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This paper addresses the vehicle routing and selection problem of single and multi-compartment vehicles 

for grocery distribution. Retailers used to rely on single-compartment vehicles (SCV), and transported 

only one temperature-specific product segment with this vehicle type. Retailers now have the option 

of using multi-compartment vehicles (MCV) due to technological advances. Products requiring differing 

temperature zones can be transported jointly as the loading area is split into separate compartments. 

Both vehicle types cause different costs for loading, transportation and unloading. In literature either the 

use of SCVs or MCVs has been considered without a distinction between vehicle-dependent costs and the 

use of both vehicle types in the fleet to achieve a cost-optimal fleet mix. We therefore identify vehicle- 

dependent costs within empirical data collection and present an extended multi-compartment vehicle 

routing problem (MCVRP) for the vehicle selection. We solve the problem with a Large Neighborhood 

Search. Our numerical experiments are based on the insights we draw from a real-life case with a retailer. 

In further experiments we show that the mixed fleet is always better than an exclusive fleet of SCVs or 

MCVs and state which factors influence the cost reduction. A mixed fleet can reduce costs by up to 30%. 

As a result, mixed fleets are advisable in grocery distribution and vehicle selection should be part of the 

MCVRP. 
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1. Introduction 

An efficient distribution system is essential for every gro-

cery retailer as it amounts to around 20% of total logistics costs

( Hübner, Kuhn, & Sternbeck, 2013; Kuhn & Sternbeck, 2013 ).

Decisions concerning the delivery process are therefore a central

problem for retailers, and cost-efficient solutions are needed. This

paper develops a model and solution approach for the vehicle

selection and routing for a delivery fleet in grocery distribution. 

Grocery stores receive different product segments from the

retailer’s distribution center (DC). Each product segment has a par-

ticular temperature requirement (e.g., deep-frozen, chilled, ambi-

ent). These temperature requirements are defined by law (e.g., for

chilled products) or by quality management (e.g., for longer shelf

life). Each retailer differentiates further the transportation temper-

ature and hence defines the constitution of a product segment. For

instance, many retailers use multiple temperature zones for chilled

products (e.g., meat at 2 ° and vegetables at 4–6 ° Celsius). In the

past, retailers only used single-compartment vehicles (SCV). An

SCV can transport products from one exact temperature zone. This
∗ Corresponding author. 
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eans that, for example, there are trucks with a cooling system

hat only deliver deep-frozen goods, and trucks that only deliver

mbient goods with no temperature regulation. Each customer is

herefore approached several times if different product segments

re ordered, receiving one product segment at a time. Nowadays

he use of technically advanced multi-compartment vehicles (MCV)

s an attractive alternative. MCVs enable the transportation of dif-

erent product segments (e.g., frozen and ambient) jointly with one

ehicle, and thus allow the joint delivery of several product seg-

ents for a customer at the same time. This is possible due to the

eparation of the loading area of a truck into multiple compart-

ents. Each of the compartments can be dedicated to a specific

emperature zone, independent of the other compartments on

he same truck. The number of compartments and their size can

e adjusted flexibly so that between one and five compartments

an be set on a truck without any loss in capacity. An example

f two possible layouts for an MCV to illustrate the compartment

eparation is given in Fig. 1 , together with the layout of an SCV. 

The features of SCVs and MCVs also imply different distribution

osts. First of all, MCVs have slightly higher procurement costs,

hich impact the costs for transportation. This may be compen-

ated by higher flexibility in routing. Each outlet with orders from

ifferent segments does not have to be approached several times

or the delivery of each segment. This reduces the total number

mailto:manuel.ostermeier@ku.de
mailto:alexander.huebner@ebs.edu
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Fig. 1. Examples for the layout of MCVs and an SCV. 

o  

s  

v  

h  

s  

t  

f  

o  

l  

m  

t  

a  

i  

t  

o  

f  

fl  

b  

fl

 

l  

o  

d  

c  

f  

a  

t  

a  

l

 

 

 

 

 

f  

o  

w  

(  

M  

o  

u  

D  

s

 

p  

M  

f  

p  

u  

s  

fi

2

 

u  

S  

p  

o  

s  

a  

u  

H  

s  

(  

a  

a  

fl  

j

(  

d  

w  

p  

t  

l

 

p  
f stops as orders can be combined on the same vehicle. For in-

tance, the use of an MCV might be beneficial if a customer orders

arious segments that all fit on a single vehicle. Joint delivery

owever requires additional loading actions at the DC as different

egments are stored in temperature-specific sections. An MCV

herefore has to approach multiple shipping gates to load orders

rom various segments. This results in higher loading costs. SCVs

n the other hand have lower procurement costs, which result in

ower transportation costs for certain routes and modes. SCVs are

ore economic if stores order full truckloads of one segment or if

wo neighboring customers order the same segment and require

lmost full truck capacity. Furthermore, only one loading process

s needed as only one segment is transported. The differences in

he delivery process and in cost have to be evaluated to select the

ptimal vehicle type for corresponding tours. Retailers can benefit

rom the advantages of both vehicle types if they apply a mixed

eet. They therefore need to decide what kind of vehicles should

e used, and which is the optimal mix of vehicle types in their

eet. 

Current literature on multi-compartment vehicle routing prob-

ems (MCVRP) only considers an MCV fleet. However, a mixed fleet

f both vehicle types might be beneficial due to the differences

escribed if the most economic vehicle for each tour can be

hosen. This raises the question of which vehicles should be used

or which routes and under which circumstances SCVs or MCVs

re the better choice. We propose a model that takes into account

he different costs for both vehicle types for evaluating the MCVRP

nd vehicle selection problem. Our new approach extends the

iterature with the introduction of the following characteristics: 

• The selection of vehicle type, i.e., SCV or MCV for each delivery

tour. 
• The assignment of orders to vehicle types and flexible compart-

ments. 
• The identification of cost factors to account for costs related to

processes and vehicle types that depend on the use of SCVs,

MCVs and the number of segments transported together. 

The routing of our MCVRP takes into account (i) demands

or multiple heterogeneous product segments, and (ii) the use

f different vehicle types. It therefore has to be determined (iii)

hether different segments are combined on a vehicle or not, and
iv) which customer orders across the segments are combined. The

CVRP considered is an NP-hard problem as it is a generalization

f the CVRP (see Toth & Vigo 2014 ). To solve our problem, we built

pon a large neighborhood search (LNS) framework introduced by

erigs et al. (2011) and Hübner and Ostermeier (2018) , as it has

hown good results for MCVRP. 

The outline of the paper is as follows. Section 2 describes the

roblem context and identifies the differences between SCVs and

CVs. The related literature is discussed in Section 3 . Next, the

ormal definition of the problem and the solution approach is

resented in Section 4 . In Section 5 , we analyze the impact of

sing both SCVs and MCVs for the distribution within various

cenarios, including a case study with real-life data. Finally, the

ndings and conclusions are summarized in Section 6 . 

. Problem description 

Grocery retailers channel the overwhelming majority of vol-

mes to their stores via DCs ( Fernie & Sparks, 2009; Kuhn &

ternbeck, 2013 ). European discounters and most full-line su-

ermarkets operate their own distribution networks consisting

f several regional DCs from which the complete assortment is

upplied ( Klingler, Hübner, & Kempcke, 2016 ). DCs are organized

ccording to temperature-specific product segments. A retail DC

sually serves between 50 and 400 outlets ( Glatzel, Großpietsch, &

übner, 2012 ). The distribution process can be divided into three

teps (see Hübner & Ostermeier, 2017 ): (1) the loading processes

 = collection of goods from the DC), (2) the transportation of goods,

nd (3) the unloading process at the outlets. In the following we

nalyze the costs that occur for SCVs and MCVs in the specified

ow of goods. The process and cost analysis was performed in a

oint project with a German retailer. 

1) Vehicle-dependent loading costs at the DC. The first step for the

istribution is the pickup of orders from the DC. Retailers organize

arehouses by temperature zone. This also means that each tem-

erature zone needs to be loaded separately. As a consequence,

he collection of goods from the DC differs by SCV and MCV. The

oading processes are displayed in Fig. 2 . 

On the left, the loading for an SCV is illustrated. An SCV ap-

roaches only one shipping gate as segments cannot be combined
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Fig. 2. Loading process with SCVs and MCVs at the DC. 
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Table 1 

Schematic overview of cost differences between SCVs and MCVs. 

Vehicle type Loading Transportation Unloading 

Costs per kilometer Travel distance 

SCV – – + + 

MCV + + – –
on this truck type due to the temperature requirements. Each tour

therefore starts with the approach of exactly one shipping gate

to collect all orders for the corresponding tour. This requires no

rearrangement of the truck at the DC. Vehicles are ready to leave

for the tour after exactly one loading process. 

On the right, the MCV loading procedure is illustrated for a

tour with four different segments. In this case, the MCV has to

approach four different shipping gates. This involves four separate

loading steps and the vehicle traveling between the gates. Each

loading step involves the loading of all orders of one segment as

otherwise the same shipping gate would have to be approached

multiple times. The pickup at the DC is therefore driven by mul-

tiple loading processes and accordingly with higher loading costs

dependent on the number of segments and compartments. These

additional costs have to be taken into account within the routing. 

Some loading aspects are equal for both vehicle types. Each

vehicle has to approach a loading gate in reverse as the loading

can only be done from the rear of the truck. The actual loading

of goods (i.e., the loading of pallets or roll-cages) depends on the

order size of the different customers. It requires the same actions

regardless of the vehicle type and thus is not decision relevant. 

(2) Vehicle-dependent transportation costs. Vehicle-dependent rout-

ing costs have to be considered to determine the cost-minimal

transportation fleet. The special technical features of MCVs lead

to higher procurement costs in comparison to SCVs. The price

of an MCV is higher than for an SCV due to the need to isolate

separation walls plus multiple cooling devices. As a consequence,

higher investment costs are one of the main drivers of higher MCV

costs. Further, fixed costs for insurance and maintenance differ

and therefore impact overall costs. In the end, these fixed costs

need to be considered when selecting a particular vehicle type for

distribution. We therefore propose a vehicle-specific transportation

cost rate per distance unit to map the corresponding investment

and maintenance costs. This cost calculation includes both variable

and fixed costs, and is translated into costs per kilometer. For the

fixed costs we consider all costs for one life cycle of a vehicle

and divide them by the expected vehicle miles traveled. Further,

variable costs are added based on driver and fuel costs. The total

transportation costs included in this way are also equivalent to a

rate that is paid per kilometer if a truck is leased. Furthermore, we

would like to note that the use of MCVs does not lead to additional

capacity restrictions. As the number and size of compartments
an be adjusted flexibly, there is no loss in capacity. Retailers use

tandardized carriers for transportation (e.g., roll-cages or pallets)

hat are indicated in transportation units (TU). The smallest size

f a compartment can be set to one TU, the biggest size of one

ompartment to full vehicle capacity. 

3) Vehicle-dependent unloading costs. The delivery process for

CVs involves the approach of stores that have ordered the corre-

ponding segment on the tour. Orders of these customers for other

egments cannot be included in the tour as the transportation of

nly one segment is possible. Furthermore, it is not possible to

oad orders for other segments from other customers, even if these

ould fit onto the truck or the customers are in close proximity.

hese orders are therefore supplied on different tours. This may

esult in higher transportation kilometers and the use of more

ehicles. The delivery process with SCVs is illustrated on the left

f Fig. 3 . 

An example of a tour for the joint delivery of four product

egments with an MCV is displayed on the right of Fig. 3 . The

CV combines customers with orders for different segments on

he same tour. If capacity is sufficient, joint delivery makes it

nnecessary to approach a customer several times and therefore

aves transportation kilometers and unloading time. This results

n fewer customer stops and thus in lower unloading costs for the

se of MCVs. 

ummary. The selection of vehicle type – whether SCV or MCV –

mpacts distribution costs. Table 1 summarizes the cost differences

etween both types, where “–” indicates that the vehicle type has

ower costs in this dimension, and “+” the opposite. These costs

eed to be taken into account to achieve an evaluation of routing

osts that reflects the operational processes needed. We therefore

how the need to distinguish between loading, transportation and

nloading costs of SCVs and MCVs. 



                                                                                       685 

Fig. 3. Delivery process of SCVs and MCVs on example routes. 
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Please note also, that each MCV can be used as SCV if only one

ompartment is used, i.e., only one product type is transported.

CVs offer a higher flexibility compared to SCVs and therefore

ave a higher degree of freedom for the planning and routing. 

. Related literature 

The MCVRP considered is a generalization of the classical CVRP.

or an overview of VRP and CVRP we refer to Golden, Raghavan,

nd Wasil (2008) ; Laporte and Semet (2001) ; Toth and Vigo

2014) and Pollaris, Braekers, Caris, Janssens, and Limbourg (2015) .

he current literature on MCVRP can be divided into publications

onsidering fixed and flexible compartment sizes. 

CVRPs with fixed compartment sizes. The majority of MCVRP

iterature focuses on problems with fixed compartments. A typical

eld of application for MCVRP with fixed compartments is the

istribution of fuel. These MCVRP instances are applied for truck

ypes where the compartment sizes are fixed in advance, but the

ssignment of product segments to compartments is part of the

ecision problem. Coelho and Laporte (2015) provide a classifi-

ation of different MCVRPs focusing on fuel distribution. They

istinguish between split and unsplit compartments and tanks.

plit compartments means that the content of one compartment

an be distributed to more than one customer. This is not the case

ith unsplit compartments (see e.g., Brown & Graves, 1981 ). Split

anks indicate that the requirements for one order of one customer

an be delivered by multiple trucks. Furthermore, Coelho and La-

orte (2015) propose models and a branch-and-cut algorithm to

ormulate and solve different problem variants. In the context of

uel distribution, too, Avella, Boccia, and Sforza (2004) consider

he supply of fuel pumps with MCVs and solve the correspond-

ng problem with a branch-and-price algorithm. Furthermore,

ornillier, Boctor, Laporte, and Renaud (2008) develop heuristic

pproaches for solving the multi-period petrol station replenish-

ent problem, considering trucks with different compartments. 

Lahyani, Coelho, Khemakhem, Laporte, and Semet (2015) study

CVRP with a branch-and-cut algorithm for olive oil collection.

l Fallahi, Prins, and Wolfler Calvo (2008) consider fixed compart-

ents and the fixed assignment of product types to compartments

n the context of animal food distribution. A memetic algorithm

nd tabu search is applied to solve the problem. Caramia and
uerriero (2010) use a two-part heuristic to investigate milk

ollection with fixed compartment sizes and without a given

ssignment of product types to compartments. Chajakis and Guig-

ard (2003) propose a heuristic based on Lagrange relaxation

or the supply of convenience stores. An extension of MCVRP by

tochastic demand models is given by Mendoza, Castanier, Guéret,

edaglia, and Velasco (2010, 2011) . They develop several con-

truction procedures. In a similar way, Goodson (2015) proposes a

imulated annealing algorithm. Only recently, Mirzaei and Wøhlk

2016) present a branch-and-cut algorithm for two variants of an

CVRP. The first one considers the delivery of all segments with

nly one MCV per customer, i.e., each customer is only approached

nce, while the second one allows the delivery of each segment

ith different MCVs. Silvestrin and Ritt (2017) also consider an

CVRP with single visits to customers and present a tabu search

o solve the corresponding problem. The only publications that

onsider the delivery of multiple goods on either the same or

eparate vehicles are Muyldermans and Pang (2010) and Archetti,

ampbell, and Speranza (2016) . The first regards the collection

f waste from firms that produce different types of waste. Their

esearch focuses on the question of when co-collection (i.e., the

oint collection of different wastes) is better than separate collec-

ion (i.e., only collecting one type of waste per vehicle). In contrast

o our problem specification they do not differentiate between

ifferent costs for SCVs and MCVs, but apply a CVRP for the single-

ommodity case. It is solved by a guided local search. Archetti

t al. (2016) study the impact on transportation costs if single

r multi-commodity vehicles are used. Further, they analyze the

ossibility of splitting deliveries if vehicles can transport multiple

ommodities. Again, no differentiation between vehicle-dependent

osts was made in their work, and they regard problems where

ither single- or multi-commodity vehicles are used. The selection

f vehicles for routing was therefore not considered. 

CVRPs with flexible compartments. The available literature is still

ery limited for an MCVRP with flexible compartments. A model

hat uses flexible compartments for the distribution of both food

nd fuel was presented by Derigs et al. (2011) . They introduce a

olver suite including an LNS, a local search and several construc-

ion heuristics within an adaptive search procedure. Their approach

as been tested on various benchmark instances and provides fur-

her insights into the performance of different operators for the
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Table 2 

Notation. 

Index sets 

L ∗ = L ∪ { 0 } : Set of locations where L = { 1 , . . . , n } is the set of customers, and vertex 0 is the depot 

P : Set of product segments p ∈ P 
O : Set of orders o ∈ O 
N j : Set of orders for customer j ( N j ⊆ O ) 

S p : Set of orders for segment p ( S p ⊆ O ) 

K : Set of vehicle types k ∈ K 
V k : Set of vehicles of each type k ∈ K , v ∈ V k 
C : Set of compartments m ∈ C 
C k : Set of compartments for each vehicle type k ∈ K , c ∈ C k ( C k ⊆ C ) 

Parameters 

d ij : Distance between locations i and j [in distance units] 

q o : Quantity volume of order o [in transportation units] 

Q k : Vehicle capacity of vehicle type k [in transportation units] 

Cost parameters 

lc m : Loading cost dependent on the number of compartments m used on a vehicle [in currency units] 

tc v : Transportation cost dependent on the vehicle v [in currency units] 

ulc v : Unloading cost dependent on the vehicle v [in currency units] 
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search. Henke, Speranza, and Wäscher (2015b) present an MCVRP

for the collection of glass waste. Their formulation considers

flexible compartment sizes, but the variation in size is limited to

predefined steps. This means that compartments are not fully flex-

ible but can vary between given sizes. They developed a variable

neighborhood search to solve the corresponding problem. Henke,

Speranza, and Wäscher (2015a) develop a branch-and-cut approach

to this problem. Further, Koch, Henke, and Wäscher (2016) present

a genetic algorithm for a similar problem setting to collect multiple

products from customers. Only recently, Hübner and Ostermeier

(2018) presented an MCVRP with different costs for loading and

unloading processes for MCVs. They show that compartment-

dependent costs for MCVs are decision relevant and significantly

influence the routing solution. However, they only regard MCV-

specific costs and do not include the vehicle selection in their deci-

sion problem. They present an LNS to solve the MCVRP with load-

ing and unloading costs. Ostermeier, Martins, Amorim, and Hübner

(2018) extend the model and solution approach by including

loading constraints to reflect required loading and unloading se-

quences. However, vehicle selection with MCVRP for flexible com-

partments has not been studied so far in any of the publications. 

Heterogeneous VRPs. Besides MCVRPs our work is also inspired

by research on fleet size and mix. The general stream of litera-

ture concerning this problem is classified as heterogeneous VRP

(HVRP). The first ones to consider the problem of an VRP with

an heterogeneous fleet are Golden, Assad, Levy, and Gheysens

(1984) . Different types of heterogeneous VRPs are identified by

Baldacci, Battarra, and Vigo (2008) . In their work, Baldacci et al.

(2008) provide a classification of five major subclasses for VRPs

with an heterogeneous fleet. Following their classification, our

work could be seen as a Fleet Size and Mix VRP with Vehicle

Dependent Routing Costs (FSMD). This means, that we consider a

fleet of unlimited size and choose the optimal fleet mix according

vehicle dependent costs. We base our work on the MCVRP formu-

lation and search for the optimal mix between MCVs and SCVs.

Hence, our model formulation is directly related to the MCVRP

formulations and inspired by the HVRP problem class. 

Summary and contribution. Overall, specific problems considered

in the MCVRP context are quite heterogeneous. To the best of our

knowledge, the only contributions that deal with flexible compart-

ment sizes and assignments of orders to vehicles are Derigs et al.

(2011) ; Henke et al. (2015a,b) and Hübner and Ostermeier (2018) .

However, they do not make any fleet mix decision. Muyldermans

and Pang (2010) and Archetti et al. (2016) present studies on the
se of either single- or multi-compartment vehicles for fixed com-

artments. However, they neither specify decision-relevant loading

nd unloading costs nor do they differentiate the transportation

osts for SCVs and MCVs. 

To evaluate the choice of vehicles for the routing, it is neces-

ary to take into account different costs dependent on the vehicle

ypes. We therefore analyze these cost differences and derive the

osts that are decision relevant for an optimal choice of vehicles.

hese costs are integrated in a decision model that is solved by

pplying a suitable solution approach for MCVRP. We base our

odel on Hübner and Ostermeier (2018) as they provide the most

omprehensive formulation of total costs. 

. Model development and solution approach 

.1. MCVRP with vehicle selection 

Our vehicle selection problem can be formulated as an ex-

ension of the MCVRP that includes vehicle-dependent loading,

ransportation and unloading costs. We therefore use an MCVRP

ormulation that allows the possibility to choose between SCVs

nd MCVs to determine the optimal vehicle mix. The model for

CVRP with Vehicle Selection (MCVRP _ VS ) thus minimizes total

osts by determining the tours, selecting the vehicle for each tour

nd assigning orders to compartments of vehicles. Table 2 summa-

izes the notation that will be used for the model development. 

The MCVRP _ VS can be formulated as follows: Let G = ( L ∗, E )
e an undirected, weighted graph consisting of a vertex set

 

∗ = { 0 , 1 , . . . , n } , representing the location of the DC ({0}) and

he locations of n customers ( L = { 1 , . . . , n } ), and a set of edges

 = { ( i, j ) : i, j ∈ L ∗, i < j } , representing the connection between

ifferent locations. Each edge is associated with a non-negative

istance d ij to account for the driving kilometers between cus-

omer locations. 

Orders are defined by customers, product segments and quan-

ity. The set of orders is denoted by O and the set of product

egments by P . In our case, a product segment consists of items

 = products) that belong to one temperature zone, and hence items

hat can be transported jointly within one compartment. Each

ustomer j = 1 , . . . , n may place one or several orders, each refer-

ing to a particular product segment. The set N j , N j ⊆ O represents

ll orders of customer j , while the set S p , S p ⊆ O represents all

rders of product segment p . A positive demand q o is given for

ach order o ∈ O . The orders have to be collected from the DC and

ransported to the customers. A customer may be visited several

imes (i.e., during different tours) in order to deliver different
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roduct segments. A split delivery of an order of one product

egment of a single customer is not possible. Each customer, j ∈ L ,

laces at least one order. Further, each product segment available

s at least ordered by one customer. This also means that not all

ustomers need to order each segment. 

Vehicles are defined by the vehicle type k , the number of

ompartments m used on the vehicle and a given transportation

apacity for each vehicle type ( Q k ). The set of vehicle types

 = { k 1 , k 2 } includes SCVs (denoted by k 1 ) and MCVs (denoted by

 2 ). The set of vehicles per type is denoted by V k , k ∈ K . It involves

 sufficient number for all vehicle types to meet customer de-

and. Further, the set of available compartments C k is defined for

ach vehicle type. If an SCV is used, the number of compartments

s limited to one compartment ( | C k 1 | = 1 ). If an MCV is used, a

redefined number of compartments is available for each vehicle,

.e., | C k 2 | = c . Total vehicle capacity for MCVs ( Q k 2 
) can then be

ivided into a limited number of a maximum of c compartments

or each vehicle. The number of compartments used per MCV and

heir size is not predefined. If a compartment c ∈ C k 2 is used, its

ize can vary between 1 transportation unit and the total vehicle

apacity. If it is not used, the compartment size is zero. Different

egments cannot be mixed in the same compartment. The loading

f a new segment therefore also requires the opening of a new

ompartment. As loading/unloading processes are a central aspect

f the MCVRP _ VS , we further introduce loading costs lc m 

for a

umber of compartments m , m ∈ C and unloading costs ulc v of

ehicle v , v ∈ V k . The number of compartments determines the

umber of loading processes at the DC. More specifically, lc m 

can

e regarded as a cost vector representing loading costs for each

ehicle, and their value is determined by the number of active

ompartments. It is therefore denoted as lc m 

, where the costs

f each vehicle depend on the number of active compartments

ith m = 

∑
c∈ C k a v c . The binary auxiliary variable a v c indicates if

 compartment c is active on vehicle v ( a v c = 1 ). This is required

o sum up all active compartments on a vehicle. Addition-

lly, vehicle-type-dependent transportation costs tc v , v ∈ V k and

ehicle-type-dependent unloading costs ulc v , v ∈ V k , are applied. 

We introduce two decision variables with x ov c , indicating

hether an order o is assigned to compartment c on vehicle v
nd b i jv , indicating whether customer j is visited directly after

ustomer i with vehicle v . Please note that the vehicle type k is

ncluded in the vehicle set v ∈ V k . 

 ov c 

{
= 1 , if order o is assigned to compartment c on vehicle v 
= 0 , otherwise 

 i jv 

{
= 1 , if vehicle v is traveling from customer i to j 
= 0 , otherwise 

Further auxiliary variables are used. There is the binary auxil-

ary variable a v c (see above) that indicates if a compartment c is

ctive on vehicle v and the integer variable u i v accounts for the

osition of each customer i on the tour of vehicle v . 

 v c 

{
= 1 , if compartment c is active on vehicle v 
= 0 , otherwise 

 i v = t, t ∈ { 1 , . . . , | L ∗|} representing the position 

t of customer i on tour/vehicle v 

The objective function and constraints are formulated as

ollows: 

in Total Costs = 

∑
k ∈ K 

∑
v ∈ V k 

[
lc ∑

c∈ C k a v c 
+ tc v 

(∑ 

i ∈ L ∗

∑
j∈ L ∗

d i j · b i jv 

)

+ ulc v 

(∑ 

i ∈ L ∗

∑
j∈ L 

b i jv 

)]
(1) 
ubject to 

j∈ L 
b 0 jv ≤ 1 v ∈ V k , k ∈ K (2) 

i ∈ L ∗
b ih v = 

∑
j∈ L ∗

b h jv v ∈ V k , k ∈ K, h ∈ L ∗ (3) 

 i v − u jv + | L ∗| · b i jv ≤ | L | v ∈ V k , k ∈ K, i ∈ L ∗, j ∈ L (4) 

 0 v = 1 v ∈ V k , k ∈ K (5) 

o∈ O 

∑
c∈ C k 

q o · x ov c ≤ Q k v ∈ V k , k ∈ K (6) 

k ∈ K 

∑
v ∈ V k 

∑
c∈ C k 

x ov c = 1 o ∈ O (7) 

∑
∈ N j 

∑
c∈ C k 

x ov c ≤ | O | · ∑
i ∈ L ∗

b i jv v ∈ V k , k ∈ K, j ∈ L (8) 

o∈ O 
x ov c ≤ | O | a v c c ∈ C k , v ∈ V k , k ∈ K (9) 

∑
∈ S p 

x ov c ≤ | O | · (1 − x rv c ) v ∈ V k , 

 ∈ K, c ∈ C k , p, q ∈ P : p � = q, r ∈ S p (10) 

 v c ∈ { 0 , 1 } v ∈ V k , c ∈ C (11) 

 i jv ∈ { 0 , 1 } i, j ∈ L ∗, v ∈ V k (12) 

 i v ∈ { 1 , . . . , | L ∗|} i ∈ L ∗, v ∈ V k (13) 

 ov c ∈ { 0 , 1 } o ∈ O, v ∈ V k , c ∈ C k (14) 

The objective function (1) of the MCVRP _ VS minimizes the

otal costs across all vehicles used v , v ∈ V k , k ∈ K. The first

erm considers total loading costs. Loading costs lc depend on the

umber of active compartments 
∑

c∈ C k a v c on each vehicle v . In

he second term, the total transportation costs are calculated. The

osts are represented by tc v and depend on the chosen vehicle

 , v ∈ V k as well as on the distance ( d ij ) between locations i and j

nd the customer sequence b i jv . Finally, the third term represents

he total costs for unloading at all customers supplied. The total

osts for unloading consist of the vehicle-dependent unloading

osts ulc v multiplied by the number of stops on the corresponding

our. The unloading costs differ between vehicle types k . Please

ote that the objective function presented is non-linear. 

Constraints (2) and (3) ensure that every vehicle v , v ∈ V k can

nly depart once from the DC ( i = 0 ), and that every vehicle that

rrives at a customer location j , j ∈ L ∗ also departs from there. Re-

trictions (4) and (5) are used to eliminate sub-tours by indicating

he position of location i on the tour of vehicle v and setting the

C as the start and end point of each tour. This is imposed by

he fact that the position of location j is higher than that of i if

he vehicle v travels from i to j . Constraints (6) ensure that the

rders loaded into all compartments of vehicle v do not exceed

he vehicle capacity Q k of each type k . Each order o can only

e assigned to one compartment c on a vehicle v and therefore

qs. (7) are needed. Constraints (8) ensure that customer j has

o be visited if an order o of customer j is loaded on vehicle

 . Constraints (9) ensure that compartment c on vehicle v is

et to active if an order o is assigned to it. The incompatibility

estrictions (10) ensure that incompatible orders from different

egments p and q , p , q ∈ P , p � = q , are not assigned to the same

ompartment. This is done by ensuring that an order o from the

et of orders S p , which comprises all orders of product segment p ,

s not combined in one compartment with an order r from the set

 q , which comprises all orders of product segment q . Lastly, the

omains of the decision variables are given by (11) –(14) . 
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Fig. 4. Overview of solution approach. 
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4.2. Solution approach 

The MCVRP presented for the selection of vehicles is an NP-

hard problem and therefore only small problems can be solved

exactly. Heuristic approaches are needed for problem sizes rel-

evant in practice. We choose an LNS for our solution approach.

Various LNS formulations have been successfully developed for

VRP and MCVRP (see Derigs et al. (2011) and Hübner and Oster-

meier (2018) ). Based on the framework of Hübner and Ostermeier

(2018) , we develop an LNS for the vehicle selection. The outline

and operators of the heuristic approach are presented in Fig. 4 . 

Initial solution. The parallel savings algorithm by Clarke and

Wright (1964) is used as a construction heuristic to create an

initial solution. It is also a widely applied construction heuristic

for MCVRP (e.g., Derigs et al. (2011) ; Muyldermans and Pang

(2010) ) and is able to produce a fast, feasible solution. 

Large neighborhood search. An LNS is used as improvement heuris-

tic. LNS have been successfully used by Derigs et al. (2011) and

Hübner and Ostermeier (2018) for MCVRP. We base our approach

on these works. The LNS is constituted by (1) a removal operator,

(2) an insertion operator and (3) the guidance of the search

procedure. These will be detailed in the following. 

(1) Remove operator. For the removal of orders we chose Shaw

removal presented by Shaw (1997) as it enables the consideration

of similarities between orders and therefore a directed search.

This means that we can highlight different characteristics between

orders as the affiliation of orders to the same or different cus-

tomers and/or segments. This is essential for the search as these

differences have a high impact on routing costs. 

Shaw removal is based on the concept of similarity and

therefore a problem-specific distance measure ( R os ) is defined. It

evaluates the difference between any two orders o and s (either

from the same customer or different customers) using o , s ∈ O . Ad-

ditionally, a randomization step is integrated into the approach to

achieve higher diversification for the search. For the description of

the procedure we divide the set of all orders O into removed orders

( O 

−) and assigned orders ( O 

+ ), such that O 

+ , O 

− ⊆ O, O 

+ ∪ O 

− = O

and O 

+ ∩ O 

− = ∅ . The distance measure R os is given in Eq. (15) . 

R os := φ · cost os 

cost max 
+ ω · prod os + ψ · | q o − q s | 

q max 
(15)

R os considers the three main characteristics for orders: distance

cost , product segment and order size . First, distance cost indicates

the distance between the customers whose orders o and s are

being considered. If customers are located close to each other (or

if the orders belong to the same customer), the similarity between

orders is rated higher as the distance between customers has a

high impact on transportation but also on unloading costs if orders
re from the same customer. Second, the product segment indicates

hether the orders belong to the same product segment and can

herefore be assigned to the same compartment. It is defined as

prod os = 1 if segment of order o is different from segment of order

 , 0 otherwise. The product segment is most influential for loading

osts as the combination of different segments requires multiple

ompartments on a truck and therefore the use of an MCV. Finally,

he order size represents the fact that swapping orders of the same

ize tends to provide feasible solutions more quickly. The highest

rder quantity across all orders is represented by q max . Weights φ,

, and ψ are applied to represent the importance of each of the

hree components. In this way, a higher value of R os corresponds

o a higher difference between order characteristics and therefore

ess similarity. 

The overall removal procedure operates in the following way.

 set number of r orders has to be removed from the incumbent

olution. The first order o to be removed is chosen randomly from

ll orders O . Please note that for the start of the removal process

he set O 

+ is equal to O . After the initial step, the removal is based

n similarity to one of the orders already removed. Orders in O 

+ 

re ranked according to the defined similarity to the randomly

hosen order o ∈ O 

− in descending order, i.e., the most similar

rder at the top and the least similar order at the bottom. The

election of the next order for removal is then based on the

imilarity plus a random number z ∈ [0, 1) and a parameter α. For

he selection of a new order, it is not the order with the highest

imilarity that is chosen but one that can be found z α percent

own the similarity ranking. If the resulting position is not integer,

he result is rounded to the next integer value. The randomization

s applied for diversification of the search: the higher the α, the

ore diversified the search. 

2) Insertion operator. The insertion operator for our LNS is based

n the regret-k insertion by Ropke and Pisinger (2006) . Follow-

ng our notation, orders removed ( o ∈ O 

−) are reinserted with a

egret- k operator to the set O 

+ . 
We modified the regret insertion of Ropke and Pisinger

2006) to evaluate all vehicle-dependent costs if an order is

ssigned to a tour. This involves the influence on loading and

nloading costs as well as transportation costs if an order is as-

igned to either an SCV or MCV. The insertion uses a regret value

egret k for theoretical reinsertion for each removed order o ∈ O 

−.

or this, Eq. (16) , with k ≥ 2 is used to calculate the potential costs

f reinsertion. It is the sum of differences between the best option

represented by the lowest total tour costs totalcost v 1 ) and k -best

ptions (represented by totalcost v u ). Here, totalcost v u are the total

our costs of the u th best tour v if order s is inserted there and

 otalcost v u ≤ t otalcost v t , ∀ u < t . 

 egr et k := 

k ∑
u =2 

(t otalcost v u − t otalcost v 1 ) (16)
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Table 3 

Loading costs lc k 2 of MCVs per compartment, normalized to tc k 1 . 

Number of Compartments 1 2 3 4 

Loading costs in currency units 2.62 5.25 7.80 10.35 
The order that shows the highest regret value according to the

alculated regret k is chosen for reinsertions. As the regret insertion

ot only considers the insertion of an order in the actual solution

ut also a possible later insertion, it offers a cost evaluation with

reater foresight. The calculation of the regret value has to be re-

eated after each insertion as the options and costs for reinsertion

ay have changed. This process is iterated until all orders are

einserted (i.e., O 

− = ∅ ). 
3) Guiding the search procedure. 

Record-to-record travel. To govern the process of finding a

olution improvement using the LNS, the record-to-record travel

RRT) meta-heuristic is used. It was shown that the RRT delivers

ood solutions for MCVRP ( Derigs et al., 2011 ). The RRT is defined

ccording to Dueck (1993) and controls the improvement steps by

etting a limit for the acceptance of declining solution values. This

eans that a solution is only accepted if it lies within a defined

eviation D from the best result found so far. Even though the RRT

pproach is quite simple, it does not seem to be inferior to other

ethods used ( Derigs et al., 2011 ). 

Runtime limits and diversification. The search terminates if

 given number of iterations without solution improvement is

eached. Further, we use a large destroy step to avoid local min-

ma. It is called every time a given number of iterations without

mprovement is reached. In this step, the value for the orders to

emove ( r ) is set to a large number (e.g., half of the order list). In

his way, big parts of the incumbent solution are destroyed and

he search diversified. 

Summary. The complete structure of our LNS is displayed in

lgorithm 1 . 

lgorithm 1 Large Neighborhood Search for MCVRP _ VS .

nput: (Initialize Solution S, set remove parameter r, set regret pa-

rameter k ) 

S best := S

Shaw removal SR (r) 

Regret insertion RI(k ) 

ResetCounter m := 1 

Set allowed deviation D according record-to-record travel RRT () 

while improving = true do 

S ′ := S

Remove r orders from S ′ using SR (r) 

Reinsert orders removed into S ′ using RI(k ) 

if Ob jectF unction (S ′ ) < Ob jectF unction (S best ) then 

S best = S ′
S = S ′
Reset number of unsuccessful runs to zero and m to 1 

else if Ob jectF unction (S ′ ) ≤ Ob jectF unction (S best ) plus ac-

cepted deviation D then 

S := S ′
Increase number of unsuccessful runs 

else 

Increase number of unsuccessful runs 

Continue with original solution S 

end if 

if Number of unsuccessful runs = limit then 

Set improvement false 

else if Number of unsuccessful runs = reset limit multiplied

by m then 

Remove high number of orders from S using SR (r) 

Reinsert orders removed into S using RI(k ) 

m = m+1 

end if 

end while 

return S best 
. Numerical experiments 

In this section, we present numerical analyses for vehicle

election within an MCVRP for different data settings. First we

pply tests with real-life data from a case study with a major

erman retailer in Section 5.1 . We will generalize these findings in

urther tests. We use randomly generated data that are informed

y the joint project with the retailer. The main experiments for

he impact of vehicle selection are presented in Section 5.2 . We

onsider two different settings, one for urban areas with shorter

istances and one for larger distances corresponding to rural

reas. Following these results, we complete further experiments

or different order structures and settings that take into account

he particularities of SCVs and a mixed fleet in Section 5.3 . 

Runtime parameters. The computational results were obtained

n a 1.8 gigahertz PC with 8 gigabytes memory running on Win-

ows 10. The implementation of the LNS algorithm has been re-

lized in Java. The heuristic-specific parameters are set as follows.

or the Shaw removal, the weights for the calculation of the simi-

arity measure R os were set to φ = ω = 0 . 4 and ψ = 0 . 2 and α = 4 .

his choice of weights is based on the higher influence of distance

osts and product segments compared to order size. Using this

etting we obtained good results in various pretests. The number

f items removed r is chosen randomly using uniform distribution.

his results in a variation of between 5 and 30 orders removed

or the studies with simulated data and tests with 100 customers.

he regret parameter has been set at k = 2 . Furthermore, the

ermination limit is 20 0 0 and the limit for a solution reset is 500

or all LNS applications. The maximum deviation D allowed for the

RT equals 0.4% for all tests. We further refer to Hübner and Os-

ermeier (2018) and Derigs et al. (2011) , who have shown that the

efined parameter settings perform efficiently for related MCVRPs. 

.1. Case study 

The first analysis is based on a joint case study with a retailer.

e used empirical data collection to obtain cost parameters, order

tructures and customer data. 

Cost parameters. A central aspect of the MCVRP _ VS are the

iffering cost factors for SCVs and MCVs. As described in Section 2 ,

osts depend on the vehicle type and in the case of MCVs also on

he number of compartments used. The exact parameters are sub-

ect to non-disclosure agreements with the retailer. We therefore

eport the relative cost parameters in relation to the transportation

osts tc k 1 of SCVs. This means that the transportation costs for

CVs are set to tc k 1 = 1 . 00 currency units. 

Cost parameters for the loading and unloading costs for the

ifferent vehicle types were obtained by a time and motion study.

hese values originate from the process analysis at the retailer’s

ites. Representative tours have been accompanied and the times

or the different processes have been measured. We refer to our

escription in Section 2 for the processes and additional handling

nvolved. All measurements of our case study for loading and

nloading costs have been translated into monetary terms by

valuating the times obtained with the corresponding personnel

osts. Loading costs are fixed at 2.55 currency units per loading

rocess for SCVs ( lc k 1 = 2 . 55 currency units). Loading costs of

CVs ( lc k 2 ) additionally depend on the number of compartments

sed m and therefore on the number of loading steps needed. The

osts identified are displayed in Table 3 . 
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Table 4 

Results of the case study. 

Scenario: tc k 2 (low) Scenario: tc k 2 (high) 

Delivery Delta in total costs Fleet mix Delta in total costs Fleet mix 

day SCV vs. MF (%) MCV vs. MF (%) (SCV (%) / MCV (%)) SCV vs. MF (%) MCV vs. MF (%) (SCV (%) / MCV (%)) 

1 5.5 0.1 30 / 70 4.9 0.4 35 / 65 

2 13.2 0.0 18 / 82 12.8 0.4 29 / 71 

Case 3 7.2 0.0 18 / 82 6.5 0.5 34 / 66 

study 4 4.2 0.0 23 / 77 3.7 1.6 39 / 61 

5 3.4 0.3 32 / 68 3.0 0.6 42 / 58 

6 4.6 0.5 36 / 64 3.9 1.9 60 / 40 
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Table 5 

Range of order quantity per segment (in transportation units). 

Segment 1 2 3 4 

Minimum quantity 1 1 5 10 

Maximum quantity 5 10 20 25 
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Unloading costs are set to ulc k 1 = 2 . 26 currency units for SCVs

and ulc k 2 = 2 . 33 currency units for MCVs. Please note that these

values may be retailer- and DC-specific and may only serve as a

guideline for the cost parameters in a general setting. For other

DCs these may vary significantly, e.g., if the temperature-specific

warehouses are not at the same location and there is a longer

travel time between gates. 

We took a total costs approach for the calculation of the

transportation costs of each vehicle type as denoted in Section 2 .

Both vehicle types have a certain mileage during the life time of

the truck, based on the past experience of the retailer. This given

total mileage allows the conversion of fixed costs for procurement,

maintenance and insurance into costs per distance units. Further

variable costs that depend on the distance and travel time are

fuel and personnel costs for the driver. These can be translated

into costs per distance unit as well. For further details we refer to

Section 2 . Higher procurement costs for MCVs are thus translated

into higher transportation costs tc . We consider two different

cost scenarios for the transportation costs of MCVs ( tc k 2 ). In the

low cost case, MCVs are only 0.9% more expensive than SCVs

(at tc k 2 (low) = 1.009 currency units) and in the high-cost case,

MCVs are 4.7% higher (at tc k 2 (high) = 1.047 currency units). We

apply these two scenarios, as the retailer has two different offers

and contracts with truck suppliers. The actual costs are highly

dependent on the bargaining position of individual retailers. 

Order and customer data. The data set covers orders from

a specific DC for a complete delivery week. This comprises six

different delivery days and therefore six instances. Altogether, this

involves 406 customers with orders for four different product

segments and a volume of over 4500 orders. The number of

orders per day reaches a maximum of over 900 orders from

almost all customers. The capacity of all vehicles is identical, at

33 transportation units. The average order size across all product

segments and weekdays amounts to around 6 transportation

units. Furthermore, the maximum distance between two locations

amounts to 346 kilometers. 

Results of case study. We analyze three different fleet options.

First we consider solutions where only SCVs are available (with

 k 2 
= {} , denoted as “SCV”). In the second scenario only MCVs

(with V k 1 = {} , denoted as “MCV”) are used. The third option op-

erates with a mixed fleet making use of vehicle selection (denoted

as “MF”). The last one allows the selection of SCVs and MCVs. This

highlights the advantages of introducing vehicle selection for the

problem, and presents potential savings for retailers. We solve the

corresponding routing problem with the heuristic approach pre-

sented in Section 4.2 with respect to the formulated mathematical

model in Section 4.1 . 

Table 4 summarizes the results for the scenario with low

transportation costs on the left and high transportation costs

on the right. For the scenario with lower transportation costs

( tc k 2 (low)), the impact of using a mixed fleet reveals a maximum

of 0.5% in cost reduction. However, the impact for three delivery

days is very small. The reason for this is the higher share of MCVs
sed for distribution, at up to 82%. If higher transportation costs

re considered ( tc k 2 (high)), the cost reduction achieved reaches a

aximum of around 2% for day 6 and 1.6% for day 4. The average

rder size on these days is around 7 transportation units, which

s above the weekly average. Additionally, the share of SCVs is

igher for the tc k 2 (high)-scenarios. Day 6 has an especially high

CV usage of around 60%. The average computational time needed

cross the six days of the week amounts to 4.2 minutes for the

c k 2 (low)-scenario and 6.4 minutes for the tc k 2 (high)-scenario. 

.2. Generalization of the findings of the MCVRP with vehicle 

election 

In this section, we will generalize our findings. The numerical

xperiments are based on randomly generated data that allows

s to draw managerial insights from different settings. We will

pply two basic scenarios for a setting with urban customers and

ith rural structures. We analyze the vehicle selection within

he MCVRP and the influence on total costs. We consider ten

ifferent instances for all tests, and apply the LNS ten times to

ach problem. We will detail the data generation process before

he analysis itself. 

.2.1. Data generation and parameter setting. 

Order data. We assume that four segments are available for

ach customer. For the order pattern, we distinguish between

ne and four orders per customer. If customers order only one

egment, they randomly choose one among the available four

egments. If they order four segments, each available segment

s ordered once. The available order sizes are based on our in-

ights from the case study. In grocery distribution, the order sizes

etween segments are heterogeneous. Therefore we assume dif-

erent ranges for the order sizes of different segments. The sizes

ollow uniform distribution between the set minimum and maxi-

um order sizes. Details are given in Table 5 . By way of example,

egment 4 could resemble ambient products and segment 1 deep-

rozen. The share of sales for ambient products is substantially

igher than sales for deep-frozen goods, and the corresponding

rder volumes differ accordingly. 

Distance data. The distances between customers are split into

wo scenarios: an urban and a rural delivery area. For the urban

rea distances are chosen randomly between 20 and 65 kilome-

ers. We assume distances of between 40 and 200 kilometers for

ural deliveries, and the corresponding routing costs. Please note,

hat the distances are chosen randomly, however the triangular

nequality is taken into account during the generating of distances.
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Table 6 

Test overview for rural and urban deliveries (Ø values). 

Test Transportation Delta in total costs Fleet mix 

scenario costs a SCV vs. MF (%) MCV vs. MF (%) (SCV (%) / MCV (%)) 

Urban tc k 2 (low) 20.87 0.14 9 / 91 

tc k 2 (high) 18.46 0.32 15 / 85 

Rural tc k 2 (low) 22.40 0.13 8 / 92 

tc k 2 (high) 19.85 0.43 13 / 87 

a Different costs for MCVs. 
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.2.2. Results of basic experiments. First, instances for urban deliv-

ries are considered. Second, we analyze rural deliveries. In both

ettings we apply the two cost scenarios for the MCV transporta-

ion costs introduced in the previous subsection ( tc k 2 (low) and

c k 2 (high)). As before, we compare the three different fleet options

ith SCVs only (SCV), MCVs only (MCV) or with a mixed fleet

MF). We assume a vehicle capacity of 33 transportation units for

ll our tests, as in the case study. 

Urban deliveries. Table 6 summarizes the findings for both

ransportation cost scenarios for urban delivery areas. We have

ignificant savings potential if a mixed fleet is possible compared

o the use of SCVs only (see SCV vs. MF). The cost savings potential

s around 20%. The second comparison regarding the use of MCVs

nly or a mixed fleet yields different results (see MCV vs. MF). In

his case, with a solution improvement of 0.14% for tc k 2 (low) and

.32% for tc k 2 (high), the difference between a fleet with only MCVs

r a mixed fleet is small. This can be attributed to the high share of

CVs with up to 92% used for distribution even if SCVs are avail-

ble. Only a few SCVs are used if the fleet can be chosen freely,

nd therefore transportation costs only have a minor influence. 

Rural deliveries. Similar results compared to those of urban

reas can be observed for rural areas. Comparing MF to an SCV

eet, the improvement for both cost scenarios lies at around 20%,

ith up to 22.40% in the first transportation cost scenario. The

ame holds true for the comparison between MF and an MCV fleet.

o significant difference in costs was revealed in the case of low

ransportation costs. If higher transportation costs are considered,

 mixed fleet yields an average solution improvement of 0.43%. 

.3. Further experiments with varying order and customer data 

Further tests for different data structures were analyzed in ad-

ition to the base tests in the previous section. First, the influence

f order sizes on the fleet mix is examined. Second, we apply

hanges to the order structure so that each customer only orders

ne of the available segments. We focus on rural transportation

or the tests, i.e., long distances between customers, as this was

lso the focus of the case study. 

.3.1. Order sizes. For the base test the order sizes were chosen

andomly between different order sizes. To further analyze the

mpact of order sizes, we chose to consider two alternative scenar-

os. For this, small order sizes ranging from 1 to 10 transportation

nits for all segments are considered in the first scenario. In the

econd scenario larger order sizes ranging from 3 to 33 trans-

ortation units are chosen, with a slight variation per segment. In
Table 7 

Test overview for small and large order sizes (Ø values). 

Test Transportation Delta in total c

scenario costs a SCV vs. MF (%)

Small orders tc k 2 (high) 30.69 

Large orders tc k 2 (high) 4.81 

a Considering higher transportation costs: tc k 2 (high). 
etail, we assume order sizes from 3 to 20 transportation units for

he first segment, 5 to 25 transportation units for segment 2 and

 and 10 to 33 transportation units for the last segment. Based on

he results of our tests in Section 5.2 , we only apply the higher

ransportation costs of MCVs ( tc k 2 (high)). 

Small order sizes. The use of SCVs is costlier for smaller order

izes. As orders are smaller it is more likely that the combina-

ion of different segments is beneficial on the same tour. Using

CVs would therefore be preferable for most tours, and in fact

n our tests for small orders MCVs were used exclusively. As a

onsequence, the improvement in the solution value lies above

0% if a mixed fleet is used. As only MCVs are used, there is no

ifference in costs between a mixed and an MCV fleet. The results

re summarized in Table 7 . 

Large order sizes. In contrast to small order sizes, larger orders

ave a positive impact on the use of SCVs. As displayed in Table 7 ,

he potential cost reduction goes down to an average of 4.81%

ompared to a cost reduction of 30.69% in the case of small orders.

arger orders allow fewer combinations of different segments on

he same tour and therefore the use of MCVs becomes less benefi-

ial. Best results can be achieved again if a mixed fleet is applied.

he improvement compared to using only MCVs amounts to an

verage of 1.75%. Table 8 details our results with large orders,

ndicating the best solution found for each instance. 

.3.2. Number of segments ordered. The next tests with randomly

enerated data comprise the analysis of instances where only one

egment is ordered out of four available ones. For each customer,

he segment ordered is assigned randomly following uniform

istribution. As in the previous tests, we apply tc k 2 (high) due

o the impact on vehicle selection. We analyze the influence of

egments ordered per customer for random order sizes as in the

ase test (see Section 5.2 ), as well as for large and small order

izes as in the previous tests. The results are presented in Table 9 ,

iving the average cost delta and fleet mix for each scenario. 

The tests show that the number of segments ordered per

ustomer has little influence on the cost savings if a mixed fleet

s used as the main driver for potential savings is again the order

ize. If only one segment per customer is ordered, the effects

or larger orders are slightly increased as the number of SCVs

ncreases (51% SCVs for large orders and one segment ordered).

his is due to the fact that if each customer orders only one

egment there is no possible cost saving from combining different

egments for the same customer on one tour. Therefore it is more

ikely that tours dedicated to one segment are created, combin-

ng only customers with the shortest distances but not mixing

ifferent segments. As a consequence, the average cost reduction

or the comparison of MCV and MF is 1.80% for large orders and

.55% for random order sizes. No significant cost reduction can

e achieved for small orders as 97% of vehicles are MCVs. Further,

t is noticeable that the potential saving for the comparison of

CV and MF in the case of small orders is significantly lower than

or tests with four ordered segments. This can be attributed to

he fact that the benefits of combining different segments on one

ruck is less beneficial if the orders are from different customers.

CVs are most profitable if orders from the same customer can
ost Fleet mix 

 MCV vs. MF (%) (SCV (%) / MCV (%)) 

0.00 0 / 100 

1.75 48 / 52 



692                                                                                        

Table 8 

Test details for rural deliveries for larger orders and tc k 2 (high). 

Test Instance Delta in total costs Fleet mix Ø runtime 

scenario SCV vs. MF (%) MCV vs. MF (%) (SCV (%) / MCV (%)) in seconds (MF) 

1 4.19 1.36 48 / 52 38 

2 4.91 1.72 49 / 51 37 

3 4.53 1.42 49 / 51 39 

4 5.65 1.81 47 / 53 44 

5 5.31 1.75 48 / 52 41 

Large orders 6 5.19 1.70 52 / 48 37 

7 4.50 1.91 46 / 54 54 

8 6.28 1.73 40 / 60 40 

9 4.49 1.86 50 / 50 44 

10 4.45 1.77 48 / 52 37 

Ø 4.81 1.75 48 / 52 41 

Table 9 

Test overview for one ordered segment (Ø values, tc k 2 (high)). 

Test Order Delta in total cost Fleet mix 

scenario size SCV vs. MF (%) MCV vs. MF (%) (SCV (%) / MCV (%)) 

1 out of 4 Small 6.45 0.03 3 / 97 

segments ordered Random 9.66 0.55 23 / 77 

Large 4.59 1.80 51 / 49 

Table 10 

Test details for tests with one ordered segment and large order sizes ( tc k 2 (high)). 

Test Instance Delta in total costs Fleet mix Ø runtime 

scenario SCV vs. MF (%) MCV vs. MF (%) (SCV (%) / MCV (%)) in seconds (MF) 

1 5.17 1.94 55 / 45 8 

2 6.51 1.64 52 / 48 10 

3 5.22 2.18 61 / 39 7 

1 out of 4 4 3.77 1.73 52 / 48 8 

segments ordered 5 3.08 1.90 58 / 42 11 

(Large orders) 6 5.06 1.96 52 / 48 8 

7 3.56 1.87 54 / 46 11 

8 5.30 1.80 39 / 61 11 

9 7.10 1.69 45 / 55 8 

10 4.41 1.44 40 / 60 8 

Ø 4.59 1.80 51 / 49 9 
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be combined. For a more detailed overview of the test results with

larger orders, we provide details per instance in Table 10 , using

the best solution for each instance. 

5.3.3. Special case: Analysis with larger order sizes, rural areas and

high loading/unloading costs. This final analysis investigates the ef-

fects if the factors that are beneficial for an SCV fleet are combined.

As shown above, it is advantageous to use more SCVs if there are

larger order sizes, longer transportation distances and higher

loading costs. This scenario constitutes an upper bound of possible

cost savings by fleet mix optimization. This scenario is typical for

rural regions. There are usually larger stores that require larger

order volumes. This is further intensified due to longer travel dis-

tances that require the bundling of orders to obtain lower delivery

frequencies. Moreover, loading and unloading costs are assumed to

be 50% above the costs indicated in Table 3 . Loading costs increase

particularly if the temperature-specific DCs are not co-located and

the vehicle needs to pick up the orders at different locations (e.g.,

in different cities). Unloading costs increase if processes at the

stores are not lean (e.g., no ramps, complicated parking). 

The detailed results are summarized in Table 11 . The extreme

scenario shows that under the given circumstances the gap be-

tween an SCV and MCV fleet decreases significantly. Looking at

the averages over all instances, MF improves the SCV solution by

2.63% and the MCV solution by 2.01%. The SCV solution proved

even better than the MCV solution for three instances (instances
, 2 and 6). However, we show that a mixed fleet provides the

owest cost solutions in all cases. 

.4. Summary 

Our tests analyzed different scenarios to map various require-

ents from practice and to consider different influences on the

se of SCVs and MCVs. To do this we considered rural and urban

elivery areas with varying order sizes and order structures. The

umerical experiments showed that a mixed fleet is always the

est option. Furthermore, an exclusive MCV fleet yields better

esults than an exclusive SCV fleet. More precisely, costs can be

educed by up to 30% with a mixed fleet compared to a fleet

omposed exclusively of SCVs, and by up to 2% compared to a

eet made up exclusively of MCVs. Mixing the fleet is particularly

eneficial in cases with longer transport distances and higher

rder volumes. In these cases SCVs become more beneficial and

herefore the share of SCVs impact the savings potential from a

ixed fleet compared to a fleet made up exclusively of MCVs.

f solutions have a higher share of SCVs, a mixed fleet becomes

ore beneficial as transportation and loading costs can be reduced

ompared to an MCV fleet. 

The case study and further experiments above allow us to

educe the following managerial insights for the use of SCVs and

CVs in grocery distribution. 

• Mixed fleet superior to SCV/MCV fleet. In all our tests, the use

of a mixed fleet is significantly better than an SCV fleet. The
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Table 11 

Test details for extreme scenario ( tc k 2 (high)). 

Test Instance Delta in total cost Fleet mix Ø runtime 

scenario SCV vs. MF (%) MCV vs. MF (%) (SCV (%) / MCV (%)) in seconds (MF) 

1 2.49 2.57 61 / 39 9 

2 1.75 1.77 63 / 37 9 

3 2.44 1.65 55 / 45 7 

Special 4 4.80 2.01 37 / 63 7 

case 5 3.59 1.61 49 / 51 8 

6 2.04 2.43 67 / 33 8 

7 2.87 2.23 55 / 45 9 

8 3.35 1.66 43 / 57 6 

9 3.40 1.41 53 / 47 7 

10 2.86 2.31 65 / 35 7 

Ø 2.63 2.01 55 / 45 8 
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same holds true for the use of an MCV fleet, even if the poten-

tial savings are more moderate. The higher the share of SCVs

in the optimal fleet, the higher the potential savings of a mixed

model. 
• Mixed fleet required for larger order sizes and rural areas. The

possibility of selecting vehicles provides a significant improve-

ment especially for rural areas with larger stores and therefore

a higher order volume. The cost reduction of a mixed fleet com-

pared to an MCV fleet increases as more SCVs are used in these

scenarios. The effect is intensified if the order structure of cus-

tomers is more heterogeneous. 
• Mixed fleet required for order structure with fewer orders per cus-

tomer. A mixed fleet provides the best results in order struc-

tures where each customer does not order the same segments.

Where each customer orders only one segment, it becomes

harder to combine several segments on the same truck and

deliveries with SCVs become more beneficial. A mixed fleet

to cover both multi-segment and single-segment deliveries is

therefore required to achieve a cost-optimal solution. 
• A heterogeneous fleet is required in most applications. The main

implication of our tests is that a mixed fleet is needed in all

applications. It provides a cost-optimal solution as it combines

the advantages of both SCVs and MCVs. 

Overall, the use of a mixed fleet is advisable for retailers in

rocery distribution. Vehicle selection should therefore be part of

he routing problem to achieve a cost-optimal solution with an

fficient distribution fleet. 

. Conclusion 

This paper introduced vehicle selection for an MCVRP with

exible compartments. The objective of our research was to show

he benefits of considering both SCVs and MCVs for distribution

eets. We therefore presented an extended MCVRP to account for

he different vehicle types and the corresponding costs incurred

y their use. We identified the relevant costs and evaluated them

ithin a case study. The resulting problem was solved with an LNS

hat has shown good results for different MCVRP variants. We an-

lyze the impact of including vehicle selection within the MCVRP

n various numerical experiments. It was shown that a mixed

elivery fleet yields significant savings potential compared to a

eet with only SCVs or MCVs. We first analyzed vehicle selection

or a case study with a major German retailer. In this case, it was

ossible to confirm the advantages of selecting SCVs and MCVs for

istribution in a practical application. This is expressed in possible

avings of up to 2% for one delivery day. Second, we applied tests

ith randomly generated data to analyze the advantages of vehicle

election for different scenarios. This comprised tests for urban

nd rural areas, variations in order sizes as well as scenarios with
arying order structures. We showed that a mixed fleet of SCVs

nd MCVs is superior to a fleet with only one vehicle type in each

f the experiments. For instance, the potential savings of a mixed

eet amount to a maximum of 30% compared to a fleet composed

xclusively of SCVs if small order sizes are considered. Summing

p, we were able to show the benefits of considering a mixed fleet

f SCVs and MCVs for distribution. The extended model including

he vehicle-specific cost factors yields significant savings potential

or retailers. 

Our work on MCVRP for the consideration of a mixed fleet

epresents a contribution to the still young field of research on

CVRP with flexible compartments. There are numerous aspects

f MCVRP that have not yet been considered in literature. This

tudy considered a mixed fleet. A possible next step could be

o extend the problem to a heterogeneous fleet with differing

ehicle capacities. Further, as MCVs have to approach several

oading gates, this might lead to an increased traffic situation at

he DC and higher waiting times. As a consequence, the balanc-

ng of departures could be a worthy extension of the presented

CVRP. Most publications, especially when considering flexible

ompartments, focus on single period problems. There is a lack

f literature on MCVRP for multiple periods. Extensions with

tochastic and varying demand also constitute a valuable path (see

.g., Mendoza et al. (2010, 2011) . As MCVs can combine different

ustomer orders on the same vehicle, new possibilities for order

nd delivery frequency are given. The impact of combined orders

n inventory and delivery patterns should therefore be examined

see e.g., Holzapfel, Hübner, Kuhn, & Sternbeck, 2016 ). Additionally,

 change in the delivery frequency and/or order sizes impacts

perations at the stores. Further applications could address the

CVRP for home deliveries of online orders and store orders (see

.g., Hübner, Holzapfel, & Kuhn, 2016a ; Hübner, Wollenburg, &

olzapfel, 2016b ). This should be integrated in the decision model.

Several extensions are possible as for classical VRP formula-

ions. This includes the consideration of time-windows, stochastic

emands or backhauls. Finally, existing solution approaches can

lways be improved. Alternative heuristic solution approaches and

xact approaches (such as Henke et al. (2015a) ) to compare and

ddress different MCVRP variations need to be considered. 
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