs

(
Svd−Bu,yd+DG

γ̃R%

0 Svd
)2

}
≤ BERt

A
(45)



or equivalently

min
n,u,v,y

{√ (
Svd−Bu,yd+DG

γ̃R%

0 Svd
)2

σ̂2
Λ1,n

(γ̃R%)+σ2
HEs

(
Svd−Bu,yd+DG

γ̃R%

0 Svd
)2

}
≥ KR

(46)
where KR =

(
σ2
HEs

)−1/2 (
1− BERt

A

)
. In (46), the only term

depending on n is σ̂2
Λ1,n

(γ̃R%). Hence, minimizing the left
hand side of the inequality (46) with respect to n is equivalent
to

min
u,v,y

{√ (
Svd−Bu,yd+DG

γ̃R%

0 Svd
)2

max
n

σ̂2
Λ1,n

(γ̃R%)+σ2
HEs

(
Svd−Bu,yd+DG

γ̃R%

0 Svd
)2

}
≥ KR.

(47)
Further, (47) can be rewritten as:

min
u,v,y


(

max
n

σ̂2
Λ1,n

(γ̃R%)(
Svd−Bu,yd+DG

γ̃R%

0 Svd
)2 + σ2

HEs

)− 1
2


≥ KR.

(48)
Minimizing the left hand side of (48) with respect to u, v, y is
equivalent to minimizing Svd−Bu,yd+DGγ̃R%

0 Svd over u,
v, y. As discussed in the case of a wired channel, the minimum
value of Svd−Bu,yd+DGγ̃R%

0 Svd with respect to u, v, y
equals d−

∣∣∣DGγ̃R%
0

∣∣∣ d (M − 1). Hence, (48) reduces to

KR×

 max
n

σ̂2
Λ1,n

(γ̃R%)(
d−

∣∣∣DGγ̃R%
0

∣∣∣ d (M − 1)
)2 + σ2

HEs


1
2

≤ 1. (49)

Using (49), we now determine the threshold γR% for which
the error floor at high Eb

N0
induced by the gain mismatch

is lower than the target BERt , i.e., if we scale dg100%
l

from Table II as γ̃R% × dg100%
l with γ̃R% ≤ γR%,

BEREb/N0→+∞ ≤ BERt. To find the threshold γR%,
we solve the quadratic equation in z = γR% obtained by
considering the equality in (49), i.e., a1z

2 + a2z + a3 = 0,
with

a1 = max
n

σ̂2
Λ1,n

(100%) K2
R

−
∣∣DG100%

0

∣∣2d2(M − 1)
2 (

1− σ2
HEsK

2
R

)
,

(50)

a2 = 2
∣∣∣DG100%

0

∣∣∣ d2 (M − 1)
(
1− σ2

HEsK
2
R

)
(51)

and
a3 = σ2

HEsd
2K2

R − d2. (52)

The threshold γR% is the positive-valued root that is closest
to 0. Taking into account that a1 6= 0, a2 > 0, a3 < 0 and
a2

2 − 4a1a3 > 0, it can be easily verified that this threshold
equals

γR% =
100× (−a2 +

√
a2

2 − 4a1a3)

2a1
%. (53)

Similarly to the case of a wired channel, it can be verified
numerically that the maximum tolerable gain mismatch level
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Fig. 7. Analytical BER curves in a Rayleigh channel for N = 2048, L = 8,
σ2
U = 0, different modulation type and mismatch levels.

γ̃R% causing an acceptable BER performance degradation in
a Rayleigh channel equals 0.25γR%; i.e.,

γ̃R% ≤ 0.25γR%. (54)

For example, Fig. 7 shows the analytical BER in a Rayleigh
channel for the simulation parameters from Table II and for the
different modulation types and mismatch levels used in Fig. 2
when BERt = 10−9, N = 2048, L = 8 and σ2

U = 0. As can
be observed from the figure, when the mismatch level equals
0.25γR%, the degradation at BERt = 10−9 is imperceptible,
whereas a degradation is visible when the mismatch level
increases to γR%. This has also been checked successfully
for other modulation orders and types and other number of
sub-ADCs. Hence, (54) is the proposed rule-of-thumb for a
tolerable level of the gain mismatch in Rayleigh channels.

VI. RESULTS FOR RANDOM GAIN ERRORS

Up to now, the obtained results are based on the fixed gain
errors dgl from Table II. However, in reality, the gain errors
are random variables. Hence, we now evaluate the average
performance in the case of random gain errors, which can
be done by averaging the obtained BER performance over
different TI-ADC realizations. Fig. 8 illustrates the averaged
BER performance in a Rayleigh fading channel and a wired
channel5 without CEE when the gain errors are randomly
selected from [−x/100, x/100] with 0 ≤ x ≤ 100, which
corresponds to x% mismatch level (i.e., we generate different
sets of L gain errors, where each set corresponds to a different
TI-ADC realization). The results in Fig. 8 are plotted for 16-
QAM, 105 TI-ADC realizations, BERt = 10−9, σ2

U = 0,
N = 2048, L = 8 and different gain mismatch levels. First, as
expected, Fig. 8(a) shows a good agreement between analytical
expression and simulation for the case of a Rayleigh channel,
and Fig. 8(b) reveals a deviation between analytical expression
and simulation for the case of a wired channel with γF%
mismatch level at high Eb

N0
. Next, most importantly, as can be

5This wired channel in Fig. 8 is the same as the wired channel used in Fig.
4.
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(a) a Rayleigh channel, (b) a wired channel.

seen from Fig. 8, when the gain mismatch level equals the
tolerable degradation threshold 0.25γF% for a wired channel
and 0.25γR% for a Rayleigh channel, where γF% and γR%
are defined in (41) and (53), respectively, there is no visible
degradation with respect to the ’no mismatch’ case at BERt,
whereas a degradation is noticed when the mismatch level is
increased to γF% for a wired channel or γR% for a Rayleigh
channel at BERt = 10−9. Therefore, the proposed rule-of-
thumb can be used in any wired or Rayleigh fading channels.

VII. CONCLUSIONS

In this paper, we proposed an analytical approach to eval-
uate the BER of PAM- and square QAM-OFDM systems
impaired by the joint effect of TI-ADC gain mismatch and
CEEs in Rayleigh fading channels and wired channels, based
on modelling the inter-carrier interference caused by gain
mismatch and CEE as Gaussian distributed. Further, based on
the obtained BER expressions, we were able to analytically
determine the gain mismatch level at which the error floor
caused by the gain mismatch is below a target BER value
BERt at high SNRs. We showed in this paper that, if and
only if we select the gain mismatch level to be less than
25% of the proposed threshold level, the BER performance

degradation at BERt is less than 0.5 dB with respect to
the mismatch-free case. Based on our findings, engineers
designing TI-ADCs for high-speed OFDM applications are
able to extract the maximum gain mismatch level that can
be tolerated. This can serve as an important guideline for
calibration and compensation of this type of mismatch.
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