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A brief introduction to
Current software frameworks in cognitive robotics
integrating different computational paradigms

Martin Hulse and Manfred Hild

. MOTIVATION targeting systems able to combine high-level cognitive mod
- , els and heterogeneous robot system in a direct and robust
Sophisticated robot systems have become an importah ) . .
) o .._manner. We are also particular interested in frameworks tha
part in cognition research. On the one hand, cognition : ) . : .
T allow the integration of different paradigms of computatio
research turned out to be a source of inspiration as well as ! . L
. S . . . Iptelligence, e.g. declarative languages and/or artifiearal
guidance to overcome current limitations in engineering o
. networks.
more complex and adaptive systems. On the other hand, cog-

nition research projects have been utilizing robot systams The workshop is intended as a platform for exchange and

. discussion which might lead to the identification of general
demonstrators and therefore they serve as an important prog ) . . ;

L . .. . problems and possible solutions to be considered in future
of concept in this field. Furthermore, embodied cognition, i

particular, is focused on the crucial role the body has fer thsoftware design for complex robot systems. In the long run

development of cognitive behavior and therefore it becom ﬂs]'S might help in developing standards providing a direct

. o : nowledge transfer and exchange between cognitive system
rather usual that experiments in this field of research irevol . o
. . research, industry and application developers.
robot systems of arbitrary complexity.

In order to create systems beyond the current state-of- I1l. ToPiCcs
the—ar_t, engipeers and scientists from different.fieldsehav « existing software frameworks able to integrate differ-
combine their approaches and know-how. One importantarea gp¢ paradigms of computational intelligence for au-

of this combination is software development and integratio
where particular attention must be drawn to the different
paradigms of scientists in cognition research and engineer

tonomous robot control
general software architectures explicitly dealing with
the integration of robot hardware and cognitive models

[1]. .

An engineer creates systems, the component functions of
which are most efficient when they meet a detailed set of
specifications exactly. The consequence is high performanc
for a very specific task. But as soon as the application
domain is extended or becomes more general a decline of
performance must be expected.

Scientists in cognition research, and actually higheellev
robotic applications are no exception, develop their pro- IV. AUDIENCE
grams, models and experiments in a language grounded inAudience of this workshop is intended to be researchers
an ontology based on general principles. Hence, they expexs well as hardware and software engineers involved in
reasonable and scalable performance for general domains amgoing or future middle and large robotic projects and
problem spaces. who are interested in well proven and established software

For robotic related cognition research projects it is theréframeworks able to integrate heterogeneous robot hardware
fore essential to provide a robust and efficient softwarand which are open to arbitrary computational paradigms. We
framework bridging lower-level services of heterogeneoualso welcome participants to share their experience of past
robotic systems and high-level cognitive models. robotic projects during our open discussion. In this sense,
the workshop is open for people with a background from
academia or industry.

frameworks for sustainable software design for hetero-
geneous robot platforms

software frameworks providing implementations of

cognitive models grounded in specific computational
paradigms, but which are proven to be open for differ-
ent robot platforms, i.e. open for different sensor and
actuator systems

Il. OBJECTIVES

The objective of this workshop is to highlight and dis-
cuss existing examples of software frameworks combiningi1
autonomous robot systems and cognition research. We al
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Prototyping Cognitive Models with MARIE

Carle Coté, Patrick Frenette, Roger Champagne, Frardmhaud

Abstract— Since 2003, MARIE (Mobile and Autonomous projects developed with MARIE, illustrating some of the
Robotics Integration Environment) has been used to realize conceptual and technical issues that must be addressed to

many robotic projects, ranging from a socnally_lnteractwe au- prototype different cognitive models.
tonomous mobile robot that must attend scientific conferenes,

to a mobile robot for telepresence in homes. MARIE’'s main Il. MARIE
objective is to integrate and combine heterogeneous softwe ) o ' )
and computational paradigms in order to prototype various MARIE is a distributed component-based middleware

cognitive models applied to robotics. In this paper, we disesss  framework for robotic systems. To address the technical is-
conceptual and technical issues that must be addressed by g;e5 related to integration and combination of heterogeneo
component-based architectures like MARIE to support robot- software and computational paradi ltiole desi i
cists in their work. ! p paradigms, multuple design so
lutions were developed to obtain a flexible framework that
|. INTRODUCTION can be adapted to different scenarios.

such as computational neuroscience, cybernetics andiatifi |

intelligence, remarkable progresses have been made in { | App. «— App.

understanding of what is required to create artificial lif¢ Mediator Interoperability Layer 5
evolving in real-world environments. Still, one of the rema App- (MIL) App- §
ing challenges is to create new cognitive models that woul L J<—>

replicate high-level cognitive capabilities such as pptios

and information processing, reasoning, planning, learniri.......... ProcessingNode i . ProcessingNode i
and adaptation to new situations.
Lately, with accessibility to new technologies, robots are Fig. 1. Mediator Interoperability Layer (MIL)

more frequently used as embodied systems to validate cog-
nitive models. Unfortunately, implementation of those rieg L o
tive models usually requires wide expertise in many fields dt Applications Mediation Approach
study like probabilistic navigation, simultaneous lozation To implement distributed robotic systems using hetero-
and mapping, planning, speech recognition, audio andrvisi@eneous applications and computational paradigms, MARIE
processing, etc. Moreover, cognitive models are deriveadapted théediator design pattern [3] to create a Mediator
from a large spectrum of computational paradigms thdtteroperability Layer (MIL), illustrated in Fig 1. Thiledi-
are not necessarily compatible when considering undeylyirator design pattern primarily creates a centralized control
software architecture requirements. This is why robdscis unit (named Mediator) interacting with each component
want to develop software frameworks that help deal with thexdependently, and coordinating global interactions leetw
integration of cognitive models requirements with sofvar applications to build the desired system. In MARIE, the MIL
and hardware engineering methodologies and techniques.acts just like theMediatordesign pattern, but is implemented
MARIE (Mobile and Autonomous Robotics Integrationas a virtual space where applications can interact together
Environment) [1], [2] is one attempt to create a flexibleusing a common language (similar to the relation between
and versatile software integration environment adapted taternet and HTML for example). Note that the use of a
prototyping cognitive models. It is based on a distributedirtual space implies that there is no single implementatio
component-based framework oriented towards integratiariass of the Mediator, as represented in the original patter
and combination of heterogeneous software and compufBhe Mediator is distributed between all the applicatiorat th
tional paradigms. In this paper, we present two roboticare linked together through the MIL, decentralizing the IglIL
a . _ _ functionalities and responsibilities.
Carle Coté, Patrick Frenette and Frangois Michaud are ith th diati h it i ibl
with the Department of Electrical Engineering and Computer W't the me !at'on approac ’ .|t '_S possi e_to Crea.te
Engineering, Universitt de Sherbrooke, Sherbrooke, b@ue bridges between incompatible applications by having speci
CANADA  (e-mail: Carl e. Cote, Patrick.Frenette, ; ; i
Francoi s. M chaud}@JSher br ooke. ca). F. Michaud holds IzedhCOdel.ada.lptmg ear(]:h Of_them through th(.a MI.L' This Wa){’
the Canada Research Chair in Mobile Robotics and Inteliigetonomous ~ €aCN app 'CaF'O” can have its own communication protocols
Systems. ‘ _ and mechanisms, as long as the MIL supports them and
Roger Champagne is with the Department of Softwarecan bridge the application with others. For the robotics
and IT Engineering, Ecole de technologie supérieure, Uni- ; hi h off loit the di .
versite.  du Québec, Montréal, Québec, CANADA (e-mail:Commun'ty’.t '? approach ofiers a way tO.eXp oitthe M.@'rg
Roger . Chanpagne@l e. et snt | . ca). of communication protocols and mechanisms, to benefit from
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the lack of standards for robotic software system design. | *® y e
B. Application Adapter & Communication Adapter ENVIRONMENT

Existing applications do not necessarily implement the
mechanisms, expose the interfaces or use a communication
protocol that would make them compatible with the MIL.
Changing an application’s code to add the required func-
tionalities must be avoided whenever possible. Instead, ji touch screen interface, schedule tasks on its own, ared gi
is often preferable to use a wrapper technique to creategapresentation.
component which is compatible with the MIL, extending
the application’s functionalities without direct modifi@ns. A. Cognitive Model
The main role of the wrapper component is to translate

application service interfaces to make them compatiblé WItMBA (Motivated Behavioral Architecture) [4]. Figure 3

the MILs interface. . . . .
In MARIE, wrapper components used to encapsulate a|II_ustrates MBA's implementation for Spartacus. MBA is a

S o ehavior-based architecture that uses motivations tor-dete
plications are called Application Adapters (AA), and wrapp . : . !
i . . . mine which available behavior-producing module(s) (BPM,
components used to interconnect incompatible application . . AN
r behaviors) should be activated at a specific time to

are called Communication Adapters (CA). To create an AR L
or CA, MARIE offers a development framework called thecontrol the robot. Motivation Modules (MM) are concur-

. R : rent specialized algorithmic modules that recommend and
Component Framework, illustrated in Fig. 2. THandleris . : .
. : I monitor tasks (and/or sub-tasks) to execute in the Dynamic
responsible for the translation between application fatas ; o :
) . . Task Workspace (DTW). Instinctual motivations provide
and the MIL interfacePorts are used to communicate with

: X (?asic operation of the robot and Rational motivations are
other components through the MIL by implementing an ore related to cognitive processes, such as navigation and
handling communication protocols (TCP/IP socket, uDpP" 9 b ’ 9

socket, Shared Memory, CORBA, IPC, COM, etc) througl?lannmg' Motivations are kept independent from each other

. o and do not necessarily share the same domain represen-
a simple abstraction interface supported by the Componentt. .
Framework. tation objects, except for the DTW tasks language. At a

Although the use of MARIE's frameworks and software ! . )
S . he tasks decomposition tree in the DTW and chooses which
tools is highly encouraged to save time and efforts, MARI ;
: - - Tasks/subtasks should be executed at that time. Once the
is not limited to them. Developers can use the best solutigh

. - . task selection phase is completed, the System-Know-How
to integrate software applications and interconnect cempQ

nents by having the possibility to extend or ada| texistinmoOIUIe (SNOW) makes the correspondence between the
y 9 P Y P . gelected tasks/subtasks and the BPMs available on the robot

. ) o L %Iatform. Then, the BPM Arbitration module is executed on
philosophy is to complement existing applications, pragra activated BPMs to ensure that coherent activations are ap-

ming environments or sqftware tools, anc_j therefore it is t%Iied (e.g., under a subsumption-based behavioral atibitra
be used only when required and appropriate.

scheme, BPM Arbitration does not allow a move forward
[1l. SPARTACUS behavior activation concurrent to an avoid obstacle beinavi

Spartacus [4] is a socially interactive mobile robot de&ctivation). Then, using BPMs feedback information and
signed to enter the AAAI Mobile Robot Challenge, whichPerception from environment, DTW and Motivations are
consists of making a robot attend a conference just likePdated and the decision-making process is repeated.
humans. The robot has to navigate and localize itself in
the world autonomously, extract visual information (sucij?"
as reading messages, tracking people), localize, track andwhile implementing MBA for Spartacus using MARIE,
separate sound sources for enhanced speech recognition and of our first objectives was to reuse software packages
dialogue interaction, provide graphical information tiigh already available, such as:

Fig. 3. MBA's implementation for Spartacus.

The cognitive model use to realize this project is called

certain time interval, the BPM Selection module evaluates

Implementation using MARIE



« Player/Stagé is a project to create free software for
robotics and sensor systems.

« FlowDesigner/RobotFlow FlowDesignet is a free e
data flow oriented development environment, with e Emﬁ{;?;'AAM“&?&?ﬁi‘?&%
RobotFlow being the mobile robotics toolkit for Carmen
F|0WDeSIgner Data ’W 2™y Localizer o aon
(Splitery ] Local

« CARMEN Navigation Software* is a software package
for laser-based autonomous navigation using previously
generated maps.

« Pmap Map Builder Software® provides libraries and Robot Setup
utilities for laser-based mapping in 2D environments to
produce high-quality occupancy grid maps.

« Vision Processing Library is used to extract symbols |
and text from a single color image in real world '
conditions [5].

« OpenCV Computer Vision Library 8 is an open source
computer vision library.

Motor
Behaviors &]
Arbitration

FD AA

er Data

Las
aser Range

System Commands
Feedback Text

. Festival7. offers a general framework for building speech w1 [Nuanoe |5 Dialogue
synthesis systems. Server
e Sound Processing Library is for the localization, e ; .

) B . Lo Audio Festival Text y?wil h
tracking and separation of sound sources using a mi- Server AA ¢
crophone array system [6]. !

« Nuancé is a commercial speech recognition software. o
o QT3° is a cross-platform application development
framework, used for the development of our GUIs. l
i X . ocalisation M . lb Localisation anaiors
Software integration of all these elements was not a arhox
Behaviors Behaviors Camera "

simple plug-and-play process. Most of them were developed swin &

ctivation

. . . . . . Pt ~2y Behaviors & PTZ Command .
independently, adopting different design and impleméonat Arbitration > e

requirements. Moreover, they had to be used in software FD AA
modules following MBA principles. Spartacus’ software ar-
chitecture is illustrated in Figure 4.

Spartacus’s software architecture provides two setups. Fo
the Real Robot setup, SpartacusAA combines wheels odom-
etry with gyroscopic data, and pushes the result at a fixed T”
rate (200 Hz) to its interconnected components. Laser data
is collected by PlayerAA, interfacing with the Player libya
specialized for sensor and actuator abstraction [7], stiimgo

Vision Algorithms Results Vision Algorithms Activations

PTZ Command

. PTZ Command PTZ Position .
Mailbox Mailbox

Vision Vision Vision

Algorithms Algorithms
Results FD AA Activations

PTZ Position

Behaviors
Activations

the SICK LMS200 laser range finder. PlayerAA pushes data ‘—‘ e,

at a fixed rate (200 Hz) to connected components. For the Nt T A

Simulation setup, odometry and laser data are both cotlecte R e o [ Same ] e T

with PlayerAA, generated either by Stage (2D) or Gazebo MM AA MM AA

(3D) simulators [7]. CARMEN Localizer AA and CARMEN o o] oo v | Agonda

Path Planner AA provide path planning and localization | . MM AA Jow. MM AA

capabilities. CARMEN is composed of small processes com- | Map | s 5 0L SNOW TS eteetTask

municating through a central server. CARMEN's integration MM AA | MM AA

was realized by creating an AA that starts several of these pheema|  Vision | prwoms

processes depending on the required functionality and on MM AA

data conversion from CARMEN'’s to MARIE’s format. win| Navigator |, vrwous orwous | Task Observer

MM AA AA

http://playerstage.sourceforge.net/ s i( ' Thm
2http://flowdesigner.sourceforge.net/ s 4’ Paﬁf;'};f,’;er
Shttp://robotflow.sourceforge.net/ T AA

“4http://carmen.sourceforge.net/

Shttp://robotics.usc.edu/-ahoward/pmap . ) )
Shttp://www.intel.com/technology/computing/opencelx. htm Fig. 4. Spartacus’ software architecture implementedguMARIE.
Thitp://www.cstr.ed.ac.uk/projects/festival/

8hittp://www.nuance.com

hitp://www.trolltech.com/products/qt



FlowDesigner and RobotFlow are used to implement Be- Delibetation
havior & Arbitration FD AA, handling BPMs and their arbi- - Communication
tration. FlowDesigner uses a synchronous pull mechanism tocmmunication — !  Model " Selection
get data coming from different elements such as localimratio y :
path plan, laser, audio localization, dialogue command and Exploitation Activation and
system states, requiring the use of Mailbox CA components. and results y configuration
By buffering input data, mailboxes allows AAs running at Sensors g, Behaviors and » Motor command
different rates to be interconnected. Behavior & Arbitrati Arbitration

FD AA generates motor commands at a fixed rate (5 Hz).
) o . Fig. 5. Dynamic Platooning cognitive model

The Audio Server is interfacing a RME Hammerfal DSP
Multiface sound card, and NUANCE Server is interfacing
NUANCE. DialogueAA !s a stgnd-alone AA _thgt manages IV. DYNAMIC PLATOONING
simultaneous conversations with people. This is made pos- o . . o
sible with the use of AUDIBLE FD AA, interfacing our  The objective of the Dynamic Platooning project is to co-
sound source localization, tracking and separation alyns ~ ordinate maneuvers of autonomous vehicles inside a platoon
implemented with RF/FD and using Spartacus’ microphong-e., insertion, exiting, collision avoidance, emergestop,
array. It generates a number of separated audio channels tBenergency exit, etc.). A platoon is formed by a set of vekicle
are sent to NUANCE Server and Behavior & Arbitrationfollowing each other at a very close distance. Inter-robot
FD AA. Integrating NUANCE in an AA was challenging communication is used to signal intentions of executing any
since it is a proprietary application with a fixed programgin maneuver to other vehicles or to signal emergency situgition
interface, and because its execution flow is tightly corgubll like accidents, maneuver execution failures and obstdoles
by NUANCE’s core application, which is not accessible fronvoid.
the available interface. To solve this problem, we created a
independent application that uses a communication prbtocs. Cognitive Model
already supported by MARIE. Recognized speech data is

sent to Dialogue AA, responsible of the huma_m-robot vocarh Figure 5, is a distributed hybrid architecture. The decis
mterface. Speech. generated by the r.ObOt is_handled _Waking architecture is decomposed as follow. Thelib-
Festival [8]. The D|§Iogue AA convgrsgtmn context mode Brative layermanages communications with other vehicles
_selected by the AUd'O.MM AA, mo’_"to””g _the tasks present g keeps a local model of the platoon. It also evaluates
in the DTW and requiring speech interaction. which maneuver should be executed using a finite state
machine (FSM). Théntermediate layerapplies a selection

. o ) ) unction to activate and configure the behaviors according t
ing most of the applications and AAs pushing their results Fhe FSM states. ThBehaviors and Arbitration layeuses a
variable rates (determined by the computation length af the

lqorith h . db . d Svnch subsumption mechanism to select which activated behavior
algorithms when triggered by new input ata). Sync ronoLg, produce the resulting motor command. Behaviors always
execution is realized by having fixed rate sensor readinds

wat d writi APeceive Sensors information to react to meaningful changes
actuator command writings. in the environment. Behaviors Exploitation and results are

. . ) . used as feedback information injected to the Deliberative
Overall, Spartacus’ implementation with MARIE requwedI J

: er to update the local platoon model and influence the
42 components (approx. 50 000 lines of code) Compos%%gcision-making process.
of 26 AAs, 14 CAs and two external applications (the
Audio Server and NUANCE). To get enough processingB
multiple processors were required : vision and audio com-
ponents were distributed on two on-board laptop computers, Figure 6 shows a simplified illustration of MARIE's
all components related to the decision-making architectucomponents used to implement the cognitive model used by
and GUIs were executed on Spartacus’ on-board Mini-ITXach robot. We used a group of four Pioneer Il robots in our
computer, and finally all teleoperation controls required texperiments.
manipulate the robot safely were executed on a remote As for the Spartacus project, reusing available software
laptop using wireless communication with the platform.-Dispackages was important. AA for Player and FlowDesigner
tributing applications and adapters across multiple pssioggy were already available at that time. Therefore, we reused
nodes was pretty straightforward with MARIE by choosinghem without any modification. We configured Player AA to
socket-based Push, Pull and Events dataflow communicatiprovide the odometry and sonar range data to the behaviors
mechanisms [9] for each adapter’s port. All communicatioand to output the motor commands given by the decision-
protocols use XML encoding for data representation, exceptaking system to the vehicle actuators. FlowDesigner AA
for the Audio Server and NUANCE which use their ownwas configured to interface a sensor that detects and pwsitio
communication protocols. each vehicle in the environment relative to each other [10].

The cognitive model used to realize the project, illustlate

The global execution of the system is asynchronous, h

Implementation using MARIE



Message from: Message to: V. CONCLUSION
éEEEEéoi 8§§EE§E% Our experiencg with MARIE shows that developing.a
Operatoro () Operator software integration environment adapted to prototyping
% A A 4 T various cognitive models requires a flexible and versatile
Message Message | Deliberation AA design. It should allow heterogeneous software reuse and
Splitter support different solutions to solve integration issues. |
Activations and Results and should offer extensible and configurable software modules
Configurations Exploitation to adapt to different implementation scenarios. It sholdd a
Platoon 4 give access to a set of useful tools that are required by
LAMP FD AA q most implementations such as component deployment tools
Behaviors and on multiple processing nodes, a configurable logging system
Odometry | Arbitration AA for debugging and data analysis, and data visualizatiols too
Player AA Sonar to help understand the dynamics of implemented systems.

Future work includes more in-depth studies of the impact
of overhead introduced by MARIE when developing and de-
ploying systems, and how to achieve stability and robustnes
when having to support a large spectrum of computational
paradigms and heterogeneous software applications.

MARIE is available as an open source project at
http://marie.sourceforge.net.

f

Motor command

Fig. 6. Dynamic Platooning distributed software architeetimplemented
using MARIE.

To implement theBehaviors and Arbitration layera
generic behavior component distributed in MARIE’s com- VI. ACKNOWLEDGEMENTS
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AA called the Deliberation AA. It contains the platoon [1]
model, the communication management system and the se-
lection function, all coded in C++. The FSM was developed[
using an external library called the State Map Complgrat
generates C++ code, also integrated within the Deliberatio
AA.

An important application, called Operator, was also re-
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Abstract— Developing autonomous agents displaying rational a wide variety of methods, including more or less standard
and goal-directed behavior in a dynamic physical environmat  functionalities such as various forms of image processing
requires the integration of both sensing and reasoning comp  anq jnformation fusion as well as application-specific and

nents. Due to the different characteristics of these compants il . ii hes. Such i t
there is a gap between sensing and reasoning. We believe that POSSIDlY EVEN SCENario-Specific approaches. suc integra

this gap can not be bridged in a single step with a single IS currently done ad hoc, partly by allowing the sensory and
technique. Instead, it requires a more general approach to deliberative layers of a system to gradually extend towards
integrating components on many different levels of abstration  each other and partly by introducing intermediate proogssi
and organizing them in a structured and principled manner. levels.

In this paper we propose knowledge processing middleware . .
as a systematic approach for organizing such processing. N this paper, we propose using the terkmowledge

Desirable properties of such middleware are presented and Processing middlewar®r a principled and systematic frame-

motivated. We then go on to argue that a declarative stream- work for bridging the gap between sensing and deliberation
based system is appropriate to provide the desired functicality. ~ in a physical agent. We claim that knowledge processing
Finally, DyKnow, a concrete example of stream-based knowl- ijqie\vare should provide both a conceptual framework

edge processing middleware that can be used to bridge the . L . . .
sense-reasoning gap, is presented. Different types of kntadge @Nd @n implementation infrastructure for integrating aewid

processes and components of the middleware are described variety of components and managing the information that
and motivated in the context of a UAV traffic monitoring needs to flow between them. It should allow a system to

application. incrementally process low-level sensor data and generate a
coherent view of the environment at increasing levels of
abstraction, eventually providing information and knadge
When developing autonomous agents displaying rationat a level which is natural to use in symbolic deliberative
and goal-directed behavior in a dynamic physical envirorfunctionalities. Such a framework would also support the
ment, we can lean back on decades of research in artificial iimtegration of different deliberation techniques.
telligence. A great number of deliberative and reactivecfun  The structure of the paper is as follows. In the next section,
tionalities have already been developed, including chienican example scenario is presented as further motivation for
recognition, motion planning, task planning and executiothe need for a systematic knowledge processing middle-
monitoring. To integrate these approaches into a cohereptre framework. Desirable properties of such frameworks
system it is necessary to reconcile the different formasismare investigated and a specific stream-based architecture i
used to represent information and knowledge about thsroposed which is suitable for a wide range of systems.
world. To construct these world models and maintain &s a concrete example, our framework DyKnow is briefly
correlation between them and the environment it is necgssajescribed. The paper is concluded with some related work
to extract information and knowledge from data collecteénd a summary.
by sensors. However, most research done in a symbolic
context tends to assume crisp knowledge about the current II. A TRAEFIC MONITORING SCENARIO
state of the world while the information extracted from the
environment often is noisy and incomplete quantitative data Traffic monitoring is an important application domain for
on a much lower level of abstraction. This causes a wide gaipsearch in autonomous unmanned aerial vehicles (UAVs)
between sensing and reasoning. which provides a plethora of cases demonstrating the need
Bridging this gap in a single step, using a single techniquéQr an intermediary layer between sensing and deliberation
is only possible for the simplest of autonomous systems. Asincludes surveillance tasks such as detecting accidernts
complexity increases, one typically requires a combimatib traffic violations, finding accessible routes for emergency
vehicles, and collecting statistics about traffic patterns

This work is partially supported by grants from the Swedistighautics | the case of detecting traffic violations, one possible
Research Council (NFFP4-S4203), the Swedish FoundatiorSti@tegic h reli . f | decl ive d intio
Research (SSF) Strategic Research Center MOVIIlI and thaeCdar approach relies on using a formal declarative description o

Industrial Information Technology CENIIT (06.09). each type of violation. This can be done using a chronicle [7]
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Chronicle
Recognition

to satisfy the normative behavior and thereby causes the

Qualttivespatial relations e formula progression system to signal a violation.
Q“H';‘;ij;;ff“'l As an example, vehicles usually travel on roads. Given
C‘mmﬁ% that image.p_rocess_ing provided absplute world coordinates
o PR — for each vision objecg the anchoring process can query
\ oot b \ ) Frotression J a geographic information system to determine the nearest
Vision abjocs road segment and derive higher level predicates such as
' Moz W on-roadcar) andin-crossingcar). These would be included
o ] in the states sent to the progressor as well as in the vehicle
Crareomersme ) eicopter [ camerasmme objects sent to the next stage of processing, which involves
L sy Tt G deriving qualitative spatial relations between vehiclashs
asbesidécar, , car,) andclos€car, cary). These predicates,

and the concrete events corresponding to changes in the pred
icates, finally provide sufficient information for the chicle
recognition system to determine when higher-level events
such as reckless overtakes occur.

Fig. 1.  An overview of how the incremental processing for tredfic
surveillance task could be organized.

which defines a class of complex events using a simple term this example, we can identify a considerable number
poral network where nodes correspond to occurrences of high distinct processes involved in bridging the gap between
level qualitative events and edges correspond to metrie temensing and deliberation and generating the necessary sym-
poral constraints between event occurrences. For examplmlic representations from sensor data. However, in order
to detect a reckless overtake, qualitative spatial evanth s to fully appreciate the complexity of the system, we have
as besidécar,, car,), closgcar;, car,) andon(car;,road;) to widen our perspective somewhat. Looking towards the
might be used. Creating such high-level representatiams fr smaller end of the scale, we can see that what is represented
low-level sensory data, such as video streams from coles a single process in Figure 1 is sometimes merely an
and infrared cameras, involves a great deal of work atbstraction of what is in fact a set of distinct processes.
different levels of abstraction which would benefit fromAnchoring is a prime example, encapsulating tasks such as
being separated into distinct and systematically orgahizehe derivation of higher level predicates which could also
tasks. be viewed as a separate process. At the other end of the
Figure 1 provides an overview of how the incrementa$cale, a complete UAV system also involves numerous other
processing required for the traffic surveillance task cdigd sensors and information sources as well as services with dis
organized. tinct knowledge requirements, including task planninghpa

At the lowest level, a helicopter state estimation systerlanning, execution monitoring, and reactive procedures.
uses data from inertial measurement unit and GPS sen-Consequently, what is seen in Figure 1 is merely an ab-
sors to determine the current position and attitude of th@fraction of the full complexity of a small part of the system
helicopter. The resulting information is fed into a camerdt is clear that a systematic means for integrating all forms
state estimation system, together with the current angl€§ knowledge processing, and handling the necessary com-
of the pan-tilt unit on which the cameras are mounted, tBunication between parts of the system, would be of great
generate information about the current camera state. TRenefit. Knowledge processing middleware should fill this
image processing system uses the camera state to deterni@ig, by providing a standard framework and infrastructure
where the camera is currently pointing. Video streams frof®r integrating image processing, sensor fusion, and other
the color and thermal cameras can then be analyzed in ordt#ta, information and knowledge processing functionalitie
to extract vision objects representing hypotheses regardifito a coherent system.
moving and stationary physical entities, including thgir a
proximate positions and velocities.

Each vision object must be associated with a symbol for Any principled and systematic framework for bridging
use in higher level services, a process knowramshoring the gap between sensing and deliberation in a physical
[5, 11]. In the traffic surveillance domain, identifying wehi agent qualifies as knowledge processing middleware, by the
vision objects correspond to vehicles is also essentiaiwh definition in the introduction. We now consider the necegsar
requires knowledge about normative sizes and behavioasd desirable properties of any such framework.
of vehicles. One interesting approach to describing such The first requirement is that the framework shopier-
behaviors relies on the use of formulas in a metric temporait the integration of information from distributed sousce
modal logic, which are incrementally progressed throughllowing this information to be processed at many different
states that include current vehicle positions, velociteesd levels of abstraction and finally transformed into a suitable
other relevant information. An entity satisfying all recpti  form to be used by a deliberative functionality. In the
ments can be hypothesized to be a vehicle, a hypothesiaffic monitoring scenario, the primary input will consist
which is subject to being withdrawn if the entity cease®f low level sensor data such as images, a signal from

I1l. KNOWLEDGE PROCESSINGMIDDLEWARE



a barometric pressure sensor, a GPS (Global Positioniig that it is often context dependent and as the context
System) signal, laser range scans, and so on. But there mightanges the processing needs to change as well. For example,
also be high level information available such as geographicthe processing required to monitor the behavior of vehicles
information and declarative specifications of traffic pattse following roads and vehicles which may drive off-road is
and normative behaviors of vehicles. The middleware musery different. In the first case simplifying assumptions ca
be sufficiently flexible to allow the integration of all thesebe made as to how vehicles move, while these would be
different sources into a coherent processing system. Singwalid if a vehicle goes off-road. To handle both cases
the appropriate structure will vary between applicaticls, a system would have to be able to switch between the
general framework should be agnostic as to the types of datdferent processing configurations. A fifth requirement on
and information being handled and should not be limited tenowledge processing middleware is therefore support for
specific connection topologies. flexible configuration and reconfiguratiosf the processing

To continue with the traffic monitoring scenario, therethat is being performed.
is a natural abstraction hierarchy starting with quaritiégat  An agent should not depend on outside help for recon-
signals from sensors, through image processing and anchfiguration. Instead, it should be able to reason about which
ing, to representations of objects with both qualitativel antrade-offs can be made at any point in time, which requires
guantitative attributes, to high level events and situetio introspective capabilities. Specifically, the agent msable
where objects have complex spatial and temporal relation® determine what information is currently being generated
Therefore a second requirement is tupport of quantitative as well as the potential effects of any changes it may make in
and qualitative processings well as a mix of them. the processing structure. Therefore a sixth requiremebot is

A third requirement is thaboth bottom-up data processing the framework to provide aeclarative specification of the
and top-down model-based processing should be supportédformation being generated and the information processin
Different abstraction levels are not independent. Eackllevfunctionalities that are availablewith sufficient content to
is dependent on the levels below it to get input for bottom-umake rational trade-off decisions.
data processing. At the same time, the output from higher To summarize, knowledge processing middleware should
levels could be used to guide processing in a top-dowsupport declarative specifications for flexible configumatio
fashion. For example, if a vehicle is detected on a particulaand dynamic reconfiguration of context dependent procgssin
road segment, then a vehicle model could be used to predatt many different levels of abstraction.
possible future locations, which could be used to direct or
constrain the processing on lower levels. Thus, a knowledge
processing framework should not impose strict bottom-up
nor strict top-down processing. The previous section focused on requirements that are

A fourth requirement is support fananagement of uncer- necessary or desirable in any form of knowledge process-
tainty on different levels of abstraction. There are many typeisig middleware, intentionally leaving open the question of
of uncertainty, not only at the quantitative sensor datellevhow these requirements should be satisfied. We now go on
but also in the symbolic identity of objects and in temporalo propose one specific type of framewostream-based
and spatial aspects of events and situations. Therefose itknowledge processing middleware, which we believe will
not realistic to use a single approach to handling unceytainbe useful in many applications. A concrete implementation,
throughout a middleware framework. Rather, it should alloldyKnow, will be discussed later in this paper.
many different approaches to be combined and integratedDue to the need for incremental refinement of information
into a single processing system in a manner appropriate & different levels of abstraction, we model computations
the specific application at hand. and processes within the stream-based knowledge progessin

Physical agents acting in the world have limited resourcefamework as active and sustainietbwledge processeghe
both in terms of processing power and in terms of sensorspmplexity of such processes may vary greatly, ranging from
and there may be times when these resources are insufficisimhple adaptation of raw sensor data to image processing al-
for satisfying the requests of all currently executing sagk  gorithms and potentially reactive and deliberative preess
these cases a trade-off is necessary. For example, reducingn our experience, it is not uncommon for knowledge
update frequencies would cause less information to be geprocesses at a lower level to require information at a higher
erated, while increasing the maximum permitted processirfgtequency than those at a higher level. For example, a sensor
delay would provide more time to complete processingnterface process may query a sensor at a high rate in order
Similarly, an agent might decide to focus its attention omo average out noise, providing refined results at a lower
the most important aspects of its current situation, igrprineffective sample rate. This requires knowledge processes
events or objects in the periphery, or to focus on providingp be decoupled and asynchronous to a certain degree.
information for the highest priority tasks or goals. An afi@ In stream-based knowledge processing middleware, this is
tive could be to replace a resource-hungry calculation with achieved by allowing a knowledge process to declare a set of
more efficient but less accurate one. Each trade-off wilehawstream generatoreach of which can bsubscribedo by an
effects on the quality of the information produced and tharbitrary number of processes. A subscription can be viewed
resources used. Another reason for changing the processaga continuous query, which creates a distinct asynchsonou

IV. STREAM-BASED KNOWLEDGE PROCESSING
MIDDLEWARE



streamonto which new data is pushed as it is generateds simply a special case of the ordinary continuous query.
The contents of a stream may be seen by the receiver as
data, information or knowledge. A. Knowledge Processes

Decoupling processes through asynchronous streams miniFor the purpose of modeling, we find it useful to iden-
mizes the risk of losing samples or missing events, somgthiify four distinct types of knowledge processes: Primitive
which can be a cause of problems in query-based systemrocesses, refinement processes, configuration processes a
where it is the responsibility of the receiver to poll at suffi mediation processes.
ciently high frequencies. Streams can provide the neggssar Primitive processeserve as an interface to the outside
input for processes that require a constant and timely floworld, connecting to sensors, databases or other informatio
of information. For example, a chronicle recognition syste sources that in themselves have no explicit support for
needs to be apprised of all pertinent events as they ocadir, astream-based knowledge processing. Such processes have
an execution monitor must receive constant updates for tl® stream inputs but provide a non-empty set of stream
current system state at a given minimum rate. A push-basgeénerators. In general, they tend to be quite simple, mainly
stream system also lends itself easily to “on-availaliility adapting data in a multitude of external representatiotis¢o
processing, i.e. processing data as soon as it is avaitatde, stream-based framework. For example, one process may use
the minimization of processing delays, compared to a querg-hardware interface to read a barometric pressure sengor an
based system where polling introduces unnecessary delgysvide a stream generator for this information. However,
in processing and the risk of missing potentially essentigreater complexity is also possible, with primitive proses
updates as well as wastes resources. Finally, decoupkog aperforming tasks such as image processing.

facilitates the distribution of processes within a platfioor The remaining process types will be introduced by means
between different platforms, another important propeifty cof an illustrating example from the traffic monitoring sce-
many complex autonomous systems. nario, where car objects must be generated and anchored

Finding the correct stream generator requires each streden sensor data which is mainly collected using cameras.
generator to have an identity which can be referred to, lote that this example is not purely theoretical but has been
label. Though a label could be opaque, it often makes sen$ally implemented and successfully used in test flights in an
to use structured labels. For example, given that there isexperimental UAV platform [13].
separate position estimator for each vehicle, it makesesens In the implemented approach, the image processing system
to provide an identifier; for each vehicle and to denote producesvision objectsrepresenting entities found in an
the (single) stream generator of each position estimator liyage, calledblobs having visual and thermal properties
positior{i]. Knowing the vehicle identifier is sufficient for similar to those of a car. A vision object state contains an
generating the correct stream generator label. estimation of the size of the blob and its position in absolut

Even if many processes connect to the same stream gevorld coordinates. When a new vision object has been found,
erator, they may have different requirements for their tnpuit is tracked for as long as possible by the image processing
As an example, one could state whether new informatiosystem and each time it is found in an image a new vision
should be sent “when available”, which is reasonable fopbject state is pushed on a stream.
more event-like information or discrete transitions, othna Anchoring begins with this stream of vision object states,
given frequency, which is more reasonable with continupuskiming at the generation of a stream adr object states
varying data. In the latter case, a process being asked foroviding a more qualitative representation, including re
a subscription at a high frequency may need to alter itations between car objects and road segments. An initial
own subscriptions to be able to generate stream contdiitering process, omitted here for brevity, determinestibe
at the desired rate. Requirements may also include the hypothesize that a certain vision object in fact corresiso
desired approximation strategy when the source knowledge a car. If so, a car object is created aniéh& is established
process lacks input, such as interpolation or extrapalatidetween the two objects. To monitor that the car object
strategies or assuming the previous value persists. Thastually behaves like a car, a maintain constraint desagibi
every subscription request should includedicy describing expected behavior is defined. The constraint is monitored,
such requirements. The stream is then assumed to satisiiyd if violated, the car hypothesis is withdrawn and the link
this policy until it is removed or altered. For introspectio is removed. A temporal modal logic is used for encoding
purposes, policies should be declaratively specified. normative behaviors, and a progression algorithm is used fo

While it should be noted that not all processing is baseohonitoring that the formula is not violated.
on continuous updates, neither is a stream-based frameworkFigure 2 shows an initial process setup, existing when
limited to being used in this manner. For example, a patho vision objects have been linked to car objects. As will
planner or task planner may require an initial state frorbe seen, processes can dynamically generate new processes
which planning should begin, and usually cannot take upvhen necessary. Figure 3 illustrates the process configorat
dates into account. Even in this situation, decoupling andhen VisionObject#51 has been linked t@arObject#72 and
asynchronicity are important, as is the ability for lowerde two new refinement processes have been created.
processing to build on a continuous stream of input before The first process type to be considered is tbgnement
it can generate the desired snapshot. A snapshot query, thprocess which takes a set of streams as input and provides
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| st links and ensures/oToCo refinement processes are

k- R | created and removed as necessary.

| Vision to car object|links

vontiect 3 MaEAk e \ Finally, a mediation procesgenerates streams by selecting
or collecting information from other streams. Here, one or
more of the inputs can be a stream of labels identifying other

CreateVoToCo

- streams to which the mediation process may subscribe. This
Fig. 2. The initial set of processes before any vision olijastbeen created. allows a different type Of_ dynamlc reconflguratlon in the
SR case where not all potential inputs to a process are known

VoColinkViolations <

VoColinkMonitor

Violated| \
links

in advance or where one does not want to simultaneously
subscribe to all potential inputs due to processing cose On
mediation process is used in our example:

« VoColinkViolations — Takes a stream of sets of links
identifying all current connections between vision ob-
jects and car objects. Dynamically subscribes to and
unsubscribes from monitor information from the as-
sociatedVoCoLinkMonitors as necessary. If a monitor

Fig. 3. The set of processes aftefsionObject#51 has been linked to signals a violation (sending the value “false”), the

CarObject#72. corresponding link becomes part of the output, a stream

of sets of violated links.

one or more stream generators producing refined, abstrac!gd'.:'gure 2 theVoColinkviolations mediation process sub-

or otherwise processed values. Several examples can Socé'bes to no stream;, since _there arevoGol.inkMonitor .
found in the traffic monitoring application, such as: streams. In Figure 3 it subscribes to the stream of monitor

) ~ results of the maintain constraint of the ngWionObject#51
» VoColink — Manages the set of links between visiory, CarObject#72 link.

objects and car objects, each link being represented as arpjs example shows how stream-based knowledge pro-
pair of labels. When a previously unseen vision objectessing middleware can be applied in a very fine-grained
label is received, create a new car object label and @anner, even at the level of individual objects being tracke
link between them. When a link is received from th&, 5 image processing context. At a higher level, the entire
VoColinkViolations process, the maintain constraint Ofanchoring process can be viewed as a composite knowledge
the link has been violated and the link is removed. Thﬁrocess with a small number of inputs and outputs, as
outputis a stream of sets of links. A suitable policy may,iginally visualized in Figure 1. Thus, one can switch

request notification only when the set of links changes,enyeen different abstraction levels while remaining mith
 VoToCo — Refines a single vision object to a car obyhe same unifying framework.

ject by adding qualitative information such as which
road segment the object is on and whether the roggl Timing

segment is a crossing or a road. Because quantitativeAn realistic knowledge processing architecture must take
data is still present in a car object, a suitable poIici Y gep 9

> CreateVoColinkMonitors

Vision object 2| VoColink
labels

| Vision to caromec(‘\mks

‘ CreateVoToCo ‘

\ —

VoToCo |

Gis | Roadobiects

Vision object #51 i
4

. ; . . 1Into account the fact that both processing and communica-
may request new information to be sent with a fixe

sample frequency. Using a separate process for each car, . .
P q y g P b gfilstrlbuted setting. As an example, suppose one knowledge

object yields a fine-grained processing network wher . ) =
: . process is responsible for determining whether two cars
different cars may be processed at different frequencié€s

depending on th cutent fous of atenton, |1 100 s 0 each ober, T test coul e peromed
« VoCoLinkMonitor — An instantiation of the formula pro- y su 9 P : rng
the distance between the cars every time a new position

gressor. Monitors the maintain constraint of a vision ample arrives. Should one inout stream be delaved by one
object to car object link, using the stream of car objec% P ' P y y

states generated by the associate@oCo. The output Zéiisrpaelliepf; gsgéglztsﬂﬁe fﬁ;(t:maetr'%rés Wé)susl,?blbetrioﬁ ebé] the
is false iff the maintain constraint has been violated. 9 P ' P y frggerag
] ) false alarm. Thus, the fact that two pieces of information
The second type of process, ttenfiguration procesdakes a  arrive simultaneously must not be taken to mean that they
set of streams as input but produces no new streams. Instegder to the same time.
it enables dynamic reconfiguration by adding or removing For this reason, stream-based knowledge processing mid-
streams and processes. The configuration processes useg|fyare should support tagging each piece of information in

our example are: a stream with itwalid timg the time at which the information
« CreateVoCoLinkMonitors — Takes a stream of sets of was valid in the physical environment. For example, an image
links and ensuregoCoLinkMonitor refinement processes taken at timet has the valid time. If an image processing
are created and removed as necessary. system extracts vision objects from this image, each adeate
« CreateVoToCos — Takes a stream of vision to car objectvision object should have the same valid time even though

ion takes time, and that delays may vary, especially in a
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some time will have passed during processing. One caenerator. Afluent generator declaratiois used to specify
then ensure that only samples with the same valid time atke fluent generators of a knowledge process. It can either
compared. Valid time is also used in temporal databases [1B primitive or dependent. To specify a streanpdlicy is

Note that nothing prevents the creation of multiple samplassed.
with the same valid time. For example, a knowledge process The DyKnow implementation sets up the stream process-
could very quickly provide a first rough estimate of soméng according to an application specification and processes
property, after which it would run a more complex algorithmhe streams to satisfy their policies. Using DyKnow an
and eventually provide a better estimate with identicaldvaliinstance of the traffic monitoring scenario has succegsfull
time. been implemented and tested [13].

The available time the time when a piece of information
became available through a stream, is also relevant. If each
value is tagged with its available time, a knowledge process There is a large body of work on hybrid architectures
can easily determine the total aggregated processing awtiich integrate reactive and deliberative decision mak2ag
communication delay associated with the value, which i4,18,19]. This work has mainly focused on integrating
useful in dynamic reconfiguration. Note that the availablactions on different levels of abstraction, from contralda
time is not the same as the time when the value wde reactive behaviors to deliberative planning. It is often
retrieved from the stream, as retrieval may be delayed byentioned that there is a parallel hierarchy of more and
other processing. more abstract information extraction processes or that the

The available time is also essential when determinindeliberative layer uses symbolic knowledge, but few are
whether a system behaves according to specification, whiclkescribed in detail [1, 16, 17].
depends on the information actually available at any time as The rest of this section focuses on some approaches
opposed to information that has not yet arrived. claiming to provide general support for integrating segsin

and reasoning as opposed to approaches limited to particula
V. DyKnow subproblems such as symbol grounding, simultaneous local-

A concrete example of a stream-based knowledge pr@zation and mapping or transforming signals to symbols.
cessing middleware framework called DyKnow has been 4D/RCS is a general cognitive architecture which claims
developed as part of our effort to build UAVs capable oto be able to combine different knowledge representation
carrying out complex missions [6, 10, 12]. Most of the functechniques in a unified architecture [20]. It consists of a
tionality provided by DyKnow has already been presentethulti-layered hierarchy of computational nodes each con-
in the previous section, but one important decision for eadiining sensory processing, world modeling, value judgmen
concrete instantiation is the type of entities it can precEBsr  behavior generation, and a knowledge database. The idea
modeling purposes, DyKnow views the world as consistingf the design is that the lowest levels have short-range and
of objectsandfeatures high-resolution representations of space and time apptepr

Since we are interested in dynamic worlds, a feature mdgr the sensor level while higher levels have long-range
change values over time. Due to the dynamic nature @nd low-resolution representations appropriate to dediie
the value of a feature 8uentis introduced to model the services. Each level thus provides an abstract view of the pr
value of a feature. A fluent is a total function from time tovious levels. Each node may use its own knowledge represen-
value, representing the value of a feature at every timatpoi tation and thereby support multiple different represéomat
Example features are the speed of a car, the distance betwéerhniques. But the architecture does not, to our knowledge
two cars, and the number of cars in the world. provide any support for the transformation of informatian i

Since the world is continuous and the sensors are imperfemte node at one abstraction level to information in another
the fluent of a feature will in most cases never be completelyode on another abstraction level.
known and it has to be approximated. In DyKnow, an SCENIC [21] performs model-based behavior recogni-
approximation of a fluent is represented bfjueent streamA  tion, distributing tasks such as spatial reasoning andcbbje
fluent stream is a totally ordered sequencsarhpleswhere recognition, classification and tracking into three preees
each sample represents an observation or an estimatioa of thg stages: Low-level analysis, middle layer mediation and
value of the feature at a particular time-point. high-level interpretation. From an integration perspacthe

To satisfy the sixth requirement of having a declarativeniddle layer, which tries to match top-down hypotheses
specification of the information being generated, DyKnowvith bottom-up evidence and computes temporal and spatial
introduces a formal language to describe knowledge precesslations, is clearly the most interesting. However, it lsoa
ing applications. An application declaration describesatvh quite specific to this particular task as opposed to being a
knowledge processes and streams exists and the constrageseral processing framework.
on them. To model the processing of a dependent knowledgeGunderson and Gunderson (2006) claim to bridge the gap
process a&omputational unifs introduced. A computational between sensors and symbolic levels for a cognitive system
unit takes one or more samples as inputs and computes zeiing a Reification Engine[8]. While other approaches
or more samples as output. A computational unit is usemhainly focus on grounding for the purpose of reasoning
by a dependent knowledge process to create a new fluatiout the world, the authors claim that a system should

VI. RELATED WORK

12
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processing subsystems to provide symbols that can be usé®] Patrick Doherty, Patrik Haslum, Fredrik Heintz, Torst&lerz, Per

. . . . - Nyblom, Tommy Persson, and Bjorn Wingman. A distributedhar
for deliberation and then action. By deliberation the atgho tecture for autonomous unmanned aerial vehicle experatient In

mean processes that explicitly represent and reason about Proc. DARS'042004.
hypothetical world states. Each SA providesiading proxy [7] Malik Ghallab. On chronicles: Representation, on-lireognition and

. . . . 0 learning. InProc. KR'96 pages 597-607, November 5-8 1996.
which contains a set of attribute-value pairs call#dding 8] J. P. Gunderson and L. F. Gunderson. Reification: What &nid why
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binder will try to bind proxies together to forrbinding Systems Workshppages 39-46, 2006.

. . . . . [9] Nick Hawes, Michael Zillich, and Jeremy Wyatt. BALT & CAS
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binding proxieswhich are then merged intbinding unions [11] Fredrik Heintz and Patrick Doherty. Managing dynamigest struc-
representing the best hypothesis about the current system tures using hypothesis generation and validationPtac. Workshop
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state. The system prowdes no support for other types ﬂTZ] Fredrik Heintz and Patrick Doherty. A knowledge pragiag mid-
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bridging the gap. As the next step, we proposed a specific

class of approaches, which we call stream-based knowledge

processing middleware and which is appropriate for a large

class of autonomous systems. This step provides a consider-

able amount of structure for the integration of the necgssar
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Developing Intelligent Robots with CAST

Nick Hawes and Jeremy Wyatt
Intelligent Robotics Lab
School of Computer Science
University of Birmingham Birmingham, UK
{n.a. hawes, j.|.watt}@s. bham ac. uk

Abstract— In this paper we describe the CoSy Architecture (Section Il), how the computation paradigm of multiple
Schema, and the software toolkit we have built to allow us shared Working memories is imp|emented in our software
to produce instantiations of this schema for intelligent rdots. toolkit (Section 111), and how this paradigm influences the

Although the schema does not specify a cognitive modpkr se, . . .
it constrains the space of models that can be built from it. Abng systems we build and the way we build them (Section IV).

with descriptions of the schema and toolkit we present the mo
tivation behind our designs (a need to explore the design-spe Il. UNDERSTANDING ARCHITECTURES AND

of information-processing architectures for intelligent systems), INTEGRATION

gnd a d_iscussion o_f the kinds of design, implementation and A common approach to designing and building an intelli-
information-processing models they support. . .
gent system to perform a particular task follows this patter
. INTRODUCTION analyse the problem to determine the sub-problems that need
The ultimate aim of many current projects in the fieldto be solved, develop new (or obtain existing) technolotgies

of cognitive or intelligent robotics is the development of aSO|Ve these sub-problems, put all the technologies togethe

robotic system that integrates multiple heterogeneous sub ;mgle system, then demonstrate the system performing the

systems to demonstrate intelligent behaviour in a Iimiteangmal task. This *look ma no hands” approach to intelige

domain (home help, guided tours etc.). Typically the focugystem“demgn has a numbe_r of problerPs, but we will focus
in this work is in developing state-of-the-art components a on the “put all the technologies together” step. If the numbe

subsystems to solve a particular isolated sub-problemisn ttﬁ];t\?vc:azlrﬁ)?r?gm ;f:g?r?clgg'ﬁ;itlz ds?r]gl:]’ aa;ggr;?i? |Cr;teract|ons
domain (e.g. recognising categories of objects, or mapaing y ' y contieg,

- . : .. ~components may suffice. However, once a certain level of
building). In the CoSy and CogX projects, whilst being in tseophistication has been reached (we would argue that once

terested in state of the art subsystems, we are also matival . e :
. . : . you integrate two or more sensory modalities in an intefiige
by the problems of integrating these subsystems into aesin : .
obot, or would like your system to be extensible, you have

intelligent system. We wish to tackle the twin problems o ) . :
designing information-processing architectures thagrdte reached this level), then this approach Iacks the foresight
necessary to develop a good system design. Instead, the

subsystems in a principled manner, and implementing these . .
Y P P b g initial problem analysis should cover thequirementgor the

designs in a robotic system. The alternative to explicitl X . : . .
9 y PACIY stem’s information-processing architecture design the

addressing these issues is ad-hoc theoretical and software ; . » .
. . , ntegrating parts) in addition to the component technolegie
integration that sheds no light on one of the most frequentiyI the field of intelligent artifacts. the t «architeal
overlooked problems in Al and robotics: understanding the nt'II € 'Z to u;e Lgen arlg_(;fs, te ertm larcl e | tr d
trade-offs available in the design space of intelligentays IS still used to re er’ 0 many difierent, yet closely re;qtec
[20], [10]. aspects of a system’s design and implementation. Underlyin

The desire to tackle architectural and integration issu%lng:ig:zﬁte r}ﬁ;ﬁﬁaﬁo:‘h%\;ﬁgig i?n Cﬁ!ﬁf“g‘: g; u||rt]t|;/S of
in a principled manner has led us to develop the CoS Y plicitly P

Architecture Schema Toolkit (CAST) [14]. This is a software =P resented) and . m_ethods fqr bringing t_hese together. At
this level of description there is no real difference betwee

toolkit intended to support the design, implementation an . : F )
exploration of information-processing architecturesifael- &16‘ study of architectures in Al anq software arch|tect_ures
in other branches of computer science. However, differ-

ligent robots and other systems. The design of CAST was

driven by a set of requirements inspired by HRI domain§"¢es appear as we speC|aI|se_ this description to _prod_uce
thltectures that integrate various types of functidpali

and the need to explore the design space of architectures [0 . . . . ;
systems for these domains. This has led to a design basflgdproduce intelligent systems. Architectures for intelfig

. : S . systems typically include elements such as fixed representa
around a particular computational paradigm: multiple star tions, reasoning mechanisms, and functional or behavioura
working memories. Given the topic of this workshop, this om ’onent ro% ings. Once ’such elements are introduced
paper will expand the motivation behind the design of CAS P groupings. +) . . '

he trade-offs between different designs become impartant

1Cognitive Systems for Cognitive Assistants: http:/ctigasystems.org S.U(.:h trade'oﬁs include t.he costs of _diViding a system up
2Cognitive Systems that Self-Understand and Self-Extetig:/ltogx.eu  to fit into a particular architecture design, and the costs of
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using a particular representation. Such trade-offs haes be [1l. THE COSY ARCHITECTURE SCHEMA
ignored by previous work on integrated systems, yet these TOOLKIT

factors are directly related to the efficacy of applying an Tpjs reasoning has led us to develop BeSy Architec-
architecture design to a particular problem. Our researgfjre Schema ToolkiCAST) [14], a software toolkit which
studies architectures for integrated, intelligent systém jmplements theCoSy Architecture Schem{@AS) and thus
order to inform the designers of these systems of the tradgtiows us to build information-processing architectures f
offs available to them. intelligent robots based on instantiations of this schema.

Gi hat th ) h ‘ bl h A. The Schema
iven that there is a huge space of possible architecture . . . . .
g¢ sp b As mentioned in Section Il we are interested in un-

designs for mtelhgent_ sys_tems (ct. [18], [21.]) itis Imps t d(frstanding the trade-offs available in the design space of
both that we (as scientists concerned with designing and . . . :
aﬁfhltectures for intelligent systems. We designed CAS to

building such systems) understand this design space ag ow us study a small region of this space in a systematic

the trade-offs it offers, and that we are able to evaluate : . :
. ) . manner. CAS is an architectusehemai.e. a set of rules
the influence of the architectures we use in the systems wen. . .
which can be used to design architectures. We refer to the

build. Although we could study architecture designs pureggrocess of designing and building an architecture from the

in theory (cf. [15]), the dynamic and complex internal an . I A o
external behaviours of even the simplest robots situatéukin schema asnstantiation By comparing instantiations of the
.schema we can uncover some of the trade-offs that are

real WOF'd means t_hat we may.have MOre SUuccess In Stuqy'ggailable within the design space defined by the schema.
the designs empirically. For this we require implementeio

. . CAS is based around the idea of a collection of loosely
of our architecture designs that allow us to separate the . .
. : coupled subarchitectureswhere a subarchitecture can be
effects of the architecture design from the effects of thé "™ ;
S . considered as a subsystem of the whole architecture. As
components being integrated by the design. We have argu o . .
: . L .2~ shown on the left in Figure 1, each subarchitecture contains
this point elsewhere (cf. [11]), but it is worth restating . ) . .
. . . . a number of processing components which share information
as it motivates our approach to the design of middleware :
. : : . . via a working memory and a control component called
for intelligent robots. To avoid the uninformative, ad-hoc ) s
S . a task manager Some processing components within an
approach to building integrated systems (characterisedeab .
“ b subarchitecture arenmanagednd some arenanagedUn-
as “look ma no hands”), we must not only be able td . : .
rpeanaged components perform relatively simple processing

demonstrate that our system works, but we must also be ab . .
y on data, and thus run constantly, pushing their resultstheto

to provide some analysis on why the system works the wa orking memory. Managed processes, by contrast, monitor

it does. This type of analysis is almost always performed fo#Ie changing working memory contents, and suggest possible

the components of an integrated system, but it is rarely, ) ; : ;
ever, performed for the architecture design used to integr rocessing tasks using the dat? in the working memaory. As
the components. .he_se_tasks are typically expensive, and cpmputatmnabpow
is limited, tasks are selected on the basis of current needs
of the whole system. The task manager is essentially a set
There may be many reasons why researchers do nuft rules for making such allocations. Each subarchitecture
evaluate the influence their chosen information-procegssiworking memory isreadable by any component in any
architecture has on the behaviour of their intelligenteyst other subarchitecture, but iwritable only by processes
One reason is the confusion between the types of architewithin its own subarchitecture, and by a limited number
tures (at various levels of abstraction) that feature in thef otherprivilegedcomponents. These components can post
implementation of an intelligent system. These can includiaformation to any other subarchitecture, allowing topvdo
very abstract information flow architectures, more corerefgoal creation and cross-architecture coordination.
decompositions into subsystems and functional components If there are several processing goals that a subarchigectur
and further, more detailed, decompositions into classes aneeds to achieve, they are mediated by its task manager. This
functions in software. In our experience, it is typicallysth mixes top-down and data driven processing and allows goals
latter type of architecture (i.e. the system’s softwarenarc to be handled that require coordination within one subarchi
tecture) that is the only architecture explicitly presentiie  tecture or across multiple subarchitectures. At one exérem
final system implementation. Because of this, it is difficulthe number of privileged components can be limited to one
to isolate the information-processing architecture (Wwhie  (centralised coordination), and at the other all companent
assume is typically at a higher level of abstraction thanan be privileged (completely decentralised coordination
classes and functions in most systems), from the rest of theln terms of design CAS falls between two traditional
system; it is only implicitly present in the implementatido camps of architecture research. On one hand its shared
address this problem we advocate the use ofrghitecture working memories draw influence from cognitive modelling
toolkit when building intelligent systems. Such a toolkitarchitectures such as ACT-R [1], Soar [17], and Global
fixes the information-processing architecture expliciithe  Workspace Theory [19]. On the other hand it grounds these
implementation of the system, and keeps the architecturalffluences in a distributed, concurrent system which shares
elements separate from the components in the system. properties with robotic architectures such as 3T [5].
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Fig. 1. Two views of the CoSy Architecture Schema. The figumettee left is the schema at the level of a single subarchitectlihe figure on the
right shows how a system is built from a number of these stitertures. Note that all inter-subarchitecture commatioe occurs via working memory
connections.

B. The Toolkit performed on the entries it contains. These events coritain t
This sch is impl di ¢ ki CASTID and type of the changed entry, the component that made
IS schema Is implemented in our software toolkit tPe change, and the operation performed to create the change

The toolkit provides a component-based software framewog e. whether the entry was added, overwritten or deleted).
with abstract classes for managed and unmanaged COMPOxg s necessary for any robot-centric middleware, CAST

nents, task managers and Worki.ng memories._By SUb'ClaSSi&Qn run distributed across multiple machines. It also na-
these componen_ts, System bw_lders can quickly and easWely supports both C++ and Java (a requirement for our
create new architectures that instantiate the CAS sche vject's software which we found hard to satisfy using
CAST provides access to functionality intended to mak ther robotic middleware). We currently use CORBA to
programming within the schema as simple as possible. Mo fovide support for the cross-language and cross-network
of this.functionality is based around accessing Workinganslation, although we're considering replacing thighia
memories. ) ) o ~ future. Translation is hidden from the programmer, so that
In CAST a working memory is an associative containefyere s no difference when a component accesses a working
that maps between unique identifiers (IDs) awdrking  memory written in the same language on the same machine,
memory entriesEach entry is an instance oftgpg which 1 when it accesses a working memory written in a different
can be considered as analogous to a class. Componegigyuage on a remote machine. To support the exploration
can add new entries to working memory, and overwrite Gff the design space of CAST instantiations, architectures
delet_e existing entri_es. Components can retrieve entro#s f it with CAST can be reconfigured without changing
working memory using three access modes: ID access, tyBg§mponent code or recompilation. This allows us to add and
access and change access. For ID access the compongf{ove subarchitectures, and change the decomposition of
provides a unique ID and then retrieves the entry associatggmponents into subarchitectures, without changing a line
with that ID. For type access the component specifies a typg code. Finally, CAST is open source, and freely available

and retrieves all of the entries on working memory that argom http://www.cs.bham.ac.uk/research/projects/teast/.
instances of this type. Whilst these two access modes provid

the basic mechanisms for accessing the contents of working IV. THE BEHAVIOUR OF CAST

memory, they are relatively limited in their use for most CAST allows us to design and build a wide range of

processing tasks. Typically most component-level prangss intelligent systems. These systems will vary in many ways,
can be characterised by a model in which a component waltsit because they are CAST instantiations they will all

until a particular change has occurred to an entry on workinghare at least one feature: shared working memories. It
memory before processing the changed entry (or a relatéd this feature that gives CAST systems their distinctive

entry). To support this processing model, components camformation-processing behaviour (a behaviour similar to

subscribe tachange eventsChange events are generated bylistributed blackboard systems [8]). We now explore this

the working memory to describe the operations that are beifgghaviour in more detail.
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A. Concurrent Refinement of Shared Information as required by the application domain, whilst leaving the

Two of the requirements that influenced the design d?figinal components untouched.
CAS are the requirement that information is shared be- The nature of CAST has allowed us to generalise this
tween components, and the requirement that componefi@del to whole system development. Our integrated systems
are active in parallel. These requirements combine in CAfgature subarchitectures developed in parallel acrosspieul
to produce a model in which processing components worites. Each site follows the above approach to subarchitectu
concurrently to build up shared representations. For elampdesign, gradually adding components to a subarchitecture
the visual working memory in our recent intelligent systenin order to add more functionality to it. The integrated
[12] contains entries representing regions of interest aryStém them emerges in a similar way: we start with a
objects in the scene. Once these basic structures have b&8ill number of subarchitectures containing a few compo-
created (via segmentation and tracking) other componerit§nts. and then add functionality in two ways. Individual
(such as feature recognisers) can work in parallel addi,félbarchitectures can be extended_with new components as
information to these entries. As the data is shared, anytapd®€fore, but also complete subarchitectures can be added to
to an entry is available to any component that needs it 48€ System (again without recompilation or restructuriteg)
soon as the entry is changed on working memory. In thigrovide new types of functionality. Because the informatio
manner the results of processing by one component can ngduced by existing subarchitectures is automaticabyesth
asynchronously incorporated into the processing of amoth@n their working memories, any new subarchitecture has
as soon as the results are available. immediate access to the knowledge of the whole system.

It is not only components within a subarchitecture that ar8S With components, the restriction that communication
are active in parallel. Subarchitectures themselves a@ aloccurs only via working memories means that additional
concurrently active, allowing the concurrent refinement opubarchitectures can be removed without altering theainiti
information in one subarchitecture working memory to influSystem. In [12] we demonstrated this incremental system
ence the processing of components in another. This betravidlvelopment model by taking an existing system for scene
allows us, for example, to narrow the space of hypotheses fi¢scription and extending it with the ability to plan and
incremental parsing [16] in parallel to extracting infotina ~ Perform manipulation behaviours.
about the visual scene. We have also taken advantage of the ability to restructure

Although this processing model could be implemente@ CAST system to perform a preliminary exploration of
in a purely component-based architecture, the amount Bfe design-space delineated by CAS. In [13] we took an
concurrent data sharing between subsystems means tha@%tsting CAS instantiation and systematically varied é@sa

is a very natural fit with the design of CAS. of components to subarchitectures. The encapsulationeof th
] CAS-level system components into a toolkit allowed us to
B. Incremental Design & Development benchmark architectural properties of the resulting syste

By only allowing components in a CAST system toseparately to their functional properties.
communicate via information shared on working memories
we reduce the interdependencies between them. This allows V. COMPARISONS TO EXISTING WORK
components to be added to, or removed from, CAST instan- CAST can be compared to many existing software pack-
tiations without the need for the architecture be restmectu ages intended for the development of robotic systems.
(or for any code to be recompiled). This freedom allows us télthough the basic unit of functionality in CAST is a
adopt an incremental approach design and implementatioprocessing component, it is markedly different from other

Due to the subarchitecture schema design, a processiogmponent-based frameworks such as MARIE [7], ORCA
behaviour (e.g. a linguistic or visual interpretation bgbar) [6] and YARP [9]. These frameworks provide methods for
can be designed, implemented and tested incrementally. rAusing components and accessing sensors and effectors, bu
designer can start with an initial set of components tthey do not provide angrchitectural structureexcept in the
perform some basic processing tasks (e.g. segmentationviery loosest sense (that of components and connections). It
the previous example of a visual system) that populats this structure that CAST provides, along with supporting
working memory. Following this, CAST allows the designercomponent reuse. CAST does not provide access to sensors
to incrementally add components to process the entries and effectors as standard, although to date we have success-
working memory without altering the initial componentsfully integrated Player/Stage, various camera devicesaand
(unless extensions to them are required). As long as thes@nipulator engine into CAST components. At this stage in
additional components do not introduce dependencies e development of CAST we would ideally like to integrate
the information-processing level (e.g. one component muitwith one of these component frameworks to provide our
always wait for the results of another component), then therchitecture structure with access to existing devices and
can be added and removed as required by the task. To ret@amponents.
to the example of the visual system, this incremental model At the other extreme of software for intelligent robotics
allows us to have a basic subarchitecture that providesbhe 3s the software associated with cognitive modelling aedhit
properties of objects. We can then add additional companentires. Such tools includes ACT-R [1] and SOAR [17]. Whilst
(recognisers, feature extractors etc.) to this subarctoite these systems provide explicit architecture models alattg w

17



a means to realise them, they have two primary drawbacks
for the kind of tasks and scientific questions we are intedestey
in studying. First these systems provide a fixed architectur
model, whilst CAST provides support for a space of possibl
instantiations based on a more abstract schema (allowin
different instantiations to be easily created and compared
Second, it is not currently feasible to develop large iraeept  [3]
systems using the software provided for these architeeture[4]
This is due to restrictions on the programming languages
and representations that must be adhered to when using these
models. That said, researchers are now integrating cogniti
models such as these into robotic systems as reasonirig
components, rather than using them for the architecture of
the whole system (e.qg. [4]).

In addition to these two extremes (tools that providel6]
architectures and tools that provide connections) thexeaar
small number of toolkits that have a similar aim to the work
presented in this paper. MicroPsi [3] is an agent architectu [7]
and has an associated software toolkit that has been used
to develop working robots. It is similar to the cognitive
modelling architectures described previously in that i ha [8]
a fixed, human-centric, architecture model rather than a
schema, but the software support and model provided ify
much more suited to implementing robotic systems than
other modelling projects. Our work is perhaps most similaltC!
to the agent architecture development environment ADE [2].
APOC, the schema which underlies ADE is more general
than CAS. This means that a wider variety of instantiation&-!!
can be created with ADE than with CAST. This is positive
for system developers interested in only producing a sing{e2]
system, but because we are interested in understanding the
effects that varying an architecture has on similar systems
we find the more limited framework of CAS and CAST/[13]
provides useful restrictions on possible variations.

2]

VI. CONCLUSIONS

In this paper we have described the CoSy Architecturid4l
Schema Toolkit (CAST) and the theoretical schema (CAS)
it is based on. We discussed our motivation for developings]
a toolkit and also described some of the influences that the
toolkit has had on the way we design and build intelligen[tle]
robot systems. Although CAS does not specify a cognitive
model per sg it constrains the space of models that can be
built with it. This constrained space represents a subset g
all possible architecture designs; a subset which we have
found to fit naturally with the robotics problems we face oril8l
a day-to-day basis. It is worth noting that there is a related
space of designs that may come from combining our scherfia]
with other middleware or architecture approaches (where
this combination would typically provide a smaller, rathetlzo]
than larger, space of designs). We are excited to see the
other contributions to this workshop and explore possible
interactions between their design spaces and ours. 21]
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BRAHMS: Novel middleware for integrated systems computaton

B. Mitchinson, T.-S. Chan, J. Chambers, M. Humphries, C.,KoxGurney and T. J. Prescott

Abstract— Computational modellers are becoming increas- define a Modular Execution Framework (MERpo mean

ingly interested in building large, eclectic, biological nodels.

These may integrate nervous system components at various

levels of description, other biological components (e.g. uscles),
non-biological components (e.g. statistical discriminairs or
control software) and, in embodied modelling, even hardwas
components, all potentially with different authors. There is
a need for middleware to facilitate these integrated system
BRAHMS, a Modular Execution Framework, fills that need
by defining a supervisor-process interface and an (extendi)
set of process-process interfaces; authors can write to tee
interfaces, and processes will integrate as required. Adtbnal

benefits include reuse (never code the same model twice),

cross-user readability, system-level parallelisation omulti-core
or multi-node environments, cross-language integrationdata
logging, performance analysis, and run-stop-examine-cdimue
execution. BRAHMS employs the nascent, and similarly genai
purpose, model markup language, SystemML. This will, in
future, also facilitate repeatability (same answers ten yars
from now), transparent automatic software distribution, and
interfacing with other SystemML tools.

. INTRODUCTION

Fig. 1. Example block diagram of an integrated dynamic sydtailt from
independent processes. Rectangles represent processles, autput ports,
and arrows links between processes.

Moves are afoot in the world of computational ne
roscience towards the construction of large integrat

models[1], [2], [3], [4], [5], [6], [7], [8], in the spirit

of Daniel Dennett's ‘whole iguana’[9]. Multi-region brain
models are complex, so researchers necessarily develwop th
as collections of sub-systems, or ‘processes’, which mu&t

any middleware that facilitates such linkage—a well-known
example is Simulink[11]. Neuroscientists are wont to repre
sent processes at different levels of abstraction (bidphys
neuronal, network, control-theoretic, etc.)[12], so itniet
generally possible to compute all processes in one computa-
tion engine—rather, the task is to lirdnginestogether[8].
Bespoke integration serves for any single project but, as
we will see, a general solution offers much more for less
effort, and the startup cost is considerably outweighed by
the immediate benefits.

In Section Il, we run over the particular challenges and
requirements for integrated computation in academic re-
search. We go on in Section Il to introduce our proposal,
BRAHMSJ13], beginning with an overview of its use. In Sec-
tion IV, we contrast BRAHMS with existing and developing
solutions and show it to be well positioned with respect to
these. We report on project status in Section V and conclude
in Section VI that BRAHMS already offers a solution to
most of the identified challenges and will, through planned
developments, meet the remainder.

Whilst BRAHMS has its roots in solving problems in
and around computational neuroscience, we emphasise that
it is not limited by those origins, and we expect it to be of
equal interest to researchers in other fields. The problems
of integration, of course, become all the more visible when
crossing disciplinary boundaries.

[I. CHALLENGES AND REQUIREMENTS
A. Varied Development

The primary challenge (as described above) is to integrate
software processes, and the primary requirement is, threxef
to offer a middleware platform which will execute processes
in concert. Processes may be developed in, on, or by differen
authors, labs, platforms, programming languages, hunman la

y-guages, programming styles and at different times. Therincl
e3jon of non-neuroscience processes generalises the proble

across problem domains and technical languages. Without
direct communication and refactoring, such disparater-offe

ings will not generally be integrable. Software engineers
eet such challenges by offering fixed, public, interfaces

then be ‘linked’ together to form a ‘system’ that can pd0 develop against. In this context, an interface requires

computed, Fig. 1. This aside, modularity is widely consi
ered to be a desirable trait in software design [10]. we
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gtwo facets: one between process and framework, the other

etween processes; these interfaces must be generaldexclu
no possibilities), static (or maintain backward compiéitibi,
accessible and available in multiple programming langaage
on multiple platforms.

1we prefer ‘Execution’ to ‘Simulation’ since, in general,nse processes
will not be simulations.



B. Varied Deployment solution must be able to support these changing needs in a

High-end multiprocessing hardware is increasingly pelimely manner. In practice, therefore, it i; a requiremeat t
coming available to research labs, supporting a rapid growthe solution be open source and extensible by anyone.
in the development of ‘large-scale’ models[14] (modelswit Adoption
many dynamic states). At the same time, increasing focus on )
‘embodied modelling'[15], [16] (deployment of behavioura ' they are to adopt any proposal, potential users must
models on robotic hardware) is generating use cases basedP&icelVe its advantages to outweigh its costs, both ihjtial
low-end hardware. These two trends push the computatior?end in the Iong-term. Th.e.short-term -requwement IS met
envelope at opposite ends, and any solution must be depldg/-the startup cost is sufficiently Iow_—mtenfaces must be
able in all these environments. A researcher may develdp"” simple, ,a”‘?' well documented; immediately available
initially on a desktop machine, for convenience; experitaen 2dded value” will help to offset this cost. The long-term
work may involve large models or parameter spaces anffauirement is met if, in comparison with an equivalent

thus, high-end hardware; embodied models will eventualy bbéspoke monolithic design, overall perforrnar_lcg does not
deployed on robots, and, particularly if there is an inteliel suffer and per-process development effort is similar os.les

interest in mobile roboticper se this may mean running on Furthermore, an integration solution should by its natue b

low-end embedded hardware. The requirements are, thal’glUSVe, S0 the solution must be available to all—this mea
researcher should only have to develop once for such varidgordable (preferably with no cost). Adoption will be the
deployment cases, and that the middleware should be abpere willing the more freedom that is given to the developer

to take advantage of the resources of high-end and deskt@p do things their way—this means making the interface

hardware without becoming unwieldy on low-end hardwarea.‘vallable in multiple languages, on multiple platforms.

C. Code Sharing I1l. BRAHMS

Computational researchers spend much time authorifly Overview
software, and disappointingly often this work is repeated BRAHMS represents part of our commitment to the phi-
in other labs, by other researchers, or even by the sartesophy and methodologies of neuroinformatics: develgpin
researchers, when documentation, compatible source-cagieneral purpose tools that facilitate large-group working
and/or compatible binary code is, or becomes, unavailh neuroscience, and sharing and reusing resources. It is
able. Anecdotal (and more concrete[5], [17]) evidence sugih MEF developed in-house during the course of a large-
gests that ‘...easier to rewrite it myself than try and obscale, multicentre project (WhiskerBot [3]) which pressht
tain/understand/integrate their original code... is mown many of the challenges outlined in Section Il. This was
story. Any solution should offer great potential for codea computational neuroscience project, but from the outset
sharing and reuse, which is to say more than that the coB&®RAHMS was required to integrate diverse processes (see
could be integrated—it must bstraightforwardto do so. Section lll-H). The design goals of BRAHMS are perfor-
This requires a (preferably, automatic) archiving/disttion mance, flexibility and extensibility. BRAHMS is open source
mechanism, that shared code be in a form that is immediatedynd licensed under the GNU General Public License.
usable (rather than having to be compiled, say), and thatBRAHMS operates on systems, Fig. 1, progressing them
the solution encourages authors to document their work[18jrough time and generating output, Fig. 2, which comprises
(facilitating ‘intellectual’ integration). in large part, logs of the links between processes. Prosesse

In addition, ‘background functionality’ like parallelisan can be developed by dropping state initialization and updat
or data marshalling is neither trivial nor quick to authanda code into one of the provided templates (using a program-
most researchers do not want to become software engineers)ng language that suits the developer). Systems are built
so sharing such functionality with all process developersom these, processes developed by other researchers, and
is desirable. Therefore, as much functionality as possiblgrocesses provided with BRAHMS, in just a few lines of
should be subsumed into the middleware—'general’ processript. BRAHMS is invoked to execute these systems, taking
code should be shared. We use the term ‘supervisor’ to refadvantage of parallel computing resources where avajlable
to this shared code, which might, at minimum, be responsibind the results can easily be pulled into an analysis envi-
for reading a system document, loading required processesnment. BRAHMS is not tied to any particular interactive
connecting them together, progressing them through timenvironment but, currently, the support offered for wogkin
collating results, and returning these to the caller. in Matlab[11] is particularly strong. In time, the libraryf o

available processes will increase and additional suparvis

D. Open Standards functionality will accrue (see Section VI-B for future pEn

There is more to working with systems than their execu-
tion; other possibilities include a system design GUI and aR- Systems
archival/retrieval tool (see also Section 1I-C). It is, sha A BRAHMS system is a snapshot of a stateful dynamic
requirement that the middleware should work with open anslystem in time; that is, a collection of stateful processes a
extensible data standards. Moreover, the needs of academicollection of stateful links connecting them together. A
research are constantly changing and often cannot wait—tkgstem is loaded from file at invocation, and stored back to
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- bility and interoperability with other languages. Langaag
' bindings are provided for C++ and Matlab, and additional
bindings are expected to follow (Python bindings are cur-

e
5

( X M rently under development). The interface as a whole has been
: > = \.\ 3 designed according to modern API design principles[20],
Design Tool - for example with an eye to minimality, extensibility, and
l System (t=t1) backward compatibility. It comprises four aspects, aofed.
' ' ' ' First, processes offer an extensible events interfacefro

which the supervisor can invoke process operations (such as

initialization, progressing through time). The remainthgee

aspects are callback interfaces allowing processes tdénvo

supervisor functionality. They are an implementation atpa

of the W3C XML Document Object Model interface[21]

(for manipulating StateML, amongst other things), therinte

process interface (for interacting with links), and a gaher

S S interface of BRAHMS-specific functions.

BRAHMS | In addition to the above, data container classes must
offer a class-specific interface to allow manipulation aith
contents by processes. Inter-process communication then

-

Output

l (‘D@*W propeedg_a; fqllows: th.e source process publishes a port
ey =8 during initialization, specifying the class and structafelata
= 0B containers to pass over it, and this forms one end of a link;
R, = at run-time, the source process writes data into a container
System (t=t2) . = F .
:_ ' using the class-specific interface, and passes the containe
. into the link; the destination process pulls the containemf
Analysis Tool the other (_apd_of the link and reads the contents using the
class-specific interface.
Fig.‘ 2. Typica}l BRAHMS workflow: system and execution comrqilai'rle D. Modules
design, execution by BRAHMS (progression of the systemutnotime),
analysis of final system state and execution output. Process classes are implemented in modules, in one of
the languages for which bindings are provided. A process
module must respond to calls from the supervisor on the
file at termination (the file format used is SystemML[19], anayents interface, performing the requested operations. A
open XML-based format for representing stateful dynamigimme process module might respond to only two events,
systems). Each process is specified as a class, which indexgs o publish an output, and second to pass data into it on
an extensible set of process classes each implementing sogg time step. Data classes are implemented in very similar
algorithm, and class-specific state data. A process may pubpdules. A data module receives a different set of events
lish outputs, each of which specifies a transport protoo® (Pfrom a process module, but otherwise operation is similar.
riodic/aperiodic, sample rate) and a data container. Eatd d p simple data module might respond to two events, to log
container is specified as a class, which indexes an extensik current state for later retrieval, and to return its logie
set of data container classes each implementing some dat@ervisor. In addition, a data module must offer an interfa

structure, and class-specific state data. Each link specifie 1 jts content for use by processes, as mentioned above.
source output (implicitly, thus, a transport protocol aradad

container class), a destination process, and a transplast de E. Supervisor

The class-specific process or data container state datarhe BRAHMS supervisor is authored (in C++) as a stan-
(termed ‘StateML’) is understood by design tools for angjajone executable, so it does not require a virtual machine o
implementations of those classes (for instance, NeuroML[&cripting engine and is therefore resource-light. It iked
might be the StateML for some neural process classesjith a command file, see Fig. 2. It then reads the system file,
These class-specific data are not used by BRAHMS so the $gétantiates the system (by loading modules and passing the
of systems that can be represented is extensible simplyeby tfheir state from the system file), connects processes tegeth
addition of new process or data classes. Transport pratoc@hen supervises the progression of the system through time,
are the responsibility of the middleware, however, so thﬁhanaging the transport of data through the links. At a
addition of new protocols requires updating BRAHMS.  predetermined stop time (or following cancellation by the
user or by a process), it collates the state of all loaded
modules (processes and data containers) and links andgwrite

The core of BRAHMS is the supervisor-procesghis back to a system file, also collating logs of each link
interface—C was chosen as the language for this for its durapecified for logging in the command file and writing these

C. Interfaces
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to an output file. Most often, it is this output file of loggedinclude, such that BRAHMS can be called in Matlab using
inter-process links that is the desired product of an execut normal function call syntax. These allow the construction
Automatic parallelisation is provided at a coarse-grainedf systems from processes and links, and the design of
(process) level. Finer-grained parallelisation can belémp the generic StateML used by the processes in the Standard
mented within processes, but it will generally be easietibrary. However, BRAHMS does not know about process
to break processes up and let BRAHMS parallelise thewstate, in general, so additional tools are needed to design
(models that consist of collections of similar objectsgelik StateML for processes that do not use this generic StateML.
network models, lend themselves particularly to this techinterfaces to BRAHMS from other environments are ex-
nique). One implementation of the supervisor, ‘Solo’, téfe pected to follow in future.
lightweight parallelisation in a shared-memory enviromte .
using multithreading. Another, ‘Concerto’, offers mutge - Work Experience
cessing for parallelisation over a computing cluster, ity The WhiskerBot robot is an embodied model of rat be-
using either TCP/IP or MPI as the communications layer. haviour with an eclectic control model including hardware
The data transport provided by the supervisor might concomponents (FPGA spiking neural simulators), neural soft-
prise sharing a memory pointer (Solo), or routing a containevare (leaky integrator models of Superior Colliculus and
over ethernet (Concerto), or through a stateful system filBasal Ganglia) and non-neural software (heuristic models o
to another user, on another platform, at another time. Suixed behaviours and arithmetic/geometric modules for tobo
transport operations are achieved without onus on the psocecontrol). The model was developed on high-end desktop
developer. Background functionality beyond parallelizati hardware and deployed with modification of parameters only
includes inter-process data compression (Concerto), winn the low-end embedded compute platform of the robot,
dowed data logging, distributed system performance monitomeeting sub-millisecond real-time constraints constiten
ing, and a completely general ‘pause & continue’ executioharge parts of the model have been adopted to contribute
model (allowing system snapshots at non-zero time to ke the control software of the ScratchBot robot, an artefact
coherently stored, exchanged, examined or modified). of the ICEA project[4]. Other parts are currently in use
- as part of the large-scale oculomotor control model of
F. Accountability the REVERB project[22] which deploys across a compute
One of the dimensions of Varied Development, abovegluster and a separate robot-control machine. In another
is time. This means that we should be able to integrataspect of the ICEA project, existing WhiskerBot processes
today, process code that was generated many years abave been interfaced successfully with the Freebots[28jtro
However, computing environments change, and researcheimulation environment. BRAHMS has also been chosen
forget. BRAHMS offers accountability; that is, everythingas the integration platform for the large European project
that bears on the results produced from an execution (dBIOTACT[24]. Taken together, these use cases illustrate
tails of each loaded library module, external library, oé th reuse, various dimensions of integration, and varied sub-
run-time environment, platform, operating system, ets.) istrates of deployment.
recorded in an ‘execution report’. If a repeat of the exemuti
does not produce identical results, it is possible to identi IV. RELATED PROJECTS
why (thus, accountability favours repeatability by idéyitig We do not discuss neuroscience-only integration projects,
sources of disagreement). such as NSL[25], NEOSIM and CATACOMBJ26], since they
. do not attempt to solve the integration problem with the lleve
G. Software Development Kit of generality discussed here.
A BRAHMS release includes template processes and
tutorial examples (corresponding to tutorials in the doeom A Simulink
tation) authored in all three currently supported langgage Simulink[11] has a long history, and is a useful tool for
Thus, creating a new BRAHMS process involves little moréearning about integrated systems. More recently, it effer
than copying the template for the chosen programminguulti-language support (Matlab, C, C++, Ada, Fortran) but
language, and adding the content that performs the actwa yet no standard support for parallelisation even within
algorithm intended. Also included is a development versioa shared-memory space, and it suffers from computational
of the BRAHMS ‘Standard Library’, a collection of pro- overhead. The data format is open (though not extensible,
cesses implementing simple operations (such as sum, grodsihice Simulink is proprietary). In the long-term, suppoetym
and resample) which are intended to be useful in productiamprove in the technical areas where Simulink does not meet
systems, whilst doubling as further illustrative materidiis the requirements, but it is likely to remain costly, closed
library also includes the data container class that will beource and with a large resource footprint.
most useful, ‘data/numeric’, which is a container for an N-
dimensional array of numeric data in a comprehensive (ar%‘ IKAROS
extensible) range of fixed-bit-width element formats. IKARQOS[27] is a project of similar spirit to the BRAHMS
Matlab interfaces for the command, system, and outpgiroject, but has rather different focus. Its positive p®int
files, and for invocation of the BRAHMS executable, are alsinclude the ‘WebUI’, which allows real-time monitoring of
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system state through a browser, good documentation, and’his branch will serve the ICEA, REVERB and BIOTACT
simple developer interface. But where BRAHMS aims foprojects (for three years). Interface logic is unchangedesi
to meet all the challenges listed above, IKAROS attemptfdecember 2007 though minor syntax changes continue as
to solve a much more constrained problem, albeit in #oundations are assured for planned features. At 0.7, synta
straightforward and effective way. will also freeze. Planned features will arrive in upcoming
IKAROS is constrained to a single inter-process dataminor branches (0.8, 0.9, ...) towards version 1.0 whict wil
type (2D single-precision matrices), does not support dyend the initial development cycle. Processes authoredsigai
namic creation and sizing of outputs based on connectivit9,7 will interoperate with future releases.
multiprocesses on a single machine only (currently), and Solo is now fairly mature, having performed well with
the plugin architecture requires the whole system to benly minor changes for some years. Concerto still has alpha
rebuilt from source when new modules are added. This lastatus, but is considered sufficiently mature for deploytiren
is a particular problem for accountability, since the codéhe REVERB project. All releases are available for Windows
that executed to generate archived results is generally 8@-bit, GNU/Linux 32-bit (Ubuntu) and GNU/Linux 64-bit
longer available. There is no discussion of bindings fo(Debian). We anticipate offering builds for other platfam
other languages; the IKAROS interface is authored in C++n time. Aperiodic links, pause & continue execution, and
which might become a problem in the future if the projecexecution reports are not yet fully implemented.
intended to move towards dynamic loading or accountability
IKAROS also lacks some background functionality available ~ VI. CONCLUSIONS AND FUTURE WORKS
in BRAHMS, though such features can probably, as fo .
BRAHMS, be added without modifying the plugin cg)/debaseé" Meeting The Challenges
In summary, we suspect that IKAROS and BRAHMS are BRAHMS solves the primary challenge of integration
solutions to different, if not quite orthogonal, problems. — across Varied Development by specifying a common, flex-
) ible interface in multiple programming languages, against
C. Large-Scale Modeling Program and MUSIC which new computational engines can be developed, and
The International Neuroinformatics Coordinating Fagilit onto which existing computational engines can be imported.
(INCF) have recently launched a program to foster infrastru It meets the challenge of Varied Deployment through im-
ture for researchers working with large-scale neural nedelplementation as a lightweight standalone native execatabl
Attendees of the first program workshop[8] noted the largand by allowing processes to be developed in similarly
and growing set of neuron simulators available, and agredightweight native code; a version of the supervisor is avail
on the importance of interoperability and component reusable without multiprocessing support for a further reduced
Focus was on modularity, particularly the supervisor-pesc footprint. BRAHMS offers extensive (and accreting) back-
interface, process-process interface, and common filesformground functionality in the supervisor, meeting one aspect
Consequently, run-time inter-process communication way the challenge of Code Sharing (a BRAHMS ‘hello world’
also discussed as a necessary future development to itgegierocess written in C++ runs to about 25 lines of mostly
computation engines into systems. They also highlightdgbilerplate code, yet can distribute its complex procegsin
background functionality (node allocation, communicasio across massively parallel resources).
initialisation) and marshaling of extremely large data .sets BRAHMS supports the pragmatic challenges of sharing
All of these issues are addressed by our proposal. Other iprocess code (by allowing the distribution of pre-compiled
teroperability concerns raised in the workshop report ate nbinaries rather than source code and by providing account-
applicable to BRAHMS; e.g. no application scripting is re-ability) and goes some way to fostering documentation by
quired since BRAHMS is responsible for procedure. Withirdefining a public process interface (development against a
the program, a communications library called MUSIC[28] isknown interface self-documents to some extent, sincevgenai
under development. The MUSIC approach leaves everythimgader knows at least some aspects of what a piece of code
but inter-process communication to the process, in staik intended to do). However, it does not directly address
contrast to BRAHMS, which provides much common functhe challenge of sharing process code—see Section VI-B for
tionality. Each approach has its advantages—in particulatetails of how this will be addressed by future developments
large and/or closed-source projects are more likely to suBRAHMS employs Open Standards throughout. Adoption of
a MUSIC interface than a BRAHMS front-end (though thethe pre-release platform continues: the success of BRAHMS
latter need not be onerous). In contrast, BRAHMS allowas the integration framework for the WhiskerBot project
extremely rapid development of powerful cross-platfornihas led to its being chosen for three other major projects,
engines, which MUSIC does not. We do not consider thanvolving varied use cases, and the early adopters have
BRAHMS and MUSIC will be direct competitors, and expectreported finding the workflow agreeable. Indications aré tha
to offer a BRAHMS-MUSIC interface in future. overall performance of systems executed using BRAHMS
perform favourably in comparison with monolithic equivatie
V. STATUS systems—quantitative metrics will follow in a later report
BRAHMS has been public since April 2007, and is New processes benefit from being built into the BRAHMS
now approaching version 0.7, expected midsummer 200Bamework by taking advantage of services provided by the
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system, and are constrained in their operation only by the reesting, and particularly the patience and advice of Martin
quirements of the supervisor-process interface (i.e. agg® Pearson as the main end user on the WhiskerBot project.
is free to interact with the operating system, with hardware
with the user, as required). Integrating existing processe
BRAHMS can be achieved either by ‘Wrapping’ the existing [1] P. F. Dominey and M. A. Arbib, “A cortico-subcortical meH for

. . - . generation of spatially accurate sequential saccadesteb Cortex
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ted i h t P data i E M. Djurfeldt and A. LansnerProceedings of 1st INCF Workshop on
processes represented In such systems. Frocess data In eLarge-scale Modeling of the Nervous SysteBtockholm, Sweden,

infrastructure will include specification of parametetisa 2006, in Nature Precedings, doi: 10.1038/npre.2007.262.1
and of input/output interfaces, as well as of the algorithm(®] D. C. Dennett, “Why not the whole iguanaZBehavioral and Brain

. . . . .. L Sciences1:103-104, 1978.
itself. The infrastructure will provide archiving, disttition, [10] D. L. Parnas, “On the criteria to be used in decomposjesns into

version control and automatic patching (without breaking = modules”,Communications of the ACM5(12):1053-1058, 1972.
accountability) of published processes. The interplay of th[11] Mathworks,Matlab & Simulink http://www.mathworks.com.

. . . . . e [12] K. Gurney, T. J. Prescott, J. R. Wickens and P. Redgr&¥emputa-
infrastructure with accoumab"'ty will ease the identfion tional models of the basal ganglia: from robots to membrangends
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Abstract—1In the latest years, several technmical architec-
ture paradigms have been proposed to support the develop-
ment of distributed and concurrent systems. Object-oriented,
component-based, service-oriented architectures are among the
latest paradigms that have been driven the implementation
of heterogeneous software products requiring complex inter-
process communication and event synchronization. Despite the
sharing of common objectives, the robotics community is still
late in applying these research results in the development of its
architectures, often relying only on basic concepts.

In this paper we shortly illustrate these paradigms, their
characteristics and successful stories within the robotic domain.
We discuss benefits and tradeoffs of the different solutions
with the goal of deriving some practical principles and strate-
gies to be exploited in robotics practice. Understanding the
characteristics, features, advantages and drawbacks of the
different paradigms is indeed crucial for the successful design,
implementation, and use of a robotic architecture.

I. INTRODUCTION

The technological development of robotics research will
soon lead to the marketing of robots that can play a key
role in supporting people in their everyday tasks. Pursuing a
specific objective while dealing with a dynamic environment
and ensuring a safe interaction with human beings, requires
a complex multifunctional structure for the robot control,
where heterogeneous hardware and software components
interact in a coordinate manner. Additionally, the increasing
number of distributed embedded computing and communica-
tion devices, available in the environment, introduces further
requirements about interoperation with external systems.

The robotics community have recently proposed several
architectures for robot software control [1]-[6], where mono-
lithic development methodologies are avoided as unable to
deal with the problem complexity. Despite this large number
of significant proposals there is still a lack of a common,
suitable solution that would allow reuse of previous efforts.
The main reason for this failure is the difficulty of clearly
describe and formally define a problem domain which is still
unclear as the field of multifunctional robots. For the same
problem, different research projects still produce different
specifications for its domain. This has a huge impact on the
final software architectures as it often prevents the exchange
of software solutions developed by different research groups.
Even if the robotics community is still not in the stage of
avoiding the recreation of incompatible solutions, a plague
which is common to other software research fields, it could
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greatly benefit from the advances and maturity reached by
distributed technology research. This research field is already
converging toward few technical architecture paradigms and
mature implementations of these ideas are freely available
in the form of software middlewares supporting complex
interprocess communication, event synchronization, and data
distribution. A thoughtful application of these research re-
sults in the development of robotics software architectures
would, at least, alleviate the cost of re-invention of core con-
cepts and techniques for the control of distributed devices.
Nevertheless, their application to robotics research is still
late, often relying only on the basic concepts of the available
middlewares.

In this paper we shortly introduce three technical archi-
tecture paradigms that have been successfully exploited in
several applications (Sec. II). Their characteristics and suc-
cessful stories within the robotic domain will then be detailed
in the following sections (III-V). We discuss benefits and
tradeoffs of the different solutions with the goal of deriving
some practical principles and strategies to be exploited in
robotics practice. Understanding the characteristics, features,
advantages and drawbacks of the different paradigms is
indeed crucial for the successful design, implementation, and
use of a robotic architecture.

II. ARCHITECTURE PARADIGMS

In the latest decade, the distributed computing community
has witnessed a rapid evolution in the paradigms for software
architectures. An increasing request for modularity, abstrac-
tion, and separation of concerns drove the development of
Distributed Object Architecture (DOA) paradigm (Sec. III).
DOA is based on the object oriented approach and is an
improvement over the first attempts to provide platform
independent solutions for interprocess communication such
as sockets, Java RMI, etc. A following step introduced the
concept of software components [7] with the objective of
promoting the reuse of design and implementation efforts.
The final objective of Component Based Architecture (CBA)
paradigm (Sec. IV) is the development of components, even-
tually from multiple sources, that can be deployed according
to customers’ needs, often evolving during project lifetime. A
recent trend of development of modern large-scale distributed
and mobile systems is calling for a new solution able to better
support an automated use of available distributed resources.



The idea of viewing software as a service is at the base of
Service-Oriented Architecture (SOA) paradigm (Sec. V) that
have been recently introduced to provide loosely coupled,
highly dynamic applications.

Next sections will introduce the basic characteristics of
each architecture paradigm, together with few representative
examples of their application in robotics domain. This lays
the background required to motivate the choice among the
different paradigms when a new robotics application must be
developed.

ITII. DISTRIBUTED OBJECT ARCHITECTURE

Distributed Object Architecture (DOA) concepts are the
result of the merging of object-oriented design techniques
and distributed computing systems. Indeed, DOA applica-
tions are “composed of objects, individual units of running
software that combine functionality and data” (OMG) and
run on multiple computers to act as a scalable computational
resource. To support the interaction between server-side
objects and clients invoking them, DOA systems rely on the
definition of interfaces. Each distributed object must declare
the available operations so that the clients know which
requests they are allowed to perform, and the DOA system
knows how to marshal/unmarshal the arguments. As DOA is
an evolution of object-oriented techniques, often developers
identify fine-grained interfaces that need a high level of
control on concurrency during multiple objects interactions.

A. DOA Standards and Middlewares

Among the several DOA proposals in the latest fifteen
years, the Common Object Request Broker Architecture
(CORBA) has achieved the highest level of maturity and dif-
fusion. CORBA (http://www.corba.org) is a vendor-
independent specification promoted by the Object Man-
agement Group (OMG) (http://www.omg.orqg) that
overcomes the interoperability problem allowing smooth
integration of systems built using different software tech-
nologies, programming languages, operating systems, and
hardware. To ensure portability, reusability, and interoper-
ability, CORBA architecture is based on the Object Request
Broker (ORB), a fundamental component that behaves as
a system bus, connecting objects operating in an arbitrary
configuration (Figure 1). To achieve language independence,
CORBA requires developers to express how clients will make
a request using a standard and neutral language: the OMG
Interface Definition Language (IDL). After the interface
is defined, an IDL compiler automatically generates client
stubs and server skeletons according to the chosen language
and operating system. Client stub implementation produces
a thin layer of software that isolates the client from the
Object Request Broker, allowing distributed applications to
be developed transparently from object locations. The Object
Request Broker is in charge of translating client requests into
language-independent requests using the Generic Inter-ORB
Protocol (GIOP), of communicating with the Server through
the Internet Inter-ORB Protocol (IIOP), and of translating
again the request in the language chosen at the server side.
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Together with the Object Request Broker, the architecture
proposed by OMG introduces several CORBA Services,
providing capabilities that are needed by other objects in

a distributed system.
IDL Compiler

Obi Re
[ .. ' o 3
D D D eleto
OR
.I
.I
ORB Core

1: CORBA ORB architecture

B. DOA Robotic Applications

CORBA is in wide use as a well-proved architecture
for building and deploying significant robotics systems. In
these sectors CORBA is growing because it can harness
the increasing number of operating systems, networks, and
protocols supporting real-time scheduling into an integrated
solution that provides end-to-end QoS guarantees to dis-
tributed object applications.

Initial robotics work using CORBA took a simple ap-
proach to ORB technology, ignoring fundamental com-
ponents such as the Naming Service for location trans-
parency [8], or exploiting CORBA only for interoperabil-
ity of previous developed components [9]. Following these
experiences, other investigations used CORBA to achieve in-
teroperability and location transparency in their applications
and to exploit other useful CORBA Services [10]-[14].

Several projects for the development of robot architectures
have recently based their work on CORBA. MIRO [2]
is an object-oriented robot middleware freely available as
open source. It supports multiple robotics platforms and
common operating systems and provides a set of interfaces
for communication among objects. The overall infrastruc-
ture is largely based on a client/server view build upon
standards and widely used CORBA packages to simplify
the integration of different robotics tasks. Humanoid control
architectures have also used CORBA for the implementation
of the communication layers. The large number of hardware
and software components, often heterogenous, that compose
a humanoid are already a distributed architecture that can
benefit from distributed middlewares to simplify the software
implementation [15]-[17].

The main area of applications of DOA technology is
currently the development of real-time and embedded sys-
tems. Stringent requirements about computing resources and
time-constraints have pushed the improvement on efficiency,
scalability, and predictability of DOA middleware imple-
mentations [18]. Most of the latest application of CORBA



have been successfully applied Real-Time CORBA ORBs
that allow these systems to use multithreading while con-
trolling the amount of memory and processor resources they
consume [19]-[21].

IV. COMPONENT-BASED ARCHITECTURE

Component-based architectures are based on the concept
of software component, i.e. a unit of composition with
contractually specified interface [22]. Following DOA ap-
proach, CBA also forces a strong separation between in-
terface and implementation to simplify the design of large
systems and promote software reuse. Nevertheless, DOA’s
objects are not candidates for CBA’s components. While
objects are tightly coupled with other objects, requiring their
presence to achieve their functionality, components should
be autonomous units whose purpose is well defined and
understood. As a consequence, components are generally
coarser-grained than objects.

Usually CBA approaches define a model that the com-
ponent developers have to follow in order to allow grace-
ful composition. Usually this model defines the creation,
use, and lifecycle management of components and includes
a programming model for their definition, assembly, and
deployment. Interactions can follow several schemes (syn-
chronous, asynchronous, by event, etc.) and they are usually
not statically defined but can be manipulated at runtime.
Additionally, to enable component composition at runtime,
CBA systems should provide introspective operations to au-
tomatically discover component functionality and properties.

A. CBA Standards and Middlewares

The literature on distributed systems has proposed several
implementation of the CBA concepts. The most mature
and generally applicable component models include the
Enterprise Java Beans (EJB) [23] of Sun Microsystems, the
Object Management Groups’s CORBA Component Model
(CCM) [24] of OMG, and the ZeroC’s Internet Communi-
cation Engine (ICE) [25]. We will limit our survey to CCM
and ICE as EJB had a limited impact on the robotics domain
because it is essentially tied to the Java world.

1) CORBA Component Model (CCM): The CORBA
Component Model (CCM) has been proposed by Object
Management Group (OMG) in CORBA 3.0 to enhance
CORBA object features and have them more suitable for
a component-based software development. It is a neutral
open standard supporting several programming languages,
operating systems, and networks, in a seamless way.

The standard extends the concept of object introducing the
component model and a set of new features to simplify and
automate the construction, composition, and configuration
of components. Each component usually identifies a coarser
unit of implementation with an interface that exposes ports
for the connection with other components. Ports include
facets, interfaces for synchronous method invocations, recep-
tacles, mechanisms to declare other component interfaces re-
quired for a proper functioning, and event sources/sinks for a
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loose coupling among components through the asynchronous
exchange of event messages.

Additionally, CCM standard specification describes the
steps in the application development lifecycle. During the
design, component behavior and collaboration are defined
together with the required ports; the design is then imple-
mented, requiring the definition of runtime support through
component descriptors. Afterwards, component packages
bundle component implementations with descriptors that are
used by component assemblers connecting ports of com-
ponent instances. Finally the system is deployed, preparing
required resources and realizing assemblies of components.

2) Internet Communication Engine (ICE): Internet Com-
munication Engine (ICE) is an object oriented middleware
platform that has been developed by the ZeroC group as
an alternative to CORBA OMG standard. ZeroC project
aims at providing an efficient object-oriented middleware
platform suitable for heterogeneous environments and with
a full set of features to support the development of realistic
distributed applications for a wide area of domains. It also
aims at avoiding unnecessary complexity, for a platform
easy to learn and use. While most of ICE aims are shared
with other distributed middleware solutions, the attention to
a code suitable for not advanced users without sacrificing
the completeness of the middleware is something new and
definitively not shared with most of the previously proposed
solutions.

Two services included in the ZeroC middleware are of
preeminent importance: ICEGrid, that implements grid com-
puting services to discover and control remote resources, and
ICEStorm, to efficiently distribute data within the architec-
ture.

B. CBA Robotic Applications

In the latest years, an increasing number of robotic ar-
chitectures have been built upon CBA principles. Indeed,
the component-based approach allows to give a possible
solution for several weakness on the development of software
for robotics applications. A first problem is related to the
great effort required to develop complete control software
for robotics systems before being able to start with the
implementation of research issues. The aim is to develop
components for mature algorithms, sensor, and actuators
that can be easily downloaded or purchased and flexibly
combined. Additionally, the latest robotics applications often
require distributed environments providing location trans-
parency for easy component rearrangement on processing
and bandwidth constraints. Additional details about CBA and
robotics can be found in [26].

Among the several available proposals, two mature
projects are RT-Middleware [27], based on OMG con-
cepts, and ORCA [28] implemented on top of ICE. RT-
Middleware [29] is a development framework created at
the National Institute of Advanced Industrial Science and
Technology (AIST). Its main goal is to simplify system inte-
gration through a methodology for the creation of Robotics
Technology Component (RT-Component) and a framework



for their composition. RT-Components, built as CORBA
components, consist of the following objects and interfaces:
Component Object, Activity, continuously processing inputs,
InPort, as input port object, OutPort, as output port object,
and Command Interface. RT-Middleware supports several
methods to integrate RT-Components. Together with low
level integration methods directly using CORBA based sys-
tem application programs or applying the composite pattern
to RT-Component object structure, the framework makes
available an assembly GUI tool, a script language, and
XML configuration files. AIST research laboratory has also
developed OpenRTM-aist, a prototype implementation based
on RT-Middleware interface specification and RT-Component
model that has been used to develop several testbeds such
as a force controlled manipulator system [29], a service
robotic system for elderly care [30] and an image recognition
device [31].

ORCA is an open-source implementation framework for
developing component-based robotic systems [3]. The main
ORCA objective is to provide the tools for defining and
developing the components that will be combined together
to support the implementation of an arbitrary robotic archi-
tecture. ORCA achieves this goal through the adoption of
a component-based approach using ICE for the definition
of interface and communication, and with the development
of tools to support the implementation of components but
still keeping full access to underlying details. Through the
identification of common definitions for data structures and
interfaces frequently encountered in robotics, ORCA can
build a repository of reusable components, libraries, and
utilities [32].

V. SERVICE-ORIENTED ARCHITECTURE

Service-oriented computing defines an architectural style
whose goal is to achieve loose coupling (i.e. minimized
artificial dependencies) among interacting software entities.
The key concept of this approach is the service, a unit of
work executed by a service provider to achieve the desired
results for a service consumer. Both provider and consumer
are simply roles played by software entities on behalf of their
owners. Therefore, service requesters (i.e. consumers) can be
end users (provided with client tools) or other services. The
interaction pattern among service providers and consumers
is illustrated in figure 2.

Service Registry and Broker

Service Provider Service Consumer

2: Service-oriented interaction pattern

The most important achievement of SOA-based distributed
environment is that shared resources (principally, applica-
tions and data) are made available on demand as independent

28

services that can be accessed without knowledge of their
underlying platform implementation.

A. SOA Standards and Middlewares

A good starting point for understanding what SOAs are is
OWL-S [33], [34], a service ontology supplying a core set of
markup language constructs for describing services in unam-
biguous, computer-interpretable form. This would allow the
automatic discovery, invocation, composition, interoperation
and execution monitoring of services. OWL-S is attracting
a lot of interest even though it is still under development,
suffering some conceptual ambiguity and lacking of concise
axiomatising.

In the meanwhile, and even before the rise of OWL-
S driven by the Semantic Web Community, SOAs have
been mainly created and deployed using the Web Service
technology. The latter aims at moving beyond the tradi-
tional middleware and framework concepts, standardizing
the support of higher-level interactions, such as service flow
orchestration and enterprise application integration. A num-
ber of protocols and standards define Web Services. WSDL
(Web Services Description Language) documents describe
the Web Service interface, through the identification of the
supported operations and messages and their bounding to a
concrete network protocol and message format. Web Service
interfaces are usually listed in centralized repositories, such
as UDDI registers, but there is still no standard protocol for
distributed publication and discovery of Web Services.

The loose coupling between consumers and providers
is achieved through a stateless request/reply scheme for a
message-oriented interaction. Messages are typically con-
veyed using SOAP, i.e. HTTP with an XML serialization,
but any other communication protocol could be used for
message delivery. Any system supporting these standards will
be able to support Web Services. Recently, the Web Ser-
vices Resource Framework (WSRF) specification has been
introduced to support the creation of stateful Web Services.
The platform-neutral technology of Web Services has been
implemented on several platforms for their development and
deployment. J2EE and .NET are the most successful ones
and they will be shortly introduced in the following.

1) Web Services with J2EE: Among the several
J2EE competing environments, the most widely used is
JBOSS [35] that provides the whole range of J2EE features.
Additionally, JBOSS includes extended enterprise services
including clustering, caching, and persistence as well as a
J2EE certified platform for the development and deployment
of enterprise Java applications, Web applications, and Portals.
The open source community also provides important toolkits
for Java-based development of Web Service architectures.
Apache products are the most notable ones, ranging from
Web Service containers to specific protocols implementa-
tions. Tomcat [36] is the servlet container belonging to
the Apache suit and it is used in the official reference
implementation for the Java Servlet and JavaServer Pages
technologies. Axis [37] is instead the SOAP engine, i.e. a
framework for the construction of SOAP processors such



as clients, servers, gateways, etc. It also includes a simple
stand-alone server that can plug into servlet engines, such as
Tomcat, extensive support for WSDL 1.1, emitter tooling
that generates Java classes from WSDL, and a tool for
monitoring TCP/IP packets. The latest Axis version also
support advanced WS-related protocols, such as the Message
Transmission Optimization Mechanism for efficient distribu-
tion of binary data among Web Services.

2) Web Services with .NET: Windows Communication
Foundation (WCF) is the Microsoft platform for SOA [38].
It is a rich technology foundation that aims at building
distributed service-oriented applications for the enterprise
and the web. The latest version of .NET (3.0), officially
launched with Windows Vista in January 2007, introduced
WCF along with Windows Worflow Foundation for the
support of service workflow. This marked the release of
the first Microsoft web services platform for the design,
implementation and deployment of services with essential
plumbing for scalability, performance, security, reliable mes-
sage delivery, transactions, multithreading, and asynchronous
messaging.

Another important set of libraries, tools, and applications
which implements the WSRF specifications is WSRENET,
developed by the Grid Computing Groups of the University
of Virginia. This free software allows easy authoring of
WSRF-compliant services and clients and integrates many
Microsoft technologies.

Recently, Microsoft released the Microsoft Robotics Stu-
dio (MRS) [39] a software based on .NET that provides a
service-oriented architecture combining key aspects of tradi-
tional Web-based architectures with new concepts from Web
Service technologies. In particular, the MRS runtime adopts
the REST (REpresentational State Transfer) model as its
foundation, and extends it with structured data representation
and event notifications from the Web Service world. MRS
supports several programming languages, including those
in Microsoft Visual Studio (C# and VB.NET) as well as
scripting languages such as Python.

B. SOA Robotic Applications

The adoption of SOAs in distributed robotic applications
has passed through a first phase in which services were
simply wrappers of existing applications, with limited ex-
ploitation of SOA protocols and tools [40]-[43]. Recently,
the research community entered a second phase in which
applications are (re)designed according to service-centric
models, considering also advanced specifications such as
OWL-S and WSREFE.

In this context, a work by Ha et al. [44] proposes the
automated integration of distributed robots, sensors and de-
vices into ubiquitous computing environments based on se-
mantically enriched Web Services. Their Ubiquitous Robotic
Service Framework (USRF) consists of three major compo-
nents: a Robotic Agent (RA), an Environmental Knowledge
Repository (EKR), and Device Web Services (DWS). The
RA includes a service application, a URSF Application
Programming Interface (API), a plan composition module,
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a knowledge discovery module, a plan execution module,
an OWL reasoner, and a protocol stack for Web Service
execution including SOAP, XML and HTTP. To request a
service from a robot, a user can input a command with a
user interface for the service application. Then, the service
command is encoded with vocabularies in OWL-S profile
ontology and the concept ontology stored in the EKR so that
the knowledge discovery module and the plan composition
module can understand the user’s service request. DWS
are actually Web Services for ubiquitous devices including
mobile robots, sensors, actuators, digital appliances, etc.

The service-oriented architecture for Web Labs proposed
by Coelho et al. [45] is targeted to education applications. In
this architecture the building blocks are services that can be
recursively composed to produce other, more comprehensive,
services. Lab resources (physical and logical) are modeled
and implemented as services, e.g. a robot exports a set of
services, each one performing a specific function (sensing,
navigation, etc.). The concept of federation of services allows
Web Labs to use resources maintained by other Web Labs
located in different administrative domains. The composition
logic of the experiments can be expressed in specialized
languages such as BPEL (Business Process Execution Lan-

guage).

Gritti er al. [46] explore a reactive approach to self-
configuration of an ecology of robots inspired by ideas from
the field of semantic Web Services, even though the resulting
middleware (called PEIS-kernel) is neither based on J2EE
nor .NET technologies. Their work is a clear example of
how SOA principles can be decisive for solving complex
distributed robotic problems. Three are the main charac-
teristics of the proposed approach. First, there is a formal
description of functionalities so they can be exported to the
ecology and automatically processed. Second, a framework is
available for finding exported functionalities compatible with
their needs and compose them to configure at runtime a set of
functionalities from different robots that can solve the current
task. Finally, a mechanism for semantic interoperability
allows to match functionalities from heterogeneous devices
according to a unified onto logical classification.

The last application we consider is the healthcare robot
platform introduced by Lee ef al. [47] which is based on a
Web Service Event-Condition-Action (WS-ECA) framework.
ECA rules consists of events, notification messages from
services or users, conditions, boolean expression that must
be satisfied to activate devices, and actions, instructions that
invoke services or generate events. The healthcare robot plat-
form is equipped with various sensors, including ultrasonic
sensors for distance measurement, IR human detection sen-
sors, navigation sensors, etc. It can collect vital signals, such
as heart rate, blood pressure, breath rate, from bio-sensors.
These sensors are active publishers of context events, which
can be registered by the WS-ECA engine as operators. This
ECA-based approach is becoming widely used in ambient
intelligence applications.



VI. CONCLUSIONS AND FUTURE WORK

In this paper we shortly reviewed three main architecture
paradigms for distributed applications and their successful
use within the robotics community. The survey showed that
the different paradigms have different characteristics and
properties that make them suitable for different distributed
applications. DOA is based on the fine-grained concept of
object which is suitable for lower layers where the developers
need high performance even if this requires a high level of
control on concurrency during multiple objects interactions.
CBA and related middlewares are instead more suitable
for mid-tiers where the objective is to develop autonomous
components that can be exchanged and composed based on
application needs. Finally, SOA is useful for the development
of loosely couple architectures where the interacting entities
can be accessed without previous knowledge.

Our future work will go into details in these differences to
develop an in-depth discussion about influences and impacts
of architecture paradigms on robotics applications, following
similar investigations in other research fields [48]-[50].
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Reusing software components among different control archéctures
with the GenoM tool

A. Mallet

Abstract— GenoM is a robotics component generator that
has been developped and used at LAAS for the last 15 years. It
is actively maintained and has been able to integrate compte
robotics demonstrations on all the LAAS robots. | will present
an overview of the internals of this tool, as well as the
architectural principles that lead to its design. In a secod part,

I will present some prospective ideas on robotics component
homogenization that we consider in order to foster software
component reuse between research teams.

CNRS/LAAS, Toulouse, France
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Aspects of sustainable software design for complex robot atforms in
multi-disciplinary research projects on embodied cogniton

Martin Hilse and Mark Lee

Abstract— Sophisticated robot systems have become an im- and usually also a multi-center project. Robotic engineers
portant part in cognition research. On the one hand, au- and scientists from different fields have to combine their
tonomous robots are intended to provide a proof of concept approaches and know-how in order to create systems beyond

for cognitive models. On the other hand, cognition research th t state-of-th t One i tant f thi
becomes a source of inspiration in targeting current limitdions € current state-ol-the-art. Une important area of thra-co

in the engineering of robust, flexible and adaptive artifacs.  Pination is software development. Usually multi-disangiry

In this work, we discuss aspects of software development and research projects cannot start from scratch building upaa ne
integration for heterogeneous robotic systems in cognitio re-  system. They are rather confronted with a task of integnatio
search. As we will argue, one important issue is the combin&in —j, \which specific and very different software components
of different computational paradigms within one robot sysem, -

which are rooted in the divergent approaches of engineers ah are combined to one complex system. Very often these
scientists. This discussion lead to the introduction of a stware ~ Software components have been developed over years and
framework aiming to overcome some well known problems of are tightly bonded to specific constraints, such as operatio
sustainable software development in robotics, but particlar  system, programming language, middleware. The crucial
important for multi-disciplinary and multi-center cognit ion point for robotic platforms in cognition research projeists

research projects. The introduced framework is based on wél the diff bet the d in of it h and
established standards in software engineering and therefe can € dirierence between the aomain of cognition research an

be considered for a wide range of cognition research platfons ~ €ngineering, which is also indicated by the difference ef th
and projects. Further on, we will briefly present a robotic séup ~ applied software frameworks [1]. Due to missing standards
where this framework is applied. It consists of a manipulato  in robotics it is already difficult to extend or integrate cbb

of 14 DOF (degrees of freedom) and an active vision system gygtams without considering high-level cognitive models.
of 4 DOF. It is part of research activities aiming to model H the int ti f soft d | din the d .
behavior integration and action-selection mechanisms basl in ence : .e n ggra lon ot S0 vyare eveloped In the domain
large-scale neural networks. of cognitive science and robotics becomes rather a challeng

of its own.

. INTRODUCTION

The progress in robotic manipulation and mobile robot
makes nowadays an autonomous robot platform more th
an object of investigation for its own right. Miniaturizeti

The objective of this paper is to outline crucial aspects
at become relevant in software engineering of robotic
systems in cognition research projects. Based on our ex-

has led to platforms equipped with high dimensional sensopEence and recer_n reviews on software development and
and actuators with many degrees of freedom able to enlj&leg_ratmn n robotlcs_we h"’?"e_ developed a framevv_ork for
the daily environment of human beings. In consequenc@ed'um and large projects aiming for complex experimental

the focus of research and development is turning to robuéEbOt'C platforms for cognitive models. This framework is

multi-modal, multi-functional and adaptive interactiod o purely conceptual, based on design patterns and standards

an autonomous robot system in a complex and dynamﬁ% software engineering, and can therefore be applied to
environment. The creation of artefacts of such flexibilgy i any hardware and software environment. Furthermore, we

still a challenge, especially if scalability is considered will explain some elements of this framework in_detail,

Cognition research has become one source of inspiratigﬁsed on examples_ of an °U9°i”9 projegt basically involving
as well as a guidance to overcome current limitations iﬁer:':c:‘_'vﬁzilg;o; Z?;rlr?p'le'ﬁis\,vg; grimgi?é?n?;ofrfindsggi a
engineering of more complex and adaptive systems. On tﬁ%e develo meynt of iar e—sc:fle neural rgodels coordinatin
other hand, cognition research projects have been uglizir¥ velop 9 u inating

robot systems as demonstrators and therefore they server%%Chmg and grasping tasks.
an important proof of concept in this field. Furthermore,

embodied cognition, in particular, is focused on the cﬂucia}nt:-:éicrézﬁﬁg Il<se O;gag'czteigﬂfjn;?rllloﬁsé sz?taaczﬁ;tsecgfi) n
role the body has for the development of cognitive behaviar i y aspect gh et
cognition research projects. After this, the followingotw

and therefore it becomes rather usual that experimentssin ) " . . f the-state-of-the-art | .
research involve robot systems of arbitrary complexity. ~ Scorons give an overview of the-state-ol-the-art in sa

I . evelopment/ integration in robotics and outline our psgio
As soon as sophisticated robotic systems become part o S S o
. . ; . . ... of aframework considering aspect of robotics in cognition
cognition research project one is facing a multi-discigtin

research. This is followed by a section which gives a coecret
Dept. Computer Science, Aberystwyth University, Pengl&i23 3DB, example of this framework leading to the concluding section
Wales, UK{nsh, mhl }@ber . ac. uk of this work.
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Il. KEY ISSUES OF SOFTWARE DEVELOPMENT that clusters might be necessary to simulate large-scakahe
IN ROBOTICS models driving a robot platform [2]. Hence, nowadays ropust

The problem of sustainable software design has bedfansparent and reIiapI_e interprocess communication éed n
an important issues in software engineering in general af@ @lmost any nontrivial autonomous robot system.

therefore is widely and continuously discussed in manydieldd. Distributed teams
and domains. Guiding issues like modular, interoperable Where cognitive science and robotics meet it is very

an_d reusablg softvyarg have qu to the promotion of Ob]eﬁ kely that developers of specific system components are
oriented de_S|gn principles, d(_aS|gn patterns as weI_I as ag ographically distributed. The exchange of source codés a
ar:d test-_drlvebn _soft\_/vz;re geggn rr]ne”thodsb Tg_ese |ssgehs Bware libraries (sometimes even only pre-compiled) via
re evanht 'ln ro or?csful} eed, Ut"S a hot I'e 'Scussi_' Cl&uitable software repositories becomes only one majoeissu
Nevertheless, the fo owing collection outlines Specite a 1, ¢ngjder in this process. Due to the division of knowledge
pects _of software deS|gr_1 crucial for robotic related multi- competence within a project it also very likely that
disciplinary research projects. software integration between the different partners ikeiat
A. Prototypes and multi-components vertical instead of horizontal.

. . : Horizontal integration means that two or more project
Sophisticated robot systems are build up of different . 9 N . bro)
. rtners deliver software which is horizontally organized
components. Sensors, actuators and mechanics supposeB.

W ﬂin the overall software architecture. For instancee on

establish a coherent robot system are very often productst%am delivers the hardware and software of sensor fype

different manufactures. Sometimes these components havE. . :
; while another team is doing so for sensor tgand another
even the character of a prototype, i.e. software and harlwar

- . : - eam is responsible for an actuat@r All three software
are not sufficiently tested and might lack in specific func- be developed ind dentl
tionalities and robustness. Furthermore, it is not unutha! components can be developed independently.
the deli d dri ' f hard ’ devi . A vertical integration starts if a fourth party develops
rudimentary. though ono. might expect Softwars providingPPicaionsX on top A B and G, taking data froma

Y 9 9 P are p nd B and generating data feed int3. The success of
already solved and well known standard applications.

this type of integration depends on very carefully defined

In consequence, for robotic components the first step is t%%d implemented interfaces. Since formal interface deimit

development of a software which provides robust and generI%lnguages are purely syntactic and cannot cover any seananti

funlct(ljonahlty andﬁ_a_ pr?{oerterror hanhQIIEg meChtamsr&I;h'%formation, this process must involve an understanding of
Includes aiso suthicient test cases, which support a ro e constraints and needs of each part in a reasonable depth.
smooth exchange of system components, if frmware an is usually requires time, rather days than hours.

or hardware devices must be upgraded or exchanged.
. ) ) E. Simulator
B. Different representations and levels of abstraction . .
Almost every complex robotic project sooner or later

In research laboratories it is common that one device, i-?equires the use of a simulator, especially if an autonomous
a whole robot system or a specific component, is used f@spot system is intended as a test platform for learning
experiments in different domains. This might be necessapt other forms of self-organized mechanism of adaptation.
because experiments in a project must be conducted onsgnylations are an important tool to provide a proof of
lower level of functionality in oder to decide future designconcept for new methods and in order to tune important
issues. On the other hand, a research laboratory might Bestem parameters in advance. However, it only makes sense
involved in other projects, currently or in future, and sesit g yse simulators if the control software under investiyati
essential that specific components can efficiently be used fznerates the same qualitative behavior in simulation as on
very different experiments. the real robot. It is also important that the same control

Therefore it becomes important for the software design tgsftware can directly be used for both, simulator and real

tions and of course this should take as little effort as fubasi

This refers to the need that the core functionality of rabotiF ntegration of different paradigms
devices can be used independently, and that the exchangd&obotic related cognition research projects have to pay
and extension of system services with respect to hardwaparticular attention to the coupling between high-leverde

and software must be provided. tive models and hardware specific software. Cognitive mod-
o ] els are grounded in specific paradigms of computation and
C. Distribution of computational resources knowledge representation. Consequently, this leads taod

Robotic system components might only work in a specifiimplementations based on declarative or functional coeput
software environment. Some devices might also run olanguages or even simulations of neural networks. In centra
specific hardware, such as FPGAs. It is also usual thatrdware-close software is usually developed in procédura
computational expensive processes have to be distributedmputer languages strictly following this paradigm.
over different computers in order to guarantee real-time The problem with different paradigms is that sometimes
constraints. Recent experiments in neuroscience also shepecific constraints present either in the higher-levelehod
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in the lower-level software cannot directly be represeited
the other domain. Hence, these constraints cannot be ftandle RF
at all and therefore cut the overall system performance.
Examples relevant in almost any systems combining robot
hardware and cognitive models are real-time constrairds an CM
the different time-scales that specific system componests a
operating on.

In consequence a lot of effort must be put into developing DA
efficient pre- and post-processing, scheduling and error-
handling for bridging robot hardware and cognitive models.

o Fig. 1. The three software architecture layers of systerigdés robotics.
G. F|€‘lel|lty DA, driver and algorithmsCM interprocess communication layer aRdF

The aspect of different paradigms leads to another proE)o-IOOtIC control framework, see aiso [3], [4] and [10].
lem, also described in [1]. An engineer creates systems,
whose component functions are most efficient when they _ _ _
meet a detailed set of specifications exactly. The conseguer€W software. Mostly such implementations are claimed to
is high performance for a very specific task. But as soon &€ More general, but indeed, are addressing only specific
the application domain is extended or becomes more genefg€ds and even more crucial the software is even immature.
a decline of performance must be expected. Consequently, it |s_n_ot used by other labs and therefore is
On the other hand, higher-level robotic applications, anff" @way from providing a base for any standard.
cognitive scientists are no exception, they develop theidm  Noticeable is the effort in many robotic projects devel-
els, applications and experiments in a language groundedqRing middleware for a framework of handling distributed
an ontology based on general principles. Hence, they expd@potic systems. However, interprocess communication is
reasonable and scalable performance for general domains &% important aspect but not the only one for autonomous
problem spaces. robots. Recent reviews [3], [4] show that in robot systems
The aspect of interface definition and description was apasically a 3-layered software architecture must be censid
ready described in section 11-D for geographically disttéxl  €red (see Fig. 1). In the lower lev&®A software driver
teams. In this context, interface definition and implement#nd algorithm implementations are located. The middlel leve
tion become crucial because of the multi-disciplinary elsar ©M provides interprocess communication. The top I&REl
ter of cognitive science and engineering, thus, the differeis the place where the actual robotic control frameworks

approaches and the divergent expectations of specific afite developed. It is this top layer where robotic projects
general system performance. implement their strategies and models, generating ingeitig

In fact, one has to accept the inevitability of differento€havior. Some research projects claim that this levellshou

understandings between cognitive scientists and engine@fovide a declarative programming framework [3], because
about the needs and the relevance of specific elements!BeY thinkitis the best way to implementintelligent betwavi
the targeted models and tasks. This discrepancy is oftétpwever, other projects would probably disagree introdgci
overseen at the project-start but will emerge as soon gsd!fferent f_ramework forth|§ Ievell, wh_lch matches bestwit
lower and higher level implementations meet. As a mattéheir paradigm of computational intelligence.

of fact, the re-definition of interfaces, frameworks or even Being aware of the subjectivity and biased view on the
experiments will be the consequence. In our experience suth level, current activities in developing general robotic
re-definitions will happen several times in larger projestd ~ Programming frameworks are primarily focused on the two
always go hand in hand with refactoring of certain extentdower levels:DA and CM. Player [5], for instance, delivers

It is therefore, important to be aware of this problem, and o framework, whereDA and CM are interwoven [4]. The
the other hand to provide a software engineering framewoMARPsoftware [6] actually provides only a framework for
which allows, with reasonable effort, the alteration of théhe CM layer. The developers oMIRO [7] had similar

interfaces and the corresponding implementations on bothtentions. However, they have bultiRO as an extension of
sides: robotic hardware functionality and high-level ctiga ~ CORBAIn order to make this powerful middleware standard

models. easier to handle and faster to leaROCI [8] is based on
the philosophy that complex robot behavior is achieved by
lll. STATE OF THE ART “wiring” irreducible modules. In consequence, this softava
Robotics community is aware of the first five problemgrovides the design of modules acting in a decentralized
issued in II-A — II-E, but very little attention is focused onmanner. Therefore, iROCI all three layers collapse into

the problem of different paradigms. Nevertheless, statslarone network of interacting primitive modules.

providing robust and flexible solutions for interoperable, Another strategy calledMARIE [9] tries to support the
reusable robotic software does not exist yet. Although thieuse of existing programming environments and their con-
lack of standards is recognized by many researchers, the mosctions through a common middleware framework. Being
common solution to overcome this problem is to develop aware about the missing standards in interprocess commu-
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nication MARIE provides basically a set of design patterns ! RF
able to integrate communication protocols present in syste ! !
composed of heterogeneous hardware components. Howeve — _____________________ ___
the whole design is based on middleware. }
Once again, these examples represent the focus dbithe CLIENT |
level, which shows that system design is almost completely !
seen as a problem of reliable communication between the SERVER |
components. However, reliable and transparent communi- L o
cation has always an offset. This offset is crucial if many  -——-----------"-"-----~ DA
relative primitive interacting components have to cope with MVC !
real-time constraints. What we want to emphasize is, if a |
framework based on interprocess communication is applied
for system integration, it follows that, the lower the lewdl
system functions the more the reduction of system perfor- - --------"-~----~—-----—- !
manpe d.ue to the Oﬁset of communication. . Fig. 2. The proposed software architecture framework iatieh to the
It is this observation, that led us to the formulation of &.jayered variation in Fig. 1.
framework which tries to keep the middle layéM as “thin
and high level” as possible. However, interprocess communi-

cation provided iCM is an essential part in order to connectand parallel interacting with model. Different views can
high-level cognitive models and robotic hardware. But ifprovide different representations of the current data even
using it very sparely one can apply computational expensigking into account temporal aspects. Control elements can
but standardized and mature middleware solutions. In doingther monitor and maintain defined constraints or instéatia
so, one has a wide coverage of different software environore sophisticated control schemas. It is also possible to
ments and on the same time one can handle many effect¥§mbine severahPl components within one model.
real-time constraints on lower level functions without the ag we have argued above, the middle le@I primarily
involvement of computationally expensive n_1iddIeW<'?1re.sThiConnectS the cognitive model implementationsRR with
reduces also the effort needed for refactoring the intesfacthe ropot hardware and related services. Since the software
between high-level cognitive models and robot hardwargnyironment for cognitive models and robotic hardware is
However, the problem of modular, interoperable and re@sabhopably very different, it is recommended to use standard
software design in the basic layBA must still be addressed miggleware solutions in order to cover as much diversity
explicitly. We have done this by the usage of specific desigs possible. And to our knowledge, these standards in the
patterns, which will be explained in the next section. domain of distributed systems will all support client-sarv

IV. GENERAL FERAMEWORK frameworks. Hence, robotic functionalities and servicas c

be provided by one or more server applications, while cient

The general framework of our software architecture ig e responsible to request and deliver data needed and
based on the the three-layered architecture as show in F'g-g]enerated by the cognitive model running in tRE layer.
However, in the need for the support of a sustainable soéfwafgtice, the usage of standard middleware solutions also
design inDA we have divided this lower level into two levels: provides the distribution of lower robot functions, beaaus

APl andMVC (see Fig. 2). different servers can run on different machines.
The lower API provides simple and almost purely hard-

ware related application interfaces. These interfacesigeo V. ROBOTIC SETUP EOR THE REVERSE

common and general functionality for specific hardware ENGINEERING OF THE VERTEBRATE BRAIN
devices, such as cameras, laser scanners, actuatorsugtitho

these implementations will be usually very simple and The above introduced framework is applied in a project,
straight forward, they shall already make use of an objectalled REVERB [14], in which behavior integration and
oriented design. Also important is the testability of eackaction-selection mechanisms are modelled based on biolog-
component and the support for other software developeisally inspired large-scale neural networks. These models
through documentations and basic example applications.dte tested and developed on a robot platform basically
is also necessary that the components in &Rl layer consisting of a 14 DOF (degrees of freedom) manipulator
can independently be used and developed. This ensures #rel a vision system. The manipulator integrates a 7 DOF
smooth integration or update of new hardware and firmwargightweight arm LWA3and a 7 DOFDextrous Hand SDH

On top of these APIs we only develop new systenBoth devices are manufactured by SCHUNK GmbH & Co.
functions based on the model-view-control design patteidG [13]. The vision system is based on a 4 DOF pan-
[11]. This design pattern supports a complete separation tilt-verge platform equipped with two firewire cameras and
hardware from applications and the first level of abstractio a SCAMP vision system [12]. The unique feature of the
While the model element provides all the hardware funcSCAMP system is basically the pixel-per processor vision
tionality the view and control processes can independentbhip based on analog technology. This allows the execution
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Fig. 3. Robot hardware and corresponding distribution ower PCs. The
overall experimental platform consists of a manipulatorldf DOF and
vision system involving a pan-tilt-verge system, two firevcameras and
a SCAMP vision system [12].

processes in an arbitrary manner. In such a way, different

of computational expensive image processing algorithms layers of artificial neural networks can be connected, egen r
real-time. current. The processes can be implemented within a general
Almost typical for the integration of different devicescha C++ environment and the connectivity with other processes
is based on a different communication channel, such as CAN: defined in a XML-based language. It is also possible to

bus, serial, USB, firewire and ethernet. Currently, the tw8imulate the system in a MATLAB environment.
main hardware components are even connected to differentPue to its general character, CORBA-clients can straight-

computers, (see Fig. 3). forward be instantiated IBRAHMSprocess. In such a way, a
distributed robot systems becomes part of a large-scal@aheu
A. Software architecture model, which is simulated iBRAHMSand might itself be

Our software architecture has five independent comp&xecuted on a cluster.
nents in the API layer; each for every hardware deviceB' h .
camera, pan-tilt-verge systerhWA3 SDH and SCAMP - The usage of design pattemns
On top theMVC layer integrate some but not all of these The benefit of model-view-control based implementations
componentsLWA3 SDH and SCAMPhave still their own might be best briefly demonstrated by the following two ex-
model-view-control implementation, while pan-tilt-vergnd amples. We have outlined above that reusability of software
cameras are integrated in one pattern (Fig. 4). This do@wolves the alterations of data representations and tred le
not mean that in the future no other additional patternef abstractions. For visual information this means, thagm
will summarize other components. This depends on thdata might be applied to different filters or feature detecti
development in the project. processes. Hence, we have used the views in the MVC-design
The applications in theMVC layer are wrapped by pattern in order to deliver different filters. The instatitas
CORBA server implementations providing an interface fopf the view processes operate independently and paralel. O
interprocess communication and distribution. CORBAstlie one side, this supports the exploitation of multi-processo
implementations in arbitrary software environments an& nosystem, but more important, the implemented filters can be
able to access these hardware components and the serviapglied to any future instantiations of the corresponding
provided in theMVC-level. Due to usage of CORBA the design pattern. Therefore, a set of independently used func
interfaces must be written in IDL (interface descriptiortions can be generated which is totally separated from the
language). This provides, at least on the syntactical leveipderlying hardware.
coherent interface definitions between low and high level As only one example for th€WA3 7 DOF arm system
functionality. we have implemented a simple arm coordination task based
Actually CORBA-clients are part of the processes whicton two independently working control processes. The arm
establish the overall target of this software organizatibat coordination task is simply: while arm is moving, the ori-
is the cognitive model implementation. As we have menentation of the last segment, the hand segment, shall remain
tioned, the cognitive model in this process is implementethe same.
by large-scale artificial neural networks. The softwareduse The corresponding MVC-pattern is initiated with only
to simulate these networks is call@RAHMS[15]. Among two control process. The first is responsible for the global
many features, wittBRAHMSone is able to link different orientation of the arm, while task for the second process is
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to keep the orientation of the SDH hand in space constarargued, this supports the integration of different computa
The bottom-line of this example is that the first process isonal paradigms. The last aspect makes our framework par-
actively changing the global configuration of the arm, whilgicularly interesting for robotics in cognition researgfhere

the second is passively adjusting the remaining DOF, whiclengineers and scientists from different fields must intiegra
in this case, maintains the orientation of the hand. Bottheir different ways of system design and modelling.

control processes are operating in parallel on the same data
This avoids inconsistencies and makes the overall control
much easier.
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C. Switch between simulator and real robot system

The usage of CORBA supports also the integration of sim-
ulators. As we have seen it for the robot hardware a CORBA!
server can also be based on a robot simulator. If both server
implementations are based on the same interface definitiol2]
given in IDL, it makes actually no difference for a client
to which server it is talking. Hence, without any changes in
the client, it can communicate either with the simulator or
with the real robot. This type of integration is successfull
applied, for instance, for the mobile robot platform KURT3D
and the corresponding simulation MACSIim [16], [17].

[4]

[5]
D. Summary

The brief introduction of our robotic platform already
outlines the importance of two key aspects in our softward®!
architecture:MVC design patterns and CORBA as widely
supported middleware standard. TM& C patterns guarantee [7]
the strict separation of APIs and application layer rigltrir
the beginning. This supports the independent, modular, tesg
driven, and scalable software design of robotic components
We have also elucidated, hdMV/C patterns can simplify the (9]
control and provide different data representations. Cempl
multi-modal and computationally expensive algorithms can
already be implemented in tidVC-level without the usage
of middleware.

The usage ofMVC allows the integration of theCM
layer on a much higher level of abstraction, which Carﬂn]
lead to the reduction of interprocess communication. There
fore, powerful and computationally expensive middleware
standards, like CORBA, can be applied without violatindlz]
real-time constraints in the overall system. As we see in
our example CORBA supports as wide range of softwar@3]
environments, which enables us to couple our robot hardwalré!
with a MATLAB framework. Further on, the IDL used
in CORBA provides robust interface definitions betweerl5]
different developer teams and totally different data sesirc (16]
such as a simulator. It is this last issue, which enables us to
run a cognitive model either on a real robot or a simulator
without any changes.

[20]

VI. CONCLUSION o
Focused on current standards in software engineering we
have introduced a software architecture particularly Heve
oped for robotic systems made of heterogeneous hardware
devices and components. We have outlined how model-
view-control design patterns and CORBA, as the leading
middleware standard, can provide a sustainable software
development for different levels of abstraction. As we have
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A modular architecture for the integration of high and low level
cognitive systems of autonomous robots

Michael Spranger, Christian Thiele, and Manfred Hild

Abstract— This paper presents an actively developed and
used software framework that integrates different computa-
tional paradigms to solve cognitive tasks of different levels.
The system has been employed to empower research on very
different platforms ranging from simple two-wheeled structures
with only a few cheap sensors, to complex two-legged humanoid
robots, with many actuators, degrees of freedom and sensors.
It is flexible and adjustable enough to be used in part or
as a whole, to target different research domains projects and
questions, including Evolutionary Robotics, RoboCup and Ar-
tificial Language Evolution on Autonomous Robots (ALEAR).
In contrast to many other frameworks, the system is such
that researchers can quickly adjust the architecture to differ-
ent problems and platforms, while allowing maximum reuse
of components and abstractions, separation of concerns and
extensibility.

I. INTRODUCTION

Current cognitive robotics research is a wide, interdis-
ciplinary field, which sees contributions from such diverse
fields as psychology, biology, neuroscience, linguistics, com-
puter science and artificial intelligence. The reason for this
wide spread influence of diverse fields lies at the heart
of building complete artificial systems, which resemble
and achieve different levels of intelligence, autonomy and
developmental capabilities. The manifold contributions of
different fields pose not only great opportunities but also
great challenges. Specifically when trying to understand and
model rich phenomena such as for example language in
a full systems approach, the involved subsystems easily
get complex and hard to manage. However, the research
in language evolution has greatly benefitted from groups
trying to build models capable of dealing with noisy real
visual data, motor control of real robots and populations of
real robots [1], [2], [3], [4]. Often the solutions found in
such full system scenarios differ significantly from simulated
approaches [5] leading to more robust, plausible and scalable
systems [6]. Even more, some people (especially in robotics)
vigorously stress the role of embodiment and sensorimotor
integration for intelligence and intelligence research [7], [8].

The system presented in this paper is used on multiple
robots in experiments targeting very different research do-
mains. One such domain is sensorimotor control, which is
explored in the current framework using a neural network
dynamical systems approach and artificial evolution. The
framework provides a layer of abstraction which has been
built to allow for research on different hardware platforms

M. Spranger, C. Thiele, and M. Hild are with the Neurorobotics Research
Laboratory, Artificial Intelligence Workgroup, Department of Computer
Science, Humboldt-Universitit zu Berlin, Unter den Linden 6, 10099 Berlin
{spranger|thiele|hild}@informatik.hu-berlin.de
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ranging from simple two-wheeled robots to two-legged hu-
manoid robots with many degrees of freedom. A second layer
is concerned with higher level perception, world modeling,
reasoning and planning. This second layer is used to explore
visual processing, cognitive environment mapping and de-
liberative and reflexive reasoning tasks. The concrete task
at hand is governed by the research domain targeted by a
particular researcher.

Our group is involved in two big research topics: RoboCup
and artificial language evolution. The presented architecture
is used in both scenarios. RoboCup [9] is an international
research effort to push research in autonomous systems
by introducing a dynamic scenario in which robots have
to play soccer in teams against each other. The domain
requires robots to perceive their environment, model it and
given appropriate representations ultimately requires balanc-
ing deliberate and reactive behavior decisions. The second
research domain concerns artificial language evolution on
autonomous robots. This domain focusses on experiments in
which autonomous humanoid robots self-organise rich con-
ceptual frameworks and communication systems with similar
features as those found in human languages. Language and
cognition are seen as complex adaptive system shaped in
interaction with the environment and in interaction with other
population members. That is, language and cognition are
grounded perceptually in the world and ones own body, but
also socially through repeated communicative interactions in
a community of agents. Both research domains are targeted
at building complete artificial systems. The whole chain
of information processing is taken into account to solve
problems involved in a high level activity at the appropriate
level of information processing.

The remaining of this paper details the architecture and
implementation of the software framework. The next section
explains the split of the framework into two big parts (1)
sensorimotor control and (2) higher level cognitive processes
and introduces mechanisms for data interchange between
these two parts. The following sections explain the two parts
of the framework in detail. The paper is concluded by a
conclusion and an outlook on future work.

II. SYSTEM OVERVIEW

The architecture integrates two different paradigms. First
low-level sensorimotor control systems based on adaptive
neural controllers are actively developed. The aim is to
find robust controllers capable of driving different robotic
platforms and to allow higher level cognitive processes to
use these behaviors. A low-level neural controller balancing
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Fig. 1.  Systems build using the framework described in this paper.
The framework is split into two separate areas of interest (higher level
cognition and sensorimotor control), which on different platforms can either
be distributed across processes on a single central processing unit or can
be distributed over different processing entities. The top row names the
different robotic platforms built and under active development.

a two-legged humanoid robot, for instance, may prevent a
robot from falling over, while he is trying to grasp an object.
The higher level processes control the robots arm and hand,
while the balancing controller makes sure that the shift in
centre of mass is compensated. Such higher level cognitive
processes are organized in a second layer, called the cognitive
layer, which is designed for the modularized implementation
of such processes as modeling the environment, reasoning
and planning and visual perception. Both layers are loosely
coupled and allow for the interchange of data in many ways.

The sensorimotor layer has been implemented on a number
of platforms, such as the Do:Little, a simple single processor
equipped two-wheeled robot, to a full fledged multi-sensor
humanoid robot. While the humanoid robot is used for
research into complex walking and balancing tasks, the two-
wheeled robot is used to investigate the use of evolutionary
strategies for creating simple behavior controllers, such as
integrating sensory data from distance sensors and wheel
encoders into simple obstacle avoidance behaviors. Such
basic behaviors also include tropisms, such as light and
sound tropisms. In between these two platforms spanning
the complexity in terms of degrees of freedom and sensorial
configuration we are using a set of platforms to investigate
different aspects of sensorimotor intelligence and higher level
processes. The eight legged Oktavio robot was developed as
a demonstrator for neuronal control of biologically inspired
motions. The lab has also used AIBO robots produced
by Sony Corporation to investigate higher level cognitive
processes in the RoboCup domain. Please see section V
for detailed descriptions of all used platforms. Figure 2
introduces all platforms and the distribution of software
across processing entities.

This section will explain the two subsystems and their
integration given the latest platform built in the lab, called A-
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Fig. 2. The main hardware platform running the architecture presented in
this paper, the A-series and one of the distributed circuit boards attached
to it. The platform is equipped with a PDA in the back executing higher
level cognitive processes, the smaller circuit boards are distributed across
the body and process sensorimotor data in a tight loop.



series. The A-series was constructed by augmenting a readily
available commercial Bioloid robot construction kit [10],
[11]. The Bioloid was extended morphologically through
specially crafted plastic parts and electronically through
special micro processor equipped sensor and actuator control
boards distributed across the whole body, a camera and
a Siemens Pocket Loox PDA. The original power supply
included in the robot kit was replaced by three lithium
polymer cells per robot, two at the let and right upper leg
limbs and one in the trunk. The eight sensor and actuator con-
trol boards, called AccelBoards, all feature simple two axis
acceleration sensors, a RS485 motor control bus interface
(used to drive the Dynamixel actuators) and a Renesas RISC
processor. Together they form a net of distributed processing
nodes, that are connected via a shared half-duplex RS485
bus, which is used to share the sensory and motor control
data. The AccelBoards are connected to the PDA via a RS232
bus. The PDA connects to the image stream provided by the
pan-tilt camera of the robot via a framegrabber device.

The sensorimotor control framework is specifically de-
signed to run on low cost embedded hardware present in
even the simplest hardware systems and is tightly coupled
with the different hardware architectures. The framework
provides a hardware abstraction layer for implementing neu-
ral systems on very different processor and hardware archi-
tectures. Neural controller can thus be very easily evaluated
in different settings and on different platforms. This reflects
the general idea of finding robust neural networks specific
either via artificial evolution and analysis of its outcomes or
via designing neural networks given profound knowledge of
underlying systems dynamics, signal processing capabilities
and properties of recurrent neural networks. The idea is to
use neural networks not only in an evolutionary approach,
but also to analyze the evolved controllers and to engineer
more complex networks given the obtained results.

The second framework modularizes tasks and allows for
independent component development and testing. It provides
mechanisms for the distribution of components over pro-
cesses, transparent inter-component and inter-process com-
munication as well as an elaborate debugging architecture.
This framework was and is used to engineer vision driven
object and world modeling tasks [12], [13], as well as
complex behavioral strategies [14].

Both systems can be loosely coupled across hardware
boundaries, which not only facilitates separate development
efforts in both frameworks, but via a defined interface enables
the group to integrate solutions a posteriori. On A-series
robots both systems communicate via a RS232 interface
which connects the central processing power of the attached
PDA with the distributed processing boards driving basal
motor capabilities. The defined interface allows for abstract
commands, such as walking with speed, direction and ro-
tation, while retaining possibilities for more fine grained
control such as driving concrete controllers with specialized
parameters to complete low level motor control exerted by
higher level processes. A simple blackboard architecture
allows reading and manipulating all data available in the
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lower level processes. It is this blackboard which is used
to communicate between higher level processes and neural
motor control. Whether or not and how high level commands
are executed is up to lower level motor control processes. The
effect and success of higher level actions can be assessed by
the higher level processes through direct reading of sensor
values. Notice that this in turn enables for a dynamical
systems representationless motor control architecture, while
still allowing for kinematics to be established by higher level
processes, which means that behavior can be overlaid. A
grasp movement for instance can be controlled by visual
processes and is stabilized by the neural motor control and
in case of emergency operations (for instance when the robot
is falling) the robot to attain a safety posture. The blackboard
also allows the higher level processes to control motors
directly.

III. HIGHER LEVEL COGNITIVE PROCESSES /
COGNITION

This section deals with the part of the framework used in
modeling higher level cognitive processes such as modeling
the environment, planning and reasoning. Such processes
are predominantly developed for vision equipped robotic
agents, that are able to build up larger scale models of
the environment, which empower complex planning and
reasoning processes.

The software framework used to develop these different
processes is a successor of an architecture [15] used in
the development of complex, real time, autonomous robotic
agents for playing robot soccer in the RoboCup domain. The
original system was used quite successfully in that domain
and helped to become the World Champion in the four
legged league twice and has evolved quite substantially over
time [16], [17], [18]. The architecture is specifically aiming
to solve the problem of integrating software development
groups at different locations. Originally the software was run-
ning on top of the OPEN-R middleware (see for example [19]
for an early overview), a middleware system transparently
connecting components via hard and software boundaries.
The middleware was provided by SONY for the AIBO robot
platform and used internally by Sony laboratories, but also
externally through the RoboCup community. The architecture
provides four basic mechanisms

o a mechanism for splitting a task into smaller subtasks

(modularization)

o a mechanism for changing the implementation to the

problem posed by a subtask during runtime

o mechanisms for distributing modules across processes

and a simple inter-communication mechanism

« powerful debugging mechanisms

The main idea of the system is to provide an easy,
adjustable apparatus to split a computational task, like play-
ing soccer, into a number of smaller units called modules.
These units are defined through interfaces, which are sets of
data structures. These data structures, called representations
define the input and output of modules. That is modules
are clearly separated abstract components, which allows for
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Fig. 4. Tools are an important part of every computational architecture. The image shows the tool used to inspect the internal state of different robots
and robot platforms. Depending on the task (robotic soccer, language evolution) developers and researchers have access to a variety of generic debugging
mechanisms implemented on all platforms. This includes such things as generic data inspection and modification mechanisms (upper right), generic drawing
(middle row, upper images: in-image drawing; lower image: world modeling drawings used in the RoboCup domain) and debug switch mechanisms (panel
on the left). The tool is connected to a AIBO robot.

different approaches to a certain subtask to be developed
independently and to be compared to other solutions of the
same (sub)problem or task. The actual implementation of
a module is called solution and reflects a certain mech-
anism to solve the problem posed by input, output data
structures, which means that given the input data, a solution
provides an algorithm to compute the output data. Modules
therefor allow clear separations of concerns through defined
contracts/interfaces. Solutions are the different algorithms
developed and used separately for solving a certain task
(e.g. visual object perception). Together with a mechanism
to switch solutions during runtime this provides easy testing
and comparison facilities for algorithms.

To assist the designer and researcher trying to model a
certain system, additional procedures for distributing mod-
ules across different processes and communication between
processes are provided. A simple message queue algorithm
driving an event provider and consumer model is used for
inter-process communication. Additionally message queues
can be sent via network TCP/IP mechanisms, rendering the
connection of processes across hardware devices transparent.
Basically processes fill data structures which are part of the
interface of one or more modules. Processes are usually
triggered by events like an incoming new image from the
raw camera, which means that they are tied to hardware level
processes. Additionally they may also communicate between
each other. The system allows to specify wether the update of
a certain data structure causes the process to be run, which
is a very flexible mechanism for defining execution times
(process relative) and ordering.
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The architecture features three main debugging mecha-
nisms (1) debugging switches, which enables the conditional
execution of code (2) a generic drawing mechanism and (3) a
generic mechanism for manipulating data. These mechanisms
are mostly inspired by traditional debugging mechanisms
and are an attempt to replace debuggers, which may not be
available on all platforms. Debuggers can also cause signif-
icant overhead in execution time on some of the platforms
especially when used in remote debugging scenarios.

The proposed method of debugging switches, called debug
requests is used to enable and disable parts of the source
code. These switches are a runtime method, which enables
developers to switch on and off the execution of certain parts
of algorithms. The method is at the core of the debugging
mechanisms and is also used to trigger the sending of
debugging information used by the two other mechanisms.
The switches are implemented in terms of C++ macros
consisting of a textual key and the code to be executed
conditionally. A runtime system manages the state of the
keys and triggers the execution of the associated code parts
accordingly. An important feature of the implementation is
that the runtime system only manages debug states that are
visible and allows connecting debugging tools to query the
available keys. This enabled us to develop debugging tools
which are to a certain degree generic, that is it does not
matter which robot platform it connects too, but only the
support of these mechanisms is relevant.

Next to debugging switches the architecture provides a
way of drawing geometric figures in the robot control code.
The main idea here is that visualizations are a very useful



Fig. 3. Other hardware systems empowered by the architecture. From
top to bottom: the AIBO robot used in RoboCup, the eight legged Oktavio
walking machine and the Do:Little platform..
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debugging tool and are typically algorithm specific, which
makes it useful to bundle actual code and interleave it at
the relevant places with visualizations. Since most of the
platforms do not come with a display, and those that do
(A-series) in principle can use the same system to separate
the visualization from the actual robot control code, the
visualization is usually run on an accompanying laptop or
PC used for debugging. The mechanism is implemented
using macros, which trigger the sending of debug messages.
The debug messages include an identifier of the shape to
be drawn and a variable number of parameters depending
on the shape (for instance four parameters: x, y, width
and height for a rectangle in the image) and the space the
shape is drawn too. Two coordinate systems are supported,
one for drawing into images and one for drawing objects
relative to the robots body on the ground. Next to this vector
graphics approach, a mechanism is available which allows
for direct pixel manipulation of images. The sending and
manipulation of these images is implemented similar to the
drawing mechanisms via C++ macros, which consist of a
textual id and some primitive drawing operations.

To be able to manipulate data in a generic way a data
manipulation scheme has been developed. Data can be
exchanged through the message passing and queuing for
inter-process communication. On top of the serialization of
objects into message and message queues we developed
a mechanism that gathers a additional information about
variable names and class inheritance hierarchies. The main
idea is that during serialization of objects, a specification
of the serialization is built up, which is later used to
create generic data manipulation and drawing dialogs. The
specification in itself is a description of serializable objects
on a byte level. That is every object serialization can be
decomposed into primitive data types (such as int or double)
with names. The mechanism is implemented as C++ macros,
which are used inside the serialize functions, which govern
the serialization process. For this to work in complicated
inheritance hierarchies, all objects in the hierarchy have to
use these macros.

All debugging techniques are easily accessible through
an external debugging tool which connects to the robot
processes and allows for the conditional execution of code on
the robot (via debug switches), inspection of debug drawings
and provides dialogs for manipulating and plotting data (see
figure 4). It also offers facilities for recording log files,
replaying them and even sending them to the robot hardware
acting. The latter of which is helpful in oracle scenarios,
where the robot is fed with artificial images or artificial world
models and so forth.

IV. SENSORIMOTOR CONTROL SYSTEM /
SPINALCORD / HARDWARE CONTROL SYSTEM

In earlier robotic systems built and operated in the lab, the
sensorimotor control system was separated from the higher
level cognitive processes through thread or process borders.
On newer hardware like the A-series, these processes are
split onto independent hardware. The aim is to have a



sensorimotor control, which is cheap but achieves guaranteed
execution times. In our view this can best be accomplished
using a distributed architecture, with small special devices
each handling a subpart of the overall task without adding
the overhead of process and task scheduling. The small and
cheap circuit boards distributed across the body of the A-
series for example, each control a few motors and read the
values of a few sensors. But they do so in a very reliable
and fast manner.

The distributed processing entities provide the data (motor
control and sensory data) on a shared communication bus,
called SpinalCord. The bus is updated with a frequency of
100 Hz, which is also the frequency for calculating new mo-
tor control data. However, sensor data like the data stemming
from the two dimensional acceleration sensors is acquired
more often and median filtered before data exchange.

The communication baud rate differs, but is at least one
MBaud with at least 256 bytes of data shared per time frame.
On newer systems like the currently designed M-Series
humanoid robot we will increase communication speed. The
communication protocol is exactly timed, so that defective
boards are handled gracefully. No data is transmitted from
the defective board and all other boards are using the
last received data. If e.g. one arm on a humanoid robot
malfunctioning, the rest of the system will stay operational.
This makes the system very reliable. An example of such an
architecture is the Oktavio. Legs can be added and removed
from the body trunk, while the robot is operating. The robot
can be repaired at runtime by changing legs, but the same
principle is used to investigate different configurations of
legs.

Luckily having a lot of distributed circuit boards does
not mean one has to develop more software. In a sense
the boards constitute a distributed but homogenous platform,
since every board runs the same firmware. However, in some
cases it makes sense to make the boards location aware. The
position of a board on the body is detected using the attached
hardware, e.g. on the A-Series humanoid robots each actuator
has an unique ID, which can be queried and serves as an
indicator of the board’s position on the body.

The SpinalCord data is read- and writable from high-level
cognition processes. So one way of controlling an actuator
is by using the high-level cognition framework introduced in
the previous section. This is used on the A-Series humanoids
for controlling the pan and tilt unit of the head (which
contains the camera).

The simplest way for on-board motion control is using
a keyframe technique. We are using one keyframe motion
net at a time, which encodes all needed motions. It contains
branching points for changing the currently played motion
using a selector (which is only one simple ASCII byte).
Building motions using the keyframe technique is simple
and fast.

Without using sensor data, unstable systems i.e. humanoid
robots are difficult to control. The architecture therefore
offers the possibility to control motions using a bytecode
language. Depending on the processor used, this language
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Fig. 5. The MotionEditor software with a simple motion net on the left
and corresponding motor values on the right

has to be more or less simple. We at the Neurorobotics
Research Laboratory are using a neural bytecode describing
recurrent neural networks. With this language it is possible
to control the whole system using neural networks.

The two techniques could be merged in different ways. It
is possible to have some motions in keyframe technique and
some using neural networks. Furthermore it’s also possible to
let the keyframe technique calculate the next motor control
values and then adjust them using neural networks. These
are able to include sensor data and so it’s even possible to
stabilize keyframe motions.

Having these two techniques one has broad possibilities
for motion control: from simple and fast to develop keyframe
motions to robust and stabilized neural motions. So keyframe
motions could be used to easily analyze motions and then
develop motions using neural networks. It’s also possible
to convert keyframe motions to neural networks using the
neural one-shot introduced in [20].

Creating keyframe motions and linking them to neural
bytecode is made easy using a custom software called
MotionEditor (see figure 5). Keyframe nets are created
using a simple drag-and-drop interface. Using the syntax-
highlighting editor one is able to write neural “programs” and
to link them to the keyframe net. Keyframe values could be
manually adjusted or the robot is put into a desired posture
and the values are read out. Therefor the robot is directly
linked to the PC using a standard USB connection. With
only one click it is possible to deploy keyframe nets into the
processor’s memory. The robot can then act autonomously.

The introduced simple bytecode is used on different
hardware platforms and is even implemented for PCs using
Windows and Linux for simulation purposes. In the project
e-Robot it will be possible to control simple robotic experi-
ments using such bytecode through the internet and watching
the results as a video.

This architecture is cheap and robust and offers keyframes
and neural networks to control the actuators. Like in real
humans and animals, the motion control is separated from the



high-level cognition and e.g. reflexes could be implemented
without changing the high-level part. The cognition only asks
for things like walk left and the motion control is highly
independent on how it achieves this. The high-level cognition
could also set values of input neurons and then ask for walk
and the robot walks into the direction corresponding to the
input value.

V. ADDITIONAL HARDWARE PLATFORMS

The architecture presented here has been used on different
platforms, with the already introduced A-series robots being
the most complex. However, we have also used other plat-
forms aimed at very specific research question, among them
small Do:Little robots.

The Do:Little is a two-wheeled robot designed for mass
production. It is equipped with a 20 MHz CISC processor
featuring additional DSP technology. The platform can sense
its environment using three brightness sensors, five infrared
distance sensors and two active ground gradient sensors,
which make the platform suitable for evolving neural con-
trollers in obstacle avoidance tasks and light tropisms. Ad-
ditionally, the robot features two microphones to investigate
phonotaxis and swarm behaviors. To study social behaviors
in groups the perimeter of the robot is bronze covered and
silver contacts are spread throughout the body which allow
robots to exchange energy. Special electronic circuit design
lets robots decide wether they want to act as an energy source
or sink.

One of the first bigger robots built to investigate walking
controllers was the Oktavio. Oktavio is designed to be
a universal platform for evolving walking machines with
different configurations of legs. Up to eight legs can be added
and removed while the robot is operating. Each leg is an
autonomous energy and processing entity, equipped with a
20 Mhz CISC processor, three joints powered by a set of
motors and electronic component as well as energy supplying
batteries. The legs can sense their environment and state
through motor encoders measuring the state of motors, two
infrared distance sensors, as well as a specially constructed
foot-ground contact sensor, which measures the exact ground
contact position and force of the leg. The body construct, a
plastic plate has eight connectors which allows for up to
eight legs to be added and a ring bus system allowing legs
to exchange signals and align their walking control patterns.

Another research avenue long pursued in the lab is the
RoboCup domain. One of the leagues in RoboCup uses
AIBO robots produced by Sony to investigate the integration
of perception, modeling, reasoning and planning and action
architectures and algorithms grounded in a dynamic environ-
ment of soccer playing robots. The robots are equipped with
a movable camera, distance sensors, as well as microphones
and a speaker. They can interact with the environment using
four legs, each with three degrees freedom and a foot-ground
contact sensor. All motors driving the degrees of freedom are
equipped with angular encoders. The platform is the starting
point for the part of the architecture integrating vision and
proprioceptive sensor data to drive complex environment
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modeling processes which are used by behavior processes
to drive actions such as walking and shooting.

In an ongoing effort to combine experiences made with
all previous platforms, a new humanoid robot is developed
from scratch. This M-series is a successor of the A-series and
tries to scale the solutions developed for earlier platforms to a
much bigger robot. The robot will be about 1.20m tall and is
integrating experiments made in phonotaxis, speech synthesis
and recognition, motion balancing and two-legged walking
controllers with visual processing of a pan tilt camera in the
head. In addition it will feature two actuators at the end of
each arm for picking up and placing of objects, allowing for
complex interactions with the environment.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a loosely coupled software frame-
work used in very different research scenarios. We have
shown how the framework is used on multiple platforms,
allowing researchers to quickly adapt and integrate solutions
and algorithms developed. Additionally we showed how to
modularize specific parts of the architecture and how to
enable researchers and developers to interact with hardware
centric systems. Future work will mainly concentrate on
integrating the past research experience on a new hardware
platform, the M-series.
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Ikaros: Building Cognitive Models for Robots

Christian Balkenius, Jan Morén, Birger Johansson and Magohnsson

Abstract— The Ikaros project started in 2001 with the aim  easy interface with various types of hardware such as video
of developing an open infrastructure for system-level brah  cameras and robots. For example, there are easy interfaces
modeling. The system has developed into a general tool for 4 the various standards for video capture and video files, fo

cognitive modeling as well as robot control. Here we descrid di . I f bot trol th h ¢
the main parts of the Ikaros system and how it has been used to 24010 Processing as weill as for robot control through a se

implement various cognitive systems and to control a number Of drivers for different hardware systems.

of different robots ranging from robot arms and hands to active The goal of the infrastructure specification is to be mini-
vision systems and mobile robots. mally demanding for anyone developing an Ikaros module.
| INTRODUCTION It should be possible to learn to use it in a few minutes

o _ while still providing support for very complex architects:
The goal of the Ikaros project is to develop an open iny, the following sections we describe the different parts of

frastructure for system level modelling of the brain indhgl  {he karos system and the choices that have been made when
databases of experimental data, computational models aggsigning the different components.

functional brain data. The infrastructure supports a seasl
transition from a pure modelling and simulation set-up to Il. SYSTEM-LEVEL MODELS

real-time control systems for robots running on one or sver The core concept of system-level modeling is the module
computers in a single or multiple threads. Computationgjhich corresponds to a part of a model. A module can have
models are built by connecting individual modules thah number of inputs and outputs and encapsulates a particular
implement a specific brain model or algorithm into largeg|gorithm (Fig. 1). This does not mean that cognitive models
systems. built using lkaros must adhere to a modular view of cogni-

The system makes heavy use of the emerging standaliish. Instead, a system-level approach to cognitive madeli
for Internet based information such as XML and makes alicknowledges that different cognitive components intsrac
part of the system accessible through an open web-basg@ny ways and it is one of the strengths of the approach that
interface. We believe that this project has the potential t explicitly shows these interactions as connections betw
radically change the way system level modeling of the braigodules. A module in Ikaros is thus not a statement about
is performed in the future by defining standard benchmarkgcality or impenetrability, it is only an acknowledgement
for brain models and substantially increase the gain fromhat a system is constructed from several components, and
cooperative research between groups. these components or modules have different properties.

A system like lkaros can not operate in a vaccuum. |n general, to design a system-level model it is necessary
Instead, the goal is to allow Ikaros to easily work with ago answer four questions:
many external sources of information as possible. There is\what are the components of the systefftfis entails
simply too many types of information that need to be used bynswering at what level the model should be described.
the system and without taking an inclusive approach, the tagre the components individual neurons or brain regions,
of adapting information and models becomes too great. Thg are they some form of abstract description of functional
only viable solution is to integrate Ikaros with other sianil  components without direct relation to the brain? There is no
endeavors whenever possible. This inclusive approachsneajingle correct answer to these questions; it depends on the
that we want to offer a large corpus of experimental datmodel being implemented.
from cognitive experiments for use with Ikaros, but we also \what are the relations between the componemse
strive to make it easy to adapt other experimental data f@fey parallel systems with little interaction, or are they
use within the system. tightly coupled? Are they all at the same descriptive level

Inclusivness also means making development a transpargtare some components subparts of others? Is the system
and straightforward process. As part of the standard infrageterogeneous or hierarchical?

tructure, Ikaros already contains a sizable number of stahd  \which function is performed by each componehitfw

modules that are useful in a broad range of cognitive modelgan the functions be described as mathematical functions or

The infrastructure also contain modules that allow for ags algorithms? Ikaros supports systems built from standard
C. Balkenius, B. Johansson and M. Johnsson are with Lundedsfy modules that implement elementary mathematical functions

Cognitive Science, Kungshuset, Lundagérd, SE-222 22 LBwleden. as well as modules that are hand coded from scratch.

christian. bal keni us@ucs.lu.se What information is transmitted between the components
Jan Morén is with Knowledge Creating Communication Regde&enter, dh . ded7h . f di is th

NICT, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 61288, Japan an Ow Is It codedThe question of coding Is the most

jan. moren@nai | . com important for a system-level model and the only one where
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Input Output <nodul e
Module © class = "W ass"

nane = " M/Modul e"

FIG. 1: A module with one input and one output. al pha = "3"
beta = "0.1"
/>

A connection between two modules is specified in a
connection element:

<connecti on

sour cenodul e = "Thal anus"
source = "Qutput”
FiG. 2: A small system with three modules A, B, C with connections target rr?d},” €= B Aygdal a
between them. target = "Il nput

/>

Ik ¢ . traint th ol del Finally, it is possible to group modules and connection in
aros puts any major constraints on the possible mocets. { larger structures. The following example corresponds to
Ikaros, all inputs and outputs are coded as matrices of floaiﬁe structure shown in Fig. 3 and Fig. 4. It defines a group
This limits the possible models in several ways that mak| | .

it likely that diff t model be int i or new module) called X with an input x and an output y.
't more likely that difierent modeis can be [nterconnectedr, . group consists of three modules A, B and C which have
Although lkaros puts no constraints on the interpretatibn q

. . . . multiple connections between them. The input x is connected
the matrices, this type of structure is best used for codi

in terms of numerical values, either directly or using som the input & of module A and the output y receives data
o ' from output d of module B.

form of distributed code. - _ Groups can also be given inputs and outputs to let them
In Ikaros, the components are specified using an XMLf nction as new modules or be read from external files and

based language which also describes the relation between used as call descriptions. A specification of these featur

components. The function in each component is describ@T however beyond the current description.

either using standard modules or by writing new simulation

code. The transfer of information between components is IV. THE SIMULATION SYSTEM

implicit in the coding of the different modules. Currently, the main part of Ikaros is the simulation system
ll. DESCRIBING MODELS which consists of a platform independent simulation kernel

. . ] _ together with a large set of modules that implements differe
Fig. 1 shows a simple module. This module has a singlg,nctions and models.

input through which it receives input data and a single outpu ) o
through which it sends its output data. The input is read i~ Design Criteria
discrete time and the module also generates new output afThere were a number of important considerations in the
discrete intervals. choice of the simulation structure. The first was that it $tiou
Modules can be connected together to form systenise platform independent. There are two reasons for this. The
(Fig. 2). This network of modules is what makes up a moddirst is that it was expected that the system would be required
in lkaros. Here, the model consists of three modules A, B run on different architectures. The second, and more
and C. Module A has one input (a) and two outputs (b antinportant reason was that the we did not want to depend
e). Module B has two inputs (c and f) and a single outpubn one particular compiler or operating system. It is well
(d). Finally, module C has one input (g) and one output (hknown that code is only portable once it has been ported. By
The complete model has the single input a and the sing#multaneously developing for several operating systetns,
output d. would be almost guaranteed that Ikaros would be reasonably
One of the greatest strengths of Ikaros is its ability to harportable. We have consequently strived to comply with the
dle large complicated cognitive models consisting of mangelevant standards as much as possible. These includes ANSI
interacting subcomponents. To allow the specification ohsu C++, POSIX and BSD sockets. A related choice was to
architectures, an XML-based description language has bedapend on as few external libraries as possible. Although th
developed [6]. This language has three main componentsirrent version of lkaros uses external libraries for stgke
the module, the group and the connection. timing, threads and mathematical operations, it can séll b
A module element describes an instance of a particulaun in a minimal version that only uses a small set of standard
Ikaros module and sets its parameters. These paramet€rst+ libraries.
are handled to the constructor function of the module as The second main design choice was to use a discrete-time
described below. The only two required attributes eless model for simulation. Although this is the normal operation
and namethat decides what code the module will run andor most neural network simulators, there are some notable
how it will be referred. exception. However, to allow the easy integration of défer
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FiG. 3: A group consisting of three modules. The group is externalysidered as a module named X with one input x and one output
y. These inputs and outputs are internally connected totiapof module A and output d of module B.

<group name = "X"'>
<i nput name = "x" targetnodule = "A" target = "a" />
<out put nane = "y" sourcenodule = "B" target = "d" />
<nmodul e name="A" ... />
<rmodul e nane="B" ... />
<rmodul e nane="C" ... />

"b" target nodul e "B" target= "c" />
"e" targetnodul e "C' target= "g"/>
"h" targetnodule = "B" target= "f" />

<connection sour cenpdul e= "A" source

<connection sourcenodul e= "A" source

<connection sourcenodul e= "C' source
</ group>

FiG. 4: Example of a group of modules with its own input and outpue Giaphical representation of this system is shown in Fig. 3

types of algorithms, it was decided that a discrete tim&his design decision has made it easy to incorporate code
simulator would be most useful. It is hard to imagine hownot specifically written for Ikaros as long as it is reasogabl
many algorithms could be adapted to a continuous timelean. For example, the main function of a trivial module
framework. In most cases, this choice does not limit théhat would only copy its input to its output may look like
possible models that can be designed since it only relatdss:

to the times when different modules communicate and not )

their internal structure. MyModul e: = Ti ck()

Another consideration was that to make the system attrac- {
tive it should be as easy as possible to use many different
types of programming styles. As a consequence, we decided
to only use standard C data structures such as integers and
matrices of floats. The use of doubles was decided againstThe point here is that this code looks like any C++

on grounds of efficiency and the lack of support for doublesode and there is nothing Ikaros specific with it. When this

for(int i=0; i<size; i++)
output[i] = input[i];

in most vector co-processors. function is called, the array input will contain the inputthe
module and after execution, lkaros takes care of the result
B. Module Interface in the array output.

All inputs and output of modules are represented as arrayslt was also considered fundamental that simulations using
or matrices of floats and the sizes of these matrices aligaros would not be slower than simulations made in a
represented by integers. The sizes of all data structurdedicated system. Conceptually, all modules in lkaros run
used by lkaros are calculated during startup and can not bencurrently and synchronously. This mode of operation was
changed during execution. This restriction only applies foselected because it is the only possibility when it is neargss
the data moved between modules; for internal data used timat execution order is well defined, which is the case for
modules there are no restrictions at all. The actual code innaany algorithms. Because of the synchronous operation,
module can use any coding style as long as the inputs atftere will be a delay of exactly one time step (or tick)
outputs are in the right format - indeed, it is entirely feédsi between the production of an output from a module and the
to embed or interface with an interpreter in a module fotime when it can be used by another module. In most cases,
a completely different language transparent to Ikarodfitsethis extra copying step is necessary anyway and does not
Since Ikaros itself is written in C++, either C like or C++ usually incur any extra execution cost.
like coding styles can be used as long at it is wrapped in a Since this overhead is not always desired however, version
C++ class. Although the inputs and outputs are part of th@8.0 introduced zero-delay connection between modules.
Ikaros kernel data structures, the modules themselves ddésing this type of connections, there is no delay at all
not know about this. Instead, they can magically assume thia¢tween the production of an output and its use by other
the input matrices are always filled with the required datanodules. Instead, the second module refers directly to the
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memory where the first module has produced its output. To
make the result well defined, zero-delay connections ange onl
allowed within subsets of the complete module networks
that form directed acyclical graphs. That this condition is
fulfilled is checked during start-up when all modules are
sorted according to their position in the graph. With zero-
delay connections, the input to the system can in principle b
processed in a single time step regardless of the number of
modules that the information passes on its way to the outputic. 6: The order of execution of three modules. The numbers on
In this case, the execution overhead is negligible. the connections indicate the delay in the connections. Tinebers
The kernel also includes a small set of libraries that hide® the modules indicate the order in which they should beiggec
system specific code for sockets, timing, threads and serid® Wo shaded areas correspond to two thread groups.
communication. In addition there are utility libraries for
memory management, XML processing and mathematical

functions. In most cases, the programmers need not kn%WFortr?xzmptl;la, the Ol:ctg]m .frorrl the mOdULE could be set lto
about any of these libraries to use Ikaros. ave the goubie siz€ ot the input or some other more complex

relation. Since there can be a number of cyclical relations
C. Kernel Start-Up between different modules, the calculation of output sizes
Qerformed iteratively until all sizes have been establislie
mere are cyclical dependencies, these will be found during

The kernel is responsible for the creation of the networ
and its modules at startup, the scheduling during system. )
execution, and the propagation of data between modulélg.'S stage and an error message will be produced.

Fig. 5 shows the main component of the running lkaros &) Sorting the ModulesAll modules are sorted in two
system. ways (Fig. 6). The modules are partitioned into different

Detailed knowledge of the kernel operation is not at a/fets that each contains a directed acyclical graphs (DAG) of

necessary or even recommended for use of Ikaros. Knowirqﬁ(%je‘jd‘“es with zero-delay connections between them and only
why and in what order things are started do however make layed connectlons to any other m(_)dules. Each of these sets
easier to understand the design decisions made. This sectf" P€ run in a separate thread and is called a thread group. A
can be skimmed lightly without any loss of understanding toPelogical sortis performed on the groups according ta the
The most important aspect of the kernel is the creatioRositions in the DAG which defines a partial order relation on
modules. For modules that have zero-delay connections
between them, this order is used to make sure that a module
that produces data that another module will use is always

sequence that occurs when the system starts up. This happ
in six steps:

a) Class RegistrationWhen the Ikaros program starts,
it first registers all code for the modules contained in th&x€cuted before that other module.
system. This initialization step builds a data structurat th f) Module Initialization: When all modules have been

contains pointers to a creator function for each module tyge®nnected, the initialization phase starts. At this stage,
and binds it to a module class name. size of the input that each module will receive is known and

b) Module Creation: When the initialization has fin- each module is allowed to create any additional storage that
ished, the kernel reads the supplied control file in xMLJt needs and initialize variables. To do this, the kernelscal

format, which specifies the modules to activate and give'%m initialization function for each of the created modules.

them instance names and other parameters. One instance_of
each module specified is created for every occurrence of that
module in the control file. A module can thus have multiple The scheduling mechanism of the lkaros kernel is re-
instantiations with different parameters. When each msdubponsible for calling the code of each module instance once
is created, it registers its inputs and outputs in the ketmel during each discrete time step (or tick).
allow them to be connected in the next step. At this stage, In the simplest case, the scheduling consists of calling the
the individual modules also gain access to any additionsick function for each module in the order in which they were
parameters set in the control file for that particular modulesorted during initialization. When lkaros runs in threaded

c) Connections:When all modules have been createdmode, each thread group is handled separately in this way. In
the kernel continues to read the control file and make thbreaded mode, there is no communication between modules
specified connections between modules. in different DAGs during this time which greatly simplifies

d) Size Calculations:Most input and outputs have the operation of the kernel.
dynamical sizes that are set during start-up. For examiple, i In a second step, the data propagation function is called
the input of a module is connected to the output of anothéo copy data from outputs to the inputs of the modules.
module that produces a 4x4 matrix, the input of the secoridata propagation is done simultaneously for all modules.
module will adapt to this and set the size of its output3he output for each module is copied to the input to which
accordingly. There can be any relation between the size itfis connected. The propagation process is also respensibl
an input and the size of an output. for the simple data translation that is made by the system and

Kernel Operation
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FIG. 5: The Ikaros kernel. The kernel starts a number of threads evaegrumber of modules (A-G) are executed. The modules cocatemi
through a set of circular buffers that correspond to outpfutsn the modules. The kernel can also communicate with dkiagos processes
running on the same or on a different processor or computeaiddition, the kernel communicates with an optional graphiiser interface
client running in a web browser.

concatenation in the case when several outputs are connectelO Modules:There is a set of modules that read data from
to the same input. In addition, this stage delays the data dlifferent file formats, for example text data or differentdize
connections when this is set in the connection. files. Other modules are used to communicate with external
Finally, the kernel handles timing when Ikaros runs indevices such as cameras or robots.
real-time mode. In this case, the kernel makes sure that theUtility Modules: To simplify the design of models, there
execution of the tick did not take longer than allowed andre also a large number of utility modules for simple
waits for the appropriate moment to start the next tick. = mathematical operations. This includes vector and matrix
E. Anatomy of a Module operations and standard mathematical fgn_ctions. Othlity uti
modules are used to collect data or statistics or to control a

Every module in Ikaros |mplements_f|ve func_t|ons. For aexperiment. A few utility modules are used to generate input
module named MyModule, the following functions are beSuch as the function generator

defined and called in the following order:
MyModule() The creator function registers all the inputs
and outputs of a module. It also gains access to all paramet
of this instance of the module from the control file.
SetSizes(This optional function is called repeatedly dur-
ing start-up to calculate the sizes of dynamic outputs bas
on the sizes if the inputs to the module.

Image Processing Moduleginother set of modules im-

lement standard image processing functions. There are

odules to transform the colors in an image, modules that
scale images in different ways or performs other spatial
transforms. To apply different image processing operators
%ere is a module for convolution, but also modules for spe-

Init() The init function is called after kernel initialization Cm(.: operators sgch as the Sobel operator and paramerical
. L geﬁned Gabor filters. There are also several modules that
and lets the module gain access to its inputs and outputs:

- 4 8erf0rms edge detection. A few vision modules are more
This is also were any internal data structures are allocate d mplex and imolements a saliency map or an attention
Tick() The tick function is where the actual work is P b y P

. . . focusing mechanism.
being done by the module. It is called repeatedly durin ) . .
g y b y J Environment ModulesTo allow simulation of an agent

the execution of a module and should calculate new outputs : t th b f dules that
based on its inputs (See example in section 3.1). In an environment, tnere are a number ol modules tha

~MyModule() This optional function deletes any module?mplements simple environments. The GridWorld module

specific memory that has been allocated in Init() and pe|;_n_pler_nents a two—dlmensmna] environment consisting .Of a
forms other clean-up that may be necessary. grid with obstacles together with an agent that can navigate
A template for new modules is available as part of Ikarod" it while being controlled by other lkaros modules. There
This template is named MyModule and a new module caiﬁ also a variant where the simulated robot can move con-

easily be added to Ikaros by simply renaming the templatdnuously over the grid. This module also simulates a 2D
visual field using a ray casting algorithm. Another module

V. STANDARD MODULES simulates an arm with arbitrary geometry.
Ikaros contains a large number of standard modules. TheseOther Modules: The standard modules also include a
can be divided into a number of categories. few neural network algorithms and some general learning
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algorithms. extended with new graphical objects by writing JavaScript
code for the drawing of the new object.
VI. REAL-TIME EXECUTION One limitation of this solution is that it is not as fast

When Ikaros is used to control robots it is necessary thak using a dedicated program for the client. However, we
the precise timing of input and output can be controlled. Téelt that this solution has several advantages. First ofitall
accomplish this the kernel has functions to time the exenuti means the whole system becomes totally platform indepen-
of each tick. When Ikaros starts up it sets it time-base to thgent. But also, and perhaps more importantly, it enables us
required interval and tries to time the ticks to this timeséaa to transparently monitor and control a running simulation
Itinternally controls that it is able to keep up with the dedi remotely, independent of what system the simulator and the
speed and will report delays in the execution. client is running, and we can do so with a simulation running

Obviously, the accuracy of the timing will depend on theén another room or across two continents with no loss of
underlying operating system. The real-time functionality functionality.
based on POSIX.4 [21], but since Ikaros is currently not run- If fast, concurrent representation is important, the very
ning on real-time operating systems, any other process capen-ended structure of an Ikaros module enables users to
in principle interfere with real-time execution. In praij it  simply write a graphical module that includes the toolkit
is possible to get less than 1 ms resolution on the operating other representational system of their choice and displa
systems we have tested. data sent to the module from there. Likewise, a module that

An important factor that contributes to real-time perforteceives user interaction can change the behavior of other
mance is the ability to run Ikaros in multi-threaded modenodules in the system accordingly by defining a "command
[10]. In this mode, the kernel tries to run every module irchannel” that sends data to other modules via the same
a separate thread. When there are zero-delay connectionschanism as ordinary data. lkaros does not care how data
between a set of modules, the kernel will automatically pus interpreted within modules after all.
these in the same thread.

In thread mode, each module can be set to run at different VII. VALIDATING MODELS
time intervals. For example, a slow visual processing medul To automatically validate a model against relevant data,
may run 5 times per second while a faster motor contrdbr example, neurobiological databases, the specificaifon
module can be allowed to run 100 times per second. Tha&a module can include thmodelsattribute. For example, a
feature is very useful for robotic control where some loopsodule that claims to model the amygdala could be describes
need to run at high speed while others are much heavier.in the following way:

VII. A GRAPHICAL USERINTERFACE <nodul e
class = "Myd ass"

To monitor ongoing simulations, lkaros has a graphical
going grap name = "MNModul e"

user interface. Like the modules and connections, this user model s = " Anygdal a”
interface is specified using XML. This XML specification /> 9
is read by the Ikaros kernel which starts up an integrated
web-server which allows standard web browsers to act asThis information could be used to match the graph made
graphical clients. The browser gets a set of JavaScript roup of the modules in an lkaros model to connectivity
tines from Ikaros that are run in the browser that implement$ata found in neurobiological databases. Some first atempt
the graphical user interface [9]. The actual drawing is madewards such as system have been taken [11]. More recently,
using SVG [8]. The choice of JavaScript+SVG was basedle also interfaced the Ikaros validation system with the
on the fact that this would make the system truly platfornCoCoMac database.
independent.
For communication with the sever, the interface uses IX. EXPERIMENT DATABASE
JavaScript Object Notation (JSON). Although we initially In our earlier studies of classical conditioning we have
planned to use XML for this communication, JSON turnedieveloped an extensive database of the design and results of
out to be much simpler to use since it can be natively parsetnditioning experiments. The development of this databas
by JavaScript using the eval function. started in 1996 and now contains approximately 200 differen
Unfortunately, few browsers initially supported SVG andexperiments. The database is stored in a way that allows the
we made the choice to only actively support FireFox. Thexperimental descriptions to be used as input to computer
first version of Ikaros that used this graphical user int&fa simulations of learning by classical conditioning.
was released a few days before the first version of FireFox to Unfortunately, this database was stored in a form that is
include native SVG rendering (version 1.5). Today, severalot easy to access unless the previous simulator developed
other browsers support SVG and JavaScript in the required LUCS is used. It also has the limitation that it only covers
way including Safari and Opera. classical conditioning and not other learning paradignssaA
Currently, lkaros has support for graphical objects sucpart of the Ikaros project, we want to extend the experiment
as bar graphs, different forms of 2D and 3D plots, imageslatabase by adding more experiment types and by translating
grids and vector fields. The graphical client can easily bt#he database to a more accessible format.
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In the future, we will add experiment description forthe usefulness of the system. Unlike most other frameworks,
other learning paradigms besides classical conditiodihgs  Ikaros do not force the user into one theoretical model ar int
includes operant conditioning experiment as well as monasing extensive libraries even though such support is edfer
cognitively oriented experiments. The goal is to cover allhis has made it easy for users of diverse backgrounds to
experiment types that are regularly used with animals arglickly learn to use the system.
humans. We estimate that the final database will include On the other hand, there are certain restrictions thatdimit
approximately 1000 experiments. for what systems lIkaros is useful. Some of these constraints

The entry for each experiment will include all informationcertainly makes lkaros less useful for some systems, in
that is necessary to reproduce the experimental conditonsparticular architectures that mainly relies on symbolio-pr
a simulator or a real experiment. This includes detailed datessing rather than numerical computation. We believe that
of the stimuli used, the apparatus, the exact timing etcillt w for a tool to be useful, it is necessary that it is adapted for
be important to differentiate between the part of the expespecific tasks and this inevitably makes it less useful foeot
iment description that contains the logic of the experimentsks. For Ikaros, it was important that it could be used for
and features such as timing and spatial location that aem oftreal-time processing and for robot control, which makes it
not essential. This will allow modelers to adapt experirmentdifferent from many other framework for more biologically
to their needs in much the same way that an experimebased modeling. We also wanted lkaros to run on almost
developed for one species has to be changed to fit anothamny hardware which is the reason behind many of the design
The database will also contain experiment descriptions ichoices.
narrative form and pointers to external databases such adn summary, Ikaros has proven to be a very useful tool for
Medline and BIOSIS when appropriate. building cognitive systems models and for robot control. It

To allow easy access to the experiment database, it willas evolved into a mature and stable system and has currently
be coded in the XML format that is widely used for on-been adopted by several research groups within the cognitiv
line data. The choice of XML for the database is naturadciences.
since it allows for an evolving and continually expanding
database structure. It can also be used to mediate thedransf XI. ACKNOWLEDGEMENTS
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Abstract—We present a Java framework, ThinkingCap-II,
for developing mobile multi-robot applications, which has been
successfully used in indoor, automotive and industrial robotics
applications. It consists on a reference cognitive architecture that
serves as a guide for making the functional decomposition of a
robotics system, a software architecture that allows a uniform
and reusable way of organising software components for robotics
applications, and a communication infrastructure that allows
software modules to communicate in a common way. A key aspect
of this software architecture is that it allows code reusability
by high level abstraction and a uniform way of accessing the
characteristics of the sensors. In order to show the suitability of
the framework an autonomous vehicle case study is discussed.

I. INTRODUCTION

The development of complex robotics applications involves
diverse areas with different needs, such as data acquisition,
signal processing, intelligent control, networking, etc. Large
robotics projects involving developer teams require the ef-
ficient collaboration of their members, and also the easy
integration of the individual developments. In the case of
small or reduced development groups, without considering the
economic factor, this becomes even more critical because the
development can be extended during non-bearable periods,
being of paramount importance fast prototyping and code
reusability. To allow for these, the abstraction, organisation,
and design of the software components are mandatory. In
addition, it is also mandatory to produce working, robust and
reliable applications.

The software aspects of this issue have not been discussed
in-depth by the robotics community [1], probably because it
is traditionally a software engineering topic. Nevertheless, the
need of standard specifications that deal with the recurrent
concepts and requirements of the robot software development
is certainly a key issue, which would allow to share, distribute
and/or reuse robotics software components. Thus, several
recent papers in journals address robotics software surveys,
analysis and comparisons (for instance see [2], [3]).

Traditionally, robotics software was basically the implemen-
tation of a functional architecture which was focused for a spe-
cific problem of set of problems. In this cases, the software was
divided into modules depending of their functionalities (like
TCA [4], AuRA [5], 3T [6], and Saphira [7]), most of them
obviating the transparency in communications, portability and
code reusability. These usually group the data acquisition, the
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real-time reactive processing, and the computation of actua-
tors to perform certain actions in a single software module,
mainly due to the real-time constrain of these applications.
On the other hand, robotics frameworks focused on low-
level problems aims to provide an abstraction of the robotics
platform (like Player/Stage [8], Open-R [9], and OROCOS
[10]), which facilitates the reusability of software upon this
abstraction. From the software point of view, it would be
quite useful to define a generic robot and the separation of the
problems to address. Then it would be possible to build tools
to allow for productivity in the robotics development cycle
(like MissionLab [11], URBI [12]). In the last years there is
also an increasing trend in multi-platform support, either in the
development of the whole software framework (i.e. TeamBots
[13] written entirely in Java) or allowing clients developed
in other programming languages, be then interpreted, scripted
or compiled (i.e. both Player/Stage and URBI support remote
clients written in different programming languages like Java,
Python, etc).

When faced with the development of robotics applications
for different domains, platforms, sensors and actuators using
a reduced development team, like our research group is,
productivity is of paramount importance. In addition, if any
of the developments is to become a commercial or industrial
product, the robustness is also a must. We have summarised
important properties of selected frameworks regarding the
productivity and robustness goals in Table. I. The Research
column identifies the most relevant users base in the research
community. The Industrial column identifies which frame-
works are intended to be used for commercial or industrial
applications, and what degree of industrial grade has been
reached. The Prototyping column evaluates the simplicity or
easiness for fast prototyping, which is directly related to man-
hours effort. The Language column shows the language for
implementing and using the framework. In some cases, there
are available clients for additional languages. The Data Flow
column identifies if the data flow is fixed at compilation
time or can be configured at runtime. The Functional column
identifies which kind of functional architecture the frameworks
are related to, if any.

Because we are concerned on productivity, fast prototyping
is a property that is considered more than necessary. URBI,



Research Industrial | Prototyping Language Data Flow Functional
Player Widespread C++/Clients
URBI Accademia Limited Excellent URBI/Clients Fixed FSM
Open-R RoboCup Full C++ Configurable
OROCOS EU Project Full C++ Configurable
TeamBots Limited Excellent Java Fixed Reactive
MissionLab Military Full Adequate C++ Fixed AuRa

TABLE T

SUMMARY OF SELECTED FRAMEWORKS PROPERTIES

TeamBots and MissionLab provide good support for this, but
only MissionLab and URBI can be qualified as industrial
grade. On the other hand, general usability is assured by
Player/Stage, Open-R and OROCOS, but only at a platform
level. In addition, Java multi-platform development has be-
come a standard feature in business, with many productivity
and development tools readily available. For this reason,
we have developed a Java software framework for robotics
applications that tries to keep productivity and robustness as
it main goals, while adopting the many interesting features of
the above mentioned frameworks.

This paper presents a software framework for developing
autonomous robots applications in diverse domains, like labo-
ratory robots, automotive and industrial vehicles are. The main
goal of the framework is to allow a high productivity while
obtaining robust code, adequate for commercial or industrial
applications. The Java framework has been successfully used
in different applications like laboratory robots, soccer-playing
robots, industrial robots and autonomous vehicles.

The paper is organized as follows. The first section de-
scribes the characteristics and design criteria of the software
robotics framework which is later used to control very different
platforms. The second section analyses and discusses the
most important features of the proposed framework. The third
section describes two case-studies: an autonomous car and
an industrial mobile robot. Finally, some conclusions are
presented.

II. THE THINKINGCAP-II FRAMEWORK

ThinkingCap-I1I (TC-II) is a Java framework for developing
mobile robot applications!. It is a joint effort between the
University of Murcia, Spain, and the University of Orebro,
Sweden, and it is based on previous work on ThinkingCap
[14], [15] and BGA [16] architectures. The framework consists
of a reference cognitive architecture (largely based on Think-
ingCap) that serves as a guide for making the functional de-
composition of a robotics system, a software architecture (par-
tially based on BGA) that allows a uniform and reusable way of
organising software components for robotics applications, and
a communication infrastructure that allows software modules
to communicate in a common way, independently of whether
they are local or remote.

A. Functional architecture

Although the TC-II framework is functional architecture-
free, we have developed most of our applications (like the the

! Additional information can be found at http:/robolab.inf.um.es/tc2
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case study described below) following a functional architecture
based on ThinkingCap [15]. It consists of a two-layer archi-
tecture (Fig. 1) for controlling mobile robots, one layer for
reactive processes and the other for deliberative processes. It
can be viewed as a stripped down instance of a 3T architecture.
The modules group the different functionalities present in typ-
ical mobile robotics systems (navigation, perception, control
and planning), in which sensing and acting are a must. An
important role is played by a centralised data structure called
Local Perceptual Space (LPS), borrowed from the Saphira
architecture [7]. It is a geometrically consistent robot centric
space which consists of a collection of Local Perceptual
Objects (LPOs). These LPOs model the local environment of
the robot, and take into account the a priori information (map)
and the currently perceived information (sensors) in a coherent
way.

A key point of the architecture is the VirtualRobot module,
which provides an abstract interface to the sensori-motoric
functionalities of the robot, effectively hiding the hardware
components, much like Open-R, Player/Stage, and OROCOS
do, but at a higher level. In this sense, we have developed Vir-
tualRobot modules that run on top of Open-R for controlling
AIBOs and on top of Player/Stage for controlling Pioneers.

This architecture has been implemented and used in dif-
ferent types of robots and has shown good capabilities as an
abstract guideline to organise the software which has to be run
in a robot.

B. Software architecture

The framework defines an abstract model of a 7C-II module,
which all the modules must follow. Some of these modules
will correspond to modules of the functional architecture.
Depending on the complexity of the system there could be
one to one or one to many correspondences. For instance the
Perception can be implemented as a single module or as a
collection of sub-modules, but in either case the modules must
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stick to the abstract module definition, which has support for
single thread and multi thread execution.

As the modules can be distributed among a set of CPUs,
the framework relies on a centralised communication scheme,
where all the communication goes through a blackboard
(described in section II-C). In addition, this blackboard is
based on an event system so that modules do not need to
poll the blackboard but wait until the desired type of event
has occurred. The communication mechanism is detailed in
the next section. The abstract TC-II module includes a port
to put data into the blackboard and to receive data from the
blackboard (via both polling and events).

The software architecture makes extensive use of all the
Object Oriented features of the Java language, and it includes
and offers: specification of run-time parameters for the dif-
ferent modules, flexible configuration of the system (in terms
of modules, robots and CPUs), and a predefined components
library. These features are organised in different packages:

o tcdevs. This package deals with device communication
and data representation issues, both for sensors and
actuators (Fig. 2). It includes a broad range of sensor
types (laser, GPS, INS, radar, etc) and makes extensive
use of the Factory pattern to hide the implementation of
their device drivers, allowing the addition of additional
vendor specific drivers in a transparent way, which is
resolved at run time. The most important benefit of
this is that the robot code does not know about and is
independent of the actual devices, allowing for a high
degree of reusability. In addition, the package includes
implementations to access different data buses, like CAN,
12C, RS-232, etc.

o tclib. This package is a repository of general algorithmic
solutions to standard mobile robotics problems (Fig. 3).
It includes code for localisation (fuzzy-Markov filter, par-
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ticle filter, Kalman filter), map-building (grid, fuzzy grid,
fuzzy segments), path-planning (A*, D*), task-planning
(topological planning, finite state machine, Petri net),
and behaviour execution (fuzzy hierarchical behaviours,
LUA embedded behaviours). The idea of this package
is to allow for new developments to be fast prototyped
by reusing previously used solutions. The designer has
simply to instantiate any of these methods from inside
the desired module. The included techniques make use
of the Model-View-Control pattern to allow for a general
implementation of the algorithms which is independent of
the visualisation of the results. Most techniques include a
default visualisation module which greatly simplifies the
debugging process.

tcarch. This package deals with architectural issues, high
level communications and modularisation (Fig. 4). On the
one hand, it includes the implementation of the Linda
communication infrastructure (described in section II-C),
basic runtime operation (thread and event management),
and shared data types (LPS, LPO and world models). On
the other hand, it includes basic abstract implementations
of the different modules of the reference functional archi-
tecture (VirtualRobot, Controller, Perception, Navigation,
Planner, Monitor), which are then customised for any
given application by sub-classing.

One key aspect of the framework is that the run-time
characteristics of the system can be specified and customised
by the use of configuration files. The framework supports
two different types of general configuration files, and contains
methods to parse and verify them. The following configura-
tions are used by all the modules:
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o Architecture Definition File (ADF). Specifies which mod-
ules are to be run, on which CPUs they will be running,
and which type of communication and process synchro-
nisation mechanism they will be using. The framework
provides methods to automatically instantiate the corre-
sponding classes at run-time. Thus, the use of ADF allows
for great flexibility when trying different approaches
and provides a very convenient method for specifying
a distributed system.

e Robot Description File (RDF). Specifies the different
parameters related to a given robot, like sensor number,
types, position and orientation, and platform kinematics
model and its parameters. It includes the specification of
the actual classes that will handle device-specific issues,
implementing interfaces defined in the tcdevs package.
The framework provides methods to access the definition
of the robot, and also to display it.

In addition to these, the framework also includes an appli-
cation specific configuration file, which may or may not be
used by the different modules:

e World Description File (WDF). Specifies the a pri-
ori knowledge of the robot environment, like walls,
rooms, corridors, landmarks, areas, waypoints, etc. The
framework provides methods to access and display this
information. The WDF can be left empty if no a pri-
ori information exists. The TC-II framework includes a
graphical tool for generating WDFs.

In order to execute a TC-II based robot, a valid ADF and

a unique name are needed. The name is used to identify the
robot should more than one is used. The framework parses the
ADF and then loads and instantiates all the different modules
specified, each with its corresponding parameters and the
desired Linda events that it will be listening to. All the modules
of a single robot connect to the robot local blackboard. In a
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multi-robot scenario, the ADF also contains the address of the
global blackboard. Once a module is instantiated, it execution
state is controlled by a finite state machine (Fig. 5), which
can in one of the following states: LOADED (it have just
been instantiated), INITTALISED (a valid RDF and WDF has
been received from the blackboard, and the module is ready
for operation), CONTINUOQUS (for continuous execution) or
STEP (for step by step execution for debugging purposes).

C. Communication support

In a distributed system, as many robotics applications are,
information sharing is a key point. Both the functional and
software architectures allow the execution of modules in differ-
ent processes or machines. To allow for a flexible information
exchange mechanism, TC-II relies on a shared blackboard
with similar services to those offered by a Linda system
[17]. As in typical blackboard systems, each module reads
information from the blackboard, processes it, and then writes
the corresponding results. Besides this, it can also work as an
event driven blackboard. In this way, each module registers
into the blackboard which kind of data it desires to receive.
When new data of such type is available it is sent directly to
the module.

Shared information is exchanged using tuples, a tuple being
a pair <key, item>. Key identifies the kind of data, and item
is the actual data. For instance there are some tuple types for
different purposes, like sensor data, motion commands, debug
information, navigation data and others. The object-oriented
capabilities of the Java language are used in this case to
define and implement all these tuples from an object-oriented
paradigm.

The blackboard of TC-II has been designed to work in
distributed scenarios, with different modules running in differ-
ent machines. In a multi-robot scenario, each robot maintains
its own local blackboard, and in addition there is a global
blackboard, which is an extension of the local blackboard
concept. In this case, information is now exchanged using
triples, a triple being <id, key, item>, where id uniquely iden-
tifies the robot that produced the information. The framework
includes a specialised module LindaRouter which connects
each local blackboard with the global one. This module is in
charge of filtering information sent to and received from the



global blackboard, thus acting as a lightweight communication
router.

III. FRAMEWORK DISCUSSION
A. On the use of Java

The TC-II framework has been fully implemented in Java.
One of the advantages of using Java is the real achievement
of having platform independence. Thus, the development of
the components is typically done in desktop computers with
standard operating systems, while the actual deployment oc-
curs in embedded systems that support Java. The current,
tested, deployment systems include both Linux and Linux
RT and embedded Java microcontrollers. Moreover, the Java
implementation makes the integration of the human-interfaces
in distributed scenarios a simple process. Being an interpreted
language, it is not suitable for computationally intensive tasks,
like real-time vision is. Because of this, the Java Native
Interface (JNI) provides a handy way of calling C-based
software by the virtual machine.

Some of the virtues of Java for development are related to
robustness (Java programs run in a protected virtual machine,
Java always performs runtime bounds checking) and reduced
debugging time (parameters always passed by value, except
objects that are accessed by reference, automatic garbage
collection, rigid type safety except for widening conversions).
Robotics applications may benefit from the productivity asso-
ciated, which is habitual in many corporative and enterprise
software developments.

An important feature of many robotics frameworks is the
ability of specifying the data flow at run-time. As such, Open-
R and OROCOS allow such possibility, in the first case by
means of configuration files. In TC-1I, this is accomplished
by way of the ADFs, because they not only contain which
modules are to be active at runtime, but also which events
are to receive. The way this is actually implemented is by
registering a given module into the LindaSpace to receive a
set of tuple keys. When a new value for a given key is available,
the blackboard calls a notify() method of the registered module
with the corresponding tuple. By writing the appropriate code
in the notify() method, a different variety of data flows can
be accomplished. This registration occurs at runtime when
parsing some fields of the ADF for the corresponding module.
This is possible by making extensive use of Java’s reflection
properties and Factory patterns.

Another important aspect is code reusability. The framework
allows the developer to write robot independent code through
the use of RDFs. For instance if a developer writes a per-
ception routine that computes some feature depending on
the sensor configuration, the RDFs allow for a high level of
abstraction and a uniform way of accessing the characteristics
of the sensors. Then the system designer or integrator has
to provide only the number and location of the sensors to
use the routine. All the standard components library has
been written following this approach. This is also possible
by making extensive use of Java’s reflection properties and
Factory patterns.
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A typical concern with Java is performance. While early
versions of Java were significantly outperformed by statically
compiled languages such as C++, and it may still be the case
for embedded systems because of the requirement for a small
footprint, current just in time (JIT) compiler technology are
closing the performance gap for long-running Java processes,
like robotics applications are, were the classes used during the
execution of the applications do not vary much during time.
Most modern Java virtual machines support JIT compilation
(as the one used in the iFork case study, section IV). One
comprehensive study of microbenchmarks [18] shows quite
a large variation in results but indicates that Java often
outperforms C++ in operations such as memory allocation and
file I/O while C++ often outperforms Java in arithmetic and
trigonometric operations.

B. On the functional architecture

We can distinguish between frameworks that provide tools
to design customised systems, and the frameworks that force
the use of specific functional architectures of the control
software. The first group includes Player, URBI, OPEN-R,
OROCOS, and TC-II while TeamBots and MissionLab belong
to the second group.

The first group provides a generic abstraction of the hard-
ware layer, which is quite useful to separate the robot control
and the real-time control of effectors. The different levels of
abstraction depend on the complexity of the hardware platform
for which they are designed. Player is intended to command
wheeled robots. URBI is designated to command more generic
platforms and although complex commands can be written, its
kernel is low level in essence. OROCOS propose to define a
generic robot by the specification of components, which are
completely decoupled of communications, and hence, control
flow and data flow are established outside of components.
The idea is that the user be able to assemble and achieve
the global functionality of the robot. The components used by
the application are chosen by the developer depending on the
functionalities needed.

TC-II follows a similar approach to that of OROCOS, and,
in essence, the software architecture is de-coupled from the
functional architecture. How is this related with what it is
stated in section II-A? Basically, the software architecture
does not know anything about the current functional architec-
ture, because the actual data flow is instanced at runtime, and
hence the functional architecture is then established. On the
other hand, our typical applications are layered up using the
described functional architecture, and thus we provide specific
classes to allow for a straightforward implementation of it, but
nonetheless, it is neither mandatory nor necessary to follow it.
In fact, one examples of the case studies presented below does
not strictly follows the functional architecture (see section IV).

C. Simulation

Platform independence is guaranteed by the use of the
Java language, and it is a very important feature of the
TC-1I framework. Platform independence allows running and
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debugging the code in personal computers and testing it
in the real platform. The TC-II framework takes advantage
of this and includes a Simulator module (Fig. 6) that can
simulate different sensor types, like range sensors (sonar, laser,
radar) and positioning sensors (GPS, laser, compass), and
platform models, like differential, tricycle, leg, and Ackerman
drives. The sensor simulation is realistic enough for taking
into account multi-path reflection, noise, and different firing
patterns, while the platform simulation is based on kinematics
equations and some pseudo dynamics constraints (i.e. the
minimum time to perform a full turn of the steering wheel).
The combination allows for testing of the efficiency and
performance of the different modules and their algorithms with
an acceptable degree of realism. In addition, the simulator can
simulate multiple robots, and their sensors not only reflect the
environment but also the other robots.

The Simulator is implemented as a VirtualRobot that is not
attached to any real device, and the same RDFs used by the
real robots are used by the simulator to configure the sensor
types and models and the platforms kinematics and constraints.
Thus, switching between a real robot and a simulated one is as
simple as changing a class name of the VirfualRobot section in
the ADF. In addition, the model of the environment is specified
using a WDF (which may be the same as that used by the
robots).

IV. CASE-STUDY: INTELLIGENT VEHICLES

This application is part of the MIMICS project, which aims
to develop an intelligent platoon of vehicles [19], where the
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Fig. 7.

The SatAnt autonomous car

leading vehicle (which is manned) acts as a guide for the
following vehicles (which are unmanned)?. Because of limited
budget, only one autonomous car has been developed and built.
The operation of the leading car is quite simple: it uses its
sensors to send information to the following car, which then
uses both its sensors and the information received to control
the actuators. All the information is shared using wireless
links.

The autonomous car, called SatAnt (Fig. 7), is based on a
COMARTH S1-50 sport car, which has been heavily modified
to allow it to be controlled by a computer based system. The
modifications include an automatic gearbox, electronic assisted
steering system, electronic speed control, and electronic brak-
ing system. For safety reasons, all electronic systems have
been designed in such way that they allow both manual and
automatic control, and at any time the electronic systems can
be disengaged. Both the frame and the outer shell have been
modified to accommodate for the non-standard equipment. The
sensors system includes a Novatel GPS (which provides global
positioning data), a Precision Navigation electronic compass
(which provides both heading and pitch/roll data), relative
encoders attached to the four wheels (which provide vehicle
speed), absolute encoder attached to the steering wheels arm
(which provides steering wheels angle), and a Fujitsu 77 GHz
radar (for detecting obstacles and the leading car). The manned
car is simply provided with portable equipment that contains
the positioning sensors, a small processing unit and the radio
communication link. This portable system can be used in any
standard car.

A typical instance of the MIMICS application consists of
(Fig. 8): one manned car, one SatAnt unmanned car, and an
operator base station. The base station holds the instance of the
global blackboard and a GIS application to monitor the state
of the system. The manned car holds a local blackboard with
has attached a VirtualRobot and a Peception module which
integrates sensor information (GPS position, electronic com-
pass heading and, optionally, pulses from the tachometer) into

2Details and videos can be found at http://robolab.inf.um.es/mimics
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a Kalman filtered position estimation, which is then used as a
reference by the unmanned car. The unmanned car architecture
is more complex because processing is distributed into two
CPUs: one for time-critical modules (the reactive layer) and
the other for non time-critical modules (the deliberative layer
and the user interface), as depicted in Fig. 8. These modules
are:

VirtualRobot reads sensor information (GPS position,
electronic compass heading, tachometer pulses from the
four wheels, and radar targets) and writes it into the local
Linda Space. It also reads control values from the Linda
Space and sends them to the corresponding actuators.
Both low level controllers and sensors are interfaced by a
CAN bus, which connects the VirtualRobot to a series of
Java programmed micro-controllers that perform velocity
control, steering wheel control and brake control.
Perception reads the raw positioning data and applies a
Kalman filter to fuse them and produce a corrected global
position, which is then written into the Linda Space.
Moreover, the raw radar targets are stored in a radar
buffer, from which an estimate of the time for collision is
computed, and false targets are filtered out. This estimate
is also written into the Linda Space.

Controller reads the positioning data, collision data, and
desired path from the Linda Space, executes the different
reactive behaviours, and then produces the corresponding
control values, which are written into the Linda Space.
Navigation reads the position of the leading car from the
Linda Space and generates a path to guide the vehicle
(connecting the leading car positions) and the desired
velocity (averaging the leading car speed over a period).
Both the path and the velocity are written into the Linda
Space.

Monitor simply displays the position of the different
vehicles and their trajectories on a map, and also allows
the operator to take control over an autonomous car and
teleoperate it using a joystick.

Being a complex and distributed application, it has benefited
from the TC-II architecture in a number of ways. The runtime
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characteristics of the system allowed for a fast development of
the first prototype (9 man/months for the software compared
to 21 man/months for the hardware), in which only one full
scale test was conducted (it required booking a private car
race track, bringing the two cars, laboratory equipment and
a five persons team some 80 km from our lab). This was
possible due to the implementation in Java and the use of
ADFs, which allowed us to try different pieces of the system
in single desktop computers, single embedded computers, or
combinations of desktop and embedded computers. In addition
we reused algorithms and device drivers that were developed
for other projects.

V. CONCLUSIONS

This paper has shown ThinkingCap-II, a Java framework
for mobile robotics applications, which has been designed
with to main goals into mind: productivity and robustness.
These are achieved by a combination of a methodology to
decompose a robotics system into different modules based
on functionality, a software architecture to provide run-time
support, dynamic configuration and a components library, and
a communication infrastructure that allows distribution of the
different components. This framework has been successfully
used in indoor robotics, automotive and industrial applications,
where the physical platforms are quite different.

An application developed using the proposed framework has
been described and commented: an autonomous vehicle. It has
benefited of the properties of the framework, as fast prototyp-
ing, distributed nature and multi-platform are. Thus we have
also shown that Java can be used for real robotics applications,
even in demanding environments like the transportation one is.
Most concerns about Java performance are clarified by the use
of modern JIT technologies, which only add a small processing
overhead compared to natively compiled code. In addition,
using Java for the high-level framework has the advantage of
allowing a faster design and development cycle. In addition, all
the high level software can be effectively tested in any platform
before the actual deployment of the code. The advantages
of using the approach presented are very obvious for small
research and development teams.
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Incremental Component-Based Construction and
Verification of a Robotic System

Ananda Basu, Matthieu Gallien, Charles Lesire, Thanh-Hung Nguyen,
Saddek Bensalem, Félix Ingrand and Joseph Sifakis

Abstract— Autonomous robots are complex systems that
require the interaction/cooperation of numerous heterogeneous
software components. Nowadays, robots are critical systems
and must meet safety properties including in particular tem-
poral and real-time constraints. We present a methodology
for modeling and analyzing a robotic system using the BIP
component framework integrated with an existing framework
and architecture, the LAAS Architecture for Autonomous
System, based on G*oM. The BIP componentization approach
has been successfully used in other domains. In this study,
we show how it can be seamlessly integrated in the preexisting
methodology. We present the componentization of the functional
level of a robot, the synthesis of an execution controller as
well as validation techniques for checking essential “safety”
properties.

I. INTRODUCTION

A central idea in systems engineering is that complex sys-
tems are built by assembling components (building blocks).
Components are systems characterized by an abstraction
that is adequate for composition and re-use. It is possible
to obtain large components by composing simpler ones.
Component-based design confers many advantages such as
reuse of solutions, modular analysis and validation, recon-
figurability, controllability, etc.

Autonomous robots are complex systems that require the
interaction/cooperation of numerous heterogeneous software
components. They are critical systems as they must meet
safety properties including in particular, temporal and real-
time constraints.

Component-based design relies on the separation between
coordination and computation. Systems are built from units
processing sequential code insulated from concurrent execu-
tion issues. The isolation of coordination mechanisms allows
a global treatment and analysis.

One of the main limitations of the current state-of-the-art
is the lack of a unified paradigm for describing and analyzing
the information flow between components. Such a paradigm
would allow system designers and implementers to formu-
late their solutions in terms of tangible, well-founded and
organized concepts instead of using dispersed coordination
mechanisms such as semaphores, monitors, message passing,
remote call, protocols, etc. It would allow in particular, a
comparison of otherwise unrelated architectural solutions and
could be a basis for evaluating them and deriving implemen-
tations in terms of specific coordination mechanisms.

A. Basu, T.-H. Nguyen, S. Bensalem and J. Sifakis are with VERIMAG
CNRS/University Joseph Fourier, Grenoble, France.

M. Gallien, C. Lesire and F. Ingrand are LAAS/CNRS, Unversity of
Toulouse, Toulouse, France.
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The designers of complex systems such as autonomous
robots need scalable analysis techniques to guaranteeing es-
sential properties such as the one mentioned above. To cope
with complexity, these techniques are applied to component-
based descriptions of the system. Global properties are
enforced by construction or can be inferred from component
properties. Furthermore, componentized descriptions provide
a basis for reconfiguration and evolution.

We present an incremental componentization methodol-
ogy and technique which seamlessly integrate with the al-
ready existing LAAS architecture for autonomous robot. The
methodology considers that the global system architecture
can be obtained as the hierarchical composition of larger
components from a small set of classes of atomic compo-
nents. Atomic components are units processing sequential
code that offer interactions through their interface. The
technique is based on the use of the Behavior-Interaction-
Priority (BIP) [2] component framework which encompasses
incremental composition of heterogeneous real-time compo-
nents.

The main contributions of the paper include:

« A methodology for componentizing and architecting
autonomous robot systems applied to the existing LAAS
architecture.

Composition techniques for organizing and enforcing
complex event-based interaction using the BIP frame-
work.

Validation techniques for checking essential properties,
including scalable compositional techniques relying on
the analysis of the interactions between components.

The paper is structured as follows. In Section II we
illustrate with a real example, the preexisting architecture
(based on G®WM [6]) of an autonomous robotic software
developed at LAAS. From this architecture, we identify
the atomic components used for the componentization of
the robot software in BIP. Section III provides a succinct
description of the BIP component framework. Section IV
presents a methodology for building the BIP model of
existing G®"oM functional modules and their integration with
the rest of the software. Controller synthesis results as well
as “safety” properties analysis are also presented. Section V
concludes the paper with a state of the art, an analysis of the
current results and future work directions.
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Fig. 1. An instance of the LAAS architecture for the DALA Robot.

II. MODULAR ARCHITECTURE FOR AUTONOMOUS
SYSTEMS

At LAAS, researchers have developed a framework, a
global architecture, that enables the integration of processes
with different temporal properties and different representa-
tions. This architecture decomposes the robot system into
three main levels, having different temporal constraints and
manipulating different data representations [1]. This architec-
ture is used on a number of robots (e.g. DALA, an iRobot
ATRV) and is shown on Fig. 1. The levels in this architecture
are :

e a functional level: it includes all the basic built-in robot
action and perception capacities. These processing func-
tions and control loops (e.g., image processing, obstacle
avoidance, motion control, etc.) are encapsulated into
controllable communicating modules developed using
GeM!. Each modules provide services which can be
activated by the decisional level according to the current
tasks, and posters containing data produced by the
module and for other (modules or the decisional level)
to use.

The Ge™M tool can be freely downloaded from:
http://softs.laas.fr/openrobots/wiki/genom

o a decisional level: this level includes the capacities of
producing the task plan and supervising its execution,
while being at the same time reactive to events from the
functional level.

o At the interface between the decisional and the func-
tional levels, lies an execution control level that controls
the proper execution of the services according to safety
constraints and rules, and prevents functional modules
from unforeseen interactions leading to catastrophic
outcomes. In recent years, we have used the R2C [14]
to play this role, yet it was programmed on the top
of existing functional modules, and controlling their
services execution and interactions, but not the internal
execution of the modules themselves.

The organization of the overall system in layers and the
functional level in modules are definitely a plus with respect
to the ease of integration and reusability. Yet, an architecture
and some tools are not “enough” to warrant a sound and safe
behavior of the overall system.

1
Request ?
|

Services Interface ]

T
* Report
1

control
@ ::> poster

90D4Ja4ul 5194504

functional
poster

activities

Fig. 2. A G®M module organization.

In this paper the componentization method we propose
will allow us to synthesize a controller for the overall
execution of all the functional modules and will enforce by
construction the constraints and the rules between the various
functional modules. Hence, the ultimate goal of this work is
to implement both the current functional level and execution
control level with BIP.

A. G®oM Functional Modules

Each module of the LAAS architecture functional level is
responsible for a function of the robot. Complex modalities
(such as navigation) can be obtained by having modules
“working” together. For example in Fig. 1 (which only shows
the data flow of the functional level), there is an explicit
periodical processing loop. The module Laser RF acquires
the laser range finder and store them in the poster Scan,
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from which Aspect builds the obstacles map Obs. The
module NDD (responsible for the navigation) avoids these
obstacles while periodically producing a Speed reference to
reach a given target from the current position Pos produced
by POM. Finally, this Speed reference is used by RFLEX,
which controls the speed of the robots wheels, and also
produces the odometry position to be used by POM to
generate the current position.?

All these modules are built using a unique generic canvas
(Fig. 2) which is then instantiated for a particular robot
function.

Each module can execute several services started upon
upper level requests. The module can send information
relative to the executed requests to the client (such as the
final report) or share data with other modules using posters.
E.g. the NDD module provides six services corresponding
to initializations of the navigation algorithm (SetParams,
SetDataSource andSetSpeed), launching and stopping the
path computation toward a given goal (Stop and GoTo)
and a permanent service (Permanent). To execute this path,
NDD exports the Speed poster which contains the speed
reference.

The services are managed by a control task responsible for
launching corresponding activities within execution tasks.

request(arg)/_ \\ _/started
\
abort/_ |
\
] <
ETHER )< Sailed FAIL )< — EXEC
_/interrupted abeort/_
_/OK(ret) @
abaort/_
input / output
Fig. 3. Execution automaton of an activity.

Control and execution tasks share data using the internal
data structures (IDS). Moreover execution tasks have periods
in which the several associated activities are scheduled. It is
not necessary to have fixed length periods if some services
are aperiodic. Fig. 3 presents the automata of an activity.
Activity states correspond to the execution of particular
elementary code (codels) available through libraries and
dedicated either to initialize some parameters (START state),
to execute the activity (EXEC state) or to safely end the
activity leading to reseting parameters, sending error signals,
etc.

2This particular setup will serve as an example throughout the rest of the
paper.
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III. THE BIP COMPONENT FRAMEWORK

BIP? [2] is a software framework for modeling heteroge-
neous real-time components. The BIP component model is
the superposition of three layers: the lower layer describes
the behavior of a component as a set of transitions (i.e a finite
state automaton extended with data); the intermediate layer
includes connectors describing the interactions between tran-
sitions of the layer underneath; the upper layer consists of
a set of priority rules used to describe scheduling policies
for interactions. Such a layering offers a clear separation
between component behavior and structure of a system
(interactions and priorities).

BIP allows hierarchical construction of compound compo-
nents from atomic ones by using connectors and priorities.

An atomic component consists of a set of ports used
for the synchronization with other components, a set of
transitions and a set of local variables. Transitions describe
the behavior of the component. They are represented as a
labeled relation between control states.

in

0<x
y:=f(x) 0 oL

Fig. 4. An example of an atomic component in BIP.

out ®
y

@in
X

Fig. 4 shows an example of an atomic component with two
ports in, out, variables x, y, and control states empty, full.
At control state empty, the transition labeled in is possible
if 0 < . When an interaction through in takes place, the
variable x is eventually modified and a new value for y is
computed. From control state full, the transition labeled out
can occur.

Connectors specify the interactions between the atomic
components. A connector consists of a set of ports of the
atomic components which may interact. If all the ports
of a connector are incomplete then synchronization is by
rendezvous. That is, only one interaction is possible, the
interaction including all the ports of the connector. If a
connector has one complete port then synchronization is by
broadcast. That is, the complete port may synchronize with
the other ports of the connector. The possible interactions
are the non empty sublists containing this complete port.
the feasible interactions of a connector and in particular to
model the two basic modes of synchronization, rendezvous
and broadcast.

Priorities in BIP are a set of rules used to filter interactions
amongst the feasible ones.

The model of a system is represented as a BIP compound
component which defines new components from existing

3The BIP tool-set can be downloaded from:
http://www-verimag.imag.fr/ async/BIP/bip.html.
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components (atoms or compounds) by creating their in-
stances, specifying the connectors between them and the
priorities.

The BIP framework consists of a language and a toolset
including a front-end for editing and parsing BIP programs
and a dedicated platform for the model validation. The
platform consists of an engine and software infrastructure for
executing simulation traces of models. It also allows state
space exploration and provides access to model-checking
tools like Evaluator [10]. This permits to validate BIP models
and ensure that they meet properties such as deadlock-
freedom, state invariants and schedulability.

The back-end, which is the BIP engine, has been entirely
implemented in C++ on Linux to allow a smooth integration
of components with behavior expressed using plain C/C++
code.

IV. THE FUNCTIONAL LAYER IN BIP

The LAAS architecture makes use of a generic module for
its functional layer. If we model this generic module and its
components in BIP and if we then instantiate it and connect
the existing “codels” to the resulting component, then we
have a BIP model of the G®bM modules. Adding the BIP
model of the interaction between the modules will give us a
BIP model of the overall functional layer.

In order to formalize the componentization approach, we
propose the following mapping (+ for one component or
more, and . for composing components):

functional level ::= (module)+

module ::= (service)+ . (execution task) . (poster)+
service ::= (service controler) . (activity)
execution task ::= (timer) . (scheduler activity)

As shown in Fig. 5, a component modeling a generic
Service is obtained from composing the atomic components
service controller and activity. The left sub-component rep-
resents the execution task of a service. It is launched by
synchronization through port trigger. The service controller
then controls the validity of the parameters of the request
(if available) and will either reject the request or start the
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activity by synchronizing with the activity component (right
sub-component). In each state, the status of the execution
task is available by synchronizing through port status. The
activity will then wait for execution (i.e. synchronization on
the exec port with the control task) and will either safely end,
fail, or abort. Each of the transitions control, start, exec, fail,
finish and inter may call an external function.

The service components are further composed with ex-
ecution task and poster components to obtain a module
component (See Fig. 6).

A. A Functional Module in BIP

The full BIP description of the functional level of the
robot, which consists of several modules, is beyond the scope
of this paper. We rather focus on the modeling of the NDD
module.

The NDD module contains six services, a poster and a
control task as sub-components and the connectors between
them, as shown in Fig. 7.

The control task wakes up periodically (managed by the
bottom-left component with alternating sleep and trigger
transitions) and always triggers the Permanent service at the
beginning of each period. During a period, the services will
have authorization to execute through interactions with the
control task.

Moreover, the BIP formalism allows complex relations to
be defined, such as:

o interruptions, as modeled by the connector joining
Stop.exec and GoTo.abort; if service Stop is executed,
the GoTo algorithm will be aborted;

« constraints, as modeled by the goTo connector (in blue);
service GoTo can be launched only if SetParams, Set-
Speed and SetDataSource have been already completed
(information available through their status port).

The BIP tool-chain generates code from the BIP model,
which can be executed by the BIP engine. The code contains
calls to functions from libraries originally designed for
G®oM modules, which executes the real activities of the
robotic system. The code generated for the NDD module has
been integrated and executed. In particular, it was fully inte-
grated with the decisional layer by replacing the functional
layer originally modeled with G®"oM with the one modeled
in BIP.

B. Functional Level Controller Synthesis

Previously, in the LAAS architecture, a centralized con-
troller (R2C) was used to control the proper execution of the
services and to enforce the safety constraints and modules
interactions. On the contrary, in the BIP model, the proper
execution order and the safety properties are enforced by the
BIP connectors between the controllers of different services.
A BIP connector has guarded actions associated to each of
its possible interactions. Dependency between the controllers
of service in different modules are modeled by connectors
associated with guards which represents either some valid
execution condition or some safety rule. The composite
behavior of these local controllers, synchronized by the
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connectors and restricted by priorities, is equivalent to the
behavior of the centralized controller.

As an example, we had to enforce a rule between the
NDD and the POM modules which states that the robot can
navigate using the GoTo service of the NDD module only if
the module POM has already executed successfully its Run
service (which updates poster Pos). Such a rule is enforced
by constructing a connector between port trigger of the Goto
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The NDD module.

service and port status of the Run service, and guarded by
the status value.

C. Verification of Safety Properties

The BIP tool-set can perform an exhaustive state-space
exploration of the system. Additionally, it can detect potential
deadlocks in the system. These features have been used to
verify some properties in the model of the robot and for



detection of deadlocks. Two kinds of properties have been
verified.

1) Safety Properties: A safety property guarantees that
something unexpected will never happen. For the verification
of such properties, we used methods based on state-space
exploration. The basic idea is to generate all reachable states
and state changes of the system under consideration, and
represent this as a directed graph called the state-space. Two
different methods have been applied.

Model checking [15], [3] We used the model-checker
tool Evaluator [10] which performs on-the-fly verification
of temporal properties on the state-space generated by the
BIP engine on exploration of the system. As an example,
we describe the usage of this method in verifying a safety
property of the NDD module. It is required that the GoTo
service is triggered only after a successful termination of
SetSpeed service. To ensure this, in the BIP model of NDD,
we need to guarantee that the interaction GoTo:trigger occurs
only after the occurrence of the interaction SetSpeed.finish.
We checked for violations of this property, i.e finding a
transition sequence in the state-space where GoTo:trigger
is not preceded by SetSpeed:finish. The result obtained by
Evaluator proves that the initialization property is preserved
in the NDD module.

Verification using Observers [17], [13] For a given sys-
tem S and a safety property P, we construct first an observer
for P, i.e. an automaton which monitors the behavior of
S and reports an error on violation of P. The verification
consists of exploring the state-space of the product system.
Such a method has been used to verify a timing property in
the NDD module. It is needed to verify that the total time
taken by all the services called within a period does not
exceeds the period.

Fig. 8. Observer for the control task period verification.

In BIP, it is possible to model time as symbolic time [2]
by using tick ports and clock variables in every timed
component. Time progress is by strong synchronization of
all the tick ports. The clock variables are incremented on
a tick, to model function execution times. Fig. 8 shows the
observer component used to verify the timing property of the
NDD module. It has a clock variable ¢ and a parameter p
representing the period of the control task. It synchronizes
with the control task and tracks the cumulative time taken
by the services triggered by control task. If this time exceeds
the period p, the observer moves to the ERROR state. During
exploration, if a global system state, containing the ERROR
state of the observer is reachable, then the property is
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violated.

2) Deadlock Freedom: This is an essential correctness
property as it characterizes a system’s ability to perform
some activity over its life time. The BIP toolset allow
detection of potential deadlocks by static analysis of the
connectors in the BIP model [7]. It generates a dependency
graph and for each cycle in this graph, a boolean formula is
generated. The satisfiability of the formula is then checked
by the tool minisat [4], where a solution corresponds to a
potentially deadlocked global state. Presence of an actual
deadlock can then be verified by reachability analysis of
the deadlocked states, starting from the initial state of the
system. The analysis for the NDD module found a potential
deadlock for the state where all services are in the EXEC
state, all activities are in the ETHER state, and the control
task is in the Qg state. However, this state is unreachable,
hence the deadlock is not possible.

V. STATE OF THE ART, CURRENT RESULTS AND
PROSPECTIVE

The design and development of autonomous robots and
systems is a very active research field. There are other
architectures addressing similar problems: to provide an
efficient, reusable and formally sound organization of robot
software. CLARAty [12], used on various NASA research
rovers, provides a nice object oriented hierarchical organi-
zation over two layers, but there is no formal model of
the component interactions, nor modules canvas. IDEA [5]
and T-REX [11], developed at NASA Ames and MBARI,
have an interesting modular/component organization with a
temporal constraint based formalism. However, complexity
of constraint propagation is an obstacle for effective deploy-
ment on real-time functional modules. RMPL [9], [18] and
its associated tools, propose a system based on a model-
based approach. The programmers specify state evolution
with invariants expressed in an “Esterel like” language and
a controller maintaining them.

In [8], the authors present the CIRCA SSP planner for
hard real-time controllers. This planner synthesizes off-line
controllers from a domain description and then deduce the
corresponding timed automata to control the system on-line.
These automata can be formally validated with model check-
ing techniques. However, this work focuses on the decisional
part of the overall architecture. In [16] the authors present a
system which allows the translation from MPL (Model-based
Processing Language) and TDL (Task Description Language)
to SMV, a symbolic model checker language. Compared to
our approach, this does not address componentization and
is designed for the high level specification of the decisional
level.

The paper presents an approach integrating component-
based construction and validation of robotic systems. It
shows that a complex robotic system can be considered as
the composition of a small set of atomic components. Even if
we build up on the pre-existing modular LAAS architecture
for autonomous robots, and model in BIP all the generic
components of this architecture, such an approach could be



used with other robot software architectures and tools. The
approach has been implemented and we now have a BIP
controller for a subset of the functional layer of DALA,
running in simulation and on the robot. The paper shows that
it is possible to combine standard verification techniques,
based on global state exploration, with structural analysis
techniques for deadlock detection. A useful work direction
is the online monitoring of the functional level execution
using observer components, which would be able to generate
feedback actions for the decisional level which can be useful
for error-recovery. Another work direction is to extend the
BIP model to take into account the decisional capabilities of
autonomous systems (action planning, execution control).
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