864 research outputs found

    Grocery distribution with multi-compartment vehicles

    Get PDF

    The commodity-split multi-compartment capacitated arc routing problem

    Get PDF
    The purpose of this paper is to develop a data-driven matheuristic for the Commodity-Split Multi-Compartment Capacitated Arc Routing Problem (CSMC-CARP). This problem arises in curbside waste collection, where there are different recyclable waste types called fractions. The CSMC-CARP is defined on an undirected graph with a limited heterogeneous fleet of multi-compartment vehicle types based at a depot, where each compartment's capacity can vary depending on the waste fraction assigned to it and on the compression factor of that fraction in that vehicle type. The aim is to determine a set of least-cost routes starting and ending at the depot, such that the demand of each edge for each waste fraction is collected exactly once by one vehicle, without violating the capacity of any compartment. The CSMC-CARP consists of three decision levels: selecting the number of vehicles of each type, assigning waste fractions to the compartments of each selected vehicle, and routing the vehicles. Our three-phase algorithm decomposes the problem into incomplete solution representations and heuristically solves one or more decision levels at a time. The first phase selects a subset of attractive compartment assignments from all assignments of all vehicle types. The second phase solves the CSMC-CARP with an unlimited fleet of the selected assignments. This is done by our C-split tour splitting algorithm, which can simultaneously split a giant tour of required edges into feasible routes while making decisions on the fractions that are collected by each route. The third phase selects the set of best routes servicing all fractions of all required edges without exceeding the number of vehicles available of each type. The algorithm is applied to real-life instances arising from recyclable waste collection operations in Denmark, with graph sizes up to 6,149 nodes and 3,797 required edges, the waste sorted in three to six fractions, and four to six vehicle types with one to four compartments. Computational results show that the generated solutions favor combining different fractions together in vehicles with higher numbers of compartments, and that the algorithm adapts well to the characteristics of the data, in terms of the graph, vehicle types, degree of sorting, and to skewness in demand among waste fractions.</p

    The commodity-split multi-compartment capacitated arc routing problem

    Get PDF
    The purpose of this paper is to develop a data-driven matheuristic for the Commodity-Split Multi-Compartment Capacitated Arc Routing Problem (CSMC-CARP). This problem arises in curbside waste collection, where there are different recyclable waste types called fractions. The CSMC-CARP is defined on an undirected graph with a limited heterogeneous fleet of multi-compartment vehicle types based at a depot, where each compartment's capacity can vary depending on the waste fraction assigned to it and on the compression factor of that fraction in that vehicle type. The aim is to determine a set of least-cost routes starting and ending at the depot, such that the demand of each edge for each waste fraction is collected exactly once by one vehicle, without violating the capacity of any compartment. The CSMC-CARP consists of three decision levels: selecting the number of vehicles of each type, assigning waste fractions to the compartments of each selected vehicle, and routing the vehicles. Our three-phase algorithm decomposes the problem into incomplete solution representations and heuristically solves one or more decision levels at a time. The first phase selects a subset of attractive compartment assignments from all assignments of all vehicle types. The second phase solves the CSMC-CARP with an unlimited fleet of the selected assignments. This is done by our C-split tour splitting algorithm, which can simultaneously split a giant tour of required edges into feasible routes while making decisions on the fractions that are collected by each route. The third phase selects the set of best routes servicing all fractions of all required edges without exceeding the number of vehicles available of each type. The algorithm is applied to real-life instances arising from recyclable waste collection operations in Denmark, with graph sizes up to 6,149 nodes and 3,797 required edges, the waste sorted in three to six fractions, and four to six vehicle types with one to four compartments. Computational results show that the generated solutions favor combining different fractions together in vehicles with higher numbers of compartments, and that the algorithm adapts well to the characteristics of the data, in terms of the graph, vehicle types, degree of sorting, and to skewness in demand among waste fractions.</p

    Vehicle routing problems with drones equipped with multi-package payload compartments

    Get PDF
    The vehicle routing problem with drones (VRP-D) consists of designing combined truck-drone routes and schedules to serve a set of customers with specific requests and time constraints. In this paper, VRP-D is extended to include a fleet of drones equipped with multi-package payload compartments to serve more customers on a single trip. Moreover, a drone can return to a truck, different from the one from which it started, to swap its depleted battery and/or to pick up more packages. This problem, denoted as VRP-D equipped with multi-package payload compartments (VRP-D-MC), aims to maximize total profit. In this work, an adaptive multi-start simulated annealing (AMS-SA) metaheuristic algorithm is proposed to efficiently solve this problem. Experimental results show that the proposed algorithm outperforms the current state-of-the-art algorithms for VRP-D in terms of solution quality. Extensive analyses have been conducted to provide managerial insights. The analyses carried out show (i) the benefits of using drones equipped with different compartment configurations, (ii) the incremental total profit obtainable using a combined truck-drone fleet rather than a fleet of trucks, (iii) the benefit of swapping drone battery while picking up the items to deliver, and (iv) the impact of the packages load on the consumption energy of battery drone. It is also demonstrated that the different intensification and diversification mechanisms adopted improve the convergence of the traditional SA

    Optimizing the inventorying and distribution of chemical fluids: An innovative nested column generation approach

    Get PDF
    Vendor-managed-inventory is a successful business practices based on the cooperation between a supplier and its customers in which demand and inventory information from the customers are shared with the supplier. This practice is gaining popularity in the chemical industry and relies on the inventory-routing-problem, which integrates inventory management, vehicle routing, and delivery scheduling decisions. This one is a difficult combinatorial optimization problem both theoretically and practically. However, because of the large expenses involved in distribution and inventorying of chemical products, it is attractive to make use of optimization tools for exploiting as many degrees of freedom as possible with the goal of minimizing both distribution and inventorying costs. Consequently, we propose a nested column generation algorithm for solving an inventorying and distribution problem that models the delivery of several chemicals fluids. The approach is building on a column generation & incomplete branch-and-price algorithm in which for each delivery route, the delivery patterns of fluids are also determined by column generation. We detail the implementation and provide computational results for realistic test instances.Fil: Coccola, Mariana Evangelina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Mendez, Carlos Alberto. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; ArgentinaFil: Dondo, Rodolfo Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Desarrollo Tecnológico para la Industria Química. Universidad Nacional del Litoral. Instituto de Desarrollo Tecnológico para la Industria Química; Argentin
    corecore