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Vehicle Routing Problem with Drones Equipped with Multi-

Package Payload Compartment  

Abstract 

The Vehicle Routing Problem with Drones (VRP-D) consists of designing combined trucks-

drones’ routes and schedules to serve a set of customers with specific requests and time constraints. 

In this paper, we extend the VRP-D by including a fleet of drones equipped with multi-package 

payload compartments to serve more customers on a single trip. Moreover, a drone can return to a 

different truck from the departure one to swap its depleted battery and/or to pick up more packages. 

The problem aims to maximize the total revenue. We denote this problem as VRP-D equipped with 

Multi-package payload Compartment (VRP-D-MC). We propose an Adaptive Multi-Start Simulated 

Annealing (AMS-SA) metaheuristic algorithm to efficiently solve it. Experimental results show that 

our algorithm outperforms the current state-of-the-art algorithms for the Vehicle Routing Problem 

with Drones (VRP-D) in terms of solution quality. Extensive analyses have been conducted to provide 

managerial insights. The analyses carried out show (i) the benefits of using drones equipped with 

different compartment configurations, (ii) the increment of the total revenue obtainable using a 

combined trucks-drones fleet respect to a fleet of trucks in terms of total revenue, (iii) the savings for 

allowing a return to a different truck, (iv) the benefit of swapping drone battery and pick up the items 

at the same time. Moreover, a sensitivity analysis is conducted to assess the impact of time window 

constraints on the solutions. We also show that our different intensification and diversification 

mechanisms improve the convergence of the traditional SA. 

Keywords: Vehicle Routing Problem with Drones, simulated annealing, multi payload compartments, 

multi start approach 

1. Introduction 

Unmanned aerial vehicles (UAVs), commonly known as drones, have been considered for numerous 

applications, including defense, territory monitoring, transportation and logistics, disaster relief, and 

farming (Chung et al., 2020), to name a few. In particular, the growing e-commerce market and the 

increasing demand for efficient last-mile logistics, along with the maturity of drones’ technologies, have 

promoted considerable efforts to conceptualize the use of drones to provide package delivery services. 

For example, Wing, a division of Alphabet, was launched in 2012 to offer small package delivery 

services using small drones. The company was among the first to receive Air Carrier certification from 

the Federal Aviation Administration (FAA) and has recently announced conducting more than 100,000 

flights across three continents. Similarly, in 2013, Amazon launched the project “Prime Air,” where the 

Manuscript (without Author Details) Click here to view linked References

https://wing.com/
https://www.editorialmanager.com/tre/viewRCResults.aspx?pdf=1&docID=9563&rev=0&fileID=142789&msid=a590fdaa-ca7d-4d08-a369-064e414e9c03
https://www.editorialmanager.com/tre/viewRCResults.aspx?pdf=1&docID=9563&rev=0&fileID=142789&msid=a590fdaa-ca7d-4d08-a369-064e414e9c03
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goal is to use drones to deliver light packages to customers within 30 minutes from the purchasing 

(Amazon, 2016). The company received the FAA approval in 2020 and tested many different vehicles 

designs and delivery mechanisms to find out the best configurations for delivery in various operating 

environments (FFA, 2020).  

A widely conceptualized delivery system integrates trucks and drones (e.g., the mothership system) 

to provide package delivery services. As FAA requires drones to stay within the pilot’s visual line of 

sight, trucks carry the packages and the drones to locations close to the customers’ addresses. Drones 

are then loaded with packages and dispatched to these addresses. A drone can make either a single 

delivery or multiple deliveries per dispatch. In both cases, while drones fly to deliver the package(s), the 

truck may also be traveling to fulfill some of the delivery tasks (e.g., delivering heavy packages). As a 

result, the truck may collect its drones at a location different from where they have been dispatched.  

This integrated truck-drone delivery problem is considered as a significant extension of the 

traditional Vehicle Routing Problem (VRP) (Murray and  Chu, 2015), which is commonly known in the 

literature as the Vehicle Routing Problem with Drone (VRP-D) (Wang et al., 2017). The problem 

consists into determining the optimal routes for the trucks and the drones to complete a list of required 

delivery services while minimizing the system's total operational cost (Poikonen et al., 2017). 

Consequently, extensive research effort has been devoted to formulating and efficiently solving the 

VRP-D problem and to capture many of its real-world aspects and operational constraints. Examples of 

these aspects/constraints include satisfying the customers’ time windows, the drones’ load carrying 

capacity and flying range, the length of the working shift for drivers, the truck-drone routing 

interdependence, to name a few.  

While a considerable portion of this research is devoted to study how drones serve multiple 

customers per dispatch, existing studies ignored some very important practical issues of the problem. 

For example, one crucial aspect is related to the drones’ payload compartment configuration to support 

multiple deliveries per dispatch (Liu et al., 2020, Poikonen and Golden, 2020). Designing the drones’ 

compartment involves: (a) maximizing the number of packages that a drone can carry considering the 

heterogeneity in their sizes and the drone’s maximum load-carrying capacity, and (b) eliminating the 

need for direct interaction with the end customers. A commonly suggested design is to equip the drone 

with multiple compartments of different sizes. Each compartment is filled with one package and opens 

automatically as the drone arrives at the package delivery address. As the drone compartment 

configuration significantly affects the operation efficiency, it should be explicitly integrated into 

modeling frameworks studying the truck-drone delivery systems.  

Another important aspect of this problem is the procedure to reload the drones and swap their 

depleted batteries. In many papers a simple policy is adopted, according to which,  drones are obliged 

return to the same truck from which there were initially dispatched (e.g., Wang et al., 2017; Sacramento 

et al., 2019; Kitjacharoenchai et al., 2020; Liu et al., 2020). A more flexible tactic allows the drones to 

return to any other truck in their vicinities. While the latter tactic provides more flexibility in the route 
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planning, it involves complex synchronization operations among trucks and the drones (Macrina et al., 

2020).          

A typical assumption in the existing VRP-D studies is that a drone can only make one delivery per 

trip. Our work aims to address a new drone delivery feature where drones are equipped with a multi-

package payload compartment. This new design implies that a drone can make multiple deliveries on 

the same trip. Another innovative aspect of our work is that a drone is allowed to meet another truck 

(different from the one it is launched) at a rendezvous location where the drones can not only swap the 

depleted battery, but also pick up additional packages (depending on the available capacity) and then 

continue their travel to visit more customer locations. Indeed, recent technological advancements have 

made the first assumption less relevant because newer drone models capable of carrying multiple 

customers’ packages simultaneously have been proposed and developed. The Vulcan UAV Airlift is 

equipped with a multi-compartment payload (with two compartments) and it can lift and move a load of 

about 30 kg (i.e., about 15kg per compartment). Motivated by this new operational mode of drones, we 

consider in this research the new problem features, which allow drones to carry more than one item, 

return any truck to recharge/swap the battery, and pick up other packages from the truck. Other examples 

of drones can be found in https://www.unmanned systems technology.com.  

 

Figure 1: Vulcan UAV Airlift (see https://filmora.wondershare.com/drones/top-heavy-lift-

drones.html) 

Finally, to deal with a problem as realistic as possible, an energy consumption function is also 

considered. This function takes into account the traditional elements like drone speed, mass, rotor, etc. 

(e.g., D’Andrea, 2014; Figliozzi, 2017; Stolaroff et al., 2018; Kirchstein, 2020). Despite this, we have 

considered some characteristics such as the energy consumption being depended on the current payload 

of the package by considering the resources during the fly.  

The resulting problem is denoted as the Vehicle Routing Problem with Drone equipped with multi-

packages payload Compartments (VRP-D-MC). To the best of our knowledge, this problem has not 

been addressed in the literature.  

The main contributions of this paper are as follows:  

i) First, we introduce the VRP-D-MC, which extends the traditional VRP-D of Wang et al. (2017) by 

considering the possibility for drones to carry more than one package at the same time, and to return 

https://filmora.wondershare.com/drones/top-heavy-lift-drones.html
https://filmora.wondershare.com/drones/top-heavy-lift-drones.html
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to a different vehicle respect to their departure one. We also consider the possibility to swap the 

drone’s battery and to pick up further packages from the truck, during the same operational stop.  

ii) We develop an Adaptative Multi-Start Simulated Annealing (AMS-SA) algorithm to solve the VRP-

D-MC. Several diversification and intensifications procedures are introduced in our AMS-SA. 

Specifically, we add an exploration mechanism to avoid local optima using crossover operators, and 

an intensification mechanism using a local search procedure. A multi-start procedure to generate a 

new solution at each SA iteration is also developed. Also, we propose several special characteristics 

and algorithmic improvements to improve the AMS-SA.  

iii) We perform extensive computational experiments on different benchmark sets. 

a. On VRP-D instances from the literature, an improvement average gap of 0.61% to the best-

know solutions for the VRP-D is obtained by our AMS-SA compared to 1.23% of the state-

of-the art-approaches.  

b. The results show the benefit of allowing drones to return to different vehicles along their 

routes. Moreover, we conduct some experiments to show the benefit of using multi-packages 

payload compartments compared to one compartment, as considered in the VRP-D addressed 

in the literature. Also, we show the impact of using drones in tandem with trucks as well as 

the impact of using time windows.  

 The rest of the paper is organized as follows. In Section 2, we review the literature. A formal 

description of the problem is given in Section 3. In Section 4, a mathematical formulation is provided. 

In Section 5, we present our algorithmic approach. In section 6, we provide the numerical results whereas 

managerial insights are reported in Section 7. Section 8 concludes our paper and indicates future research 

directions. 

2. Literature review  

In this section, we review the works related to the problem considered in this paper. For a 

comprehensive review of the literature on drone-aided routing, the reader is referred to Macrina et al. 

(2020) and Poikonen and Campbell (2021). 

The VRP-D is a generalization of the Traveling Salesman Problem with Drone (TSP-D) (Wang et 

al., 2017) where a fleet of trucks work in tandem with a fixed number of drones to serve a set of 

customers (Salama and Srinivas, 2020). The VRP-D was first introduced by Wang et al. (2017) and then 

studied by Poikonen et al. (2017), Sacramento et al. (2019), Schermer et al. (2019), Wang and Sheu 

(2019), Kitjacharoenchai et al. (2020) and Tamke and Buscher (2021).  

In the work of Wang et al. (2017), the drones are dispatched and recovered by the trucks either at 

the depot or at customers’ locations. The objective is to minimize the completion time. The authors 

studied and analysed different worst-case scenarios depending on the number of drones in each truck 

and drones’ and vehicles’ speed. However, they neglected the limits on the drones flying range in their 

model. Schermer et al. (2018) extend the VRP-D of Wang et al. (2017) by considering limited driving 
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range of the drones to deliver one package. They developed two heuristics composed of the initialization 

and improvements phases. The results show that the proposed heuristics provide better results than the 

results obtained by Wang et al. (2017). Wang and Sheu (2019) study a variant of the VRP-D where 

multiple trucks and multiple drones of limited capacities are dispatched. Sacramento et al. (2019) 

developed an Adaptive Large Neighborhood Search (ALNS) to solve the VRP-D in order to minimize 

the total routing costs. A fleet of trucks is considered where each of them is equipped with only one 

drone. Pugliese and Guerriero (2017) extended the VRP-D by considering time windows to serve the 

customers and a maximum route duration imposed to the trucks. A similar setting is studied in Ham 

(2018). Chiang et al. (2019) develop a Genetic Algorithm (GA) to minimize the total delivery costs of 

the drones and vehicles and carbon emitted by conventional trucks. In their problem, each vehicle carries 

only one drone. Their experiments show that using drones in tandem with vehicles results in cost-

effective solutions which are also environmentally friendly. Kitjacharoenchai et al. (2019) study a VRP-

D with multiple drones and trucks. In their problem, a drone is deployed from a truck and can return to 

a different truck at another location. The authors propose a MILP formulation, whose objective is to 

minimize the makespan. Since the problem is difficult to solve, an insertion heuristic algorithm is 

developed to deliver solutions for large-scale problems, which consist of up to one hundred customer 

locations. In a later paper, Kitjacharoenchai et al. (2020) present a capacitated VRP-D with multiple 

trucks and drones. They also consider battery for drones, which limits their flying times. In their 

application, a drone is deployed by truck and has to return to the same truck but can perform multiple 

deliveries in the same trip. The completion time of the tasks is minimized in the objective function, 

subject to limited truck and drone capacities. Liu et al. (2020) study the effect of the variation in the 

payload on the energy consumed by the drones. In their work, they model the energy consumption with 

the factors such as payload, motor efficiency, distance travelled, and flying velocity. They develop a 

heuristic that incorporates both savings and nearest neighbourhood strategies. Their computational 

experiments on randomly generated problem instances of different sizes show the performance of their 

proposed method. Gonzalez-R et al. (2020) considered a fleet of truck where each of them is equipped 

with one drone. In addition, they considered the battery capacity drones and also multiple visits to 

customers in a single flight. An Iterated Greedy (IG) algorithm is used to solve this problem. The results 

show that the algorithm outperforms the solutions obtained by the commercial Gurobi solver in a shorter 

computational time. Euchi and Sadok (2021) proposed a Hybrid Genetic Algorithm (HGA) to solve the 

traditional VRP-D proposed by Sacramento et al. (2019). Poikonen and Golden (2020) considered a 

single truck and multiple drones where each drone is allowed to carry multiple items at a time, i.e., the 

drone serve several customers before returning to the truck to be recharged and to pickup other packages. 

The truck plays the role as a depot and also as a recharge station for the drones. In addition, the vehicle 

can move at a rendezvous point (customers’ locations) in order to swap the battery. To solve this 

problem, the authors proposed a flexible heuristic named Route Tansform Shortest path (RTS). 

Similarity, Luo et al. (2021) studied the same problem of Poikonen and Golden (2020) by considering 
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that drones are limited by both energy consumption constraints based on flight-time and payload, as 

well as the maximum payload capacity constraints. To solve the problem, the authors proposed a Tabu 

Search (TS) algorithm which is tested on a new benchmark data set based on the Solomon’s instances.  

In this paper, we consider a variant of the VRP-D where each drone is also equipped with multi-

compartments that can be used to deliver packages to several customers before returning to the truck.  

A drone can return to a vehicle different from its launching vehicle, and can also swap its depleted 

battery to service more packages. In addition to capacity constraints for the trucks and the drones, we 

also consider time windows constraints for the customers. Our problem therefore generalises the 

problem studied by Poikonen and Golden (2020). 

Inspired from Macrina et al. (2020), Table 1 presents a summary of the main features of the most 

relevant works studied in the literature mentioned above.  

Table 1 

Summary of related works on the VRP-D  

Reference #T/#D OF TW SY ED DR DC TC DMV DRA MC SD 

Wang et al. (2017) n/m Min. completion time           

Pugliese and Guerriero 
(2017) 

n/m Min. completion time           

Ham (2018)  n/m Min. makespen           

Wang and Sheu (2019)  n/m Min. logistics costs           

Kitjacharoenchai et al. 

(2019)  

1/m Min. delivery time           

Sacramento et al. (2019) n/m Min. operational costs           

Schermer et al. (2019)  n/m Min. makespen           

Chiang et al. (2019)  n/m Min. total cost and 

CO2 emission 

          

Kitjacharoenchai et al. 

(2020)  

n/m Min. completion time           

Liu et al. (2020)  n/m Min. operational costs           

Gonzalez-R et al. (2020) n/m Min.travel time           

Poikonen and Golden 
(2020) 

1/m Min. makespen           

Euchi and Sadok (2021) n/m Min. traveled time           

Luo et al. (2021) 1/m Min. makespen           

Our  n/m Max.revenue           

#T/#D: Number of Trucks and Drones used. OB: Objective Function. TW: Time Windows. SY: Synchronization. ED: Energy 

Drone. DR: Drone Recharge. DC: Drone Capacity. TC: Capacity of the Truck; DMV: Drone Multiple Visit. DRA: Drone 

launch from truck and Return to Another truck. MC: Multi-Compartment payload. SD: the trucks and drones assumes the 

services simultaneously (both vehicles deliver the packages)  

3. Problem definition 

The VRP-D-MC consists of designing a set of trucks and drones’ routes collaboratively to deliver 

packages to customers. The objective is to maximize the total revenue. 

Due to the limited flying range of drones, trucks are used as a base to swap batteries of drones. 

Such a problem setting is studied in Wang et al. (2017) and Gonzalez-R et al. (2020). In addition to 

the features of the basic problem’s settings, we consider the flexibility for drones to return to any 

truck (not necessarily the truck where the drone is dispatched), in contrast to the typical problem 

settings used in the literature (e.g., Sacramento et al., 2019; Kitjacharoenchai et al., 2020; Liu et al., 
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2020). In addition, we consider that trucks can also deliver items which are supposed to be delivered 

by drones, if this is more convenient for the system. The latter has been observed in real-life delivery 

operations for heavy deliveries (Sacramento et al., 2019; Gonzalez-R et al., 2020), but not for small 

item delivery or reconnaissance missions. In short, in our study, the problem setting presents a more 

general case in which each customer can be served or visited either by a vehicle or by a drone. 

We organize the different constraints into four categories including customers, trucks, drones and 

truck-drone. Below are reported the characteristics of our VRP-D-MC.  

Customers: 

• Each customer must be visited by either a truck or a drone. 

• Similar to several drones routing problems studies (e.g., Pugliese and Guerriero, 2017; Pugliese 

et al., 2020; and Han, 2020), we consider time windows constraints where each customer must 

be visited within its time window. If a vehicle arrives at a customer before the beginning of its 

availability time window, the service is delayed to the earliest available time. 

Trucks: 

• Each truck route must start and end at the same depot.  

• Truck capacity constraints must be respected.  

• Each truck is equipped with one drone but there is sufficient space in a truck to host more than 

one drone simultaneously.  

Drones: 

• The total demand of the drone’s route for the visited nodes must not exceed the capacity of the 

drone. 

• A drone can visit multiple customer locations on a single trip, as long as the battery is sufficient 

for the drone to visit all these locations and to return to a vehicle at a rendezvous point (i.e., a 

customer location) 

• Each time a drone returns to a truck to swap its battery, it can pick up more packages from the 

current truck. 

• There is no restriction on the number of times that the batteries can be swapped. We assume 

that the swapping time is negligible.  

Truck-drone: 

• Drones can return to a truck only at a customer node (i.e., a rendezvous location). Batteries of 

drones could only be swapped at the rendezvous points. Also, routes of trucks and drones are 

synchronized at the rendezvous locations. That is, if the truck arrives at the customer location 

before the drone does, the truck must wait for the drone, and vice versa. 

• A drone can wait at a customer location without energy consumption. In addition, as in Puglia 

Pugliese et al. (2020), we assume a maximum allowed waiting time for the drone at a rendezvous 
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location, defined by parameter T. Thus, a drone can wait at most T units of time for the truck, 

which it is supposed to land on. Instead, no limitations on the maximum waiting time are 

imposed for trucks. 

• It is allowed that the drone is carried by a truck for part of its route. In this case, no energy is 

consumed by the drone’s battery. 

• Drones may be deployed by or return to the truck only at specific location point. The locations 

where a drone is launched and retrieved can be different. 

• It is not necessary for a drone to return to the same truck where it was deployed for swapping 

batteries. 

• The duration of each truck route must not exceed the maximum working time. 

• Service times required by trucks and drones may be different because their delivery operations 

are different. 

Figure 2 shows an example of the VRP-D-MC with two trucks (T1 and T2) and two drones (D1 and 

D2). As shown by the figure, the drones service multiple users before finally return to the trucks.  

 

Figure 2. Illustrative VRP-D-MC solution 

In this example, we can see for instance that the drone D1 is lunched from the truck T1 to serve the 

customers 12, 20 and 22 then meet another truck T2 at the rendezvous customer location 11 to swap 

their depleted battery and get the packages to serve the customers 1 and 6 before ending their travel at 

the truck T2 in the meeting point 15.  

4. A mathematical formulation 

In this section, we provide a formal mathematical model description and the energy consumption 

energy of the drone.  
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4.1. Mathematical model 

The VRP-D-MC is defined as follows. Let G = (V, A) be a complete directed graph, where V is the 

set of all nodes with V= 𝑁 ∪ 𝑠𝑡 ∪ 𝑒𝑛 and 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} is the set of arcs. Let’s 𝑁 =

{1, … , 𝑛} the set of 𝑛 customers while 𝑠𝑡 and  𝑒𝑛 represent the starting and ending depot, respectively. 

We denote by ∆+ 𝑖(∆− 𝑖) represent the set of nodes that can be reached(used) from node 𝑖 ∈  𝑁. 

We consider a fleet composed of homogeneous trucks 𝑇 and drones 𝐷 to service the customers. The 

drones are assumed to pickup and delivery the items from the trucks to the customers distributed in the 

networks. Each truck and drone start from a depot and ends at the departure depot. Let 𝑉𝑇 𝑎𝑛𝑑 𝑉𝐷 the 

speed of the truck and drone, respectively. Each arc (𝑖, 𝑗) ∈ 𝐴, we associate a distance 𝑑𝑖𝑗
𝑇  and a non-

negative travel time 𝑡𝑖𝑗
𝑇  between two locations 𝑖 and 𝑗 traveled by each truck 𝑇, where 𝑡𝑖𝑗

𝑇  =𝑑𝑖𝑗
𝑇 /𝑉𝑇. 

Moreover, a distance 𝑑𝑖𝑗
𝐷  and a non-negative travel time 𝑡𝑖𝑗

𝐷  between two locations 𝑖 and 𝑗 traveled by 

each drone 𝐷, where 𝑡𝑖𝑗
𝐷  =𝑑𝑖𝑗

𝐷 /𝑉𝐷. In addition, an operational cost 𝑐𝑇 and 𝑐𝐷  is associated for each truck 

and drone, respectively for each traveling arc. 

We assume that the number of visits that the drones can recharge (swap) its battery in the trucks is 

unlimited.  𝑄𝑇 are the load capacity of each truck.  𝑄𝑟,𝐷 is the available number of resources of type 𝑟 ∈

𝑅= {1, 2, 3} in the drone. More specifically, 𝑟 takes the value 0 if the customer requires a place for a 

package of volume equal to 20 cm3 place in the drone, 𝑟=1; where the customer requires a package of 

volume equal to 40 and 𝑟=3; the customer requires a package of volume equal to 40 cm3 into the drone. 

The battery capacity of the drone is expressed by 𝐻, in which its energy is consumed at each traveling 

arc (𝑖, 𝑗) at a 𝐸𝐶 energy rate. Each customer 𝑖 ∈ 𝑁 is associated with a time window [𝑇𝑖
−, 𝑇𝑖

+], a demand 

𝑞𝑖
𝑟 for each resource type 𝑟 that can be served by a drone and a demand 𝑞𝑖 can be served by a truck, and 

a service time 𝑠𝑖. We note that the customer request can be satisfied either by drone or by truck. The 

demand is measured by weight unit in case the delivery is assumed by truck and by both weight and 

volume in the case where the delivery is assumed by drone. Finally, the maximum allowed working time 

𝑇𝑚𝑎𝑥 is considered. For each delivered package, we associate a rent cost into the vehicle. Let 𝑓𝑟,𝐷 and 

𝑓𝑇 a fixed rent cost of each package putted in a resource of the drone and truck, respectively. 

Below, a summarize of the list of sets, parameters and variables used in this formulation. 

Sets 

𝑁 ∶ set of 𝑛 customers where 𝑁 = {1, … , 𝑛} 

∆+: set of nodes that can be reached from node 𝑖 ∈  𝑁 

∆− 𝑖: set of nodes that can be used from node 𝑖 ∈  𝑁 

V: set of nodes 

A: set of arcs with 𝐴 = {(𝑖, 𝑗): 𝑖, 𝑗 ∈ 𝑉, 𝑖 ≠ 𝑗} 

Parameters  

𝑠𝑡: starting depot  
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𝑒𝑛: ending depot 

𝑉𝑇: speed of the truck T 

𝑉𝐷: speed of the drone D 

𝑑𝑖𝑗
𝑇 : distance between two locations 𝑖 and 𝑗 traveled by each truck 𝑇 

𝑑𝑖𝑗
𝑇 : non-negative travel time between two locations 𝑖 and 𝑗 traveled by each truck 𝑇 

𝑑𝑖𝑗
𝑇 : distance between two locations 𝑖 and 𝑗 traveled by each drone 𝐷 

𝑑𝑖𝑗
𝑇 : non-negative travel time between two locations 𝑖 and 𝑗 traveled by each drone 𝐷 

𝑐𝑇: operational cost for each traveling arc by the truck T 

𝑐𝐷: operational cost for each traveling arc by the drone D 

 𝑄𝑇: load capacity of each truck T 

 𝑄𝑟,𝐷: available number of resources of type 𝑟 ∈ 𝑅= {1, 2, 3} in the drone D  

𝐻: battery capacity of the drone 

[𝑇𝑖
−, 𝑇𝑖

+]: starting and ending of the time windows of each customer 𝑖 

𝑞𝑖
𝑟 : demand requested by the customer 𝑖 that can be serviced by resource type 𝑟 of the drone D  

 𝑞𝑖 : demand can be served by a truck of customer 𝑖 

𝑠𝑖: service time  

𝑓𝑟,𝐷: fixed rent cost of each package putted in the resource 𝑟 of the drone 𝐷 

𝑓𝑇: fixed rent cost of each package putted in the truck  

𝑇𝑚𝑎𝑥: maximum working day 

Variables 

𝑥𝑖𝑗
𝑇  : binary variable equal to 1 if the truck 𝑇 travel from 𝑖 to 𝑗, and 0 otherwise. 

      𝑥𝑖𝑗
𝐷  : binary variable equal to 1 if the drone 𝐷 travel from 𝑖 to 𝑗, and 0 otherwise.  

𝑦𝑖
𝑇 : binary variable equal to 1 if the truck 𝑇 is used to serve the customer 𝑖, and 0 otherwise. 

𝑦𝑖
𝐷 : binary variable equal to 1 if the drone 𝐷 is used to serve the customer 𝑖, and 0 otherwise. 

𝑧𝑎𝑖: auxiliary variable that indicate if there is a drone arc is coming from node 𝑖 

𝑧𝑏𝑖: auxiliary variable that indicate if there is a drone arc is entered to node 𝑖 

𝑙𝑎𝑖: auxiliary variable that indicate if the drone can be launched from node 𝑖 or not 

𝑧𝑖
𝑇: continuous variables that represent the service time of the truck T on node 𝑖.  

𝑧𝑖
𝐷: continuous variables that represent the service time of the drone T on node 𝑖.  

𝑄𝑖
𝑇: continuous variables that represent the load on the truck immediately after servicing 𝑖.  

𝑄𝑖
𝑟,𝐷 

: continuous variables that represent the load of resource 𝑟 on the drone D immediately after 

servicing 𝑖.  

𝑜𝑖
+:continuous variables that represent the battery level of the drone when departing from the node 𝑖. 

𝑜𝑖
−: continuous variables that represent the battery level of the drone when departing to the node 𝑖. 
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We provide the following mixed-integer programming formulation for the VRP-D-MC Based on 

the VRP-D formulation of Gonzalez-R et al. (2020) and Kitjacharoenchai et al. (2020). 
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The objective function (1) maximizes the total revenue. The first part of (1) represents the rent places 

costs of the packages while the second part is the total operational costs. Constraints (2) and (3) 

guarantee that each drone starts and ends its route at the depot. Constraints (4) guarantee that each 

customer can be served by one drone as maximum. The flow conservations are defined in constraints 

(5). Constraints (6-9) represents the same constraints definitions as in (2-5) but for the trucks. 

Constraints (10) guarantee that each node can be visited either by a drone or a truck or by both (drone 

and truck) if it is used as a rendezvous point. Constraints (11) and (12) define the service time. The 

service must be performed within the time windows as guaranteed by constraints (13) and (14). 

Constraint (15) impose that the waiting time of the drone at a customer 𝑖 before starting service should 

not exceed a limited time T. Constraints (16) and (17) represents the synchronisation time when the 

drone and the truck merge at the rendezvous points. Constraints (18)-(21) guarantee that the capacity of 
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each vehicle type (trucks and drone) is respected. Constraints (18) takes into consideration the total 

demands of both truck and drone (in case when drone meet at customer location 𝑖 to swap and to get 

load from the truck) that should be less than the capacity of the truck that is expressed in constraints 

(19). Constraints (22)-(33) track the charge of the drone’s battery level. More specifically, constraints 

(22)-(25) guarantee that the drones don’t’ consume energy if they travel with the truck during an arc 

(𝑖, 𝑗). Constraints (23)-(29) define that the electricity level is reduced when the drone arrives at 𝑗 

according to the distance from 𝑖 to 𝑗 and the electricity consumption rate if 𝑖 is the customer location 

node and node 𝑗 is served immediately after 𝑖. Constraints (30)-(33) ensure that the drone’s battery 

capacity is fully recharged (battery swap) after leaving node 𝑗. Constraints (34) guarantee that the battery 

is full recharged at the depot. Constraints (35) ensure the battery's safety security, in which the energy 

fuel should not exceed 10% of the capacity battery. Constraints (36) assure that the auxiliary variable 

𝑧𝑎𝑖 is equal to 1 when the drone departs from node 𝑖. Similarity, constraints (37) assure that the auxiliary 

variable 𝑧𝑏𝑖 is equal to 1 when the drone enters to node 𝑖. Constraints (38) assures that the node 𝑖 is 

considered as a lunching node if the truck serve node 𝑖 and there is a drone leave the same node 𝑖 where 

it is lunched. While constraints (37) impose that the node 𝑖 is considered as a lands node if the truck 

serve node 𝑖 and there is a drone entered the same node 𝑖, where it is lands. In addition, the constraints 

(36) to (39) represent the case when the drone meet the truck at a rendezvous point to swap the battery 

and to pickup the packages. 

Constraints (40) forbid a drone to directly travel from node i to node j where node i and node j are 

already served by a truck. Constraints (41). In constraints (43), the auxiliary variable 𝑙𝑎𝑗 , must be equal 

to 1 when a drone is launched from node i, and a truck travels from node i to node j, which the drone 

has not yet returned to. Constraints (42) impose that a drone is not allowed to be launched or land at 

node i if 𝑙𝑎𝑖  is equal to 1 and vice versa. Similarly, constraints (44) deal with the case when a drone was 

previously launched (not able to be launched at node i again) and has not returned to node j. Moreover, 

constraints (40) to (44) impose that the drone must be lunched before to land. Constraints (45) and (46) 

guarantee that the maximum route duration of each vehicle (truck and drone) is respected. Finally, 

constraints (47) specify binary decision variables. 

The above mathematical formulation is impractical to solve even for small size problem instances. 

For this reason, in Section 5 we describe effective heuristic algorithms capable of solving large size 

problem instances. 

4.2. Modeling of the energy consumption for electricity  

Recently, research studies have incorporated realistic energy consumption functions in routing 

models for drone delivery problems (e.g., Poikonen and Golden, 2020). Thus, in addition to the routing 

problem, we also consider energy consumption by adopting the energy consumption proposed by 

Leishman (2006) and Cheng et al. (2020) to estimate the energy requirement. Furthermore, we capture 
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the mass of the drone as a variable in the energy consumption function. This modeling feature reflects 

practical consideration, as suggested in some existing studies (e.g., Masmoudi et al., 2018). In other 

words, the energy consumption depends on the current payload of the packages. 

Hence the energy consumption 𝐸𝑖𝑗when a drone uses an arc (𝑖, 𝑗) with a load, whose weight is set to 

the remaining customer demand 𝑄𝑗
𝑟,𝐷

, is expressed as follows: 

𝐸𝑖𝑗[W]=  (∑ 𝑚((𝑄𝑗
𝑟,𝐷)𝑟∈𝑅 + 𝐹 + 𝑚)

3

2√
𝑔3

2𝜌𝜀𝜔
 

Where 𝐹 and 𝑚 represents the mass of the drone body and the battery, respectively. The gravitational 

constant is denoted by 𝑔, 𝜌 is the air density, 𝜀 is the spinning area of one rotor and 𝜔 is the number of 

rotors. We denote  𝑚(𝑄𝑗
𝑟,𝐷) the weight available in the drone upon the drone’s arrival at the next 

customer  𝑗. 

The detailed description, coefficients values, and properties used in our model are summarized in Table 

2. 

  Table 2 

  Notation and parameter values used in the model        
Notation Definition Value Reference 

𝑔 gravitational constant (m/s2) 9.807 Zhang et al. (2021) 

F mass of the drone body (kg) 7 Zhang et al. (2021) 

m mass of battery (kg) 10 Zhang et al. (2021) 

𝜌 air density 1.225 Zhang et al. (2021) 

𝜀 spinning area of one rotor 3 Zhang et al. (2021) 

𝜔 number of rotors 8 Zhang et al. (2021) 

𝑄𝐷  capacity of the truck without drone (kg) 1300 Sacramento et al. (2019) 

𝑄𝑇 capacity of the truck with drone (kg) 1400 Sacramento et al. (2019) 

𝑉𝐷  speed of the drone (mph) 50 Sacramento et al. (2019) 

𝑉𝑇 speed of the truck (mph) 35 Sacramento et al. (2019) 

H capacity of the battery (kW) 1,040,400 Joules (289Wh)  Troudi (2018) 

𝑐𝐷 operational cost for the drone (dollar/mile) 0.15 Salama and Srinivas (2020) 

𝑐𝑇  operational cost for the truck (dollar/mile) 1.25 Salama and Srinivas (2020) 

5. Adaptative Multi-Start Simulated Annealing algorithm for the VRP-D-MC 

Since the VRP-D is an NP-hard problem (Poikonen and Golden, 2020), the VRP-D-MC is also NP-

hard since it is a generalization of VRP-D. Due to the complexity of the VRP-D, instances with up to 

10 customers may be solved using the commercial solvers, such as CPLEX or Gurobi, with several 

hours (e.g., Murray and Chu, 2015; Yurek and Ozmutlu, 2018; Chung et al., 2020). VRP-D and its 

variants are usually solved with metaheuristic methods (e.g., Sacramento et al., 2019; Schermer et al., 

2019; Kitjacharoenchai et al., 2019; Wang and Sheu, 2019; Poikonen and Golden, 2020). We propose a 

new Adaptative Multi-Start Simulated Annealing (AMS-SA) metaheuristic algorithm to solve VRP-D-

MC. 

The traditional SA is a single-solution-based metaheuristic first proposed by Kirkpatrick et al. 

(1984). It is successfully applied to various VRPs, including VRP-D (see, e.g., Lin and Vincent, 2012; 

Dorling et al., 2016; Yu et al., 2018). The traditional SA consist that in each SA iteration, a new solution 
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𝑥’ is generated using a neighborhood search operator based on the current solution 𝑥. The new solution 

x’ is accepted to become the as the new current solution x if the objective function value of 𝑥′(𝑓 (𝑥′)) is 

better than found in 𝑥. On the other hand, if the objective function of 𝑥’ is higher, 𝑥’ can be accepted 

subject to the simulated annealing acceptance criterion  𝑒𝑓(𝑥)−𝑓(𝑥′)/𝑇𝑖,  proposed by Metropolis et al. 

(1953), where 𝑇𝑖 is the current temperature in the iteration 𝑖. The temperature cooling schedule is defined 

as: 𝑇𝑖 =𝛼*𝑇𝑖−1, where 𝛼 is the cooling rate. 

The advantage of the SA is that easy to implement, is flexible, and provides good solutions. 

However, the main disadvantage of simulated annealing is that once the algorithm is trapped in low 

temperature in a local minimum, it is impossible to get out. In addition, the difficulty of determining the 

initial temperature; if it is too low, the search quality will be bad. On other hand, if it is too high, the 

calculation time will be high. In this regard, we try to enhance the performance of SA and its 

convergence towards better quality solutions, by performing more intensification around the solutions 

and also diversifying the search to different regions. More specifically, we propose several modifications 

to the classic SA used in the literature by hybridizing it with other intensification and diversification 

procedures and techniques from population-based metaheuristic such as, Genetic Algorithm (GA), a 

multi-start approach, restoring the generation of the solution using the current neighborhood and also 

using efficient procedure to reduce the temperature. This hybridization process can boost the 

performance of a traditional SA and improve its convergence towards good solutions. The enhanced SA 

we propose is a novel method, proposed for solving the VRP-D-MC, but can be also seen as a new 

generalized algorithmic framework.  

In the vast majority of the SA algorithms proposed in the literature, when the newly generated 

solution is not promising, the SA tries to generate a new solution using the neighborhood operators on 

the same current solution. In our approach, we instead construct a new solution by using the crossover 

operator mainly used in genetic algorithms. Specifically, we apply the crossover between a randomly 

selected best solution (𝑥𝑏𝑒𝑠𝑡) found in a previous step best solution and a new solution generated by the 

constructive heuristic to build the restarting initial solution of the SA. The positive feedback of the 

crossover operator, in terms of transferring favorable characteristics from the parent to the child, helps 

to generate better solutions. The new solution will inherit the information from both the best solution, 

which was found by the algorithm in the current iteration, and the one newly generated by the 

constructive heuristic, which is characterized by a high diversity. This way, the construction of a new 

solution enable a good balance between the intensification around the best solutions, and the required 

diversification to explore new regions of the search space in a controlled, rather than arbitrary way. 

Second, when the newly generated solution is promising, the current neighborhood is re-considered, 

increasing SA intensification power. This is in contrast to what is usually done in the traditional SA, 

where the search switches to a new operator/neighbourhood even when the newly generated solution is 

promising (see., e.g., Xiao and Konak, 2015; Masmoudi et al., 2016; Wei et al., 2018; Karagul et al., 
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2019). This procedure allows to explore more deeply the region search abilities of the current 

neighbourhood structure around the current solution, and to focus the exploration in areas who has 

shown to be promising.  

Finally, in each iteration and in order to explore different search regions, our algorithm restarts from 

a different initial solution, which further enhances diversification and permits escaping superfluous 

iterations around local optima. This technique is known under the name “multi-start approach” in the 

literature and has been successfully applied in a variety of metaheuristics such as the multi-start SA 

(e.g., Yu and Lin., 2014) and the multi-start VNS (e.g., Henke et al., 2015).  

Moreover, we enhance the SA even more by increasing its intensification around the current 

solution, as will be explained later. 

The AMS-SA developed in this paper is described in Algorithm 1. Initially, we set the temperature 

𝑇 to its maximum value 𝑇𝑚𝑎𝑥, let 𝑎𝑡𝑡, initialized to zero, be the number of the multi-start step, let 𝑖 

initialized to zero, be the number of iterations in which the best solution is not improved and let 𝑗 

initialized to zero, be the number of iterations at a selected neighborhood search structure is applied. 

Furthermore, the initial solution x and the best solution 𝑥𝑏𝑒𝑠𝑡 are set equal and are generated using a 

constructive heuristic (Subsection 5.1).  

The AMS-SA performs several runs 𝑛𝑆𝐴. In each run, the algorithm starts with a new initial solution 

constructed using the constructive heuristic (line 4 of Algorithm 1). Within each run, several inner 

iterations 𝑛𝑖𝑡𝑒𝑟 are performed, such that in each iteration, a new solution x' is generated based on the 

current solution x using a selected neighborhood search from an available set of neighborhoods N1, N2, 

N3 or N4 (line 12 of Algorithm 1) as described in subsection 5.2. To explore the search space, our AMS-

SA makes use of several neighborhood structures. The selection of the neighborhoods is not random. 

Still, it is instead determined based on their performance score at the previous iteration, which is in line 

with most SA implementations in the literature (e.g., Wei et al., 2018; Masmoudi et al., 2016). The 

neighborhoods’ selection process is further described in subsection 4.4.  

In our algorithm, a new solution is accepted if it improves the objective value or adheres to the 

Cauchy criterion (line 14 of Algorithm 1) proposed in Tiwari et al. (2006). According to Tiwari et al. 

(2006), the Cauchy probability function is more efficient to escape local optima than the Boltzmann 

function applied in the majority of SA algorithms reported in the literature. This is implemented by 

randomly generating a number 0 < 𝛽 < 1 and checking whether 𝛽 <  𝑇/(𝑇2 + ∆𝐸2), where ∆𝐸 

represents the difference in revenue between the current and the new solution. To foster a smooth 

annealing process, the initial temperature (𝑇) is calculated as 𝑇= 
−0.05

ln 0.5
*𝑓(𝑥), where 𝑓(𝑥) represents the 

initial solution revenue. The accepted new solution is further improved through a selected local search 

operator (line 16 of Algorithm 1) I1, I2, I3, or I4. The local search operator's choice is based on their 

previous iteration performance and is performed according to a roulette wheel rule. If the improved 



17 
 

solution is accepted (line 19 of Algorithm 1), the current neighborhood search is applied in the next 

iteration (line 22 of Algorithm 1) to intensify the search around the incumbent solution. Otherwise, if 

the improved solution is rejected (line 24 of Algorithm 1), a new solution is generated using the MX1 

crossover operator (lines 27 of Algorithm 1). The newly developed solution inherits information from 

the randomly selected improved solution 𝑥𝑏𝑒𝑠𝑡 (line 26 of Algorithm 1) and another highly diversified 

solution, using our constructive heuristic (line 25 of Algorithm 1). If improvements are achieved, the 

incumbent solution is updated (lines 28-31 of Algorithm 1). 

A critical operation in the traditional SA consists of reducing the temperature using a cooling rate. 

In our approach, we opt for a more flexible way of controlling the temperature parameter. In other words, 

if the best solution 𝑥𝑏𝑒𝑠𝑡 is not improved after a predefined consecutive number of runs (line 7 of 

Algorithm 1), the current temperature value is then reduced (line 8 of Algorithm 1), and the number of 

iterations 𝑛𝑖𝑡𝑒𝑟 is increased (line 9 of Algorithm 1). This overcomes the problem of quickly converging 

to a non-acceptable local optimum or slowly converging to an acceptable solution.  The number of 

iterations 𝑛𝑖𝑡𝑒𝑟 is initialized to its default value (line 36 of Algorithm 1) when it reaches its maximum.  

Algorithm 1: Adaptative Multi-Start Simulated Annealing 
1.  Initialize i = 0; j = 0; Temperature  𝑇 = 𝑇𝑚𝑎𝑥;  x = xbest = the constructive heuristic; 𝑎𝑡𝑡 = 1;  

 2.  Repeat 

If 𝑎𝑡𝑡 >1 Then 
3.           If 𝑎𝑡𝑡 >1 Then 

 
4.                Construct a new solution using the constructive heuristic; 

5.         End If 

 6.  j:=j+1; 

 7.  If i > 3 Then  

 8.  𝑛𝑖𝑡𝑒𝑟:=𝑛𝑖𝑡𝑒𝑟+1; 

9.  𝑇 =  𝛼 ∗  𝑇; 

 10.  End if 

 11.  While (𝑗<𝑛𝑖𝑡𝑒𝑟) 

 12.  Select a neighborhood search and generate a new solution  𝑥′ based x; 

 
13.  Update the scores of the selected neighborhood search; 

 14.  If  𝑓 (𝑥’) < f (x) or accepted by the Cauchy function Then 

 15.  x← x’; 

 16.  Select a local search and apply it on x to obtain a new improved solution 𝑥”; 

 
17.  Update the scores of the selected local search; 

 
18.  If f (𝑥′′) < f (x) Then 

 19.  x← x”; 

 20.  End if 

 21.  If the solution 𝑥 is updated in line 16 or line 20; 

 22.  Keep the current neighborhood search for the next j iteration 

 23.  End if 

 24.  Else If  f (𝑥’) > f (x) Then 

 25.   𝑥𝑛𝑒𝑤← generate a new constructive heuristic solution; 

 26.   Select randomly a solution xbest; 

 27.                                  x← Crossover (𝑥𝑏𝑒𝑠𝑡 , 𝑥𝑛𝑒𝑤); 

28.                          If  f (x) < f (xbest) then 

 29.                                        xbest ← x; 

 30.                                        xbest ← f (xbest); 

 31.                                        i=0; 

32.                          Else 

 

 

33.                                        i++; 

34.             j++; 

35.            End While 
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36.            𝑛𝑖𝑡𝑒𝑟 = 0; 

37.    Adjust the weights of operators using the scores obtained after𝑛𝑖𝑡𝑒𝑟  iterations; 

 
38.  𝑎𝑡𝑡 = 𝑎𝑡𝑡 +1; 

39.  Until 𝑛𝑆𝐴 is reached 

 40.  Return xbest 
 

5.1. Construction heuristic 

A modified insertion heuristic based on the one proposed by Kitjacharoenchai et al. (2020) and 

Gonzalez-R et al. (2020) is implemented. The constructive heuristic handles several features related to 

swapping battery of the drones, pickup of multiple packages of the drone, and the possibility that the 

drone to return at a different vehicle than the start vehicle. The heuristic starts with a list L that contains 

all biggest packages that can be serviced by the trucks to 𝐿’ customers, i.e., the packages having weights 

or volumes greater than the weight or the volume of the drone. In addition, we create a list 𝐷 that contains 

the smaller packages that can be carried by the drones to be served to 𝐷’ customers. The heuristic is it 

based on two main phases. 

In the first phase, we create an empty route for each vehicle with finite capacity. Customers from 

the list L’ are selected randomly and inserted one by one in their best position on the existing routes if 

time windows, maximum route duration and vehicle capacity are respected. This phase is repeated until 

𝐿′ is empty. Figure 3-a represents the first phase of the constructive heuristic by building a partial 

solution where the trucks serve all the customers. 

 

                    

The second phase consist of building a sub routes that contains the drones. To do so, we adopt the 

relocation procedure of Fosin et al. (2014). For each customer in 𝐷, the selected customer is then 

removed from 𝐷 and all possibility to insert the customer into the sub route of a selected drone are 

considered that respect the time windows and drone capacity. If the insertion is feasible then the next 

customer from 𝐷 is selected and the procedure of the relocation is repeated to the same selected drone, 

otherwise another drone is selected.  

In case where the drone cannot visit the next customer due to the energy constraint, the nearest truck 

located at a customer node to the current node is identified then the drone meet with this vehicle to swap 

the depleted battery. At the same time, the drone can carry some packages from this vehicle (if possible) 

Figure 3a: First phase; partial solution where all customers are serviced by two trucks. 
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that respect the capacity constraint. Finally, the customer is returned to the vehicle route in case of any 

feasible insertion. This phase is repeated until all customers are checked.  

Figure 3b-d represents the second phase of the proposed constructive heuristic by, deleting the 

customers that can be serviced by the drones, and by inserting the deleted customers to the different 

available drones. 

 

 

 

                      

 

5.2. Neighborhood structures 

In this section, we describe the neighbourhood search operators embedded in our hybrid AMS-SA. 

They are an essential component that should satisfy the balance between conserving the promising and 

perturbating the less promising part of the current solution. In this regard, several well-known 

neighborhood operators adopted in the literature (e.g., Lin and Yu, 2012; Masmoudi et al., 2018) are 

applied to explore the current solution's search space. In particular, we implement four neighborhood 

structures (i.e., N1, N2, N3, and N4), which we describe below. 

Exchange Neighborhood (N1): This structure consists of randomly choosing two routes with the same 

mode of transportation (trucks or drones). From one route, a random segment comprised of a sequence 

of consecutive nodes is cut that may consist of customers. The number of nodes in the cut segment is 

randomly chosen between one and five, depending on the number of customers in a route (Masmoudi et 

Figure 3c: Second phase; solution after insertion of 

the customers to the first drone where the drone is 

lunched from the T1, serve customers 7 and  17, meet 

the T2 to swap the battery, then serve customers 16 

and 10. 

                            

Figure 3b: Second phase; solution after deleting 

of a set of customers (12, 24, 3, 17, 7, 10 and 16) 

that can be serviced by the drone.                        

Figure 3d: Figure 2b: Second phase; solution 

after insertion of all customers to the drones. 
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al., 2018). From the removed segment customers are re-inserted one by one at their best positions in the 

other routes. When inserting a customer, the algorithm determines the best feasible insertion positions.  

Swap Neighborhood (N2): The swap operator consists of swapping two customers of two different 

routes. To apply this operator, we first select two randomly routes. Then, a random customer is selected 

from a truck (drone) and swapped with another customer from another truck(drone). The first customer's 

is inserted in the same position as the second customer in the second route. While the second customer's 

is inserted at any place in the first route. 

Cross-exchange (N3) -(N4): A segment of nodes of size 𝑏 randomly selected is cut from a route (truck 

or drone) 𝑟1 and inserted in another route (truck or drone) 𝑟2. Sequentially, a segment of nodes of size 

𝑑 randomly selected between b and b-1, is cut from a route r2 and inserted into route r1. This exchange 

results in an improved diversification, as proven in e.g., Hemmelmayr et al. (2009). Therefore, this 

operator is often applied at the perturbation stage, as demonstrated in e.g., Hemmelmayr et al., 2009; 

Masmoudi et al., 2018). For a feasible and effective swap, the segment length used in our operator's 

move is set to two and denoted by (N3) and set to three and referred by (N4).  

5.3. Local search operators 

During each step of the AMS-SA algorithm, several well-known local search operators inspired and 

adapted from the literature studies are applied to improve the current solution. In particular, four 

operators with different movements are involved. Two inter-route operators namely 2-opt* proposed by 

Potvin and Rousseau (1995), and the remove two insert one operator presented by Xiang et al. (2016). 

Moreover, two intra-routes operators composed of the relocate operator proposed by Savelsbergh (1992) 

and the 2-opt operator Potvin and Rousseau (1995). 

5.4. Adaptive weight adjustment procedure 

In each iteration of the AMS-SA (as described in Algorithm 1), selecting an appropriate 

neighborhood and operator is made through a roulette wheel mechanism. Such a mechanism achieves a 

right balance between solution quality and running time. The probability of choosing a neighborhood 

operator N (𝑁 ∈ {N1, N2, N3, N4}) at iteration 𝑗, is calculated as 𝑃𝑁
𝑗+1

= 𝑃𝑁
1(1- 𝑟𝑝) + 𝑟𝑝𝜋𝑁/𝜔𝑁, where 

𝑟𝑝 is the roulette wheel parameter, 𝜋𝑁 is the score of an operator, and 𝜔𝑁 is the number of times the 

operator N is used in the last 𝑛𝑖𝑡𝑒𝑟 iterations. The score of an operator is updated according to the 

following procedure: i) if the operator finds a new best solution, the score is incremented by 𝜎1, ii) if it 

locates a better solution than the current one, the score is incremented by 𝜎2 iii) if it finds a non-

improving feasible solution, the score is incremented by 𝜎3. After 𝑛𝑖𝑡𝑒𝑟 iterations, the weights are 

adjusted using the scores obtained. Similarly, the probability of choosing a local search operator I (𝐼 ∈ 

{I1, I2, I3, I4}) is computed as 𝑃𝐼
𝑗+1

= 𝑃𝐼
1(1- 𝑟𝑝) + 𝑟𝑝𝜋𝐼/𝜔𝐼. 

 



21 
 

6. Experimental results  

In this section, our aim is twofold. First, to test the performance of the algorithm against well-known 

benchmark instances. Second, we propose several experiments to analyze the features of VRP-D-MC. 

We have implemented the AMS-SA algorithm in C and the experiments were performed on a machine 

equipped with an Intel Core i5-10310U 2.21 GHz and 8 GB RAM. 

6.1. Data set instances 

Since the VRP-D-MC is new to the literature, we generate a new set of instances derived from the 

benchmark instances of Pugliese et al. (2020) for the drone routing problem, which are modified 

versions of the instances created by Solomon (1987) for the well-known VRPTW benchmark instances 

of. These instances consist of six categories, i.e., C1, C2, R1, R2, RC1 and RC2.  Each data set contains 

between 50 and 100 customers or requests. All customers locations are randomly distributed data sets 

in categories C1 and C2. In classes R1 and R2 locations are within predefined clusters, while in the 

categories RC1 and RC2, the coordinates are generated as randomly and clustered. The coordinates 

nodes are randomly generated in the square area [−10, 10]2. The data sets of C1, R1 and RC1 are 

characterized with a tight time window and longer travel time compared to shortest travel time and large 

time windows in C2, R2 and RC2. The weight of each package requested by the customers ranges 

between 1kg and 100 kg. Small size packages are subject to drone delivery (Bezos, 2013; Poikonen and 

Golden, 2020). To capture the limitation of drone delivery, we adopt similar ideas from Pugliese et al. 

(2020) for instance generation. We set that only half (50%) of the customers 𝑁 can be served by drones 

under each instance. These customers have a smaller value of quantity 𝑞𝑖
𝑟.The service time for each 

customer served by a truck is set to the original service time, while the service time by a drone is set to 

half of the service time by a truck (i.e., a drone is two times faster than a truck). We note that such a 

choice of the velocities of the trucks and drones provides higher feasibility of having drone and truck 

routes synchronized (Sacramento et al., 2019). Moreover, we associate for each allocation of a package 

in the vehicle (drone and truck) a rent cost that equal to 20$, 40$ and 60$ for a place of 20 cm3, 40 cm3 

and 60 cm3, respectively and 100$ for the package that surpasses 60 cm3. The maximum waiting time 𝑇 

is equal to 10 min (Pugliese et al., 2020). The new data sets can be downloaded from on https://vrp-d-

mc-47.webselfsite.net/. 

6.2. Setting the parameters 

Like most meta-heuristics available in the literature, the proposed AMS-SA algorithm's performance 

is expected to depend on the algorithm parameters, namely, the cooling rate 𝛼, the scores of the local 

search operators ( 𝜋1, 𝜋2 and 𝜋3), the number of iterations for a given temperature 𝑛𝑖𝑡𝑒𝑟, and the number 

of iterations of the whole algorithm 𝑛𝑆𝐴. The parameters values are chosen based on the recommendation 

and suggestions of previous experiment turning in the literature (𝛼,  𝜋1, 𝜋2 and 𝜋3) and based on our 

preliminary experiments (𝑛𝑖𝑡𝑒𝑟and  𝑛𝑆𝐴.). In general, the values of parameters that are based on 

https://vrp-d-mc-47.webselfsite.net/
https://vrp-d-mc-47.webselfsite.net/
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experimental designs followed in the literature as follow; we set the cooling rate 𝛼 to 0.99975 as 

suggested by Demir et al. (2012) and Masmoudi et al. (2016; 2020). We adopt the same parameter values 

as recommended in the most successful ALNS applied in the majority of VRP variants (e.g., Demir et 

al., 2012; Alinaghian et al., 2018; Žulj et al., 2018; Masmoudi et al., 2020). As such, we set the score 

values of the operators 𝜋1, 𝜋2 and 𝜋3 as 15, 5 and 10, respectively. Two parameters setting may affect 

the performance of our algorithm which are the overall number of iterations of the algorithm 𝑛𝑆𝐴, and 

the number of iterations for a given temperature 𝑛𝑖𝑡𝑒𝑟 are set to where  𝑛𝑆𝐴=50,000 and 𝑛𝑖𝑡𝑒𝑟=100, 

respectively. These values were defined based on preliminary tests we conducted using 20 instances 

with diverse features ranging from tight to large time windows, and with a different number of 

customers. Each instance is solved five times. The aggregate results of the preliminary tests are reported 

in Table 3. We have 𝑛𝑆𝐴 = 30.000, 50.000 and 100.000, and 𝑛𝑖𝑡𝑒𝑟 = 50, 100, 150, 200. The row Best 

(Avg) represents the average best of solution value found for each pair of parameters (𝑛𝑆𝐴, 𝑛𝑖𝑡𝑒𝑟) of all 

the selected instances in the small data set, while the column CPU represents the average run time in 

minutes. 

Table 3 

Parameter setting of the AMS-SA 

 𝑛𝑆𝐴 30.000   50.000     100.000 

 𝑛𝑖𝑡𝑒𝑟 50 100 150 200   50 100 150 200   50 100 150 200 

Best  1301.79 1302.18 1302.40 1303.26  1304.39 1305.61 1304.94 1304.83  1305.94 1306.02 1306.98 1307.02 

Avg 1286.55 1287.15 1289.89 1291.27  1303.23 1299.87 1300.48 1298.59  1292.73 1291.69 1291.16 1290.67 

CPU (min) 2.58 2.72 2.90 2.80   2.72 2.78 2.84 2.86   2.95 3.38 3.48 3.66 

In Table 3, we observe that on the one hand, no significant improvements are obtained when 𝑛𝑆𝐴 is 

set to be larger than 50.000 iterations. On the other hand, computation times increase, as expected, when 

we increase the number of iterations. Hence, 𝑛𝑆𝐴 =50,000 and 𝑛𝑖𝑡𝑒𝑟=100 provide a good trade-off 

between solution quality and run time.  

6.3. Testing the AMS-SA algorithm on benchmark instances 

In addition to the newly generated instances described in subsection 6.1, we also run the algorithm 

on the instances of Sacramento et al. (2019) for the VRP-D. Table 4 reports the results for the small and 

medium-large size instances of Sacramento et al. (2019) that contain between 5 and 200 customers.  

The performance of our algorithm is compared with the Hybrid Genetic Algorithm (HGA) method 

of Euchi and Sadok (2020) on the data set instances of Sacramento et al. (2019). For these instances, the 

objective function is to minimize the total travelled time for the delivery. A subset of medium-large size 

instances of 46 problems are considered in this work. Each instance is solved ten times by each of the 

algorithms (i.e., ours and the HGA algorithms). In Table 4, column “Best” (“Avg”) report the best 

(average) solution values. The column “CPU” indicates CPU time in seconds. Column “BKS” reports 

the Best-Known Solution values. Furthermore, column “Best%” (Avg%) refers to the gap of the best 

(average) solutions compared to the best-known solution (BKS). Table 4 provides the results of run on 
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the medium and large sizes instances. Since AMS-SA and HGA were run on similar machines, the 

corresponding computing times can be compared directly. 

Table 4 

Comparison of AMS-SA with the HGA algorithm on medium and large instances of Euchi and Sadok 

(2020) 

Inst BKSa 
HGAb   AMS-SA 

Best Best% Avg Avg% CPU(s)   Best Best% Avg Avg% CPU(s) 

100.10.1 6.36332 6.36332 0.00 6.3859 0.35 3.306  6.36332 0.00 6.36332 0.00 1.048 

100.10.3 7.26979 8.11945 13.03 8.22664 14.52 3.32  7.26979 1.20 7.39332 2.92 2.917 

100.10.4 6.89257 6.89257 0.00 7.04396 2.20 3.326  6.99257 1.45 7.0852 2.79 4.368 

100.20.1 12.541 12.541 0.00 13.2443 5.61 3.332  12.541 0.00 12.76424 1.78 3.269 

100.20.2 14.0118 14.0118 0.00 14.5979 4.18 6.339  14.0118 0.00 14.0118 0.00 4.07 

100.20.3 12.4879 12.4879 0.00 12.5325 0.36 6.345  12.51459 0.21 12.51459 0.21 6.337 

100.20.4 12.135 12.135 0.00 12.2157 0.67 8.351  12.135 0.00 12.24307 0.89 7.403 

100.30.1 22.9686 23.5686 4.34 23.9006 5.81 6.356  22.9686 1.68 23.23507 2.86 4.76 

100.30.2 22.0396 22.0396 0.00 22.135 0.43 7.375  22.0396 0.00 22.39161 1.60 7.108 

100.30.3 23.2988 23.2988 0.00 23.5033 0.88 70.392  23.2988 0.00 23.2988 0.00 33.055 

100.40.1 29.1397 29.1397 0.00 29.5463 1.40 9.427  29.6397 1.72 29.80102 2.27 3.425 

100.40.2 30.361 30.361 0.00 30.4129 0.17 10.446  30.361 0.00 30.79356 1.42 8.286 

100.40.3 29.0112 29.0112 0.00 29.0635 0.18 10.473  29.0112 0.00 29.09314 0.28 7.122 

100.40.4 28.5904 28.5904 0.00 28.636 0.16 10.49  28.8904 1.05 29.0891 1.74 6.886 

150.10.1 8.5865 8.5865 0.00 9.63644 12.23 0.495  8.5865 0.00 8.63456 0.56 0.1 

150.10.2 8.14615 8.14615 0.00 10.9009 33.82 0.994  8.14615 0.00 8.14615 0.00 0.927 

150.10.3 8.67899 9.70515 14.23 9.84302 15.85 1.522  8.67899 2.15 8.84433 4.10 1.305 

150.10.4 8.9979 10.8302 22.55 10.9725 24.16 2.012  8.9979 1.82 9.05767 2.49 1.643 

150.20.1 17.0099 17.0099 0.00 17.6175 3.57 2.323  17.0099 0.00 17.31543 1.80 2.075 

150.20.2 16.1837 16.1837 0.00 16.6333 2.78 2.612  16.2837 0.62 16.58436 2.48 2.066 

150.20.3 16.983 16.983 0.00 16.983 0.00 3.025  17.32011 1.98 17.49209 3.00 2.581 

150.20.4 16.8102 16.8102 0.00 16.8102 0.00 3.339  16.87836 0.41 16.90572 0.57 1.354 

150.30.1 25.8524 25.8524 0.00 25.8524 0.00 3.489  25.8524 0.00 25.92485 0.28 2.249 

150.30.2 26.137 26.137 0.00 26.137 0.00 3.569  26.137 0.00 26.27017 0.51 1.541 

150.30.3 25.0101 25.0101 0.00 25.0101 0.00 3.707  25.18698 0.71 25.23735 0.91 5.494 

150.30.4 25.9812 25.9812 0.00 25.9812 0.00 3.863  25.9812 0.00 25.9812 0.00 3.79 

150.40.1 29.4683 29.4683 0.00 29.8651 1.35 6.477  29.4683 0.00 29.93088 1.57 4.25 

150.40.2 35.2343 35.2343 0.00 35.9885 2.14 6.997  35.57243 0.96 36.27218 2.95 7.436 

150.40.3 36.8769 36.8769 0.60 36.8769 0.60 8.353  36.97655 0.87 37.16228 1.38 11.466 

150.40.4 35.5854 35.5854 1.63 35.7586 2.12 10.29  35.67847 1.89 36.37678 3.89 11.46 

200.10.1 10.0956 10.0956 0.01 10.1574 0.62 10.446  10.25848 1.62 10.39568 2.98 13.022 

200.10.2 10.2855 10.2855 0.00 10.5303 2.38 10.597  10.2855 0.00 10.2855 0.00 7.048 

200.10.3 9.10497 9.10497 0.00 9.10497 0.00 13.983  9.1988 1.03 9.31069 2.26 14.838 

200.10.4 10.1251 10.1251 0.00 10.1251 0.00 15.617  10.1251 0.00 10.15315 0.28 12.996 

200.20.1 21.2151 21.2185 0.02 21.2185 0.02 15.755  21.2151 0.00 21.43482 1.04 12.057 

200.20.2 21.0193 21.0193 0.00 21.1948 0.83 17.884  21.0193 0.00 21.40677 1.84 16.344 

200.20.3 19.0312 19.0312 0.00 19.0312 0.00 19.398  19.0312 0.00 19.0312 0.00 15.082 

200.20.4 18.884 18.884 0.00 19.184 1.59 19.547  18.884 0.00 18.94839 0.34 17.563 

200.30.1 30.073 30.073 0.00 30.683 2.03 19.699  30.46585 1.31 30.52591 1.51 20.538 

200.30.2 32.0915 32.0915 0.00 32.0915 0.00 19.835  32.46581 1.17 32.51378 1.32 24.934 

200.30.3 32.0835 32.0835 0.00 32.0967 0.04 21.699  32.0835 0.00 32.4495 1.14 19.011 

200.30.4 32.0375 32.0375 0.00 32.0375 0.00 21.853  32.46979 1.35 33.05164 3.17 24.659 

200.40.1 41.2954 41.2954 0.00 41.5796 0.69 22.018  41.2954 0.00 41.88108 1.42 17.765 

200.40.2 43.0717 43.0717 0.00 43.1256 0.13 25.568  43.0717 0.00 43.82258 1.74 19.325 

200.40.3 43.1857 43.1857 0.00 43.1857 0.00 26.182  43.46598 0.65 44.08434 2.08 28.089 

200.40.4 42.0313 42.0313 0.00 42.0313 0.00 26.428  42.86598 1.99 42.92061 2.12 30.071 

Avg 22.04963 22.14336 1.23 22.38453 3.13 11.497   22.15204 0.61 22.36 1.49 9.85 
              a Best-known solution results provided from Euchi and Sadok (2020) 
              bResults provided by the ALNS of Euchi and Sadok (2020) programmed on C++ language and executed on Intel Core i5-2450M with  
         2.50 GHz and 4GB of RAM. 

Given the results of Table 4, we conclude that our algorithm outperforms on average the HGA of 

Euchi and Sadok (2020) even with small gap. Our AMS-SA improves the results of Euchi and Sadok 
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(2020) in the average deviation (Best%) for the best-known solutions results over ten runs by 0.61% 

compared to 1.23% for the HGA. The AMS-SA has an average deviation (Avg%) of 1.49%, against 

3.74% of the HGA. In addition, our algorithm is faster than the HGA by reporting an average of 9.850 

seconds compared to 11.497 seconds reported by the HGA. All in all and based on the results in Table 

4, we conclude that our AMS-SA is more effective than HGA of Euchi and Sadok (2020). We believe 

that this is due to the additional diversification and intensification mechanisms introduced in our 

algorithm which allow the converge toward good quality solutions. In the next subsection, we analyse 

the impact of the different algorithm components to analyse their effectiveness. 

6.4. Impact of the different AMS-SA features 

In AMS-SA, several features namely, the multi-start approach, the crossover operator, restoring to 

the same neighborhood search, and controlling the temperature parameter by the Cauchy function  are 

applied. We believe these components are crucial for the good performance of our algorithm. In this 

subsection, we evaluate the impact of each of these algorithmic components. We compare seven 

different algorithms, each implementing a different set of features. We denote these algorithms SA1, 

SA2, SA3, SA4, SA5, SA6, and SA7. Table 5 shows the features included in each of the algorithms. 

Table 5 

Combinations of algorithmic features 

Features  SA1 SA2 SA3 SA4 SA5 SA6 SA7 

Cauchy function         

Returning to the same neighborhood operator in case 

the new solution is accepted 

        

Reducing the temperature when 𝑥𝑏𝑒𝑠𝑡  is not improved         

Crossover operator         

Multi-start approach         

For instance, algorithm SA1 implements only the Cauchy function for controlling the temperature 

parameter (i.e., without crossover and multi-start), and hence it is equivalent to the traditional SA.  

Algorithm SA2 implements both the Cauchy function and the option to return to the same neighborhood 

operator in case the new solution is accepted. Algorithm SA7 implements all the features. In Table 6, 

we provide a comparison between these different algorithm configurations, where all variants are run 

on the VRP-D benchmark instances of Sacramento et al. (2019). We report the gap percentage “Best%” 

and “Avg%” values that represent the deviation gap from the best-known solutions (BKS).  
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Table 6 

Components of the AMS-SA  

Inst. BKSa 
HGAb SA1 SA2 SA3 SA4 SA5 SA6 SA7 

Avg% Best% Avg% Best% Avg% Best% Avg% Best% Avg% Best% Avg% Best% Avg% Best% Avg% Best% 

100.10.1 6.36332 0.35 0.00 3.47 2.66 2.93 1.85 2.66 1.59 2.45 1.32 1.59 0.53 2.12 0.26 0.00 0.00 

100.10.3 7.18353 14.52 13.03 3.69 3.11 3.30 2.53 3.11 2.34 2.87 2.15 2.34 1.58 2.72 1.39 2.92 1.20 

100.10.4 6.89257 2.20 0.00 10.60 8.42 9.14 6.28 8.42 5.57 7.45 4.88 5.57 2.81 6.98 2.13 2.79 1.45 

100.20.1 12.54100 5.61 0.00 9.18 6.99 7.71 4.84 6.99 4.14 6.68 3.44 4.14 1.36 5.57 0.68 1.78 0.00 

100.20.2 14.01180 4.18 0.00 1.90 1.46 1.61 1.02 1.46 0.87 1.42 0.73 0.87 0.29 1.20 0.15 0.00 0.00 

100.20.3 12.48790 0.36 0.00 5.28 4.09 4.49 2.91 4.09 2.52 3.41 2.13 2.52 0.98 3.30 0.59 0.21 0.21 

100.20.4 12.13500 0.67 0.00 1.85 1.42 1.57 0.99 1.42 0.85 1.18 0.71 0.85 0.28 1.11 0.14 0.89 0.00 

100.30.1 22.58820 5.81 4.34 4.62 3.93 4.16 3.25 3.93 3.03 3.79 2.80 3.03 2.13 3.46 1.91 2.86 1.68 

100.30.2 22.03960 0.43 0.00 3.79 2.91 3.20 2.02 2.91 1.73 2.44 1.44 1.73 0.57 2.32 0.29 1.60 0.00 

100.30.3 23.29880 0.88 0.00 3.32 2.54 2.80 1.77 2.54 1.52 2.17 1.26 1.52 0.50 2.02 0.25 0.00 0.00 

100.40.1 29.13970 1.40 0.00 5.04 4.27 4.53 3.49 4.27 3.24 4.05 2.98 3.24 2.22 3.74 1.97 2.27 1.72 

100.40.2 30.36100 0.17 0.00 3.15 2.41 2.66 1.68 2.41 1.44 2.01 1.20 1.44 0.48 1.94 0.24 1.42 0.00 

100.40.3 29.01120 0.18 0.00 4.03 3.09 3.40 2.15 3.09 1.84 2.58 1.53 1.84 0.61 2.48 0.30 0.28 0.00 

100.40.4 28.59040 0.16 0.00 11.95 9.34 10.20 6.78 9.34 5.94 7.71 5.11 5.94 2.66 7.62 1.85 1.74 1.05 

150.10.1 8.58650 12.23 0.00 2.18 1.67 1.84 1.17 1.67 1.00 1.54 0.83 1.00 0.33 1.33 0.17 0.56 0.00 

150.10.2 8.14615 33.82 0.00 7.16 5.46 6.03 3.79 5.46 3.24 5.06 2.70 3.24 1.07 4.34 0.53 0.00 0.00 

150.10.3 8.49602 15.85 14.23 12.26 9.84 10.64 7.47 9.84 6.70 8.63 5.93 6.70 3.65 8.26 2.90 4.10 2.15 

150.10.4 8.83734 24.16 22.55 11.10 8.89 9.62 6.72 8.89 6.00 8.76 5.29 6.00 3.19 7.43 2.50 2.49 1.82 

150.20.1 17.00990 3.57 0.00 12.00 9.11 10.07 6.29 9.11 5.37 8.06 4.46 5.37 1.76 7.23 0.88 1.80 0.00 

150.20.2 16.18370 2.78 0.00 7.03 5.51 6.01 4.02 5.51 3.53 4.93 3.04 3.53 1.58 4.49 1.10 2.48 0.62 

150.20.3 16.98300 0.00 0.00 12.60 10.06 10.90 7.57 10.06 6.75 9.42 5.94 6.75 3.55 8.40 2.76 3.00 1.98 

150.20.4 16.81020 0.00 0.00 11.56 8.88 9.77 6.27 8.88 5.41 8.34 4.56 5.41 2.05 7.14 1.22 0.57 0.41 

150.30.1 25.85240 0.00 0.00 3.21 2.46 2.71 1.71 2.46 1.47 2.20 1.22 1.47 0.49 1.96 0.24 0.28 0.00 

150.30.2 26.13700 0.00 0.00 10.03 7.63 8.42 5.28 7.63 4.51 7.36 3.74 4.51 1.48 6.06 0.74 0.51 0.00 

150.30.3 25.01010 0.00 0.00 10.87 8.44 9.25 6.06 8.44 5.28 7.75 4.50 5.28 2.21 6.84 1.46 0.91 0.71 

150.30.4 25.98120 0.00 0.00 7.06 5.39 5.94 3.74 5.39 3.20 4.77 2.66 3.20 1.05 4.27 0.53 0.00 0.00 

150.40.1 29.46830 1.35 0.00 8.12 6.19 6.83 4.30 6.19 3.67 5.06 3.05 3.67 1.21 4.93 0.60 1.57 0.00 

150.40.2 35.23430 2.14 0.00 6.53 5.22 5.66 3.92 5.22 3.49 4.67 3.07 3.49 1.80 4.36 1.38 2.95 0.96 

150.40.3 36.65740 0.60 0.60 3.48 2.87 3.07 2.26 2.87 2.06 2.62 1.86 2.06 1.27 2.46 1.07 1.38 0.87 

150.40.4 35.01560 2.12 1.63 3.24 2.93 3.04 2.62 2.93 2.51 2.79 2.41 2.51 2.10 2.73 2.00 3.89 1.89 

200.10.1 10.09450 0.62 0.01 12.43 9.84 10.70 7.31 9.84 6.48 8.28 5.65 6.48 3.22 8.18 2.42 2.98 1.62 

200.10.2 10.28550 2.38 0.00 9.57 7.28 8.04 5.04 7.28 4.31 6.58 3.58 4.31 1.42 5.78 0.71 0.00 0.00 

200.10.3 9.10497 0.00 0.00 2.94 2.50 2.65 2.06 2.50 1.91 2.21 1.76 1.91 1.32 2.21 1.18 2.26 1.03 

200.10.4 10.12510 0.00 0.00 4.61 3.53 3.89 2.46 3.53 2.10 2.95 1.75 2.10 0.70 2.81 0.35 0.28 0.00 

200.20.1 21.21510 0.02 0.02 10.99 8.56 9.37 6.18 8.56 5.40 7.14 4.63 5.40 2.34 6.95 1.58 1.04 0.00 

200.20.2 21.01930 0.83 0.00 11.98 9.10 10.05 6.28 9.10 5.36 8.35 4.45 5.36 1.76 7.23 0.87 1.84 0.00 

200.20.3 19.03120 0.00 0.00 11.85 9.00 9.94 6.22 9.00 5.30 8.73 4.40 5.30 1.74 7.14 0.87 0.00 0.00 

200.20.4 18.88400 1.59 0.00 4.96 3.80 4.18 2.64 3.80 2.26 3.28 1.88 2.26 0.75 3.05 0.37 0.34 0.00 

200.30.1 30.07300 2.03 0.00 13.39 10.48 11.44 7.64 10.48 6.71 8.61 5.79 6.71 3.08 8.57 2.19 1.51 1.31 

200.30.2 32.09150 0.00 0.00 6.08 4.92 5.31 3.78 4.92 3.40 4.73 3.03 3.40 1.91 4.17 1.54 1.32 1.17 

200.30.3 32.08350 0.04 0.00 7.86 5.99 6.61 4.16 5.99 3.55 5.94 2.95 3.55 1.17 4.76 0.58 1.14 0.00 

200.30.4 32.03750 0.00 0.00 6.97 5.65 6.08 4.34 5.65 3.91 5.33 3.48 3.91 2.19 4.78 1.77 3.17 1.35 

200.40.1 41.29540 0.69 0.00 3.85 2.95 3.25 2.05 2.95 1.76 2.92 1.46 1.76 0.58 2.36 0.29 1.42 0.00 

200.40.2 43.07170 0.13 0.00 5.10 3.90 4.30 2.71 3.90 2.32 3.52 1.93 2.32 0.77 3.11 0.38 1.74 0.00 

200.40.3 43.18570 0.00 0.00 4.07 3.27 3.54 2.48 3.27 2.21 2.98 1.95 2.21 1.17 2.74 0.91 2.08 0.65 

200.40.4 42.03130 0.00 0.00 8.78 7.17 7.71 5.59 7.17 5.07 7.15 4.55 5.07 3.00 6.11 2.49 2.12 1.99 

Avg 22.01483 3.13 1.23 7.08 5.55 6.05 4.04 5.55 3.54 5.02 3.05 3.54 1.58 4.54 1.10 1.49 0.61 
a Best-known solution results provided from Euchi and Sadok (2020) 
b Results provided by the ALNS of Euchi and Sadok (2020) programmed on C++ language and executed on Intel Core i5-2450M with 2.50 

GHz and 4GB of RAM. 

 

From Table 6, the HGA of Euchi and Sadok (2020) outperforms algorithm SA1. The average gaps 

for the best solution and the average solution of the SA1 from the best know solutions results are 5.55% 

and 7.05%, respectively. Furthermore, we observe a slight improvement, compared to the traditional SA 

(SA1), when we incorporate the new way of controlling the temperature parameter (i.e., algorithm SA2) 
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and the restoring to the same neighborhood operator technique (i.e., algorithm SA3). The average gaps 

are 4.04% (5.04%) and 3.54% (4.54%) for SA2, and SA3, respectively. Some improvements are 

achieved when combining the features of SA2 and SA3, resulting in algorithm SA4. Yet, the algorithm 

does not outperform the HGA of Euchi and Sadok (2020). In fact, an average gap improvement of 0.99% 

(to the best solution) and 1.02% (with regard to the average solution) compared to SA2, and 0.49% (to 

the best solution) and 0.52% (with regard to the average solution) compared to SA3. We believe this 

improvement is due to the diversification mechanism that facilitates exploring different search regions 

by using the new way of controlling the temperature parameter. The intensification capability is 

contributed by the restoring mechanism. We start observing the outperformance of our algorithm over 

the other combinations when we include the crossover operator (i.e., algorithm SA5). We only start 

outperforming HGA of Euchi and Sadok (2020) on the average of best solutions (columns Best%) when 

we include the multi-start approach resulting in algorithm SA6 by obtaining an average gap equal to 

1.10% compared to 1.23% for the HGA. 

On average, SA5 and SA6 deviate from the best-known results by 1.58% (3.54%) and 1.10% 

(4.53%), respectively. This can be explained by the good diversification capabilities of crossover in 

combination SA5. In addition, by including either the multi-start approach into the combination SA4, 

which refers to the combination SA7, or the crossover operator (SA6), we observe that the algorithm 

does not outperform HGA of Euchi and Sadok (2020). Thus, we believe that applying only this strategy 

cannot escape from the convergence to local optima. However, when applying together all components 

(features), we find that the new combination SA7 outperforms of the HGA in averages by reporting 

average gap of 0.60% (1.49%), compared to 1.23% (3.13%) obtained by Euchi and Sadok (2020). In 

conclusion, the adoption of all components provides both diversification and intensification during the 

search to the traditional SA and appears as the most effective combination, compared to the other 

combinations. 

6.5. Effect of pickup packages under recharging energy 

In this subsection, we investigate the impact of picking up packages during recharging energy. We 

consider two scenarios: (i) packages can be picked up by a drone during recharging on a truck 

(depending on the capacity), and (ii) packages cannot be picked up by a drone during recharging / 

swapping batteries on a truck. A small set of instances is selected with different characteristics, e.g., 

number of customers, tight and wide time windows, and different customers locations (clustered and 

randomly dispersed). The results of the two scenarios are reported in Table 7. 
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                                  Table 7 

                                  An analysis of the benefits of using loading items under recharging drone battery 

Inst. 

First scenario   Second scenario 

Best Avg   Best Best% Avg Avg% 
CPU 

(min) 

c102 1195.99 1182.30  1163.10 -2.75 1119.83 -6.37 0.95 

c104 1253.90 1180.38  1250.64 -0.26 1233.76 -1.61 1.09 

c105 825.55 812.20  819.94 -0.68 800.67 -3.01 1.66 

c106 556.35 551.73  555.29 -0.19 548.57 -1.40 1.01 

c108 1122.84 1087.83  1079.84 -3.83 1019.80 -9.18 1.66 

c109 1281.53 1266.11  1269.23 -0.96 1244.73 -2.87 0.96 

c202 1275.96 1223.24  1244.19 -2.49 1181.36 -7.41 2.50 

c204 1330.49 1320.20  1279.00 -3.87 1198.30 -9.94 2.35 

c206 1933.53 1921.67  1882.68 -2.63 1792.50 -7.29 2.11 

c207 1660.66 1648.03  1589.58 -4.28 1477.99 -11.00 2.63 

r102 910.65 899.30  884.33 -2.89 834.10 -8.41 2.72 

r104 877.41 864.94  889.34 1.36 881.87 0.51 2.24 

r105 747.90 738.11  735.11 -1.71 690.20 -7.72 4.33 

r107 1391.46 1377.53  1338.31 -3.82 1344.06 -3.41 3.52 

r110 1347.98 1337.17  1386.13 2.83 1366.03 1.34 2.54 

r201 1209.47 1199.25  1214.31 0.40 1202.29 -0.59 3.58 

r202 1092.47 1073.46  1064.61 -2.55 1007.76 -7.75 2.72 

r206 1032.19 1005.27  1003.50 -2.78 952.12 -7.76 2.27 

r207 2027.92 1993.21  2090.99 3.11 2126.54 4.86 1.46 

r208 1631.45 1592.06  1586.59 -2.75 1517.41 -6.99 1.56 

r210 1734.09 1631.64  1672.88 -3.53 1708.51 -1.48 1.45 

rc105 974.47 959.33  987.14 1.30 975.79 0.14 0.87 

rc107 1279.52 1240.29  1246.64 -2.57 1200.51 -6.17 1.10 

rc108 959.95 926.84  952.37 -0.79 933.03 -2.80 1.22 

rc202 1161.81 1132.85  1148.33 -1.16 1108.95 -4.55 2.24 

rc203 1101.82 1068.76  1059.40 -3.85 992.34 -9.94 2.39 

Avg 1227.59 1201.30   1207.44 -1.59 1171.50 -4.65 2.04 

Table 7 suggests that the second scenario decrease the total revenue by an average gap of 1.59%. 

This is reasonable because a detour to a truck is required for picking up packages, and trucks may be 

needed to deliver the small packages, but they are slower than drones (Chung et al., 2020). 

6.6. Impact of using different drones’ configurations 

In this section, we analyse the impact of using different drones’ configuration. To do so, we consider 

three configurations for the resources of the drone that can be accommodated as described in the Table 

8.                              

                                   Table 8  

                                Drone configurations 

Configuration 
Resources 

20 cm3 40 cm3 60 cm3 

C1 4 0 0 

C2 0 4 0 

C3 0 0 4 

 
Taking for example, the first configuration C1, that contain four places associated for the packages 

of size 20 cm3, zero place for the packages of size of 40 cm3 and zero place for the packages of size 60 

cm3. 
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Table 9 report the best (average) solutions results using each configuration C1, C2 and C3 of each 

solution found on each given instance. The columns Best%(Avg%) present the percentage of the 

deviation from the best solutions found by our main configuration denoted C0 of this paper which is 

two places associated for the packages of size 20 cm3, one place for the packages of size of 40 cm3 and 

one place for the packages of size 60 cm3. We note that the trucks are used in tandem with the drone in 

each configuration.  

Table 9  

Results of using different drones’ configurations profiles 

Inst 

C0 C1 C2 C3 

Best Avg Best Best% Avg Avg% Best Best% Avg Avg% Best Best% Avg Avg% 

c101 886.89 882.97 882.10 -0.54 870.63 -1.83 884.85 -0.23 876.00 -1.23 882.81 -0.46 872.04 -1.67 

c102 1191.05 1190.52 1188.91 -0.18 1177.73 -1.12 1188.91 -0.18 1177.73 -1.12 1190.22 -0.07 1180.34 -0.90 

c103 1096.76 1094.83 1097.42 0.06 1094.35 -0.22 1093.69 -0.28 1092.16 -0.42 1097.31 0.05 1094.13 -0.24 

c104 1247.78 1239.50 1237.80 -0.80 1226.53 -1.70 1247.16 -0.05 1245.04 -0.22 1240.67 -0.57 1232.23 -1.25 

c105 804.72 796.95 804.16 -0.07 798.29 -0.80 804.64 -0.01 799.25 -0.68 805.04 0.04 800.13 -0.57 

c106 552.53 537.74 549.10 -0.62 542.85 -1.75 550.93 -0.29 546.47 -1.10 552.59 0.01 549.77 -0.50 

c107 1217.08 1214.33 1214.04 -0.25 1200.20 -1.39 1220.00 0.24 1212.07 -0.41 1217.20 0.01 1206.49 -0.87 

c108 1105.68 1095.87 1097.50 -0.74 1082.57 -2.09 1103.91 -0.16 1097.40 -0.75 1100.37 -0.48 1088.27 -1.57 

c109 1275.84 1271.97 1265.76 -0.79 1253.48 -1.75 1273.93 -0.15 1272.91 -0.23 1269.59 -0.49 1261.08 -1.16 

c201 1067.41 1062.93 1065.17 -0.21 1059.74 -0.72 1069.22 0.17 1067.94 0.05 1065.81 -0.15 1061.12 -0.59 

c202 1258.99 1251.63 1254.96 -0.32 1240.65 -1.46 1258.86 -0.01 1248.54 -0.83 1254.58 -0.35 1239.90 -1.52 

c203 1586.48 1580.65 1586.64 0.01 1576.64 -0.62 1583.31 -0.20 1570.01 -1.04 1583.47 -0.19 1570.32 -1.02 

c204 1318.80 1307.70 1313.52 -0.40 1305.91 -0.98 1315.11 -0.28 1309.06 -0.74 1313.92 -0.37 1306.69 -0.92 

c205 1279.98 1279.70 1275.12 -0.38 1261.85 -1.42 1278.96 -0.08 1269.49 -0.82 1279.08 -0.07 1269.75 -0.80 

c206 1924.72 1905.43 1916.06 -0.45 1902.26 -1.17 1920.29 -0.23 1910.69 -0.73 1918.37 -0.33 1906.86 -0.93 

c207 1636.11 1618.28 1637.42 0.08 1627.59 -0.52 1631.69 -0.27 1620.11 -0.98 1631.04 -0.31 1614.73 -1.31 

c208 1591.56 1590.86 1587.26 -0.27 1574.72 -1.06 1579.62 -0.75 1570.62 -1.32 1592.67 0.07 1585.35 -0.39 

Avg C 1237.79 1230.70 1233.70 -0.35 1223.29 -1.21 1235.59 -0.16 1228.56 -0.74 1234.98 -0.22 1225.84 -0.95 

r101 857.68 819.33 855.11 -0.30 850.49 -0.84 856.82 -0.10 853.91 -0.44 853.13 -0.53 846.57 -1.30 

r102 865.05 828.71 858.91 -0.71 848.86 -1.87 869.29 0.49 863.38 -0.19 865.83 0.09 862.63 -0.28 

r103 756.32 736.32 751.48 -0.64 742.99 -1.76 758.59 0.30 757.22 0.12 756.24 -0.01 752.54 -0.50 

r104 842.43 819.54 838.22 -0.50 833.52 -1.06 843.10 0.08 843.19 0.09 840.83 -0.19 838.73 -0.44 

r105 728.70 717.43 727.75 -0.13 723.46 -0.72 730.16 0.20 728.19 -0.07 727.46 -0.17 722.81 -0.81 

r106 1371.38 1298.89 1372.48 0.08 1373.30 0.14 1371.79 0.03 1371.79 0.03 1365.89 -0.40 1360.02 -0.83 

r107 1344.71 1301.23 1340.41 -0.32 1328.34 -1.22 1351.57 0.51 1342.38 -0.17 1339.20 -0.41 1325.94 -1.40 

r108 734.55 725.05 733.96 -0.08 726.99 -1.03 733.52 -0.14 726.11 -1.15 730.51 -0.55 720.06 -1.97 

r109 1184.05 1137.95 1179.08 -0.42 1166.23 -1.51 1185.94 0.16 1179.90 -0.35 1180.73 -0.28 1169.52 -1.23 

r110 1318.89 1293.57 1321.00 0.16 1314.26 -0.35 1318.10 -0.06 1308.34 -0.80 1312.95 -0.45 1298.25 -1.56 

r111 877.34 845.06 870.85 -0.74 857.09 -2.31 875.59 -0.20 866.48 -1.24 878.83 0.17 873.03 -0.49 

r112 1169.42 1155.87 1165.91 -0.30 1154.49 -1.28 1170.12 0.06 1162.87 -0.56 1167.78 -0.14 1158.21 -0.96 

r201 1145.02 1099.80 1138.15 -0.60 1131.21 -1.21 1145.25 0.02 1145.48 0.04 1141.81 -0.28 1138.62 -0.56 

r202 1062.64 1061.96 1055.52 -0.67 1046.97 -1.47 1062.53 -0.01 1061.05 -0.15 1059.24 -0.32 1054.37 -0.78 

r203 1130.49 1126.42 1123.59 -0.61 1111.35 -1.69 1129.25 -0.11 1122.58 -0.70 1130.49 0.00 1124.95 -0.49 

r204 1104.19 1089.18 1098.12 -0.55 1082.19 -1.99 1101.43 -0.25 1088.76 -1.40 1098.12 -0.55 1082.08 -2.00 

r205 1599.18 1591.84 1601.74 0.16 1592.13 -0.44 1601.42 0.14 1591.49 -0.48 1599.98 0.05 1588.62 -0.66 

r206 997.14 983.22 989.66 -0.75 976.99 -2.02 996.54 -0.06 990.66 -0.65 993.25 -0.39 984.11 -1.31 

r207 1936.24 1899.32 1926.75 -0.49 1905.37 -1.59 1940.50 0.22 1932.93 -0.17 1936.24 0.00 1924.24 -0.62 

r208 1590.11 1589.14 1581.52 -0.54 1558.75 -1.97 1590.27 0.01 1576.12 -0.88 1585.18 -0.31 1566.00 -1.52 

r209 1979.24 1967.86 1971.92 -0.37 1947.07 -1.63 1975.28 -0.20 1953.95 -1.28 1977.46 -0.09 1958.08 -1.07 

r210 1716.47 1716.04 1705.31 -0.65 1680.42 -2.10 1721.62 0.30 1713.01 -0.20 1711.66 -0.28 1693.18 -1.36 

r211 1611.58 1590.44 1604.01 -0.47 1591.65 -1.24 1606.91 -0.29 1597.59 -0.87 1613.03 0.09 1609.64 -0.12 

Avg R 1214.04 1191.05 1209.19 -0.41 1197.57 -1.35 1214.59 0.05 1207.71 -0.50 1211.56 -0.22 1202.27 -0.97 

rc101 705.96 697.64 702.85 -0.44 694.14 -1.67 702.50 -0.49 698.57 -1.05 704.62 -0.19 697.71 -1.17 

rc102 919.33 900.22 912.34 -0.76 904.95 -1.56 916.66 -0.29 913.55 -0.63 914.55 -0.52 909.34 -1.09 

rc103 879.11 859.40 875.86 -0.37 867.80 -1.29 881.66 0.29 879.46 0.04 876.03 -0.35 868.24 -1.24 

rc104 763.37 759.67 757.80 -0.73 751.36 -1.57 763.14 -0.03 762.00 -0.18 762.76 -0.08 761.23 -0.28 

rc105 943.89 922.49 944.83 0.10 944.65 0.08 944.27 0.04 943.61 -0.03 944.27 0.04 943.51 -0.04 

rc106 672.74 658.70 671.87 -0.13 668.84 -0.58 671.19 -0.23 667.50 -0.78 672.40 -0.05 669.85 -0.43 
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rc107 1255.21 1240.28 1248.31 -0.55 1239.32 -1.27 1255.59 0.03 1253.83 -0.11 1251.07 -0.33 1244.81 -0.83 

rc108 944.89 941.81 941.11 -0.40 930.66 -1.51 944.04 -0.09 936.49 -0.89 944.61 -0.03 937.62 -0.77 

rc201 1541.24 1536.49 1534.46 -0.44 1522.80 -1.20 1538.62 -0.17 1531.08 -0.66 1539.70 -0.10 1533.23 -0.52 

rc202 1131.43 1102.39 1130.98 -0.04 1123.06 -0.74 1129.96 -0.13 1120.92 -0.93 1129.73 -0.15 1120.47 -0.97 

rc203 1063.97 1037.20 1055.99 -0.75 1039.52 -2.30 1065.35 0.13 1058.22 -0.54 1065.03 0.10 1057.58 -0.60 

rc204 1519.90 1501.97 1516.56 -0.22 1499.57 -1.34 1515.95 -0.26 1498.51 -1.41 1512.76 -0.47 1492.03 -1.83 

rc205 1461.94 1456.31 1463.40 0.10 1461.65 -0.02 1457.55 -0.30 1449.97 -0.82 1464.86 0.20 1464.57 0.18 

rc206 1421.86 1410.88 1420.44 -0.10 1416.75 -0.36 1421.43 -0.03 1421.86 0.00 1415.32 -0.46 1406.54 -1.08 

rc207 1336.45 1331.13 1336.72 0.02 1326.83 -0.72 1333.91 -0.19 1321.11 -1.15 1333.64 -0.21 1320.57 -1.19 

rc208 1619.83 1607.53 1618.70 -0.07 1605.42 -0.89 1621.13 0.08 1610.43 -0.58 1614.32 -0.34 1596.73 -1.43 

Avg RC 1136.32 1122.76 1133.26 -0.30 1124.83 -1.06 1135.18 -0.10 1129.19 -0.61 1134.10 -0.18 1126.50 -0.83 

Avg 1196.05 1181.50 1192.05 -0.35 1181.90 -1.21 1195.12 -0.07 1188.49 -0.61 1193.55 -0.20 1184.87 -0.92 

The results show that using the second configuration C2 provide a similar result with the respect of 

the main configuration C0. Using configuration C1 lead to increase the revenue cost and provide higher 

gap compared to the other configurations with an average gap equal to 0.35% compared to 0.07 % for 

C2 and 0.20% for C3. In addition, we can see that using the configuration C2 in data set R where the 

customers are randomly located provide much better results than the other configurations with an 

improvement (positive value) of 0.05%. We can conclude that by choosing the right drone configuration, 

the revenue costs can be significantly augmented, and that the magnitude of the increasing also depends 

on the nature of the instances (clustered or random). 

6.7. Impact of the time windows 

In this subsection, we evaluate the impact of using the time windows. We are interested in making 

a comparison between instances with and without time windows and see how this could affect the 

performance of the VRP-D-MC solution. To do so, we keep the same instances described in subsection 

6.1 by removing the time windows. The results with and without time windows are given in Table 10 

by reporting the waiting time on each instance. Columns “Best” (“Avg”) represent the best (average) 

solutions values for both with and without time windows cases. The column “Best%” (“Avg%”) 

indicates the percentage of deviation from the best solutions established by using time windows (our 

main problem). The column “Waiting” presents the waiting time. We note that the positive percent 

deviations when deleting time windows indicate an improvement in solution with respect to the best 

value found by using time windows. 

              Table 10 

              Comparison between with and without time windows 

Inst 
With Time Windows   Without Time Windows 

Best Avg Waiting CPU(min)   Best Best% Avg Avg% Waiting CPU(min) 

c101 886.89 882.97 14.81 1.41  959.30 8.16 876.37 -1.19 0.00 1.01 

c102 1191.05 1190.52 21.23 1.56  1394.47 17.08 1155.58 -2.98 0.00 1.13 

c103 1096.76 1094.83 11.31 1.34  1178.31 7.44 1088.47 -0.76 0.00 0.96 

c104 1247.78 1239.50 14.66 0.82  1370.87 9.87 1225.58 -1.78 0.00 0.62 

c105 804.72 796.95 14.45 1.10  874.07 8.62 789.49 -1.89 0.00 0.78 

c106 552.53 537.74 15.28 1.16  572.97 3.70 535.43 -3.09 0.00 0.85 

c107 1217.08 1214.33 13.61 2.16  1321.32 8.56 1204.90 -1.00 0.00 1.57 

c108 1105.68 1095.87 15.03 2.18  1200.99 8.62 1085.79 -1.80 0.00 1.62 

c109 1275.84 1271.97 16.15 2.38  1441.43 12.98 1249.39 -2.07 0.00 1.70 

Avg C1 1042.04 1036.08 15.17 1.57   1145.97 9.45 1023.44 -1.84 0.00 1.14 

c201 1067.41 1062.93 7.44 2.25  1106.80 3.69 1061.12 -0.59 0.00 1.72 
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c202 1258.99 1251.63 8.06 2.94  1307.65 3.86 1249.12 -0.78 0.00 2.22 

c203 1586.48 1580.65 6.37 2.13  1668.23 5.15 1575.80 -0.67 0.00 1.65 

c204 1318.80 1307.70 9.19 3.35  1368.26 3.75 1304.90 -1.05 0.00 2.48 

c205 1279.98 1279.70 7.95 2.78  1349.02 5.39 1275.94 -0.32 0.00 2.01 

c206 1924.72 1905.43 9.29 2.91  1981.64 2.96 1902.38 -1.16 0.00 2.15 

c207 1636.11 1618.28 8.78 3.44  1703.29 4.11 1613.81 -1.36 0.00 2.61 

c208 1591.56 1590.86 9.25 2.93  1679.48 5.52 1585.92 -0.35 0.00 2.25 

Avg C2 1458.01 1449.65 8.29 2.84   1520.54 4.30 1446.13 -0.79 0.00 2.14 

r101 857.68 819.33 5.47 0.90  874.39 1.95 815.63 -4.90 0.00 0.66 

r102 865.05 828.71 6.02 1.02  876.55 1.33 825.95 -4.52 0.00 0.76 

r103 756.32 736.32 5.10 1.56  767.48 1.48 735.00 -2.82 0.00 1.11 

r104 842.43 819.54 7.16 0.95  881.37 4.62 814.88 -3.27 0.00 0.70 

r105 728.70 717.43 6.03 1.60  770.77 5.77 713.46 -2.09 0.00 1.15 

r106 1371.38 1298.89 6.27 0.90  1369.28 -0.15 1295.07 -5.56 0.00 0.64 

r107 1344.71 1301.23 6.54 2.36  1385.23 3.01 1295.81 -3.64 0.00 1.68 

r108 734.55 725.05 6.11 2.24  764.20 4.04 722.94 -1.58 0.00 1.61 

r109 1184.05 1137.95 5.91 2.12  1195.73 0.99 1135.02 -4.14 0.00 1.59 

r110 1318.89 1293.57 6.46 2.48  1371.54 3.99 1288.87 -2.28 0.00 1.81 

r111 877.34 845.06 6.15 2.60  880.91 0.41 843.54 -3.85 0.00 1.84 

r112 1169.42 1155.87 4.45 2.19  1186.02 1.42 1155.08 -1.23 0.00 1.65 

Avg R1 1004.21 973.25 5.97 1.74   1026.96 2.40 970.10 -3.32 0.00 1.27 

r201 1145.02 1099.80 0.51 3.90  1134.38 -0.93 1098.71 -4.04 0.00 2.86 

r202 1062.64 1061.96 0.94 3.24  1070.05 0.70 1061.90 -0.07 0.00 2.35 

r203 1130.49 1126.42 0.00 2.47  1126.42 -0.36 1126.42 -0.36 0.00 1.82 

r204 1104.19 1089.18 0.00 3.50  1102.86 -0.12 1089.01 -1.37 0.00 2.55 

r205 1599.18 1591.84 1.41 2.58  1591.84 -0.46 1591.84 -0.46 0.00 1.94 

r206 997.14 983.22 0.00 3.04  1011.39 1.43 982.41 -1.48 0.00 2.14 

r207 1936.24 1899.32 2.06 3.71  1929.29 -0.36 1898.85 -1.93 0.00 2.82 

r208 1590.11 1589.14 0.81 4.55  1662.53 4.55 1585.75 -0.27 0.00 3.37 

r209 1979.24 1967.86 0.00 4.56  2003.45 1.22 1967.22 -0.61 0.00 3.34 

r210 1716.47 1716.04 0.00 4.09  1733.37 0.98 1715.87 -0.04 0.00 3.12 

r211 1611.58 1590.44 2.58 5.94  1610.80 -0.05 1590.18 -1.33 0.00 4.30 

Avg R2 1442.94 1428.66 0.76 3.78   1452.40 0.60 1428.01 -1.09 0.00 2.78 

rc101 705.96 697.64 10.56 1.40  741.69 5.06 694.86 -1.57 0.00 1.05 

rc102 919.33 900.22 11.90 1.51  958.36 4.25 896.47 -2.49 0.00 1.14 

rc103 879.11 859.40 8.88 1.38  913.79 3.95 855.96 -2.63 0.00 1.00 

rc104 763.37 759.67 11.96 0.84  804.80 5.43 756.99 -0.84 0.00 0.63 

rc105 943.89 922.49 9.94 1.11  975.34 3.33 919.46 -2.59 0.00 0.79 

rc106 672.74 658.70 10.90 1.10  700.87 4.18 656.00 -2.49 0.00 0.82 

rc107 1255.21 1240.28 10.97 2.12  1338.40 6.63 1232.52 -1.81 0.00 1.56 

rc108 944.89 941.81 11.37 2.40  1002.49 6.10 937.90 -0.74 0.00 1.77 

Avg RC1 885.56 872.53 10.81 1.48   929.47 4.86 868.77 -1.89 0.00 1.10 

rc201 1541.24 1536.49 5.30 2.44  1623.12 5.31 1531.61 -0.63 0.00 1.82 

rc202 1131.43 1102.39 1.57 2.18  1139.76 0.74 1101.12 -2.68 0.00 1.65 

rc203 1063.97 1037.20 0.00 2.90  1067.98 0.38 1036.29 -2.60 0.00 2.05 

rc204 1519.90 1501.97 2.46 2.18  1577.74 3.81 1498.15 -1.43 0.00 1.60 

rc205 1461.94 1456.31 0.00 3.16  1527.70 4.50 1452.81 -0.62 0.00 2.28 

rc206 1421.86 1410.88 5.10 2.95  1462.11 2.83 1409.02 -0.90 0.00 2.12 

rc207 1336.45 1331.13 2.41 2.98  1389.36 3.96 1328.58 -0.59 0.00 2.19 

rc208 1619.83 1607.53 5.83 3.26  1651.73 1.97 1606.31 -0.83 0.00 2.49 

Avg RC2 1387.08 1372.99 2.83 2.76   1429.94 2.94 1370.49 -1.29 0.00 2.03 

Avg 1203.30 1188.86 7.31 2.36   1250.88 4.09 1184.49 -1.70 0.00 1.74 

 

From the Table 10, we can observe that in many instances a positive percent values are obtained 

when deleting time windows with an augmentation of 4.09% on the total revenue (last line). More 

specifically, high improvement is obtained in instances of type C1, R1 and RC1 where tight time 

windows are considered with an average gap equal to 9.45%, 2.40% and 4.86% compared to their 

counterparts C2, R2 and RC2 with an average gap equal to 4.30%, 0.60% and 2.94%. In addition, we 
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can observe that the instances of time C1 where the customers are randomly located provide the high 

saving costs with 9.45% while R2 that characterized with the customers are clustered and with the large 

time windows provide the less saving costs with 0.60%. The same observation can be given for the 

waiting time in which the instances of C1 provide about 15 minutes while the waiting time of the 

instances of type R2  is about one minute. We also note that in some instances, the waiting time is equal 

to zero under the time windows scenario 

7. Managerial insights 

In this section, several managerial insights have been conducted. In the first experiment, we aim to 

quantify the benefit of the “flexibility of returning the drone to another vehicle”. In the second 

experiment, we examine the impacts of using trucks only (i.e., without drones). In the third experiment, 

we analyse the impact of using drones with only a single compartment.  

7.1. Impact of flexible returning a drone to another vehicle 

We compare the performances of the VRP-D-MC where drones returning to another truck is allowed 

or not allowed. In Table 11, we denote by “Flexible Return” that refer to our proposed VRP-D-MC and 

by “Fixed Return” where each drone must return to the same vehicle where it is launched. 

 The columns “Best” and “Avg” in Table 11 report the best and average solution values, 

respectively. Moreover, the columns “Best%” and “Avg%” present the percentage of deviation from the 

best solution found when constraining the drone to return to the same vehicle (i.e., “Fixed Return”), and 

the column “CPU” refers to the average solution time in minutes. 

                  Table 11 

                  Comparison between VRP-D-MC with flexible returning and VRP-D-MC with fixed  

                   Returning 

Inst 

Fixed Return   Flexible Return 

Best Avg 
CPU 

(min) 
Best Best% Avg Avg% 

CPU 

(min) 

c101 886.89 882.97 1.41  887.90 0.11 879.23 -0.86 1.24 

c102 1191.05 1190.52 1.56  1195.99 0.41 1182.30 -0.73 1.36 

c103 1096.76 1094.83 1.34  1109.86 1.19 1093.55 -0.29 1.23 

c104 1247.78 1239.50 0.82  1253.90 0.49 1180.38 -5.40 0.78 

c105 804.72 796.95 1.10  825.55 2.59 812.20 0.93 1.04 

c106 552.53 537.74 1.16  556.35 0.69 551.73 -0.14 1.04 

c107 1217.08 1214.33 2.16  1230.75 1.12 1176.34 -3.35 2.11 

c108 1105.68 1095.87 2.18  1122.84 1.55 1087.83 -1.61 2.07 

c109 1275.84 1271.97 2.38  1281.53 0.45 1266.11 -0.76 2.05 

c201 1067.41 1062.93 2.25  1089.77 2.09 1058.43 -0.84 2.06 

c202 1258.99 1251.63 2.94  1275.96 1.35 1223.24 -2.84 2.84 

c203 1586.48 1580.65 2.13  1594.00 0.47 1583.19 -0.21 1.94 

c204 1318.80 1307.70 3.35  1330.49 0.89 1320.20 0.11 3.06 

c205 1279.98 1279.70 2.78  1314.21 2.67 1294.86 1.16 2.57 

c206 1924.72 1905.43 2.91  1933.53 0.46 1921.67 -0.16 2.42 

c207 1636.11 1618.28 3.44  1660.66 1.50 1648.03 0.73 3.18 

c208 1591.56 1590.86 2.93  1594.90 0.21 1567.81 -1.49 2.67 

Avg C 1237.79 1230.70 2.17   1250.48 1.07 1226.30 -0.93 1.98 

r101 857.68 819.33 0.90  899.08 4.83 895.21 4.38 0.82 

r102 865.05 828.71 1.02  910.65 5.27 899.30 3.96 0.90 

r103 756.32 736.32 1.56  778.50 2.93 765.14 1.17 1.44 
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r104 842.43 819.54 0.95  877.41 4.15 864.94 2.67 0.89 

r105 728.70 717.43 1.60  747.90 2.63 738.11 1.29 1.49 

r106 1371.38 1298.89 0.90  1449.29 5.68 1426.42 4.01 0.88 

r107 1344.71 1301.23 2.36  1391.46 3.48 1377.53 2.44 2.10 

r108 734.55 725.05 2.24  753.70 2.61 749.18 1.99 2.01 

r109 1184.05 1137.95 2.12  1238.25 4.58 1234.48 4.26 1.86 

r110 1318.89 1293.57 2.48  1347.98 2.21 1337.17 1.39 2.25 

r111 877.34 845.06 2.60  920.74 4.95 906.72 3.35 2.41 

r112 1169.42 1155.87 2.19  1213.54 3.77 1205.33 3.07 1.95 

r201 1145.02 1099.80 3.90  1209.47 5.63 1199.25 4.74 3.67 

r202 1062.64 1061.96 3.24  1092.47 2.81 1073.46 1.02 2.99 

r203 1130.49 1126.42 2.47  1154.86 2.16 1144.30 1.22 2.10 

r204 1104.19 1089.18 3.50  1148.71 4.03 1137.15 2.98 3.27 

r205 1599.18 1591.84 2.58  1642.81 2.73 1624.31 1.57 2.26 

r206 997.14 983.22 3.04  1032.19 3.52 1005.27 0.82 2.88 

r207 1936.24 1899.32 3.71  2027.92 4.73 1993.21 2.94 3.38 

r208 1590.11 1589.14 4.55  1631.45 2.60 1592.06 0.12 4.14 

r209 1979.24 1967.86 4.56  2033.34 2.73 2010.91 1.60 4.07 

r210 1716.47 1716.04 4.09  1734.09 1.03 1631.64 -4.94 3.77 

r211 1611.58 1590.44 5.94  1648.75 2.31 1637.54 1.61 5.21 

Avg R 1214.04 1191.05 2.72   1255.85 3.54 1236.90 2.07 2.47 

rc101 705.96 697.64 1.40  718.49 1.77 707.82 0.26 1.28 

rc102 919.33 900.22 1.51  942.41 2.51 927.25 0.86 1.41 

rc103 879.11 859.40 1.38  906.71 3.14 896.03 1.92 1.30 

rc104 763.37 759.67 0.84  775.43 1.58 762.91 -0.06 0.78 

rc105 943.89 922.49 1.11  974.47 3.24 959.33 1.64 1.05 

rc106 672.74 658.70 1.10  691.98 2.86 673.80 0.16 1.05 

rc107 1255.21 1240.28 2.12  1279.52 1.94 1240.29 -1.19 1.93 

rc108 944.89 941.81 2.40  959.95 1.59 926.84 -1.91 2.26 

rc201 1541.24 1536.49 2.44  1558.91 1.15 1536.55 -0.30 2.20 

rc202 1131.43 1102.39 2.18  1161.81 2.69 1132.85 0.13 2.03 

rc203 1063.97 1037.20 2.90  1101.82 3.56 1068.76 0.45 2.74 

rc204 1519.90 1501.97 2.18  1565.70 3.01 1531.58 0.77 1.99 

rc205 1461.94 1456.31 3.16  1482.88 1.43 1459.60 -0.16 2.80 

rc206 1421.86 1410.88 2.95  1462.39 2.85 1438.46 1.17 2.75 

rc207 1336.45 1331.13 2.98  1349.42 0.97 1339.64 0.24 2.55 

rc208 1619.83 1607.53 3.26  1644.62 1.53 1626.12 0.39 2.83 

Avg RC 1136.32 1122.76 2.12   1161.03 2.24 1139.24 0.27 1.93 

Avg 1196.05 1181.50 2.33   1222.45 2.28 1200.81 0.47 2.13 

The adoption of “Flexible Return” improves the gap on average by 2.28%, as compared to “Fixed 

Return)”. From Table 11, we observe that positive percentages (“Best%”) are obtained in all the 

instances. The improvements are higher for instances within category R with a gap ranging between 

1.03% and 5.68%. The reason is that fixing the base of a drone to a truck would restrict the distance 

between them because drone cannot fly a long range. Therefore, the flexibility of allowing a drone to 

return to another truck is beneficial. This observation is further verified by the gaps for the solutions 

resulting from the clustered and mixture/randomly locations within categories C and RC. These gaps 

are lower and range between 0.11% and 2.67% for category C and between 0.97% and 3.56% for 

category RC. 
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7.2. Impact of using multi-compartment drones in tandem with trucks 

In this section, we analyze the impact of using trucks without drones to serve the customers. In Table 

12, all columns have the same titles and meanings as in Table 12, except that “Without drones” and 

“With drones” represent the problem settings where drones are used or not used in the delivery process. 

                   Table 12 

                   Impact of using drones with the trucks 

Inst 

Without drone   With drones 

Best Avg 
CPU 

(min) 
Best Best% Avg Avg% 

CPU 

(min) 

c101 882.57 878.34 0.73  888.43 0.66 886.23 0.41 0.95 

c102 1174.82 1157.67 0.82  1196.54 1.85 1182.84 0.68 1.04 

c103 1059.47 1022.39 1.33  1099.38 3.77 1094.06 3.26 0.96 

c104 1218.41 1186.00 0.87  1256.88 3.16 1250.07 2.60 0.58 

c105 779.07 744.64 1.44  811.84 4.21 810.43 4.03 0.77 

c106 535.32 529.32 0.84  556.56 3.97 551.94 3.10 0.80 

c107 1202.81 1189.58 2.14  1240.18 3.11 1233.98 2.59 1.62 

c108 1092.07 1068.38 1.88  1125.81 3.09 1092.56 0.04 1.55 

c109 1243.21 1207.66 1.59  1283.97 3.28 1268.52 2.04 1.58 

c201 1069.17 1063.93 2.24  1098.98 2.79 1087.52 1.72 1.50 

c202 1258.22 1256.46 2.47  1283.41 2.00 1281.77 1.87 2.10 

c203 1543.31 1506.27 1.89  1600.34 3.70 1589.48 2.99 1.44 

c204 1311.73 1293.63 3.66  1342.36 2.34 1331.97 1.54 2.38 

c205 1281.09 1279.43 2.84  1321.63 3.16 1302.17 1.65 1.89 

c206 1904.14 1899.19 1.67  1945.75 2.19 1933.81 1.56 1.84 

c207 1612.67 1570.90 3.19  1671.38 3.64 1658.67 2.85 2.34 

c208 1567.95 1543.64 2.28  1600.33 2.07 1573.15 0.33 1.96 

Avg C 1219.77 1199.85 1.88   1254.34 2.88 1242.89 1.96 1.49 

r101 885.14 870.27 1.17  902.65 1.98 900.65 1.75 0.64 

r102 882.88 861.77 1.25  897.32 1.64 889.48 0.75 0.7 

r103 744.48 713.36 1.24  767.56 3.10 766.55 2.96 1.09 

r104 911.01 865.56 0.77  919.18 0.90 914.97 0.43 0.65 

r105 726.58 712.63 1.03  739.43 1.77 728.17 0.22 1.1 

r106 1427.26 1404.71 1.03  1433.84 0.46 1429.6 0.16 0.64 

r107 1322.44 1255.40 1.92  1363.54 3.11 1337.2 1.12 1.61 

r108 727.62 709.80 2.07  746.00 2.53 733.74 0.84 1.55 

r109 1287.04 1231.05 1.95  1290.45 0.26 1288.99 0.15 1.36 

r110 1393.95 1343.07 1.91  1404.52 0.76 1399.98 0.43 1.71 

r111 931.05 865.79 2.74  939.19 0.87 933.75 0.29 1.81 

r112 1237.81 1184.71 1.74  1246.97 0.74 1243.1 0.43 1.43 

r201 1221.08 1194.46 2.87  1232.03 0.90 1228.39 0.60 2.83 

r202 1048.55 1033.24 2.51  1076.07 2.62 1059.09 1.01 2.2 

r203 1132.46 1125.89 2.22  1140.26 0.69 1138.51 0.53 1.53 

r204 1173.98 1119.04 3.10  1181.11 0.61 1175.79 0.15 2.39 

r205 1647.74 1600.45 2.35  1653.08 0.32 1649.41 0.10 1.76 

r206 1044.16 1015.14 2.89  1049.63 0.52 1045.11 0.09 2.23 

r207 2073.95 1896.63 3.23  2091.21 0.83 2087.71 0.66 2.5 

r208 1583.65 1575.89 3.86  1605.75 1.40 1593.48 0.62 3.05 

r209 1966.04 1953.65 3.84  2012.38 2.36 1973 0.35 2.99 

r210 1764.44 1665.10 3.62  1773.08 0.49 1769.74 0.30 2.76 

r211 1626.82 1620.31 4.80  1658.46 1.94 1647.19 1.25 4.02 

Avg R 1250.44 1209.47 2.35   1266.25 1.34 1257.98 0.66 1.85 

rc101 711.38 700.35 1.22  724.85 1.89 714.09 0.38 0.95 

rc102 932.80 926.08 1.38  947.27 1.55 939.18 0.68 1.02 

rc103 945.25 897.98 1.27  948.60 0.35 947.01 0.19 1.02 

rc104 775.43 767.06 0.76  780.15 0.61 780.01 0.59 0.61 

rc105 958.00 949.19 1.02  978.25 2.11 963.05 0.53 0.81 

rc106 691.98 687.14 1.06  693.51 0.22 693.09 0.16 0.80 

rc107 1337.74 1268.58 1.87  1346.10 0.62 1339.62 0.14 1.51 

rc108 959.95 949.97 2.26  967.87 0.83 960.45 0.05 1.65 
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rc201 1533.50 1498.08 2.05  1567.37 2.21 1544.89 0.74 1.67 

rc202 1163.90 1161.22 1.99  1171.37 0.64 1169.18 0.45 1.53 

rc203 1073.61 1054.18 2.67  1103.09 2.75 1100.03 2.46 2.09 

rc204 1531.25 1521.30 1.87  1572.36 2.68 1538.1 0.45 1.56 

rc205 1456.04 1442.35 2.55  1489.17 2.28 1465.79 0.67 2.08 

rc206 1450.69 1437.05 2.64  1467.28 1.14 1452.33 0.11 2.13 

rc207 1358.46 1331.02 2.23  1370.56 0.89 1361.16 0.20 1.89 

rc208 1658.43 1633.56 2.55  1668.73 0.62 1665.01 0.40 2.17 

Avg RC 1158.65 1139.07 1.84   1174.78 1.34 1164.56 0.51 1.47 

Avg 1209.62 1182.80 2.02   1231.79 1.85 1221.81 1.04 1.60 

We observe that the use of drones contributes to limited total revenue, with a positive average gap 

of 1.85%. Our results suggest that the use of drones is particularly helpful when customers are clustered 

(i.e., type C) where all average gaps are positives with an average gap equal to 2.88% that range between 

0.66% and 4.21%. This is reasonable as drones can serve customers who are geographically closed to 

each other. Thus, using drones can significatively improve the quality solution and increase the total 

expected revenue compared to use only trucks to serve the customers. 

7.3. Single compartment versus multiple compartments 

Table 13 shows the benefit of having a drone to deliver multiple packages (i.e., “Multi 

compartments”) per trip. The results of the comparison are reported in Table 13. The column “Single 

compartment” refers to the case of using the drone with single compartment payload in tandem with the 

trucks. Other columns report the same measures as in Tables 11 and 12. 

             Table 13 

             Benefit of multi compartment 

Inst Multi compartment   Single compartment       

  Best Avg 
CPU 

(min) 
  Best Best% Avg Avg% 

CPU 

(min) 

c101 887.90 879.23 1.24  886.69 -0.14 876.13 -1.33 886.69 

c102 1195.99 1182.30 1.36  1184.04 -1.00 1158.19 -3.16 1184.04 

c103 1109.86 1093.55 1.23  1041.71 -6.14 968.65 -12.72 1041.71 

c104 1253.90 1180.38 0.78  1172.25 -6.51 1088.81 -13.17 1172.25 

c105 825.55 812.20 1.04  769.79 -6.75 711.99 -13.76 769.79 

c106 556.35 551.73 1.04  538.11 -3.28 513.22 -7.75 538.11 

c107 1230.75 1176.34 2.11  1150.09 -6.55 1065.14 -13.46 1150.09 

c108 1122.84 1087.83 2.07  1069.09 -4.79 1003.28 -10.65 1069.09 

c109 1281.53 1266.11 2.05  1192.55 -6.94 1087.07 -15.17 1192.55 

c201 1089.77 1058.43 2.06  1054.99 -3.19 1014.02 -6.95 1054.99 

c202 1275.96 1223.24 2.84  1252.67 -1.83 1222.59 -4.18 1252.67 

c203 1594.00 1583.19 1.94  1480.82 -7.10 1357.93 -14.81 1480.82 

c204 1330.49 1320.20 3.06  1301.50 -2.18 1259.48 -5.34 1301.50 

c205 1314.21 1294.86 2.57  1235.30 -6.00 1152.11 -12.33 1235.30 

c206 1933.53 1921.67 2.42  1794.02 -7.22 1645.91 -14.88 1794.02 

c207 1660.66 1648.03 3.18  1651.98 -0.52 1633.15 -1.66 1651.98 

c208 1594.90 1567.81 2.67  1493.48 -6.36 1384.53 -13.19 1493.48 

Avg C 1250.48 1226.30 1.98   1192.30 -4.50 1126.01 -9.68 1192.30 

r101 899.08 895.21 0.82  889.59 -1.06 868.88 -3.36 889.59 

r102 910.65 899.30 0.90  895.84 -1.63 873.34 -4.10 895.84 

r103 778.50 765.14 1.44  763.11 -1.98 737.41 -5.28 763.11 

r104 877.41 864.94 0.89  864.93 -1.42 845.23 -3.67 864.93 

r105 747.90 738.11 1.49  737.82 -1.35 721.54 -3.52 737.82 

r106 1449.29 1426.42 0.88  1416.36 -2.27 1370.17 -5.46 1416.36 

r107 1391.46 1377.53 2.10  1388.68 -0.20 1370.54 -1.50 1388.68 

r108 753.70 749.18 2.01  750.60 -0.41 736.59 -2.27 750.60 

r109 1238.25 1234.48 1.86  1235.45 -0.23 1216.40 -1.76 1235.45 
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r110 1347.98 1337.17 2.25  1339.60 -0.62 1323.24 -1.84 1339.60 

r111 920.74 906.72 2.41  908.84 -1.29 886.03 -3.77 908.84 

r112 1213.54 1205.33 1.95  1200.36 -1.09 1180.81 -2.70 1200.36 

r201 1209.47 1199.25 3.67  1191.71 -1.47 1164.52 -3.72 1191.71 

r202 1092.47 1073.46 2.99  1085.28 -0.66 1063.74 -2.63 1085.28 

r203 1154.86 1144.30 2.10  1147.86 -0.61 1127.45 -2.37 1147.86 

r204 1148.71 1137.15 3.27  1135.38 -1.16 1102.59 -4.01 1135.38 

r205 1642.81 1624.31 2.26  1626.20 -1.01 1596.17 -2.84 1626.20 

r206 1032.19 1005.27 2.88  1026.36 -0.57 1013.81 -1.78 1026.36 

r207 2027.92 1993.21 3.38  1988.11 -1.96 1931.07 -4.78 1988.11 

r208 1631.45 1592.06 4.14  1601.41 -1.84 1563.58 -4.16 1601.41 

r209 2033.34 2010.91 4.07  2011.18 -1.09 1973.95 -2.92 2011.18 

r210 1734.09 1631.64 3.77  1722.77 -0.65 1690.42 -2.52 1722.77 

r211 1648.75 1637.54 5.21  1623.83 -1.51 1588.76 -3.64 1623.83 

Avg R 1255.85 1236.90 2.47   1241.36 -1.13 1215.05 -3.24 1241.36 

rc101 718.49 707.82 1.28  713.01 -0.76 702.97 -2.16 713.01 

rc102 942.41 927.25 1.41  917.96 -2.59 884.78 -6.12 917.96 

rc103 906.71 896.03 1.30  887.98 -2.07 861.73 -4.96 887.98 

rc104 775.43 762.91 0.78  762.25 -1.70 742.42 -4.26 762.25 

rc105 974.47 959.33 1.05  937.52 -3.79 894.18 -8.24 937.52 

rc106 691.98 673.80 1.05  670.95 -3.04 642.99 -7.08 670.95 

rc107 1279.52 1240.29 1.93  1238.15 -3.23 1186.94 -7.24 1238.15 

rc108 959.95 926.84 2.26  938.09 -2.28 903.00 -5.93 938.09 

rc201 1558.91 1536.55 2.20  1542.06 -1.08 1510.96 -3.08 1542.06 

rc202 1161.81 1132.85 2.03  1138.72 -1.99 1110.31 -4.43 1138.72 

rc203 1101.82 1068.76 2.74  1072.13 -2.69 1027.60 -6.74 1072.13 

rc204 1565.70 1531.58 1.99  1556.22 -0.61 1526.51 -2.50 1556.22 

rc205 1482.88 1459.60 2.80  1452.99 -2.02 1413.90 -4.65 1452.99 

rc206 1462.39 1438.46 2.75  1444.95 -1.19 1403.46 -4.03 1444.95 

rc207 1349.42 1339.64 2.55  1303.03 -3.44 1236.32 -8.38 1303.03 

rc208 1644.62 1626.12 2.83  1594.57 -3.04 1531.79 -6.86 1594.57 

Avg RC 1161.03 1139.24 1.93   1135.66 -2.22 1098.74 -5.42 1135.66 

Avg 1222.45 1200.81 2.13   1189.77 -2.62 1146.60 -6.11 1189.77 

 

The results show that having multi-compartment drones can improve the total revenue as compared 

to having only single-compartment drones. This is reasonable as multiple packages can be delivered on 

the same trip such that the flying distance can be shortened. In fact, allowing the same drone to deliver 

multiple packages to many customers leads an increase in the total revenue by 2.62% on average. From 

the results, using drones with multiple compartments is important and highly beneficial when the drones 

are allowed to deliver packages within a cluster (data set C). We observe an average gap of 4.50%. On 

the other hand, the gaps are less significant when customer locations are randomly generated locations 

(i.e., data sets R and RC). We believe that this is due to the need to travel longer distances to satisfy the 

time windows constraints. As a result, trucks need to deliver these small packages instead of using 

drones. In summary, the variant of having multi-compartment drones has proven to be beneficial for 

both policies. Hence, practitioners are suggested to consider using multi-compartment drones, especially 

when customer demands are clustered.  

8. Conclusions 

In this paper, we introduced a new variant of the Vehicle Routing Problem with Drones (VRP-D), in 

which a fleet of trucks-drones is used to serve customers where each drone is equipped with multiple 

compartments. We considered the flexibility of having drones to return to any trucks to swap depleted 
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batteries and also to pick up packages. The problem is denoted as the Vehicle Routing Problem with 

Drones equipped with Multiple payload Compartment (VRP-D-MC). In addition, our model considers 

the current payload in order to calculate the energy consumption for the drones.   

We designed an Adaptive Multi-Start Simulating Annealing (AMS-SA) that incorporates an efficient 

constructive heuristic and several novel diversification and intensification mechanisms. Extensive 

numerical experiments showed that our proposed AMS-SA provides high-quality solutions both on our 

generated instances and on benchmark instances from the literature. In particular, our AMS-SA 

outperforms on average the current state-of-the-art algorithm, including the Hybrid Genetic Algorithm 

of Euchi and Sadok (2020). We also showed the effects of newly added features: (i) the multi-payload 

compartment, (ii) the flexibility of having drones to return to any truck, and (iii) the benefits of using 

trucks with drones. All these new features allowed furthering improving the total revenue. Moreover, 

we provided the impact of using different configuration drones on the quality solution and also, and we 

conducted a sensitivity analysis to show the effect of using the time windows. 

Further developments on this topic may consider, instead of assuming that drones are fully recharged 

(swapping battery), a more realistic and complex scenario with a partial recharging setting. Another 

interesting issue to be analysed is to consider a dynamic environment where requests dynamically appear 

over the day, or a stochastic environment where travel times for trucks are affected by uncertainty due 

to traffic congestion. 
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