517 research outputs found

    The design and implementation of a multi-agent architecture to increase coordination efficiency in multi-AUV operations

    Get PDF
    This research addresses the problem of coordinating multiple autonomous underwater vehicle (AUV) operations. An intelligent mission executive has been created that uses multi-agent technology to control and coordinate multiple AUVs in communication deficient environments. By incorporating real time vehicle prediction, blackboardbased hierarchical mission plans and mission optimisation in conjunction with a simple broadcast communication system this system aims to handle the limitations inherent in underwater operations and intelligently control multiple vehicles. In this research efficiency is evaluated and then compared to the current state of the art in multiple AUV control. The research is then validated in real AUV coordination trials. Results will show that compared to the state of the art the control system developed and implemented in this research coordinates multiple vehicles more efficiently and is able to function in a range of poor communication environments. These findings are supported by in water validation trials with heterogeneous AUVs. This thesis will first present an in depth state of the art of the related research topics including multi-agent systems, collaborative robotics and autonomous underwater vehicles. The development and functionality of this research will then be explained followed by a detailed description of the experiments. Results are then presented both for the simulated and real world trials followed by a discussion of the findings

    An autonomous satellite architecture integrating deliberative reasoning and behavioural intelligence

    Get PDF
    This paper describes a method for the design of autonomous spacecraft, based upon behavioral approaches to intelligent robotics. First, a number of previous spacecraft automation projects are reviewed. A methodology for the design of autonomous spacecraft is then presented, drawing upon both the European Space Agency technological center (ESTEC) automation and robotics methodology and the subsumption architecture for autonomous robots. A layered competency model for autonomous orbital spacecraft is proposed. A simple example of low level competencies and their interaction is presented in order to illustrate the methodology. Finally, the general principles adopted for the control hardware design of the AUSTRALIS-1 spacecraft are described. This system will provide an orbital experimental platform for spacecraft autonomy studies, supporting the exploration of different logical control models, different computational metaphors within the behavioral control framework, and different mappings from the logical control model to its physical implementation

    CernoCAMAL : a probabilistic computational cognitive architecture

    Get PDF
    This thesis presents one possible way to develop a computational cognitive architecture, dubbed CernoCAMAL, that can be used to govern artificial minds probabilistically. The primary aim of the CernoCAMAL research project is to investigate how its predecessor architecture CAMAL can be extended to reason probabilistically about domain model objects through perception, and how the probability formalism can be integrated into its BDI (Belief-Desire-Intention) model to coalesce a number of mechanisms and processes. The motivation and impetus for extending CAMAL and developing CernoCAMAL is the considerable evidence that probabilistic thinking and reasoning is linked to cognitive development and plays a role in cognitive functions, such as decision making and learning. This leads us to believe that a probabilistic reasoning capability is an essential part of human intelligence. Thus, it should be a vital part of any system that attempts to emulate human intelligence computationally. The extensions and augmentations to CAMAL, which are the main contributions of the CernoCAMAL research project, are as follows: - The integration of the EBS (Extended Belief Structure) that associates a probability value with every belief statement, in order to represent the degrees of belief numerically. - The inclusion of the CPR (CernoCAMAL Probabilistic Reasoner) that reasons probabilistically over the goal- and task-oriented perceptual feedback generated by reactive sub-systems. - The compatibility of the probabilistic BDI model with the affect and motivational models and affective and motivational valences used throughout CernoCAMAL. A succession of experiments in simulation and robotic testbeds is carried out to demonstrate improvements and increased efficacy in CernoCAMAL’s overall cognitive performance. A discussion and critical appraisal of the experimental results, together with a summary, a number of potential future research directions, and some closing remarks conclude the thesis

    CernoCAMAL : a probabilistic computational cognitive architecture

    Get PDF
    This thesis presents one possible way to develop a computational cognitive architecture, dubbed CernoCAMAL, that can be used to govern artificial minds probabilistically. The primary aim of the CernoCAMAL research project is to investigate how its predecessor architecture CAMAL can be extended to reason probabilistically about domain model objects through perception, and how the probability formalism can be integrated into its BDI (Belief-Desire-Intention) model to coalesce a number of mechanisms and processes.The motivation and impetus for extending CAMAL and developing CernoCAMAL is the considerable evidence that probabilistic thinking and reasoning is linked to cognitive development and plays a role in cognitive functions, such as decision making and learning. This leads us to believe that a probabilistic reasoning capability is an essential part of human intelligence. Thus, it should be a vital part of any system that attempts to emulate human intelligence computationally.The extensions and augmentations to CAMAL, which are the main contributions of the CernoCAMAL research project, are as follows:- The integration of the EBS (Extended Belief Structure) that associates a probability value with every belief statement, in order to represent the degrees of belief numerically.- The inclusion of the CPR (CernoCAMAL Probabilistic Reasoner) that reasons probabilistically over the goal- and task-oriented perceptual feedback generated by reactive sub-systems.- The compatibility of the probabilistic BDI model with the affect and motivational models and affective and motivational valences used throughout CernoCAMAL.A succession of experiments in simulation and robotic testbeds is carried out to demonstrate improvements and increased efficacy in CernoCAMAL’s overall cognitive performance. A discussion and critical appraisal of the experimental results, together with a summary, a number of potential future research directions, and some closing remarks conclude the thesis

    Robotic ubiquitous cognitive ecology for smart homes

    Get PDF
    Robotic ecologies are networks of heterogeneous robotic devices pervasively embedded in everyday environments, where they cooperate to perform complex tasks. While their potential makes them increasingly popular, one fundamental problem is how to make them both autonomous and adaptive, so as to reduce the amount of preparation, pre-programming and human supervision that they require in real world applications. The project RUBICON develops learning solutions which yield cheaper, adaptive and efficient coordination of robotic ecologies. The approach we pursue builds upon a unique combination of methods from cognitive robotics, machine learning, planning and agent- based control, and wireless sensor networks. This paper illustrates the innovations advanced by RUBICON in each of these fronts before describing how the resulting techniques have been integrated and applied to a smart home scenario. The resulting system is able to provide useful services and pro-actively assist the users in their activities. RUBICON learns through an incremental and progressive approach driven by the feed- back received from its own activities and from the user, while also self-organizing the manner in which it uses available sensors, actuators and other functional components in the process. This paper summarises some of the lessons learned by adopting such an approach and outlines promising directions for future work

    On the Implementation of Behavior Trees in Robotics

    Full text link
    There is a growing interest in Behavior Trees (BTs) as a tool to describe and implement robot behaviors. BTs were devised in the video game industry and their adoption in robotics resulted in the development of ad-hoc libraries to design and execute BTs that fit complex robotics software architectures. While there is broad consensus on how BTs work, some characteristics rely on the implementation choices done in the specific software library used. In this letter, we outline practical aspects in the adoption of BTs and the solutions devised by the robotics community to fully exploit the advantages of BTs in real robots. We also overview the solutions proposed in open-source libraries used in robotics, we show how BTs fit in robotic software architecture, and we present a use case example

    Incorporating temporal-bounded CBR techniques in real-time agents

    Full text link
    Nowadays, MAS paradigm tries to move Computation to a new level of abstraction: Computation as interaction, where large complex systems are seen in terms of the services they offer, and consequently in terms of the entities or agents providing or consuming services. However, MAS technology is found to be lacking in some critical environments as real-time environments. An interaction-based vision of a real-time system involves the purchase of a responsibility by any entity or agent for the accomplishment of a required service under possibly hard or soft temporal conditions. This vision notably increases the complexity of these kinds of systems. The main problem in the architecture development of agents in real-time environments is with the deliberation process where it is difficult to integrate complex bounded deliberative processes for decision-making in a simple and efficient way. According to this, this work presents a temporal-bounded deliberative case-based behaviour as an anytime solution. More specifically, the work proposes a new temporal-bounded CBR algorithm which facilitates deliberative processes for agents in real-time environments, which need both real-time and deliberative capabilities. The paper presents too an application example for the automated management simulation of internal and external mail in a department plant. This example has allowed to evaluate the proposal investigating the performance of the system and the temporal-bounded deliberative case-based behaviour. 2010 Elsevier Ltd. All rights reserved.This work is supported by TIN2006-14630-C03-01 projects of the Spanish government, GVPRE/2008/070 project, FEDER funds and CONSOLIDER-INGENIO 2010 under Grant CSD2007-00022.Navarro Llácer, M.; Heras Barberá, SM.; Julian Inglada, VJ.; Botti Navarro, VJ. (2011). Incorporating temporal-bounded CBR techniques in real-time agents. Expert Systems with Applications. 38(3):2783-2796. https://doi.org/10.1016/j.eswa.2010.08.070S2783279638
    corecore