
        

Citation for published version:
Zbib, H & Laporte, G 2020, 'The commodity-split multi-compartment capacitated arc routing problem',
Computers and Operations Research, vol. 122, 104994. https://doi.org/10.1016/j.cor.2020.104994

DOI:
10.1016/j.cor.2020.104994

Publication date:
2020

Document Version
Peer reviewed version

Link to publication

Publisher Rights
CC BY-NC-ND

University of Bath

Alternative formats
If you require this document in an alternative format, please contact:
openaccess@bath.ac.uk

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

Download date: 06. Jun. 2023

https://doi.org/10.1016/j.cor.2020.104994
https://doi.org/10.1016/j.cor.2020.104994
https://researchportal.bath.ac.uk/en/publications/3fabed8c-71e0-4381-90d5-179fc515a3bb


Hani Zbib
The Commodity-Split Multi-Compartment Capacitated Arc Routing Problem
Hani Zbib and Gilbert Laporte

Hani Zbib
PUBLISHED IN COMPUTERS & OPERATIONS RESEARCH
Volume 122
Pages 104994
Year 2020



The Commodity-Split Multi-Compartment Capacitated Arc
Routing Problem

Hani Zbiba,⇤, Gilbert Laportea

aCanada Research Chair in Distribution Management and CIRRELT, HEC Montréal, 3000 chemin de la
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Abstract

The purpose of this paper is to develop a data-driven matheuristic for the Commodity-Split Multi-

Compartment Capacitated Arc Routing Problem (CSMC-CARP). This problem arises in curbside

waste collection, where there are di↵erent recyclable waste types called fractions. The CSMC-CARP

is defined on an undirected graph with a limited heterogeneous fleet of multi-compartment vehicle

types based at a depot, where each compartment’s capacity can vary depending on the waste fraction

assigned to it and on the compression factor of that fraction in that vehicle type. The aim is to

determine a set of least-cost routes starting and ending at the depot, such that the demand of each

edge for each waste fraction is collected exactly once by one vehicle, without violating the capacity

of any compartment. The CSMC-CARP consists of three decision levels: selecting the number of

vehicles of each type, assigning waste fractions to the compartments of each selected vehicle, and

routing the vehicles. Our three-phase algorithm decomposes the problem into incomplete solution

representations and heuristically solves one or more decision levels at a time. The first phase selects

a subset of attractive compartment assignments from all assignments of all vehicle types. The second

phase solves the CSMC-CARP with an unlimited fleet of the selected assignments. This is done by

our C-split tour splitting algorithm, which can simultaneously split a giant tour of required edges

into feasible routes while making decisions on the fractions that are collected by each route. The

third phase selects the set of best routes servicing all fractions of all required edges without exceeding

the number of vehicles available of each type. The algorithm is applied to real-life instances arising

from recyclable waste collection operations in Denmark, with graph sizes up to 6,149 nodes and

3,797 required edges, the waste sorted in three to six fractions, and four to six vehicle types with one

to four compartments. Computational results show that the generated solutions favor combining

di↵erent fractions together in vehicles with higher numbers of compartments, and that the algorithm

adapts well to the characteristics of the data, in terms of the graph, vehicle types, degree of sorting,

and to skewness in demand among waste fractions.

Keywords: Arc routing; waste collection; commodity-split multi-compartment capacitated arc

routing problem; matheuristic; data-driven.

⇤Corresponding author at: Canada Research Chair in Distribution Management and CIRRELT, HEC Montréal,
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1. Introduction

The purpose of this paper is to develop a data-driven matheuristic for the Commodity-Split

Multi-Compartment Capacitated Arc Routing Problem (CSMC-CARP), a variant of the Capacitated

Arc Routing Problem (CARP) (Golden & Wong, 1981) arising in the curbside collection of recyclable

waste, among other applications. In curbside waste collection, di↵erent types of recyclables, called5

fractions, are collected from one or more bins located at the households. Typical fractions include

general waste, organic waste, plastic, metal, glass, and paper.

Local authorities such as municipalities, towns, villages, or counties are responsible for the design

and planning of waste collection at the tactical and operational levels (Ghiani et al., 2014). They

make decisions on the organizational aspects of collection, the types and numbers of waste fractions10

to be collected, the types of collection vehicles and bins used, and undertake the capacity planning of

the vehicles and bins (Bing et al., 2016). Most often, curbside collection is organized at the street

level, where all households on the same street are serviced by the same vehicle. Such an operational

decision is attractive from the citizens’ point of view since it means that all neighboring households

on the same street are serviced together, and is attractive for the vehicles’ operator since servicing15

full street segments at a time is more convenient than servicing single households on di↵erent streets.

One possible way to model curbside waste collection is to use a node routing representation by

considering each household as a node with a positive demand for at least one waste fraction. However,

the organization of the collection at street level and the requirement of collecting all households on

the same street contiguously by the same vehicle make an arc routing representation better suited20

to model the problem. In the arc routing representation, each street is modeled as a link and the

demands of all households on that street are aggregated on the link. Moreover, by modeling the

problem as an arc routing problem, the size of the graph is highly reduced compared with that of

the node routing representation. For example, if the collection area included 100 streets with on

average 10 households per street, the graph in the node routing representation would have 1,00025

nodes needing collection, while the arc routing representation would have only 100 links needing

collection.

Depending on the curbside collection policy followed by the municipalities, the underlying

mathematical model varies. If they opt for a collection policy with single-compartment vehicles, the

resulting problem is a CARP, which is solved independently for each waste fraction. Alternatively, if30

they opt for a collection policy with multi-compartment vehicles, the collection can be organized

according to one of two strategies. The first strategy consists of collecting all the bins of a household

by the same vehicle, the underlying problem being the No-Split Multi-Compartment CARP (NSMC-

CARP). The second strategy, which is the one considered in this paper, consists of allowing di↵erent

bins at one household to be collected by di↵erent vehicles, the underlying problem being the35

Commodity-Split Multi-Compartment CARP (CSMC-CARP). Further details on these problems and

on the waste collection applications motivating them can be found in Kiilerich & Wøhlk (2018).

The former strategy is attractive from the citizens’ point of view, where they are visited by only

one vehicle at every collection period. However, with the goal of an increased degree of recycling of

household waste, and considering the skewness in the amount of waste produced for each fraction,40
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collecting all bins of a household by the same vehicle would result in a poor skewed packing of the

di↵erent compartments, and hence requiring a higher number of collection routes than by single

compartments (Zbib & Wøhlk, 2019). Additionally, with highly ambitious sustainability goals of

recycling up to seven fractions at the household, the vehicular technology that allows the collection

of that many fractions in di↵erent compartments of the same vehicle with a compression mechanism45

for each compartment, does not yet exist, and even if it did, would require an even higher number of

routes as the compartments would be relatively small. Moreover, most municipalities do not own a

homogeneous fleet of collection vehicles, and end up purchasing a small number of new vehicles over

time when needed. This leads to a heterogeneous vehicle fleet in the type and number of vehicles,

and in the number of compartments of each vehicle.50

Hence, our study of the CSMC-CARP is motivated by its ability to model a collection strategy

that better organizes the collection of recyclables. It targets the issue of skewness of the amount of

waste at the households by making better decisions on which fractions to be collected together, and

hence better packing the vehicles’ compartments. It also represents more realistically the composition

of municipal waste collections fleets, while aiming at a good utilization of these fleets.55

The CSMC-CARP is defined on an undirected graph. We consider a limited heterogeneous

fleet of single- and multi-compartment vehicle types available at a depot, with a varying number of

compartments. The aim is to compute a set of least-cost routes that start and end at the depot,

so that the demand of a required edge for each waste fraction is collected exactly once by the

compartments of one vehicle collecting that fraction in at least one of its compartments, without60

violating the compartment capacities of any vehicle, or violating the availability of each vehicle type.

If an edge is serviced by a vehicle, then all the fractions collected on that edge have to be collected by

that vehicle, and partial collection of fractions is not allowed. This is due to the fact that from the

point of view of the operator, it is more convenient to collect all the fractions a vehicle is collecting in

its compartments from all households on the same route. Moreover, a compression factor is associated65

with each waste fraction and each vehicle type. That is, depending on the fraction assigned to a

vehicle compartment, that fraction is compressed by its specific factor, leading to a fraction-dependent

compartment capacity after compression. The compression factor is dependent on the nature of

the waste fraction, on its final processing purpose, and on the technological specifications of the

compression mechanism in the vehicle. For example, glass should not be compressed too much as to70

avoid its breaking into shards, which would be problematic in its handling at the treatment facility,

while general waste can be highly compressed since it is destined for incineration.

1.1. Literature review

While the CARP has been extensively studied (Hertz et al., 2000; Lacomme et al., 2004; Prins

et al., 2009; Santos et al., 2010; Luiz Usberti et al., 2013; Bartolini et al., 2013; Prins, 2014; Belenguer75

et al., 2014; Muyldermans & Pang, 2014; Chen et al., 2016; Vidal, 2017; Wøhlk & Laporte, 2018),

to the best of our knowledge, Muyldermans & Pang (2010a) are the only authors to have studied

the CSMC-CARP. They considered an unlimited homogeneous fleet of vehicles with a predefined

compartment capacity for each fraction needing collection, and allowed each fraction from the same

edge to be collected by di↵erent vehicles. They used a guided local search heuristic with the aim80
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of comparing the routing cost of co-collection by multi-compartment vehicles to that of separate

collection by single-compartment vehicles. Similarly, only a few papers have been devoted to the

NSMC-CARP. Zbib (2019) applied a multi-move chain descent heuristic to large-scale real-life Danish

instances This heuristic was used by Zbib & Wøhlk (2019) to conduct a comparative analysis of

di↵erent curbside waste collection systems in Denmark.85

The Commodity-Split Multi-Compartment Capacitated Vehicle Routing Problem (CSMC-CVRP),

the node routing counterpart of the CSMC-CARP, has received more attention. The multi-

compartment CVRP was first studied in the context of the distribution of gasoline (van der Bruggen

et al., 1995; Avella et al., 2004). Most available solution methods are heuristics, due to the complexity

of the CSMC-CVRP and the size of its solution space as opposed to that of the CVRP, even under90

a homogeneous unlimited fleet (El Fallahi et al., 2008; Wang et al., 2014). El Fallahi et al. (2008)

considered a variant of the CSMC-CVRP in the context of the distribution of farm animal feed

with an unlimited homogeneous fleet, the commodities being preassigned to compartments, but

allowing for di↵erent commodities of the same node to be collected by di↵erent vehicles. They solved

the problem through a memetic algorithm and tabu search based on the splitting of chromosomes95

into feasible routes. Muyldermans & Pang (2010b) studied the CSMC-CVRP with an unlimited

homogeneous fleet of vehicles with a predefined compartment capacity for each fraction, and similarly

to Muyldermans & Pang (2010a), again used a guided local search heuristic to solve the problem and

compare co-collection with single collection. A mathematical model for the fixed fleet homogeneous

fleet CSMC-CVRP was provided by Derigs et al. (2011), who used di↵erent metaheuristics to solve100

the problem. Wang et al. (2014) studied the CSMC-CVRP with a limited heterogeneous fleet, and

used a reactive guided tabu search heuristic to solve it. Finally, a variant of the CSMC-CVRP with

flexible compartment sizes was studied in the context of the collection of colored glass waste by Henke

et al. (2015) and was solved by variable neighborhood search. Some works apply exact methods

such as branch-and-price for the CSMC-CVRP (Mirzaei & Wøhlk, 2019), as well as branch-and-cut105

(Archetti et al., 2014) and branch-and-price-and-cut (Archetti et al., 2015) for the CSMC-CVRP

with flexible compartment sizes and split deliveries. However, these algorithms can only solve small

instances with up to 50 customers and four commodities to optimality, the largest instance containing

only 100 customers.

To the best of our knowledge, neither the CSMC-CARP with compression factors and commodity-110

dependent compartment capacities nor its node routing counterpart have ever been investigated, and

our work aims to fill this gap.

1.2. Scientific contribution and organization of this paper

The CSMC-CARP with a limited heterogeneous fleet and commodity-dependent compartment

capacities consists of three decision levels: selecting the number of vehicles of each type to use in115

the solution, assigning waste fractions to the compartments of each selected vehicle, and routing the

vehicles. Our solution strategy consists of solving the CSMC-CARP by tackling each of these three

decision levels either separately, or two at a time in a three-phase algorithm.

The first phase selects a subset of attractive compartment assignments from all possible com-

partment assignments with su�cient capacities to cover the total demand of all required edges for120
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each waste fraction, where a compartment assignment is the assignment of waste fractions to the

compartments of a vehicle type. The selection of this subset is driven by the instance data, notably

the characteristics of the graph, the vehicle types, and the number of fractions.

The second phase is a routing phase that takes the selected assignments as an input and solves

the CSMC-CARP with an unlimited vehicle fleet, where each selected assignment is considered as a125

new vehicle type with unlimited availability. This phase consists of iteratively generating an ordered

tour of all required edges in the graph, which is split into feasible routes serviced by the di↵erent

assignments, while ensuring that all waste fractions of all required edges are included in one and

only one route. One of our main scientific contributions is the C-split tour splitting algorithm which

decomposes a giant tour into feasible least-cost routes while determining the waste fractions assigned130

to each route.

Finally, the last phase takes as input the pool of all routes obtained in the routing phase,

determines whether any of the assignments of each vehicle type can feasibly service each route,

and chooses a subset of least-cost routes to collect all waste fractions of all required edges, while

respecting the available number of each vehicle type.135

The algorithm is run on the large-scale benchmark instances for the CSMC-CARP of Kiilerich &

Wøhlk (2018), which are obtained from real-life waste collection data of six Danish counties. We

consider graph sizes that vary between 26 and 6,149 nodes, and between 19 and 3,797 required edges,

and a sorting of the waste in three, four, or six recyclable fractions. The types of vehicles vary

between two to six, and the number of compartments varies between one and four.140

The remainder of the paper is structured as follows: Section 2 formally describes the CSMC-CARP

and the notation, Section 3 presents our solution strategy, Section 4 the computational experiments,

and our conclusions follow in Section 5.

2. Formal problem description and notations

The CSMC-CARP is defined on an undirected graph G = (N , E), where N is the set of nodes145

and E is the set of edges. A specific node v0 2 N serves as the depot. A traversal cost ce > 0 is

associated with every edge e 2 E , which is independent of whether the edge is being serviced or

deadheaded. Let F be the set of waste fractions that need to be collected, with |F| > 1 and Er ✓ E

being the set of required edges. We call the degree of sorting the number of fractions |F| that the

waste is sorted in. For each edge e 2 Er and each waste fraction f 2 F is associated a non-negative150

demand qf
e
� 0, with

P
f2F qf

e
> 0. We also denote by E

f

r
= {e 2 Er : qf

e
> 0} the subset of

required edges with a positive demand for waste fraction f 2 F . A limited heterogeneous fleet of

multi-compartment vehicles are based at the depot. Let K be the set of vehicle types that form the

fleet, and let bk be the number of vehicles of each type k 2 K, each having a set Mk of compartments,

with |M
k
|  |F|. We denote by M̄ = max

k2K

�
|M

k
|
 
the maximum number of compartments over all155

vehicle types. Each compartment m 2M
k has a capacity Qmk. With each waste fraction f 2 F and

each type k 2 K is associated a compression factor �fk: if the waste fraction f 2 F is collected by

any of the compartments of a vehicle of type k 2 K, the total demand collected of f by the vehicle is
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compressed by �fk. The parameter Qfmk = �fkQmk is referred to as the compressed capacity of

f 2 F if assigned to m 2M
k, k 2 K (i.e. the capacity after factoring in the compression factor).160

The objective of the CSMC-CARP is to determine a set of least-cost routes that start and end

at the depot, such that the totality of the demand of a required edge for each waste fraction is

collected exactly once by the compartments of one vehicle collecting that fraction in at least one of

its compartments, without violating the capacity of any compartment, or the number of available

vehicles. While the problem allows the split of the fractions of an edge among di↵erent vehicles,165

all fractions collected by a vehicle servicing that edge have to be collected at the same time in

that vehicle. Since |M
k
|  |F|, 8k 2 K, and the number of vehicles is limited, the solution space

includes decisions on the number of selected vehicles of each type, the assignment of fractions to the

compartments of these vehicles, and the routing of the selected vehicles.

We use the term compartment assignment to refer to the assignment of a waste fraction f 2 F170

to each compartment m 2 M
k of vehicle type k 2 K that respects the compressed capacities

of the compartments. More formally, a compartment assignment s of a vehicle type k 2 K is

a vector of dimension |M
k
| whose components are waste fractions. For example, (1, 2, 1, 4) is a

possible assignment of a vehicle k 2 K with |M
k
| = 4, and |F| = 6, where fraction 1 is collected in

compartments 1 and 3, fraction 2 in compartment 2, and fraction 4 in compartment 4. Fractions 3, 5,175

and 6 are not collected by this vehicle.

Note that if the same waste fraction is assigned to more than one compartment of the same vehicle,

the total capacity of the vehicle for that waste fraction is considered to be the total capacity of the

compartments collecting it. Moreover, while it is guaranteed that qf
e
 max

k2K,m2Mk

�
Qfmk

 
, 8e 2

Er, f 2 F , there typically exists some edges whose demand for a certain fraction exceeds the180

compressed compartment capacity of one or more compartments of some vehicle types.

To simplify the presentation of our solution strategy, we have made two modeling assumptions

that may not hold under all real-life conditions. First, even though we consider real-life data from

six counties in Denmark ranging from rural to urban, for simplicity we model all instances of the

problem on undirected graphs. This representation is highly appropriate for rural areas which mostly185

contain two-way streets, and which constitute most of Denmark. However, urban areas which often

contain one-way streets are better represented with mixed graphs. Second, we assume that there

is no distinction between the service cost and deadhead cost of an edge. This assumption holds

when considering the cost as being the distance traveled by each vehicle. However, when considering

service time versus deadhead time, it does not hold anymore since service time changes according190

to the number of waste fractions collected by the vehicle. In this case, the service time depends on

the assignment of fractions to compartments, and varies according to the number of waste fractions

collected by the vehicle. That is, the service time is calculated as the deadhead time plus the total

time it would take to collect one fraction from all households on a street multiplied by the total

number of waste fractions collected by the vehicle. Nevertheless, our solution strategy can easily be195

extended to handle mixed graphs and compartment-dependent service times. We briefly point out

how this can be done wherever applicable in the remainder of this paper.
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3. Solution strategy

As mentioned, the CSMC-CARP is characterized by three decision levels: selecting the number

of vehicles of each type to use, assigning fractions to the compartments of the selected vehicles, and200

creating feasible routes for the selected assigned vehicles to collect the di↵erent waste fractions of all

required edges.

In the presence of one waste fraction (|F | = 1), the CSMC-CARP reduces to the Heterogeneous

Fixed Fleet Arc Routing Problem, which is the arc routing counterpart of the Heterogeneous Fixed

Fleet Vehicle Routing Problem (HFFVRP), introduced by Taillard (1999). The HFFVRP is NP-hard205

and has a higher computational complexity than the CVRP due to the fact that the solution space is

much more constrained, giving rise to more infeasibilities during the search space (Taillard, 1999;

Prins, 2009; Koç et al., 2016). For example, Prins (2009) presented a tour-splitting algorithm for

the HFFVRP whose best time complexity is O
�
n|K||Er|

|K|�, where n is the number of arcs in the

auxiliary splitting graph. This time complexity is much higher than that of the tour splitting210

algorithm proposed for the CVRP or for the CARP (Prins et al., 2009), whose time complexity is

O
�
|Er|

2
�
. Moreover, the author also mentions that the choice of the initial giant tour to be split in

the HFFVRP plays a much more important role than in the CVRP, where some giant tours may not

be feasibly split using the available fleet. This is due to the fact that splitting the giant tour results

in a set of routes of which some are poorly packed. Hence the number of routes needed to cover all215

edges may exceed the number of vehicles available.

Since the CSMC-CARP considers both commodity-split multi-compartment routing and a hetero-

geneous limited fleet, its complexity and solution space are much larger than those of the CSMC-CARP

with an unlimited fleet, and of the HFFARP studied separately, making any solution approach that

simultaneously tackles its di↵erent decision levels combinatorially prohibitive. One solution strategy220

is to decompose the problem into incomplete solution representations, which are then used to heuris-

tically solve one or more decision sets at a time. This helps reduce the scope of the heuristic search

to the solution space and hence reduce the complexity of the di↵erent subproblems yielded by the

decomposition.

AssignmenWs
selecWion phase

DePaQdV

VeKLcOe W\SeV

SXbVeW RI 
cRPSaUWPeQW¬
aVVLJQPeQWV

RoXWing phase

PRRO RI 
URXWeV RoXWes and Yehicles

selecWion phase

BeVW 
CSMC-CARP
¬VROXWLRQ IRXQd

Figure 1: Overview of the algorithm.

We decompose the CSMC-CARP into three subproblems that are solved sequentially in a three-225

phase heuristic in which part or all of the solutions of the subproblem solved in a given phase

constitute the input of the subsequent phase (see Fig. 1). The assignments selection phase takes as

input the demands of all required edges for all waste fractions, and the number available of each

vehicle type. It iteratively solves a selection of compartment assignments subproblem which consists

of selecting, among all possible compartment assignments of all vehicle types, a diversified subset230

of assignments that can service the total demand for each waste fraction, while not exceeding the
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availability of each vehicle type. The output of this phase is a subset of attractive compartment

assignments that is driven by the characteristics of the graph, the vehicle types, and the number

of fractions. This subset is then given as an input to the routing phase, which iteratively solves

a CSMC-CARP with an unlimited fleet of heterogeneous vehicle types, where each compartment235

assignment obtained in the first phase is treated as a new vehicle type with an unbounded number of

vehicles available. The output of each iteration is a full feasible solution of the subproblem, with

the routes in the solution added to a pool of routes. This pool is then given to the routes and

vehicles selection phase. This final phase determines for each route in the pool whether more than one

compartment assignment of any vehicle type is able to service it, and gives the set of route-vehicle240

type pairs as an input to a set partitioning subproblem. The objective of this subproblem is to

determine a least-cost subset of routes that collect each waste fraction of each required edge, while

not exceeding the available number of each vehicle type. The final solution of the set partitioning

subproblem corresponds to the best found CSMC-CARP solution.

The remainder of this section presents the details of the three-phases. Section 3.1 describes the245

assignments selection phase, Section 3.2 describes the routing phase, while Section 3.3 describes the

routes and vehicles selection phase.

3.1. Assignments selection phase

The rationale behind the assignments selection phase is to choose a subset of attractive compart-

ment assignments among the large number of possible assignments for each vehicle type. Given a250

vehicle type k 2 K with |M
k
| compartments, the total number of possible assignments can be obtained

by computing |M
k
| permutations with repetition out of |F| waste fractions, which corresponds to

|F|
|Mk|. While this number is manageable for a degree of sorting of |F| = 3, and |M

k
| = 3 (27

assignments), the number of possible assignments becomes way too large to consider entirely when

|F| = 6 and |M
k
| = 4 (1,296 assignments). In fact, for the largest vehicle data instance with |K| = 6,255

|F| = 6, and M̄ = 4, the number of possible vehicle type-compartment assignment combinations

is
P

k2K |F|
|Mk| = 1, 806 possible decisions (see Table 1). Therefore, only considering a smaller

subset of compartment assignments yields a smaller decision space, while ensuring that the selected

assignments are attractive.

An attractive subset of assignments is one that is diverse both in the combination of fractions260

serviced by each assignment and in its vehicle types. The subset is obtained by generating di↵erent

subsets of assignments that minimize the number of vehicles used, while ensuring that the total

compressed capacity of compartments collecting each waste fraction is at least as large as the total

demand for that fraction, and the number of vehicles available of each type is not exceeded. The

rationale for minimizing the total number of vehicles is that good solutions to the CSMC-CARP265

should favor a smaller number of vehicles used, and whose compartments have large compressed

capacities capable of servicing a significant number of edges in the same route.

These subsets can be generated by solving the selection of compartment assignments subproblem.

Here we present the notations and definitions of the subproblem, while (1)–(4) define its mathematical

model:270
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Sk set of all possible assignments of waste fractions f 2 F to the

compartments Mk of vehicle type k 2 K, with |Sk
| = |F|

|Mk|;

S̄ final subset of attractive assignments, with S̄ ✓
S

k2K Sk;

�k
s

dummy cost associated with each assignment s 2 Sk, k 2 K;

afm
s

=

8
>>><

>>>:

1 if waste fraction f 2 F is assigned to compartment m 2M
k

in assignment s 2 Sk;

0 otherwise;

Qf

s
total compressed capacity of waste fraction f 2 F in assignment s 2 Sk,

k 2 K, with Qf

s
=
P

m2Mk afms Qfmk;

xk

s
non-negative integer variable corresponding to the number of selected

vehicles of type k 2 K with assignment s 2 Sk.

minimize
X

k2K

X

s2Sk

�k
s
xk

s
(1)

subject to
X

s2Sk

xk

s
 bk k 2 K (2)

X

k2K

X

s2Sk

Qf

s
xk

s
�

X

e2Ef
r

qf
e

f 2 F (3)

xk

s
� 0 and integer s 2 Sk, k 2 K. (4)

The objective function (1) minimizes the total cost of compartment assignments selected over the

set of all possible assignments of all vehicle types. Constraints (2) are vehicle type constraints which

ensure that the total number of vehicles of type k 2 K selected does not exceed the total number bk

of vehicles available of that type. Constraints (3) are waste fraction constraints which ensure that275

the total compressed capacity of all compartments collecting fraction f 2 F is su�cient to cover

the total demand of all required edges e 2 E
f

r
. Finally, constraints (4) define the domains of the

variables. Table 1 presents the number of variables, number of vehicle constraints, and number of

waste fraction constraints for the largest vehicle data instance for the di↵erent degrees of sorting into

three, four, and six waste fractions respectively.280

Table 1: Characteristics of the selection of compartment assignment subproblem for the largest vehicle file for
di↵erent degrees of sorting.

Number of waste fractions 3 4 6

Number of variables 84 420 1,806
Number of vehicle constraints 6 6 6
Number of fraction constraints 3 4 6

Algorithm 1 presents the steps of the assignments selection phase, the output of the phase being

the subset of attractive assignments S̄ ✓
S

k2K Sk. The set S̄ is obtained by iteratively solving

the selection of assignments subproblem with updated dummy costs for a number of iterations �0

(determined in a tuning phase) in order to obtain di↵erent subsets of assignments. Moreover, the
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final constitution of S̄ is data dependent, i.e. it is driven by the characteristics of the graph, the285

vehicle types, and the number of fractions.

Algorithm 1 Assignments selection phase.

Require: Qf

s
, qf

e
, �fk, 8s 2 Sk, k 2 K, f 2 F , e 2 Er

1: Calculate �̄f and q̄f , 8f 2 F

2: H = ;
3: for i = 1 to |F|� 1 do
4: find

�
f 2 F \H : q̄f = maxh2F\H

�
q̄h
  

5: iterationCount = 0
6: while iterationCount  bq̄f�0c do
7: Run the selection of compartment assignments subproblem on F \H
8: Add all s, xk

s
> 0 to S̄

9: Update the dummy costs �k
s
as in (7)–(8)

10: end while
11: H = H [ {f}
12: end for
13: return S̄

We start by calculating the average compression factor �̄f , 8f 2 F over all vehicle types (eq. 5),

and use the �̄f values to calculate an approximation of the average share q̄f , 8f 2 F that the total

compressed demand for a waste fraction will occupy in the vehicles from the total compressed demand

of all fractions (eq. 6). We use q̄f in order to identify the waste fractions from most dominant in290

terms of total demand to least dominant. The subproblem is then solved for bq̄f�0c iterations, after

which the currently dominant fraction is removed from F , the next dominant fraction is identified,

and the subproblem is solved again for bq̄f�0c iterations. This process is repeated until only two

fractions remain. The rationale behind eliminating certain fractions in later iterations is that if a

fraction highly dominates the others, then the subset of assignments obtained will include many295

assignments with that fraction, and very few assignments combining the other fractions. Moreover,

intuitively speaking, those fractions that are more or less equally dominant are more likely to be

paired together in a vehicle as the packing of the vehicle would be more balanced. However, in

order to obtain a su�ciently large number of assignments with the more dominant fractions, we set

the number of iterations for the solution of the subproblem proportional to the dominance of the300

fractions:

�̄f =

P
k2K �

fk

|K|
, f 2 F (5)

q̄f =

P
e2Ef

r
qf
e
�̄f

P
f2F

P
e2Ef

r
qfe �̄f

, f 2 F . (6)

The iterative process for the solution of the subproblem starts by considering all possible

compartment assignments as being equally attractive (i.e. having a cost �k
s
= 1) in the first iteration,

and penalizes some assignments in subsequent iterations by increasing their cost. At the end of

each iteration, all s 2
S

k2K Sk, xk

s
> 0 are added to the set S̄. The cost penalization is done in305
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order to favor new subsets of compartment assignments that may initially be less attractive than the

previously selected assignments, but are still attractive for the sake of diversification. Diversifying

the types of vehicles selected as well as the combinations of fractions in the selected assignments is

necessary due to the limitations imposed by the number of available vehicles of each type. With this

aim in mind, the update of all the �k
s
costs takes place under the following two conditions:310

if xk

u
> 0, u 2 S̄, then �k

s
= �k

s
+ 1, s 62 S̄, k 2 K; (7)

if s 2 S̄, then �k
s
= M, where M is a large number. (8)

The cost update in (7) increases by one the cost of every assignment s /2 S̄ that has not yet

been selected for any assignment u 2 S̄ that has the same vehicle type. This ensures that if many

assignments of the same vehicle type are selected, that vehicle type becomes less and less attractive,

allowing for other vehicle types to be selected. The cost update in (8) sets the cost of already selected

assignments s 2 S̄ to a su�ciently large value M, making them attractive under the sole condition315

that their reinclusion is needed to ensure feasibility at that iteration.

3.2. Routing phase

Even after obtaining the subset S̄ of attractive compartment assignments, which leads to a

reduced search space of the CSMC-CARP with a limited heterogeneous vehicle fleet, the search

space is still too large to allow the simultaneous handling of the routing and the vehicle selection320

decisions. Therefore, in the routing phase, the vehicle availability constraints are relaxed, and

routes are generated for the CSMC-CARP under the assumption that each of the assignments in

S̄ is a new vehicle type with unlimited availability. The aim of the routing phase is to iteratively

create full solutions to the CMSC-CARP with an unlimited heterogeneous fleet of vehicle types

corresponding to the compartment assignment in S̄, by simultaneously assigning the required edges325

to the compartments of di↵erent assignments in S̄, and creating routes for each used compartment

assignment.

The general framework of the routing phase is given in Algorithm 2. Each iteration of this phase

starts by creating a giant tour, which is an ordering of all the required edges Er in the graph. We

create giant tours using two di↵erent procedures, detailed in Section 3.2.2. The number of giant330

tours created �1 is determined in the tuning phase. Each giant tour in Er is then iteratively split into

feasible routes at the waste fractions level (i.e. in the set Ef

r
) by the use of the C-split tour splitting

algorithm (CSTSA), presented in Section 3.2.5. At every iteration of the CSTSA, the set of obtained

routes is added to the pool R of routes identified so far, while ensuring that no duplicate routes exist

in R, and all routes in R are unique. For the sake of diversity, we apply a set of local search moves335

for the Rural Postman Problem (RPP), the switch and shorten moves of Hertz et al. (2000), on the

giant tour, and then reapply the CSTSA on the post-moves giant tour.

This iterative process for each giant tour is bounded by two criteria: a maximum run time (in

seconds) 60|Er|2|F|

�1�2
, which is dependent on the size of the graph and on the degree of sorting, and a

maximum number of routes generated per giant tour ↵|F|
�3

�1
, which is dependent on the degree of340
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Algorithm 2 Routing phase.

Require: S̄, G = (N , E), F
1: for ! = 1 to �1 do
2: Create giant tour !
3: while runT ime  maxRunTime and numOfRoutes  maxNumOfRoutes do
4: Run the CSTSA on !
5: Apply a set of local search moves on !
6: Run the CSTSA on !
7: end while

8: end forreturn R

sorting and on the average number ↵ of routes needed (where �1,�2,�3 are parameters determined

in a tuning phase). The value of ↵ is obtained by considering the average number of vehicles needed

to service all waste fractions in the assignments selection phase (i.e. in iteration i = 1 of lines 3–10

in Algorithm 1). The final output of the routing phase is the pool of all unique routes R obtained

from all CSTSA iterations performed during the routing phase, without any knowledge of the vehicle345

type servicing each route.

3.2.1. Solution representation

The wide use of the tour splitting algorithm as subprocedures in several algorithms for the CARP

and the CVRP is justified by the fact that once the subset of decisions on the order of edges is

predetermined in a giant tour, the optimal splitting of that giant tour into feasible routes reduces350

to solving a shortest path problem on an auxiliary directed acyclic graph. Each edge in the giant

tour is represented as a node in the auxiliary graph, and all feasible CARP subroutes capable of

servicing subsequences of the edges in the order they appear in the giant tour are represented as arcs

(Prins et al., 2009). However, in the case of the CSMC-CARP with a heterogeneous vehicle fleet,

the solution representations of both the giant tour and its corresponding auxiliary graph are not as355

intuitive.

El Fallahi et al. (2008) present a tour splitting algorithm for the CSMC-CVRP with a homogeneous

fleet of unlimited vehicles, where the assignment of fractions to compartments is fixed and known

before hand. They encode the giant tour as an explicit ordering of customer node-fraction pairs

(v, f), with |F ||N | elements in the giant tour, N being the number of customer nodes. For example,360

if |F| = 2 and |N | = 5, then a giant tour has 10 node-fraction pairs, and one possible ordering is

((v1, 1), (v1, 2), (v2, 1), (v2, 2), (v3, 1), (v4, 1), (v5, 1), (v3, 2), (v4, 2), (v5, 2)).

The corresponding auxiliary graph is a directed acyclic graph representing all feasible subroutes

of the giant tour respecting the capacity of each compartment in the vehicle. Computing an

optimal splitting of the giant tour reduces to solving a shortest path problem on the auxiliary365

graph, as for the CARP. While this solution representation is attractive with a homogeneous fleet

with preassigned compartments, it is less attractive with a heterogeneous fleet of non-identical

compartment assignments and given the fact that a vehicle has to collect from an edge all fractions

it collects in its compartments. This pitfall is due to the encoding of the giant tour as an ordering of

node-fraction pairs.370
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Figure 2: An example with |F| = 2 and |Er| = 5 of the auxiliary splitting graph for the CSMC-CARP using
the solution representation of El Fallahi et al. (2008).

For clarity of comparison with our problem, we consider in the following example the arc routing

version of the problem of El Fallahi et al. (2008). In an arc routing setting, the giant tour is formed

by all required edge-fraction pairs, the number of possible elements in the giant tour being |F||Er|.

Note that while the corresponding auxiliary graph is the same in both problems, the subtle di↵erence

in the giant tour representation between the arc routing version and the node routing version is that375

in the former case, there are two orientations of the edge of each edge-fraction pair, while in the

latter case there is only one orientation for each node-fraction pair.

Given that |F| = 2, |Er| = 5, one vehicle type with |M
k
| = 2, and the set of assignments

S̄ = {(1, 1) , (2, 2) , (1, 2) , (2, 1)}, one possible ordering of the 10 pairs is ((e1, 1), (e2, 1), (e3, 1), (e4, 1),

(e5, 1), (e1, 2), (e2, 2), (e3, 2), (e4, 2), (e5, 2)) (see Fig.2(a)). In this case, we can only form routes380

corresponding to assignment (1, 1) between the first five pairs, routes corresponding to assignment

(2, 2) between the last five pairs, and no routes corresponding to assignments (1, 2) and (2, 1). On the

other hand, if the ordering is ((e1, 1), (e1, 2), (e2, 1), (e2, 2), (e3, 1), (e3, 2), (e4, 1), (e4, 2), (e5, 1), (e5, 2))

(see Fig.2(b)), then all possible routes corresponding to the assignments (1, 2) and (2, 1) can be

formed between the two pairs of the same edge only, while routes corresponding to the assignments385

(1, 1) or (2, 2) can only be formed for every single edge-fraction pair. Therefore, the ordering of the

fraction in the giant tour highly a↵ects the routes that can be formed along the tour for di↵erent

assignments, where a more mixed ordering favors the assignments with many fractions, and a more

homogeneous ordering favors the assignments with few fractions.

In order to circumvent this problem, we consider an alternative solution representation. We390

encode the giant tour as an ordering of the edges in Er, and show that the optimal splitting of the

giant tour into feasible routes reduces to solving a min-cost multi-commodity flow problem on an

auxiliary directed acyclic multi-graph, which we define in Section 3.2.3. Note that the number of

possible giant tours is (|Er|)!, which is significantly lower than the number (|F||Er|)! of possible giant

tours in the solution representation of El Fallahi et al. (2008). Also note that our solution strategy is395

easily extendable to the CSMC-CARP defined on mixed graphs by considering one orientation in the

giant tour for directed arcs and two orientations for undirected edges.

3.2.2. Giant tour creation

In order to create the giant tours as ordering of the required edges Er in the graph, we use two

di↵erent giant tour creation procedures. The first consists of using the well-known Frederickson400
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heuristic for the RPP (Frederickson, 1979) which gives us a good quality RPP giant tour.

However, as has been mentioned previously, the choice of the initial giant tour plays a more

important role under a limited heterogeneous fleet of vehicles in the HFFVRP, as there could exist

no feasible splitting of the giant tour into a set of routes that satisfy the availability of vehicle types.

In fact, such a feature is more prominent in the CSMC-CARP with a limited heterogeneous fleet405

than in the HFFVRP as the packing component of the problem reduces to a multi-dimensional

multi-commodity bin packing problem with commodity-dependent bin capacities and a limited

number of bins, which is NP-hard and more di�cult to solve than the basic bin packing problem.

Moreover in our experiments, the splitting of the giant tour led to an infeasible solution to the

CSMC-CARP on instances whose characteristics present a clear dominance of a fraction over the410

others, as well as certain edges in proximity to each other with a very high demand for the dominant

fraction as opposed to the other fractions (for further details on the specificity of the data, see Section

4.1). Therefore, in addition to generating the RPP tour by means of the Frederickson heuristic, we

generate �1 � 1 tours by applying a tour creation procedure that takes into account the delicate

trade-o↵ between the routing and the complex packing components of the problem. This procedure415

aims to generate a more diversified set of giant tours, leading to a diverse pool of routes, a subset of

which are feasible to the CSMC-CARP. Algorithm 3 presents the giant tour creation procedure.

Algorithm 3 Giant tour creation procedure.

Require: G = (N , E), F
1: Calculate q̄e, 8e 2 Er

2: current node v  v0
3: Giant tour !  ;
4: ⇠ = average

e2Er

{q̄e}

5: while |!| < |Er| do
6: if 9e 2 Er, /2 ! adjacent to v such that q̄e  ⇠ then
7: Add to ! at random any adjacent e to v such that q̄e  ⇠
8: v  second node in e
9: ⇠ = average

e2!

{q̄e}

10: else if 9e 2 Er, /2 ! adjacent to v such that q̄e is minimal then
11: Add e to !
12: v  second node in e
13: ⇠ = average

e2!

{q̄e}

14: else
15: v  nearest node to v with at least one edge e 2 Er, /2 ! adjacent to v
16: end if
17: end while
18: return !

The procedure starts by calculating for each edge e 2 Er the ratio q̄e of the average compressed

demand qf
e
�̄f for every fraction f 2 F with a demand qf

e
, to the maximum compressed demand

over all fractions (eq. 9). The value of q̄e is both an indication of the skewness of the compressed420

demands among all fractions, and of the relative di↵erence between the average compressed demand

and the maximal compressed demand for the most dominant fraction. The rationale of the procedure
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is to keep track of the average q̄e of all edges added to the giant tour !, and only adding (when

possible) an edge e to ! which is nearest to the last edge added to ! such that q̄e  average
e2!

{q̄e}.

The procedure concludes when all edges e 2 Er have been added to !:425

q̄e =

average
f2F :qfe>0

�
qf
e
�̄f
 

max
f2F :qfe>0

n
qfe �̄f

o . (9)

3.2.3. Auxiliary graph

Let � be the set of all non-empty combinations (subsets) � of possible waste fractions, such that

� ✓ F ,� 2 �, |�| = 1, ..., |F|, with |�| =
P|F|

i=1

�|F|
i

�
= 2|F|

� 1. For every assignment s 2 S̄, there

exists a corresponding � 2 �. For example, the assignment (1, 3, 1) corresponds to � = {1, 3}, and

(1, 3, 1, 3) also corresponds to � = {1, 3}. Conversely, we denote by S� ✓ S̄ the subset of assignments430

in S̄ that correspond to the same � 2 �, with
S

�2� S� = S̄,
T

�2� S� = ;. An upper bound on the

number of combinations � 2 � with a corresponding set S� ✓
S

k2K Sk and a maximum number

M̄ of compartments is
PM̄

i=1

�M̄
i

�
= 2M̄ � 1. However, since the set S̄ is only a subset of

S
k2K Sk,

then the actual number of unique combinations corresponding to all assignments in S̄ will also be

significantly smaller than 2M̄ � 1.435

Given a giant tour as an ordering (1, ..., n) of the required edges in Er, we define G� = (N�,A�) as

its corresponding auxiliary graph. G� is a directed acyclic multi-graph defined as follows. The set N�

is an ordered set of nodes that contains a dummy node �0, as well as one node �i, i = 1, ..., n for each

edge given by the ordering (1, ..., n). Each arc (�i,�j)� 2 A�, i < j corresponds to a route starting

and ending at the depot node v0 2 N , and servicing the edges given by the ordering (i+ 1, ..., j),440

and also corresponds to a combination � 2 � of waste fractions, where at least one compartment

assignment s 2 S� is able to feasibly collect the demands on the route for all fractions f 2 � without

exceeding the compartment capacities Qf

s
, 8f 2 �. Figure 3 depicts an example of the auxiliary

graph G� for a giant tour of size n = 3, |F| = 2, |S̄| = 3, the capacities of the three compartment

assignments being (Q1
s
, Q2

s
) = {( 11, 0), (0, 12), (8, 8)}. The demands (q1

e
, q2

e
) for the two fractions of445

each edge are indicated at the top of each node in the auxiliary graph, and all feasible arcs (�i,�j)�

for every combination � are represented, the cumulative demand(s) of each arc being indicated on it.

Note that in the case where an edge has a demand qf
e
= 0 for a subset of the waste fractions in the

graph (such as edge �3 in the example with q23 = 0), for the sake of completeness the arc (�2,�3){2}

is included in the graph with a cumulative capacity for fraction 2 equal to 0. Such arcs are later450

dealt with in the post-optimization procedure in the third phase of our solution strategy.

With every arc (�i,�j)� is associated a cost ⇡ij corresponding to a least-cost route servicing the

edges given by the ordering (i+ 1, ..., j). Two parallel arcs between the same nodes �i,�j 2 N� have

the same cost ⇡ij , as the route cost is independent of the combination � associated with the arc

(�i,�j)�. Moreover, a binary |F |-dimensional vector a�
ij

is associated with each arc (�i,�j)�, such455

that af�
ij

= 1 if f 2 �, and af�
ij

= 0 otherwise. Between any two nodes �i,�j 2 N�, there can be

up to 2M̄ � 1 parallel arcs (�i,�j)� each with a unique � 2 �, assuming that the route associated

with (�i,�j)� is feasible for at least one s 2 S�, and that S̄ =
S

k2K Sk. Hence, the maximum
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Figure 3: The auxiliary graph G� for a giant tour with n = 3, |F| = 2, |S̄| = 3, and
(Q1

s, Q
2
s) = {( 11, 0), (0, 12), (8, 8)}.

number of arcs in the auxiliary graph is (2M̄ � 1)
P

n�1
i=0 (n� i). In practice, the number of feasible

arcs is smaller than (2M̄ � 1)
P

n�1
i=0 (n� i). In the example of Figure 3, � = {{1} , {2} , {1, 2}}, and460

therefore there could exist up to three parallel arcs between each two nodes in the auxiliary graph

each corresponding to one � (18 arcs in total). However, due to the capacity constraints, there exist

only 15 feasible arcs in the graph.

3.2.4. Min-cost multi-commodity flow problem

A feasible solution of the CSMC-CARP in the auxiliary graph G� is a subset of arcs (�i,�j)� 2 A�465

such that a fully connected path can be followed from �0 to �n for each waste fraction f 2 F , and

such that no two arcs overlap if they include the same waste fraction f 2 F in their respective �.

For example, a feasible solution in Figure 3 is
�
(�0,�2){1}, (�0,�2){2}, (�2,�3){1,2}

 
.

Finding an optimal splitting of the giant tour over the sets Ef

r
, 8f 2 F into feasible routes serviced

by the compartment assignments in S̄ amounts to solving a min-cost multi-commodity flow problem470

on the auxiliary directed acyclic multi-graph G� = (N�,A�) with |F| commodities, where only one

unit of flow of each commodity needs to be sent between the same source and sink nodes �0,�n 2 N�,

respectively. Moreover, if a unit of flow for any f 2 �, |�| > 1 is sent on arc (�i,�j)�, then a unit

of flow for each f 2 � also has to be sent along it. We present the mathematical model for this

problem. The y�
ij

variables are binary variables, where y�
ij

equals 1 if the arc (�i,�j)� is being used,475

0 otherwise:
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minimize
X

(�i,�j)�2A�

⇡ijy
�

ij
(10)

subject to
X

�j2N� :(�0,�j)�2A�

af�0j y
�

0j = 1 f 2 F (11)

X

�i2N� :(�i,�n)�2A�

af�
in
y�
in

= 1 f 2 F (12)

X

�j2N� :(�i,�j)�2A�

af�
ij
y�
ij
�

X

�j2N� :(�j ,�i)�2A�

af�
ji
y�
ji
= 0

�i 2 N� \ {�0,�n}, f 2 F (13)

y�
ij
2 {0, 1} f 2 F , (�i,�j)

�
2 A�. (14)

The objective function (10) minimizes the total cost of all arcs (�i,�j)� 2 A�. Constraints (11)

and (12) are flow balance constraints for each commodity f 2 F , respectively, for the first and last

node �0,�n 2 N�, indicating that one unit of each commodity should leave �0, and one unit of each

commodity should reach the last node �n. Constraints (13) are flow balance constraints for each480

commodity f 2 F and for every node �i 2 N�,�i 6= �0,�n, ensuring that the same number of units

of one commodity entering �i leave it. Finally, constraints (14) define the domains of the variables.

3.2.5. C-split tour splitting algorithm

The min-cost multi-commodity flow problem is NP-hard even if the auxiliary graph is an acyclic

digraph and the source and sink nodes are the same for all commodities (Even et al., 1976). Unlike in485

the tour splitting algorithm for the CARP where a polynomial-time dynamic programming algorithm

exists to solve the shortest path problem, no polynomial time algorithm is known to solve the min-cost

multi-commodity flow problem. Therefore, we suggest a dynamic programming strategy based on

labeling-setting to heuristically split the giant tour into feasible routes over the sets E
f

r
, 8f 2 F

without creating the full auxiliary graph G� = (N�,A�). The algorithm is pseudo-polynomial490

in the number |F| of waste fractions. We denote by g(z,F) a feasible solution to the min-cost

multi-commodity flow problem, corresponding to a feasible split of the giant tour over the sets

E
f

r
, 8f 2 F .

The intuition behind the C-split tour splitting algorithm stems from the fact that any combination

� 2 �, |�| > 1 can be obtained from the concatenation of a finite number of pairs of disjoint495

combinations also in �, whose cardinalities are smaller than |�|, and that form disjoint partitions

of �. That is, for every � 2 �, there exists a finite set ⇤(�) of pairs of combinations such that

⇤(�) =
n
{�i,�j} : �i,�j 2 �,�i [ �j = �,�i \ �j = ;

o
. For example, the set ⇤(�) corresponding to

the combination � = {1, 2, 3} is ⇤(�) =
n
{1, 2} [ {3} , {1, 3} [ {2} , {2, 3} [ {1}

o
. Table 2 presents,

for every |�| = 2, ..., 6, and for all possible combinations pairs {�i,�j} 2 ⇤(�), the cardinality of500

�i and �j as (|�i|, |�j |) and the total number of pairs |⇤(�)|. For example, in order to form a

combination with cardinality |�| = 3 such as � = {1, 2, 3} , the pair of concatenated combinations

can only have a cardinality |�i| = 2 and |�j | = 1, and there are three possible pairs that can be
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concatenated together, i.e. |⇤(�)| = 3. On the other hand, forming a combination with cardinality

|�| = 4 such as � = {1, 2, 3, 4} can be done in two ways. The first way is to concatenate pairs with505

cardinality |�i| = 2 and |�j | = 2 such as {�i,�j} = {{1, 2} , {3, 4}} or {�i,�j} = {{1, 4} , {3, 2}},

with a total of three possible concatenations. The second way is to concatenate pairs with cardinality

|�i| = 3 and |�j | = 1 such as {�i,�j} = {{1, 2, 3} , {4}} or {�i,�j} = {{1, 2, 4} , {3}}, with a total of

four possible concatenations, giving that |⇤(�)| = 7.

Table 2: Characteristics of ⇤(�).

|�| Number of fractions |⇤(�)|

2 (1,1) 1
3 (1,2) 3
4 (1,3) (2,2) 7
5 (1,4) (2,3) 15
6 (1,5) (2,4) (3,3) 31

In the same spirit, a full solution g(z,F) of the min-cost multi-commodity flow problem can510

be obtained from the concatenation of any pair of partial solutions g(z,�i), g(z,�j) : {�i,�j} 2

⇤(F), obtained from splitting the giant tour over all subsets E
f

r
, 8f 2 �i and E

f

r
, 8f 2 �j . More

generally, any solution g(z,�), |�| > 1 can be obtained from the concatenation of the partial

solutions g(z,�i), g(z,�j), 8 {�i,�j} 2 ⇤(�). Figure 4 shows one possible way of obtaining solution

g(z,F = {1, 2, 3, 4, 5, 6}) by recursively concatenating pairs of partial solutions g(z,�i), g(z,�j). For515

example, the partial solution g(z, {2, 4}) can be obtained by solving the min-cost multi-commodity

flow-problem for fractions 2 and 4 together, or as a concatenation of the problem solved for fraction 2

alone and fraction 4 alone. On the other hand, in order to obtain the solution g(z, {2, 3, 4, 5, 6}), the

partial solution g(z, {2, 4}) can be concatenated with the partial solution g(z, {3, 5, 6}) in order to

form a solution to the problem that includes fractions 2, 3, 4, 5, and 6. Finally, the full solution to520

the problem g(z,F = {1, 2, 3, 4, 5, 6}) can be obtained by combining the solutions g(z, {2, 3, 4, 5, 6})

and g(z, {1}). Note that the example shows one way of obtaining g(z,F), as there exist other pairs

that could be concatenated together to form it, such as g(z, {1, 2, 3}) and g(z, {4, 5, 6}), for example.

J(],^2`) J(],^4`)

J(],^2,4`)

[...@

J(],^3,5,�`)

J(],^2,3,4,5,�`) J(],^1`)

J(],^1,2,3,4,5,�`)

Figure 4: Example of a way to obtain g(z,F = {1, 2, 3, 4, 5, 6}).

Given that the CSTSA is a label-setting algorithm, we define a set of cost labels Li with cardinality

|�| for every node �i 2 N�. For a given t = 1, ..., |�|, there exists a one-to-one relationship between525
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the label lt
i
2 Li and every combination � 2 �, given by the function �(t) = �. We denote by

��1(�) = t the reverse function of �. Table 3 presents the number of labels of size |�(t)| for each of

degree of sorting in three, four, and six waste fractions. For example, with |F| = 3, each node requires

seven labels in total, three labels for the three combinations {1}, {2}, and {1} with cardinality

|�(t)| = 1, three labels for the three combinations {1, 2}, {1, 3}, and {2, 3} with cardinality |�(t)| = 2,530

and one label for the combination {1, 2, 3} with cardinality |�(t)| = 3.

Table 3: Number of labels corresponding to combinations of sizes 1 to |F|, for each degree of sorting.

|�(t)|
Number of fractions
3 4 6

1 3 4 6
2 3 6 15
3 1 4 20
4 - 1 15
5 - - 6
6 - - 1

|�| 7 15 63

In order to both e�ciently calculate the cost ⇡ij of routes in the graph G = (N , E) and evaluate

the capacities of the routes, we precalculate partial distance and load labels for subsequences of edges

in the ordering (1, ..., n) as in Vidal (2016). For any subsequence of edges with ordering (1, ..., i),

Di is the partial cost of the subsequence such that Di = c1 +
P

i

j=2 (dj�1,j + cj), with dj�1,j being535

the shortest path cost between the end node of the edge at position j � 1 in the ordering and the

start node of the edge at position j. Similarly, W f

i
is the partial load of the subsequence for fraction

f 2 F , such that W f

i
=
P

i

j=1 q
f

j
, 8f 2 F ,�i 2 N�. Finally, for any label lt

i
, t = 1, ..., |�|,�i 2 N�,

let p (t, i) be the external predecessor node,  (t, i) be the internal predecessor-pair of combinations

{�h,�u} 2 ⇤(�(t)), and ✓ (t, i) be the cost predecessor-pair of combinations {�h,�u} 2 ⇤(�(t)).540

The CSTSA is described in Algorithm 4. The first step is to precalculate in O(n) time the partial

cost and load labels Di and W f

i
, and initialize all the labels Li and predecessors p (t, i) , ✓ (t, i) , (t, i),

i = 0, ..., n, t = 1, ..., |�|. Then, looping through each node �i 2 N�, i = 0, ..., n once, the CSTSA

first updates the labels of Li, i 6= 0 internally, and once all the labels of �i have been updated, it

extends them to subsequent nodes �j , where i < j  n and updates the labels of Lj . The internal545

label update procedure consists of determining for the subsequence (1, ..., i) if there exists, for each

partial solution g(z,�), 8� 2 �, |�| > 1,��1(�) = t, a better label value for label lt
i
obtained from the

concatenation of the pair of partial solutions g(z,�i), g(z,�j), 8 {�i,�j} 2 ⇤(�). The label extension

procedure for the labels Lj consists of determining for each � 2 � whether the cost of the partial

solution g(z,�) for the subsequence (1, ..., j) can be improved by reaching node �j from node �i.550

Once the algorithm has looped through all the nodes in N�, it outputs all partial solutions

g(z,�), 8� 2 � obtained by the algorithm corresponding to the best found splitting of the giant tour

into feasible routes servicing the subsets Ef

r
, 8f 2 �. This is done by outputting the labels lt

n
, t =

1, ..., |�| of the last node �n 2 N�, and the predecessors p (t, n) , ✓ (t, n), and  (t, n) , t = 1, ..., |�|,

which are then used to rebuild each partial solution g(z,�),��1(�) = t and obtain the routes in that555

solution.

19



Algorithm 4 C-Split tour splitting algorithm.

Require: �, ⇤(�), S�, 8� 2 �

1: Precalculate Di,W
f

i
, i = 0, ..., n, 8f 2 F

2: Initialize the labels L0 to 0
3: Initialize the labels Li, i = 1, ..., n to 1
4: Initialize the predecessors p (t, i) , ✓ (t, i) , (t, i) to ; for i = 0, ..., n, t = 1, ..., |�|
5: for i = 0 to n do
6: Update the internal labels Li, i 6= 0
7: Extend the labels Li to the labels Lj of subsequent nodes with i < j  n
8: end for
9: return lt

n
, p (t, n) , ✓ (t, n) , (t, n) , t = 1, ..., |�|

The rationale behind including the routes from all partial solutions g(z,�), 8� 2 � is to diversify

the pool of routes R in terms of fraction combinations due to the limited number of vehicles available

with a larger number of compartments. Under an unlimited fleet of vehicles, the final g(z,F) solution

would always correspond to a feasible solution to split the giant tour. Such a solution would favor,560

when possible, servicing M̄ fractions at the same time in its routes. However, since the availability

of vehicles with M̄ compartments is limited in our case, the obtained g(z,F) solution would most

probably be infeasible. Therefore, there is a need to include routes servicing one fraction up to |F|

fractions, and considering all possible combinations of fractions that exist in S̄.

Algorithm 5 details the internal label update procedure. For a given �i, the initial value of565

each lt
i
2 Li corresponds to the best found cost of the partial solution g(z,�(t)) for the ordering

(1, ..., i), by reaching �i from a preceding node. The procedure determines whether there exists

a better solution g(z,�(t)), |�(t)| > 1 that can be obtained from the concatenation of pairs of

solutions g(z,�h), g(z,�u), {�h,�u} 2 ⇤�(t). This is done by comparing the current label lt
i
to the

the least-sum of the labels l�
�1(�h)

i
+ l�

�1(�u)
i

, 8 {�h,�u} 2 ⇤(�(t)). If the sum is smaller than the570

value of the current label, this label updated with the sum, and the pair {�h,�u} is set as the internal

predecessor of label lt
i
. The labels are updated in increasing order of |�(t)| in order to guarantee that

all l�
�1(�h)

i
, l�

�1(�u)
i

, 8 {�h,�u} 2 ⇤(�(t)) have already been updated.

Algorithm 5 Internal label update procedure.

Require: i, Li, �, ⇤(�(t))
1: for t = |F|+ 1 to |�| do

2: if lt
i
> min

{�h,�u}2⇤(�(t))

n
l�

�1(�h)
i

+ l�
�1(�u)

i

o
then

3: lt
i
= min

{�h,�u}2⇤(�(t))

n
l�

�1(�h)
i

+ l�
�1(�u)

i

o

4:  (t, i) = {�h,�u}
5: end if
6: end for

Algorithm 6 details the extension of the labels Li to the labels of subsequent nodes. The label

extension loops through every node �j , j = i + 1, ..., n, and evaluates whether the value of each575

label lt
j
for t = 1, ..., |�| is larger than the value of the label lt

i
, plus the value of the cost function
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Cost(t, i, j) (eq. 15). If there exists at least one assignment s 2 S�(t) for which the partial load

di↵erence W f

j
�W f

i
does not exceed the compressed capacities Qf

s
, 8f 2 �(t), then the route given

by the ordering (i+ 1, ..., j) and servicing all f 2 �(t) is feasible, and the function outputs the route

cost ⇡ij . However, if there exists no assignment s 2 S�(t) for which the route is feasible, the cost580

function outputs the minimum cost among all combinations {�h,�u} 2 ⇤(�(t)) of feasible routes

given by the ordering (i+ 1, ..., j) and servicing the fractions of the subsets �h,�u ⇢ �(t). This is

done by recursively calling the cost function for both ��1(�h) and ��1(�u) on i, j and summing their

outputs. If lt
j
> lt

i
+Cost(t, i, j), then the label lt

j
is updated, the node �i is set as the predecessor of

the label t of node �j , and the cost predecessor-pair is updated if Cost(t, i, j) > ⇡ij . The procedure585

terminates prematurely at j < n if no assignment s 2 S�(t) for t = 1, ..., |�| is feasibly able to service

the route (i+ 1, ..., j).

Cost(t, i, j) =

8
><

>:

⇡ij = dv0,i+1 +Dj �Di+1 + ci+1 + dj,v0 9 s 2 S�(t) : W
f
j �W f

i  Qf
s , 8f 2 �(t)

min
{�h,�u}2⇤(�(t))

�
Cost

�
��1(�h), i, j

�
+ Cost

�
��1(�u), i, j

� 
otherwise

(15)

Finally, for the sake of diversifying the pool of routes R (looking ahead to the routes and vehicles

selection phase), whenever the CSTSA is applied to split a giant tour, we run modified versions of

the CSTSA subsequently in order to produce a pool R that is diverse in route sizes, compartment590

assignments, and in vehicle types. This is achieved by modifying the route feasibility criteria in the

cost function Cost(t, i, j) and (similarly line 8 of the label extension procedure (Alg. 6)) as follows,

where ⌘ varies between 2 and |M̄|:

• 9 s 2 S�(t) : W
f

j
�W f

i
 Qf

s
, |Mk

|  ⌘, 8f 2 �(t);

• W f

j
�W f

i
 Qf

s
, 8s 2 S�(t), |M

k
|  ⌘, 8f 2 �(t).595

Algorithm 6 Label extension procedure.

Require: i, Li, �, S�, 8� 2 �
1: for j = i+ 1 to n do
2: for t = 1 to |�| do
3: if lt

j
> lt

i
+ Cost(t, i, j) then

4: lt
j
= lt

i
+ Cost(t, i, j)

5: p (t, j) = i
6: if Cost(t, i, j) > ⇡ij then
7: ✓ (t, j) 2 argmin

{�h,�u}2⇤(�(t))

�
Cost

�
��1(�h), i, j

�
+ Cost

�
��1(�u), i, j

� 

8: end if
9: end if

10: end for
11: if @ s 2 S�(t) : W

f

j
�W f

i
 Qf

s
, 8f 2 �(t), t = 1, ..., |�| then

12: Terminate the extension of the labels Li

13: end if
14: end for
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In order to determine the time complexity of the CSTSA, let ⇤ =
P2|F|�1

t=1 |⇤(�(t))|. The main

loop of the CSTSA (lines 4–7 in Algorithm 4) iterates through the nodes of N� in O(n). One iteration

of the internal label update procedure (Algorithm 5) runs in O
�
⇤2|F|�, while one iteration of the

label extension procedure runs in O
�
n⇤2|F|�. This gives a total run time of O

�
n2⇤2|F|� for the

CSTSA. Table 4 presents the value of ⇤ varying with the degree of sorting. Note that in practice,600

the run time of the label extension phase is not of the order of O(n), but of the order of the length

of the largest feasible route for any � 2 �.

Note that our solution strategy easily extends to the CSMC-CARP with compartment-dependent

service times by di↵erentiating service cost and deadhead cost, defining a cost ⇡�

ij
in the auxiliary

graph for every arc (�i,�j)� and combination �, and extending the cost function Cost(t, i, j) (eq.605

15) to include service time.

Table 4: ⇤ for the di↵erent degrees of sorting.

t
Number of fractions
3 4 6

⇤ 6 25 301

3.2.6. Numerical example

To illustrate the algorithm, we use a numerical example with |Er| = 5, |F| = 3,M̄ = 2, and

� = {{1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}}. Table 5 presents the numerical characteristics of each

required edge and Table 6 the compressed capacities Qf

s
, 8f 2 �, s 2 S�. The best solution g(z,F)610

found has a total cost of 127 and is represented on the auxiliary graph G� depicted in Figure 5, with

the combination � and the cost ⇡ij indicated on each arc (�i,�j)� in the solution. The final label

values and all label predecessors for each �i 2 N� are given in Table 7.

Table 5: Numerical characteristics of each
edge.

Node �1 �2 �3 �4 �5

q1i 5 1 2 4 2
q2i 4 1 3 6 5
q3i 3 2 5 4 1
ci 3 4 2 5 7
dv0,i 6 5 3 5 9
di�1,i 4 7 3 8 6
di,v0 10 2 4 6 5

Table 6: Compressed compartment capacities

Qf
s .

� S�

{1} {(5, 0, 0) , (6, 0, 0)}
{2} {(0, 6, 0) , (0, 8, 0)}
{3} {(0, 0, 5)}
{1, 2} {(4, 5, 0) , (6, 6, 0)}
{1, 3} {(5, 0, 6)}
{2, 3} {(0, 6, 5)}
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Figure 5: Final solution g(z,F) of the numerical example represented on G� .

Table 7: Numerical details of the CSTSA.

�0 �1 �2 �3 �4 �5

Label {1} 0 19 22 31 46 59
Label {2} 0 19 22 29 45 66
Label {3} 0 19 22 31 47 59
Label {1, 2} 0 19 22 37 53 74
Label {1, 3} 0 19 30 39 55 76
Label {2, 3} 0 19 22 31 47 68
Label {1, 2, 3} 0 38 44 62 93 127

External predecessor {1} - 0 0 2 2 3
External predecessor {2} - 0 0 0 3 4
External predecessor {3} - 0 0 2 3 3
External predecessor {1, 2} - 0 0 1 3 4
External predecessor {1, 3} - 0 1 2 3 4
External predecessor {2, 3} - 0 0 2 3 4
External predecessor {1, 2, 3} - 0 0 2 3 4

Internal predecessor {1, 2} - - - - - -
Internal predecessor {1, 3} - - - - - -
Internal predecessor {2, 3} - - - - - -
Internal predecessor {1, 2, 3} - - - - {2, 3}, {1} {2, 3}, {1}

Cost predecessor {1, 2} - {1, 2} {1, 2} {1, 2} {1, 2} {1, 2}
Cost predecessor {1, 3} - {1, 3} {1, 3} {1, 3} {1, 3} {1, 3}
Cost predecessor {2, 3} - {2, 3} {2, 3}, {2, 3} {2, 3} {2, 3}

Cost predecessor {1, 2, 3} - All comb.
{2, 3}, {1} or

All comb. {2, 3}, {1} All comb.{1, 2}, {3}

3.3. Routes and vehicles selection phase

After the pool of unique routes R has been obtained, it is given as an input to the routes and615

vehicles selection phase. The aim of this final phase is to find a subset R⇤
✓ R of least-cost routes

that service every waste fraction of every required edge, while satisfying the availability of each

vehicle type. This is done by solving a set partitioning problem over the set of all required edge-waste

fraction pairs. We present the notation and the mathematical model:

⇡r cost of route r 2 R;

aef
r

=

8
<

:
1 if route r 2 R services f 2 F of edge e 2 E

f

r
;

0 otherwise;

�k
r

binary variable. �k
r
equals 1 if r 2 R is collected by vehicle type k 2 K,

0 otherwise.

620
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minimize
X

r2R

X

k2K
⇡r�

k

r
(16)

subject to
X

r2R

X

k2K
aef
r
�k
r
� 1 e 2 E

f

r
, f 2 F (17)

X

r2R
�k
r
 bk k 2 K (18)

�k
r
2 {0, 1} k 2 K, r 2 R. (19)

The objective function (16) minimizes the total cost of all route-vehicle type pairs. Constraints

(17) ensure that each waste fraction f 2 F of a required edge e 2 E
f

r
is included in at least one route.

Constraints (18) ensure that the total number of vehicles of each type k 2 K does not exceed the

total number available of that type. Constraints (19) define the domains of the variables.

Algorithm 7 details the routes and vehicles selection phase. The first step determines the set of625

vehicle types able to service each route. This is done by adding to the model, for each r 2 R, all

variables �k
r
corresponding to feasible route-vehicle type pairs r, k. Type k is paired with a route

r associated with � 2 � if there exists an assignment s 2 Sk, S̄ such that the total demands of

e 2 r, 8f 2 � respect the compartment capacities of s. Once all feasible route-vehicle type pairs

are found, the set partitioning model (16)–(19) is solved, returning the set of routes R⇤ of the best630

solution found.

Algorithm 7 Routes and vehicles selection phase.

Require: R, S�, 8� 2 �
1: for all r 2 R do
2: Add to model (16)–(19) variable �k

r
, 8s 2 S�, Sk such that

P
e2r

qf
e
 Qf

s
, 8f 2 �

3: end for
4: R

⇤
 best solution given by solving the set partitioning problem on all �k

r

5: Post-optimization of all routes r 2 R
⇤

6: return R
⇤

Constraints (17) in the set partitioning model were relaxed by allowing an edge-fraction pair

to appear in more than one route. This is due to the fact that we have not generated all possible

routes, and there is no guarantee that the pool R includes a subset of routes perfectly covering all

edge-fraction pairs. Moreover, even though every solution of the CSTSA is a full solution, there is635

also no guarantee that the routes of that solution can be assigned to vehicle types without violating

the availability of each vehicle type. Therefore, the final step of the algorithm is to post-optimize the

routes r 2 R
⇤. This is done by allowing one occurrence of each edge-fraction pair in the solution, and

replacing all other occurrences by shortest path distances between the subsequent and consequent

edges in the route. The same is undertaken for any edge e 2 r such that qf
e
= 0, 8f 2 �.640

4. Computational experiments

We now describe the instances we have used to perform our tests, before presenting our results.
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4.1. Data description

We have tested our algorithm on a subset of 63 CSMC-CARP instances taken from the set of

benchmark instances for the CSMC-CARP of Kiilerich & Wøhlk (2018). Each instance consists of a645

graph, a degree of sorting, a set of vehicle types. The subset consists of 21 graphs, with three degrees

of sorting in three, four, and six fractions (called B, D, and E in the instance files respectively),

and each graph-degree of sorting pair coupled with one vehicle file. The smallest graph contains

26 nodes, 33 edges, and 19 required edges, and the largest contains 6,149 nodes, 7,110 edges, and

3,797 required edges. The vehicle files vary between four to six vehicle types, with one to four650

compartments, and 16 to 160 total number of vehicles available. The instances are available at

http://www.optimization.dk/MC-CARP/.

Figure 6: Map of the six Danish counties with a zoom on Frederiksberg in the top right corner.

The instances are obtained from a real-life application of curbside recyclable waste collection in

Denmark. Table 8 provides the waste fractions of each degree of sorting at the source. A low degree

of sorting means that several fractions are combined together at the point of collection, whereas a655

higher degree of sorting corresponds to a finer classification of the waste.

The graphs and waste demands are based on real-life road networks from six di↵erent counties and

five municipal collaborators (see Fig. 6). The six counties are very dissimilar in their geographical

and demographical characteristics: Norddjurs (N), Syddjurs (S), and the two counties of Skanderborg
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and Odder (K), treated as one in our tests, are rural, Odense (O) is semi-urban, and Frederiksberg660

(F), located in central Copenhagen, is highly urban.

Table 8: Waste fractions composing each degree of sorting.

Degree of sorting General Organic Plastic Metal Glass Paper
3 General waste Mixed resources Paper
4 General waste Organic waste Mixed resources Paper
6 General waste Organic waste Plastic Metal Glass Paper

The dominance of the di↵erent waste fractions also varies among the di↵erent counties and the

degree of sorting. Tables 9 to 11 present, for each of the three degrees of sorting respectively, the

average per county of the average share from the total compressed capacity q̄f for each waste fraction

f 2 F . The di↵erent counties exhibit di↵erences in the average share of the di↵erent fractions. For665

example, it is apparent that in the urban (F) county, general waste is highly dominant over the other

fractions over all degrees of sorting. In contrast, the (N) county is the most balanced one, with paper

having a larger share than in other counties. Finally, the highly urban nature of the Frederiksberg

(F) instances (which is a commercially busy area of Copenhagen) showed a distinct specificity in the

size of general waste demand relative to the compartment sizes of the vehicles. To illustrate, Figure670

7 presents a box-plot comparison of the portion of a vehicle’s total compartments capacity that the

compressed demands for the general waste fraction would occupy in the vehicle, both for a graph

from the semi-urban area of Odense (O) and Frederiksberg (F), compared with the same vehicle type.

Most edges in the (O) graph occupy between 0% and 2% of the vehicle capacity, with only some

edges with large demands occupying up to 20% of the capacity. In contrast, most of the edges in the675

(F) graph would occupy 4% to 20% of the vehicle capacity, with a few edges accounting for up to

40% and 54% of the vehicle capacity. Hence, the packing component of the CSMC-CARP is more

predominant in the (F) graph than in the graphs of the other counties.

Table 9: Average shares q̄f for a degree of sorting in three fractions.

County General waste Mixed Resources Paper
F 70% 19% 11%
K 49% 41% 10%
N 40% 33% 27%
O 45% 37% 18%
S 47% 38% 15%

Table 10: Average shares q̄f for a degree of sorting in four fractions.

County General waste Organic waste Mixed resources Paper
F 62% 10% 17% 10%
K 30% 33% 30% 7%
N 26% 28% 26% 21%
O 28% 30% 28% 13%
S 29% 31% 29% 12%

26



Table 11: Average shares q̄f for a degree of sorting in five fractions.

County General waste Organic waste Glass Metal Plastic Paper
F 62% 10% 10% 4% 4% 10%
K 32% 35% 5% 5% 14% 8%
N 27% 29% 5% 5% 12% 23%
O 30% 32% 5% 5% 13% 14%
S 31% 33% 5% 5% 13% 12%
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50%
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Figure 7: Portion of the vehicle that edges in the Odense (O) and Frederiksberg (F) networks would occupy for
the general waste fraction.

4.2. Computational Results

The algorithm was implemented in C++ in MS Visual Studio Professional 2015, and we used680

CPLEX 12.9.0 to solve the mathematical models in the first and third phases. The algorithm was

executed on a VMware virtual machine with the following specs: two Intel E5-2683 v4 Broadwell

CPUs at 2.1Ghz with one core and 90GB of vRAM.

To tune the algorithm’s parameters, we considered the number of iterations �0 = |F|
2 in the

assignments selection phase. We also tried the values |F| and |F|
3
2 , but these proved to be too small685

to obtain a su�cient number of compartment assignments. On the other hand, a value of 2|F| did

not yield su�cient improvements to justify the higher run time. We also limited the time of each

CPLEX run of the selection of compartment assignments subproblem to 30 seconds, due to the fact

that in later iterations the model was reaching an optimality gap of less than 1% within the first 30

seconds, but took a long time to reach optimality.690

As for the parameters related to the routing phase (the number of giant tours �1, the maximum

run time �2, and the maximum number of routes �3 per iteration of the routing phase), the three

parameters are related and a↵ect each other. We have considered �1 = 10 giant tours, which was a

number of giant tours su�ciently high to allow a diversified pool of routes R while allowing enough

run time and a number of routes generated from the splitting of each giant tour. As for the maximum695

run time, we took �2 = 533, which allows a total run time for the routing phase of two hours for

every 1,000 required edges, and a degree of sorting of six, corresponding to 12 minutes per giant
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tour. This gives a maximum run time for the routing phase of 0.9|Er|, 1.8|Er|, and 7.2|Er| with a

sorting degree in three, four, and six fractions, respectively. We have also taken �3 = 600, thus

allowing a total maximum number of routes for the routing phase of 1, 800↵, 2, 400↵, and 3, 600↵,700

respectively, for the three degrees of sorting, where ↵ is the average number of vehicles needed to

service all the waste fractions in the assignments selection phase. Finally, we capped the maximum

number of routes to 100,000, as any number of routes higher than that was computationally heavy

for the set partitioning subproblem in the routes and vehicles selection phase. In fact, we set a time

limit of two hours on CPLEX for the set partitioning subproblem, which was enough to obtain the705

optimal solution to the subproblem in 65% of the instances, and a near-optimal solution in 35% of

the instances with the worst optimality gap being 0.495%.

We first illustrate our algorithm in Tables 12 and 13 on two instances for a degree sorting |F| = 6,

with both instances sharing the same vehicle file M4-1 with |K| = 6, |M̄| = 4,
P

k2K bk = 40, and

the vehicles having, respectively, two, four, three, two, three, and one compartments. The first graph710

O12 E has |N | = 761 and |Er| = 533 , and the second graph F11 E has |N | = 191 and |Er| = 174.

Table 12: Solution of graph O12 E and vehicle file M4-1.

Vehicle
type

|Mk| Fraction com-
bination

Compartments
assignments

Number
of routes

Route costs

0 2 {1, 2} (1, 2) 3 19180, 27264, 27590

1 4 {3, 6, 5, 4} (3, 6, 5, 4) 3 24793, 35336, 9591

1 4 {1, 3, 4} (1, 3, 1, 4) 2 49599, 22472

2 3 {2, 5, 6} (2, 5, 6) 3 38621, 12272, 22472

Out of 1,806 possible assignments, 298 (16.5%) were chosen in the assignments selection phase

for F11, and 191 (10.6%) for O12. The final solution for O12 contains 11 routes (28% of the total

number of available vehicles) and has a cost of 289,190. It only uses the first three types of vehicles,

with four distinct combinations, one compartments assignment for each combination, and multiple715

routes per assignment. On the other hand, the final solution for F11 contains 29 routes (73% of the

total number of available vehicles) and has a cost of 78,919. It uses all six types of vehicles, and nine

distinct combinations, some spanning multiple vehicle types and multiple vehicle assignments for

the same vehicle type. This helps illustrate how the algorithm adapts to the characteristics of each

graph, but also how the final solutions favored, when available, vehicles with many compartments720

over vehicles with fewer compartments.

Table A.1 in Appendix A provides the detailed results for each instance by reporting the best

solution found, the total run time (in minutes) of the algorithm and its di↵erent phases, the number

of routes in the solution, and the percentage of vehicles used from the total number available. Table

A.2 provides further details on the algorithm by reporting, for each instance, the number of total725

assignments in the instance, the percentage of assignments chosen
⇣

|S̄|
|
S

k2K Sk|

⌘
, the total number of

iterations the CSTSA was run, the size of the pool of routes R, and the number of route-vehicle

pairs given to the set partitioning model in the routes and vehicles selection phase.

In terms of computational run time, the algorithm ran in 0.25 second for the smallest graph and

degree of sorting, and in 11.8 hours for the largest graph with 3,797 required edges and the largest730
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Table 13: Solution of graph F11 E and vehicle file M4-1.

Vehicle
type

|Mk| Fraction com-
bination

Compartments
assignments

Number
of routes

Route costs

0 2 {1} (1, 1) 4 1549, 4049, 2509, 2037

0 2 {2, 6} (6, 2) 1 5753

1 4 {1, 6} (1, 6, 1, 1) 1 1607

1
(1, 1, 6, 2) 1 4311

4 {1, 2, 6} (2, 1, 1, 6) 2 2399, 3285
(1, 2, 1, 6) 1 3682

2 3 {3, 4, 5} (4, 3, 5) 1 3825
(4, 5, 3) 2 9463, 6738

2 3 {1, 6} (1, 6, 1) 1 1903

2 3 {1, 2, 6} (1, 6, 2) 1 2106

3 2 {1} (1, 1) 1 1045

3 2 {2, 3} (3, 2) 1 556

3 2 {2, 6} (2, 6) 2 2351, 3279

3 2 {4, 6} (4, 6) 1 2086

4 3 {1, 4} (4, 1, 1) 2 1471, 707

4 3 {1, 6} (6, 1, 1) 1 350

4 3 {3, 5} (5, 5, 3) 2 2086, 5223

5 1 {1} (1) 4 1503, 969, 961, 1116

degree of sorting. The selection of assignments phase ran between 0.03 seconds and 15.8 minutes,

the routing phase between 0.14 seconds and 9.3 hours, and the routes and vehicle selection phase

between 0.04 seconds and 2.1 hours. The first phase took on average 5% of the computational time,

the second phase 60%, and the third phase 35%. Moreover, every CSTSA iteration took on average

one second over all instances, 0.0013 second for the smallest instance, and 14 seconds for the largest735

instance. The number of assignments selected in the assignments selection phase varied between 16

to 406, with an average of 118, and the percentage of assignments selected varied between 5% and

61%, with an average of 28%. Looking at the percentage of assignments selected for each degree of

sorting, the average percentage of assignments selected decreases with an increased degree of sorting.

On average, 47%, 23%, and 16% assignments were selected respectively for a degree of sorting in740

three, four, and six. As for the solution characteristics, The number of routes used varied between

two and 130 vehicles, with on average 30 vehicles used. In terms of the utilization of vehicles from the

total number available, the lowest utilization was 12%, the average 53%, and the largest utilization

was 100%.

5. Conclusions745

We have developed a data-driven matheuristic for the Commodity-Split Multi-Compartment

Capacitated Arc Routing Problem with compression factors and a limited heterogeneous vehicle fleet.

The problem is real and is motivated by the application of curbside recyclable waste collection from

households. Due to the intricate combinatorial nature of the problem, which includes three di↵erent
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decision levels, our algorithm decomposes the problem into incomplete solution representations and750

heuristically solves one or more decision levels at a time. We have introduced the C-split tour splitting

algorithm, a novel algorithm that can simultaneously split a giant tour into feasible least-cost routes

while making decisions on the waste fractions that are serviced by each route. The algorithm was

tested on real-life waste collection instances from six counties in Denmark, exhibiting highly di↵erent

features. The graphs contain up to 6,149 nodes, 7,110 edges, out of which 3,797 are required. We755

considered three degree of sorting in three, four, and six waste fractions, four to six vehicle types,

with a number of compartments varying between one and four. The computational results have

shown that the algorithm yields solutions that favor combining di↵erent fractions together in vehicles

with a higher order of multiple compartment. Our algorithm also aptly adapts to the data, and is

driven by the characteristics of the graph, the vehicle types, and the degree of sorting. Moreover, it760

handles well any skewness in the demands of di↵erent waste fractions, where one or more fractions

dominate the others, be it in the total compressed demand share relative to the total compressed

demand, or with respect to the edge demands in a given graph. Finally, our solution strategy can

easily be extended to handle several variants of the CSMC-CARP, including an unlimited fleet of

homogeneous or heterogeneous vehicles, mixed and directed graphs, a node routing setting, and a765

di↵erentiation of the service cost and the deadhead cost.
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Appendix A. Detailed results

Table A.1: Detailed computational results for each instance.

Graph Vehicle
Instance characteristics

Cost
Run time (minutes)

Number
of routes

% of
vehicles
used

|N | |E| |Er| |F| |K| |M̄|
P
k2K

bk Algorithm Phase 1 Phase 2 Phase 3

F13 B M3-2 26 33 19 3 4 3 17 5012 0.004 0.001 0.002 0.001 6 35%
F13 D M3-1 26 33 19 4 4 4 17 3501 0.01 0.002 0.01 0.001 5 29%
F13 E M3-1 26 33 19 6 4 4 17 5012 0.5 0.3 0.2 0.005 4 24%
F12 B M4-2 80 110 72 3 6 3 40 18043 0.1 0.002 0.04 0.1 11 28%
F12 D M4-1 80 110 72 4 6 4 40 22156 0.8 0.03 0.2 0.5 12 30%
F12 E M4-1 80 110 72 6 6 4 40 23978 4.0 1.2 1.9 0.7 10 25%
O13 B M3-2 228 247 170 3 4 3 17 75834 0.2 0.001 0.1 0.01 3 18%
O13 D M3-1 228 247 170 4 4 4 17 51306 0.8 0.1 0.6 0.02 5 29%
O13 E M3-1 228 247 170 6 4 4 17 82953 3.7 0.7 2.8 0.2 7 41%
F11 B M4-2 191 267 174 3 6 3 40 55143 2.4 0.002 0.2 2.2 24 60%
F11 D M4-1 191 267 174 4 6 4 40 61871 122.1 0.8 1.1 120.0 27 68%
F11 E M4-1 191 267 174 6 6 4 40 78919 137.9 8.6 8.7 120.0 29 73%
S13 B M3-2 322 374 176 3 4 3 17 139720 0.2 0.0005 0.1 0.02 2 12%
S13 D M3-1 322 374 176 4 4 4 17 73480 0.7 0.003 0.6 0.01 2 12%
S13 E M3-1 322 374 176 6 4 4 17 140450 5.9 0.03 4.5 1.3 4 24%
K13 B M3-2 394 422 283 3 4 3 17 210000 0.6 0.001 0.5 0.1 7 41%
K13 D M3-1 394 422 283 4 4 4 17 249796 2.5 0.01 1.6 0.8 4 24%
K13 E M3-1 394 422 283 6 4 4 17 249378 7.0 0.2 6.6 0.2 4 24%
N13 B M2-1 454 502 366 3 4 3 16 163416 0.9 0.001 0.7 0.2 6 38%
N13 D M2-1 454 502 366 4 4 3 16 205292 2.0 0.005 1.7 0.2 8 50%
N13 E M2-1 454 502 366 6 4 3 16 296319 19.2 0.02 18.5 0.5 10 63%
F10 B M6-2 415 565 377 3 6 3 80 183235 120.9 0.01 0.8 120.0 51 64%
F10 D M6-1 415 565 377 4 6 4 80 197972 130.1 1.6 7.1 120.1 55 69%
F10 E M6-1 415 565 377 6 6 4 80 253297 148.5 10.7 16.1 120.1 63 79%
S12 B M3-2 755 866 407 3 4 3 17 289333 1.2 0.001 0.9 0.2 6 35%
S12 D M3-1 755 866 407 4 4 4 17 292671 3.6 0.3 3.1 0.2 9 53%
S12 E M3-1 755 866 407 6 4 4 17 329860 18.3 0.1 17.8 0.2 6 35%
O12 B M4-2 761 852 535 3 6 3 40 278915 2.1 0.002 1.7 0.3 8 20%
O12 D M4-1 761 852 535 4 6 4 40 291030 5.3 0.3 4.2 0.7 12 30%
O12 E M4-1 761 852 535 6 6 4 40 289190 33.7 6.9 25.8 0.7 11 28%
N12 B M4-2 930 1040 702 3 6 3 40 368642 3.9 0.001 2.1 1.7 11 28%
N12 D M4-1 930 1040 702 4 6 4 40 463004 7.9 0.5 6.7 0.6 12 30%
N12 E M4-1 930 1040 702 6 6 4 40 470756 58.3 5.0 52.0 0.6 13 33%
F1 B M8-2 812 1124 783 3 6 3 160 795748 123.6 0.003 3.0 120.0 106 66%
F1 D M8-1 812 1124 783 4 6 4 160 956357 139.2 2.4 14.6 120.1 130 81%
F1 E M8-1 812 1124 783 6 6 4 160 1102222 152.5 15.2 16.6 120.1 119 74%
K12 B M2-1 1132 1221 803 3 4 3 16 757737 4.5 0.001 4.1 0.3 11 69%
K12 D M2-1 1132 1221 803 4 4 3 16 1058062 12.5 0.01 11.0 1.3 16 100%
K12 E M2-1 1132 1221 803 6 4 3 16 1252638 79.2 0.04 78.3 0.3 10 63%
S11 B M4-2 1564 1805 961 3 6 3 40 640167 33.1 0.001 4.2 28.8 15 38%
S11 D M4-1 1564 1805 961 4 6 4 40 560414 20.8 0.3 19.7 0.5 13 33%
S11 E M4-1 1564 1805 961 6 6 4 40 769908 196.9 8.1 111.5 74.7 17 43%
N11 B M4-2 2142 2419 1606 3 6 3 40 949328 31.7 0.002 7.8 23.7 22 55%
N11 D M4-1 2142 2419 1606 4 6 4 40 1099173 32.8 1.5 26.8 3.9 26 65%
N11 E M4-1 2142 2419 1606 6 6 4 40 1452710 319.8 10.6 187.6 120.6 27 68%
O11 B M6-2 2822 3281 2132 3 6 3 80 1139040 16.4 0.5 11.8 3.7 36 45%
O11 D M6-1 2822 3281 2132 4 6 4 80 1369680 164.3 0.2 40.0 121.1 64 80%
O11 E M6-1 2822 3281 2132 6 6 4 80 1849913 310.9 15.1 167.2 122.6 65 81%
S10 B M5-2 3404 3921 2221 3 6 3 55 1693181 23.0 0.003 21.2 1.3 25 45%
S10 D M5-1 3404 3921 2221 4 6 4 55 1876793 166.2 1.7 71.7 90.2 37 67%
S10 E M5-1 3404 3921 2221 6 6 4 55 2206157 443.6 15.2 299.6 122.7 43 78%
K11 B M5-2 3114 3361 2281 3 6 3 55 1473116 38.2 0.001 20.9 16.9 32 58%
K11 D M5-1 3114 3361 2281 4 6 4 55 1756201 194.3 0.6 71.0 120.9 42 76%
K11 E M5-1 3114 3361 2281 6 6 4 55 1970267 456.7 14.1 315.4 122.7 46 84%
N10 B M5-2 3698 4187 2802 3 6 3 55 1784650 157.1 0.02 36.4 120.1 34 62%
N10 D M5-1 3698 4187 2802 4 6 4 55 2129745 195.1 0.5 71.3 121.2 45 82%
N10 E M5-1 3698 4187 2802 6 6 4 55 2916733 562.3 14.1 422.3 122.7 40 73%
K10 B M6-2 5102 5518 3744 3 6 3 80 2530588 51.9 0.004 46.9 4.2 44 55%
K10 D M6-1 5102 5518 3744 4 6 4 80 4894149 255.4 0.5 123.9 123.1 67 84%
K10 E M6-1 5102 5518 3744 6 6 4 80 3594284 592.2 15.4 442.7 125.6 80 100%
S1 B M6-2 6149 7110 3797 3 6 3 80 2605964 172.5 0.01 50.6 120.7 47 59%
S1 D M6-1 6149 7110 3797 4 6 4 80 6040069 256.7 1.9 125.2 123.2 78 98%
S1 E M6-1 6149 7110 3797 6 6 4 80 4094894 707.9 15.8 559.3 125.2 74 93%
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Table A.2: Algorithmic details for each instance.

Graph Vehicle Num. of assignments % of assignments CSTSA iterations |R| Route-vehicle pairs

F13 B M3-2 22 46% 100 365 1041
F13 D M3-1 36 11% 140 654 1330
F13 E M3-1 103 7% 112 1576 3364
F12 B M4-2 29 35% 100 1980 7932
F12 D M4-1 76 18% 140 4155 22474
F12 E M4-1 177 10% 89 6404 37204
O13 B M3-2 19 40% 100 707 2250
O13 D M3-1 47 14% 140 2458 10491
O13 E M3-1 106 7% 79 2929 7996
F11 B M4-2 45 54% 100 4573 27704
F11 D M4-1 107 25% 140 11456 72576
F11 E M4-1 298 17% 91 13842 98716
S13 B M3-2 16 33% 100 520 1451
S13 D M3-1 31 9% 140 1052 2648
S13 E M3-1 75 5% 127 2396 4440
K13 B M3-2 21 44% 100 808 2137
K13 D M3-1 39 11% 140 1689 5020
K13 E M3-1 92 6% 72 2195 4725
N13 B M2-1 21 44% 100 1134 2862
N13 D M2-1 36 36% 100 1897 5426
N13 E M2-1 105 36% 93 3872 14987
F10 B M6-2 44 52% 100 9530 38638
F10 D M6-1 112 27% 138 20980 117815
F10 E M6-1 329 18% 46 15362 107408
S12 B M3-2 27 56% 100 1431 5050
S12 D M3-1 47 14% 140 2477 10974
S12 E M3-1 117 8% 91 3860 9771
O12 B M4-2 26 31% 100 1651 6756
O12 D M4-1 69 16% 140 5090 28869
O12 E M4-1 191 11% 78 7379 34759
N12 B M4-2 29 35% 100 2275 8065
N12 D M4-1 69 16% 140 4711 26180
N12 E M4-1 195 11% 87 7572 37102
F1 B M8-2 48 57% 100 18583 72452
F1 D M8-1 133 32% 111 26846 114445
F1 E M8-1 406 22% 22 7080 45770
K12 B M2-1 26 54% 100 1595 6888
K12 D M2-1 44 44% 100 3448 9796
K12 E M2-1 111 38% 83 5431 19782
S11 B M4-2 28 33% 100 2297 10215
S11 D M4-1 76 18% 140 6848 36067
S11 E M4-1 204 11% 81 8561 43377
N11 B M4-2 37 44% 100 5253 23155
N11 D M4-1 102 24% 140 10027 66918
N11 E M4-1 286 16% 67 13721 92722
O11 B M6-2 51 61% 100 11554 73336
O11 D M6-1 101 24% 140 30118 170240
O11 E M6-1 386 21% 44 24516 211403
S10 B M5-2 45 54% 100 7666 49847
S10 D M5-1 113 27% 138 22129 143118
S10 E M5-1 344 19% 56 22120 165828
K11 B M5-2 42 50% 100 8682 47356
K11 D M5-1 109 26% 136 23738 146413
K11 E M5-1 363 20% 58 24969 189053
N10 B M5-2 36 43% 100 8141 34539
N10 D M5-1 105 25% 140 20312 132115
N10 E M5-1 335 19% 50 20569 170950
K10 B M6-2 47 56% 100 13678 91001
K10 D M6-1 112 27% 112 34802 225016
K10 E M6-1 381 21% 40 25026 220165
S1 B M6-2 50 60% 100 15434 106637
S1 D M6-1 131 31% 122 36634 299688
S1 E M6-1 387 21% 40 26090 241563
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