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Abstract

Dynamic linking supports flexible code deployment, allowing partially linked code to link further code on the fly, as needed.
Thus, end-users enjoy the advantage of automatically receiving any updates, without any need for any explicit actions on their side,
such as re-compilation, or re-linking. On the down side, two executions of a program may link in different versions of code, which
in some cases causes subtle errors, and may mystify end-users.

Dynamic linking in Java and C# are similar: the same linking phases are involved, soundness is based on similar ideas, and
executions which do not throw linking errors give the same result. They are, however, not identical: the linking phases are combined
differently, and take place in different order. Consequently, linking errors may be detected at different times by Java and C# runtime
systems.

We develop a non-deterministic model, which describes the behaviour of both Java and C# program executions. The non-
determinism allows us to describe the design space, to distill the similarities between the two languages, and to use one proof of
soundness for both. We also prove that all execution strategies are equivalent with respect to terminating executions that do not
throw link errors: they give the same results.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Dynamic linking supports flexible code deployment and update: instead of linking all code before execution, code
is linked on the fly, as needed. Thus, the newest version of any imported code is always linked, and the most recent
updates are automatically available to users without the need for any action, such as recompilation or import, on their
part—provided, of course, that the new version has been installed on the user’s machine, or is available in the loader’s
search space.
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Dynamic linking was incorporated into operating systems, e.g., by Multics [44], Unix, and Windows. Dynamic link
libraries (DLLs) enable applications running on a single system to share code, thus saving both disk and memory usage.
DLLs are linked at runtime, and so, when a DLL is updated, all applications stand to benefit immediately. Java and
C# 1 [30] were the first widespread statically typed languages to incorporate dynamic linking into the language design.

A first question connected to dynamic linking is the choice of components to be linked, especially if there are
several components with the same name. Choosing a compatible DLL is not always straightforward, and difficulties
in managing DLLs led to the term “DLL Hell’’ [35]. The .NET architecture claims to have solved this problem with
sophisticated systems of versioning and side-by-side components [36]. Java, on the other hand, has a simple approach,
whereby it links the first class with a given name found in the classpath; more sophisticated schemes can be implemented
through custom class loaders [34].

A second question connected to dynamic linking is the type safety guarantees given after choosing components.
Breaking type safety jeopardizes the integrity of memory, and ultimately security [22,43]. DLLs do not attempt to
guarantee type safety: thus type errors may occur and go undetected, or throw exceptions of an unrelated nature in
an unrelated part of the code. Conversely, Java and C# employ verifiers and further mechanisms to guarantee type
safety. If the components turn out to be “incompatible’’, link related exceptions are thrown, describing the nature of
the problem. Thus, although Java and C# do not guarantee the choice of compatible components, they do guarantee
type safety and give error messages that signal the source of the problem.

Our study is concerned with how Java and C# tackle the second question, that is, how they guarantee type safety.
Dynamic linking in Java and C# are similar: the same linking phases are involved, i.e., loading, verification, offset
calculation, and layout determination. Soundness is based on similar ideas: i.e., consistency of the layout and virtual
tables, verifying intermediate code, and checking before calculating offsets. Executions which do not throw linking
errors always give the same results.

Notwithstanding the similarities, dynamic linking in Java and C# have some differences: the linking phases have
different granularity, are combined differently and take place in a different order. As a result, linking errors may be
detected at different times by Java and C# program executions. 2

In this paper, we develop a non-deterministic model, which describes the behaviour of both Java and C# programs.
We prove preservation properties, i.e., that the dynamic linking phases preserve subtypes, offsets, types of expressions,
well-formedness of programs, etc. We believe that such preservation properties were implicitly assumed in the design of
dynamic linking. We then prove soundness, i.e., that execution preserves the type of expressions and well-formedness
of both program and heap, by means of a subject reduction theorem. We also prove equivalence of execution, i.e., that
all executions which do not throw link errors give the same results.

Our model is concerned with the interplay of the phases rather than with the particular phases themselves. It is at a
higher level than the Java bytecode or the .NET intermediate language, IL. It abstracts from Java’s multiple loaders and
.NET assemblies, and describes the verifier as a type checker, disregarding type inference and data flow analysis issues.
It models intermediate code as being interpreted, disregarding the difference between JVM bytecode interpretation,
and .NET IL code jit-compilation. It represents dynamic linking not necessarily as it is, but as it is perceived by the
source language programmer.

On the other hand, in order to describe features salient to dynamic linking, some other aspects of the model are,
necessarily, low level. In particular, the model reflects class layout and virtual tables, which, although not part of the
programming languages Java and C#, become apparent when considering the effects of fooling verification.

This paper presents further work to that presented at ESOP’03 [18] on flexible models for dynamic linking. Here, we
offer a slightly more abstract model, we give some additional explanations, we sketch the proofs in some detail, and we
illustrate the formalism through two examples. The rest of this paper is organized as follows: Section 2 introduces Java
and C# dynamic linking with an example. Sections 3 and 4 outline and define the model. Section 5 states preservation
properties, and soundness of the type system, and sketches the proofs. Section 6 states and sketches the proof of the
equivalence of execution strategies. Section 7 concludes. The Appendix contains two further examples illustrating finer
points.

1 Actually it is the common runtime system of .NET which deals with many languages rather than just C# that incorporates dynamic linking, but
we focus on C# in this paper, as it is most easily compared with Java.

2 And sometimes they are not exhibited at all.
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2. Introduction to the dynamic linking phases

In the presence of dynamic linking, execution can be understood in terms of the following phases:
• evaluation, which is not affected by dynamic linking,
• loading, which reads classes from the environment,
• verification/jit-compilation, which checks type-safety of the code/translates intermediate representations of code

to native code,
• laying out, which determines object layout and method tables,
• offset calculation, which replaces references to fields and methods in terms of their signature, through the corre-

sponding offsets.
Phases depend on each other: a class can only be laid out after it has been loaded. The offset of a member from a
class may only be calculated after that class has been laid out. When verification/jit-compilation requires some class
to extend a further class, it will load the two classes—although [37] suggests a lazier approach of posting constraints
instead.

As shown in Table 1, in Java and C# these phases are at different levels of granularity: loading and laying out apply to
classes; verification applies to individual method bodies in C#, and to all method bodies of a class in Java; offset calcula-
tion applies to individual member access expressions. Also, the phases are organized differently: in Java, offset calcula-
tion takes place only just before the particular member is accessed, whereas in C#, offset calculation takes place during
jit-compilation. In Java, verification of a class takes place before the first object of that class is created, and involves

Table 1
Dynamic linking phases, granularity and organization

Phase Granularity Organization
Java C# Java C#

Load Per class After superclass loaded

Verify/jit
Per class Per method Before creation

of first object
Before invocation, with
jit-compilation

Layout Per class Before jit-compilation or first member access

Offset calculation Per field access/method invocation
Before field access/
method invocation

At jit-compilation

class Meal {
void eat (Penne p){ chew (p); }
void chew (Pasta p) {

if (p==null) print(0);
else print(p.cal);

}
}

class Food{
public static void main (String[] args) {

print (“1’’); Meal m= new Meal ();
print (“2’’); Penne p= new Penne ();
print (“3’’); m.eat (null);
print (“4’’); m.eat (p);

}
}

Fig. 1. Example program.
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Table 2
Successful execution of the Meal example—assuming Cls, Fld, Sub

Java phases Out C# phases Out
calc. offset for main

verify Food
↪→ verify main

↪→ check Meal�Meal
↪→ check Penne�Penne

jit main
↪→ check Meal�Meal

↪→ load Meal
↪→ lay out Meal
↪→ check Penne�Penne

↪→ load Penne; Pasta
↪→ calc. offset for void eat (Penne)

↪→ lay out Penne
↪→ lay out Pasta

calc. offset for main
execute main execute main

1 1
lay out Meal

↪→ verify Meal
↪→ verify void eat (Penne)

↪→ check Penne�Pasta
↪→ load Penne; Pasta

↪→ verify void chew (Pasta)

create new Meal object create new Meal object
2 2

lay out Penne
↪→ lay out Pasta

↪→ verify Pasta
. . .

↪→ verify Penne
. . .

create new Penne object create new Penne object
3 3

calc. offset for void eat (Penne)

jit eat (Penne)

↪→ check Penne�Pasta
↪→ calc. offset for void chew (Pasta)

execute eat (Penne) execute eat (Penne)

calc. offset for void chew (Pasta)
jit void chew (Pasta)

↪→ calc. offset for int cal
execute void chew (Pasta) execute void chew (Pasta)

0 0
4 4

execute void eat (Penne) execute void eat (Penne)

execute void chew (Pasta) execute void chew (Pasta)

calc. offset for int cal
100 100

verification of all methods of that class, whereas in C#, methods are jit-compiled separately, and only before the first
execution of that method.

The example from Fig. 1 serves to illustrate these points. The Java classes have been compiled using j2sdk1.4, and
executed with the verbose flag set to on. The C# classes have been compiled using the C# compiler version 7.00.9466, and
profiling information was obtained using the .NET profiling tool. The complete code in both C# and Java, and instructions
on how to produce the behaviour described in this paper, is available at: http://www.doc.ic.ac.uk/∼sue/foodexample.
html.

The example consists of classes Meal and Food, compiled in an environment containing previously compiled versions
of the classes Pasta and Penne:

class Pasta { int cal = 100; },

class Penne extends Pasta { }.

http://www.doc.ic.ac.uk/~{}sue/foodexample.html
http://www.doc.ic.ac.uk/~{}sue/foodexample.html
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Table 3
Execution when ¬ Fld

Java phases Out C# phases Out
calc. offset for main

verify Food
....

jit main
...

calc. offset for main
execute main execute main

1 1
lay out Meal
...
create new Meal object create new Meal object

2 2
lay out Penne
...
create new Penne object create new Penne object

3 3

calc. offset for void eat (Penne)

jit eat (Penne)

↪→ check Penne�Pasta
↪→ calc. offset for void chew (Pasta)

execute void eat (Penne) execute void eat (Penne)

calc. offset for void chew (Pasta)

jit chew (Pasta)

↪→ calc. offset for int cal
↪→ NoFieldErr, if ¬ Fld X

execute void chew (Pasta)

0
4

execute void eat (Penne)

execute void chew (Pasta)

calc. offset for int cal
↪→ NoFieldErr, if ¬ Fld X

Table 4
Execution when ¬ Cls

Java phases Out C# phases Out
calc. offset for main

verify Food
↪→ verify main

↪→ check Meal�Meal
↪→ check Penne�Penne

jit main
↪→ check Meal�Meal

↪→ load Meal
↪→ lay out Meal
↪→ check Penne�Penne

↪→ load Penne; Pasta
↪→ LoadErr if ¬ Cls X

calc. offset for main
execute main

1
lay out Meal
verify Meal
↪→ verify void eat (Penne)

↪→ check Penne�Pasta
↪→ load Penne; Pasta

↪→ LoadErr if ¬ Cls X

These classes satisfy the following three requirements:
Cls: classes Pasta and Penne are present,
Sub: Penne is a subclass of Pasta,
Fld: Pasta contains a field cal of type int,
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Table 5
Execution when ¬ Sub

Java phases Out C# phases Out
calc. offset for main

verify Food
....

jit main
....

calc. offset for main
execute main execute main

1 1
lay out Meal
↪→ verify Meal

↪→ verify void eat (Penne)

↪→ check Penne�Pasta
↪→ load Penne; Pasta
↪→ VerifErr, if ¬ Sub X

create new Meal object
2

create new Penne object
3

jit void eat (Penne)

↪→ check Penne�Pasta
↪→ VerifErr, if ¬ Sub X

which are crucial for the execution of the method main in Food. Namely, if Cls does not hold then a new Penne object
cannot be created. If Sub does not hold, the eat method body cannot be successfully verified, and if Fld does not hold,
cal cannot be accessed.

If Cls, Fld and Sub all hold, execution will be successful, and the Java and C# programs will give the same output.
This is shown in Table 2. The first and third columns contain the linking phases as they occur in Java or in C#, with their
dependencies indicated through the ↪→ symbol, e.g., in Java, verification of class Meal requires verification of method
eat, which in its turn checks that Pasta�Penne. The second and fourth columns contain the output from the Java and
the C# program executions, e.g., 1, 2, etc.

When Cls, Fld, or Sub does not hold, a link-related exception will be thrown. Although it will be the same exception
in both Java and C#, it will be thrown at a different time in execution. Thus, our example demonstrates the following
differences:

Offset calculation is “lazier’’ in Java: In our example, ¬ Fld would cause a linking error when attempting to
calculate the offset for the field cal from Pasta. In Java this happens before the first attempt to actually access the
field, i.e., after printing 4, whereas in C# this happens when jit-compiling the method containing this field access,
i.e., after printing 3. This is shown in Table 3, where X indicates an exception.

Subtypes are “optimistic” in Java: In our example, ¬ Cls could cause a linking error when attempting to load class
Pasta or Penne. In Java, because a class is considered a subclass of itself, even if not loaded, verification of main does
not require the loading of Penne; and Penne only needs to be loaded when verifying method eat, i.e., after printing
1. In C#, because a class is considered a subclass of itself only if loaded, jit-compilation of main requires loading
of Penne, and thus, Penne needs to be loaded even before the beginning of execution. This is shown in Table 4.

Verification is “lazier’’ in C#: In our example, ¬ Sub means that the method eat from class Pasta would not verify.
In Java, all methods of Pasta will be verified before the creation of the first Pasta object, i.e., after printing 1. In C#,
where methods are jit-compiled before the first invocation, the method eat need only be verified after printing 3.
This is shown in Table 5.

3. Outline of the model

In this section we give an introduction to the model. In the next section we describe the model in full detail.
In Fig. 2 we give an overview of our terms and judgements, and the figures where they are defined.
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e expressions Fig. 3
t types Fig. 3
™ addresses Fig. 3
E offsets Fig. 3
nllPEx the null-pointer exception Fig. 3
lnkEx link-related exception, e.g., verification, load err. Fig. 3

fa, ma, a field, method, or any annotation Fig. 3

�̄ field descriptions Fig. 3
�̄ method descriptions Fig. 3
� field layout tables Fig. 3
� method layout tables Fig. 3
� code tables Fig. 3

H heaps Sec. 4
E environment giving types to receiver/argument Sec. 4

�·�exe execution context Sect. 4

�·�off offset calculation context Sect. 4
P, H, e�W P′, H ′, e′ execution in global context W Fig. 4
a�P a′ offset calculation Fig. 6
P, e�W ,E P′, e′, t verification or jit-compilation Fig. 8
P, t′, t�W P′ t′ is a subtype of t,

while extending program P to P′ Fig. 8
P�W P′ program P′ extends program P

in global context W Fig. 7

P � t′ � t in program P the type t′ is a subtype of t Fig. 5
� P well-formed program Fig. 9
P � H well-formed heap H for program P Fig. 10
P, H � e : t runtime expression e has type t

in the context of P and H Fig. 11
P, H � ™� c ™ conforms class c, or subclass Fig. 10

x′>x x′ is more defined that x Def. 1
g′ � g mapping g′ extends g Def. 1
g′ � g exc. A mapping g′ extends g except in A Def. 1
g ⊗ g′ update of g with g′, when D(g′) ⊆ D(g) Def. 1
g�g′ update of g with g′, when D(g′) ∩ D(g) = ∅ Def. 1
g⇓ extracts pairs corresponding to g Def. 1
D(f ), R(f ) the domain and range of function f Def. 1

FdOffs( P, c) the set of all offsets allocated
for the fields of c in P P. 11

TypFld( P, c, E ) the type of the field contained
at the offset E of c in P P. 16

Offst( P, c, t, f ) the offset of field f as defined c or some superclass P. 20

Fig. 2. Overview of terms and judgements.
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We use the term raw class to indicate a class as just loaded, and laid out class to indicate a class whose field and
method layouts have been determined (the method may, but need not have been verified/jit-compiled). With the concept
of programs, P, we describe code in all its forms: raw classes, laid out classes, and method bodies before and after
verification/jit-compilation. Programs map identifiers to classes, and addresses to method bodies. Classes contain their
superclass names, and are either raw or laid out. Raw classes contain the signatures of fields and methods as well as
method bodies; laid out classes contain layout tables, which map field and method signatures to offsets, and virtual
method tables, which map offsets to addresses. Global contexts, W, represent the context from which raw classes may
be loaded i.e., the file system, or the registry, etc.; therefore, W can be viewed as an abstraction over class loaders, or
the versioning system.

Heaps, H, map addresses to objects. Expressions, e, allow for object creation, method invocation, field access and
assignment. Execution reads classes from a global context W, and modifies heaps, expressions, and programs. Therefore,
it has the format P, H, e�W P′, H ′, e′. Loading, verification and laying out of classes can be understood as enriching
the information in the program, and is represented through the judgement P�W P′. Loading is represented through
an extension of P according to the contents of W . The layout tables of a subclass are required to extend those of the
superclass. Offset calculation has the format e� Pe′, meaning that symbolic references in e are replaced by offsets in
e′, according to the layout tables in P.

Verification/jit-compilation is represented through the judgement P, e�W ,E P′, e′, t which means that e is verified/
jit-compiled into expression e′ with type t. The program P may need to be extended to P′, using information from W .
The typing needs a typing environment E. Verification may need to check subtypes: P, t′, t�W P′ means that t′ was
established as a subtype of t, and in the process, P was extended to P′.

The model is highly non-deterministic, supporting the description of both Java and C#. In particular, the non-
determinism caters for the following four differences:

Offset calculation is “lazier’’ in Java: Verification and jit-compilation are combined into one judgement, P,

e�W,E P ′, e′t . This judgement requires optional offset calculation for its subexpressions (third, fifth and sixth
rule in Fig. 8). Optional offset calculation either replaces symbolic references by numeric offsets (first and second
rule in Fig. 6), or leaves the symbolic reference unmodified (last rule in Fig. 6). The first alternative describes
that C# jit-compilation calculates all offsets. The second alternative describes that Java verification does not calcu-
late any offsets. Furthermore, optional offset calculation may take place during execution (last rule in Fig. 4), and
the operational semantics for member access requires the offset to have been calculated (fourth and fifth rules in
Fig. 4). This describes the Java “lazy’’ offset calculation.
Our model allows many more executions (which do not correspond to either Java or C#), e.g., offsets may be
calculated even if not required, and verification/jit-compilation may replace only some of the symbolic references
by offsets.

Subtypes are “optimistic” in Java: Our model considers any class identifier a subtype of itself (last rule in Fig. 8);
thus reflecting Java. On the other hand, any class may be loaded during program extension (third rule in Fig. 7), and pro-
grams may be extended during verification/jit-compilation (fourth rule in Fig. 8), thus reflecting
C#.

Verification is “lazier’’ in C#: The model requires methods to have been verified/jit-compiled before being invoked
(fourth rule in Fig. 4), thus describing the C# “lazy” approach. Furthermore, verification/jit-compilation is part of
program extension (fifth rule in Fig. 7), and program extension may take place at any time during execution (first
rule in Fig. 4), thus describing the Java “eager” approach.
Of course, our model also allows further behaviours, e.g., where only some methods are verified/jit-compiled, or
where classes are verified eagerly, upon loading.

Timing and causes of link-related actions: In our model, program extension, which can occur through class loading,
verification/jit-compilation, and layout calculation, may take place at any time (first rule in Fig. 4), even if not needed.
Furthermore, in our model, a linking exception (not a null pointer exception) may be thrown at any time (second
rule in Fig. 4), even if the exception is not necessary. Also, the different kinds of link-related exceptions are not
distinguished.
This non-determinism encompasses many execution strategies, including some that are impractical, but simplifies

the model considerably.
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4. The model

Notation: All mappings are implicitly partial and finite. The terms D(g), R(g) denote, respectively, the domain and
range of function g. The notation x′>x indicates that the values x, x′, which may belong to any domain, are equal up
to x being �—in other words, that x′ is more defined than x. 3 In order to describe program extension, we define the
concepts of mapping extension (i.e., g′ � g, and g′ � g exc. A), and the update of g with another mapping g′ (i.e.,
g ⊗ g′ and g�g′). We also define the operation g⇓ which extracts all the pairs corresponding to g:

Definition 1. For values x, x′ from domain, mappings g, g′, and set A

D(g) the domain of g,
R(g) the range of g,
x′>x iff x = � or x = x′,
g′ � g iff D(g) ⊆ D(g′), and g′|D(g) = g,
g′ � g exc. A iff D(g′) = D(g) ∪ A, and g′|D(g)\A = g|D(g)\A,
g · g′ = a function g′′ , with D(g′′) = D(g) ∪ D(g′), and g′′(x) = g′(x) if g′(x) �= �, g(x) otherwise,
g ⊗ g′ = g · g′ if D(g′) ⊆ D(g), � otherwise,
g�g′ = g · g′ if D(g′) ∩ D(g) = ∅, � otherwise,
g⇓ = {〈x, y〉 | g(x) = y}.

Note that the relations _>_ and _ � _ are reflexive, and not symmetric. The operation _�_ is commutative, but
_ ⊗ _ is not. When g′ � g exc. A holds, the set A and D(g) may, but need not, be disjoint.

Programs reflect the internal representation of code, and are described in Fig. 3. They map identifiers to raw
(ClassRaw) or laid out classes (ClassLaidOut), and addresses to method bodies. Raw classes correspond to the repre-
sentations found in*.class files (in Java) or*.dll/*.exe files (in .NET). They consist of the superclass name, the
field descriptors (�̄ ∈ F ldDescr , consisting of field identifiers and types), and method descriptors (�̄ ∈ MthDescr ,
consisting of method identifier, argument type, return type and method body). 4 Laid out classes consist of a field
layout table (� ∈ F ldT bl, which determines the offset for a field with given identifier and type), the method layout
table (� ∈ MthT bl, which maps method signatures to offsets), and the virtual table (� ∈ CdeT bl, which maps offsets
to addresses of method bodies). 5

We included class layout and virtual tables in our model, because they are useful to demonstrate what might go
wrong if code were able to fool the verifier; execution would not be stuck, instead, any part of the memory could be
accessed [11,10,13]. Unverified method bodies consist of a signature and expression, Typ×Typ×Exp. Verified method
bodies consist of an expression, Exp.

Throughout this paper, we extract implicitly components from tuples, e.g., P(c) is a shorthand for P↓1(c), and
P(™) is a shorthand for P ↓ 2(™). The notation P(c) = 〈_, _, _〉 describes that c is still raw, whereas the notation
P(c) = 〈_, _, _, _〉 indicates that c has been laid out.

Expressions: The syntax of expressions is given in Fig. 3. In expressions we allow imperative features (field as-
signments), because we believe that they introduce important aspects to the soundness issues relevant for dynamic
linking.

Expressions are given in an augmented high level language, near to Java and C# source code. The augmentations
are memory offsets and type annotations; both serve to disambiguate field accesses and method invocations (this
corresponds to the level of abstraction of Java bytecode and .NET IL). For example, the expression p.cal [Pasta, int]
denotes the field called cal of type int, in the object p, and declared in class Pasta (or superclass). This symbolic reference
will be replaced during offset calculation; e.g., if int cal has offset 3 in class Pasta, then the expression will be rewritten
to p[3].

3 Notice that the notations x′>x and g′ � g do not follow the usual definition of �, where ⊥ � v for any value v. Instead, the notations x′>x

and g′ � g, conform to the notation for subtypes, and express that g′ (or x′) is more defined than g (or x).
4 Note that we use the overbar to indicate similar entities from different domains, that is, �̄ and �̄ indicate field and method descriptions in raw

classes, while � and � indicate field and method layout tables in laid out classes (in particular, overbar is not used to denote vectors).
5 The Appendix contains an example clarifying descriptions and layout tables in the presence of method inheritance and field hiding.
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Programs
P ∈ Prg = (ClassId → (ClassRaw

⊎
ClassLaidOut))

× (N → Body) programs

ClassRaw = ClassId × F ldDescr × MthDescr

�̄ ∈ F ldDescr = FieldId → Typ field descriptions
�̄ ∈ MthDescr = MethId × Typ × Typ → Exp method descriptions

ClassLaidOut = ClassId × F ldT bl × MthT bl × CdeT bl

� ∈ F ldT bl = FieldId × Typ → N+ field layout tables
� ∈ MthT bl = MethId × Typ × Typ → N method layout tables
� ∈ CdeT bl = N → N code tables

Body = (Typ × Typ × Exp) meth. body before jit/verif.⊎
Exp meth. body after jit/verif.

Global contexts
W ∈ ClassId → ClassRaw

Expressions
e, e′ ∈ Exp ::= new c | instance creation

™ | address
p | parameter
e ma(e′) | method invocation
e fa = e′ | field assignment
e fa | field access
this | this reference
nllPEx | null-pointer exception
lnkEx linking related exception

t, t′ ∈ Typ ::= c type (class name)
ma ∈ AnnM ::= .m[c, t, t′] | unresolved method annotation

[E ] resolved method annotation
fa ∈ AnnF ::= .f [c, t] | unresolved field annotation

[E ] resolved field annotation
a ∈ Ann ::= fa | field annotation

ma method annotation

c ∈ ClassId = Id class identifiers
f ∈ FieldId = Id field identifiers

m ∈ MethId = Id method identifiers
™ ∈ N addresses
E ∈ N offsets

Fig. 3. Expressions and programs.

Values are addresses, which are natural numbers denoted by ™, ™′, etc.; the null pointer is 0. 6 nllPEx is the exception
raised when a field is accessed or a method is invoked on 0. Also, lnkEx stands for, and does not distinguish between,

6 Adding further values, e.g., booleans or integers would be possible, but would not add to the description of dynamic linking. In the examples
we use more types, e.g., int and String.
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any link related exception, e.g., verification error, class not found error, class circularity error, etc. An expression is
ground, if it is an address ™ or an exception.

The runtime model: Heaps, H, map addresses to objects, which are blocks of memory consisting of a class identifier
and values for the fields. Values are addresses, including 0. Heaps therefore have the form

H : N+ → N
⊎

ClassId.

We implicitly require the sets N and ClassId to be disjoint. The lookup H(™) returns the contents at ™ in H. If H(™) =
c ∈ ClassId then ™ points to an object of class c. The fields of that object are stored at some offset, E , from ™. An address
™ is fresh in heap H iff ∀E : H(™+ E ) = � (that is, H is undefined for all addresses greater than or equal to ™).

The following heap, H0, contains a Penne object at 2, and a Food object at 4:
H0(2) = Penne start Penne object,
H0(3) = 55 field int cal from Pasta,
H0(4) = Food start Food object,
H0(™) = � for all other ™ s.

Note, that the structure of an object is not reflected in our heap model, e.g., the heap does not describe which fields
belong to which object. Thus, as in [13], heaps are modelled at a lower level than in verifier studies [40,27,37], where
objects are indivisible entities, and where there are no address calculations. Our lower level model can describe the
potential damage when executing unverified code. 7

Execution modifies the current program, expression and heap. It therefore has the format

P, H, e�W P′, H ′, e′.

This judgement reflects that execution happens in a global context W, that programs may be extended, expressions get
rewritten, and heaps may be modified. The judgement is defined through small step semantics in Fig. 4.

Evaluation is the part of execution not directly affected by dynamic linking. It is described by the third through
eighth rule in Fig. 4.

Creation of a new object of class c, through the expression new c, allocates fresh addresses for the fields of c at the
corresponding offsets, initializing them with 0. It requires the auxiliary function FdOffs(P, c) which collects the field
offsets from all superclasses 8 :

FdOffs(P, c) =
⋃

P � c � c′
R(P(c′) ↓2).

Method invocation, ™[E ](™′), looks up the method body e in H(™), the dynamic class of the receiver ™, using the offset
�(E ), and executes that body after replacing this by the actual receiver ™, and the parameter p by the argument ™′.
Therefore, evaluation only applies to expressions which do not contain this, or p. The format of the invocation
™[E ](™′) (rather than (™.m[c, tr, tp](™′)) means that the offset has been calculated. The requirement P(c) = 〈_, _, _, �〉
(rather than P(c) = 〈_, _, _〉) means that the class c has been laid out. The requirement that P(�(E )) = e (rather than
P(�(E )) = 〈_, _, _〉) means that the particular method has been verified/jit-compiled (Fig. 4).

Field lookup retrieves the contents of the heap at the given offset, whereas field assignment updates the heap at the
given offset, as in the fifth rule. Method invocation and field access for 0 throw a nllPEx, as described in the sixth
rule of the table.

7 On the other hand, our model distinguishes the sets ClassId and N, so it contains more information than the plain bitstrings, found in real
memory. Faithful modelling of that aspect would not have promoted the study of dynamic linking.

8 Note that the function FdOffs(P, c) is well-defined, even if the program P should contain cycles in the class hierarchy.
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Fig. 4. Execution and evaluation.

Fig. 5. Subtypes.

Execution is propagated to its context, as described in the seventh rule. Both link related and link unrelated exceptions
(i.e., z) are propagated out of their contexts, as described in the eighth rule. Execution contexts allow a succinct
description of propagation

�·�exe ::= �·�exe ma(e) | ™ma(�·�exe) |
�·�exe fa = e | ™ fa = �·�exe | �·�exe fa

Optional offset calculation may replace a symbolic annotation through a numeric offset, and has the format

a�P a′,

where a represents a field or method annotation. The first rule in Fig. 6 says that offsets for fields are looked up in
the field layout table of the particular class c, under the given type t, and field identifier f . The second rule in Fig. 6
says that offsets for methods are looked up in the method layout table of the particular class, under the given argument
and return types, and method identifier. Thus, a class may inherit or define several methods with the same names and
argument type but different result type, and it may inherit fields with same name and types as its own fields. 9 The last

9 An example of this is shown in the Appendix.
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Fig. 6. Optional offset calculation.

Fig. 7. Program extension.

rule allows optional offset calculation to leave a unmodified, and is used to model verification as in Java—this is shown
in the example at the end of this section.

The last rule in Fig. 4 allows offset calculation to happen during execution, as in Java. For this, we have defined
offset calculation contexts as

�·�off ::= e�·�off | e�·�off = e | e�·�off (e)

Optional offset calculation takes place also during verification/jit-compilation (Fig. 8). If one of the two first rules from
Fig. 6 is applied, then we obtain C# jit-verification; if the last rule is applied, then we obtain Java verification.

Program extension: A program P′ extends another program P, if P′ contains more information (through loading
of classes), or more refined information (through verification, jit-compilation or layout calculation) than P. This
relationship has the format

P �W P ′,

cf. Fig. 7, and is defined in the global context of a W which expresses the environment (possibly a file system) from
which classes are loaded. The particular environment is not needed for the proof of soundness—it was omitted e.g., in
the model in [13], but is needed when formulating and proving equivalence of strategies. In more detail, P �W P ′ is
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defined as follows:
• The first and second rules state that P �W P ′, if P′ is in the reflexive and transitive closure of the extension relation

P�... ... .
• The third rule describes the introduction into P of the raw version of class c, as read from W , provided that its

superclass, cs, is already in P.
• The fourth rule describes laying out class c, where the entry for c is replaced by the laid out version 〈cs, �, �, �〉, and

the unverified method bodies from the raw version of c are given fresh addresses ™1, ..., ™n:
(a) In P the class c is raw, and, cs, the direct superclass of c, is laid out;
(b) �, the field layout of c, is distinct from that of all superclasses, and all fields introduced in the raw version of c

get fresh offsets;
(c) �, the method layout of c, extends 10 that of cs (thus all methods in c that override methods in cs retain their

offsets in �), and all methods introduced in the raw version of c are given offsets;
(d) �, the virtual method table of c, extends that of cs except for the methods introduced in class c (thus all methods

inherited and not overridden by local methods in c, retain their offsets from �s);
(e) each method introduced in the raw version of c is mapped by the virtual method table to a fresh address which

contains the method body and signature.
Note, that we use the operator ⊗ to denote that P already contained an entry for c, and the operator � to denote
that the addresses ™1, ..., ™n are “fresh’’ in P .

• The fifth rule describes the replacement of the unverified method 〈tr, tp, e0〉 by the verified method body e:
(a) the new program is the outcome of verification of an unverified method body, found through the method layout

and virtual table of a class c at address ™;
(b) the class c is the most general superclass of all classes c′ which may contain the address ™ in their virtual table.

Fig. 5 define the subtype relation;
(c) verification takes place in an environment which considers the receiver to belong to class c and the parameter

to have type tp—as found in the signature from the entry in class c;
(d) the outcome of verification has a type which is subtype of the one given in the method’s signature.

As we said earlier, program extensions may take place at any time during execution (cf. Fig. 4).

Verification and jit-compilation: We describe the similarities between Java verification and C# jit-compilation through
the verification/jit-compilation judgement

P, e�W,E P ′, e′, t

defined in Fig. 8, which transforms an expression e to e′, type checks e to have type t, and possibly extends the
program P to P′. The process takes place in an environment E which maps this and the parameter p to types, i.e., E:
{ this,p } → Typ, and in a global context W , from which further raw classes may be loaded. The parameter p and the
receiver this have the type given in the environment E. Verification/jit-compilation of an object creation expression
requires c to be a class, and gives it type c. The value 0 has any class type c.

Method invocation requires the receiver and argument to be well-typed, and to be of subtypes of c and tp, the receiver
and argument types stored in the symbolic method annotation .m[c, tr, tp]. The method invocation has type tr, the result
type of the annotation. The symbolic annotation may be replaced by an offset, thus modelling C# jit-compilation. Offset
calculation also allows for the identity, thus modelling Java verification. Similar explanations apply to the rules which
access fields.

Finally, verification may require classes to be loaded, and the offset calculation may require layout information about
some classes. This is described through the fourth rule, which allows extension of the program at any time—the use of
this rule is demonstrated in the example at the end of this section.

Verification/jit-compilation may need to check that a type is a subtype of another type, and while doing so may need
to load further classes, as in judgement

P, t ′, t�W P ′

10 For simplicity, we do not model the C# new modifier that introduces a method with the same signature as an inherited one without overriding it.
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Fig. 8. Verification and jit-compilation.

which is also given in Fig. 8. The format of this judgement expresses that, in some sense, program P , and types t and
t ′ are “input’’, while program P ′ is “output’’. Notice that the last rule in Fig. 8 allows any identifier to be a subtype of
itself even if the identifier has not been loaded—this follows the “optimistic’’ Java approach.

An example: We demonstrate the interplay of verification, execution and extension in terms of the following example:
consider a program P1 which contains a raw version of class Pasta but does not contain an entry for Penne, an environment
E1 where p is declared to have type Penne, and a global context W1, where Penne extends Pasta. Consider also P2, which
extends P1, through the raw version of Penne, and P3, which extends both P1 and P3 through the laid out version of
Pasta and the raw version of Penne.

Then, verification of the expression p.cal[Pasta,int] would need to load the class Penne. Thus, through application of
the penultimate rule in Fig. 8, and the third rule from Fig. 7, we have P1, Penne, Pasta�W1P2, thus expressing that the
verifier could establish that Penne is a subtype of Pasta, and in the process extended the program to P2. Then, through
application of the sixth rule in Fig. 8, and the third rule in Fig. 6, we obtain P1, p.cal[Pasta,int]�W1,E1P2, p.cal[Pasta,int], int.
The above reflects verification as in Java.

On the other hand, verification/jit-compilation in C# includes offset calculation. Thus, through application of the
fourth and the penultimate rule in Fig. 8, and the first rule in Fig. 6, we obtain P1, p.cal[Pasta,int]�W1,E1P3, p.cal[1], int.
Finally, in Java, offset calculation is interleaved with execution. Thus, through application of the first rule in Fig. 6, and
the first and the last rule in Fig. 4, we obtain from any heap H that P2, H, p.cal[Pasta,int]�W1P3, H, p.cal[1].

5. Soundness

Well-formed programs: The judgement � P, describing well-formed programs, is defined in Fig. 9 and requires the
following:
(a) the superclass of any raw class from P is defined in P;
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Fig. 9. Well-formed programs.

(b) the superclass of a laid out class is itself laid out;
(c) for any laid out class, the field and method tables map to distinct offsets, the method table maps onto entries in the

code table, and the code table maps onto entries in the program’s method bodies;
(d) for a laid out class c with some superclass cs, the fields declared in c have different offsets than those in cs, and the

methods inherited from cs preserve their offsets into c;
(e) any method body reachable from a method and code table through a given signature is the result of some jit-

compilation/verification, which satisfies that signature.
In contrast to our prior work [18], and in the interest of simplicity, we do not require the existence of a class Object,
nor the code layout table to be injective, nor the existence of a most common superclass for any code shared among
classes, nor the class hierarchy to be acyclic. The absence of cycles in class hierarchies is not required for the proof of
soundness of the type system; nevertheless, it is required by commercial programming languages, probably because
such cycles are actually useless.

Cycles in the class hierarchy of well-formed programs are not only allowed, but, because of requirement (a), at
least one such cycle is required, if the domain of P is finite. Because of requirement (d), any classes involved in a
cycle are required to have no fields, and have methods for the same set of identifiers and signatures. On the other
hand, the program extension rules never create new cycles; in particular, the requirement that the superclass of any
newly loaded class must be defined in P, guarantees that the subclass relationship for the classes being loaded forms
a tree.

Conformance: Fig. 10 defines conformance. The judgement P, H � ™ expresses that the object stored at ™ conforms to
its class, c, as stored in H(™). For all fields of c, the object must contain appropriate values at the corresponding offsets,
and no other object may be stored between its fields. The type of a field at offset E in a particular class c is described
through the auxiliary function TypFld( P, c, E ) 11 :

TypFld( P, c, E ) =
⎧⎨
⎩

⊥ if E /∈ FdOffs(P, c),
t if P(c)↓2 (_, t) = E ,
TypFld( P, P(c)↓1, E ) otherwise.

11 Note that TypFld( P, c, E ) is well-defined even if the class hierarchy in P contains cycles.
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Fig. 10. Conformance.

Fig. 11. Types of runtime expressions.

The judgement P � H requires all objects to conform to their class, and (implicitly) also requires the class of any objects
stored in H to be defined in P. Because 0 conforms to any class, an object with a field initialized to 0 may conform to
a class c, even if c′, the class of that field in c, has not been loaded yet.

Types for runtime expressions: Types for runtime expressions are described by the judgement P, H � e : t, from
Fig. 11, with rules similar to those for verification/jit-compilation, with the difference that heaps are taken into account
(to give types to addresses), environments are not taken into account (runtime expressions do not contain this,
or p), and the program is not extended. Runtime expressions containing offsets for method invocation are typed by
application of the inverse method layout (in well-formed programs the method layouts are injective, hence their inverses
are defined).
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Preservation of properties: We prove that verification/jit-compilation and execution extend programs, and that when
a program P is extended to P′, while trying to establish a subtype relationship, then the subtype relationship holds
in P′.

Lemma 1. For any e, e′, P, P′, P′′, H, H ′, H ′′, t, t′:
1. P, e�W ,E P′, e′, t �⇒ P�W P′,
2. P, H, e�W P′, H ′, e′ �⇒ P�W P′,
3. P, t, t ′�W P ′ �⇒ P ′ � t ′� t .

Proof Sketch. The proofs follow from the definition of the two rewrite relationships, ...�W ,E ... and of
...�W ... . �

We can now prove that if we can verify an expression in an environment where the receiver belongs to a class c, then
we can also verify that expression in an environment where the receiver belongs to a subclass of c:

Lemma 2.

P, e0�W ,{this �→c,p �→tp} P, e, t and

P � c′ � c

}
�⇒

{
P, e0�W ,{this �→c′,p �→tp} P, e, t′
P � t′ � t

.

Proof Sketch. By structural induction on P, e0�W ,{this �→c,p �→tp} P, e, t. �

Properties such as subtyping, conformance of the heap, runtime type of an expression, verification of an expression,
or well-formedness of a program, established in a program P are preserved in an extending program P′. Similar
properties were proven in [16], used in [10,13], and explored in our model of binary compatibility [17]. Notice that
such properties do not always hold for source code, cf. [6] for counterexamples.

Lemma 3. If P�W P′, then
1. P′(c)↓1>P(c)↓1,

2. TypFld(P′, c, E )>TypFld(P, c, E ),
3. FdOffs( P′, c)>FdOffs( P, c),

4. P � t1 � t2 �⇒ P′ � t1 � t2,

5. P, H � ™ �⇒ P′, H � ™,
6. P � H �⇒ P′ � H,

7. P, H � e : t �⇒ P′, H � e : t,

8. P, t′, t�W P �⇒ P′, t′, t�W P′,
9. P, e�W ,E P, e′, t �⇒ P′, e�W ,E P′, e′, t. 12

Proof Sketch. Assertions 1–3 are proven by structural induction over the judgement P�W P′. The remaining asser-
tions are proven by structural induction over the judgements of each of the assertions, i.e., over P � t1 � t2, or P, H � ™,
etc. �

Lemma 4. P�W P′ and � P �⇒ � P′.

Proof Sketch. By structural induction over the derivation of P�W P′, and then a proof that all requirements of � P′
are satisfied, applying Lemmas 2 and 3. �

A direct corollary of Lemmas 1 and 4 is that execution of any expression preserves well-formedness of programs.

12 Notice that the premise P, e�W ,E P, e′, t does not allow extension of the program P. Although the lemma could be generalized to allow for
extensions, the current restricted form suffices for the proof of soundness.
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If an expression is the outcome of jit-compilation/verification, then replacement of the receiver and argument by
addresses pointing to objects of appropriate classes, preserves its type 13 :

Lemma 5. For any P, e, e′, c, t, ™, ™′, tp:

� P
P, e′� ∅,{this �→c,p�→tp} P, e, t

P, H � ™� c
P, H � ™′� tp

⎫⎪⎪⎬
⎪⎪⎭ �⇒

⎧⎨
⎩

∃ t′ :
P, H � e[™/this, ™′/p] : t′,
P � t′ � t.

Notice that the lemma from above does not need to require that the heap is well-formed!
Proof Sketch. Use structural induction over the judgement P, e′� ∅,{this �→c,p �→tp} P, e, t. The base cases are

straightforward. Let us consider the inductive case where the last rule applied was the sixth rule from Fig. 8. This
implies that e′ is a field access, i.e., has the form e1.f [c, tf ]. We distinguish two cases: first Case: the optional offset
calculation for .f [c, t] replaces the symbolic annotation by a numeric offset, and second Case: the optional offset
calculation leaves the symbolic annotation unmodified. In the first Case, we use the fact that .f [c, t]� P[E ], and � P
imply that TypFld( P, c, E ) = t; the rest follows by application of the induction hypothesis, and the type rules from
Fig. 11. In the second Case, the hypothesis follows directly from application of the induction hypothesis, and the type
rules from Fig. 11.

The other inductive cases are analogous. �
Execution of a well-typed expression e does not overwrite objects, rather it creates any new objects in the free space.

Also, execution does not affect the type of any expression e′′—even if e′′ were a subexpression of e. This is required
for type soundness in imperative object oriented languages, and was proven, e.g., in [16,42,13]. In the current work it
holds only for well-typed expressions e.

Lemma 6. If P � H , and � P, and P, H � e : t, and P, H, e�W P′, H ′, e′, then
1. H(™) = c �⇒ H ′(™) = c,
2. H ′(™) = c �⇒ H(™) = c or ™ free in H,
3. P, H � e′′ : t′′ �⇒ P′, H ′ � e′′ : t′′.

Proof Sketch. Assertions 1 and 2 are proven by structural induction over the derivation P, H, e�W P′, H ′, e′. The
last assertion is proven by structural induction over the typing of e′′. The requirements � P and P, H � e : t are needed
in order to guarantee that memory is accessed in “appropriate” ways only. Note that such requirements were not needed
for the corresponding lemmas for high level description languages e.g., [16]; they are needed here, because we have a
lower level model of the heap.

Soundness: Subject reduction guarantees that the heap H ′ preserves conformance, uninitialized parts of the store are
never dereferenced, and the expression preserves its type.

Theorem 1. For any e, P, H, H ′, t

P � H
� P
P, H � e : t
P, H, e�W P′, H ′, e′

⎫⎪⎪⎬
⎪⎪⎭ �⇒

⎧⎨
⎩

P′ � H ′,
if e′ does not contain exceptions, then

∃t′ : P′, H ′ � e′ : t′, P′ � t′ � t.

Proof Sketch. By structural induction over the typing of e. The proof strategy is similar to that used for many imperative,
small object oriented languages, e.g., [14]. What is new here, is the fact that the underlying program is extended during
execution. This is why we needed to prove that program execution creates programs which extend the original one
(Lemmas 1.1 and 1.2), preserves all judgements (Lemma 3), and in particular program well-formedness (Lemma 4).

13 Notice that if the receiver and argument were not replaced, the expression might not have a runtime type, since runtime types are assigned in
the absence of an environment, and since environments are necessary in order to give a type to this and to p.
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We now sketch the case where the last rule applied in the typing of e is the last rule from Fig. 11. Then e is a function
call. We then proceed by case analysis over the rule applied in the execution of P, H, e�W P′, H ′, e′:

First Case: The last rule applied was the first rule from Fig. 4. The lemma follows through Lemmas 3.3, and 3.7,
application of the inductive hypothesis, and Lemma 4.
Second Case: The last rule applied was the context rule, i.e., the seventh rule from Fig. 4. The lemma follows
through application of the inductive hypothesis, and the typing rules.
Third Case: The last rule applied was the offset calculation rule, i.e., the last rule from Fig. 4, and the second rule
from Fig. 6. The lemma follows through application of the last rule in Fig. 11.
Fourth Case: The last rule applied was the fourth rule from Fig. 4, and replaced the method call by the method
body.

The lemma follows through application of well-formedness of the program, and Lemma 5. �
Execution is never stuck in that a well-typed expression can always be further reduced. For instance, further classes

can always be loaded, and the program extended. However, these reductions are not always interesting, and do not
always mean “real progress” of the expression being executed. This is why we do not formulate a progress lemma.

Progress, in the sense of always being able to further reduce a well-typed expression by another well-typed expression
does not hold, since we do not have a closed program, and there exists the possibility that a verification error will be
thrown, or that a class cannot be loaded, or a resolution error will be thrown by offset calculation. We do not model
these errors explicitly; instead, when in a situation where the Java or C# runtime system would, e.g., throw a verification
error, in our system, none of the verification rules would be applicable—in fact only program extension and the error
rules would be applicable.

6. Equivalence of execution strategies

In this section we show that all execution strategies are equivalent, i.e., that non-determinism does not affect the
result of evaluations which do not throw link related exceptions. The global context W needs to be explicitly stated here.
The theorem does not apply for intermediate results, nor if z were a link related exception—several counterexamples
were shown in Section 2.

Theorem 2. For any global context W , and any e, P, P′, P′′, H, H ′, H ′′, ™, and z, z′ ∈ N ∪ {nllPEx}

P, H, e� ∗
W P′, H ′, z

P, H, e� ∗
W P′′, H ′′, z′

}
�⇒ z = z′, H ′ = H ′′ up to renaming of addresses.

Note that we do not require the programs to be well-formed. Also, we do require that both executions, P, H, e�∗
W P ′,

H ′, z, and P, H, e� ∗
W P′′, H ′′, z′ take place in the same global context W .

Proof Sketch. The proof of Theorem 2 is the most demanding of all the proofs in this paper, and requires the introduction
of some auxiliary concepts. We will need to clarify the meaning of “up to renaming of addresses”, and we will need to
tighten the definition of programs.

In addition to the structural requirements for programs, as defined in Fig. 3, we ask that the expressions found in the
laid out or raw classes do not contain addresses or non-symbolic annotations (i.e., offsets), and that the virtual method
table of a class contains an entry for each entity from the method layout table. These requirements are guaranteed in
well-formed programs, but in the current theorem we are not requiring the programs to be well-formed. More formally,
for the purposes of this theorem, we require any program P to satisfy
• P(c) = 〈_, _, �, �〉 �⇒ R(�) ⊆ D(�),
• P(c, m, tr, tp) = e �⇒ e does not contain addresses nor non-symbolic annotation.

The function W(c, m, tr, tp) looks up the class c in W , and returns the method body for m in class c, with result and
parameter types tr and tp—if it exists. The function P(c, m, tr, tp) returns the method body for m, in class c, with result
and parameter types tr and tp, respectively, independently of whether the class c has been laid out in P, and whether
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the method body has been verified or not.

W(c, m, tr, tp) =
{

e if W(c) = 〈_, _, �̄〉, �̄(m, tr, tp) = e,
� otherwise,

P(c, m, tr, tp) =

⎧⎪⎪⎨
⎪⎪⎩

e if P(c) = 〈_, _, �̄〉, �̄(m, tr, tp) = e,
e if P(c) = 〈_, _, �, �〉, P(�(�(m, tr, tp))) = 〈tr, tp, e〉,
e if P(c) = 〈_, _, �, �〉, P(�(�(m, tr, tp))) = e,
� otherwise.

It is easy to show that the functions P(c, m, tr, tp) and W(c, m, tr, tp) are well-defined, i.e., that exactly one of the cases
from above will hold.

We now define the auxiliary function Offst( P, c, t, f ) which returns the offset of field f of type t as defined in class
c or some superclass:

Offst( P, c, t, f ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

� if P(c) = 〈_, _, _〉, or
P(c) = 〈_, _, _, _〉, and
∀ c′, P � c � c′, P(c) = 〈_, �, _, _〉 : �(f , t) = �,

E if P(c) = 〈_, �, _, _〉, �(f , t) = E ,
E otherwise, and where E = Offst( P, P(c)↓1, t, f ).

Note that Offst( P, c, t, f ) as defined above, is well-defined, even if the class hierarchy in P should contain cycles.
In order to define “up to renaming of addresses’’, we use the concept of a heap renaming, a bijective mapping

� : N → N where �(0) = 0,

which renames addresses across two heaps, preserving the address 0. Using �, in the next paragraph we will define
relations across heaps, expressions, and programs. First, we give their intuitive meaning in this paragraph:
1. � � z ∼ z′ means that z and z′ are equivalent addresses or they are both the null pointer exception.
2. P, P′, H, H ′, � � ™ ∼ ™′ means that addresses ™ and ™′ point to equivalent objects, i.e., to objects of the same class,

and whose fields can be found at equivalent addresses.
3. P, P′, � � H ∼ H ′ means that heaps H and H ′ are equivalent, in the sense that the heap renaming function maps

objects onto equivalent objects.
4. P, P′, c, tf � fa ∼ fa′ means that the field annotations fa and fa′ are equivalent in the sense that they are either

both symbolic and identical, or, if they are offsets, then these offsets correspond to looking up a field of type tf
from a class c.

5. P, P′, c, tr, tp � ma ∼ ma′ means that the method annotations ma and ma′ are equivalent in the sense that they are
either both symbolic and identical, or, if they are offsets, then these offsets correspond to looking up a method with
parameter type tp, return type tr, from a class c.

6. P, P′, H, H ′, E, � � e ∼ e′ : t means that the expressions e and e′ are equivalent, i.e., that they have the same
structure up to the replacement of addresses, and corresponding offsets, and can be considered to have type t. 14

7. P, P′, E � e′ ∼ e is the counterpart to P, P′, H, H ′, E, � � e ∼ e′ : t for expressions which do not contain ad-
dresses, and where the ensuing type does not matter.

8. � P ∼ P′ means that programs P and P′ are equivalent in the sense that field and method layout tables are equivalent,
and that if there are entries for method bodies in both programs, then they contain equivalent expressions.

9. � � P, H ∼ P′, H ′ means that H and H ′ are equivalent and P and P′ are equivalent.
10. W � P expresses that the contents of the program P “agree’’ with those in the global environment W .
We now formally define the equivalence relationships
1. � � z ∼ z′ iff

(a) z ≡ nllPEx ≡ z′, or
(b) z, z′ ∈ N, and �(z) = z′.

14 We are using the vague term “can be considered to have type’’ to express that the expressions are not necessarily well-typed in the sense of
Fig. 11; the judgement P, P′, H, H ′, E, � � e ∼ e′ : t does not check that subexpressions “fit’’ their environment, e.g., for field assignment we do
not require the right-hand side to be a subtype of the left-hand side.
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2. P, P′, H, H ′, � � ™ ∼ ™′ iff ∃c , such that
(a) H(™) = c, and H ′(™′) = c,
(b) P(c) = 〈_, _, _, _〉, P′(c) = 〈_, _, _, _〉,
(c) ∀f , tf : Offst( P, c, tf , f ) �= � if and only if Offst( P′, c, tf , f ) �= �,
(d) ∀f , tf , E , E′ : E�= � and E= Offst( P, c, tf , f ) and E′ = Offst( P′, c, tf , f �⇒)�(™+ E ) = ™′ + E′ .

3. P, P′, � � H ∼ H ′ iff �(™) = ™′ �⇒ P, P′, H, H ′, � � ™ ∼ ™′.
4. P, P′, c, tf � fa ∼ fa′ iff one of the following cases holds:

(a) fa ≡ fa′, fa ≡ ._[_, _], 15

(b) fa ≡ .f [c, tf ], fa′ ≡ [E ], and P′(c)↓2 (f , tf ) = E ,
(c) fa ≡ [E ], fa′ ≡ .f [c, tf ], and P(c)↓2 (f , tf ) = E , 16

(d) fa ≡ [E ], fa′ ≡ [E′ ], and ∃f : P(c)↓2 (f , tf ) = E , P′(c)↓2 (f , tf ) = E′ .
5. P, P′, c, tr, tp � ma ∼ ma′ iff one of the following cases holds:

(a) ma ≡ ma′, ma ≡ ._[_, _, _], 17

(b) ma ≡ .m[c, tr, tp], ma′ ≡ [E ], and P′(c)↓3 (m, tr, tp) = E ,
(c) ma ≡ [E ], ma′ ≡ .m[c, tr, tp], and P(c)↓3 (m, tr, tp) = E , 18

(d) ma ≡ [E ], ma′ ≡ [E′ ], ∃m, P(c)↓3 (m, tr, tp) = E , P′(c)↓3 (m, tr, tp) = E′ .
6. P, P′, H, H ′, E, � � e′ ∼ e : t iff one of the following cases holds:

(a) e ≡ this ≡ e′, and t = E(this),
(b) e ≡ ™, and e′ ≡ ™′, and �(™) = ™′, and t = H(™),
(c) e ≡ p ≡ e′, and t = E(p),
(d) e ≡ new c ≡ e′, and t ≡ c,
(e) e ≡ e1fa, and e′ ≡ e′

1fa′, and ∃c with
(i) P, P′, H, H ′, E, � � e1 ∼ e′

1 : c,
(ii) P, P′, c, t � fa ∼ fa′,

(f) e ≡ (e1fa = e2), 19 and e′ ≡ (e′
1fa′ = e′

2), and ∃c, t′ with
(i) P, P′, H, H ′, E, � � e1 ∼ e′

1 : c,
(ii) P, P′, c, t′ � fa ∼ fa′,

(iii) P, P′, H, H ′, E, � � e2 ∼ e′
2 : t,

(g) e ≡ e1ma(e2), and e′ ≡ e′
1ma′(e′

2), and ∃c, t′ with
(i) P, P′, H, H ′, E, � � e1 ∼ e′

1 : c,
(ii) P, P′, c, t, tp � ma ∼ ma′,

(iii) P, P′, H, H ′, E, � � e2 ∼ e′
2 : t′.

7. P, P ′, E � e ∼ e′ iff e and e′ do not contain addresses, and e ≡ e′ or P, P′, H, H ′, E, � � e′ ∼ e : t, for some
type t, renaming function �, and heaps H and H ′. 20

8. � P ∼ P′ iff the following conditions hold:
(a) P(c) = 〈_, _, _〉, P′(c) = 〈_, _, _〉 �⇒ P(c) = P′(c),
(b) P(c) = 〈c′, �̄, �̄〉, P′(c) = 〈c′′, �, �, �〉 �⇒

(i) c′ = c′′,
(ii) D(�) = �̄⇓,

(iii) D(�) = D(�̄) ∪ D(P′(c′′)↓3),
(c) P′(c) = 〈c′, �̄, �̄〉, P(c) = 〈c′′, �, �, �〉 �⇒ ... dual of earlier case,

15 Thus, identical unresolved field annotations are equivalent regardless of the particular class c, and type tf .
16 This case is the dual of the previous one.
17 As for field annotations, identical unresolved method annotations, are equivalent in the context of any class c, result type tr , and parameter

type tp.
18 This case is the dual of the previous.
19 These parantheses are only a means to enhance the readability of the equivalences.
20 Since the expressions e′ and e do not contain addresses, satisfaction of the expression equivalence condition is independent of heaps. More

formally, one can show that if e and e′ do not contain addresses, then P, P′, H, H ′, E, � � e ∼ e′ : t implies P, P′, H ′′, H ′′′, E, �′ � e ∼ e′ : t for
any H ′′, H ′′′, and �′.
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(d) P(c) = 〈c′′, �, �, �〉, P′(c) = 〈c′′′, �′, �′, �′〉 �⇒
(i) c′′ = c′′′,

(ii) D(�) = D(�′),
(iii) D(�) = D(�′),

(e) P(c, m, tr, tp) = e, and P′(c, m, tr, tp) = e′ �⇒ P, P′, E � e ∼ e′ for E ≡ (this �→ c,p �→ tp).
9. � � P, H ∼ P′, H ′ iff the following conditions hold:

(a) P, P′, � � H ∼ H ′,
(b) � P ∼ P′.

10. W � P, iff
(a) P(c) = 〈_, _, _〉 �⇒ W(c) = P(c),
(b) P(c) = 〈c′, �, �, �〉 �⇒ W(c) = 〈c′, �̄, �̄〉, and

(i) D(�) = �̄⇓,
(ii) D(�) = D(�̄) ∪ D(P(c′)↓3),

(c) P(c, m, tr, tp) = e �⇒ ∃e′ so that W(c, m, tr, tp) = e′ and e ≡ e′ or P, P, E � e ∼ e′ for E ≡ (this �→
c,p �→ tp).

We describe executions which only employ program extension steps through the relation

P, H, e ext�∗
W P′, H, e,

where the notation ext�∗
W indicates that execution consists exclusively of program extension steps, which have been

applied in the global context W .
We describe executions which do not employ program extension steps through the relation

P, H, e cor�∗ P, H ′, e′,

where the notation cor�∗ indicates that only “core”, i.e., non-program extension steps have been applied.
We can show that a core evaluation step followed by a program extension evaluation step can be reversed and give

the same effect:

(P rop_1a)
P, H, e cor� P, H ′, e′,

P, H ′, e′ ext�W P′, H ′, e′.

}
�⇒

{
P, H, e ext�W P′, H, e,

P′, H, e cor� P′, H ′, e′.

We can then show that any evaluation can be broken into two parts, so that all the program extension steps take place
first, and the core steps take place after there are no more extension steps, i.e.,

(P rop_1) P, H, e�∗
W P ′, H ′, e′ �⇒

{
P, H, e ext�∗

W P′, H, e,

P′, H, e cor�∗ P′, H ′, e′.

We will first study the properties of extension steps. First, we can show that optional offset calculation creates equivalent
annotations, i.e.,

(P rop_2a)
.f [c, tf ]� Pfa �⇒ P, P, c, tf � .f [c, tf ] ∼ fa,

.m[c, tr, tp]� Pma �⇒ P, P, c, tr, tp � .m[c, tr, tp] ∼ ma.

We can also prove that program extension preserves agreement of expressions, i.e.,

(P rop_2b)
P, P′, H, H ′, E, � � e ∼ e′ : t,
P�W P′′

}
�⇒ P′′, P′, H, H ′, E, � � e ∼ e′ : t.

Using (P rop_2a) and (P rop_2b) we can prove that jit-compilation/verification creates an equivalent expression, i.e.,

(P rop_2c) P, e�W ,E P′, e′, t �⇒ P, P′, E � e ∼ e′.
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Using (P rop_2b), (P rop_2c), and structural induction on P�W P′, we then prove that program extension preserves
agreement with the global context, and creates an equivalent program, i.e.,

(P rop_2d)
W � P,

P�W P′
}

�⇒
{

W � P′,
� P ∼ P′.

We can also prove that program equivalence is transitive, in the context of the same global context W , i.e.

(P rop_2e)
W � P, W � P′, W � P′′,
� P ∼ P′′, � P′′ ∼ P′

}
�⇒ � P ∼ P′.

Using the above, we can prove that two evaluations that involve extension steps only, when applied to equivalent
programs lead to equivalent programs, and that agreement with the global context is preserved, i.e.,

(P rop_2)

W � P, W � P′,

� P ∼ P′,
P, H, e ext�∗

W P′′, H, e,

P′, H ′, e′ ext�∗
W P′′′, H ′, e′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

�⇒ � P′′ ∼ P′′′.

We now study the properties of core steps. We first show that a single core step preserves equivalence of expressions,
and heaps, i.e.,

(P rop_3a)

� � P, H ∼ P′, H ′,
P, P′, H, H ′, E, � � e ∼ e′ : t,
P, H, e cor� P, H ′′, e′′,
P′, H ′, e′ cor� P′, H ′′′, e′′′
e′′ �≡ lnkEx �≡ e′′′

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

�⇒

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∃ �′, �′ � � :
�′ � P, H ∼ P′, H ′′,
( P, P′, H ′′, H ′′′, E, �′ � e′′ ∼ e′ : t or
P, P′, H ′′, H ′′′, E, �′ � e′′′ ∼ e : t or
P, P′, H ′′, H ′′′, E, �′ � e′′′ ∼ e′′ : t).

Note that (P rop_3a) allows for three possibilities: the two new expressions may be equivalent (if both steps are offset
calculations, 21 or both are not offset calculations) or one of the new expressions is equivalent to one of the old ones
(if one step is an offset calculation, 22 and the other is not an offset calculation). The proof of (P rop_3a) is by induction
on the depth of the execution of the expression (notice that the context rules allow depth more than one).

We illustrate (P rop_3a) through a simple example: consider programs P1, P2, heaps H1, H2, expressions e1 ≡
™1.f [cr , t], e2≡™2.f [cr , t], and a bijection �, so that (1) � � P1, H1 ∼ P2, H2, and (2) P1, P2, H1, H2, E, � � e1 ∼ e2 : t.
Because of (2) we have �(™1) = ™2. If e1 evaluates through a core step, then it produces some e3 ≡ ™1.[E ], where E is
the offset of field f with type t in class cr in program P . Similarly, core execution of e2 produces some e4 ≡ ™2.[E′ ],
where E′ is the offset of field f with type t in class cr in program P ′. Therefore, P1, P2, H1, H2, E, � � e3 ∼ e4 : t.

Furthermore, we also have P1, P2, H1, H2, E, � � e3 ∼ e2 : t. Core execution of e3 produces a value e5, which is the
contents of the object at ™ in heap H at offset E , whereas core execution of e2 produced e4. Thus, P1, P2, H1, H2, E, ��e3
∼ e4 : t , so that one of the new expressions is equivalent with one of the old ones.

Then, using (P rop_3a) and induction on the maximal length of the executions, we show that given equivalent
configurations (i.e., expressions, programs and heaps equivalent in terms of the same rename functions), different
terminating executions which do not involve program extension steps create equivalent programs, heaps and results,

21 Or they are propagations of offset calculation to the context.
22 Or it is a propagation of an offset calculation to the context.
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i.e.,

(P rop_3)

� � P, H ∼ P′, H ′,
P, P′, H, H ′, E, � � e ∼ e′ : t,
P, H, e cor�∗ P, H ′′, z,
P′, H ′, e′ cor�∗ P′, H ′′′, z′

⎫⎪⎪⎬
⎪⎪⎭ �⇒

⎧⎨
⎩

∃ �′, �′ � � :
�′ � P′′, H ′′ ∼ P′′′, H ′′′,
�′ � z ∼ z′.

We illustrate (P rop_3) by continuing our earlier simple example. Remember that P1, P2, H1, H2, E, � � e3 ∼ e2 : t.
Core execution of e3 produces in one step a value z1. Core execution of e2 requires two steps (offset calculation, and
field access), and produces a value z2. Because � � P1, H1 ∼ P2, H2, and �(™1) = ™2, we also have that �2 � z1 ∼ z2.

Now, we can formulate our theorem in a precise way as follows:

(T hm_2)

W � P,

P , H, e�∗
W P ′, H ′, z,

P, H, e�∗
W P ′′, H ′′, z′,

⎫⎪⎪⎬
⎪⎪⎭ �⇒

⎧⎨
⎩

∃ � :
� � P′, H ′ ∼ P′′, H ′′,
� � z ∼ z′.

(T hm_2) is a consequence of properties (P rop_1), (P rop_2), and (P rop_3). �
Finally, we can prove that environments which are identical in the parts required for execution, can lead to identical

results.

Theorem 3 (Monotonicity of Execution with respect to global contexts). For any e, P, P′, H, H ′, and z ∈ N ∪
{nllPEx}:

P, H, e�∗
W P ′, H ′, z

W |def (P′)= W ′ |def (P′)
�⇒ P, H, e�∗

W ′ P ′, H ′, z.

We could probably have replaced the requirement W |def (P′)= W ′ |def (P′) by some weaker requirement which would
say that only the parts required by the execution of the expression need to be identical.

7. Conclusions, related and further work

Dynamic linking is a very powerful language feature with complex semantics, and it needs to be well understood.
We consider our model to be simple, in view of the complexity of the feature, and also compared to an earlier model for
Java [13]. We have achieved simplicity through many iterations over the design, and through the choice of appropriate
abstractions:
• we do not distinguish the causes of link-related exceptions;
• we allow link-related exceptions to be thrown at any time of execution, even when there exist other legal evaluations;
• we do not prescribe at which point of execution the program will be extended, and so allow “unnecessary’’ loading,

verification or jit-compilations;
• we combine both loaded and verified code in the single concept of a program; 23

• we represent programs through mappings rather than texts or data structures.
Most of these abstractions were introduced primarily in order to allow the model to serve for both Java and for C#, but
they turned out also to simplify significantly the model.

Non-determinism seems to have been in the Java designers’ minds: the specification [29, Section 12.1.1], requires
resolution errors to be thrown only when linking actions related to the error are required, but does not state anything
about when they are to be discovered. Through non-determinism we distilled the main ingredients of dynamic linking
from both languages. We prove type soundness, thus obtaining type soundness both for the Java and the C# strategies,
and showed that different strategies within the model do not differ widely.

Extensive literature is devoted to the Java verifier [40,26]. Dynamic loading in Java is formalized in [32], while
problems with security in the presence of multiple loaders are reported in [39], a solution presented in [33], which is
found flawed and improved upon in [37]. Computation does not preserve types but is type sound. Java’s multiple loaders

23 In [13] we distinguished between these, thus keeping a natural distinction, but having a more complex model.
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are modelled in [47] which also shows an intermediate solution between the rigid approach based on the classpath and
that which allows arbitrary user-defined loaders. Type safety for a substantial subset of the .NET IL is proven in [28].

Interest in linking as part of the program lifecycle was kindled through [9]. A collection of examples that demonstrate
small details of the dynamic linking process in Java can be found in [15]. Separate compilation for Java is discussed
in [3]. Module interconnection languages, and mixins [45,4,23,19,24] give explicit control of program composition at
source code level.

A scheme for delaying the choice of component to be dynamically linked is introduced in [7]; this flexibility can
be achieved by adding type variables to the bytecode, which then get substituted at runtime. The scheme has been
implemented on .NET [8]. A computational interpretation for Hilbert’s choice operator is suggested in [1]; thus giving
a typed foundation for dynamic linking. Types may be replaced by other types during computation, causing global
changes of types, but in a type safe manner.

Dynamic linking gave rise to the concept of binary compatible changes, [25,34, Section 13], i.e., changes which do
not introduce more linking errors than the code being replaced; the concept is explored in [17,46]. Tools that load the
most recent binary compatible version of code were developed for Java [38,5] and C# [20,21]. Current JVMs go even
further, and support replacing a class by a class of the same signature, as a “fix-and-continue’’ feature [12].

Dynamic software updating [31] supports type safe dynamic reloading of code whose type may have changed, while
the system is running. Proteus [41] allows on-line evolution to match source-code evolution and supports runtime
updates to functions and types (even while they are executing) in a type-safe and representation-consistent manner.
Fortress [2] provides program constructs to enable the programmer to explicitly control linking and program evolution.

Further work includes a better understanding of binary compatible library developments, extension of the model to
also allow verification by posting constraints which have to be satisfied upon class loading, as suggested in [37], or to
allow field lookup to examine the tables of superclasses as in some of the JVMs, the incorporation of C# assemblies
and modules, extensions of the model so as to avoid unnecessary linking steps, and “concretization’’ of the model so
as to obtain Java or C# behaviour.
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Appendix. Example showing program extension, description and layout tables

The following example aims to demonstrate some fine points about method and field tables. The source code is given
in Fig. 12.

We have two classes, A and B, where A has three fields, f1, f2 and f3. Class B hides f1 with a field of the same type
and f2 with a field of a different type—as we shall see the types of the hidden fields do not affect their treatment; also,

class A {
A f1;
A f2;
C f3;
A m1(B p) { e1 }
B m1(A p) { e2 }

}

class B extends A {
A f1;
B f2;
B f4;
A m1(B p) { e3 }
B m2(B p) { e4 }

}

Fig. 12. Example program demonstrating layout.
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B introduces a further field f4. Class A introduces the overloaded method m1: there are two versions, one with argument
type B, and one with argument type A. The method m1 with argument type B is overridden in B; B also introduces a
further method m2.

P0

load A
��

P1

load B

����
��

��
�� layout A

���
��

��
��

�

P2
layout A

�����������������

layout A,B

��

P3

load B
��

P4
layout B

����
��

��
��

���
��

��
��

��

P5

jit/verify method body of A m1(B) from class A
��

…

P6

W

A �→ 〈Object, �̄1, �̄1〉
B �→ 〈A, �̄2, �̄2〉

�̄1

f1 �→ A

f2 �→ A

f3 �→ C

�̄2

f1 �→ A

f2 �→ B

f4 �→ B

�̄1
〈m1, A, B〉 �→ e1
〈m1, B, A〉 �→ e2

�̄2
〈m1, A, B〉 �→ e3
〈m2, B, B〉 �→ e4

P1 A �→ 〈Object, �̄1, �̄1〉

P2
A �→ 〈Object, �̄1, �̄1〉
B �→ 〈A, �̄2, �̄2〉

P3

A �→ 〈Object, �1, �1, �1〉
100 �→ 〈A, B, e1〉
101 �→ 〈B, A, e2〉

P4

A �→ 〈Object, �1, �1, �1〉
B �→ 〈A, �̄2, �̄2〉

100 �→ 〈A, B, e1〉
101 �→ 〈B, A, e2〉

P5

A �→ 〈Object, �1, �1, �1〉
B �→ 〈A, �2, �2, �2〉

100 �→ 〈A, B, e1〉
101 �→ 〈B, A, e2〉
102 �→ 〈A, B, e3〉
103 �→ 〈B, B, e4〉

P6

A �→ 〈Object, �1, �1, �1〉
B �→ 〈A, �2, �2, �2〉

100 �→ e′
1

101 �→ 〈B, A, e2〉
102 �→ 〈A, B, e3〉
103 �→ 〈B, B, e4〉

�1

〈f1, A〉 �→ 1
〈f2, A〉 �→ 2
〈f3, C〉 �→ 3

�2

〈f1, A〉 �→ 4
〈f2, B〉 �→ 5
〈f4, B〉 �→ 6

�1
〈m1, A, B〉 �→ 0
〈m1, B, A〉 �→ 1

�2

〈m1, A, B〉 �→ 0
〈m1, B, A〉 �→ 1
〈m2, B, B〉 �→ 2

�1
0 �→ 100
1 �→ 101

�2

0 �→ 102
1 �→ 101
2 �→ 103

Fig. 13. Example demonstrating table layout.
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Fig. 13 shows a global context W which describes these classes. Also, it shows a possible sequence of programs
involved in execution, and the contents of these programs.

We start with a program P0, where A and B have not yet been read in—obviously, P0 contains Object, but we do not
show this for the sake of brevity.

Then, we load A, and obtain P1, for which P0�W P1 holds.
From P1, by loading B, we obtain P2, whereas, if we lay out A, we obtain P3. Therefore, we have P1�W P2 and

P1�W P3 but W � � P2 � P3 and W � � P3 � P2.
We then have P3�W P4 through loading of B, and P4�W P5 through laying out of class B.
Finally, from P5 we obtain P6 jit/verifying the method body m1 of class A located at address 100. Thus, we have

that P5, e1�W ,this �→A,p �→B P′′, e′
1, t and P′′, t, A�W P6. So, we also have that P5�W P6.
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