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Abstract. Component-based programming is currently carried out using mainstream
object-oriented languages. These languages have to be used in a highly disciplined
way to guarantee flexible component composition and extensibility. This paper inves-
tigates abstractions for component-oriented programming on the programming lan-
guage level. We propose a simple prototype-based model for first-class components
on top of a class-based object-oriented language. The model is formalized as an ex-
tension of Featherweight Java. Our calculus includes a minimal set of primitives to
dynamically build, extend, and compose software components, while supporting fea-
tures like explicit context dependencies, late composition, unanticipated component
extensibility, and strong encapsulation. We present a type system for our calculus
that ensures type-safe component definition, composition, and evolution.

1 Introduction

Component-based software development techniques gain increasing attention in industry
and research. Component technology is driven by the promise of software reuse and
plug-and-play programming. This promise poses high demands on the implementation
platform.

Currently, component-based programming is carried out using mainstream object-
oriented languages. Object-oriented languages seem to promote component-based pro-
gramming well: They support encapsulation of state and behavior, inheritance and over-
riding enable extensibility, and subtype polymorphism and late binding allow flexible
reuse of objects and classes. Unfortunately, object-oriented techniques alone are not pow-
erful enough to provide flexible and type-safe component composition and evolution
mechanisms.

Therefore, industrial component models like CORBA [Gro97], COM [Rog97], or
JavaBeans [Jav96] rely on additional concepts, namely component frameworks and meta-
programming. They provide a class framework for modeling components and component
interactions together with an informal set of implementation rules. Components are com-
posed using meta-programming technology like reflection. This ad-hoc approach yields
a dynamic and flexible composition mechanism, but often does not guarantee any static
type security. Furthermore, the degree of extensibility depends on the framework or the
meta-programming tools. In general, it has to be planned ahead, for instance by using
suitable design patterns typically derived from the AbstractFactory pattern [GHJV94]. This
lack of unanticipated extensibility hinders a smooth software evolution process substan-
tially.
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Another issue was recently pointed out by Aldrich and Chambers [ACN02]. They ob-
serve that implementation languages are only loosely coupled to architectural descrip-
tions. As a consequence, specifications of software architectures [PW92,SG96] formally
expressed in architecture description languages [MT00] are often quite different from
the actual object-oriented implementations. This makes it difficult to trace architectural
properties in the implementation, which would allow to verify that an implementation is
consistent with the corresponding architecture [ACN02].

This is why recently various proposals have been put forward to integrate con-
cepts known from architecture description languages into object-oriented programming
languages [SC00,Sre02,ACN02]. These so-called component-oriented programming lan-
guages offer linguistic facilities for programming software components, for defining com-
ponent interactions, and for composing software from components. Their promise is to
do that in a type-safe way, ruling out illegal interaction patterns.

In this paper we study linguistic abstractions for component-oriented programming
in the context of object-oriented programming languages. We describe the notion of
prototype-based components. Our prototype-based component model is designed to sup-
port plug-and-play programming. It features lightweight components that can be dynam-
ically manufactured and composed in a type-safe way. We emphasize the necessity for
a smooth component adaption and evolution process. In particular, we allow to derive
refined components from existing components without sacrificing consistency and type-
safety. We present a formalization of our prototype-based component model as an exten-
sion of Featherweight Java [IPW99,Pie02]. Our typed calculus includes a minimal set of
primitives to build, extend, and compose software components, while supporting prin-
ciples like explicit context dependencies, late composition, unanticipated component ex-
tensibility, and strong encapsulation of component services.

We proceed by motivating the design principles of our component model. Section 2
emphasizes the importance of software adaptability, extensibility, and software evolution
in general. Section 3 introduces prototype-based components by example, presenting the
various component refinement primitives. A formalization of the model is presented in
Section 4 in form of a core component calculus. We present a type system and prove that
this system is sound with respect to the given operational semantics. A summary of the
main features together with a discussion of related work is given in Section 5.2. Section 6
concludes.

2 Motivation

In this section we motivate specific design principles of our prototype-based component
model. The main features of the model include:

1. Components are first-class core language abstractions,
2. composition operators enable coarse-grained component composition,
3. components can be manufactured and composed dynamically (late composition),
4. components are extensible, promoting component reuse, adaptability, and evolution.

Furthermore, our model adopts principles common among component-oriented lan-
guages, like explicit context dependencies (external linking), cyclic component linking,
and strong encapsulation. Component manufacturing, composition, and refinement are
type-safe. Our type system supports subtype polymorphism for components and compo-
nent instances.
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2.1 Language Integration

The introduction motivated already the need for specific component abstractions, directly
integrated into the core of programming languages. With an explicit language construct
for components, a programmer can implement architecture descriptions directly without
the need for finding a suitable representation in a particular programming language.

2.2 Coarse-Grained Composition

Existing proposals for component abstractions on the programming language level like
ComponentJ [SC00], ACOEL [Sre02], and ArchJava [ACN02] directly adopt common con-
cepts and principles of architecture description languages. They provide constructs for
manufacturing components with required and provided services. A service associates a
port name with a type. Components are composed by linking ports with explicit plug in-
structions. The type system ensures that all ports are linked and that links are established
only between compatible ports or service providers.

This approach does not scale, since for linking a component with n services, we have
to issue n explicit plug instructions specifying the wiring of the component. For large-scale
components with a lot of services involved, linking the component is a tedious and error-
prone task. Furthermore, the sequence of plug instructions rather obscures the architec-
ture of the system instead of making it explicit. Therefore, McDirmid, Flatt, and Hsieh
argue that component systems should offer the possibility to connect many required and
provided services at once [MFH01b].

We address this requirement by simplifying the interface of components and by pro-
viding means to infer the wiring of components to be linked together. Components can be
composed with simple operators and without explicitly plugging ports. We also support
incremental linking; i.e. we allow that components get only partially linked. For instance,
components can be sent around in a distributed system and only the services available at
a specific location get linked until in the end we have a fully linked component that can
be instantiated.

2.3 Dynamic Manufacturing and Composition

Software component technology distinguishes two main tasks: component manufacturing
and component composition. It is often explained that both tasks are separate steps being
performed one after the other. But in practice, both tasks coincide when new compo-
nents are built by composing other components. This form of component manufacturing
is called hierarchical component composition.

Often it is assumed that component manufacturing is done statically before compo-
nent composition takes place. Component composition itself cannot always be performed
statically in cases where components are only known at runtime. Therefore component-
based systems have to support some form of dynamic linking.

This observation implies that we also have to be able to manufacture software compo-
nents dynamically, since component linking and manufacturing coincide in hierarchical
component compositions. Thus, it makes no sense to assume that both manufacturing
and composition are atomic tasks that are performed consecutively. In highly dynamic
systems, component manufacturing and composition is rather an interleaved process in
which components are created and linked incrementally.
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2.4 Reuse, Adaption, Evolution and Extension

When using components from external vendors, it is quite unlikely that the interfaces of
these third-party components fit to the required interfaces off-the-shelf. It is often neces-
sary to adapt components before they can be used in a particular system [Höl93,Ode00].
As Section 2.3 already pointed out, components might only be supplied at runtime, there-
fore it is even more necessary that components can be adapted dynamically on-the-fly.

In a prototype-based component model, new components can only be created by refin-
ing an already existing component. As a consequence, we can derive two different com-
ponents from a single base component. By doing this, we factor out potential reusable
pieces, avoiding duplicated programming effort. In addition, this technique supports soft-
ware evolution. Software evolution includes the maintenance and extension of compo-
nent features and interfaces. Supporting software evolution is important, since compo-
nents and component systems are architectural building blocks and as such, subject to
continuous changes.

Extensibility of components [Szy96] is not only required for a smooth component
evolution. It is even more desired for enabling the development of families of software
applications and product-lines in general. Traditionally, components are static black-boxes
emphasizing encapsulation over extensibility. Features can be added to components only
by creating a new component that forwards all existing services to the old version in addi-
tion to the new services. This is a cumbersome and error-prone procedure that duplicates
programming efforts and complicates maintenance.

3 Introduction to Prototype-Based Components

In this section we describe prototype-based components in the context of a small, stat-
ically typed, object-oriented Java-like base language. Our component model relies on a
nominal type system [Pie02] of the base language. In nominal type systems, two types
with the same structure but a different name are considered to be different, as opposed to
structural type systems that match the structure and not the name. Prototype-based com-
ponents do not rely on other base language features like inheritance or even classes, even
though we present them here in a class-based context. Therefore it should be straightfor-
ward to add prototype-based components to other object-oriented languages with nomi-
nal object types.

3.1 Components and Component Instances

In our model, a component is a unit of computation that can be accessed through a well-
defined interface. A component is a first-class citizen. Its interface specifies the services
it provides to allow other components to interact with it. The interface also specifies the
services a component requires from other components to be able to provide the own
services.

Our component model is prototype-based; i.e. the only way to create a new component
is by refining an already existing prototypical component. For bootstrapping purposes, we
have a single predefined component that does not provide or require any services. This
empty component is denoted by the keyword component.

We strictly distinguish between components and component instances. A component
describes a template for possibly multiple component instances. It is the component in-
stances that provide the actual services. Services are described by object types, e.g. types
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defined by classes or interfaces. Objects serve as service providers. They usually get cre-
ated at component instantiation time. Therefore, components can be seen as organiza-
tional units with well-defined interfaces that structure object interdependencies. Compo-
nents have neither a unique identity, nor an observable state. They come to life through
objects at the time they get instantiated.

In the remainder of this section we introduce prototype-based components by exam-
ple. We derive some simple software components that could be used, for instance, in
online retail stores to manage stock and clients.

3.2 Service Provision

We start by manufacturing a software component that provides access to a customer
database. We want every customer to have a unique client number. A service that maps
customer names to client numbers could be described by the following interface defini-
tion:

interface CustomerIDs {
int lookupId(String name);

}

The CustomerIDs interface consists of a single method lookupId. Given a customer’s
name, this method tries to find the corresponding client number. If there is no client
number yet for this customer, a new number will be issued and returned by lookupId.
Imagine we have the following implementation of the CustomerIDs interface:

class MyCustomerIDs implements CustomerIDs {
MyCustomerIDs() { ... }
int lookupId(String name) { ... }
...

}

With this implementation we are able to manufacture a software component that provides
a CustomerIDs service. Since we can only create new components by refining existing
ones, we have to take the empty component as a prototype and refine it such that it
provides a CustomerIDs service. In our calculus, this is done with the provides primitive:

c0 = component
provides CustomerIDs as This with new MyCustomerIDs();

The clause d provides C as x with e returns a new component that refines component d
by providing some possibly new services C. These services are implemented by an object
specified with expression e. Note that we are extending a component here. Therefore,
expression e only gets evaluated at component instantiation time. x is a variable that gets
bound to the own component instance. In object-oriented languages this self reference
corresponds to variable this or self referring to the own object. Only expression e is in the
scope of x. Typically, expression e refers to other services of the own component instance
via x.

We use a graphical notation to illustrate the structure of components. Figure 1 gives
an overview. Here, a component is represented by a box. The gray part corresponds to
the prototype of the component, the white part specifies the refinement. In our graphical
notation, services are symbolized by diamonds. Objects are simply black dots. An arrow
from a service to an object expresses that this object implements the service. We also have
outlined arrows that depict service dependencies. These dependencies are not explicit in
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Fig. 1. Schematic notation for prototype-based components

our calculus. If an object refers to other services, for instance via the self reference, then
every such dependency is specified with an outlined arrow. Figure 2 shows the structure
of our previously defined component c0.

3.3 Component Instantiation

We already pointed out that components have to be instantiated before services can be
accessed. In our component calculus, a component gets instantiated with the new primi-
tive.

i0 = new c0;

The services of a component instance like i0 get accessed via the service selection oper-
ator ::. The expression e :: C selects a service C from component instance e. C is a type
name that identifies a service and at the same time describes the service’s interface. Other
component models refer to services via named ports. In these models it is possible to have
two distinct ports with the same interface type but different port names. In programming
languages with nominal type systems like Java [GJSB00] or C# [HW00], types do not
only define structural object properties like available methods or fields. They also stand
for semantic specifications [BW98], and as such, they are well-suited for specifying roles.
In those type systems it is possible to have two distinct types with the same interface de-
scription but different type names. Therefore, it is no restriction to describe a service only
by its type without having a port name in addition. This simplifies the definition of com-
ponents and the service access in general significantly. It also acts as a standardization of
port names. One only has to know a service’s type in order to access it from a component
instance. It is not necessary to lookup the port name in the component specification. We
will see later in Section 3.7 that this standardization of component port names has an-
other advantage: it promotes automatic composition mechanisms. Of course, in the few
cases where two ports could share a type, we have to create new type names and in the
worst case use wrappers to adapt existing objects.

Here is an example demonstrating the usage of the component i0. In this example
we call the lookupId method of the CustomerIDs service provided by component instance
i0. The service selection operator :: and the . operator are both left-associative and both
operators have the same precedence.

i0 ::CustomerIDs.lookupId(”John Smith”);
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Component c0:

A

A = CustomerIDs
B = CustomerDB

Component c1:

A

B

c0

Component c2:

A

B

c1

Fig. 2. Component evolution

3.4 Component Refinement

Now imagine the requirements for our customer administration component c0 are chang-
ing and we also need the capability to store customer names and addresses. We can
describe this new database service with the following interface:

interface CustomerDB {
void enter(String name, String address);
String lookupName(int id);
String lookupAddr(int id);

}

Method enter stores a new address in the database. Whenever a new customer is entered,
a new client number will automatically be assigned to this new customer. The methods
lookupName and lookupAddr find a name or address for a given client number. The fol-
lowing class implements CustomerDB. It depends on a component instance that provides
a CustomerIDs service. This component instance is passed as a parameter to the construc-
tor. Following [SC00], we use the notation [S1, ..., Sn] to specify the type for component
instances supporting at least the services S1 to Sn.

class MyCustomerDB implements CustomerDB {
[CustomerIDs] This;
MyCustomerDB([CustomerIDs] This) {

this.This = This;
}
... This::CustomerIDs.lookupId(name) ...

}

We already mentioned that prototype-based components offer a smooth component evo-
lution mechanism. For creating an extended version of a component, we just have to
interpret the old component as a prototype. In our example, the new refined component
evolves out of the old one simply by an application of the provides primitive. The following
code refines component c0 by additionally providing the service CustomerDB.

c1 = c0 provides CustomerDB as This with new MyCustomerDB(This);

The provides primitive can also be used to refine a component by defining a new service
implementation for an already provided service. In this case we override the old imple-
mentation. Here is the definition of component c2 that refines c1 by using, for instance, a
more efficient client numbering service.
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Component c3:
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B B

c2

A = CustomerIDs
B = CustomerDB

Fig. 3. Service forwarding

c2 = c1 provides CustomerIDs as This with new EfficientCustomerIDs();

The service implementation for CustomerDB, specified already in the prototype of c2,
now automatically refers to this new numbering service implementation. A graphical il-
lustration of components c1 and c2 can be found in Figure 2.

3.5 Service Forwarding

Until now, we are only able to develop new components by adding new services or by
overriding existing service implementations of a prototypical component. Every service
we add gets exported automatically; i.e. it can be accessed from outside the component.
This white-box approach is necessary to keep the component extensible, because it allows
us to override service implementations and to add new service implementations that refer
to already existing services. But often we do not want to publish internally used services.
Being able to hide internal interfaces is an important feature of component-oriented pro-
gramming. Our component calculus supports this form of encapsulation with the compo-
nent projection operator forwards. The clause d forwards C as x to e extends component
prototype d with the services C. The new component forwards accesses of these services
to the component instance e. Expression e can refer to other services of the own com-
ponent instance via the self reference x. This primitive is primarily used for hierarchical
component compositions. In the following example it is specifically used to hide services
and service interconnections. Thus, it turns a “white-box” into a “black-box” by wrapping
the original component.

c3 = component
forwards CustomerDB as This to new c2;

In this example we create a new component c3 that only provides a single service
CustomerDB by forwarding calls to a component instance of c2. Thus, we hide the
CustomerIDs service of component c2. We say, an instance of c2 is nested inside every
instance of component c3. We call the hidden CustomerIDs service an internal service
of component c3. An illustration of c3 instances can be found in Figure 3. Here, the
instance of component c2 that is contained in c3 is depicted by a nested box. Service
implementations are now arrows pointing from external services to internal services of
nested component instances.
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3.6 Service Abstraction

The previous sections showed how to evolve a component by incrementally adding new
services either by a new service implementation or by forwarding services to a nested
component instance. In both cases we introduced new services and implementations for
these services at the same time. This approach does not allow us to write components that
depend on services provided by other components. Furthermore, we are not even able
to define two services where service implementations depend mutually on each other,
because we introduce services linearly, one after the other.

We tackle both problems with a service abstraction facility. Before going into detail, we
proceed by manufacturing a new component for handling orders of a shop. The service
for placing orders is described by the following interface:

interface OrderDB {
void order(int id, String article , int num);

}

With method order, new orders can be placed. Orders consists of a client number, an arti-
cle descriptor and the number of items to deliver. If possible, this method tries to execute
the order immediately. Therefore it needs access to a stock database service specified by
the following interface:

interface StockDB {
void enter(String article , int num);
void remove(String article, int num);
int available(String article );

}

Method order checks if the articles are available. If this is the case, it removes them from
the stock database and sends the articles to the customer’s address. Therefore, service
implementations of OrderDB like MyOrderDB also need access to the CustomerDB ser-
vice. Thus, the constructor of the following class expects a component instance providing
StockDB and CustomerDB services.

class MyOrderDB implements OrderDB {
[StockDB, CustomerDB] This;
MyOrderDB([StockDB, CustomerDB] This) {

this.This = This;
}
...

}

Since we do not want our order system component to already commit to a specific
service implementation for the StockDB and the CustomerDB service, we have to fac-
tor out these two services. In order to make use of the component later, we then either
have to provide the missing service implementations from outside at composition time,
or we further refine the component and provide service implementations from inside the
component.

In our component calculus, services are factored out with the service abstraction prim-
itive requires. The requires primitive allows to define services that are required for imple-
menting other services without the need for specifying a concrete service implementation.
We make use of this abstraction facility in the following implementation of component d0
which requires two services CustomerDB and StockDB and provides a OrderDB service.
Figure 4 contains an illustration of component d0.
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Component d0:

B

D

C

Component e0:

D

C

B = CustomerDB
C = OrderDB
D = StockDB

Fig. 4. Service abstraction

d0 = component
requires CustomerDB
requires StockDB
provides OrderDB as This with new MyOrderDB(This);

The expression d requires C takes a prototypical component d and returns a refined ver-
sion with a service C that has to be provided before the component can be instantiated.
Other service implementations can refer to this service, even though there is no imple-
mentation known yet. This is why in the example above, self reference This has type
[CustomerDB, StockDB, OrderDB] and thus is a legal parameter for the constructor of
MyOrderDB. Components have a type of the form (R1, . . . , Rn ⇒ P1, . . . , Pm) where R1

to Rn are services required by the component, and P1 to Pm are the provided services.
Thus, the type of component d0 is (CustomerDB, StockDB ⇒ OrderDB). As already men-
tioned before, component d0 cannot be instantiated, since not all service provisions are
resolved yet. We first have to derive a new component that specifies implementations for
all required services before we can actually create component instances.

We continue in our example by defining a new component e0 that provides an imple-
mentation for a StockDB service.

e0 = component
requires OrderDB
provides StockDB as This with new MyStockDB(This);

The implementation of service StockDB makes use of an externally supplied OrderDB
service. This is, because in cases where new stock arrives and orders are still pending,
it would trigger the process of sending out the articles. The type of component e0 is
(OrderDB ⇒ StockDB).

3.7 Component Composition

In the previous section we defined two components d0 and e0 that mutually refer to
each other; i.e. the service provided by one component is required by the other one.
We would now like to link these two components together yielding a component which
only requires a CustomerDB service and provides both a OrderDB and a StockDB service.
The simplest way to achieve this is to refine component d0 with an implementation for
service StockDB. This service is provided by a refined version of e0 that refers back to the
OrderDB service provided by the enclosing d0 prototype.
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Fig. 5. Component composition

f0 = d0 provides StockDB as This with
(new (e0 provides OrderDB as Me with This::OrderDB))::StockDB

This technique does not work for components where more than two services depend
mutual recursively on each other. For such cases we have to use the forwards primitive in
order to link the components together. A graphical illustration of the resulting component
f1 can be found in Figure 5.

f1 = d0 forwards StockDB as This to
new (e0 provides OrderDB as Me with This::OrderDB)

The previously discussed composition schemes use service forwarding where the
nested component instance refers back to services provided by the enclosing component
being defined. Our component calculus offers an alternative to this rather complicated
composition pattern. With the mixin operator it is possible to create a new component
by mixing in the services provided by another component. The expression e mixin d re-
fines the prototypical component e with component d; i.e. e gets refined by including
all the services provided by component d. Services that are already present in e are au-
tomatically overridden by the corresponding services of d. This operation identifies the
self references of both components e and d by binding it to the resulting merged com-
ponent. The resulting component requires services that are either required by e or d and
that are not provided by any of the two components. It provides all the services that are
provided by either e or d. Thus, the following expression yields a component f2 of type
(CustomerDB ⇒ OrderDB, StockDB).

f2 = d0 mixin e0

When using such a mixin-based composition scheme, one has to be aware that for
the expression above, all services e0 provides get mixed in, no matter what static
type e0 has in this context. Thus, we might accidentally override services provided
by d0. Sometimes this is desired, for instance, when we want to express that e0
has got the more recent or more trustworthy service implementations than d0. For
cases where we want to define explicitly what services to override, we have to
use a forwarding-based composition scheme instead. For instance, we could write
d0 forwards StockDB as This to new (e0 forwards OrderDB as Me to This).
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Fig. 6. The final component g0

All three components defined in this section are equivalent in the sense that they
provide and require the same services and that services are implemented by the same
objects. Though, Figure 5 reveals that the internal structure of components manufactured
using the forwarding and the mixin technique are quite different. Therefore, they may
behave differently when it comes to refinements of both components. In the given ex-
ample, this is not the case. But one might imagine a bigger nested component instance
where overriding a service of the enclosing component does not have any effect on the
formerly forwarded service of the nested component, while it would have an effect on the
mixin-based approach.

We finish this section by manufacturing a component that permits access to customer
related services only; i.e. CustomerDB and OrderDB. We do this by first linking together
the customer management component c2 and the stock management component f2. The
linked component c2 mixin f2 provides all the various services introduced in this section.
Since we want to restrict the access to customer related services, we have to project the
resulting component to a new component g0 offering only the desired services.

g0 = component
forwards CustomerDB, OrderDB as This to new (c2 mixin f2)

g0 has type ( ⇒ CustomerDB, OrderDB); thus, it is possible to instantiate this component.
The structure of an instance of our final component g0 is presented in Figure 6. Leaving
out some intermediate steps, we could have composed g0 out of three essential compo-
nents: c2 which administers clients, d0 which handles orders, and e0 which manages the
stock.

g0 = component
forwards CustomerDB, OrderDB as This to new (c2 mixin d0 mixin e0)

This short expression demonstrates how concise component manufacturing and linking
is in our model. Furthermore it outlines how components are typically deployed. The
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Program P = L ; e program

Class L = class C extends C {T f ; K ; M } class declaration

Constructor K = C(T f) { super(f); this.f = f ; } constructor declaration

Method M = T m(T x) { return e; } method declaration

Expressions e = x variable
| e.f field selection
| e.m(e) method invocation
| new C(e) object creation
| component empty component
| e requires C service abstraction
| e provides C as x with e service implementation
| e forwards C as x to e component projection
| e mixin e component mixin
| new e component instantiation
| e :: C service selection

Types T = C object type
| C ⇒ C component type
| [C] component instance type

Fig. 7. Syntax

sub-expression c2 mixin d0 mixin e01 first links components c2, d0, and e0, yielding a
single extensible component. This component exposes internal interfaces. We might want
that, for instance to use this component as a basis for further refinements. But before
instantiating (or even selling) it, we should hide the internals by wrapping the component
in a black-box only offering specific functionality with restricted support for extensibility.
In the example above, this is done using the component projection primitive forwards.

4 Component Calculus

In this section we present a formalization of our prototype-based component model for a
functional subset of Java. Our calculus is built on top of Featherweight Java (FJ) [IPW99].
We omit type casts from the original calculus since type casts are irrelevant for our appli-
cation and complicate the formal treatment unnecessarily.

4.1 Syntax

The syntax of the calculus is presented in Figure 7. Like in FJ, a program consists of a
collection of class declarations plus an expression to be evaluated. The syntax of classes,
constructors, and methods is identical to FJ. We only extend the set of expressions with
the primitives introduced in Section 3. In particular, we add an empty component, a
service abstraction and implementation primitive, a component projection primitive as
well as a component mixin operator. In addition, we have a construct for instantiating
components and a service selection operator for accessing services from a component
instance. In our calculus, a service is characterized by a class name.

1 Please note that the mixin operator is associative.
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Opposed to the presentation in Section 3.2, the calculus only supports a provides
primitive that introduces a single service. This is no restriction since we can eas-
ily model the former semantics by using the more general forwards construct in
combination with a nested component that implements several services with a sin-
gle object. For instance, we could encode the component defined by the expression
component provides C, D as This with new Impl(This) in the following way:

component
forwards C, D as This to createNested(new Impl(This))

This code relies on a function createNested that could have the following implementation:

[C, D] createNested(Impl impl) {
return new ( component

provides C as This with impl
provides D as This with impl);

}

FJ’s types only consist of class names. For simplicity, Java’s interface types are not
modeled. For working with components and component instances we also need syntacti-
cal forms for expressing component and component instance types. Please note that com-
pared to the explanations in Section 3.6, we use a slightly simplified syntax for component
types without enclosing parenthesis. As in FJ, we write T as a shortcut for T1, . . . , Tn. We
use similar shorthands for sequences like C, f, e, etc. as well as for pairs of sequences like
T f . Such a pair of sequences is a shorthand for T1 f1, . . . , Tn fn.

We assume that sequences of field declarations, parameter names, and method dec-
larations do not contain duplicate names. Furthermore, the service implementation and
the component projection operators always introduce fresh names for their self reference
variable. For the presentation of the operational semantics in the next section we assume
to apply alpha-renaming whenever necessary to avoid name capture.

4.2 Semantics

The semantics of our calculus are formalized in Figure 8 as a small-step operational se-
mantics. The reduction relation has the form e −→ e′ which expresses that expression e
evaluates to expression e′ in a single step.

We adopt all reduction rules from FJ and define various new rules for our new syn-
tactical constructs. Service abstractions simply reduce to the prototype component, so
they do not have any computational effect. The semantics of mixins are described by
three reduction rules, depending on the form of the right operand. Mixing in the empty
component results in the same component. For service implementations and component
projections we mix the prototype of the right operand into the left operand and apply the
component refinement on that new component. Thus, we incrementally combine the two
operands into a single component where service definitions of the right operand override
definitions of the left operand.

The reduction rule for service selections relies on an auxiliary function service(e′, e, C)
which searches the component definition e of component instance e′ for a service C. Note
that the service lookup performed by service(e′, e, C) is only defined on service implemen-
tation and component projection terms. Thus, even for cases where e provides a service
C, evaluation of service(e′, e, C) may not be well-defined if e has not been evaluated far
enough. In such a case, we first have to apply rules (RC-Inst) and (RC-Serv) to further
evaluate the component before making use of the actual service selection rule (R-Serv).
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(R-FLD)
fields(C) = T f

new C(e).fi −→ ei

(R-SERV)
service(new e, e, C) = e′

new e :: C −→ e′

(R-INV)
mbody(m, C) = (x, e0)

new C(e).m(d) −→ [d/x, new C(e)/this] e0

(R-REQ) e requires C −→ e (R-MIXC) e mixin component −→ e

(R-MIXP) e mixin (e0 provides C as x with d) −→ (e mixin e0) provides C as x with d

(R-MIXF) e mixin (e0 forwards C as x to d) −→ (e mixin e0) forwards C as x to d

(RC-FLD)
e −→ e′

e.f −→ e′.f
(RC-INVR)

e −→ e′

e.m(d) −→ e′.m(d)

(RC-INVA)
ei −→ e′

i

d.m(. . ., ei, . . .) −→ d.m(. . ., e′
i, . . .)

(RC-NEWA)
ei −→ e′

i

new C(. . ., ei, . . .) −→ new C(. . ., e′
i, . . .)

(RC-INST)
e −→ e′

new e −→ new e′ (RC-SERV)
e −→ e′

e :: C −→ e′ :: C

(RC-PRV)
e −→ e′

e provides C as x with d −→ e′ provides C as x with d

(RC-FWD)
e −→ e′

e forwards C as x to d −→ e′ forwards C as x to d

(RC-MIXL)
e −→ e′

e mixin d −→ e′ mixin d
(RC-MIXR)

d −→ d′

e mixin d −→ e mixin d′

Fig. 8. Operational semantics

An overview of all auxiliary definitions used by the operational semantics of Figure 8 are
given in Figure 9.

4.3 Type System

We have three different forms of types: object types, component types and component
instance types. An object type is simply denoted by a class name C. An object type is
well-formed if the class name appears in the domain of the class table CT . The class
table is a mapping from class names to class declarations. As in the presentation of FJ,
we assume that we have a fixed class table to simplify the notation. Otherwise we would
have to parameterize all typing rules with CT . It is assumed that CT satisfies some sanity
conditions: Object 6∈ dom(CT ), all types appearing explicitly in CT are well-formed, and
there are no cycles in the subtype relation induced by CT .

Component types have the form C ⇒ C ′ where C specifies the services required by
the component and C ′ specifies the provided services. Services are described by object
types. A component type is only well-formed if the sets of the provided and required ser-
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Field lookup

fields(Object) = ∅

CT (C) = class C extends D {T f ; K ; M } fields(D) = U g

fields(C) = U g, T f

Method body lookup

CT (C) = class C extends D {U f ; K ; M } T ′ m(T x) { return e; } ∈ M

mbody(m, C) = (x, e)

CT (C) = class C extends D {T f ; K ; M } m not defined in M

mbody(m, C) = mbody(m, D)

Service lookup

service(e, e0 provides C as x with d, C) = [e/x] d

service(e, e0 forwards C as x to d, Ci) = [e/x] d :: Ci

D 6= C

service(e, e0 provides C as x with d, D) = service(e, e0, D)

D 6∈ C

service(e, e0 forwards C as x to d, D) = service(e, e0, D)

Fig. 9. Auxiliary definitions for evaluation

Well-formed types

Object wf
CT (C) = class C extends D {. . .}

C wf

C, C′ wf C ∩ C′ = ∅
C ⇒ C′ wf

C wf

[C] wf

Subtyping

C <: C
C <: D D <: E

C <: E

CT (C) = class C extends D {. . .}
C <: D

C ⊆ D D′ ⊆ C′

C ⇒ C′ <: D ⇒ D′

D ⊆ C

[C] <: [D]

Fig. 10. Well-formed types and subtyping

vices are disjoint. [C] types a component instance that provides the services C. Figure 10
summarizes the well-formedness criteria on types.

Method types cannot be written explicitly. In the type system, we use the notation
T → T ′ for a method with the argument types T and the result type T ′. Note that de-
pending on the context, T denotes either a sequence of types (T1, . . . , Tn) or a set of types
{T1, . . . , Tn}. We use shorthands of the form C ∪D for expressing C ∪ {D}.

Figure 10 also defines a subtype relation T <: T ′ between two types T and T ′. Sub-
typing of object types is identical to FJ. A component instance type is a subtype of another
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Expression typing

(T-VAR) Γ ` x : Γ (x) (T-FLD)
Γ ` e : C fields(C) = T f

Γ ` e.fi : Ti

(T-INV)
Γ ` d : C mtype(m, C) = T → T ′ Γ ` e : U U <: T

Γ ` d.m(e) : T ′

(T-NEW)
fields(C) = T f Γ ` e : U U <: T

Γ ` new C(e) : C

(T-INST)
Γ ` e : ∅ ⇒ C

Γ ` new e : [C]
(T-SERV)

Γ ` e : [C]

Γ ` e :: Ci : Ci

(T-COM) Γ ` component : ∅ ⇒ ∅

(T-MIX)
Γ ` e : C ⇒ C′ Γ ` d : D ⇒ D′

Γ ` e mixin d : (C ∪D)\(C′ ∪D′) ⇒ C′ ∪D′

(T-REQ)
C wf Γ ` e : D ⇒ D′

Γ ` e requires C : D ∪ C ⇒ D′\C

(T-PRV)
C wf Γ ` e : D ⇒ D′ Γ, x : [D ∪D′ ∪ C] ` d : B B <: C

Γ ` e provides C as x with d : D\C ⇒ D′ ∪ C

(T-FWD)
C wf Γ ` e : D ⇒ D′ Γ, x : [D ∪D′ ∪ C] ` d : [B] C ⊆ B

Γ ` e forwards C as x to d : D\C ⇒ D′ ∪ C

Method and class typing

(T-METH)
T wf T ′ wf x : T , this : C ` e : U U <: T ′

CT (C) = class C extends D {. . .} override(m, D, T → T ′)

T ′m(T x) { return e; } ok in C

(T-CLASS)
D wf T wf K = C(U g, T f) { super(g); this.f = f ; }

fields(D) = U g M ok in C

class C extends D {T f ; K; M } ok

Fig. 11. Type system

component instance type if the services provided by the supertype constitute a subset of
the subtype’s provided services. A component type τ1 = C ⇒ C ′ is a subtype of com-
ponent type τ2 = D ⇒ D′, if τ1 requires less and provides more services than τ2; i.e.
C ⊆ D and D′ ⊆ C ′. This corresponds to the typical co/contravariant subtyping rule
for function types [CW85] adopted already by related approaches to component subtyp-
ing [FF98,SC00,GM99]. In Section 4.6 we discuss an alternative subtyping rule.

The type system is presented in Figure 11. We have three different typing judgment
forms. The one for classes has the form “L ok” meaning that class declaration L is type
correct. The judgment for method declarations has the form “M ok in C”, expressing that
the method declaration M typechecks as a declaration of class C. Both rules are directly
taken from FJ. The judgment for expressions Γ ` e : T relates a type T to an expression
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Method type lookup

CT (C) = class C extends D {U f ; K ; M } T ′m(T x) { return e; } ∈ M

mtype(m, C) = T → T ′

CT (C) = class C extends D {T f ; K ; M } m not defined in M

mtype(m, C) = mtype(m, D)

Valid method overriding

mtype(m, C) = U → U ′ implies U = T and U ′ = T ′

override(m, C, T → T ′)

Fig. 12. Auxiliary definitions for typing

e. Most typing rules for expressions are straightforward. (T-Prv) and (T-Fwd) are among
the interesting rules. Here, the service provision expression is typed under an extended
environment, including the self reference to the own component instance. We assume
that the type of the self reference variable is a component instance type offering both, the
services that are required and provided by the component being refined. The auxiliary
definitions used for typing field and method selections as well as object creations are
directly adopted from FJ and summarized in Figure 12.

4.4 Type Soundness

For proving type soundness, we weaken the typing rules for provides and forwards terms.
We use the following two rules (T-Prv’) and (T-Fwd’) instead:

(T-PRV ’)
C wf Γ ` e : D ⇒ D′ Γ, x : [D′′] ` d : B B <: C

Γ ` e provides C as x with d : (D ∪D′′)\(D′ ∪ C) ⇒ D′ ∪ C

(T-FWD’)
C wf Γ ` e : D ⇒ D′ Γ, x : [D′′] ` d : [B] C ⊆ B

Γ ` e forwards C as x to d : (D ∪D′′)\(D′ ∪ C) ⇒ D′ ∪ C

In this weaker system we allow that provides and forwards primitives introduce service
abstractions in a non-deterministic way. We show type soundness for this weaker type
system. As a consequence, the type system with the stronger typing rules, presented in
Figure 11, is sound as well. This system has the advantage that typings are deterministic.
Furthermore, its design follows the principle that service abstractions have to be declared
explicitly. Weakening the type system was necessary for subject reduction to hold. We
present the type soundness results for our weaker type system in the style of Wright and
Felleisen [WF94]. The proof can be found in Appendix A.

Theorem 4.1 (Subject reduction) If all types in Γ are well-formed, Γ ` e : T and
e −→ e′, then Γ ` e′ : T ′ for some T ′ <: T .

For a well-typed term which can be reduced to a second term, Theorem 4.1 states that
this second term is also well-typed. Furthermore, the type of the second term is a subtype
of the type of the first term.
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In addition to that we can show that the evaluation of every well-typed term does not
get stuck. To formalize this, we introduce a term subset denoting values.

Value v = c
| new c
| new C(v)

Component value c = component
| c provides C as x with e
| c forwards C as x to e

A value is either a component, a component instance or an object. For component values
we have three different constructors. One denotes the empty component, one adds a
new service to an existing component value, and a third one adds services by forwarding
them to another component instance. Note that during evaluation, service abstractions
are eliminated in expressions with reduction rule (R-Req). Therefore, the definition of
component values does not include the requires primitive.

Theorem 4.2 states that every well-typed term is either a value or it can be reduced to
another term. In other words, evaluation does not get stuck for well-typed terms.

Theorem 4.2 (Progress) If ` e : T then e is either a value or e −→ e′ for some e′.

4.5 Component Instantiation Evaluation

The operational semantics presented in Figure 8 formalize an evaluation strategy that
does not allow to reduce service implementation expressions inside of component in-
stances. At component instantiation time, in fact none of these terms get evaluated. A
term specifying a service implementation, for example in provides or forwards primitives,
only gets evaluated when the service is accessed via the :: operator. Evaluating a service
implementation expression more than once does no cause any problems in our calculus,
since we only have functional objects without any side-effects. In real-world systems, this
form of lazy evaluation can be efficiently implemented using a memoization technique,
so that for multiple accesses to the same service, the service implementation expression
will be evaluated only once.

We decided to have this restriction in our calculus for several reasons. First, it keeps
the calculus simple. But lazy evaluation also constitutes a reasonable evaluation strat-
egy for service implementations. A strict evaluation order would be difficult to define.
For instance we could evaluate the service implementations in the order the component
evolution primitives introduce a service. But this would be a completely arbitrary choice,
since services can be introduced using the requires primitive in any order, not implying
any dependencies.

With any fixed strict evaluation order one risks to access a not yet initialized service
from the service implementation that is currently being evaluated. With a lazy service
evaluation strategy one still faces this problem, but only for recursive service references.
With our operational semantics, such recursive dependencies could possibly lead to in-
finite computations. We avoided this problem in the examples of the previous sections
by not accessing services of the own component instance in service provision expressions
directly. Instead, objects that implement a service access other services of the same com-
ponent instance only at the time a method of the other service actually has to be called,
which happens typically after the component got instantiated.
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(S-EMB)
e −→ e′

d ; D ` e ↪→ e′

(S-PRV)
[d/x] e −→ e′ C 6∈ D

d ; D ` e0 provides C as x with e ↪→ e0 provides C as x with e′

(S-FWD)
[d/x] e −→ e′ C\D 6= ∅

d ; D ` e0 forwards C as x to e ↪→ e0 forwards C as x to e′

(SC-PRV)
d ; D ∪ C ` e0 ↪→ e′

0

d ; D ` e0 provides C as x with e ↪→ e′
0 provides C as x with e

(SC-FWD)
d ; D ∪ C ` e0 ↪→ e′

0

d ; D ` e0 forwards C as x to e ↪→ e′
0 forwards C as x to e

Fig. 13. Operational semantics for component instantiation

In order to support any reasonable evaluation strategy2 for component instantiations,
we could extend our operational semantics. We only have to replace rule (RC-Inst) of
Figure 8 with the following rule (R-Inst):

(R-INST)
new e ; ∅ ` e ↪→ e′

new e −→ new e′

This rule relies on a context dependent reduction semantics for service implementations
during component instantiation. Intuitively, the clause d ;D ` e ↪→ e′ expresses that
evaluation of term e within component instance d results in term e′. Furthermore, ser-
vices contained in D are overridden and excluded from evaluation. This service exclusion
ensures that we do not execute service implementations that are superseded by other
more recently defined implementations. A definition of the service evaluation semantics
can be found in Figure 13. Rule (S-Emb) embeds the original reduction relation −→ into
↪→ making sure that the new semantics are a conservative extension of the previous ver-
sion. Rules (S-Prv) and (S-Fwd) evaluate a service implementation expression. The rules
(SC-Prv) and (SC-Fwd) propagate evaluation to more deeply nested services.

4.6 Component Subtyping

The subtyping rule presented so far only supports width-subtyping for component types;
i.e. subtypes provide more and require less services. We could relax this rules easily by
additionally supporting a form of depth-subtyping which incorporates subtyping of service
interface types. Here, τ1 <: τ2 would hold for two component types τ1 and τ2, if the
required service types of τ1 are supertypes of the required service types of τ2. Similarly,
the provided service types of τ1 are supposed to be subtypes of the provided service types
of τ2. Exactly this is expressed by the following alternative subtyping rule:

∀i∃j : Dj <: Ci ∀i∃j : C ′
j <: D′

i

C ⇒ C ′ <: D ⇒ D′

2 We consider an evaluation strategy to be reasonable if it does not evaluate overridden service
implementation expressions.
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∀i∃j : Cj <: Di

[C] <: [D]

To make use of such a rule in our type system, we would also have to update the typ-
ing rules (T-Mix), (T-Req), (T-Prv), and (T-Fwd) correspondingly. In addition to that, the
service lookup function would have to be modified to reflect the fact that we can now
override a service by introducing a new service with a refined type.

5 Discussion and Related Work

Before concluding, we finally review the main ingredients of the prototype-based compo-
nent model, explain design decisions, and compare the constructs with related work.

5.1 Prototype-Based Components Revisited

In our model, components are first-class abstractions that have neither state nor iden-
tity. Components define the structure of component instances in the same way as classes
define the structure of objects. In most class-based languages, classes are either not first-
class, or they are specified using meta-classes. For simplicity, and in order to avoid such
a meta-regress [US91], our first-class components are prototype-based [AC96]. Thus, in-
stead of instantiating components from meta-component descriptions, new components
are derived from prototypical components by a set of refinement primitives. Since com-
ponents are stateless, we do not need a cloning operation known from object-based pro-
gramming languages [CT98,US91]. This approach emphasizes the reuse of components
in the creation of new, extended components by refinement. In fact, even component
composition, which is mostly regarded as the only form of component reuse, is explained
in terms of component refinement.

Components specify implementations for a set of provided services. These imple-
mentations may rely on services provided by other components. Thus, component
types are characterized by a set of required and provided services. Services are de-
scribed by nominal object types. In Section 3.3 we explained already why this ap-
proach does not constitute a restriction compared to component models with named
ports [SC00,Sre02,ACN02]. Our service abstraction does not only allow us to conve-
niently refer to an aggregate of functionality, opposed to individual methods, for instance.
It also facilitates to override an aggregate of functionality consistently and promotes dis-
tinct, non-interfering views of components. Service specifications that are solely based on
nominal object types were inspired by COM [Rog97,Ibr98].

Services are added to a component using the service abstraction and service imple-
mentation primitives. For composing components, two mechanisms are supported: for-
warding and mixin-based composition. Forwarding delegates the implementation of a
set of services to another, possibly nested component instance. The significance of the
forwarding primitive is two-fold: On the one hand it enables hierarchical component
compositions, on the other hand, it is used to hide internal services of encapsulated com-
ponents.

Opposed to forwarding, the mixin-based approach merges two components by refining
one component with the services provided by another component and by rebinding the
self reference to the merged component. Compared with the approach based on forward-
ing where the services of the nested component cannot be overridden and are therefore
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statically linked, component composition based on mixins yields a fully extensible compo-
nent where it is possible to redefine service implementations by overriding. On the other
hand, forwarding allows us to specify exactly what services to include, opposed to the
mixin-based approach which always mixes in all provided services. As mentioned already
in Section 3.7, this may lead to accidental overrides. This weakness of our type system
could be addressed, for example, by making overriding explicit and by including negative
information in component types. Discussions about forwarding versus delegation (object-
based inheritance), which can be seen as an implementation technique for mixins, can
be found, for instance, in [Szy98,Kni99,BW00]. Support for dynamic object-based inheri-
tance in a class-based context is provided by Büchi’s and Weck’s generic wrappers [BW00]
and Kniesel’s object model Darwin [Kni99].

Mixins were first identified as linguistic abstractions for generalizing inheritance by
Bracha and Cook [BC90]. It was also Bracha who observed that inheritance can be seen
as a mechanism for modular program composition [BL92]. With his work on the pro-
gramming language Jigsaw [Bra92], he lifts the notion of class-based inheritance and
overriding to the level of modules.

A formal account of mixins and mixin-based inheritance is given
in [BPS99,FKF98,AZ98]. In particular, Bono, Patel, and Shmatikov’s calculus of
first-class classes and mixins is similar to our work [BPS99]. Bono’s mixins correspond to
components in our model. Classes correspond roughly to components without required
services. Based on the same framework, Bettini, Bono, and Venneri recently showed that
mixins are a suitable abstraction for mobile software components [BBV02]. Opposed to
the work by Bono et al., the programming language Scala [Ode] does not distinguish
between classes and mixins. It only has the notion of classes that are interpreted as
mixins when used in mixin-based class compositions (inheritance). This is identical to
the way we interpret components. Scala’s mixins were inspired by Strongtalk [BG96], an
extension of the programming language Smalltalk.

5.2 Related Work

Our work is strongly related to alternative proposals for component abstractions on the
level of programming languages. Seco and Caires describe ComponentJ, a simple typed
imperative core calculus for first-class components in the context of inheritance-free
object-oriented programming [SC00]. ComponentJ completely avoids inheritance in fa-
vor of object composition. Components are closed black-boxes that can be dynamically
composed.

ACOEL has a similar component model [Sre02]. Interaction points of ACOEL compo-
nents are in- and out-ports. The language is class-based and supports a restricted form of
inheritance. Like in ComponentJ, ports are connected explicitly. Opposed to ComponentJ,
the design of ACOEL does not allow to check that all ports are connected. ACOEL supports
a richer form of component subtyping, including other constraints, specified in CORAL, a
language for abstracting and specifying ACOEL components [Sre01].

ArchJava is an extension of Java that tries to unify the software architecture of a sys-
tem with its implementation [ACN02]. It introduces direct support for components, con-
nections and ports. Components are implemented using extensible component classes.
ArchJava does not distinguish between required and provided ports. Instead, a port de-
clares required and provided methods. Ports are again connected explicitly. Like the previ-
ous two languages, ArchJava allows component composition only via nesting of subcom-
ponents. A distinct feature of the ArchJava type system is to guarantee communication
integrity [MQR95].
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Ibrahim formalizes COM by introducing a small programming language
COMEL [Ibr98]. Similar to our approach, COMEL does not have named ports. Ser-
vices are specified solely by type names. In the spirit of COM, COMEL emphasizes
aggregation and does not support implementation inheritance. COMEL components have
to be self-contained, not having any context dependencies. This is a severe restriction
that contradicts the aim to modularize software into small components that have to
depend on their deployment context in order to be flexibly reusable.

Most concepts of component-oriented programming languages originate from notions
of architectural description languages (ADLs) like ACME [GMW97], Aesop [GAO94], Dar-
win [MDEK95], Rapide [LAK+95], Wright [All97] etc. ADLs are used to specify a soft-
ware architecture formally. A software architecture describes the organizational structure
of a software system in terms of a collection of components and relationships among
them [PW92,SG96]. Typically, a specification of a software architecture contains informa-
tion about the participating software components, the connections between these compo-
nents and constraints on the interactions [Szy98]. By using ADLs, the details of a design
get explicit and more precise, enabling formal analysis techniques. Furthermore, they can
help in understanding the structure of a system, its implementation and reuse. A compar-
ison of ADLs is given in [MT00].

Advanced module linking [Car97,GM99] and component systems that are built on top
of a programming language can be used to model component systems as well. Module
systems with external linking facilities include SML’s functors [Mac84] and MzScheme’s
units [FF98]. Opposed to our components, SML functors are neither first-class nor higher-
order. Consequently, they cannot be used to dynamically manufacture modules. Further-
more, they are not extensible, which makes it difficult to perform adaptations. An exten-
sion of SML with first-class modules was recently proposed by Russo [Rus98,Rus00].

Unlike SML modules, units offer better support for component-oriented program-
ming [FF98,Fla99]. They provide first-class module abstractions and linking facilities to
compose modules hierarchically. Like all the component-oriented languages mentioned
before, units are linked by explicitly connecting provided with required ports. Since port
descriptions of units are relatively fine-grained — they are, in fact, just variable defi-
nitions —, this can be a tedious task. For this reason, MzScheme supports signed units
that support bundles of variables, called signatures, being connected in one step [Fla99].
Even thought superficially similar to services in our component model, signatures are
merely syntactic sugar and are flattened to a linear list of variables. Jiazzi [MFH01a] is a
working enhancement of Java with support for large-scale software components based on
MzScheme’s units. Jiazzi’s units are conceptually containers of compiled Java classes with
support for well-defined connections, specified by a number of imported and exported
classes.

A comparable module system for Java-like programming languages was proposed by
Ancona and Zucca [AZ01b]. This system is based on CMS [AZ99,AZ01a], a simple but
expressive calculus of modules which can be instantiated over an arbitrary core calculus.
The calculus supports a large variety of module composition mechanisms including mixin
module composition with overriding. Recently, Hirschowitz and Leroy adapted the type
system of CMS to a call-by-value setting [HL02].
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6 Conclusion

In this paper, we presented a component model that was designed to support the imple-
mentation and evolution of lightweight, extensible components in object-oriented pro-
gramming languages. The model supports dynamic component manufacturing and com-
position in a type-safe way through a minimal set of component refinement primitives.
Opposed to other approaches, we do not need to link services of components explicitly. In-
stead, components are composed using high-level composition operators. We formalized
the component model as an extension of Featherweight Java and prove our type system to
be sound with respect to the operational semantics. Currently, we are investigating how
to integrate our component model into a full programming language.

Acknowledgments. I am grateful to Martin Odersky for valuable discussions about re-
lated topics. I would also like to thank Christoph Zenger and Martin Sulzmann for their
comments about the type soundness proof.
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A Type Soundness Proof

In this section we present the full type soundness proof for our type system in Figure 11
with the weaker typing rules explained in Section 4.4. The presentation follows the style
of the original type soundness proof of Featherweight Java [IPW99]. The formalization
of the type system is based on a fixed class table CT . For the subject reduction proof we
have to assume that classes in CT are well-typed.

A.1 Subject Reduction

Lemma A.1 (Subtyping) The subtyping relation <: is reflexitive and transitive; i.e. T <:
T and for T <: U and U <: V , we also have T <: V .

Proof: For object types, the reflexitivity and transitivity are explicitly defined. For
component and component instance types, these properties get inherited from the
subset relation ⊆. 2

Lemma A.2 (Well-formed types) If all types in Γ are well-formed and Γ ` e : T then
T wf.

Proof: By a straightforward induction on a derivation of Γ ` e : T . Only component
types are non-trivial due to the required disjointness of the provided and required
services. Note that all typing rules that yield component types include this disjointness
requirement. 2

Lemma A.3 (Invariant method overriding) If mtype(m,D) = T → T ′, then
mtype(m,C) = T → T ′ for all C <: D.

Proof: By induction on the derivation of C <: D. We suppose that mtype(m,D) =
T → T ′ and C <: D, and show that mtype(m,C) = T → T ′.

Case 1: C = D
Trivial.

Case 2: C <: D CT (C) = class C extends D {. . .}
We have to distinguish two cases, depending on whether m is overridden in C or not.
If m is not defined in C, then we derive from the definition of mtype the required
result mtype(m,C) = mtype(m,D) = T → T . For the case that m is defined in C
and thus overrides method m in D, we look at the derivation of the method typing for
method m:

. . .

mtype(m,D) = T → T ′ impl. U = T , U ′ = T ′

override(m,D, U → U ′)
U ′m(U x) { return e; } ok in C

With the premise of the overrides clause we get the needed result mtype(m,C) = T →
T ′.

Case 3: C <: D C <: E E <: D
By the induction hypothesis, mtype(m,E) = T → T ′. Another application of the
induction hypothesis yields mtype(m,C) = T → T ′. 2

Lemma A.4 (Context permutation) If Γ, x : U, y : V, Γ ′ ` e : T then Γ, y : V, x : U, Γ ′ `
e : T .
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Proof: By a straightforward induction on the typing derivation Γ, x : U, y : V, Γ ′ `
e : T . Note that we assume that binders always introduce fresh names. In particular,
x 6= y, {x, y} ∩ dom(Γ, Γ ′) = ∅ and dom(Γ ) ∩ dom(Γ ′) = ∅. 2

Lemma A.5 If Γ, x : U ` e : T and U ′ <: U , then Γ, x : U ′ ` e : T ′ for some T ′ <: T .

Proof: By induction on the derivation of Γ, x : U ` e : T .

Case T-Var: e = y T = Γ (y)
We have to consider two subcases, depending on whether y is the same as x. For y = x
we get Γ, x : U ′ ` x : T ′ with T ′ = U ′ <: U = T . If x 6= y, then Γ, x : U ′ ` y : T ′ with
T ′ = T .

Case T-Fld: e = e0.fi

T = Ti

Γ, x : U ` e0 : C
fields(C) = T f

By the induction hypothesis, Γ, x : U ′ ` e0 : D for some D <: C. It can be shown
easily that fields(D) = fields(C), V g. Therefore, we can apply rule (T-Fld) and get
Γ, x : U ′ ` e0.fi : T .

Case T-Inv: e = e0.m(e′)
Γ, x : U ` e0 : C
mtype(m,C) = V → T

Γ, x : U ` e′ : W
W <: V

By the induction hypothesis:
Γ, x : U ′ ` e0 : D with D <: C
Γ, x : U ′ ` e′ : W ′ with W ′ <: W <: V

With Lemma A.3, mtype(m,D) = V → T ′ with T ′ = T . Now we apply rule (T-Inv)
and get the needed result Γ, x : U ′ ` e0.m(e′) : T .

Case T-New: e = new C(e′)
T = C
fields(C) = T ′ f

Γ, x : U ` e′ : W
W <: T ′

By the induction hypothesis, Γ, x : U ′ ` e′ : V with V <: W <: T ′. With rule (T-New)
we conclude that Γ, x : U ′ ` new C(e′) : C.

Case T-Inst: e = new e0

T = [C]
Γ, x : U ` e0 : ∅ ⇒ C

By the induction hypothesis and the subtype relation, Γ, x : U ′ ` e0 : ∅ ⇒ D with
C ⊆ D. With (T-Inst) we derive Γ, x : U ′ ` new e0 : [D]. The subtype relation for
component instances completes the case with T ′ = [D] <: T .

Case T-Serv: e = e0 :: Ci

T = Ci

Γ, x : U ` e0 : [C]

The induction hypothesis yields Γ, x : U ′ ` e0 : [D] for some D with [D] <: [C]. That
is, C ⊆ D and therefore Ci ∈ D. Now we apply (T-Serv) to get the required result
Γ, x : U ′ ` e0 :: Ci : T .

Case T-Com: Trivial.

Case T-Mix: e = e0 mixin e1

T = (C ∪D)\(C ′ ∪D′) ⇒ C ′ ∪D′

Γ, x : U ` e0 : C ⇒ C ′

Γ, x : U ` e1 : D ⇒ D′

By the induction hypothesis:
Γ, x : U ′ ` e0 : E ⇒ E′ with E ⇒ E′ <: C ⇒ C ′

Γ, x : U ′ ` e1 : F ⇒ F ′ with F ⇒ F ′ <: D ⇒ D′

Rule (T-Mix) yields Γ, x : U ′ ` e0 mixin e1 : T ′ with T ′ = (E∪F )\(E′∪F ′) ⇒ E′∪F ′.
It remains to show that T ′ <: T . From the clauses derived by the induction hypothesis
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we conclude using the subtyping rules and Lemma A.1:
E ⊆ C C ′ ⊆ E′

F ⊆ D D′ ⊆ F ′

Simple set theory yields:
(E ∪ F )\(E′ ∪ F ′) ⊆ (C ∪D)\(C ′ ∪D′)
C ′ ∪D′ ⊆ E′ ∪ F ′

With the subtyping rule for components we finally get T ′ <: T .

Case T-Req: e = e0 requires C
T = D ∪ C ⇒ D′\C

Γ, x : U ` e0 : D ⇒ D′

By the induction hypothesis, Γ, x : U ′ ` e0 : E ⇒ E′ with E ⇒ E′ <: D ⇒ D′.
With rule (T-Req) we derive Γ, x : U ′ ` e0 requires C : E ∪ C ⇒ E\C. By the
definition of <: we get E ⊆ D and D′ ⊆ E′. We can now easily show that this implies
T ′ = (E ∪ C ⇒ E\C) <: T .

Case T-Prv’: e = e0 provides C as x with d
T = (D′′ ∪D)\(D′ ∪ C) ⇒ D′ ∪ C
Γ, x : U ` e0 : D ⇒ D′

Γ, x : U, y : [D′′] ` d : B
B <: C

With the induction hypothesis we get Γ, x : U ′ ` e0 : E ⇒ E′ with E ⇒ E′ <:
D ⇒ D′. By Lemma A.4, Γ, y : [D′′], x : U ` d : B′. This time the induction hypoth-
esis yields Γ, y : [D′′], x : U ′ ` d : B′ with B′ <: B. After another application of
Lemma A.4 and by using the transitivity property of <:, we can now make use of rule
(T-Prv’). We get Γ, x : U ′ ` e : T ′ with T ′ = (D′′ ∪ E)\(E′ ∪ C) ⇒ E′ ∪ C. It remains
to show that T ′ <: T . Since E ⇒ E′ <: D ⇒ D′ we know from the definition of <:
that E ⊆ D and D′ ⊆ E′. Therefore, we also have E ∪D′′ ⊆ D ∪D′′. Since we know
that D′ ⊆ E′, we finally get (D′′ ∪ E)\(E′ ∪ C) ⊆ (D′′ ∪D)\(D′ ∪ C). Now, it is easy
to see that T ′ <: T .

Case T-Fwd’: Similar to (T-Prv’). 2

Lemma A.6 (Substitution preserves typing) If Γ, x : T ` e : U , and Γ ` d : V where
V <: T , then Γ ` [d/x]e : W for some W <: U .

Proof: By induction on the derivation of Γ, x : T ` e : U . The proof is similar to
the one of Lemma A.5. Instead of applying the induction hypothesis twice for cases
(T-Prv’) and (T-Fwd’), we now make use of Lemma A.5. 2

Lemma A.7 (Weakening) If Γ ` e : T , x 6∈ dom(Γ ), then Γ, x : U ` e : T .

Proof: By a straightforward induction on the derivation of Γ ` e : T . 2

Lemma A.8 If mtype(m,C) = T → T ′, and mbody(m,C) = (x, e), then for some D with
C <: D, there exists some U <: T ′ such that x : T , this : D ` e : U .

Proof: By induction on the derivation of mbody(m,C). We assume that all classes are
well-typed. So we can make use of (T-Meth) in the base case where m is defined in C.
We immediately get x : T , this : D ` e : U for some U <: T ′. The induction step is
straightforward. 2

Lemma A.9 If service(d, e, C) = d′, with Γ ` d : [E], Γ ` e : F ⇒ F ′, C ∈ F ′, and
F ∪ F ′ ⊆ E, then Γ ` d′ : B for some B <: C.

Proof: By induction on a derivation of service(d, e, C) for a given d and C.
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Base case 1: e = e0 provides C as x with d0 d′ = [d/x] d0

The last rule used for typing e is (T-Prv’):

Γ ` e0 : D ⇒ D′ Γ, x : [D′′] ` d0 : B′ B′ <: C

Γ ` e : F ⇒ F ′

with F = (D ∪ D′′)\(D′ ∪ C) and F ′ = D′ ∪ C. With F ∪ F ′ ⊆ E we get D′′ ⊆ E
and therefore [E] <: [D′′]. Now we can derive Γ, x : [E] ` d0 : B′′ with B′′ <: B′

by Lemma A.5. Lemma A.6 finally yields the required result Γ ` d′ : B where B <:
B′′ <: B′ <: C.
Base case 2: e = e0 forwards D as x to d0 d′ = [d/x] d0 :: C

C ∈ D
The proof is similar to the one of base case 1.
Induction step 1: e = e0 provides D as x with d0 D 6= C
The last rule used for typing e is (T-Prv’):

Γ ` e0 : G ⇒ G′ Γ, x : [G′′] ` d0 : B′ B′ <: D

Γ ` e : F ⇒ F ′

with F = (G ∪G′′)\(G′ ∪D) and F ′ = G′ ∪D. Now we get G ∪G′ ⊆ G ∪G′ ∪G′′ =
F ∪F ′ ⊆ E. Since C 6= D and C ∈ G′∪D, we get C ∈ G′. Now we apply the induction
hypothesis and get service(c, e0, C) = d′ with Γ ` d′ : B and B <: C.
Induction step 2: e = e0 forwards D as x to d0 C 6∈ D
The proof is similar to the one of induction step 1. 2

Theorem 4.1 (Subject reduction) If all types in Γ are well-formed, Γ ` e : T and
e −→ e′, then Γ ` e′ : T ′ for some T ′ <: T .

Proof: By induction on a derivation of e −→ e′ with a case analysis on the reduction
rule used. We suppose that Γ ` e : T and show for each case Γ ` e′ : T ′ with T ′ <: T .
Case R-Fld: e = new C(d).fi e′ = di fields(C) = U f
With rule (T-Fld) and (T-New) we derive Γ ` d : V with V <: U and T = Ui. In
particular, we have Γ ` di : Vi with T ′ = Vi <: Ui = T .
Case R-Serv: e = new e0 :: C e′ = service(new e, e, C)
With (T-Serv) and (T-Inst) we derive

Γ ` new e0 : [D] with T = C = Di

Γ ` e0 : ∅ ⇒ D
Lemma A.9 concludes this case with Γ ` e′ : T ′ for some T ′ <: C = T .
Case R-Inv: e = new C(d).m(d′)

e′ = [d′/x, new C(d)/this] e0

mbody(m,C) = (x, e0)

Rule (T-Inv) requires
Γ ` new C(d) : C
mtype(m,C) = V → T
Γ ` d′ : W where W <: V

With Lemma A.8 we get x : V , this : D ` e0 : W ′ for some C <: D and W ′ <: T .
According to Lemma A.7 this implies Γ, x : V , this : D ` e0 : W ′. With Lemma A.6 we
get Γ ` e′ : T ′ with T ′ <: W ′ <: T .
Case R-Req: e = e′ requires C
From (T-Req) follows T ′ = D ⇒ D′ and T = D ∪ C ⇒ D′\C for some D and D′. It is
now easy to show that T ′ <: T .
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Case R-MixC: e = e′ mixin component
With (T-Mix) and (T-Com) we get immediately the required result T = T ′ = C ⇒ C ′

for some C and C ′.
Case R-MixP: e = e0 mixin (e1 provides C as x with d)

e′ = (e0 mixin e1) provides C as x with d
We look at the derivation of Γ ` e : T :

Γ ` e0 : D ⇒ D′
Γ ` e1 : E ⇒ E′ Γ, x : [E′′] ` d : B B <: C

Γ ` e1 provides C as x with d : (E ∪ E′′)\(E′ ∪ C) ⇒ E′ ∪ C

Γ ` e : T

where T = (D ∪ E ∪ E′′)\(D′ ∪ E′ ∪ C) ⇒ D′ ∪ E′ ∪ C. Now we derive a type T ′ for
expression e′ and show that T ′ = T :

Γ ` e0 : D ⇒ D′ Γ ` e1 : E ⇒ E′

Γ ` e0 mixin e1 : ((D ∪ E)\(D′ ∪ E′)) ⇒ D′ ∪ E′

Γ, x : [E′′] ` d : B B <: C

Γ ` e′ : T ′

where T ′ = (((D ∪ E)\(D′ ∪ E′)) ∪ E′′)\(D′ ∪ E′ ∪ C) ⇒ D′ ∪ E′ ∪ C = T .
Case R-MixF: The induction step is almost identical to case (R-MixP).

All the other cases are straightforward. 2

A.2 Progress

Lemma A.10 (Object and component access) Suppose Γ ` e : U

1. If e = new C(e′).fi, then fields(C) = T f .
2. If e = new C(e′).m(d), then mbody(m,C) = (x, d′) and #(x) = #(d).
3. If e = new c :: C, then service(new c, c, C) = d.

Proof:
1. This follows directly from (T-Fld).
2. The well-typedness of e yields mtype(m,C) = T → T ′ with Γ ` d : V and

V <: T . Using this, it is easy to show that mbody(m,C) = (x, d′) and #(x) =
#(T ) = #(V ) = #(d).

3. By induction on the structure of c.
2

Theorem 4.2 (Progress) If ` e : T then e is either a value or e −→ e′ for some e′.

Proof: By induction on the derivation of ` e : T . We only present the non-trivial
cases where e is not a value and where congruence rules cannot be used.
Case T-Fld: e = new C(v).fi T = Ti

With Lemma A.10.1 we get fields(C) = T f . Now rule (R-Fld) yields e′ = vi.
Case T-Inv: e = new C(v′).m(v)

` new C(v′) : C
mtype(m,C) = T ′ → T

` v : U
U <: T ′

With Lemma A.10.2 we get mbody(m,C) = (x, d) and #(x) = #(v). With rule (R-Inv)
we can now derive e′ = [v/x, new C(v′)/this] d.
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Case T-Serv: e = new c :: T ` new c : [C] Ci = T ∈ C
Lemma A.10.3 yields service(new c, c, Ci) = d. By looking at rule (T-Serv) we can
choose e′ = d.

Case T-Mix: e = c0 mixin c1

T = (C ∪ D)\(C ′ ∪ D′) ⇒
C ′ ∪D′

` c0 : C ⇒ C ′

` c1 : D ⇒ D′

We have to distinguish three different subcases, depending on c1 being either
component, c2 provides C as x with d, or c2 forwards C as x to d. In all three cases,
either rule (R-MixC), (R-MixP), or (R-MixF) immediately yields a corresponding e′.

Case T-Req: 25 e = e0 requires C
A simple application of rule (R-Req) results in e′ = e0. 2
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