15 research outputs found

    Reconciling positional and nominal binding

    Full text link
    We define an extension of the simply-typed lambda calculus where two different binding mechanisms, by position and by name, nicely coexist. In the former, as in standard lambda calculus, the matching between parameter and argument is done on a positional basis, hence alpha-equivalence holds, whereas in the latter it is done on a nominal basis. The two mechanisms also respectively correspond to static binding, where the existence and type compatibility of the argument are checked at compile-time, and dynamic binding, where they are checked at run-time.Comment: In Proceedings ITRS 2012, arXiv:1307.784

    A flexible model for dynamic linking in Java and C#

    Get PDF
    Dynamic linking supports flexible code deployment, allowing partially linked code to link further code on the fly, as needed. Thus, end-users enjoy the advantage of automatically receiving any updates, without any need for any explicit actions on their side, such as re-compilation, or re-linking. On the down side, two executions of a program may link in different versions of code, which in some cases causes subtle errors, and may mystify end-users. Dynamic linking in Java and C# are similar: the same linking phases are involved, soundness is based on similar ideas, and executions which do not throw linking errors give the same result. They are, however, not identical: the linking phases are combined differently, and take place in different order. Consequently, linking errors may be detected at different times by Java and C# runtime systems. We develop a non-deterministic model, which describes the behaviour of both Java and C# program executions. The nondeterminism allows us to describe the design space, to distill the similarities between the two languages, and to use one proof of soundness for both. We also prove that all execution strategies are equivalent with respect to terminating executions that do not throw link errors: they give the same results

    Rigid Mixin Modules

    Get PDF
    International audienceMixin modules are a notion of modules that allows cross-module recursion and late binding, two features missing in ML-style modules. They have been well defined in a call-by-name setting, but in a call-by-value setting, they tend to conflict with the usual static restrictions on recursive definitions. Moreover, the semantics of instantiation has to specify an order of evaluation, which involves a difficult design choice. Previous proposals rely on the dependencies between components to compute a valid order of evaluation. In such systems, mixin module types must carry some information on the dependencies between their components, which makes them verbose. In this paper, we propose a new, simpler design for mixin modules in a call-by-value setting, which avoids this problem

    A Case-Study in Encoding Configuration Languages: Multiple Class Loaders.

    Full text link

    Constrained Polymorphic Types for a Calculus with Name Variables

    Get PDF
    We extend the simply-typed lambda-calculus with a mechanism for dynamic rebinding of code based on parametric nominal interfaces. That is, we introduce values which represent single fragments, or families of named fragments, of open code, where free variables are associated with names which do not obey alpha-equivalence. In this way, code fragments can be passed as function arguments and manipulated, through their nominal interface, by operators such as rebinding, overriding and renaming. Moreover, by using name variables, it is possible to write terms which are parametric in their nominal interface and/or in the way it is adapted, greatly enhancing expressivity. However, in order to prevent conflicts when instantiating name variables, the name-polymorphic types of such terms need to be equipped with simple {inequality} constraints. We show soundness of the type system

    Evolving Software with Extensible Modules

    Get PDF
    We present the design of the programming language Keris, an extension of Java with explicit support for software evolution. Keris introduces extensible modules as the basic building blocks for software. Modules are composed hierarchically revealing explicitly the architecture of systems. A distinct feature of the module design is that modules do not get linked manually. Instead, the wiring of modules gets infered. The module assembly and refinement mechanism of Keris is not restricted to the unanticipated extensibility of atomic modules. It also allows to extend fully linked systems by replacing selected submodules with compatible versions without needing to re-link the full system. Extensibility is type-safe and non-invasive; i.e. the extension of a module preserves the original version and does not require access to source code

    FOAL 2004 Proceedings: Foundations of Aspect-Oriented Languages Workshop at AOSD 2004

    Get PDF
    Aspect-oriented programming is a paradigm in software engineering and FOAL logos courtesy of Luca Cardelli programming languages that promises better support for separation of concerns. The third Foundations of Aspect-Oriented Languages (FOAL) workshop was held at the Third International Conference on Aspect-Oriented Software Development in Lancaster, UK, on March 23, 2004. This workshop was designed to be a forum for research in formal foundations of aspect-oriented programming languages. The call for papers announced the areas of interest for FOAL as including, but not limited to: semantics of aspect-oriented languages, specification and verification for such languages, type systems, static analysis, theory of testing, theory of aspect composition, and theory of aspect translation (compilation) and rewriting. The call for papers welcomed all theoretical and foundational studies of foundations of aspect-oriented languages. The goals of this FOAL workshop were to: � Make progress on the foundations of aspect-oriented programming languages. � Exchange ideas about semantics and formal methods for aspect-oriented programming languages. � Foster interest within the programming language theory and types communities in aspect-oriented programming languages. � Foster interest within the formal methods community in aspect-oriented programming and the problems of reasoning about aspect-oriented programs. The papers at the workshop, which are included in the proceedings, were selected frompapers submitted by researchers worldwide. Due to time limitations at the workshop, not all of the submitted papers were selected for presentation. FOAL also welcomed an invited talk by James Riely (DePaul University), the abstract of which is included below. The workshop was organized by Gary T. Leavens (Iowa State University), Ralf L?ammel (CWI and Vrije Universiteit, Amsterdam), and Curtis Clifton (Iowa State University). The program committee was chaired by L?ammel and included L?ammel, Leavens, Clifton, Lodewijk Bergmans (University of Twente), John Tang Boyland (University of Wisconsin, Milwaukee), William R. Cook (University of Texas at Austin), Tzilla Elrad (Illinois Institute of Technology), Kathleen Fisher (AT&T Labs�Research), Radha Jagadeesan (DePaul University), Shmuel Katz (Technion�Israel Institute of Technology), Shriram Krishnamurthi (Brown University), Mira Mezini (Darmstadt University of Technology), Todd Millstein (University of California, Los Angeles), Benjamin C. Pierce (University of Pennsylvania), Henny Sipma (Stanford University), Mario S?udholt ( ?Ecole des Mines de Nantes), and David Walker (Princeton University). We thank the organizers of AOSD 2004 for hosting the workshop

    Type-Safe Prototype-Based Component Evolution

    Get PDF
    Component-based programming is currently carried out using mainstream object-oriented languages. These languages have to be used in a highly disciplined way to guarantee flexible component composition and extensibility. This paper investigates abstractions for component-oriented programming on the programming language level. We propose a simple prototype-based model for first-class components on top of a class-based object-oriented language. The model is formalized as an extension of Featherweight Java. Our calculus includes a minimal set of primitives to dynamically build, extend, and compose software components, while supporting features like explicit context dependencies, late composition, unanticipated component extensibility, and strong encapsulation. We present a type system for our calculus that ensures type-safe component definition, composition, and evolution

    Composition non modulaire modulaire

    Get PDF
    This document survey my different research activities since I have defended my PhD. Thesis. The thread of these work is my fascination for modular programming but also its limits when there is not a single modular decomposition but several decompositions that must coexist. These researches are structured according to several axes: control and data flow, static and dynamic behavior, sequential, concurrent and distributed context.Ce document retrace mes différentes activités de recherche depuis ma thèse. Le fil conducteur de ces travaux est ma fascination pour la programmation modulaire mais aussi ses limites lorsque qu'il n'existe pas une décomposition modulaire d'un problème mais plusieurs décompositions qui doivent coexister. Ces recherches sont déclinées selon plusieurs axes : flot de contrôle et flot de données, comportements statiques et dynamiques, contextes séquentiels, concurrents et distribués
    corecore