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Vehicle Routing Problem with Drones Equipped with Multi-

Package Payload Compartment

Abstract

The Vehicle Routing Problem with Drones (VRP-D) consists of designing combined trucks-
drones’ routes and schedules to serve a set of customers with specific requests and time constraints.
In this paper, we extend the VRP-D by including a fleet of drones equipped with multi-package
payload compartments to serve more customers on a single trip. Moreover, a drone can return to a
different truck from the departure one to swap its depleted battery and/or to pick up more packages.
The problem aims to maximize the total revenue. We denote this problem as VRP-D equipped with
Multi-package payload Compartment (VRP-D-MC). We propose an Adaptive Multi-Start Simulated
Annealing (AMS-SA) metaheuristic algorithm to efficiently solve it. Experimental results show that
our algorithm outperforms the current state-of-the-art algorithms for the Vehicle Routing Problem
with Drones (VRP-D) in terms of solution quality. Extensive analyses have been conducted to provide
managerial insights. The analyses carried out show (i) the benefits of using drones equipped with
different compartment configurations, (ii) the increment of the total revenue obtainable using a
combined trucks-drones fleet respect to a fleet of trucks in terms of total revenue, (iii) the savings for
allowing a return to a different truck, (iv) the benefit of swapping drone battery and pick up the items
at the same time. Moreover, a sensitivity analysis is conducted to assess the impact of time window
constraints on the solutions. We also show that our different intensification and diversification

mechanisms improve the convergence of the traditional SA.

Keywords: Vehicle Routing Problem with Drones, simulated annealing, multi payload compartments,

multi start approach

1. Introduction

Unmanned aerial vehicles (UAVs), commonly known as drones, have been considered for numerous
applications, including defense, territory monitoring, transportation and logistics, disaster relief, and
farming (Chung et al., 2020), to name a few. In particular, the growing e-commerce market and the
increasing demand for efficient last-mile logistics, along with the maturity of drones’ technologies, have
promoted considerable efforts to conceptualize the use of drones to provide package delivery services.
For example, Wing, a division of Alphabet, was launched in 2012 to offer small package delivery
services using small drones. The company was among the first to receive Air Carrier certification from
the Federal Aviation Administration (FAA) and has recently announced conducting more than 100,000

flights across three continents. Similarly, in 2013, Amazon launched the project “Prime Air,” where the


https://wing.com/
https://www.editorialmanager.com/tre/viewRCResults.aspx?pdf=1&docID=9563&rev=0&fileID=142789&msid=a590fdaa-ca7d-4d08-a369-064e414e9c03
https://www.editorialmanager.com/tre/viewRCResults.aspx?pdf=1&docID=9563&rev=0&fileID=142789&msid=a590fdaa-ca7d-4d08-a369-064e414e9c03

goal is to use drones to deliver light packages to customers within 30 minutes from the purchasing
(Amazon, 2016). The company received the FAA approval in 2020 and tested many different vehicles
designs and delivery mechanisms to find out the best configurations for delivery in various operating
environments (FFA, 2020).

A widely conceptualized delivery system integrates trucks and drones (e.g., the mothership system)
to provide package delivery services. As FAA requires drones to stay within the pilot’s visual line of
sight, trucks carry the packages and the drones to locations close to the customers’ addresses. Drones
are then loaded with packages and dispatched to these addresses. A drone can make either a single
delivery or multiple deliveries per dispatch. In both cases, while drones fly to deliver the package(s), the
truck may also be traveling to fulfill some of the delivery tasks (e.g., delivering heavy packages). As a
result, the truck may collect its drones at a location different from where they have been dispatched.

This integrated truck-drone delivery problem is considered as a significant extension of the
traditional Vehicle Routing Problem (VRP) (Murray and Chu, 2015), which is commonly known in the
literature as the Vehicle Routing Problem with Drone (VRP-D) (Wang et al., 2017). The problem
consists into determining the optimal routes for the trucks and the drones to complete a list of required
delivery services while minimizing the system's total operational cost (Poikonen et al., 2017).
Consequently, extensive research effort has been devoted to formulating and efficiently solving the
VRP-D problem and to capture many of its real-world aspects and operational constraints. Examples of
these aspects/constraints include satisfying the customers’ time windows, the drones’ load carrying
capacity and flying range, the length of the working shift for drivers, the truck-drone routing
interdependence, to name a few.

While a considerable portion of this research is devoted to study how drones serve multiple
customers per dispatch, existing studies ignored some very important practical issues of the problem.
For example, one crucial aspect is related to the drones’ payload compartment configuration to support
multiple deliveries per dispatch (Liu et al., 2020, Poikonen and Golden, 2020). Designing the drones’
compartment involves: (a) maximizing the number of packages that a drone can carry considering the
heterogeneity in their sizes and the drone’s maximum load-carrying capacity, and (b) eliminating the
need for direct interaction with the end customers. A commonly suggested design is to equip the drone
with multiple compartments of different sizes. Each compartment is filled with one package and opens
automatically as the drone arrives at the package delivery address. As the drone compartment
configuration significantly affects the operation efficiency, it should be explicitly integrated into
modeling frameworks studying the truck-drone delivery systems.

Another important aspect of this problem is the procedure to reload the drones and swap their
depleted batteries. In many papers a simple policy is adopted, according to which, drones are obliged
return to the same truck from which there were initially dispatched (e.g., Wang et al., 2017; Sacramento
et al., 2019; Kitjacharoenchai et al., 2020; Liu et al., 2020). A more flexible tactic allows the drones to

return to any other truck in their vicinities. While the latter tactic provides more flexibility in the route
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planning, it involves complex synchronization operations among trucks and the drones (Macrina et al.,
2020).

A typical assumption in the existing VRP-D studies is that a drone can only make one delivery per
trip. Our work aims to address a new drone delivery feature where drones are equipped with a multi-
package payload compartment. This new design implies that a drone can make multiple deliveries on
the same trip. Another innovative aspect of our work is that a drone is allowed to meet another truck
(different from the one it is launched) at a rendezvous location where the drones can not only swap the
depleted battery, but also pick up additional packages (depending on the available capacity) and then
continue their travel to visit more customer locations. Indeed, recent technological advancements have
made the first assumption less relevant because newer drone models capable of carrying multiple
customers’ packages simultaneously have been proposed and developed. The Vulcan UAV Airlift is
equipped with a multi-compartment payload (with two compartments) and it can lift and move a load of
about 30 kg (i.e., about 15kg per compartment). Motivated by this new operational mode of drones, we
consider in this research the new problem features, which allow drones to carry more than one item,
return any truck to recharge/swap the battery, and pick up other packages from the truck. Other examples
of drones can be found in https://www.unmanned systems technology.com.

Figure 1: Vulcan UAV Airlift (see https://filmora.wondershare.com/drones/top-heavy-lift-
drones.html)

Finally, to deal with a problem as realistic as possible, an energy consumption function is also
considered. This function takes into account the traditional elements like drone speed, mass, rotor, etc.
(e.g., D’Andrea, 2014; Figliozzi, 2017; Stolaroff et al., 2018; Kirchstein, 2020). Despite this, we have
considered some characteristics such as the energy consumption being depended on the current payload
of the package by considering the resources during the fly.

The resulting problem is denoted as the Vehicle Routing Problem with Drone equipped with multi-
packages payload Compartments (VRP-D-MC). To the best of our knowledge, this problem has not
been addressed in the literature.

The main contributions of this paper are as follows:

i) First, we introduce the VRP-D-MC, which extends the traditional VRP-D of Wang et al. (2017) by

considering the possibility for drones to carry more than one package at the same time, and to return
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to a different vehicle respect to their departure one. We also consider the possibility to swap the

drone’s battery and to pick up further packages from the truck, during the same operational stop.

ii) We develop an Adaptative Multi-Start Simulated Annealing (AMS-SA) algorithm to solve the VRP-
D-MC. Several diversification and intensifications procedures are introduced in our AMS-SA.
Specifically, we add an exploration mechanism to avoid local optima using crossover operators, and
an intensification mechanism using a local search procedure. A multi-start procedure to generate a
new solution at each SA iteration is also developed. Also, we propose several special characteristics
and algorithmic improvements to improve the AMS-SA.

iii) We perform extensive computational experiments on different benchmark sets.

a. On VRP-D instances from the literature, an improvement average gap of 0.61% to the best-
know solutions for the VRP-D is obtained by our AMS-SA compared to 1.23% of the state-
of-the art-approaches.

b. The results show the benefit of allowing drones to return to different vehicles along their
routes. Moreover, we conduct some experiments to show the benefit of using multi-packages
payload compartments compared to one compartment, as considered in the VRP-D addressed
in the literature. Also, we show the impact of using drones in tandem with trucks as well as
the impact of using time windows.

The rest of the paper is organized as follows. In Section 2, we review the literature. A formal
description of the problem is given in Section 3. In Section 4, a mathematical formulation is provided.
In Section 5, we present our algorithmic approach. In section 6, we provide the numerical results whereas
managerial insights are reported in Section 7. Section 8 concludes our paper and indicates future research

directions.
2. Literature review

In this section, we review the works related to the problem considered in this paper. For a
comprehensive review of the literature on drone-aided routing, the reader is referred to Macrina et al.
(2020) and Poikonen and Campbell (2021).

The VRP-D is a generalization of the Traveling Salesman Problem with Drone (TSP-D) (Wang et
al., 2017) where a fleet of trucks work in tandem with a fixed number of drones to serve a set of
customers (Salama and Srinivas, 2020). The VRP-D was first introduced by Wang et al. (2017) and then
studied by Poikonen et al. (2017), Sacramento et al. (2019), Schermer et al. (2019), Wang and Sheu
(2019), Kitjacharoenchai et al. (2020) and Tamke and Buscher (2021).

In the work of Wang et al. (2017), the drones are dispatched and recovered by the trucks either at
the depot or at customers’ locations. The objective is to minimize the completion time. The authors
studied and analysed different worst-case scenarios depending on the number of drones in each truck
and drones’ and vehicles’ speed. However, they neglected the limits on the drones flying range in their

model. Schermer et al. (2018) extend the VRP-D of Wang et al. (2017) by considering limited driving



range of the drones to deliver one package. They developed two heuristics composed of the initialization
and improvements phases. The results show that the proposed heuristics provide better results than the
results obtained by Wang et al. (2017). Wang and Sheu (2019) study a variant of the VRP-D where
multiple trucks and multiple drones of limited capacities are dispatched. Sacramento et al. (2019)
developed an Adaptive Large Neighborhood Search (ALNS) to solve the VRP-D in order to minimize
the total routing costs. A fleet of trucks is considered where each of them is equipped with only one
drone. Pugliese and Guerriero (2017) extended the VRP-D by considering time windows to serve the
customers and a maximum route duration imposed to the trucks. A similar setting is studied in Ham
(2018). Chiang et al. (2019) develop a Genetic Algorithm (GA) to minimize the total delivery costs of
the drones and vehicles and carbon emitted by conventional trucks. In their problem, each vehicle carries
only one drone. Their experiments show that using drones in tandem with vehicles results in cost-
effective solutions which are also environmentally friendly. Kitjacharoenchai et al. (2019) study a VRP-
D with multiple drones and trucks. In their problem, a drone is deployed from a truck and can return to
a different truck at another location. The authors propose a MILP formulation, whose objective is to
minimize the makespan. Since the problem is difficult to solve, an insertion heuristic algorithm is
developed to deliver solutions for large-scale problems, which consist of up to one hundred customer
locations. In a later paper, Kitjacharoenchai et al. (2020) present a capacitated VRP-D with multiple
trucks and drones. They also consider battery for drones, which limits their flying times. In their
application, a drone is deployed by truck and has to return to the same truck but can perform multiple
deliveries in the same trip. The completion time of the tasks is minimized in the objective function,
subject to limited truck and drone capacities. Liu et al. (2020) study the effect of the variation in the
payload on the energy consumed by the drones. In their work, they model the energy consumption with
the factors such as payload, motor efficiency, distance travelled, and flying velocity. They develop a
heuristic that incorporates both savings and nearest neighbourhood strategies. Their computational
experiments on randomly generated problem instances of different sizes show the performance of their
proposed method. Gonzalez-R et al. (2020) considered a fleet of truck where each of them is equipped
with one drone. In addition, they considered the battery capacity drones and also multiple visits to
customers in a single flight. An lterated Greedy (IG) algorithm is used to solve this problem. The results
show that the algorithm outperforms the solutions obtained by the commercial Gurobi solver in a shorter
computational time. Euchi and Sadok (2021) proposed a Hybrid Genetic Algorithm (HGA) to solve the
traditional VRP-D proposed by Sacramento et al. (2019). Poikonen and Golden (2020) considered a
single truck and multiple drones where each drone is allowed to carry multiple items at a time, i.e., the
drone serve several customers before returning to the truck to be recharged and to pickup other packages.
The truck plays the role as a depot and also as a recharge station for the drones. In addition, the vehicle
can move at a rendezvous point (customers’ locations) in order to swap the battery. To solve this
problem, the authors proposed a flexible heuristic named Route Tansform Shortest path (RTS).

Similarity, Luo et al. (2021) studied the same problem of Poikonen and Golden (2020) by considering

5



that drones are limited by both energy consumption constraints based on flight-time and payload, as
well as the maximum payload capacity constraints. To solve the problem, the authors proposed a Tabu

Search (TS) algorithm which is tested on a new benchmark data set based on the Solomon’s instances.

In this paper, we consider a variant of the VRP-D where each drone is also equipped with multi-
compartments that can be used to deliver packages to several customers before returning to the truck.
A drone can return to a vehicle different from its launching vehicle, and can also swap its depleted
battery to service more packages. In addition to capacity constraints for the trucks and the drones, we
also consider time windows constraints for the customers. Our problem therefore generalises the
problem studied by Poikonen and Golden (2020).

Inspired from Macrina et al. (2020), Table 1 presents a summary of the main features of the most

relevant works studied in the literature mentioned above.

Table 1
Summary of related works on the VRP-D
Reference #T/H#D | OF TW | SY | ED | DR | DC | TC | DMV | DRA | MC | SD
Wang et al. (2017) n/m Min. completion time N N
Pugliese and Guerriero | n/m Min. completion time | N N
(2017)
Ham (2018) n/m Min. makespen N
Wang and Sheu (2019) n/m Min. logistics costs N \ N N
Kitjacharoenchai et al. | 1/m Min. delivery time N N N
(2019)
Sacramento et al. (2019) n/m Min. operational costs N N v
Schermer et al. (2019) n/m Min. makespen \ N
Chiang et al. (2019) n/m Min. total cost and N N N
COemission
Kitjacharoenchai et al. | n/m Min. completion time N N N N
(2020)
Liu et al. (2020) n/m Min. operational costs N \ N
Gonzalez-R et al. (2020) n/m Min.travel time N \ N
Poikonen and  Golden | 1/m Min. makespen NN N N
(2020)
Euchi and Sadok (2021) n/m Min. traveled time N v v
Luo et al. (2021) 1/m Min. makespen N[NV YN v
Our n/m Max.revenue N N N N N N N N N N

#T/#D: Number of Trucks and Drones used. OB: Objective Function. TW: Time Windows. SY: Synchronization. ED: Energy
Drone. DR: Drone Recharge. DC: Drone Capacity. TC: Capacity of the Truck; DMV: Drone Multiple Visit. DRA: Drone
launch from truck and Return to Another truck. MC: Multi-Compartment payload. SD: the trucks and drones assumes the
services simultaneously (both vehicles deliver the packages)

3. Problem definition

The VRP-D-MC consists of designing a set of trucks and drones’ routes collaboratively to deliver
packages to customers. The objective is to maximize the total revenue.

Due to the limited flying range of drones, trucks are used as a base to swap batteries of drones.
Such a problem setting is studied in Wang et al. (2017) and Gonzalez-R et al. (2020). In addition to
the features of the basic problem’s settings, we consider the flexibility for drones to return to any
truck (not necessarily the truck where the drone is dispatched), in contrast to the typical problem

settings used in the literature (e.g., Sacramento et al., 2019; Kitjacharoenchai et al., 2020; Liu et al.,



2020). In addition, we consider that trucks can also deliver items which are supposed to be delivered
by drones, if this is more convenient for the system. The latter has been observed in real-life delivery
operations for heavy deliveries (Sacramento et al., 2019; Gonzalez-R et al., 2020), but not for small
item delivery or reconnaissance missions. In short, in our study, the problem setting presents a more
general case in which each customer can be served or visited either by a vehicle or by a drone.

We organize the different constraints into four categories including customers, trucks, drones and

truck-drone. Below are reported the characteristics of our VRP-D-MC.

Customers:

e Each customer must be visited by either a truck or a drone.

o Similar to several drones routing problems studies (e.g., Pugliese and Guerriero, 2017; Pugliese
et al., 2020; and Han, 2020), we consider time windows constraints where each customer must
be visited within its time window. If a vehicle arrives at a customer before the beginning of its
availability time window, the service is delayed to the earliest available time.

Trucks:

o Each truck route must start and end at the same depot.

e Truck capacity constraints must be respected.

e Each truck is equipped with one drone but there is sufficient space in a truck to host more than
one drone simultaneously.

Drones:

e The total demand of the drone’s route for the visited nodes must not exceed the capacity of the
drone.

e Adrone can visit multiple customer locations on a single trip, as long as the battery is sufficient
for the drone to visit all these locations and to return to a vehicle at a rendezvous point (i.e., a
customer location)

e Each time a drone returns to a truck to swap its battery, it can pick up more packages from the
current truck.

e There is no restriction on the number of times that the batteries can be swapped. We assume
that the swapping time is negligible.

Truck-drone:

e Drones can return to a truck only at a customer node (i.e., a rendezvous location). Batteries of
drones could only be swapped at the rendezvous points. Also, routes of trucks and drones are
synchronized at the rendezvous locations. That is, if the truck arrives at the customer location
before the drone does, the truck must wait for the drone, and vice versa.

e A drone can wait at a customer location without energy consumption. In addition, as in Puglia

Pugliese et al. (2020), we assume a maximum allowed waiting time for the drone at a rendezvous
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location, defined by parameter T. Thus, a drone can wait at most T units of time for the truck,
which it is supposed to land on. Instead, no limitations on the maximum waiting time are
imposed for trucks.

o It is allowed that the drone is carried by a truck for part of its route. In this case, no energy is
consumed by the drone’s battery.

e Drones may be deployed by or return to the truck only at specific location point. The locations
where a drone is launched and retrieved can be different.

e It is not necessary for a drone to return to the same truck where it was deployed for swapping
batteries.

e The duration of each truck route must not exceed the maximum working time.

e Service times required by trucks and drones may be different because their delivery operations
are different.

Figure 2 shows an example of the VRP-D-MC with two trucks (T1 and T2) and two drones (D1 and

D2). As shown by the figure, the drones service multiple users before finally return to the trucks.

. Depot

— Tl route
—— T2 route

D1 route

D2 route

Figure 2. lllustrative VRP-D-MC solution
In this example, we can see for instance that the drone D1 is lunched from the truck T1 to serve the
customers 12, 20 and 22 then meet another truck T2 at the rendezvous customer location 11 to swap
their depleted battery and get the packages to serve the customers 1 and 6 before ending their travel at
the truck T2 in the meeting point 15.

4. A mathematical formulation

In this section, we provide a formal mathematical model description and the energy consumption

energy of the drone.



4.1, Mathematical model

The VRP-D-MC is defined as follows. Let G = (V, 4) be a complete directed graph, where Vis the
set of all nodes with ’'= NUstUen and A = {(i,j):i,j € V,i # j} is the set of arcs. Let’s N =
{1, ...,n} the set of n customers while st and en represent the starting and ending depot, respectively.
We denote by A™ i(A™ i) represent the set of nodes that can be reached(used) from node i € N.

We consider a fleet composed of homogeneous trucks T and drones D to service the customers. The
drones are assumed to pickup and delivery the items from the trucks to the customers distributed in the
networks. Each truck and drone start from a depot and ends at the departure depot. Let VT and VP the

speed of the truck and drone, respectively. Each arc (i, j) € A, we associate a distance dl-Tj and a non-

negative travel time t;; between two locations i and j traveled by each truck T, where t; =df;/V".

Moreover, a distance dg- and a non-negative travel time tiDj between two locations i and j traveled by
each drone D, where t@- =diDj V2. In addition, an operational cost ¢” and c? is associated for each truck
and drone, respectively for each traveling arc.

We assume that the number of visits that the drones can recharge (swap) its battery in the trucks is
unlimited. QT are the load capacity of each truck. Q™ is the available number of resources of type r €
R={1, 2, 3} in the drone. More specifically, r takes the value 0 if the customer requires a place for a
package of volume equal to 20 cm?® place in the drone, r=1; where the customer requires a package of
volume equal to 40 and r=3; the customer requires a package of volume equal to 40 cm? into the drone.
The battery capacity of the drone is expressed by H, in which its energy is consumed at each traveling
arc (i, ) at a EC energy rate. Each customer i € N is associated with a time window [T;~, T;"], a demand
q; for each resource type r that can be served by a drone and a demand g; can be served by a truck, and
a service time s;. We note that the customer request can be satisfied either by drone or by truck. The
demand is measured by weight unit in case the delivery is assumed by truck and by both weight and
volume in the case where the delivery is assumed by drone. Finally, the maximum allowed working time
Tmax 1S COnsidered. For each delivered package, we associate a rent cost into the vehicle. Let ™2 and
fT afixed rent cost of each package putted in a resource of the drone and truck, respectively.

Below, a summarize of the list of sets, parameters and variables used in this formulation.

Sets
N : set of n customers where N = {1, ...,n}
A™: set of nodes that can be reached from node i € N
A~ i: set of nodes that can be used fromnodei € N
V. set of nodes
A:setofarcswith A = {(i,j):i,j € V,i # j}
Parameters

st: starting depot



en: ending depot
VT: speed of the truck T
VP: speed of the drone D

: distance between two locations i and j traveled by each truck T

: non-negative travel time between two locations i and j traveled by each truck T
: distance between two locations i and j traveled by each drone D

: non-negative travel time between two locations i and j traveled by each drone D

cT: operational cost for each traveling arc by the truck T

cP: operational cost for each traveling arc by the drone D

QT: load capacity of each truck T

Q™P: available number of resources of type r € R= {1, 2, 3} in the drone D
H: battery capacity of the drone

[T, T;*]: starting and ending of the time windows of each customer i

q{ : demand requested by the customer i that can be serviced by resource type r of the drone D
g; : demand can be served by a truck of customer i

s;: service time

fTP: fixed rent cost of each package putted in the resource r of the drone D
fT: fixed rent cost of each package putted in the truck

Tinax: maximum working day

Variables
xiTj : binary variable equal to 1 if the truck T travel from i to j, and O otherwise.
xﬁ- : binary variable equal to 1 if the drone D travel from i to j, and O otherwise.

y! - binary variable equal to 1 if the truck T is used to serve the customer i, and 0 otherwise.

yP : binary variable equal to 1 if the drone D is used to serve the customer i, and 0 otherwise.

za;: auxiliary variable that indicate if there is a drone arc is coming from node i

zb;: auxiliary variable that indicate if there is a drone arc is entered to node i

la;: auxiliary variable that indicate if the drone can be launched from node i or not

z] : continuous variables that represent the service time of the truck T on node i.

zP: continuous variables that represent the service time of the drone T on node i.

QI continuous variables that represent the load on the truck immediately after servicing i.

Q['D: continuous variables that represent the load of resource r on the drone D immediately after
servicing i.

o; :continuous variables that represent the battery level of the drone when departing from the node i.

o; : continuous variables that represent the battery level of the drone when departing to the node i.
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We provide the following mixed-integer programming formulation for the VRP-D-MC Based on
the VRP-D formulation of Gonzalez-R et al. (2020) and Kitjacharoenchai et al. (2020).

Maximize (ZZ frPyP +z flyl)—( Z c'xj + z c”x; @

ieV reR iev (i,j)eA (i,))eA

subject to

Z Xe[r)1,j =1 (2
jest (en)

> ox2 =1 @)
jes (st)

> x5« ieV (4)
jeo ()

ox= Y %0 ieV ®)
jeo™ (i) jeo (i)

D Xy =1 (6)
jes™ (en)

> X =1 )
jes(st)

> X< ieV (8)
jeo ()

> x=> X ieV )
0 0]

S+ D % 21 jev (10)
ies (j) ies ()
Z] 27, +ti X —M(1-x;) (i,i)eA ()
20 > 7) +t7x) —M(1-x7) (i,j)eA (12)
T <z <T' VieV (13)
T < ZiD <T' VieV (14)
My D)+ 2° 15 -2 <T viev (15)
> -20)=0 VieN (16)
jeN
> -20)=0 VieN 7
jeN
Qf 20,% +Q +2,Q"-Q"(L-x;) vi,jev (18)

reR
0<Q <Q' VjeV 19)
Q[ 2 aix;° +Q"" Q" (1-x{°) Vi,jeV,vreR (20)
OSQJT'D <Q"P VjeV,vreR (2
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The objective function (1) maximizes the total revenue. The first part of (1) represents the rent places
costs of the packages while the second part is the total operational costs. Constraints (2) and (3)
guarantee that each drone starts and ends its route at the depot. Constraints (4) guarantee that each
customer can be served by one drone as maximum. The flow conservations are defined in constraints
(5). Constraints (6-9) represents the same constraints definitions as in (2-5) but for the trucks.
Constraints (10) guarantee that each node can be visited either by a drone or a truck or by both (drone
and truck) if it is used as a rendezvous point. Constraints (11) and (12) define the service time. The
service must be performed within the time windows as guaranteed by constraints (13) and (14).
Constraint (15) impose that the waiting time of the drone at a customer i before starting service should
not exceed a limited time T. Constraints (16) and (17) represents the synchronisation time when the

drone and the truck merge at the rendezvous points. Constraints (18)-(21) guarantee that the capacity of
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each vehicle type (trucks and drone) is respected. Constraints (18) takes into consideration the total
demands of both truck and drone (in case when drone meet at customer location i to swap and to get
load from the truck) that should be less than the capacity of the truck that is expressed in constraints

(19). Constraints (22)-(33) track the charge of the drone’s battery level. More specifically, constraints

(22)-(25) guarantee that the drones don’t’ consume energy if they travel with the truck during an arc
(i, J). Constraints (23)-(29) define that the electricity level is reduced when the drone arrives at j
according to the distance from i to j and the electricity consumption rate if i is the customer location
node and node j is served immediately after i. Constraints (30)-(33) ensure that the drone’s battery
capacity is fully recharged (battery swap) after leaving node j. Constraints (34) guarantee that the battery
is full recharged at the depot. Constraints (35) ensure the battery's safety security, in which the energy
fuel should not exceed 10% of the capacity battery. Constraints (36) assure that the auxiliary variable
za; is equal to 1 when the drone departs from node i. Similarity, constraints (37) assure that the auxiliary
variable zb; is equal to 1 when the drone enters to node i. Constraints (38) assures that the node i is
considered as a lunching node if the truck serve node i and there is a drone leave the same node i where
it is lunched. While constraints (37) impose that the node i is considered as a lands node if the truck
serve node i and there is a drone entered the same node i, where it is lands. In addition, the constraints
(36) to (39) represent the case when the drone meet the truck at a rendezvous point to swap the battery
and to pickup the packages.

Constraints (40) forbid a drone to directly travel from node i to node j where node i and node j are
already served by a truck. Constraints (41). In constraints (43), the auxiliary variable la; , must be equal
to 1 when a drone is launched from node i, and a truck travels from node i to node j, which the drone
has not yet returned to. Constraints (42) impose that a drone is not allowed to be launched or land at
node i if la; isequal to 1 and vice versa. Similarly, constraints (44) deal with the case when a drone was
previously launched (not able to be launched at node i again) and has not returned to node j. Moreover,
constraints (40) to (44) impose that the drone must be lunched before to land. Constraints (45) and (46)
guarantee that the maximum route duration of each vehicle (truck and drone) is respected. Finally,

constraints (47) specify binary decision variables.

The above mathematical formulation is impractical to solve even for small size problem instances.
For this reason, in Section 5 we describe effective heuristic algorithms capable of solving large size

problem instances.
4.2. Modeling of the energy consumption for electricity

Recently, research studies have incorporated realistic energy consumption functions in routing
models for drone delivery problems (e.g., Poikonen and Golden, 2020). Thus, in addition to the routing
problem, we also consider energy consumption by adopting the energy consumption proposed by

Leishman (2006) and Cheng et al. (2020) to estimate the energy requirement. Furthermore, we capture
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the mass of the drone as a variable in the energy consumption function. This modeling feature reflects
practical consideration, as suggested in some existing studies (e.g., Masmoudi et al., 2018). In other
words, the energy consumption depends on the current payload of the packages.

Hence the energy consumption E;;when a drone uses an arc (i, j) with a load, whose weight is set to

the remaining customer demand Q]T'D , IS expressed as follows:

Eij [W]: Crer m((Q;D) +F+ m)% zfgsw

Where F and m represents the mass of the drone body and the battery, respectively. The gravitational
constant is denoted by g, p is the air density, ¢ is the spinning area of one rotor and w is the number of

rotors. We denote m(Q;'D) the weight available in the drone upon the drone’s arrival at the next

customer j.

The detailed description, coefficients values, and properties used in our model are summarized in Table
2.

Table 2
Notation and parameter values used in the model
Notation  Definition Value Reference
g gravitational constant (m/s?) 9.807 Zhang et al. (2021)
F mass of the drone body (kg) 7 Zhang et al. (2021)
m mass of battery (kg) 10 Zhang et al. (2021)
p air density 1.225 Zhang et al. (2021)
€ spinning area of one rotor 3 Zhang et al. (2021)
1) number of rotors 8 Zhang et al. (2021)
QP capacity of the truck without drone (kg) 1300 Sacramento et al. (2019)
QT capacity of the truck with drone (kg) 1400 Sacramento et al. (2019)
VP speed of the drone (mph) 50 Sacramento et al. (2019)
VT speed of the truck (mph) 35 Sacramento et al. (2019)
H capacity of the battery (kW) 1,040,400 Joules (289Wh) Troudi (2018)
cp operational cost for the drone (dollar/mile) 0.15 Salama and Srinivas (2020)
cr operational cost for the truck (dollar/mile) 1.25 Salama and Srinivas (2020)

5. Adaptative Multi-Start Simulated Annealing algorithm for the VRP-D-MC

Since the VRP-D is an NP-hard problem (Poikonen and Golden, 2020), the VRP-D-MC is also NP-
hard since it is a generalization of VRP-D. Due to the complexity of the VRP-D, instances with up to
10 customers may be solved using the commercial solvers, such as CPLEX or Gurobi, with several
hours (e.g., Murray and Chu, 2015; Yurek and Ozmutlu, 2018; Chung et al., 2020). VRP-D and its
variants are usually solved with metaheuristic methods (e.g., Sacramento et al., 2019; Schermer et al.,
2019; Kitjacharoenchai et al., 2019; Wang and Sheu, 2019; Poikonen and Golden, 2020). We propose a
new Adaptative Multi-Start Simulated Annealing (AMS-SA) metaheuristic algorithm to solve VRP-D-
MC.

The traditional SA is a single-solution-based metaheuristic first proposed by Kirkpatrick et al.
(1984). It is successfully applied to various VRPs, including VRP-D (see, e.g., Lin and Vincent, 2012;
Dorling etal., 2016; Yu et al., 2018). The traditional SA consist that in each SA iteration, a new solution
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x’ is generated using a neighborhood search operator based on the current solution x. The new solution
X’ is accepted to become the as the new current solution x if the objective function value of x'(f (x')) is

better than found in x. On the other hand, if the objective function of x’ is higher, x’ can be accepted

subject to the simulated annealing acceptance criterion e/@)~/(*')/Ti  proposed by Metropolis et al.
(1953), where T; is the current temperature in the iteration i. The temperature cooling schedule is defined
as: T; =a*T;_,, where «a is the cooling rate.

The advantage of the SA is that easy to implement, is flexible, and provides good solutions.
However, the main disadvantage of simulated annealing is that once the algorithm is trapped in low
temperature in a local minimum, it is impossible to get out. In addition, the difficulty of determining the
initial temperature; if it is too low, the search quality will be bad. On other hand, if it is too high, the
calculation time will be high. In this regard, we try to enhance the performance of SA and its
convergence towards better quality solutions, by performing more intensification around the solutions
and also diversifying the search to different regions. More specifically, we propose several modifications
to the classic SA used in the literature by hybridizing it with other intensification and diversification
procedures and techniques from population-based metaheuristic such as, Genetic Algorithm (GA), a
multi-start approach, restoring the generation of the solution using the current neighborhood and also
using efficient procedure to reduce the temperature. This hybridization process can boost the
performance of a traditional SA and improve its convergence towards good solutions. The enhanced SA
we propose is a novel method, proposed for solving the VRP-D-MC, but can be also seen as a new
generalized algorithmic framework.

In the vast majority of the SA algorithms proposed in the literature, when the newly generated
solution is not promising, the SA tries to generate a new solution using the neighborhood operators on
the same current solution. In our approach, we instead construct a new solution by using the crossover
operator mainly used in genetic algorithms. Specifically, we apply the crossover between a randomly
selected best solution (x,.s¢) found in a previous step best solution and a new solution generated by the
constructive heuristic to build the restarting initial solution of the SA. The positive feedback of the
crossover operator, in terms of transferring favorable characteristics from the parent to the child, helps
to generate better solutions. The new solution will inherit the information from both the best solution,
which was found by the algorithm in the current iteration, and the one newly generated by the
constructive heuristic, which is characterized by a high diversity. This way, the construction of a new
solution enable a good balance between the intensification around the best solutions, and the required

diversification to explore new regions of the search space in a controlled, rather than arbitrary way.

Second, when the newly generated solution is promising, the current neighborhood is re-considered,
increasing SA intensification power. This is in contrast to what is usually done in the traditional SA,
where the search switches to a new operator/neighbourhood even when the newly generated solution is

promising (see., e.g., Xiao and Konak, 2015; Masmoudi et al., 2016; Wei et al., 2018; Karagul et al.,

15



2019). This procedure allows to explore more deeply the region search abilities of the current
neighbourhood structure around the current solution, and to focus the exploration in areas who has

shown to be promising.

Finally, in each iteration and in order to explore different search regions, our algorithm restarts from
a different initial solution, which further enhances diversification and permits escaping superfluous
iterations around local optima. This technique is known under the name “multi-start approach” in the
literature and has been successfully applied in a variety of metaheuristics such as the multi-start SA
(e.g., Yu and Lin., 2014) and the multi-start VNS (e.g., Henke et al., 2015).

Moreover, we enhance the SA even more by increasing its intensification around the current
solution, as will be explained later.

The AMS-SA developed in this paper is described in Algorithm 1. Initially, we set the temperature
T to its maximum value Ty, let att, initialized to zero, be the number of the multi-start step, let i
initialized to zero, be the number of iterations in which the best solution is not improved and let j
initialized to zero, be the number of iterations at a selected neighborhood search structure is applied.
Furthermore, the initial solution x and the best solution x,.,; are set equal and are generated using a
constructive heuristic (Subsection 5.1).

The AMS-SA performs several runs ngy. In each run, the algorithm starts with a new initial solution
constructed using the constructive heuristic (line 4 of Algorithm 1). Within each run, several inner
iterations n;.,- are performed, such that in each iteration, a new solution x' is generated based on the
current solution x using a selected neighborhood search from an available set of neighborhoods N1, N2,
N3 or N4 (line 12 of Algorithm 1) as described in subsection 5.2. To explore the search space, our AMS-
SA makes use of several neighborhood structures. The selection of the neighborhoods is not random.
Still, it is instead determined based on their performance score at the previous iteration, which is in line
with most SA implementations in the literature (e.g., Wei et al., 2018; Masmoudi et al., 2016). The

neighborhoods’ selection process is further described in subsection 4.4.

In our algorithm, a new solution is accepted if it improves the objective value or adheres to the
Cauchy criterion (line 14 of Algorithm 1) proposed in Tiwari et al. (2006). According to Tiwari et al.
(2006), the Cauchy probability function is more efficient to escape local optima than the Boltzmann
function applied in the majority of SA algorithms reported in the literature. This is implemented by
randomly generating a number 0 < f < 1 and checking whether f < T/(T? + AE?), where AE

represents the difference in revenue between the current and the new solution. To foster a smooth

0
Ino

annealing process, the initial temperature (T') is calculated as T= E*f (x), where f(x) represents the

initial solution revenue. The accepted new solution is further improved through a selected local search
operator (line 16 of Algorithm 1) 11, 12, 13, or 14. The local search operator's choice is based on their

previous iteration performance and is performed according to a roulette wheel rule. If the improved
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solution is accepted (line 19 of Algorithm 1), the current neighborhood search is applied in the next
iteration (line 22 of Algorithm 1) to intensify the search around the incumbent solution. Otherwise, if
the improved solution is rejected (line 24 of Algorithm 1), a new solution is generated using the MX1
crossover operator (lines 27 of Algorithm 1). The newly developed solution inherits information from
the randomly selected improved solution x.s; (line 26 of Algorithm 1) and another highly diversified
solution, using our constructive heuristic (line 25 of Algorithm 1). If improvements are achieved, the
incumbent solution is updated (lines 28-31 of Algorithm 1).

A critical operation in the traditional SA consists of reducing the temperature using a cooling rate.
In our approach, we opt for a more flexible way of controlling the temperature parameter. In other words,
if the best solution x,,.s; is not improved after a predefined consecutive number of runs (line 7 of
Algorithm 1), the current temperature value is then reduced (line 8 of Algorithm 1), and the number of
iterations n;;., is increased (line 9 of Algorithm 1). This overcomes the problem of quickly converging
to a non-acceptable local optimum or slowly converging to an acceptable solution. The number of

iterations n;,,- is initialized to its default value (line 36 of Algorithm 1) when it reaches its maximum.

Algorithm 1: Adaptative Multi-Start Simulated Annealing

1. Initialize i = 0; j = 0; Temperature T = Tyqx; X = Xbest = the constructive heuristic; att = 1;
2. Repeat

3. If att >1 Then

4, Construct a new solution using the constructive heuristic;

5. End If

6. ji=j+1;

7. Ifi>3 Then

8. niter::niter+1;

9. T=axT,

10. End if

11. While (j<n;ter)

12. Select a neighborhood search and generate a new solution x’ based x;
13. Update the scores of the selected neighborhood search;

14. If f(x’) <f(x) or accepted by the Cauchy function Then

15. Xe—x’,

16. Select a local search and apply it on x to obtain a new improved solution x”;
17. Update the scores of the selected local search;

18. If f (x"") <f(x) Then

19. Xe—x";

20. End if

21. If the solution x is updated in line 16 or line 20;
22. Keep the current neighborhood search for the next j iteration
23. End if

24, Else If f(x')>f(x) Then

25. Xnew<— generate a new constructive heuristic solution;

26. Select randomly a solution Xpest;

217. X<— Crossover (Xpest, Xnew);

28. If f(x) <f (Xbest) then

29. Xbest <— X;

30. Xbest <— T (Xoest);

31. i=0;

32. Else

33. i++;

34. j++;

35. End While
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36. Niter = 0;

37. Adjust the weights of operators using the scores obtained aftern;;.,. iterations;
38. att = att +1;

39. Until ng, is reached

40. Return Xoest

5.1. Construction heuristic

A modified insertion heuristic based on the one proposed by Kitjacharoenchai et al. (2020) and
Gonzalez-R et al. (2020) is implemented. The constructive heuristic handles several features related to
swapping battery of the drones, pickup of multiple packages of the drone, and the possibility that the
drone to return at a different vehicle than the start vehicle. The heuristic starts with a list L that contains
all biggest packages that can be serviced by the trucks to L’ customers, i.e., the packages having weights
or volumes greater than the weight or the volume of the drone. In addition, we create a list D that contains
the smaller packages that can be carried by the drones to be served to D’ customers. The heuristic is it
based on two main phases.

In the first phase, we create an empty route for each vehicle with finite capacity. Customers from
the list L~ are selected randomly and inserted one by one in their best position on the existing routes if
time windows, maximum route duration and vehicle capacity are respected. This phase is repeated until
L' is empty. Figure 3-a represents the first phase of the constructive heuristic by building a partial

solution where the trucks serve all the customers.

o o o
\ — Tl route
—— T2 route

o . DI route

D2 route

Figure 3a: First phase; partial solution where all customers are serviced by two trucks.

The second phase consist of building a sub routes that contains the drones. To do so, we adopt the
relocation procedure of Fosin et al. (2014). For each customer in D, the selected customer is then
removed from D and all possibility to insert the customer into the sub route of a selected drone are
considered that respect the time windows and drone capacity. If the insertion is feasible then the next
customer from D is selected and the procedure of the relocation is repeated to the same selected drone,
otherwise another drone is selected.

In case where the drone cannot visit the next customer due to the energy constraint, the nearest truck
located at a customer node to the current node is identified then the drone meet with this vehicle to swap

the depleted battery. At the same time, the drone can carry some packages from this vehicle (if possible)
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that respect the capacity constraint. Finally, the customer is returned to the vehicle route in case of any
feasible insertion. This phase is repeated until all customers are checked.

Figure 3b-d represents the second phase of the proposed constructive heuristic by, deleting the
customers that can be serviced by the drones, and by inserting the deleted customers to the different
available drones.

QNN

Figure 3c: Second phase; solution after insertion of

Figure 3b: Second phase; solution after deleting
of a set of customers (12, 24, 3,17, 7, 10 and 16)

that can be serviced by the drone.

the customers to the first drone where the drone is
lunched from the T1, serve customers 7 and 17, meet
the T2 to swap the battery, then serve customers 16
and 10.

. Depot
Figure 3d: Figure 2b: Second phase; solution —» Tl route

. . — T2 rout:
after insertion of all customers to the drones. o

DI route

D2 route
5.2. Neighborhood structures

In this section, we describe the neighbourhood search operators embedded in our hybrid AMS-SA.
They are an essential component that should satisfy the balance between conserving the promising and
perturbating the less promising part of the current solution. In this regard, several well-known
neighborhood operators adopted in the literature (e.g., Lin and Yu, 2012; Masmoudi et al., 2018) are
applied to explore the current solution's search space. In particular, we implement four neighborhood
structures (i.e., N1, N2, N3, and N4), which we describe below.

Exchange Neighborhood (N1): This structure consists of randomly choosing two routes with the same
mode of transportation (trucks or drones). From one route, a random segment comprised of a sequence
of consecutive nodes is cut that may consist of customers. The number of nodes in the cut segment is

randomly chosen between one and five, depending on the number of customers in a route (Masmoudi et
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al., 2018). From the removed segment customers are re-inserted one by one at their best positions in the
other routes. When inserting a customer, the algorithm determines the best feasible insertion positions.
Swap Neighborhood (N2): The swap operator consists of swapping two customers of two different
routes. To apply this operator, we first select two randomly routes. Then, a random customer is selected
from a truck (drone) and swapped with another customer from another truck(drone). The first customer's
is inserted in the same position as the second customer in the second route. While the second customer's
is inserted at any place in the first route.

Cross-exchange (N3) -(N4): A segment of nodes of size b randomly selected is cut from a route (truck
or drone) r1 and inserted in another route (truck or drone) 2. Sequentially, a segment of nodes of size
d randomly selected between b and b-1, is cut from a route r2 and inserted into route r1. This exchange
results in an improved diversification, as proven in e.g., Hemmelmayr et al. (2009). Therefore, this
operator is often applied at the perturbation stage, as demonstrated in e.g., Hemmelmayr et al., 2009;
Masmoudi et al., 2018). For a feasible and effective swap, the segment length used in our operator's

move is set to two and denoted by (N3) and set to three and referred by (N4).
5.3. Local search operators

During each step of the AMS-SA algorithm, several well-known local search operators inspired and
adapted from the literature studies are applied to improve the current solution. In particular, four
operators with different movements are involved. Two inter-route operators namely 2-opt* proposed by
Potvin and Rousseau (1995), and the remove two insert one operator presented by Xiang et al. (2016).
Moreover, two intra-routes operators composed of the relocate operator proposed by Savelsbergh (1992)
and the 2-opt operator Potvin and Rousseau (1995).

5.4. Adaptive weight adjustment procedure

In each iteration of the AMS-SA (as described in Algorithm 1), selecting an appropriate
neighborhood and operator is made through a roulette wheel mechanism. Such a mechanism achieves a
right balance between solution quality and running time. The probability of choosing a neighborhood
operator N (N € {N1, N2, N3, N4}) at iteration j, is calculated as P,J“z Pi(1- 1,) + Tpmylwy, Where
7, is the roulette wheel parameter, my is the score of an operator, and wy is the number of times the
operator N is used in the last n;,, iterations. The score of an operator is updated according to the
following procedure: i) if the operator finds a new best solution, the score is incremented by o, ii) if it
locates a better solution than the current one, the score is incremented by o, iii) if it finds a non-
improving feasible solution, the score is incremented by o5. After n;,, iterations, the weights are

adjusted using the scores obtained. Similarly, the probability of choosing a local search operator | (I €

{11, 12, 13, 14}) is computed as P,j+1= P(1- 1) + T lw).
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6. Experimental results

In this section, our aim is twofold. First, to test the performance of the algorithm against well-known
benchmark instances. Second, we propose several experiments to analyze the features of VRP-D-MC.
We have implemented the AMS-SA algorithm in C and the experiments were performed on a machine
equipped with an Intel Core i5-10310U 2.21 GHz and 8 GB RAM.

6.1. Data set instances

Since the VRP-D-MC is new to the literature, we generate a new set of instances derived from the
benchmark instances of Pugliese et al. (2020) for the drone routing problem, which are modified
versions of the instances created by Solomon (1987) for the well-known VRPTW benchmark instances
of. These instances consist of six categories, i.e., C1, C2, R1, R2, RC1 and RC2. Each data set contains
between 50 and 100 customers or requests. All customers locations are randomly distributed data sets
in categories C1 and C2. In classes R1 and R2 locations are within predefined clusters, while in the
categories RC1 and RC2, the coordinates are generated as randomly and clustered. The coordinates
nodes are randomly generated in the square area [—10,10]2. The data sets of C1, R1 and RC1 are
characterized with a tight time window and longer travel time compared to shortest travel time and large
time windows in C2, R2 and RC2. The weight of each package requested by the customers ranges
between 1kg and 100 kg. Small size packages are subject to drone delivery (Bezos, 2013; Poikonen and
Golden, 2020). To capture the limitation of drone delivery, we adopt similar ideas from Pugliese et al.
(2020) for instance generation. We set that only half (50%) of the customers N can be served by drones
under each instance. These customers have a smaller value of quantity g;.The service time for each
customer served by a truck is set to the original service time, while the service time by a drone is set to
half of the service time by a truck (i.e., a drone is two times faster than a truck). We note that such a
choice of the velocities of the trucks and drones provides higher feasibility of having drone and truck
routes synchronized (Sacramento et al., 2019). Moreover, we associate for each allocation of a package
in the vehicle (drone and truck) a rent cost that equal to 20$, 40$ and 60$ for a place of 20 cm?®, 40 cm?®
and 60 cm?, respectively and 100$ for the package that surpasses 60 cm?. The maximum waiting time T
is equal to 10 min (Pugliese et al., 2020). The new data sets can be downloaded from on https://vrp-d-

mc-47.webselfsite.net/.

6.2. Setting the parameters

Like most meta-heuristics available in the literature, the proposed AMS-SA algorithm's performance
is expected to depend on the algorithm parameters, namely, the cooling rate «, the scores of the local
search operators ( 7y, m, and 3), the number of iterations for a given temperature n;;,,, and the number
of iterations of the whole algorithm ng 4. The parameters values are chosen based on the recommendation
and suggestions of previous experiment turning in the literature (a, m,, ™, and ;) and based on our

preliminary experiments (n;..-and ng4.). In general, the values of parameters that are based on
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experimental designs followed in the literature as follow; we set the cooling rate a to 0.99975 as
suggested by Demir et al. (2012) and Masmoudi et al. (2016; 2020). We adopt the same parameter values
as recommended in the most successful ALNS applied in the majority of VVRP variants (e.g., Demir et
al., 2012; Alinaghian et al., 2018; Zulj et al., 2018; Masmoudi et al., 2020). As such, we set the score
values of the operators ,, m, and w5 as 15, 5 and 10, respectively. Two parameters setting may affect
the performance of our algorithm which are the overall number of iterations of the algorithm ng,, and
the number of iterations for a given temperature n;.,, are set to where ng,=50,000 and n;;,,=100,
respectively. These values were defined based on preliminary tests we conducted using 20 instances
with diverse features ranging from tight to large time windows, and with a different number of
customers. Each instance is solved five times. The aggregate results of the preliminary tests are reported
in Table 3. We have ng, = 30.000, 50.000 and 100.000, and n;:, = 50, 100, 150, 200. The row Best
(Avg) represents the average best of solution value found for each pair of parameters (ngy4, njter) Of all
the selected instances in the small data set, while the column CPU represents the average run time in

minutes.

Table 3

Parameter setting of the AMS-SA
Tsa 30.000 50.000 100.000
Niter 50 100 150 200 50 100 150 200 50 100 150 200
Best 130179 1302.18 130240 1303.26 130439 130561 1304.94 1304.83 130594 1306.02 1306.98 1307.02
Avg 128655 1287.15 1289.89 1291.27 130323 1299.87 130048 1298.59 129273 129169 1291.16 1290.67
CPU (min) 5 5g 2.72 2.90 2.80 2.72 2.78 2.84 2.86 2.95 3.38 3.48 3.66

In Table 3, we observe that on the one hand, no significant improvements are obtained when ng, is
set to be larger than 50.000 iterations. On the other hand, computation times increase, as expected, when
we increase the number of iterations. Hence, ng, =50,000 and n;:.,-=100 provide a good trade-off

between solution quality and run time.

6.3. Testing the AMS-SA algorithm on benchmark instances

In addition to the newly generated instances described in subsection 6.1, we also run the algorithm
on the instances of Sacramento et al. (2019) for the VRP-D. Table 4 reports the results for the small and
medium-large size instances of Sacramento et al. (2019) that contain between 5 and 200 customers.

The performance of our algorithm is compared with the Hybrid Genetic Algorithm (HGA) method
of Euchi and Sadok (2020) on the data set instances of Sacramento et al. (2019). For these instances, the
objective function is to minimize the total travelled time for the delivery. A subset of medium-large size
instances of 46 problems are considered in this work. Each instance is solved ten times by each of the
algorithms (i.e., ours and the HGA algorithms). In Table 4, column “Best” (“Avg”) report the best
(average) solution values. The column “CPU” indicates CPU time in seconds. Column “BKS” reports
the Best-Known Solution values. Furthermore, column “Best%” (Avg%) refers to the gap of the best

(average) solutions compared to the best-known solution (BKS). Table 4 provides the results of run on
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the medium and large sizes instances. Since AMS-SA and HGA were run on similar machines, the
corresponding computing times can be compared directly.

Table 4
Comparison of AMS-SA with the HGA algorithm on medium and large instances of Euchi and Sadok
(2020)

Inst BKS® HGA® AMS-SA

Best Best% Avg Avg% CPU(s) Best Best% Avg Avg% CPU(s)
100.10.1 6.36332 6.36332 0.00 6.3859 0.35 3.306 6.36332 0.00 6.36332 0.00 1.048
100.10.3 7.26979 8.11945 13.03 8.22664 14.52 3.32 726979 120 739332 292 2917
100.10.4 6.89257 6.89257 0.00 7.04396 220 3.326 6.99257 1.45 7.0852 279 4368
100.20.1 12.541 12.541 0.00 13.2443 561 3.332 12.541 0.00 12.76424 1.78  3.269
100.20.2 14.0118 14.0118 0.00 145979 418 6.339 14.0118 0.00 14.0118 0.00 4.07
100.20.3 124879 124879 0.00 125325 0.36 6.345 1251459 0.21 1251459 0.21  6.337
100.204 12135 12135 0.00 12.2157 0.67 8.351 12.135 0.00 12.24307 0.89  7.403
100.30.1 22.9686 23.5686 4.34  23.9006 5.81  6.356 229686  1.68  23.23507 2.86 4.76
100.30.2 22.0396 22.0396 0.00 22.135 043  7.375 22.0396 0.00 2239161 160  7.108
100.30.3 23.2988 232988 0.00 235033 0.88  70.392 232988 0.00 23.2988 0.00 33.055
100.40.1 29.1397 29.1397 0.00 29.5463 140  9.427 29.6397 1.72 29.80102 2.27 3.425
100.40.2 30.361  30.361 0.00 304129 0.17 10.446 30.361 0.00 30.79356 1.42  8.286
100.40.3 29.0112 29.0112 0.00 29.0635 0.18 10.473 29.0112  0.00 29.09314 0.28 7.122
100.40.4 28.5904 28.5904 0.00 28.636 0.16 10.49 28.8904 1.05 29.0891 1.74 6.886
150.10.1 8.5865  8.5865 0.00 9.63644 12.23 0.495 8.5865 0.00 863456 056 0.1
150.10.2 8.14615 8.14615 0.00 10.9009 33.82 0.994 8.14615 0.00 8.14615 0.00 0.927
150.10.3 8.67899 9.70515 14.23 9.84302 15.85 1.522 8.67899 215 884433 410 1.305
150.10.4 8.9979  10.8302 2255 10.9725 2416 2.012 8.9979 182 9.05767 249 1643
150.20.1 17.0099 17.0099 0.00 17.6175 357 2.323 17.0099 0.00 17.31543 1.80 2.075
150.20.2 16.1837 16.1837 0.00 16.6333 2.78 2.612 16.2837  0.62 16.58436 2.48  2.066
150.20.3 16.983  16.983 0.00 16.983  0.00 3.025 17.32011 198 1749209 3.00 2.581
150.20.4 16.8102 16.8102 0.00 16.8102 0.00 3.339 16.87836 041  16.90572 0.57 1.354
150.30.1 25.8524 25.8524 0.00 25.8524 0.00 3.489 25.8524  0.00 2592485 0.28 2.249
150.30.2 26.137  26.137 0.00 26.137 0.00 3.569 26.137 0.00 26.27017 051 1541
150.30.3 25.0101 25.0101 0.00 25.0101 0.00 3.707 25.18698 0.71 2523735 091 5.494
150.30.4 25.9812 259812 0.00 25.9812 0.00 3.863 259812 0.00 259812 0.00 3.79
150.40.1 29.4683 29.4683 0.00 29.8651 1.35 6.477 294683  0.00 29.93088 157 4.25
150.40.2 35.2343 352343 0.00 359835 214 6.997 3557243 096  36.27218 295 7.436
150.40.3 36.8769 36.8769 0.60 36.8769 0.60  8.353 36.97655 0.87 37.16228 1.38  11.466
150.40.4 355854 355854 1.63 357586 2.12 10.29 35.67847 1.89  36.37678 3.89 11.46
200.10.1 10.0956 10.0956 0.01  10.1574 0.62  10.446 10.25848 1.62  10.39568 2.98  13.022
200.10.2 10.2855 10.2855 0.00 10.5303 2.38  10.597 10.2855 0.00 10.2855 0.00 7.048
200.10.3 9.10497 9.10497 0.00 9.10497 0.00 13.983 9.1988 1.03 9.31069 2.26 14.838
200.10.4 10.1251 10.1251 0.00 10.1251 0.00 15.617 10.1251 0.00 10.15315 0.28  12.996
200.20.1 21.2151 21.2185 0.02 21.2185 0.02  15.755 21.2151 0.00 2143482 1.04  12.057
200.20.2 21.0193 21.0193 0.00 21.1948 0.83 17.884 21.0193  0.00 21.40677 1.84 16.344
200.20.3 19.0312 19.0312 0.00 19.0312 0.00  19.398 19.0312 0.00 19.0312 0.00 15.082
200.20.4 18.884  18.884 0.00 19.184 159  19.547 18.884 0.00 1894839 0.34 17.563
200.30.1 30.073  30.073 0.00 30.683 2.03  19.699 30.46585 131  30.52591 1.51  20.538
200.30.2 32.0915 32.0915 0.00 32.0915 0.00 19.835 3246581 117 3251378 1.32 24934
200.30.3 32.0835 32.0835 0.00 32.0967 0.04 21.699 32.0835 0.00 324495 114 19.011
200.30.4 32.0375 32.0375 0.00 32.0375 0.00 21.853 3246979 135 33.05164 3.17  24.659
200.40.1 41.2954 41.2954 0.00 415796 0.69 22.018 412954  0.00 41.88108 142  17.765
200.40.2 43.0717 43.0717 0.00 43.1256 0.13  25.568 43.0717  0.00  43.82258 1.74  19.325
200.40.3 43.1857 43.1857 0.00 43.1857 0.00 26.182 4346598 0.65  44.08434 2.08  28.089
200.40.4 42.0313 42.0313 0.00 42.0313 0.00 26.428 4286598 1.99 4292061 212  30.071
Avg 22.04963 22.14336 1.23 22.38453 3.13  11.497 2215204 0.61 22.36 149 9.85

a Best-known solution results provided from Euchi and Sadok (2020)

®Results provided by the ALNS of Euchi and Sadok (2020) programmed on C++ language and executed on Intel Core i5-2450M with
2.50 GHz and 4GB of RAM.

Given the results of Table 4, we conclude that our algorithm outperforms on average the HGA of

Euchi and Sadok (2020) even with small gap. Our AMS-SA improves the results of Euchi and Sadok
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(2020) in the average deviation (Best%) for the best-known solutions results over ten runs by 0.61%
compared to 1.23% for the HGA. The AMS-SA has an average deviation (Avg%) of 1.49%, against
3.74% of the HGA. In addition, our algorithm is faster than the HGA by reporting an average of 9.850
seconds compared to 11.497 seconds reported by the HGA. All in all and based on the results in Table
4, we conclude that our AMS-SA is more effective than HGA of Euchi and Sadok (2020). We believe
that this is due to the additional diversification and intensification mechanisms introduced in our
algorithm which allow the converge toward good quality solutions. In the next subsection, we analyse

the impact of the different algorithm components to analyse their effectiveness.
6.4. Impact of the different AMS-SA features

In AMS-SA, several features namely, the multi-start approach, the crossover operator, restoring to
the same neighborhood search, and controlling the temperature parameter by the Cauchy function are
applied. We believe these components are crucial for the good performance of our algorithm. In this
subsection, we evaluate the impact of each of these algorithmic components. We compare seven
different algorithms, each implementing a different set of features. We denote these algorithms SA1,
SA2, SA3, SA4, SA5, SAG, and SA7. Table 5 shows the features included in each of the algorithms.

Table 5
Combinations of algorithmic features

Features SAl SA2 SA3 SA4 SA5 SA6  SA7
Cauchy function v N v v v N v
Returning to the same neighborhood operator in case S \ \ V \

the new solution is accepted

Reducing the temperature when x,, is not improved v v \ \/ S
Crossover operator N N
Multi-start approach N N

For instance, algorithm SAL implements only the Cauchy function for controlling the temperature
parameter (i.e., without crossover and multi-start), and hence it is equivalent to the traditional SA.
Algorithm SA2 implements both the Cauchy function and the option to return to the same neighborhood
operator in case the new solution is accepted. Algorithm SA7 implements all the features. In Table 6,
we provide a comparison between these different algorithm configurations, where all variants are run
on the VRP-D benchmark instances of Sacramento et al. (2019). We report the gap percentage “Best%”

and “Avg%> values that represent the deviation gap from the best-known solutions (BKS).
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Table 6
Components of the AMS-SA

HGA® SAl SA2 SA3 SA4 SA5 SA6 SA7

Inst. BKS Avg% Best% Avg% Best% Avg% Best% Avg% Best% Avg% Best% Avg% Best% Avg% Best% Avg% Best%
100.10.1  6.36332 035 0.00 347 266 293 18 266 159 245 132 159 053 212 026 0.00 0.00
100.10.3  7.18353 1452 13.03 3.69 311 330 253 311 234 287 215 234 158 272 139 292 120
100.104  6.89257 220 0.00 1060 842 914 628 842 557 745 488 557 281 698 213 279 145
100.20.1 1254100 561 0.00 9.18 699 771 484 699 414 668 344 414 136 557 068 178 0.00
100.20.2  14.01180 4.18 0.00 190 146 161 102 146 087 142 073 087 029 120 015 0.00 0.00
100.20.3 1248790 036 0.00 528 409 449 291 409 252 341 213 252 098 330 059 021 021
100.204  12.13500 067 0.00 18 142 157 099 142 08 118 071 08 028 111 014 089 0.00
100.30.1 2258820 581 434 462 393 416 325 393 303 379 280 303 213 346 191 286 168
100.30.2  22.03960 043 0.00 379 291 320 202 291 173 244 144 173 057 232 029 160 0.0
100.30.3  23.29880 088 0.00 332 254 280 177 254 152 217 126 152 050 202 025 0.00 0.00
100.40.1  29.13970 1.40 0.00 5.04 427 453 349 427 324 405 298 324 222 374 197 227 172
100.40.2  30.36100 0.17 0.00 315 241 266 168 241 144 201 120 144 048 194 024 142 0.00
100.40.3  29.01120 0.18 0.00 4.03 309 340 215 3,09 184 2583 153 18 061 243 030 0.28 0.0
100404 2859040 0.16 0.00 1195 934 1020 6.78 934 594 771 511 594 266 762 18 174 105
150.10.1  8.58650 1223 0.00 218 167 184 117 167 100 154 083 100 033 133 017 056 0.00
150.10.2  8.14615 3382 000 716 546 603 379 546 324 506 270 324 107 434 053 000 0.00
150.10.3 849602 1585 1423 1226 9.84 1064 747 984 670 863 593 670 365 826 290 410 215
150.10.4 883734 2416 2255 1110 889 962 672 889 6.00 876 529 6.00 319 743 250 249 182
150.20.1  17.00990 357 0.00 12,00 911 1007 629 911 537 806 446 537 176 723 088 180 0.00
150.20.2  16.18370 2.78 0.00 7.03 551 601 402 551 353 493 304 353 158 449 110 248 062
150.20.3  16.98300 0.00 0.00 12.60 10.06 1090 7.57 10.06 6.75 942 594 675 355 840 276 3.00 198
150.20.4  16.81020 0.00 000 1156 888 9.77 6.27 888 541 834 456 541 205 714 122 057 041
150.30.1  25.85240 0.00 000 321 246 271 171 246 147 220 122 147 049 196 024 028 0.00
150.30.2  26.13700 0.00 000 10.03 763 842 528 763 451 736 374 451 148 6.06 074 051 0.00
150.30.3  25.01010 0.00 0.00 10.87 844 925 6.06 844 528 775 450 528 221 684 146 091 071
150.304  25.98120 0.00 0.00 7.06 539 594 374 539 320 477 266 320 105 427 053 0.00 0.00
150.40.1 29.46830 135 0.00 812 619 683 430 619 367 506 305 367 121 493 060 157 0.00
150.40.2 3523430 214 000 653 522 566 392 522 349 467 307 349 180 436 138 295 0.96
150.40.3  36.65740 0.60 060 348 287 307 226 287 206 262 18 206 127 246 107 138 0.87
150.40.4 3501560 212 163 324 293 304 262 293 251 279 241 251 210 273 200 389 1.89
200.10.1  10.09450 0.62 0.01 1243 984 1070 731 984 648 828 565 648 322 818 242 298 162
200.10.2  10.28550 2.38 000 957 728 804 504 728 431 658 358 431 142 578 071 000 0.00
200.10.3 9.10497 0.00 000 294 250 265 206 250 191 221 176 191 132 221 118 226 103
200.104  10.12510 0.00 0.00 461 353 389 246 353 210 295 175 210 070 281 035 028 0.00
200.20.1  21.21510 0.02 0.02 1099 856 937 618 856 540 714 463 540 234 695 158 1.04 0.00
200.20.2  21.01930 0.83 0.00 1198 9.10 1005 6.28 910 536 835 445 536 176 723 087 184 0.0
200.20.3  19.03120 0.00 0.00 1185 9.00 994 622 900 530 873 440 530 174 714 087 000 0.00
200.20.4 18.88400 159 000 496 380 418 264 380 226 328 183 226 075 305 037 034 0.00
200.30.1  30.07300 2.03 0.00 1339 1048 1144 764 1048 671 861 579 671 308 857 219 151 131
200.30.2  32.09150 0.00 0.00 608 492 531 378 492 340 473 303 340 191 417 154 132 117
200.30.3 32.08350 0.04 000 78 599 661 416 599 355 594 295 355 117 476 058 114 0.00
200.30.4  32.03750 0.00 000 697 565 608 434 565 391 533 348 391 219 478 177 317 135
200.40.1  41.29540 0.69 000 38 295 325 205 295 176 292 146 176 058 236 029 142 0.0
200.40.2  43.07170 0.13 000 510 390 430 271 39 232 352 193 232 077 311 038 174 0.0
200.40.3 4318570 0.00 0.00 407 327 354 248 327 221 298 195 221 117 274 091 208 0.65
200.404  42.03130 000 o000 878 717 771 559 717 507 715 455 507 300 611 249 212 1.99
Avg 22.01483 313 123 708 555 605 404 555 354 502 305 354 158 454 110 149 061

2 Best-known solution results provided from Euchi and Sadok (2020)
® Results provided by the ALNS of Euchi and Sadok (2020) programmed on C++ language and executed on Intel Core i5-2450M with 2.50
GHz and 4GB of RAM.

From Table 6, the HGA of Euchi and Sadok (2020) outperforms algorithm SA1. The average gaps
for the best solution and the average solution of the SA1 from the best know solutions results are 5.55%
and 7.05%, respectively. Furthermore, we observe a slight improvement, compared to the traditional SA

(SAL), when we incorporate the new way of controlling the temperature parameter (i.e., algorithm SA2)
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and the restoring to the same neighborhood operator technique (i.e., algorithm SA3). The average gaps
are 4.04% (5.04%) and 3.54% (4.54%) for SA2, and SA3, respectively. Some improvements are
achieved when combining the features of SA2 and SA3, resulting in algorithm SA4. Yet, the algorithm
does not outperform the HGA of Euchi and Sadok (2020). In fact, an average gap improvement of 0.99%
(to the best solution) and 1.02% (with regard to the average solution) compared to SA2, and 0.49% (to
the best solution) and 0.52% (with regard to the average solution) compared to SA3. We believe this
improvement is due to the diversification mechanism that facilitates exploring different search regions
by using the new way of controlling the temperature parameter. The intensification capability is
contributed by the restoring mechanism. We start observing the outperformance of our algorithm over
the other combinations when we include the crossover operator (i.e., algorithm SA5). We only start
outperforming HGA of Euchi and Sadok (2020) on the average of best solutions (columns Best%) when
we include the multi-start approach resulting in algorithm SA6 by obtaining an average gap equal to
1.10% compared to 1.23% for the HGA.

On average, SA5 and SA6 deviate from the best-known results by 1.58% (3.54%) and 1.10%
(4.53%), respectively. This can be explained by the good diversification capabilities of crossover in
combination SA5. In addition, by including either the multi-start approach into the combination SA4,
which refers to the combination SA7, or the crossover operator (SA6), we observe that the algorithm
does not outperform HGA of Euchi and Sadok (2020). Thus, we believe that applying only this strategy
cannot escape from the convergence to local optima. However, when applying together all components
(features), we find that the new combination SA7 outperforms of the HGA in averages by reporting
average gap of 0.60% (1.49%), compared to 1.23% (3.13%) obtained by Euchi and Sadok (2020). In
conclusion, the adoption of all components provides both diversification and intensification during the
search to the traditional SA and appears as the most effective combination, compared to the other

combinations.
6.5. Effect of pickup packages under recharging energy

In this subsection, we investigate the impact of picking up packages during recharging energy. We
consider two scenarios: (i) packages can be picked up by a drone during recharging on a truck
(depending on the capacity), and (ii) packages cannot be picked up by a drone during recharging /
swapping batteries on a truck. A small set of instances is selected with different characteristics, e.g.,
number of customers, tight and wide time windows, and different customers locations (clustered and

randomly dispersed). The results of the two scenarios are reported in Table 7.
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Table 7
An analysis of the benefits of using loading items under recharging drone battery

First scenario Second scenario

Inst. CPU
Best Avg Best Best% Avg Avg% (min)

c102 119599 1182.30 1163.10 -2.75  1119.83 -6.37 0.95
c104  1253.90 1180.38 1250.64 -0.26  1233.76 -1.61 1.09
cl05 82555 812.20 819.94 -0.68 800.67 -3.01 1.66
cl06 556.35 551.73 55529 -0.19 54857 -1.40 1.01
cl08 1122.84 1087.83 1079.84 -3.83  1019.80 -9.18 1.66
c109 1281.53 1266.11 1269.23 -0.96  1244.73 -2.87 0.96
€202 127596 1223.24 124419 -249 118136 -7.41 250
c204  1330.49 1320.20 1279.00 -3.87 119830 -9.94 235
c206  1933.53 1921.67 1882.68 -2.63 179250 -7.29 211
c207 1660.66 1648.03 1589.58 -4.28  1477.99 -11.00 2.63
rl02  910.65 899.30 884.33 -2.89 83410 -841 272
r104 87741 864.94 889.34 1.36 881.87 051 2.24
rl05 747.90 738.11 73511 -1.71  690.20 -7.72 433
rl07  1391.46 1377.53 1338.31 -3.82  1344.06 -341 352
r110  1347.98 1337.17 1386.13 2.83 1366.03 1.34 2.54
r201  1209.47 1199.25 1214.31 0.40 1202.29 -059 358
r202  1092.47 1073.46 1064.61 -255  1007.76 -7.75 272
r206  1032.19 1005.27 1003.50 -2.78 95212 -7.76  2.27
r207  2027.92 1993.21 2090.99 3.11 2126.54 4.86 1.46
r208  1631.45 1592.06 1586.59 -2.75 151741 -6.99 156
r210  1734.09 1631.64 1672.88 -3.53 170851 -1.48 145
rcl05 97447 959.33 987.14 130 97579 0.14 0.87
rcl07 1279.52 1240.29 1246.64 -257 120051 -6.17 1.10
rcl08 959.95 926.84 952.37 -0.79  933.03 -280 122
rc202 1161.81 1132.85 1148.33 -1.16  1108.95 -455 224
rc203 1101.82 1068.76 1059.40 -3.85 99234 -994 239
Avg 122759 1201.30 1207.44 -159 117150 -465 204

Table 7 suggests that the second scenario decrease the total revenue by an average gap of 1.59%.
This is reasonable because a detour to a truck is required for picking up packages, and trucks may be

needed to deliver the small packages, but they are slower than drones (Chung et al., 2020).
6.6. Impact of using different drones’ configurations

In this section, we analyse the impact of using different drones’ configuration. To do so, we consider
three configurations for the resources of the drone that can be accommodated as described in the Table
8.

Table 8
Drone configurations
Resources
Configuration
20 cm® 40 cm?® 60 cm®

C1 4 0 0

Cc2 0 4 0

C3 0 0 4

Taking for example, the first configuration C1, that contain four places associated for the packages
of size 20 cm?, zero place for the packages of size of 40 cm?®and zero place for the packages of size 60

cm®.
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Table 9 report the best (average) solutions results using each configuration C1, C2 and C3 of each

solution found on each given instance. The columns Best%(Avg%) present the percentage of the

deviation from the best solutions found by our main configuration denoted CO of this paper which is

two places associated for the packages of size 20 cm?, one place for the packages of size of 40 cm?®and

one place for the packages of size 60 cm?®. We note that the trucks are used in tandem with the drone in

each configuration.

Table 9
Results of using different drones’ configurations profiles
Cco [ c2 Cc3

Inst Best Avg Best Best% Avg Avg%  Best Best% Avg Avg%  Best Best% Avg Avg%
cl01  886.89 88297 88210 -0.54 870.63 -1.83 88485 -0.23 87600 -123 88281 -0.46 872.04 -1.67
c102 119105 119052 118891 -0.18  1177.73 -112 118891 -0.18 1177.73 -112 119022 -0.07 1180.34 -0.90
c103  1096.76 1094.83 1097.42 0.06 109435 -022 109369 -0.28  1092.16 -0.42 109731 005  1094.13 -0.24
cl04 124778 123950 1237.80 -0.80 122653 -1.70  1247.16 -0.05 124504 -022 124067 -0.57 1232.23 -1.25
cl05 80472 79695 80416 -0.07 79829 -0.80 80464 -0.01 799.25 -0.68 80504 004  800.13 -0.57
cl06 55253 537.74 54910 -0.62 54285 -1.75 550.93 -0.29 54647 -110 55259 001  549.77 -0.50
cl07  1217.08 121433 121404 -025 120020 -1.39 122000 024 121207 -041 121720 001 120649 -0.87
c108 110568 1095.87 1097.50 -0.74 108257 -2.09 110391 -0.16 1097.40 -0.75 110037 -0.48  1088.27 -157
cl09 127584 127197 126576 -0.79 125348 -1.75 127393 -0.15 127291 -023 126959 -0.49  1261.08 -1.16
c201  1067.41 106293 106517 -0.21  1059.74 -0.72  1069.22 0.17  1067.94 005 106581 -0.15 1061.12 -0.59
c202 125899 125163 125496 -0.32 124065 -1.46 1258.86 -0.01 124854 -0.83 125458 -0.35  1239.90 -1.52
c203 158648 1580.65 1586.64 0.01  1576.64 -0.62  1583.31 -0.20  1570.01 -1.04 158347 -0.19  1570.32 -1.02
c204  1318.80 1307.70 131352 -0.40 130591 -0.98 131511 -0.28 1309.06 -0.74 131392 -0.37  1306.69 -0.92
€205 127998 1279.70 127512 -0.38  1261.85 -1.42  1278.96 -0.08 1269.49 -0.82  1279.08 -0.07  1269.75 -0.80
c206 192472 190543 191606 -0.45  1902.26 -1.17 192029 -0.23 191069 -0.73 191837 -0.33  1906.86 -0.93
c207  1636.11 161828 1637.42 008 162759 -052 163169 -0.27 162011 -0.98 163104 -0.31  1614.73 -1.31
c208 150156 1590.86 1587.26 -0.27 157472 -1.06  1579.62 -0.75 157062 -1.32 159267 007  1585.35 -0.39
AvgC  1237.79 123070 123370 -0.35 122329 -121 123559 -0.16 122856 -0.74 123498 -0.22  1225.84 -0.95
rio1 §57.68 819.33 85511 -0.30 85049 -0.84 85682 -0.10 85391 -044 85313 -053 84657 -130
r102 86505 82871 85891 -0.71 84886 -187 860.29 049  863.38 -0.19 86583 0.09 86263 -0.28
r103 756.32 73632 75148 -0.64 74299 -176 75859 030 75722 012 75624 -0.01 75254 -0.50
rio4 84243 81954 83822 -050 83352 -106 84310 008 84319 009 84083 -0.19 83873 -0.44
ri05 72870 71743 72775 -013 72346 -0.72 73016 020 72819 -0.07 72746 -017 72281 -0.81
rl06 1371.38 1298.89 137248 008 137330 014 137179 003  1371.79 003 136589 -0.40  1360.02 -0.83
rio7 134471 130123 134041 -0.32  1328.34 -1.22 135157 051 134238 -0.17 1330.20 -0.41 132594 -1.40
r108 73455 72505 73396 -0.08 72699 -1.03 73352 -014 72611 -115 73051 -0.55 72006 -1.97
r109 118405 1137.95 1179.08 -0.42 116623 -1.51 118594 016  1179.90 -0.35  1180.73 -0.28 116952 -1.23
r110 1318.89 129357 1321.00 0.16 131426 -0.35 131810 -0.06 130834 -0.80 131295 -0.45 129825 -1.56
ri11 877.34 84506 87085 -0.74 857.09 -2.31 87559 -020 866.48 -1.24 87883 017  873.03 -0.49
ri12 1169.42 115587 116591 -0.30 115449 -1.28 117012 006  1162.87 -0.56 1167.78 -0.14 115821 -0.96
r201 114502 1099.80 113815 -0.60 113121 -1.21 114525 002 114548 004 114181 -0.28 113862 -0.56
r202 1062.64 1061.96 105552 -0.67  1046.97 -147 106253 -001 106105 -0.15  1059.24 -0.32  1054.37 -0.78
r203 113049 112642 112359 -0.61 111135 -1.69 112925 -011 112258 -0.70 113049 000 112495 -0.49
r204 110419 1089.18 1098.12 -0.55 108219 -1.99 110143 -025 1088.76 -1.40  1098.12 -0.55  1082.08 -2.00
r205 1509.18 1591.84 1601.74 0.16 159213 -044 160142 0.4 159149 -0.48  1599.98 005  1588.62 -0.66
r206 997.14 98322 989.66 -0.75 97699 -2.02 99654 -0.06 990.66 -0.65 99325 -0.39 98411 -131
r207 1936.24 1899.32 1926.75 -0.49  1905.37 -1.59 194050 0.22 193293 -0.17 193624 000  1924.24 -0.62
r208 1590.11 1589.14 158152 -0.54  1558.75 -1.97 159027 0.01 157612 -0.88 158518 -0.31  1566.00 -1.52
r209 1979.24 1967.86 1971.92 -0.37  1947.07 -1.63 197528 -020 195395 -128  1977.46 -0.09  1958.08 -1.07
r210 171647 171604 170531 -0.65 168042 -2.10 172162 030 171301 -0.20 171166 -028 169318 -1.36
r211 1611.58 150044 1604.01 -0.47  1591.65 -1.24 160691 -0.29  1597.59 -0.87  1613.03 0.09  1609.64 -0.12
AvgR 121404 119105 120919 -0.41 119757 -1.35 121459 005  1207.71 -050 121156 -0.22  1202.27 -0.97
rc101 70596 697.64 702.85 -0.44 69414 -167 70250 -049 69857 -105 70462 -019 697.71 -1.17
rcl02  919.33 900.22 91234 -0.76 90495 -156 916.66 -0.29 91355 -0.63 91455 -052 909.34 -1.09
rcl03  879.11 85940 87586 -0.37 867.80 -129 88166 029  879.46 004 87603 -0.35 86824 -124
rcl04 76337 759.67 757.80 -0.73 75136 -157 763.14 -0.03 76200 -0.18 76276 -0.08 76123 -0.28
rc105  943.89 92249 94483 010 94465 008 94427 004 94361 -0.03 94427 004 94351 -0.04
rcl06 67274 65870 671.87 -0.13 668.84 -0.58 67119 -023 66750 -0.78 67240 -0.05 669.85 -0.43
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rc107 1255.21 1240.28 124831 -0.55  1239.32 -1.27 125559 0.03 1253.83 -0.11 1251.07 -0.33 124481 -0.83
rc108 94489 94181 94111 -040 930.66 -1.51 944.04 -0.09 93649 -0.89 94461 -0.03 937.62 -0.77
rc201 1541.24 1536.49 1534.46 -0.44 152280 -1.20  1538.62 -0.17  1531.08 -0.66 1539.70 -0.10  1533.23 -0.52
rc202 1131.43 1102.39 1130.98 -0.04  1123.06 -0.74 112996 -0.13  1120.92 -0.93 1129.73 -0.15  1120.47 -0.97
rc203 1063.97 1037.20 1055.99 -0.75  1039.52 -2.30  1065.35 0.13 1058.22 -0.54  1065.03 0.10 1057.58 -0.60
rc204 1519.90 1501.97 1516.56 -0.22  1499.57 -1.34 151595 -0.26 149851 -1.41 1512.76 -0.47  1492.03 -1.83
rc205 1461.94 1456.31 1463.40 0.10 1461.65 -0.02 145755 -0.30  1449.97 -0.82 1464.86 0.20 1464.57 0.18
rc206 1421.86 1410.88 1420.44 -0.10  1416.75 -0.36  1421.43 -0.03  1421.86 0.00 141532 -0.46  1406.54 -1.08
rc207 1336.45 1331.13 1336.72 0.02 1326.83 -0.72 133391 -0.19 132111 -1.15 1333.64 -0.21  1320.57 -1.19
rc208 1619.83 1607.53 1618.70 -0.07  1605.42 -0.89  1621.13 0.08 1610.43 -0.58 1614.32 -0.34  1596.73 -1.43
AvgRC 1136.32 1122.76 1133.26 -0.30  1124.83 -1.06 1135118 -0.10 1129.19 -0.61 113410 -0.18  1126.50 -0.83
Avg 1196.05 118150 1192.05 -0.35  1181.90 -1.21  1195.12 -0.07  1188.49 -0.61 119355 -0.20  1184.87 -0.92

The results show that using the second configuration C2 provide a similar result with the respect of
the main configuration CO. Using configuration C1 lead to increase the revenue cost and provide higher
gap compared to the other configurations with an average gap equal to 0.35% compared to 0.07 % for
C2 and 0.20% for C3. In addition, we can see that using the configuration C2 in data set R where the
customers are randomly located provide much better results than the other configurations with an
improvement (positive value) of 0.05%. We can conclude that by choosing the right drone configuration,
the revenue costs can be significantly augmented, and that the magnitude of the increasing also depends
on the nature of the instances (clustered or random).

6.7. Impact of the time windows

In this subsection, we evaluate the impact of using the time windows. We are interested in making
a comparison between instances with and without time windows and see how this could affect the
performance of the VRP-D-MC solution. To do so, we keep the same instances described in subsection
6.1 by removing the time windows. The results with and without time windows are given in Table 10
by reporting the waiting time on each instance. Columns “Best” (“Avg”) represent the best (average)
solutions values for both with and without time windows cases. The column “Best%” (“Avg%”)
indicates the percentage of deviation from the best solutions established by using time windows (our
main problem). The column “Waiting” presents the waiting time. We note that the positive percent
deviations when deleting time windows indicate an improvement in solution with respect to the best

value found by using time windows.

Table 10
Comparison between with and without time windows
Inst With Time Windows Without Time Windows

Best Avg Waiting CPU(min) Best Best% Avg Avg% Waiting CPU(min)
c101 886.89 88297 1481 141 959.30 8.16 876.37 -1.19  0.00 1.01
c102 1191.05 119052 21.23 156 139447 17.08 115558 -2.98 0.00 1.13
c103 1096.76 1094.83 11.31 1.34 1178.31 7.44 1088.47 -0.76  0.00 0.96
c104 1247.78 1239.50 14.66  0.82 1370.87 9.87 122558 -1.78  0.00 0.62
c105 804.72 796.95 1445 1.10 874.07 8.62 789.49 -1.89 0.00 0.78
c106 55253 537.74 1528 1.16 57297 3.70 53543 -3.09 0.00 0.85
c107 1217.08 121433 1361 216 1321.32 8.56 1204.90 -1.00 0.00 157
c108 1105.68 1095.87 15.03  2.18 1200.99 8.62 1085.79 -1.80 0.00 1.62
c109 127584 127197 16.15 238 144143 1298 1249.39 -2.07 0.00 1.70
Avg C1 1042.04 1036.08 15.17 157 114597 9.45 1023.44 -1.84 0.00 1.14
c201 1067.41 1062.93 7.44 2.25 1106.80 3.69 1061.12 -0.59  0.00 1.72
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€202 1258.99 1251.63 8.06 2.94 1307.65 3.86 1249.12 -0.78  0.00 222
c203 1586.48 1580.65 6.37 2.13 1668.23 5.15 1575.80 -0.67  0.00 1.65
c204 1318.80 1307.70 9.19 3.35 1368.26 3.75 130490 -1.05 0.00 2.48
c205 1279.98 1279.70 7.95 2.78 1349.02 5.39 127594 -0.32 0.00 2.01
€206 1924.72 1905.43 9.29 291 1981.64 2.96 1902.38 -1.16  0.00 2.15
€207 1636.11 1618.28 8.78 3.44 1703.29 4.11 1613.81 -1.36  0.00 261
€208 1591.56 1590.86 9.25 2.93 1679.48 5.52 1585.92 -0.35 0.00 2.25
Avg C2 1458.01 1449.65 8.29 2.84 1520.54 4.30 1446.13 -0.79  0.00 2.14
riol 857.68 819.33 5.47 0.90 87439 1.95 815.63 -490 0.00 0.66
r102 865.05 828.71 6.02 1.02 876.55 1.33 825.95 -452 0.00 0.76
r103 756.32 736.32 5.10 1.56 767.48 1.48 735.00 -2.82 0.00 111
r104 842.43 81954 7.16 0.95 881.37 4.62 814.88 -3.27  0.00 0.70
r105 728.70 717.43 6.03 1.60 770.77 577 713.46 -2.09 0.00 1.15
r106 1371.38 1298.89 6.27 0.90 1369.28 -0.15  1295.07 -5.56  0.00 0.64
r107 134471 1301.23 6.54 2.36 1385.23 3.01 129581 -3.64 0.00 1.68
r108 73455 725.05 6.11 2.24 76420 4.04 72294 -158 0.00 161
r109 1184.05 1137.95 5.91 2.12 1195.73 0.99 1135.02 -4.14  0.00 1.59
r110 1318.89 1293.57 6.46 2.48 1371.54 3.99 1288.87 -2.28  0.00 1.81
ri11 877.34 84506 6.15 2.60 88091 041 84354 -3.85 0.00 1.84
r112 1169.42 1155.87 4.45 2.19 1186.02 1.42 1155.08 -1.23  0.00 1.65
Avg R1 1004.21 97325 5.97 1.74 1026.96 2.40 970.10 -3.32  0.00 1.27
r201 1145.02 1099.80 0.51 3.90 113438 -0.93  1098.71 -4.04 0.00 2.86
r202 1062.64 1061.96 0.94 3.24 1070.05 0.70 1061.90 -0.07  0.00 2.35
r203 1130.49 1126.42 0.00 2.47 1126.42 -0.36  1126.42 -0.36 0.00 1.82
r204 1104.19 1089.18 0.00 3.50 1102.86 -0.12  1089.01 -1.37  0.00 2.55
r205 1599.18 1591.84 1.41 2.58 1591.84 -0.46  1591.84 -0.46 0.00 1.94
r206 997.14 98322 0.00 3.04 1011.39 1.43 98241 -1.48 0.00 2.14
r207 1936.24 1899.32 2.06 3.71 1929.29 -0.36  1898.85 -1.93  0.00 2.82
r208 1590.11 1589.14 0.81 4.55 1662.53 4.55 1585.75 -0.27  0.00 3.37
r209 1979.24 1967.86 0.00 4.56 2003.45 1.22 1967.22 -0.61  0.00 3.34
r210 1716.47 1716.04 0.00 4.09 1733.37 0.98 1715.87 -0.04 0.00 3.12
r211 1611.58 1590.44 2.58 5.94 1610.80 -0.05 1590.18 -1.33  0.00 4.30
Avg R2 1442.94 1428.66 0.76 3.78 1452.40 0.60 1428.01 -1.09 0.00 2.78
rc101 70596 697.64 10.56 1.40 74169 5.06 694.86 -1.57 0.00 1.05
rc102 919.33 900.22 11.90 151 958.36 4.25 896.47 -249  0.00 1.14
rc103 879.11 859.40 8.88 1.38 913.79 395 85596 -2.63 0.00 1.00
rc104 763.37 759.67 11.96 0.84 80480 543 756.99 -0.84 0.00 0.63
rc105 943.89 92249 9.94 111 975.34 333 919.46 -2.59  0.00 0.79
rc106 672.74 658.70 10.90 1.10 700.87 4.8 656.00 -2.49 0.00 0.82
rc107 1255.21 1240.28 10.97 212 1338.40 6.63 123252 -1.81  0.00 1.56
rc108 94489 94181 11.37 2.40 1002.49 6.10 937.90 -0.74 0.00 1.77
AvgRC1 88556 87253 10.81 1.48 929.47 4.86 868.77 -1.89  0.00 1.10
rc201 1541.24 1536.49 5.30 2.44 1623.12 531 1531.61 -0.63  0.00 1.82
rc202 113143 1102.39 1.57 2.18 1139.76 0.74 1101.12 -2.68 0.00 1.65
rc203 1063.97 1037.20 0.00 2.90 1067.98 0.38 1036.29 -2.60 0.00 2.05
rc204 1519.90 1501.97 2.46 2.18 1577.74 381 1498.15 -1.43  0.00 1.60
rc205 1461.94 1456.31 0.00 3.16 1527.70 4.50 1452.81 -0.62  0.00 2.28
rc206 1421.86 1410.88 5.10 2.95 1462.11 2.83 1409.02 -0.90 0.00 212
rc207 1336.45 1331.13 241 2.98 1389.36 3.96 132858 -0.59  0.00 2.19
rc208 1619.83 1607.53 5.83 3.26 1651.73 1.97 1606.31 -0.83  0.00 2.49
Avg RC2  1387.08 1372.99 2.83 2.76 1429.94 294 137049 -1.29 0.00 2.03
Avg 1203.30 1188.86 7.31 2.36 1250.88 4.09 118449 -1.70  0.00 1.74

From the Table 10, we can observe that in many instances a positive percent values are obtained
when deleting time windows with an augmentation of 4.09% on the total revenue (last line). More
specifically, high improvement is obtained in instances of type C1, R1 and RC1 where tight time
windows are considered with an average gap equal to 9.45%, 2.40% and 4.86% compared to their

counterparts C2, R2 and RC2 with an average gap equal to 4.30%, 0.60% and 2.94%. In addition, we
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can observe that the instances of time C1 where the customers are randomly located provide the high
saving costs with 9.45% while R2 that characterized with the customers are clustered and with the large
time windows provide the less saving costs with 0.60%. The same observation can be given for the
waiting time in which the instances of C1 provide about 15 minutes while the waiting time of the
instances of type R2 is about one minute. We also note that in some instances, the waiting time is equal

to zero under the time windows scenario
7. Managerial insights

In this section, several managerial insights have been conducted. In the first experiment, we aim to
quantify the benefit of the “flexibility of returning the drone to another vehicle”. In the second
experiment, we examine the impacts of using trucks only (i.e., without drones). In the third experiment,

we analyse the impact of using drones with only a single compartment.
7.1. Impact of flexible returning a drone to another vehicle

We compare the performances of the VRP-D-MC where drones returning to another truck is allowed
or not allowed. In Table 11, we denote by “Flexible Return” that refer to our proposed VRP-D-MC and
by “Fixed Return” where each drone must return to the same vehicle where it is launched.

The columns “Best” and “Avg” in Table 11 report the best and average solution values,
respectively. Moreover, the columns “Best%” and “Avg%? present the percentage of deviation from the
best solution found when constraining the drone to return to the same vehicle (i.e., “Fixed Return”), and

the column “CPU” refers to the average solution time in minutes.

Table 11
Comparison between VRP-D-MC with flexible returning and VRP-D-MC with fixed
Returning
Fixed Return Flexible Return
Inst Best Avg E:nljitri) Best Best% Avg Avg% (Cn:l:)
c101  886.89 88297 141 88790 011  879.23 -0.86 124
c102 119105 119052 1.56 119599 041 118230 -073 1.36
c103 109676 1094.83 134 1109.86 1.19 109355 -029 1.23
cl04  1247.78 123950 0.82 125390 049  1180.38 -540 0.78
cl05 80472 79695 1.10 82555 259 81220 093 1.04
cl06 55253 537.74 116 556.35 0.69 55173 -0.14 1.04
c107  1217.08 121433 216 123075 112 117634 -3.35 211
c108 110568 109587 2.18 112284 155  1087.83 -1.61 2.07
c109 127584 127197 238 128153 045  1266.11 -0.76 2.05
c201  1067.41 1062.93 225 1089.77 2.09 105843 -0.84 2.06
€202 125899 1251.63 294 127596 135 122324 -2.84 284
c203 158648 1580.65 2.13 159400 047 158319 -021 194
c204  1318.80 1307.70 3.35 133049 089 132020 0.11 3.06
€205  1279.98 127970 2.78 131421 2.67 129486 116 257
€206 192472 190543 291 193353 046  1921.67 -0.16 2.42
c207 163611 1618.28 3.44 1660.66 150 164803 0.73  3.18
c208 159156 1590.86 2.93 159490 0.21  1567.81 -149 267
AvgC 123779 1230.70 2.7 125048 107 122630 -0.93 1.98
rio1 857.68 819.33  0.90 899.08 483 89521 438 0.82
ri02 865.05 82871  1.02 91065 527  899.30 396 0.90
ri03 756.32 73632  1.56 77850 293 76514 117 144
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r104 842.43 81954  0.95 877.41 4.15 864.94 267 0.89
r105 728.70 717.43  1.60 747.90 2.63 73811 129 149
r106 1371.38 1298.89 0.90 1449.29 5.68 1426.42 401 0.88
r107 134471 1301.23 2.36 1391.46 3.48 1377.53 244 210
r108 73455 72505 @ 2.24 753.70 261 749.18 199 201
r109 1184.05 113795 212 1238.25 4.58 123448 426 1.86
r110 1318.89 129357 2.48 1347.98 221 1337.17 139 225
ri1l 877.34 845.06  2.60 920.74  4.95 906.72 335 241
ri12 1169.42 1155.87 2.19 1213.54 3.77 1205.33 3.07 1.95
r201 1145.02 1099.80 3.90 1209.47 5.63 1199.25 4.74  3.67
r202 1062.64 1061.96 3.24 1092.47 281 1073.46 1.02  2.99
r203 113049 1126.42 2.47 1154.86 2.16 114430 122 210
r204 1104.19 1089.18 3.50 1148.71 4.03 1137.15 298  3.27
r205 1599.18 1591.84 2.58 1642.81 2.73 162431 157 2.26
r206 997.14 983.22 3.04 1032.19 3.52 1005.27 0.82 2.88
r207 1936.24 1899.32 3.71 2027.92 4.73 199321 294 3.38
r208 1590.11 1589.14 4.55 1631.45 2.60 1592.06 0.12 4.14
r209 1979.24 1967.86 4.56 2033.34 2.73 201091 160 4.07
r210 1716.47 1716.04 4.09 1734.09 1.03 1631.64 -4.94 3.77
r211 1611.58 1590.44 5.94 1648.75 2.31 163754 161 521
Avg R 1214.04 119105 2.72 1255.85 3.54 1236.90 2.07 247
rc101 70596 697.64  1.40 718.49 1.77 70782 026 1.28
rc102 919.33  900.22 151 94241 251 92725 086 141
rc103 879.11 85940  1.38 906.71 3.14 896.03 192 1.30
rc104 763.37 759.67 0.84 77543 158 76291 -0.06 0.78
rc105 943.89 92249 111 974.47 3.24 959.33 164 1.05
rc106 672.74 658.70  1.10 691.98 2.86 673.80 0.16 1.05
rc107 1255.21 1240.28 2.12 1279.52 1.94 124029 -1.19 1.93
rc108 94489 94181 240 959.95 1.59 926.84 -1.91 226
rc201 1541.24 1536.49 2.44 1558.91 1.15 1536.55 -0.30 2.20
rc202 113143 1102.39 2.18 1161.81 2.69 1132.85 0.13  2.03
rc203 1063.97 1037.20 2.90 1101.82 3.56 1068.76 0.45 2.74
rc204 1519.90 1501.97 2.18 1565.70 3.01 153158 0.77  1.99
rc205 1461.94 1456.31 3.16 1482.88 1.43 1459.60 -0.16 2.80
rc206 1421.86 1410.88 2.95 1462.39 2.85 1438.46 1.17 2.75
rc207 1336.45 1331.13 2.98 1349.42 0.97 1339.64 0.24 255
rc208 1619.83 1607.53 3.26 1644.62 1.53 1626.12 0.39  2.83
Avg RC 1136.32 1122.76 2.12 1161.03 2.24 1139.24 0.27 1.93
Avg 1196.05 118150 2.33 1222.45 2.28 1200.81 0.47 2.13

The adoption of “Flexible Return” improves the gap on average by 2.28%, as compared to “Fixed
Return)”. From Table 11, we observe that positive percentages (“Best%”) are obtained in all the
instances. The improvements are higher for instances within category R with a gap ranging between
1.03% and 5.68%. The reason is that fixing the base of a drone to a truck would restrict the distance
between them because drone cannot fly a long range. Therefore, the flexibility of allowing a drone to
return to another truck is beneficial. This observation is further verified by the gaps for the solutions
resulting from the clustered and mixture/randomly locations within categories C and RC. These gaps

are lower and range between 0.11% and 2.67% for category C and between 0.97% and 3.56% for

category RC.
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7.2. Impact of using multi-compartment drones in tandem with trucks

In this section, we analyze the impact of using trucks without drones to serve the customers. In Table
12, all columns have the same titles and meanings as in Table 12, except that “Without drones” and
“With drones” represent the problem settings where drones are used or not used in the delivery process.

Table 12
Impact of using drones with the trucks

Without drone With drones
Inst Best Avg ?ni)iLr:) Best Best% Avg Avg% (Cni)iLnJ)
c101 882.57 87834 0.73 888.43 0.66 886.23 041 095
c102 1174.82 1157.67 0.82 1196.54 1.85 1182.84 0.68 1.04
c103 1059.47 1022.39 1.33 1099.38 3.77 1094.06 3.26 0.96
c104 1218.41 1186.00 0.87 1256.88 3.16 1250.07 2.60 0.58
c105 779.07 74464 144 81184 421 81043 4.03 0.77
c106 53532 529.32 0.84 556.56  3.97 55194 310 0.80
c107 1202.81 1189.58 2.14 1240.18 3.11 123398 259 1.62
c108 1092.07 1068.38 1.88 1125.81 3.09 1092.56 0.04 155
c109 124321 1207.66 1.59 1283.97 3.28 126852 2.04 158
c201 1069.17 1063.93 2.24 1098.98 2.79 108752 172 150
€202 1258.22 1256.46 2.47 1283.41 2.00 1281.77 187 210
€203 1543.31 1506.27 1.89 1600.34 3.70 1589.48 2.99 144
c204 1311.73 1293.63 3.66 134236 2.34 1331.97 154 238
€205 1281.09 1279.43 2.84 1321.63 3.16 1302.17 165 1.89
€206 1904.14 1899.19 1.67 194575 2.19 193381 156 1.84
€207 1612.67 1570.90 3.19 1671.38 3.64 1658.67 2.85 234
€208 1567.95 1543.64 2.28 1600.33 2.07 1573.15 0.33 1.96
Avg C 1219.77 1199.85 1.88 125434 2.88 124289 196 149
riol 885.14 870.27 1.17 902.65 1.98 900.65 175 0.64
ri02 882.88 861.77 1.25 897.32 1.64 889.48 0.75 0.7
rio3 74448 71336 1.24 76756 3.10 766.55 296  1.09
rio4 911.01 86556 0.77 919.18 0.90 91497 043 065
r105 72658 712.63 1.03 739.43 1.77 72817 022 11
r106 1427.26 1404.71 1.03 1433.84 0.46 14296 0.16 0.64
rio7 1322.44 125540 1.92 136354 3.11 13372 112 161
rio8 72762 709.80 2.07 746.00 253 73374 084 155
r109 1287.04 1231.05 1.95 1290.45 0.26 1288.99 0.15 1.36
ri10 1393.95 1343.07 1.91 140452 0.76 139998 043 171
ri1l 931.05 86579 2.74 939.19 0.87 93375 029 181
ri12 1237.81 1184.71 1.74 1246.97 0.74 12431 043 143
r201 1221.08 1194.46 2.87 1232.03 0.90 1228.39 0.60 2.83
r202 1048.55 1033.24 251 1076.07 2.62 1059.09 1.01 22
r203 1132.46 1125.89 2.22 1140.26 0.69 113851 053 153
r204 117398 1119.04 3.10 1181.11 0.61 117579 015 2.39
r205 1647.74 160045 2.35 1653.08 0.32 1649.41 0.10 1.76
r206 1044.16 1015.14 2.89 1049.63 0.52 104511 0.09 2.23
r207 2073.95 1896.63 3.23 2091.21 0.83 2087.71 066 25
r208 1583.65 1575.89 3.86 1605.75 1.40 159348 0.62 3.05
r209 1966.04 1953.65 3.84 2012.38 2.36 1973 035 299
r210 1764.44 1665.10 3.62 1773.08 0.49 1769.74 030 2.76
r211 1626.82 1620.31 4.80 1658.46 1.94 1647.19 125 4.02
Avg R 1250.44 1209.47 2.35 1266.25 1.34 125798 0.66 1.85
rc101 711.38 70035 1.22 72485 1.89 71409 038 095
rc102 932.80 926.08 1.38 94727 155 939.18 0.68 1.02
rc103 94525 897.98 1.27 948.60 0.35 94701 019 1.02
rc104 77543 767.06 0.76 780.15 0.61 780.01 059 061
rc105 958.00 949.19 1.02 97825 211 963.05 053 081
rc106 691.98 687.14 1.06 693.51 0.22 693.09 0.16 0.80
rc107 1337.74 1268.58 1.87 1346.10 0.62 1339.62 0.14 151
rc108 959.95 949.97 2.26 967.87 0.83 960.45 0.05 1.65
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rc201 1533.50 1498.08 2.05 1567.37 221 154489 0.74 167
rc202 1163.90 1161.22 1.99 1171.37 0.64 1169.18 0.45 1.53
rc203 1073.61 1054.18 2.67 1103.09 2.75 1100.03 2.46  2.09
rc204 1531.25 1521.30 1.87 1572.36 2.68 1538.1 045 1.56
rc205 1456.04 144235 255 1489.17 2.28 1465.79 0.67  2.08
rc206 1450.69 1437.05 2.64 1467.28 1.14 145233 0.11 213
rc207 1358.46 1331.02 2.23 1370.56 0.89 1361.16 0.20  1.89
rc208 1658.43 1633.56 2.55 1668.73 0.62 1665.01 0.40 2.17
Avg RC 1158.65 1139.07 1.84 117478 1.34 116456 051 147
Avg 1209.62 1182.80 2.02 1231.79 1.85 122181 1.04 1.60

We observe that the use of drones contributes to limited total revenue, with a positive average gap
of 1.85%. Our results suggest that the use of drones is particularly helpful when customers are clustered
(i.e., type C) where all average gaps are positives with an average gap equal to 2.88% that range between
0.66% and 4.21%. This is reasonable as drones can serve customers who are geographically closed to
each other. Thus, using drones can significatively improve the quality solution and increase the total

expected revenue compared to use only trucks to serve the customers.

7.3. Single compartment versus multiple compartments

Table 13 shows the benefit of having a drone to deliver multiple packages (i.e., “Multi
compartments”) per trip. The results of the comparison are reported in Table 13. The column “Single

compartment” refers to the case of using the drone with single compartment payload in tandem with the

trucks. Other columns report the same measures as in Tables 11 and 12.

Table 13
Benefit of multi compartment

Inst Multi compartment Single compartment
Best Avg E:nfiLr:) Best Best%  Avg Avg% ?mPiLr:)

c101 887.90 879.23 1.24 886.69 -0.14 876.13 -1.33 886.69
c102 119599 118230 1.36 1184.04 -1.00 1158.19 -3.16 1184.04
c103 1109.86 109355 1.23 104171 -6.14 968.65 -12.72  1041.71
c104 1253.90 1180.38 0.78 117225 -6.51 1088.81 -13.17  1172.25
c105 825.55 812.20 1.04 769.79 -6.75 71199 -13.76  769.79
c106 556.35 551.73 1.04 538.11 -3.28 51322 -7.75 538.11
c107 1230.75 1176.34 211 1150.09 -6.55 1065.14 -13.46  1150.09
c108 1122.84  1087.83 2.07 1069.09 -4.79 1003.28 -10.65  1069.09
c109 128153  1266.11 2.05 119255 -6.94 1087.07 -15.17  1192.55
c201 1089.77  1058.43  2.06 105499 -3.19 1014.02 -6.95 1054.99
€202 1275.96 122324 2.84 1252.67 -1.83 122259 -4.18 1252.67
€203 1594.00 1583.19 1.94 1480.82 -7.10 1357.93 -14.81  1480.82
€204 133049  1320.20 3.06 130150 -2.18 1259.48 -5.34 1301.50
€205 131421 129486 257 123530 -6.00 1152.11 -12.33  1235.30
€206 193353  1921.67 242 179402 -7.22 164591 -14.88  1794.02
€207 1660.66 ~ 1648.03  3.18 165198 -0.52 1633.15 -1.66 1651.98
€208 159490 1567.81 2.67 149348 -6.36 138453 -13.19  1493.48
Avg C 125048  1226.30 1.98 119230 -4.50 1126.01 -9.68 1192.30
r101 899.08 895.21 0.82 889.59 -1.06 868.88 -3.36 889.59
r102 910.65 899.30 0.90 895.84 -1.63 87334 -4.10 895.84
r103 778.50 765.14 1.44 763.11 -1.98 73741 528 763.11
r104 877.41 864.94 0.89 864.93 -1.42 845.23  -3.67 864.93
r105 747.90 738.11 1.49 737.82 -1.35 72154  -3.52 737.82
r106 1449.29 142642 0.88 1416.36  -2.27 1370.17 -5.46 1416.36
r107 139146 137753 2.10 1388.68 -0.20 1370.54 -1.50 1388.68
r108 753.70 749.18 2.01 750.60 -0.41 736.59 -2.27 750.60
r109 1238.25 123448 1.86 123545 -0.23 1216.40 -1.76 1235.45
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r110 134798 133717 225 1339.60 -0.62 132324 -1.84 1339.60

ri1l 920.74 906.72 241 908.84 -1.29 886.03 -3.77 908.84

ri12 121354  1205.33 1.95 1200.36  -1.09 1180.81 -2.70 1200.36
r201 1209.47  1199.25 3.67 119171 -1.47 1164.52 -3.72 1191.71
r202 1092.47 107346  2.99 1085.28 -0.66 1063.74 -2.63 1085.28
r203 115486 114430 2.10 114786 -0.61 112745 -2.37 1147.86
r204 1148.71  1137.15 3.27 113538 -1.16 110259 -4.01 1135.38
r205 1642.81 162431 2.26 1626.20 -1.01 1596.17 -2.84 1626.20
r206 1032.19  1005.27 2.88 1026.36  -0.57 1013.81 -1.78 1026.36
r207 2027.92  1993.21 3.38 1988.11 -1.96 1931.07 -4.78 1988.11
r208 163145 1592.06 4.14 1601.41 -1.84 1563.58 -4.16 1601.41
r209 2033.34 201091 4.07 2011.18 -1.09 1973.95 -2.92 2011.18
r210 1734.09 1631.64 3.77 1722.77  -0.65 1690.42 -2.52 1722.77
r211 1648.75 1637.54 521 1623.83 -1.51 1588.76 -3.64 1623.83
Avg R 1255.85 1236.90 247 124136 -1.13 1215.05 -3.24 1241.36
rc101 718.49 707.82 1.28 713.01 -0.76 70297 -2.16 713.01

rc102 942.41 927.25 141 917.96 -2.59 884.78 -6.12 917.96

rc103 906.71 896.03 1.30 887.98 -2.07 861.73 -4.96 887.98

rc104 775.43 762.91 0.78 762.25 -1.70 742.42  -4.26 762.25

rc105 974.47 959.33 1.05 937.52 -3.79 894.18 -8.24 937.52

rc106 691.98 673.80 1.05 670.95 -3.04 64299 -7.08 670.95

rc107 1279.52  1240.29 1.93 1238.15 -3.23 1186.94 -7.24 1238.15
rc108 959.95 926.84 2.26 938.09 -2.28 903.00 -5.93 938.09

rc201 1558.91  1536.55 2.20 1542.06 -1.08 1510.96 -3.08 1542.06
rc202 1161.81 113285 2.03 1138.72  -1.99 111031 -4.43 1138.72
rc203 1101.82 1068.76  2.74 1072.13  -2.69 1027.60 -6.74 1072.13
rc204 1565.70  1531.58  1.99 1556.22 -0.61 1526.51 -2.50 1556.22
rc205 1482.88  1459.60 2.80 145299  -2.02 1413.90 -4.65 1452.99
rc206 1462.39 143846 2.75 144495  -1.19 1403.46 -4.03 1444.95
rc207 1349.42  1339.64 255 1303.03 -3.44 1236.32 -8.38 1303.03
rc208 1644.62  1626.12 2.83 159457  -3.04 1531.79 -6.86 1594.57
AvgRC  1161.03 1139.24 1.93 1135.66 -2.22 1098.74 -5.42 1135.66
Avg 122245 1200.81 2.13 1189.77 -2.62 1146.60 -6.11 1189.77

The results show that having multi-compartment drones can improve the total revenue as compared
to having only single-compartment drones. This is reasonable as multiple packages can be delivered on
the same trip such that the flying distance can be shortened. In fact, allowing the same drone to deliver
multiple packages to many customers leads an increase in the total revenue by 2.62% on average. From
the results, using drones with multiple compartments is important and highly beneficial when the drones
are allowed to deliver packages within a cluster (data set C). We observe an average gap of 4.50%. On
the other hand, the gaps are less significant when customer locations are randomly generated locations
(i.e., data sets R and RC). We believe that this is due to the need to travel longer distances to satisfy the
time windows constraints. As a result, trucks need to deliver these small packages instead of using
drones. In summary, the variant of having multi-compartment drones has proven to be beneficial for
both policies. Hence, practitioners are suggested to consider using multi-compartment drones, especially

when customer demands are clustered.
8. Conclusions

In this paper, we introduced a new variant of the Vehicle Routing Problem with Drones (VRP-D), in
which a fleet of trucks-drones is used to serve customers where each drone is equipped with multiple

compartments. We considered the flexibility of having drones to return to any trucks to swap depleted
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batteries and also to pick up packages. The problem is denoted as the Vehicle Routing Problem with
Drones equipped with Multiple payload Compartment (VRP-D-MC). In addition, our model considers

the current payload in order to calculate the energy consumption for the drones.

We designed an Adaptive Multi-Start Simulating Annealing (AMS-SA) that incorporates an efficient
constructive heuristic and several novel diversification and intensification mechanisms. Extensive
numerical experiments showed that our proposed AMS-SA provides high-quality solutions both on our
generated instances and on benchmark instances from the literature. In particular, our AMS-SA
outperforms on average the current state-of-the-art algorithm, including the Hybrid Genetic Algorithm
of Euchi and Sadok (2020). We also showed the effects of newly added features: (i) the multi-payload
compartment, (ii) the flexibility of having drones to return to any truck, and (iii) the benefits of using
trucks with drones. All these new features allowed furthering improving the total revenue. Moreover,
we provided the impact of using different configuration drones on the quality solution and also, and we

conducted a sensitivity analysis to show the effect of using the time windows.

Further developments on this topic may consider, instead of assuming that drones are fully recharged
(swapping battery), a more realistic and complex scenario with a partial recharging setting. Another
interesting issue to be analysed is to consider a dynamic environment where requests dynamically appear
over the day, or a stochastic environment where travel times for trucks are affected by uncertainty due

to traffic congestion.
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