
Aberystwyth University

Current software frameworks in cognitive robotics integrating different
computational paradigms
Hild, Manfred; Hülse, Martin

Publication date:
2008

Citation for published version (APA):
Hild, M., & Hülse, M. (2008, Sep). Current software frameworks in cognitive robotics integrating different
computational paradigms. IEEE Press. http://hdl.handle.net/2160/1869

General rights
Copyright and moral rights for the publications made accessible in the Aberystwyth Research Portal (the Institutional Repository) are
retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the
legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the Aberystwyth Research Portal for the purpose of private study or
research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the Aberystwyth Research Portal

Take down policy
If you believe that this document breaches copyright please contact us providing details, and we will remove access to the work immediately
and investigate your claim.

tel: +44 1970 62 2400
email: is@aber.ac.uk

Download date: 30. Aug. 2021

https://pure.aber.ac.uk/portal/en/publications/current-software-frameworks-in-cognitive-robotics-integrating-different-computational-paradigms(02871896-6701-4f30-91d5-b1f2dfe800c7).html
https://pure.aber.ac.uk/portal/en/publications/current-software-frameworks-in-cognitive-robotics-integrating-different-computational-paradigms(02871896-6701-4f30-91d5-b1f2dfe800c7).html
http://hdl.handle.net/2160/1869

Full-day Workshop on

Current software frameworks in
cognitive robotics integrating different

computational paradigms

in conjunction with
IEEE/RSJ 2008 International Conference on

Intelligent RObots and Systems
September, 22-26, 2008, Nice, France

(IROS 2008)

Organizers: Martin Hülse and Manfred Hild

Table of Contents

Introduction 1

M. Hülse and M. Hild

Prototyping Cognitive Models with MARIE 2

C. Côté, P. Frenette, R. Champagne, F. Michaud

Bridging the Sense-Reasoning Gap: DyKnow -
A Middleware Component for Knowledge Processing 7

F. Heintz, J. Kvarnström, P. Doherty

Developing Intelligent Robots with CAST 14

N. Hawes and J. Wyatt

BRAHMS: Novel middleware for integrated systems
computation 19

B. Mitchinson, T.-S. Chan, J. Chambers, M. Humphries, C. Fox,

K. Gurney, T. J. Prescott

Architecture paradigms for robotics applications 25

M. Amoretti, M. Reggiani

Reusing software components among different control
architectures with the GenoM tool 32

A. Mallet

Aspects of sustainable software design for complex robot
platforms in multi-disciplinary research projects on
embodied cognition 33

M. Hülse and M. Lee

A modular architecture for the integration of high and
low level cognitive systems of autonomous robots 39

M. Spranger, Ch. Thiele, M. Hild

Ikaros: Building Cognitive Models for Robots 47

Ch. Balkenius, J. Morén, B. Johansson, M. Johnsson

Multirobot Applications with the ThinkingCap-II
Java Framework 55

H. Mat́ınez-Barberá, D. Herrero-Pérez

Incremental Component-Based Construction and
Verification of a Robotic System 63

A. Basu, M. Gallien, C. Lesire, T.-H. Nguyen, S. Bensalem,

F. Ingrand and J. Sifakis

A brief introduction to
Current software frameworks in cognitive robotics

integrating different computational paradigms

Martin Hülse and Manfred Hild

I. M OTIVATION

Sophisticated robot systems have become an important
part in cognition research. On the one hand, cognition
research turned out to be a source of inspiration as well as a
guidance to overcome current limitations in engineering of
more complex and adaptive systems. On the other hand, cog-
nition research projects have been utilizing robot systemsas
demonstrators and therefore they serve as an important proof
of concept in this field. Furthermore, embodied cognition, in
particular, is focused on the crucial role the body has for the
development of cognitive behavior and therefore it becomes
rather usual that experiments in this field of research involve
robot systems of arbitrary complexity.

In order to create systems beyond the current state-of-
the-art, engineers and scientists from different fields have to
combine their approaches and know-how. One important area
of this combination is software development and integration,
where particular attention must be drawn to the different
paradigms of scientists in cognition research and engineers
[1].

An engineer creates systems, the component functions of
which are most efficient when they meet a detailed set of
specifications exactly. The consequence is high performance
for a very specific task. But as soon as the application
domain is extended or becomes more general a decline of
performance must be expected.

Scientists in cognition research, and actually higher-level
robotic applications are no exception, develop their pro-
grams, models and experiments in a language grounded in
an ontology based on general principles. Hence, they expect
reasonable and scalable performance for general domains and
problem spaces.

For robotic related cognition research projects it is there-
fore essential to provide a robust and efficient software
framework bridging lower-level services of heterogeneous
robotic systems and high-level cognitive models.

II. OBJECTIVES

The objective of this workshop is to highlight and dis-
cuss existing examples of software frameworks combining
autonomous robot systems and cognition research. We are

M. Hülse, Department of Computer Science, Aberystwyth University,
Aberystwyth, UK,msh@aber.ac.uk

M. Hild, Department of Computer Science Humboldt-Universität Berlin,
Germany,hild@informatik.hu-berlin.de

targeting systems able to combine high-level cognitive mod-
els and heterogeneous robot system in a direct and robust
manner. We are also particular interested in frameworks that
allow the integration of different paradigms of computation
intelligence, e.g. declarative languages and/or artificial neural
networks.

The workshop is intended as a platform for exchange and
discussion which might lead to the identification of general
problems and possible solutions to be considered in future
software design for complex robot systems. In the long run
this might help in developing standards providing a direct
knowledge transfer and exchange between cognitive system
research, industry and application developers.

III. T OPICS

• existing software frameworks able to integrate differ-
ent paradigms of computational intelligence for au-
tonomous robot control

• general software architectures explicitly dealing with
the integration of robot hardware and cognitive models

• frameworks for sustainable software design for hetero-
geneous robot platforms

• software frameworks providing implementations of
cognitive models grounded in specific computational
paradigms, but which are proven to be open for differ-
ent robot platforms, i.e. open for different sensor and
actuator systems

IV. A UDIENCE

Audience of this workshop is intended to be researchers
as well as hardware and software engineers involved in
ongoing or future middle and large robotic projects and
who are interested in well proven and established software
frameworks able to integrate heterogeneous robot hardware
and which are open to arbitrary computational paradigms. We
also welcome participants to share their experience of past
robotic projects during our open discussion. In this sense,
the workshop is open for people with a background from
academia or industry.

REFERENCES

[1] A. Farinelli, G. Grisetti and L. Iocchi, ”Design and implementation of
modular software for programming mobile robots”Int. J. of Advanced
Robotic Systems vol. 3, 2006, pp. 37-42

1

Prototyping Cognitive Models with MARIE

Carle Côté, Patrick Frenette, Roger Champagne, François Michaud

Abstract— Since 2003, MARIE (Mobile and Autonomous
Robotics Integration Environment) has been used to realize
many robotic projects, ranging from a socially interactive au-
tonomous mobile robot that must attend scientific conferences,
to a mobile robot for telepresence in homes. MARIE’s main
objective is to integrate and combine heterogeneous software
and computational paradigms in order to prototype various
cognitive models applied to robotics. In this paper, we discuss
conceptual and technical issues that must be addressed by
component-based architectures like MARIE to support roboti-
cists in their work.

I. I NTRODUCTION

In the last decades, with the venue of fields of study
such as computational neuroscience, cybernetics and artificial
intelligence, remarkable progresses have been made in the
understanding of what is required to create artificial life
evolving in real-world environments. Still, one of the remain-
ing challenges is to create new cognitive models that would
replicate high-level cognitive capabilities such as perception
and information processing, reasoning, planning, learning
and adaptation to new situations.

Lately, with accessibility to new technologies, robots are
more frequently used as embodied systems to validate cog-
nitive models. Unfortunately, implementation of those cogni-
tive models usually requires wide expertise in many fields of
study like probabilistic navigation, simultaneous localization
and mapping, planning, speech recognition, audio and vision
processing, etc. Moreover, cognitive models are derived
from a large spectrum of computational paradigms that
are not necessarily compatible when considering underlying
software architecture requirements. This is why roboticists
want to develop software frameworks that help deal with the
integration of cognitive models requirements with software
and hardware engineering methodologies and techniques.

MARIE (Mobile and Autonomous Robotics Integration
Environment) [1], [2] is one attempt to create a flexible
and versatile software integration environment adapted to
prototyping cognitive models. It is based on a distributed
component-based framework oriented towards integration
and combination of heterogeneous software and computa-
tional paradigms. In this paper, we present two robotics

Carle Côté, Patrick Frenette and François Michaud are
with the Department of Electrical Engineering and Computer
Engineering, Université de Sherbrooke, Sherbrooke, Québec,
CANADA (e-mail: {Carle.Cote, Patrick.Frenette,
Francois.Michaud}@USherbrooke.ca). F. Michaud holds
the Canada Research Chair in Mobile Robotics and Intelligent Autonomous
Systems.

Roger Champagne is with the Department of Software
and IT Engineering, École de technologie supérieure, Uni-
versité du Québec, Montréal, Québec, CANADA (e-mail:
Roger.Champagne@ele.etsmtl.ca).

projects developed with MARIE, illustrating some of the
conceptual and technical issues that must be addressed to
prototype different cognitive models.

II. MARIE

MARIE is a distributed component-based middleware
framework for robotic systems. To address the technical is-
sues related to integration and combination of heterogeneous
software and computational paradigms, multiple design so-
lutions were developed to obtain a flexible framework that
can be adapted to different scenarios.

Fig. 1. Mediator Interoperability Layer (MIL)

A. Applications Mediation Approach

To implement distributed robotic systems using hetero-
geneous applications and computational paradigms, MARIE
adapted theMediatordesign pattern [3] to create a Mediator
Interoperability Layer (MIL), illustrated in Fig 1. TheMedi-
ator design pattern primarily creates a centralized control
unit (named Mediator) interacting with each component
independently, and coordinating global interactions between
applications to build the desired system. In MARIE, the MIL
acts just like theMediatordesign pattern, but is implemented
as a virtual space where applications can interact together
using a common language (similar to the relation between
Internet and HTML for example). Note that the use of a
virtual space implies that there is no single implementation
class of the Mediator, as represented in the original pattern.
The Mediator is distributed between all the applications that
are linked together through the MIL, decentralizing the MIL’s
functionalities and responsibilities.

With the mediation approach, it is possible to create
bridges between incompatible applications by having special-
ized code adapting each of them through the MIL. This way,
each application can have its own communication protocols
and mechanisms, as long as the MIL supports them and
can bridge the application with others. For the robotics
community, this approach offers a way to exploit the diversity
of communication protocols and mechanisms, to benefit from

2

Fig. 2. Component Framework

their strengths and maximize their usage, and to overcome
the lack of standards for robotic software system design.

B. Application Adapter & Communication Adapter

Existing applications do not necessarily implement the
mechanisms, expose the interfaces or use a communication
protocol that would make them compatible with the MIL.
Changing an application’s code to add the required func-
tionalities must be avoided whenever possible. Instead, it
is often preferable to use a wrapper technique to create a
component which is compatible with the MIL, extending
the application’s functionalities without direct modifications.
The main role of the wrapper component is to translate
application service interfaces to make them compatible with
the MIL’s interface.

In MARIE, wrapper components used to encapsulate ap-
plications are called Application Adapters (AA), and wrapper
components used to interconnect incompatible applications
are called Communication Adapters (CA). To create an AA
or CA, MARIE offers a development framework called the
Component Framework, illustrated in Fig. 2. TheHandler is
responsible for the translation between application interfaces
and the MIL interface.Ports are used to communicate with
other components through the MIL by implementing and
handling communication protocols (TCP/IP socket, UDP
socket, Shared Memory, CORBA, IPC, COM, etc) through
a simple abstraction interface supported by the Component
Framework.

Although the use of MARIE’s frameworks and software
tools is highly encouraged to save time and efforts, MARIE
is not limited to them. Developers can use the best solution
to integrate software applications and interconnect compo-
nents by having the possibility to extend or adapt existing
components and available frameworks. MARIE’s underlying
philosophy is to complement existing applications, program-
ming environments or software tools, and therefore it is to
be used only when required and appropriate.

III. SPARTACUS

Spartacus [4] is a socially interactive mobile robot de-
signed to enter the AAAI Mobile Robot Challenge, which
consists of making a robot attend a conference just like
humans. The robot has to navigate and localize itself in
the world autonomously, extract visual information (such
as reading messages, tracking people), localize, track and
separate sound sources for enhanced speech recognition and
dialogue interaction, provide graphical information through

Fig. 3. MBA’s implementation for Spartacus.

its touch screen interface, schedule tasks on its own, and give
a presentation.

A. Cognitive Model

The cognitive model use to realize this project is called
MBA (Motivated Behavioral Architecture) [4]. Figure 3
illustrates MBA’s implementation for Spartacus. MBA is a
behavior-based architecture that uses motivations to deter-
mine which available behavior-producing module(s) (BPM,
or behaviors) should be activated at a specific time to
control the robot. Motivation Modules (MM) are concur-
rent specialized algorithmic modules that recommend and
monitor tasks (and/or sub-tasks) to execute in the Dynamic
Task Workspace (DTW). Instinctual motivations provide
basic operation of the robot and Rational motivations are
more related to cognitive processes, such as navigation and
planning. Motivations are kept independent from each other
and do not necessarily share the same domain represen-
tation objects, except for the DTW tasks language. At a
certain time interval, the BPM Selection module evaluates
the tasks decomposition tree in the DTW and chooses which
tasks/subtasks should be executed at that time. Once the
task selection phase is completed, the System-Know-How
module (SNOW) makes the correspondence between the
selected tasks/subtasks and the BPMs available on the robot
platform. Then, the BPM Arbitration module is executed on
activated BPMs to ensure that coherent activations are ap-
plied (e.g., under a subsumption-based behavioral arbitration
scheme, BPM Arbitration does not allow a move forward
behavior activation concurrent to an avoid obstacle behavior
activation). Then, using BPMs feedback information and
perception from environment, DTW and Motivations are
updated and the decision-making process is repeated.

B. Implementation using MARIE

While implementing MBA for Spartacus using MARIE,
one of our first objectives was to reuse software packages
already available, such as:

3

• Player/Stage1 is a project to create free software for
robotics and sensor systems.

• FlowDesigner/RobotFlow. FlowDesigner2 is a free
data flow oriented development environment, with
RobotFlow3 being the mobile robotics toolkit for
FlowDesigner.

• CARMEN Navigation Software4 is a software package
for laser-based autonomous navigation using previously
generated maps.

• Pmap Map Builder Software5 provides libraries and
utilities for laser-based mapping in 2D environments to
produce high-quality occupancy grid maps.

• Vision Processing Library is used to extract symbols
and text from a single color image in real world
conditions [5].

• OpenCV Computer Vision Library 6 is an open source
computer vision library.

• Festival7 offers a general framework for building speech
synthesis systems.

• Sound Processing Library is for the localization,
tracking and separation of sound sources using a mi-
crophone array system [6].

• Nuance8 is a commercial speech recognition software.
• QT39 is a cross-platform application development

framework, used for the development of our GUIs.

Software integration of all these elements was not a
simple plug-and-play process. Most of them were developed
independently, adopting different design and implementation
requirements. Moreover, they had to be used in software
modules following MBA principles. Spartacus’ software ar-
chitecture is illustrated in Figure 4.

Spartacus’s software architecture provides two setups. For
the Real Robot setup, SpartacusAA combines wheels odom-
etry with gyroscopic data, and pushes the result at a fixed
rate (200 Hz) to its interconnected components. Laser data
is collected by PlayerAA, interfacing with the Player library
specialized for sensor and actuator abstraction [7], supporting
the SICK LMS200 laser range finder. PlayerAA pushes data
at a fixed rate (200 Hz) to connected components. For the
Simulation setup, odometry and laser data are both collected
with PlayerAA, generated either by Stage (2D) or Gazebo
(3D) simulators [7]. CARMEN Localizer AA and CARMEN
Path Planner AA provide path planning and localization
capabilities. CARMEN is composed of small processes com-
municating through a central server. CARMEN’s integration
was realized by creating an AA that starts several of these
processes depending on the required functionality and on
data conversion from CARMEN’s to MARIE’s format.

1http://playerstage.sourceforge.net/
2http://flowdesigner.sourceforge.net/
3http://robotflow.sourceforge.net/
4http://carmen.sourceforge.net/
5http://robotics.usc.edu/˜ahoward/pmap
6http://www.intel.com/technology/computing/opencv/index.htm
7http://www.cstr.ed.ac.uk/projects/festival/
8http://www.nuance.com
9http://www.trolltech.com/products/qt

Fig. 4. Spartacus’ software architecture implemented using MARIE.

4

FlowDesigner and RobotFlow are used to implement Be-
havior & Arbitration FD AA, handling BPMs and their arbi-
tration. FlowDesigner uses a synchronous pull mechanism to
get data coming from different elements such as localization,
path plan, laser, audio localization, dialogue command and
system states, requiring the use of Mailbox CA components.
By buffering input data, mailboxes allows AAs running at
different rates to be interconnected. Behavior & Arbitration
FD AA generates motor commands at a fixed rate (5 Hz).

The Audio Server is interfacing a RME Hammerfal DSP
Multiface sound card, and NUANCE Server is interfacing
NUANCE. DialogueAA is a stand-alone AA that manages
simultaneous conversations with people. This is made pos-
sible with the use of AUDIBLE FD AA, interfacing our
sound source localization, tracking and separation algorithms
implemented with RF/FD and using Spartacus’ microphone
array. It generates a number of separated audio channels that
are sent to NUANCE Server and Behavior & Arbitration
FD AA. Integrating NUANCE in an AA was challenging
since it is a proprietary application with a fixed programming
interface, and because its execution flow is tightly controlled
by NUANCE’s core application, which is not accessible from
the available interface. To solve this problem, we created an
independent application that uses a communication protocol
already supported by MARIE. Recognized speech data is
sent to Dialogue AA, responsible of the human-robot vocal
interface. Speech generated by the robot is handled by
Festival [8]. The Dialogue AA conversation context mode is
selected by the Audio MM AA, monitoring the tasks present
in the DTW and requiring speech interaction.

The global execution of the system is asynchronous, hav-
ing most of the applications and AAs pushing their results at
variable rates (determined by the computation length of their
algorithms when triggered by new input data). Synchronous
execution is realized by having fixed rate sensor readings and
actuator command writings.

Overall, Spartacus’ implementation with MARIE required
42 components (approx. 50 000 lines of code) composed
of 26 AAs, 14 CAs and two external applications (the
Audio Server and NUANCE). To get enough processing,
multiple processors were required : vision and audio com-
ponents were distributed on two on-board laptop computers,
all components related to the decision-making architecture
and GUIs were executed on Spartacus’ on-board Mini-ITX
computer, and finally all teleoperation controls required to
manipulate the robot safely were executed on a remote
laptop using wireless communication with the platform. Dis-
tributing applications and adapters across multiple processing
nodes was pretty straightforward with MARIE by choosing
socket-based Push, Pull and Events dataflow communication
mechanisms [9] for each adapter’s port. All communication
protocols use XML encoding for data representation, except
for the Audio Server and NUANCE which use their own
communication protocols.

Fig. 5. Dynamic Platooning cognitive model

IV. DYNAMIC PLATOONING

The objective of the Dynamic Platooning project is to co-
ordinate maneuvers of autonomous vehicles inside a platoon
(i.e., insertion, exiting, collision avoidance, emergency stop,
emergency exit, etc.). A platoon is formed by a set of vehicles
following each other at a very close distance. Inter-robot
communication is used to signal intentions of executing any
maneuver to other vehicles or to signal emergency situations
like accidents, maneuver execution failures and obstaclesto
avoid.

A. Cognitive Model

The cognitive model used to realize the project, illustrated
in Figure 5, is a distributed hybrid architecture. The decision-
making architecture is decomposed as follow. TheDelib-
erative layermanages communications with other vehicles
and keeps a local model of the platoon. It also evaluates
which maneuver should be executed using a finite state
machine (FSM). TheIntermediate layerapplies a selection
function to activate and configure the behaviors according to
the FSM states. TheBehaviors and Arbitration layeruses a
subsumption mechanism to select which activated behavior
will produce the resulting motor command. Behaviors always
receive Sensors information to react to meaningful changes
in the environment. Behaviors Exploitation and results are
used as feedback information injected to the Deliberative
layer to update the local platoon model and influence the
decision-making process.

B. Implementation using MARIE

Figure 6 shows a simplified illustration of MARIE’s
components used to implement the cognitive model used by
each robot. We used a group of four Pioneer II robots in our
experiments.

As for the Spartacus project, reusing available software
packages was important. AA for Player and FlowDesigner
were already available at that time. Therefore, we reused
them without any modification. We configured Player AA to
provide the odometry and sonar range data to the behaviors
and to output the motor commands given by the decision-
making system to the vehicle actuators. FlowDesigner AA
was configured to interface a sensor that detects and positions
each vehicle in the environment relative to each other [10].

5

Fig. 6. Dynamic Platooning distributed software architecture implemented
using MARIE.

To implement theBehaviors and Arbitration layer, a
generic behavior component distributed in MARIE’s com-
ponents library was used. This component, called Behaviors
AA, makes it possible to customize the sensory inputs, to
map the inputs to the behaviors and to assign priority to the
behaviors. The addition of specific behaviors required for the
project was simple since each behavior was developed using
a simple software interface allowing them to be dynamically
loaded by the AA.

The Deliberative layerwas entirely built within a custom
AA called the Deliberation AA. It contains the platoon
model, the communication management system and the se-
lection function, all coded in C++. The FSM was developed
using an external library called the State Map Compiler10 that
generates C++ code, also integrated within the Deliberation
AA.

An important application, called Operator, was also re-
quired to control experimentations by initiating scenarios
like start a maneuver, simulate an accident or simulate a
software failure. Operator was developed in Java, and it was
designed to run on a control laptop communicating with each
platoon member using a wireless communication system. All
communications coming from other platoon members or the
Operator application were routed to theDeliberative layer
using Message Splitters.

Overall, the implementation with MARIE required eight
components per vehicle (5 AAs, 3 CAs) and five components
on the control laptop (1 AA, 3 CAs and 1 Java application
that monitor each trial) for a total of 37 components. The
AM was used to distribute the process on each vehicle and
the control laptop. The 36 configuration files were on the
control laptop and allowed easy modification of the files. As
for Spartacus, socket-based Push, Pull and Events dataflow
communication mechanisms [9] were used in each adapter’s
port. Communication protocols all used XML encoding.

10http://smc.sourceforge.net/

V. CONCLUSION

Our experience with MARIE shows that developing a
software integration environment adapted to prototyping
various cognitive models requires a flexible and versatile
design. It should allow heterogeneous software reuse and
support different solutions to solve integration issues. It
should offer extensible and configurable software modules
to adapt to different implementation scenarios. It should also
give access to a set of useful tools that are required by
most implementations such as component deployment tools
on multiple processing nodes, a configurable logging system
for debugging and data analysis, and data visualization tools
to help understand the dynamics of implemented systems.

Future work includes more in-depth studies of the impact
of overhead introduced by MARIE when developing and de-
ploying systems, and how to achieve stability and robustness
when having to support a large spectrum of computational
paradigms and heterogeneous software applications.

MARIE is available as an open source project at
http://marie.sourceforge.net.

VI. A CKNOWLEDGEMENTS

The authors gratefully acknowledge the contribution of
the Canada Research Chair (CRC), the Natural Sciences
and Engineering Research Council of Canada (NSERC), the
Canadian Foundation for Innovation (CFI) and the Network
of Centres of Excellence on the Automobile of the 21st
Century (AUTO21) in the support of this work.

REFERENCES

[1] C. Cote, Y. Brosseau, D. Letourneau, C. Raievsky and F. Michaud,
”Robotic Software Integration Using MARIE”,Int. Journal of Ad-
vanced Robotic Systems, vol. 3, no. 1, pp. 55-60, Mar. 2006.

[2] C. Cote, D. Letourneau, F. Michaud and Y. Brosseau,Using MARIE for
Mobile Robot Component Development and Integration, ser. Springer
Tracts in Advanced Robotics : Principles and Practice of Software
Development in Robotics. Springer-Verlag Heidelberg, 2007.

[3] E. Gamma, R. Helm, R. Johnson and J. Vlissides,Design patterns :
Elements of reusable object-oriented software. Reading, MA: Addison-
Wesley, 1994.

[4] F. Michaud, Y. Brosseau, C. Côté, D. Létourneau, P. Moisan, A.
Ponchon, C. Raievsky, J.-M. Valin, E. Beaudry and F. Kabanza,
”Modularity and integration in the design of a socially interactive
robot”, in Proceedings IEEE International Workshop on Robot and
Human Interactive Communication, 2005, pp. 172-177.

[5] D. Letourneau, F. Michaud and J.-M. Valin, ”Autonomous robot
that can read”,EURASIP Journal on Applied Signal Processing,
Special Issue on Advances in Intelligent Vision Systems: Methods and
Applications, vol. 17, pp. 1-14, 2004.

[6] J.-M. Valin, F. Michaud and J. Rouat, ”Robust 3D localization and
tracking of sound sources using beamforming and particle filtering”,
in Proceedings International Conference on Audio, Speech andSignal
Processing, 2006, pp. 221-224.

[7] R. T Vaughan, B. P. Gerkey and A. Howard, ”On device abstractions
for portable, reusable robot code”, inProceedings IEEE/RSJ Interna-
tional Conference on Intelligent Robots and Systems, 2003, pp. 2421-
2427.

[8] P. Taylor, ”The Festival speech architecture”, URL:
http://www.cstr.ed.ac.uk/projects/festival/, 1999.

[9] Y. Zhao, ”A model of computation with push and pull processing”,
Master’s thesis, University of California at Berkeley, Department of
Electrical Engineering and Computer Science, 2003.

[10] F. Rivard, J. Bisson, F. Michaud and D. Ltourneau, ”Ultrasonic relative
positioning for multi-robot systems”,IEEE International Conference
on Robotics and Automation, 2008.

6

Bridging the Sense-Reasoning Gap: DyKnow - A Middleware
Component for Knowledge Processing

Fredrik Heintz and Jonas Kvarnström and Patrick Doherty
Department of Computer and Information Science, Linköpings universitet,

SE-581 83 Linköping, Sweden
{frehe, jonkv, patdo}@ida.liu.se

Abstract— Developing autonomous agents displaying rational
and goal-directed behavior in a dynamic physical environment
requires the integration of both sensing and reasoning compo-
nents. Due to the different characteristics of these components
there is a gap between sensing and reasoning. We believe that
this gap can not be bridged in a single step with a single
technique. Instead, it requires a more general approach to
integrating components on many different levels of abstraction
and organizing them in a structured and principled manner.

In this paper we propose knowledge processing middleware
as a systematic approach for organizing such processing.
Desirable properties of such middleware are presented and
motivated. We then go on to argue that a declarative stream-
based system is appropriate to provide the desired functionality.
Finally, DyKnow, a concrete example of stream-based knowl-
edge processing middleware that can be used to bridge the
sense-reasoning gap, is presented. Different types of knowledge
processes and components of the middleware are described
and motivated in the context of a UAV traffic monitoring
application.

I. I NTRODUCTION

When developing autonomous agents displaying rational
and goal-directed behavior in a dynamic physical environ-
ment, we can lean back on decades of research in artificial in-
telligence. A great number of deliberative and reactive func-
tionalities have already been developed, including chronicle
recognition, motion planning, task planning and execution
monitoring. To integrate these approaches into a coherent
system it is necessary to reconcile the different formalisms
used to represent information and knowledge about the
world. To construct these world models and maintain a
correlation between them and the environment it is necessary
to extract information and knowledge from data collected
by sensors. However, most research done in a symbolic
context tends to assume crisp knowledge about the current
state of the world while the information extracted from the
environment often is noisy and incomplete quantitative data
on a much lower level of abstraction. This causes a wide gap
between sensing and reasoning.

Bridging this gap in a single step, using a single technique,
is only possible for the simplest of autonomous systems. As
complexity increases, one typically requires a combination of

This work is partially supported by grants from the Swedish Aeronautics
Research Council (NFFP4-S4203), the Swedish Foundation for Strategic
Research (SSF) Strategic Research Center MOVIII and the Center for
Industrial Information Technology CENIIT (06.09).

a wide variety of methods, including more or less standard
functionalities such as various forms of image processing
and information fusion as well as application-specific and
possibly even scenario-specific approaches. Such integration
is currently done ad hoc, partly by allowing the sensory and
deliberative layers of a system to gradually extend towards
each other and partly by introducing intermediate processing
levels.

In this paper, we propose using the termknowledge
processing middlewarefor a principled and systematic frame-
work for bridging the gap between sensing and deliberation
in a physical agent. We claim that knowledge processing
middleware should provide both a conceptual framework
and an implementation infrastructure for integrating a wide
variety of components and managing the information that
needs to flow between them. It should allow a system to
incrementally process low-level sensor data and generate a
coherent view of the environment at increasing levels of
abstraction, eventually providing information and knowledge
at a level which is natural to use in symbolic deliberative
functionalities. Such a framework would also support the
integration of different deliberation techniques.

The structure of the paper is as follows. In the next section,
an example scenario is presented as further motivation for
the need for a systematic knowledge processing middle-
ware framework. Desirable properties of such frameworks
are investigated and a specific stream-based architecture is
proposed which is suitable for a wide range of systems.
As a concrete example, our framework DyKnow is briefly
described. The paper is concluded with some related work
and a summary.

II. A T RAFFIC MONITORING SCENARIO

Traffic monitoring is an important application domain for
research in autonomous unmanned aerial vehicles (UAVs)
which provides a plethora of cases demonstrating the need
for an intermediary layer between sensing and deliberation.
It includes surveillance tasks such as detecting accidentsand
traffic violations, finding accessible routes for emergency
vehicles, and collecting statistics about traffic patterns.

In the case of detecting traffic violations, one possible
approach relies on using a formal declarative description of
each type of violation. This can be done using a chronicle [7],

7

Fig. 1. An overview of how the incremental processing for thetraffic
surveillance task could be organized.

which defines a class of complex events using a simple tem-
poral network where nodes correspond to occurrences of high
level qualitative events and edges correspond to metric tem-
poral constraints between event occurrences. For example,
to detect a reckless overtake, qualitative spatial events such
as beside(car1, car2), close(car1, car2) and on(car1, road7)
might be used. Creating such high-level representations from
low-level sensory data, such as video streams from color
and infrared cameras, involves a great deal of work at
different levels of abstraction which would benefit from
being separated into distinct and systematically organized
tasks.

Figure 1 provides an overview of how the incremental
processing required for the traffic surveillance task couldbe
organized.

At the lowest level, a helicopter state estimation system
uses data from inertial measurement unit and GPS sen-
sors to determine the current position and attitude of the
helicopter. The resulting information is fed into a camera
state estimation system, together with the current angles
of the pan-tilt unit on which the cameras are mounted, to
generate information about the current camera state. The
image processing system uses the camera state to determine
where the camera is currently pointing. Video streams from
the color and thermal cameras can then be analyzed in order
to extract vision objects representing hypotheses regarding
moving and stationary physical entities, including their ap-
proximate positions and velocities.

Each vision object must be associated with a symbol for
use in higher level services, a process known asanchoring
[5, 11]. In the traffic surveillance domain, identifying which
vision objects correspond to vehicles is also essential, which
requires knowledge about normative sizes and behaviors
of vehicles. One interesting approach to describing such
behaviors relies on the use of formulas in a metric temporal
modal logic, which are incrementally progressed through
states that include current vehicle positions, velocities, and
other relevant information. An entity satisfying all require-
ments can be hypothesized to be a vehicle, a hypothesis
which is subject to being withdrawn if the entity ceases

to satisfy the normative behavior and thereby causes the
formula progression system to signal a violation.

As an example, vehicles usually travel on roads. Given
that image processing provided absolute world coordinates
for each vision object, the anchoring process can query
a geographic information system to determine the nearest
road segment and derive higher level predicates such as
on-road(car) and in-crossing(car). These would be included
in the states sent to the progressor as well as in the vehicle
objects sent to the next stage of processing, which involves
deriving qualitative spatial relations between vehicles such
asbeside(car1, car2) andclose(car1, car2). These predicates,
and the concrete events corresponding to changes in the pred-
icates, finally provide sufficient information for the chronicle
recognition system to determine when higher-level events
such as reckless overtakes occur.

In this example, we can identify a considerable number
of distinct processes involved in bridging the gap between
sensing and deliberation and generating the necessary sym-
bolic representations from sensor data. However, in order
to fully appreciate the complexity of the system, we have
to widen our perspective somewhat. Looking towards the
smaller end of the scale, we can see that what is represented
as a single process in Figure 1 is sometimes merely an
abstraction of what is in fact a set of distinct processes.
Anchoring is a prime example, encapsulating tasks such as
the derivation of higher level predicates which could also
be viewed as a separate process. At the other end of the
scale, a complete UAV system also involves numerous other
sensors and information sources as well as services with dis-
tinct knowledge requirements, including task planning, path
planning, execution monitoring, and reactive procedures.

Consequently, what is seen in Figure 1 is merely an ab-
straction of the full complexity of a small part of the system.
It is clear that a systematic means for integrating all forms
of knowledge processing, and handling the necessary com-
munication between parts of the system, would be of great
benefit. Knowledge processing middleware should fill this
role, by providing a standard framework and infrastructure
for integrating image processing, sensor fusion, and other
data, information and knowledge processing functionalities
into a coherent system.

III. K NOWLEDGE PROCESSINGM IDDLEWARE

Any principled and systematic framework for bridging
the gap between sensing and deliberation in a physical
agent qualifies as knowledge processing middleware, by the
definition in the introduction. We now consider the necessary
and desirable properties of any such framework.

The first requirement is that the framework shouldper-
mit the integration of information from distributed sources,
allowing this information to be processed at many different
levels of abstraction and finally transformed into a suitable
form to be used by a deliberative functionality. In the
traffic monitoring scenario, the primary input will consist
of low level sensor data such as images, a signal from

8

a barometric pressure sensor, a GPS (Global Positioning
System) signal, laser range scans, and so on. But there might
also be high level information available such as geographical
information and declarative specifications of traffic patterns
and normative behaviors of vehicles. The middleware must
be sufficiently flexible to allow the integration of all these
different sources into a coherent processing system. Since
the appropriate structure will vary between applications,a
general framework should be agnostic as to the types of data
and information being handled and should not be limited to
specific connection topologies.

To continue with the traffic monitoring scenario, there
is a natural abstraction hierarchy starting with quantitative
signals from sensors, through image processing and anchor-
ing, to representations of objects with both qualitative and
quantitative attributes, to high level events and situations
where objects have complex spatial and temporal relations.
Therefore a second requirement is thesupport of quantitative
and qualitative processingas well as a mix of them.

A third requirement is thatboth bottom-up data processing
and top-down model-based processing should be supported.
Different abstraction levels are not independent. Each level
is dependent on the levels below it to get input for bottom-up
data processing. At the same time, the output from higher
levels could be used to guide processing in a top-down
fashion. For example, if a vehicle is detected on a particular
road segment, then a vehicle model could be used to predict
possible future locations, which could be used to direct or
constrain the processing on lower levels. Thus, a knowledge
processing framework should not impose strict bottom-up
nor strict top-down processing.

A fourth requirement is support formanagement of uncer-
taintyon different levels of abstraction. There are many types
of uncertainty, not only at the quantitative sensor data level
but also in the symbolic identity of objects and in temporal
and spatial aspects of events and situations. Therefore it is
not realistic to use a single approach to handling uncertainty
throughout a middleware framework. Rather, it should allow
many different approaches to be combined and integrated
into a single processing system in a manner appropriate to
the specific application at hand.

Physical agents acting in the world have limited resources,
both in terms of processing power and in terms of sensors,
and there may be times when these resources are insufficient
for satisfying the requests of all currently executing tasks. In
these cases a trade-off is necessary. For example, reducing
update frequencies would cause less information to be gen-
erated, while increasing the maximum permitted processing
delay would provide more time to complete processing.
Similarly, an agent might decide to focus its attention on
the most important aspects of its current situation, ignoring
events or objects in the periphery, or to focus on providing
information for the highest priority tasks or goals. An alterna-
tive could be to replace a resource-hungry calculation witha
more efficient but less accurate one. Each trade-off will have
effects on the quality of the information produced and the
resources used. Another reason for changing the processing

is that it is often context dependent and as the context
changes the processing needs to change as well. For example,
the processing required to monitor the behavior of vehicles
following roads and vehicles which may drive off-road is
very different. In the first case simplifying assumptions can
be made as to how vehicles move, while these would be
invalid if a vehicle goes off-road. To handle both cases
a system would have to be able to switch between the
different processing configurations. A fifth requirement on
knowledge processing middleware is therefore support for
flexible configuration and reconfigurationof the processing
that is being performed.

An agent should not depend on outside help for recon-
figuration. Instead, it should be able to reason about which
trade-offs can be made at any point in time, which requires
introspective capabilities. Specifically, the agent must be able
to determine what information is currently being generated
as well as the potential effects of any changes it may make in
the processing structure. Therefore a sixth requirement isfor
the framework to provide adeclarative specification of the
information being generated and the information processing
functionalities that are available, with sufficient content to
make rational trade-off decisions.

To summarize, knowledge processing middleware should
support declarative specifications for flexible configuration
and dynamic reconfiguration of context dependent processing
at many different levels of abstraction.

IV. STREAM-BASED KNOWLEDGE PROCESSING

M IDDLEWARE

The previous section focused on requirements that are
necessary or desirable in any form of knowledge process-
ing middleware, intentionally leaving open the question of
how these requirements should be satisfied. We now go on
to propose one specific type of framework,stream-based
knowledge processing middleware, which we believe will
be useful in many applications. A concrete implementation,
DyKnow, will be discussed later in this paper.

Due to the need for incremental refinement of information
at different levels of abstraction, we model computations
and processes within the stream-based knowledge processing
framework as active and sustainedknowledge processes. The
complexity of such processes may vary greatly, ranging from
simple adaptation of raw sensor data to image processing al-
gorithms and potentially reactive and deliberative processes.

In our experience, it is not uncommon for knowledge
processes at a lower level to require information at a higher
frequency than those at a higher level. For example, a sensor
interface process may query a sensor at a high rate in order
to average out noise, providing refined results at a lower
effective sample rate. This requires knowledge processes
to be decoupled and asynchronous to a certain degree.
In stream-based knowledge processing middleware, this is
achieved by allowing a knowledge process to declare a set of
stream generators, each of which can besubscribedto by an
arbitrary number of processes. A subscription can be viewed
as a continuous query, which creates a distinct asynchronous

9

streamonto which new data is pushed as it is generated.
The contents of a stream may be seen by the receiver as
data, information or knowledge.

Decoupling processes through asynchronous streams mini-
mizes the risk of losing samples or missing events, something
which can be a cause of problems in query-based systems
where it is the responsibility of the receiver to poll at suffi-
ciently high frequencies. Streams can provide the necessary
input for processes that require a constant and timely flow
of information. For example, a chronicle recognition system
needs to be apprised of all pertinent events as they occur, and
an execution monitor must receive constant updates for the
current system state at a given minimum rate. A push-based
stream system also lends itself easily to “on-availability”
processing, i.e. processing data as soon as it is available,and
the minimization of processing delays, compared to a query-
based system where polling introduces unnecessary delays
in processing and the risk of missing potentially essential
updates as well as wastes resources. Finally, decoupling also
facilitates the distribution of processes within a platform or
between different platforms, another important property of
many complex autonomous systems.

Finding the correct stream generator requires each stream
generator to have an identity which can be referred to, a
label. Though a label could be opaque, it often makes sense
to use structured labels. For example, given that there is a
separate position estimator for each vehicle, it makes sense
to provide an identifieri for each vehicle and to denote
the (single) stream generator of each position estimator by
position[i]. Knowing the vehicle identifier is sufficient for
generating the correct stream generator label.

Even if many processes connect to the same stream gen-
erator, they may have different requirements for their input.
As an example, one could state whether new information
should be sent “when available”, which is reasonable for
more event-like information or discrete transitions, or with a
given frequency, which is more reasonable with continuously
varying data. In the latter case, a process being asked for
a subscription at a high frequency may need to alter its
own subscriptions to be able to generate stream content
at the desired rate. Requirements may also include the
desired approximation strategy when the source knowledge
process lacks input, such as interpolation or extrapolation
strategies or assuming the previous value persists. Thus,
every subscription request should include apolicy describing
such requirements. The stream is then assumed to satisfy
this policy until it is removed or altered. For introspection
purposes, policies should be declaratively specified.

While it should be noted that not all processing is based
on continuous updates, neither is a stream-based framework
limited to being used in this manner. For example, a path
planner or task planner may require an initial state from
which planning should begin, and usually cannot take up-
dates into account. Even in this situation, decoupling and
asynchronicity are important, as is the ability for lower level
processing to build on a continuous stream of input before
it can generate the desired snapshot. A snapshot query, then,

is simply a special case of the ordinary continuous query.

A. Knowledge Processes

For the purpose of modeling, we find it useful to iden-
tify four distinct types of knowledge processes: Primitive
processes, refinement processes, configuration processes and
mediation processes.

Primitive processesserve as an interface to the outside
world, connecting to sensors, databases or other information
sources that in themselves have no explicit support for
stream-based knowledge processing. Such processes have
no stream inputs but provide a non-empty set of stream
generators. In general, they tend to be quite simple, mainly
adapting data in a multitude of external representations tothe
stream-based framework. For example, one process may use
a hardware interface to read a barometric pressure sensor and
provide a stream generator for this information. However,
greater complexity is also possible, with primitive processes
performing tasks such as image processing.

The remaining process types will be introduced by means
of an illustrating example from the traffic monitoring sce-
nario, where car objects must be generated and anchored
to sensor data which is mainly collected using cameras.
Note that this example is not purely theoretical but has been
fully implemented and successfully used in test flights in an
experimental UAV platform [13].

In the implemented approach, the image processing system
producesvision objectsrepresenting entities found in an
image, calledblobs, having visual and thermal properties
similar to those of a car. A vision object state contains an
estimation of the size of the blob and its position in absolute
world coordinates. When a new vision object has been found,
it is tracked for as long as possible by the image processing
system and each time it is found in an image a new vision
object state is pushed on a stream.

Anchoring begins with this stream of vision object states,
aiming at the generation of a stream ofcar object states
providing a more qualitative representation, including re-
lations between car objects and road segments. An initial
filtering process, omitted here for brevity, determines whether
to hypothesize that a certain vision object in fact corresponds
to a car. If so, a car object is created and alink is established
between the two objects. To monitor that the car object
actually behaves like a car, a maintain constraint describing
expected behavior is defined. The constraint is monitored,
and if violated, the car hypothesis is withdrawn and the link
is removed. A temporal modal logic is used for encoding
normative behaviors, and a progression algorithm is used for
monitoring that the formula is not violated.

Figure 2 shows an initial process setup, existing when
no vision objects have been linked to car objects. As will
be seen, processes can dynamically generate new processes
when necessary. Figure 3 illustrates the process configuration
when VisionObject#51 has been linked toCarObject#72 and
two new refinement processes have been created.

The first process type to be considered is therefinement
process, which takes a set of streams as input and provides

10

Fig. 2. The initial set of processes before any vision objecthas been created.

Fig. 3. The set of processes afterVisionObject#51 has been linked to
CarObject#72.

one or more stream generators producing refined, abstracted
or otherwise processed values. Several examples can be
found in the traffic monitoring application, such as:

• VoCoLink – Manages the set of links between vision
objects and car objects, each link being represented as a
pair of labels. When a previously unseen vision object
label is received, create a new car object label and a
link between them. When a link is received from the
VoCoLinkViolations process, the maintain constraint of
the link has been violated and the link is removed. The
output is a stream of sets of links. A suitable policy may
request notification only when the set of links changes.

• VoToCo – Refines a single vision object to a car ob-
ject by adding qualitative information such as which
road segment the object is on and whether the road
segment is a crossing or a road. Because quantitative
data is still present in a car object, a suitable policy
may request new information to be sent with a fixed
sample frequency. Using a separate process for each car
object yields a fine-grained processing network where
different cars may be processed at different frequencies
depending on the current focus of attention.

• VoCoLinkMonitor – An instantiation of the formula pro-
gressor. Monitors the maintain constraint of a vision
object to car object link, using the stream of car object
states generated by the associatedVoToCo. The output
is false iff the maintain constraint has been violated.

The second type of process, theconfiguration process, takes a
set of streams as input but produces no new streams. Instead,
it enables dynamic reconfiguration by adding or removing
streams and processes. The configuration processes used in
our example are:

• CreateVoCoLinkMonitors – Takes a stream of sets of
links and ensuresVoCoLinkMonitor refinement processes
are created and removed as necessary.

• CreateVoToCos – Takes a stream of vision to car object

links and ensuresVoToCo refinement processes are
created and removed as necessary.

Finally, a mediation processgenerates streams by selecting
or collecting information from other streams. Here, one or
more of the inputs can be a stream of labels identifying other
streams to which the mediation process may subscribe. This
allows a different type of dynamic reconfiguration in the
case where not all potential inputs to a process are known
in advance or where one does not want to simultaneously
subscribe to all potential inputs due to processing cost. One
mediation process is used in our example:

• VoCoLinkViolations – Takes a stream of sets of links
identifying all current connections between vision ob-
jects and car objects. Dynamically subscribes to and
unsubscribes from monitor information from the as-
sociatedVoCoLinkMonitors as necessary. If a monitor
signals a violation (sending the value “false”), the
corresponding link becomes part of the output, a stream
of sets of violated links.

In Figure 2 theVoCoLinkViolations mediation process sub-
scribes to no streams, since there are noVoCoLinkMonitor
streams. In Figure 3 it subscribes to the stream of monitor
results of the maintain constraint of the newVisionObject#51
to CarObject#72 link.

This example shows how stream-based knowledge pro-
cessing middleware can be applied in a very fine-grained
manner, even at the level of individual objects being tracked
in an image processing context. At a higher level, the entire
anchoring process can be viewed as a composite knowledge
process with a small number of inputs and outputs, as
originally visualized in Figure 1. Thus, one can switch
between different abstraction levels while remaining within
the same unifying framework.

B. Timing

Any realistic knowledge processing architecture must take
into account the fact that both processing and communica-
tion takes time, and that delays may vary, especially in a
distributed setting. As an example, suppose one knowledge
process is responsible for determining whether two cars
are too close to each other. This test could be performed
by subscribing to two car position streams and measuring
the distance between the cars every time a new position
sample arrives. Should one input stream be delayed by one
sample period, distance calculations would be off by the
distance traveled during that period, possibly triggeringa
false alarm. Thus, the fact that two pieces of information
arrive simultaneously must not be taken to mean that they
refer to the same time.

For this reason, stream-based knowledge processing mid-
dleware should support tagging each piece of information in
a stream with itsvalid time, the time at which the information
was valid in the physical environment. For example, an image
taken at timet has the valid timet. If an image processing
system extracts vision objects from this image, each created
vision object should have the same valid time even though

11

some time will have passed during processing. One can
then ensure that only samples with the same valid time are
compared. Valid time is also used in temporal databases [15].

Note that nothing prevents the creation of multiple samples
with the same valid time. For example, a knowledge process
could very quickly provide a first rough estimate of some
property, after which it would run a more complex algorithm
and eventually provide a better estimate with identical valid
time.

The available time, the time when a piece of information
became available through a stream, is also relevant. If each
value is tagged with its available time, a knowledge process
can easily determine the total aggregated processing and
communication delay associated with the value, which is
useful in dynamic reconfiguration. Note that the available
time is not the same as the time when the value was
retrieved from the stream, as retrieval may be delayed by
other processing.

The available time is also essential when determining
whether a system behaves according to specification, which
depends on the information actually available at any time as
opposed to information that has not yet arrived.

V. DYKNOW

A concrete example of a stream-based knowledge pro-
cessing middleware framework called DyKnow has been
developed as part of our effort to build UAVs capable of
carrying out complex missions [6, 10, 12]. Most of the func-
tionality provided by DyKnow has already been presented
in the previous section, but one important decision for each
concrete instantiation is the type of entities it can process. For
modeling purposes, DyKnow views the world as consisting
of objectsand features.

Since we are interested in dynamic worlds, a feature may
change values over time. Due to the dynamic nature of
the value of a feature afluent is introduced to model the
value of a feature. A fluent is a total function from time to
value, representing the value of a feature at every time-point.
Example features are the speed of a car, the distance between
two cars, and the number of cars in the world.

Since the world is continuous and the sensors are imperfect
the fluent of a feature will in most cases never be completely
known and it has to be approximated. In DyKnow, an
approximation of a fluent is represented by afluent stream. A
fluent stream is a totally ordered sequence ofsamples, where
each sample represents an observation or an estimation of the
value of the feature at a particular time-point.

To satisfy the sixth requirement of having a declarative
specification of the information being generated, DyKnow
introduces a formal language to describe knowledge process-
ing applications. An application declaration describes what
knowledge processes and streams exists and the constraints
on them. To model the processing of a dependent knowledge
process acomputational unitis introduced. A computational
unit takes one or more samples as inputs and computes zero
or more samples as output. A computational unit is used
by a dependent knowledge process to create a new fluent

generator. Afluent generator declarationis used to specify
the fluent generators of a knowledge process. It can either
be primitive or dependent. To specify a stream apolicy is
used.

The DyKnow implementation sets up the stream process-
ing according to an application specification and processes
the streams to satisfy their policies. Using DyKnow an
instance of the traffic monitoring scenario has successfully
been implemented and tested [13].

VI. RELATED WORK

There is a large body of work on hybrid architectures
which integrate reactive and deliberative decision making[2–
4, 18, 19]. This work has mainly focused on integrating
actions on different levels of abstraction, from control laws
to reactive behaviors to deliberative planning. It is often
mentioned that there is a parallel hierarchy of more and
more abstract information extraction processes or that the
deliberative layer uses symbolic knowledge, but few are
described in detail [1, 16, 17].

The rest of this section focuses on some approaches
claiming to provide general support for integrating sensing
and reasoning as opposed to approaches limited to particular
subproblems such as symbol grounding, simultaneous local-
ization and mapping or transforming signals to symbols.

4D/RCS is a general cognitive architecture which claims
to be able to combine different knowledge representation
techniques in a unified architecture [20]. It consists of a
multi-layered hierarchy of computational nodes each con-
taining sensory processing, world modeling, value judgment,
behavior generation, and a knowledge database. The idea
of the design is that the lowest levels have short-range and
high-resolution representations of space and time appropriate
for the sensor level while higher levels have long-range
and low-resolution representations appropriate to deliberative
services. Each level thus provides an abstract view of the pre-
vious levels. Each node may use its own knowledge represen-
tation and thereby support multiple different representation
techniques. But the architecture does not, to our knowledge,
provide any support for the transformation of information in
one node at one abstraction level to information in another
node on another abstraction level.

SCENIC [21] performs model-based behavior recogni-
tion, distributing tasks such as spatial reasoning and object
recognition, classification and tracking into three process-
ing stages: Low-level analysis, middle layer mediation and
high-level interpretation. From an integration perspective the
middle layer, which tries to match top-down hypotheses
with bottom-up evidence and computes temporal and spatial
relations, is clearly the most interesting. However, it is also
quite specific to this particular task as opposed to being a
general processing framework.

Gunderson and Gunderson (2006) claim to bridge the gap
between sensors and symbolic levels for a cognitive system
using a Reification Engine[8]. While other approaches
mainly focus on grounding for the purpose of reasoning
about the world, the authors claim that a system should

12

also be able to use a symbol to affect the world, citing this
bidirectionality as a critical insight missing in other work on
symbol grounding. The major weakness with this approach
is the focus on a single step approach to connecting a symbol
to sensor data, a process we believe will require several steps
where the intermediate structures will be useful as well.

The CoSy Architecture Schema Toolkit (CAST) is another
general cognitive architecture [9]. It consists of a collection
of interconnected subarchitectures (SAs). Each SA contains
a set of processing components that can be connected to
sensors and effectors and a working memory which acts
like a blackboard within the SA. One special SA is the
binder which creates a high-level shared representation that
relates back to low-level subsystem-specific representations
[14]. It binds together content from separate information
processing subsystems to provide symbols that can be used
for deliberation and then action. By deliberation the authors
mean processes that explicitly represent and reason about
hypothetical world states. Each SA provides abinding proxy
which contains a set of attribute-value pairs calledbinding
featurescorresponding to the internal data in the SA. The
binder will try to bind proxies together to formbinding
unionswhich fuse the information from several proxies to a
single representation. The set of unions represent the best
system wide hypothesis of the current state. A weakness
is that the binder is mainly interested in finding matching
binding proxieswhich are then merged intobinding unions
representing the best hypothesis about the current system
state. The system provides no support for other types of
refinement or fusion.

VII. SUMMARY

As autonomous physical systems become more sophisti-
cated and are expected to handle increasingly complex and
challenging tasks and missions, there is a growing need to
integrate a variety of functionalities developed in the field
of artificial intelligence. A great deal of research in this
field has been performed in a purely symbolic setting, where
one assumes the necessary knowledge is already available
in a suitable high-level representation. There is a wide
gap between such representations and the noisy sensor data
provided by a physical platform, a gap that must somehow
be bridged in order to ground the symbols that the system
reasons about in the physical environment in which the
system should act.

As physical autonomous systems grow in scope and
complexity, bridging the gap in an ad-hoc manner becomes
impractical and inefficient. At the same time, a systematic
solution has to be sufficiently flexible to accommodate a
wide range of components with highly varying demands.
Therefore, we began by discussing the requirements that
we believe should be placed on any principled approach to
bridging the gap. As the next step, we proposed a specific
class of approaches, which we call stream-based knowledge
processing middleware and which is appropriate for a large
class of autonomous systems. This step provides a consider-
able amount of structure for the integration of the necessary

functionalities, but still leaves certain decisions open in order
to avoid unnecessarily limiting the class of systems to which
it is applicable. Finally, DyKnow was presented to give an
example of an existing implementation of such middleware.

REFERENCES

[1] Virgil Andronache and Matthias Scheutz. APOC - a framework for
complex agents. InProceedings of the AAAI Spring Symposium, pages
18–25. AAAI Press, 2003.

[2] R. C. Arkin. Behavior-Based Robotics. MIT Press, 1998.
[3] Marc S. Atkin, Gary W. King, David L. Westbrook, Brent Heeringa,

and Paul R. Cohen. Hierarchical agent control: a framework for
defining agent behavior. InProc. AGENTS ’01, pages 425–432, 2001.

[4] P. Bonasso, J. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack.
Experiences with an architecture for intelligent, reactive agents. J.
Experimental and Theoretical AI, 9, April 1997.

[5] S. Coradeschi and A. Saffiotti. An introduction to the anchoring
problem. Robotics and Autonomous Systems, 43(2-3):85–96, 2003.

[6] Patrick Doherty, Patrik Haslum, Fredrik Heintz, Torsten Merz, Per
Nyblom, Tommy Persson, and Björn Wingman. A distributed archi-
tecture for autonomous unmanned aerial vehicle experimentation. In
Proc. DARS’04, 2004.

[7] Malik Ghallab. On chronicles: Representation, on-linerecognition and
learning. InProc. KR’96, pages 597–607, November 5–8 1996.

[8] J. P. Gunderson and L. F. Gunderson. Reification: What is it, and why
should i care? InProceedings of Performance Metrics for Intelligent
Systems Workshop, pages 39–46, 2006.

[9] Nick Hawes, Michael Zillich, and Jeremy Wyatt. BALT & CAST:
Middleware for cognitive robotics. InProceedings of IEEE RO-MAN
2007, pages 998–1003, August 2007.

[10] Fredrik Heintz and Patrick Doherty. DyKnow: An approach to mid-
dleware for knowledge processing.J. Intelligent and Fuzzy Systems,
15(1):3–13, nov 2004.

[11] Fredrik Heintz and Patrick Doherty. Managing dynamic object struc-
tures using hypothesis generation and validation. InProc. Workshop
on Anchoring Symbols to Sensor Data, 2004.

[12] Fredrik Heintz and Patrick Doherty. A knowledge processing mid-
dleware framework and its relation to the JDL data fusion model. J.
Intelligent and Fuzzy Systems, 17(4), 2006.

[13] Fredrik Heintz, Piotr Rudol, and Patrick Doherty. Fromimages to
traffic behavior – a UAV tracking and monitoring application. In Proc.
Fusion’07, Quebec, Canada, July 2007.

[14] Henrik Jacobsson, Nick Hawes, Geert-Jan Kruijff, and Jeremy Wyatt.
Crossmodal content binding in information-processing architectures.
In Proc. HRI’08, Amsterdam, The Netherlands, March 12–15 2008.

[15] Christian Jensen and Curtis Dyreson (eds). The consensus glossary
of temporal database concepts - february 1998 version. InTemporal
Databases: Research and Practice. 1998.

[16] Kurt Konolige, Karen Myers, Enrique Ruspini, and Alessandro Saf-
fiotti. The Saphira architecture: a design for autonomy.J. Experimental
and Theoretical AI, 9(2–3):215–235, April 1997.

[17] D.M. Lyons and M.A. Arbib. A formal model of computationfor
sensory-based robotics.Robotics and Automation, IEEE Transactions
on, 5(3):280–293, 1989.

[18] Barney Pell, Edward B. Gamble, Erann Gat, Ron Keesing, James
Kurien, William Millar, Pandurang P. Nayak, Christian Plaunt, and
Brian C. Williams. A hybrid procedural/deductive executive for
autonomous spacecraft. InProc. AGENTS ’98, pages 369–376, 1998.

[19] M. Scheutz and J. Kramer. RADIC – a generic component forthe
integration of existing reactive and deliberative layers for autonomous
robots. InProc. AAMAS’06, 2006.

[20] Craig Schlenoff, Jim Albus, Elena Messina, Anthony J. Barbera, Raj
Madhavan, and Stephen Balakrisky. Using 4D/RCS to address AI
knowledge integration.AI Mag., 27(2):71–82, 2006.

[21] Kasim Terzić, Lothar Hotz, and Bernd Neumann. Division of work
during behaviour recognition – the SCENIC approach. InWorkshop
on Behaviour Modelling and Interpretation, KI’07, 2007.

13

Developing Intelligent Robots with CAST

Nick Hawes and Jeremy Wyatt
Intelligent Robotics Lab

School of Computer Science
University of Birmingham Birmingham, UK
{n.a.hawes, j.l.wyatt}@cs.bham.ac.uk

Abstract— In this paper we describe the CoSy Architecture
Schema, and the software toolkit we have built to allow us
to produce instantiations of this schema for intelligent robots.
Although the schema does not specify a cognitive modelper se,
it constrains the space of models that can be built from it. Along
with descriptions of the schema and toolkit we present the mo-
tivation behind our designs (a need to explore the design-space
of information-processing architectures for intelligent systems),
and a discussion of the kinds of design, implementation and
information-processing models they support.

I. INTRODUCTION

The ultimate aim of many current projects in the field
of cognitive or intelligent robotics is the development of a
robotic system that integrates multiple heterogeneous sub-
systems to demonstrate intelligent behaviour in a limited
domain (home help, guided tours etc.). Typically the focus
in this work is in developing state-of-the-art components and
subsystems to solve a particular isolated sub-problem in this
domain (e.g. recognising categories of objects, or mappinga
building). In the CoSy1 and CogX2 projects, whilst being in-
terested in state of the art subsystems, we are also motivated
by the problems of integrating these subsystems into a single
intelligent system. We wish to tackle the twin problems of
designing information-processing architectures that integrate
subsystems in a principled manner, and implementing these
designs in a robotic system. The alternative to explicitly
addressing these issues is ad-hoc theoretical and software
integration that sheds no light on one of the most frequently
overlooked problems in AI and robotics: understanding the
trade-offs available in the design space of intelligent systems
[20], [10].

The desire to tackle architectural and integration issues
in a principled manner has led us to develop the CoSy
Architecture Schema Toolkit (CAST) [14]. This is a software
toolkit intended to support the design, implementation and
exploration of information-processing architectures forintel-
ligent robots and other systems. The design of CAST was
driven by a set of requirements inspired by HRI domains
and the need to explore the design space of architectures for
systems for these domains. This has led to a design based
around a particular computational paradigm: multiple shared
working memories. Given the topic of this workshop, this
paper will expand the motivation behind the design of CAST

1Cognitive Systems for Cognitive Assistants: http://cognitivesystems.org
2Cognitive Systems that Self-Understand and Self-Extend: http://cogx.eu

(Section II), how the computation paradigm of multiple
shared working memories is implemented in our software
toolkit (Section III), and how this paradigm influences the
systems we build and the way we build them (Section IV).

II. UNDERSTANDING ARCHITECTURES AND
INTEGRATION

A common approach to designing and building an intelli-
gent system to perform a particular task follows this pattern:
analyse the problem to determine the sub-problems that need
to be solved, develop new (or obtain existing) technologiesto
solve these sub-problems, put all the technologies together in
a single system, then demonstrate the system performing the
original task. This “look ma no hands” approach to intelligent
system design has a number of problems, but we will focus
on the “put all the technologies together” step. If the number
of component technologies is small, and the interactions
between them are strictly limited, then arbitrarily connecting
components may suffice. However, once a certain level of
sophistication has been reached (we would argue that once
you integrate two or more sensory modalities in an intelligent
robot, or would like your system to be extensible, you have
reached this level), then this approach lacks the foresight
necessary to develop a good system design. Instead, the
initial problem analysis should cover therequirementsfor the
system’s information-processing architecture design (i.e. the
integrating parts) in addition to the component technologies.

In the field of intelligent artifacts, the term “architecture”
is still used to refer to many different, yet closely related,
aspects of a system’s design and implementation. Underlying
all of these notions is the idea of a collection of units of
functionality, information (whether implicitly or explicitly
represented) and methods for bringing these together. At
this level of description there is no real difference between
the study of architectures in AI and software architectures
in other branches of computer science. However, differ-
ences appear as we specialise this description to produce
architectures that integrate various types of functionality
to produce intelligent systems. Architectures for intelligent
systems typically include elements such as fixed representa-
tions, reasoning mechanisms, and functional or behavioural
component groupings. Once such elements are introduced,
the trade-offs between different designs become important.

Such trade-offs include the costs of dividing a system up
to fit into a particular architecture design, and the costs of

14

using a particular representation. Such trade-offs have been
ignored by previous work on integrated systems, yet these
factors are directly related to the efficacy of applying an
architecture design to a particular problem. Our research
studies architectures for integrated, intelligent systems in
order to inform the designers of these systems of the trade-
offs available to them.

Given that there is a huge space of possible architecture
designs for intelligent systems (cf. [18], [21]) it is important
both that we (as scientists concerned with designing and
building such systems) understand this design space and
the trade-offs it offers, and that we are able to evaluate
the influence of the architectures we use in the systems we
build. Although we could study architecture designs purely
in theory (cf. [15]), the dynamic and complex internal and
external behaviours of even the simplest robots situated inthe
real world means that we may have more success in studying
the designs empirically. For this we require implementations
of our architecture designs that allow us to separate the
effects of the architecture design from the effects of the
components being integrated by the design. We have argued
this point elsewhere (cf. [11]), but it is worth restating
as it motivates our approach to the design of middleware
for intelligent robots. To avoid the uninformative, ad-hoc
approach to building integrated systems (characterised above
as “look ma no hands”), we must not only be able to
demonstrate that our system works, but we must also be able
to provide some analysis on why the system works the way
it does. This type of analysis is almost always performed for
the components of an integrated system, but it is rarely, if
ever, performed for the architecture design used to integrate
the components.

There may be many reasons why researchers do not
evaluate the influence their chosen information-processing
architecture has on the behaviour of their intelligent system.
One reason is the confusion between the types of architec-
tures (at various levels of abstraction) that feature in the
implementation of an intelligent system. These can include
very abstract information flow architectures, more concrete
decompositions into subsystems and functional components,
and further, more detailed, decompositions into classes and
functions in software. In our experience, it is typically this
latter type of architecture (i.e. the system’s software archi-
tecture) that is the only architecture explicitly present inthe
final system implementation. Because of this, it is difficult
to isolate the information-processing architecture (which we
assume is typically at a higher level of abstraction than
classes and functions in most systems), from the rest of the
system; it is only implicitly present in the implementation. To
address this problem we advocate the use of anarchitecture
toolkit when building intelligent systems. Such a toolkit
fixes the information-processing architecture explicitlyin the
implementation of the system, and keeps the architectural
elements separate from the components in the system.

III. THE COSY ARCHITECTURE SCHEMA
TOOLKIT

This reasoning has led us to develop theCoSy Architec-
ture Schema Toolkit(CAST) [14], a software toolkit which
implements theCoSy Architecture Schema(CAS) and thus
allows us to build information-processing architectures for
intelligent robots based on instantiations of this schema.

A. The Schema

As mentioned in Section II we are interested in un-
derstanding the trade-offs available in the design space of
architectures for intelligent systems. We designed CAS to
allow us study a small region of this space in a systematic
manner. CAS is an architectureschema, i.e. a set of rules
which can be used to design architectures. We refer to the
process of designing and building an architecture from the
schema asinstantiation. By comparing instantiations of the
schema we can uncover some of the trade-offs that are
available within the design space defined by the schema.

CAS is based around the idea of a collection of loosely
coupled subarchitectures, where a subarchitecture can be
considered as a subsystem of the whole architecture. As
shown on the left in Figure 1, each subarchitecture contains
a number of processing components which share information
via a working memory, and a control component called
a task manager. Some processing components within an
subarchitecture areunmanagedand some aremanaged. Un-
managed components perform relatively simple processing
on data, and thus run constantly, pushing their results ontothe
working memory. Managed processes, by contrast, monitor
the changing working memory contents, and suggest possible
processing tasks using the data in the working memory. As
these tasks are typically expensive, and computational power
is limited, tasks are selected on the basis of current needs
of the whole system. The task manager is essentially a set
of rules for making such allocations. Each subarchitecture
working memory is readable by any component in any
other subarchitecture, but iswritable only by processes
within its own subarchitecture, and by a limited number
of otherprivilegedcomponents. These components can post
information to any other subarchitecture, allowing top-down
goal creation and cross-architecture coordination.

If there are several processing goals that a subarchitecture
needs to achieve, they are mediated by its task manager. This
mixes top-down and data driven processing and allows goals
to be handled that require coordination within one subarchi-
tecture or across multiple subarchitectures. At one extreme
the number of privileged components can be limited to one
(centralised coordination), and at the other all components
can be privileged (completely decentralised coordination).

In terms of design CAS falls between two traditional
camps of architecture research. On one hand its shared
working memories draw influence from cognitive modelling
architectures such as ACT-R [1], Soar [17], and Global
Workspace Theory [19]. On the other hand it grounds these
influences in a distributed, concurrent system which shares
properties with robotic architectures such as 3T [5].

15

Fig. 1. Two views of the CoSy Architecture Schema. The figure on the left is the schema at the level of a single subarchitecture. The figure on the
right shows how a system is built from a number of these subarchitectures. Note that all inter-subarchitecture communication occurs via working memory
connections.

B. The Toolkit

This schema is implemented in our software toolkit CAST.
The toolkit provides a component-based software framework
with abstract classes for managed and unmanaged compo-
nents, task managers and working memories. By sub-classing
these components, system builders can quickly and easily
create new architectures that instantiate the CAS schema.
CAST provides access to functionality intended to make
programming within the schema as simple as possible. Most
of this functionality is based around accessing working
memories.

In CAST a working memory is an associative container
that maps between unique identifiers (IDs) andworking
memory entries. Each entry is an instance of atype, which
can be considered as analogous to a class. Components
can add new entries to working memory, and overwrite or
delete existing entries. Components can retrieve entries from
working memory using three access modes: ID access, type
access and change access. For ID access the component
provides a unique ID and then retrieves the entry associated
with that ID. For type access the component specifies a type
and retrieves all of the entries on working memory that are
instances of this type. Whilst these two access modes provide
the basic mechanisms for accessing the contents of working
memory, they are relatively limited in their use for most
processing tasks. Typically most component-level processing
can be characterised by a model in which a component waits
until a particular change has occurred to an entry on working
memory before processing the changed entry (or a related
entry). To support this processing model, components can
subscribe tochange events. Change events are generated by
the working memory to describe the operations that are being

performed on the entries it contains. These events contain the
ID and type of the changed entry, the component that made
the change, and the operation performed to create the change
(i.e. whether the entry was added, overwritten or deleted).

As is necessary for any robot-centric middleware, CAST
can run distributed across multiple machines. It also na-
tively supports both C++ and Java (a requirement for our
project’s software which we found hard to satisfy using
other robotic middleware). We currently use CORBA to
provide support for the cross-language and cross-network
translation, although we’re considering replacing this inthe
future. Translation is hidden from the programmer, so that
there is no difference when a component accesses a working
memory written in the same language on the same machine,
to when it accesses a working memory written in a different
language on a remote machine. To support the exploration
of the design space of CAST instantiations, architectures
built with CAST can be reconfigured without changing
component code or recompilation. This allows us to add and
remove subarchitectures, and change the decomposition of
components into subarchitectures, without changing a line
of code. Finally, CAST is open source, and freely available
from http://www.cs.bham.ac.uk/research/projects/cosy/cast/.

IV. THE BEHAVIOUR OF CAST

CAST allows us to design and build a wide range of
intelligent systems. These systems will vary in many ways,
but because they are CAST instantiations they will all
share at least one feature: shared working memories. It
is this feature that gives CAST systems their distinctive
information-processing behaviour (a behaviour similar to
distributed blackboard systems [8]). We now explore this
behaviour in more detail.

16

A. Concurrent Refinement of Shared Information

Two of the requirements that influenced the design of
CAS are the requirement that information is shared be-
tween components, and the requirement that components
are active in parallel. These requirements combine in CAS
to produce a model in which processing components work
concurrently to build up shared representations. For example,
the visual working memory in our recent intelligent system
[12] contains entries representing regions of interest and
objects in the scene. Once these basic structures have been
created (via segmentation and tracking) other components
(such as feature recognisers) can work in parallel adding
information to these entries. As the data is shared, any update
to an entry is available to any component that needs it as
soon as the entry is changed on working memory. In this
manner the results of processing by one component can by
asynchronously incorporated into the processing of another
as soon as the results are available.

It is not only components within a subarchitecture that are
are active in parallel. Subarchitectures themselves are also
concurrently active, allowing the concurrent refinement of
information in one subarchitecture working memory to influ-
ence the processing of components in another. This behaviour
allows us, for example, to narrow the space of hypotheses in
incremental parsing [16] in parallel to extracting information
about the visual scene.

Although this processing model could be implemented
in a purely component-based architecture, the amount of
concurrent data sharing between subsystems means that it
is a very natural fit with the design of CAS.

B. Incremental Design & Development

By only allowing components in a CAST system to
communicate via information shared on working memories
we reduce the interdependencies between them. This allows
components to be added to, or removed from, CAST instan-
tiations without the need for the architecture be restructured
(or for any code to be recompiled). This freedom allows us to
adopt an incremental approach design and implementation.

Due to the subarchitecture schema design, a processing
behaviour (e.g. a linguistic or visual interpretation behaviour)
can be designed, implemented and tested incrementally. A
designer can start with an initial set of components to
perform some basic processing tasks (e.g. segmentation in
the previous example of a visual system) that populate
working memory. Following this, CAST allows the designer
to incrementally add components to process the entries on
working memory without altering the initial components
(unless extensions to them are required). As long as these
additional components do not introduce dependencies at
the information-processing level (e.g. one component must
always wait for the results of another component), then they
can be added and removed as required by the task. To return
to the example of the visual system, this incremental model
allows us to have a basic subarchitecture that provides the 3D
properties of objects. We can then add additional components
(recognisers, feature extractors etc.) to this subarchitecture

as required by the application domain, whilst leaving the
original components untouched.

The nature of CAST has allowed us to generalise this
model to whole system development. Our integrated systems
feature subarchitectures developed in parallel across multiple
sites. Each site follows the above approach to subarchitecture
design, gradually adding components to a subarchitecture
in order to add more functionality to it. The integrated
system them emerges in a similar way: we start with a
small number of subarchitectures containing a few compo-
nents, and then add functionality in two ways. Individual
subarchitectures can be extended with new components as
before, but also complete subarchitectures can be added to
the system (again without recompilation or restructuring)to
provide new types of functionality. Because the information
produced by existing subarchitectures is automatically shared
on their working memories, any new subarchitecture has
immediate access to the knowledge of the whole system.
As with components, the restriction that communication
occurs only via working memories means that additional
subarchitectures can be removed without altering the initial
system. In [12] we demonstrated this incremental system
development model by taking an existing system for scene
description and extending it with the ability to plan and
perform manipulation behaviours.

We have also taken advantage of the ability to restructure
a CAST system to perform a preliminary exploration of
the design-space delineated by CAS. In [13] we took an
existing CAS instantiation and systematically varied its ratio
of components to subarchitectures. The encapsulation of the
CAS-level system components into a toolkit allowed us to
benchmark architectural properties of the resulting systems
separately to their functional properties.

V. COMPARISONS TO EXISTING WORK

CAST can be compared to many existing software pack-
ages intended for the development of robotic systems.
Although the basic unit of functionality in CAST is a
processing component, it is markedly different from other
component-based frameworks such as MARIE [7], ORCA
[6] and YARP [9]. These frameworks provide methods for
reusing components and accessing sensors and effectors, but
they do not provide anyarchitectural structureexcept in the
very loosest sense (that of components and connections). It
is this structure that CAST provides, along with supporting
component reuse. CAST does not provide access to sensors
and effectors as standard, although to date we have success-
fully integrated Player/Stage, various camera devices anda
manipulator engine into CAST components. At this stage in
the development of CAST we would ideally like to integrate
it with one of these component frameworks to provide our
architecture structure with access to existing devices and
components.

At the other extreme of software for intelligent robotics
is the software associated with cognitive modelling architec-
tures. Such tools includes ACT-R [1] and SOAR [17]. Whilst
these systems provide explicit architecture models along with

17

a means to realise them, they have two primary drawbacks
for the kind of tasks and scientific questions we are interested
in studying. First these systems provide a fixed architecture
model, whilst CAST provides support for a space of possible
instantiations based on a more abstract schema (allowing
different instantiations to be easily created and compared).
Second, it is not currently feasible to develop large integrated
systems using the software provided for these architectures.
This is due to restrictions on the programming languages
and representations that must be adhered to when using these
models. That said, researchers are now integrating cognitive
models such as these into robotic systems as reasoning
components, rather than using them for the architecture of
the whole system (e.g. [4]).

In addition to these two extremes (tools that provide
architectures and tools that provide connections) there are a
small number of toolkits that have a similar aim to the work
presented in this paper. MicroPsi [3] is an agent architecture
and has an associated software toolkit that has been used
to develop working robots. It is similar to the cognitive
modelling architectures described previously in that it has
a fixed, human-centric, architecture model rather than a
schema, but the software support and model provided is
much more suited to implementing robotic systems than
other modelling projects. Our work is perhaps most similar
to the agent architecture development environment ADE [2].
APOC, the schema which underlies ADE is more general
than CAS. This means that a wider variety of instantiations
can be created with ADE than with CAST. This is positive
for system developers interested in only producing a single
system, but because we are interested in understanding the
effects that varying an architecture has on similar systems,
we find the more limited framework of CAS and CAST
provides useful restrictions on possible variations.

VI. CONCLUSIONS

In this paper we have described the CoSy Architecture
Schema Toolkit (CAST) and the theoretical schema (CAS)
it is based on. We discussed our motivation for developing
a toolkit and also described some of the influences that the
toolkit has had on the way we design and build intelligent
robot systems. Although CAS does not specify a cognitive
modelper se, it constrains the space of models that can be
built with it. This constrained space represents a subset of
all possible architecture designs; a subset which we have
found to fit naturally with the robotics problems we face on
a day-to-day basis. It is worth noting that there is a related
space of designs that may come from combining our schema
with other middleware or architecture approaches (where
this combination would typically provide a smaller, rather
than larger, space of designs). We are excited to see the
other contributions to this workshop and explore possible
interactions between their design spaces and ours.

VII. ACKNOWLEDGEMENTS

This work was supported by the EU FP6 IST Cognitive
Systems Integrated Project “CoSy” FP6-004250-IP.

REFERENCES

[1] J. R. Anderson, D. Bothell, M. D. Byrne, S. Douglass, C. Lebiere,
and Y. Qin. An integrated theory of the mind.Psychological Review,
111(4):1036–1060, 2004.

[2] Virgil Andronache and Matthias Scheutz. An architecture development
environment for virtual and robotic agents.Int. Jour. of Art. Int. Tools,
15(2):251–286, 2006.

[3] J. Bach. The micropsi agent architecture. InProc. of ICCM-5, pages
15–20, 2003.

[4] D. Paul Benjamin, Deryle Lonsdale, and Damian Lyons. A cognitive
robotics approach to comprehending human language and behaviors.
In HRI ’07: Proceedings of the ACM/IEEE international conference
on Human-robot interaction, pages 185–192, New York, NY, USA,
2007. ACM.

[5] R. Peter Bonasso, R. James Firby, Erann Gat, David Kortenkamp,
David P. Miller, and Mark G. Slack. Experiences with an architecture
for intelligent, reactive agents.J. Exp. Theor. Artif. Intell., 9(2-3):237–
256, 1997.

[6] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback.
Towards component-based robotics. InIntelligent Robots and Systems,
2005. (IROS 2005). 2005 IEEE/RSJ International Conferenceon,
pages 163–168, 2005.

[7] Carle Cote, Dominic Letourneau, Francois Michaud, Jean-Marc Valin,
Yannick Brosseau, Clment Raevsky, Mathieu Lemay, and Victor Tran.
Code reusability tools for programming mobile robots. InIROS2004,
2004.

[8] L.D. Erman, F. Hayes-Roth, V.R. Lesser, and D.R Reddy. The
HEARSAY-II Speech Understanding System: Integrating Knowledge
to Resolve Uncertainty.Blackboard Systems, pages 31–86, 1988.

[9] Paul Fitzpatrick, Giorgio Metta, and Lorenzo Natale. Towards long-
lived robot genes.Robot. Auton. Syst., 56(1):29–45, 2008.

[10] Nick Hawes, Aaron Sloman, and Jeremy Wyatt. Requirements &
Designs: Asking Scientific Questions About Architectures.In Pro-
ceedings of AISB ’06: Adaptation in Artificial and Biological Systems,
volume 2, pages 52–55, April 2006.

[11] Nick Hawes, Aaron Sloman, and Jeremy Wyatt. Towards an empirical
exploration of design space. InProc. of the 2007 AAAI Workshop on
Evaluating Architectures for Intelligence, Vancouver, Canada, 2007.

[12] Nick Hawes, Aaron Sloman, Jeremy Wyatt, Michael Zillich, Henrik
Jacobsson, Geert-Jan Kruijff, Michael Brenner, Gregor Berginc, and
Danijel Skočaj. Towards an integrated robot with multiplecognitive
functions. InAAAI ’07, pages 1548 – 1553, 2007.

[13] Nick Hawes and Jeremy Wyatt. Benchmarking the influenceof
information-processing architectures on intelligent systems. InPro-
ceedings of the Robotics: Science & Systems 2008 Workshop: Exper-
imental Methodology and Benchmarking in Robotics Research, June
2008.

[14] Nick Hawes, Michael Zillich, and Jeremy Wyatt. BALT & CAST:
Middleware for cognitive robotics. InProceedings of IEEE RO-MAN
2007, pages 998 – 1003, August 2007.

[15] Randolph M. Jones and Robert E. Wray. Comparative analysis of
frameworks for knowledge-intensive intelligent agents.AI Mag.,
27(2):57–70, 2006.

[16] Geert-Jan M. Kruijff, Pierre Lison, Trevor Benjamin, Henrik Ja-
cobsson, and Nick Hawes. Incremental, multi-level processing for
comprehending situated dialogue in human-robot interaction. In
Symposium on Language and Robots, Aveiro, Portugal, 2007.

[17] J. E. Laird, A. Newell, and P. S. Rosenbloom. Soar: An architecture
for general intelligence.Artificial Intelligence, 33(3):1–64, 1987.

[18] Pat Langley and John E. Laird. Cognitive architectures: Research
issues and challenges. Technical report, Institute for theStudy of
Learning and Expertise, Palo Alto, CA, 2002.

[19] Murray Shanahan and Bernard Baars. Applying global workspace
theory to the frame problem.Cognition, 98(2):157–176, 2005.

[20] Aaron Sloman. The “semantics” of evolution: Trajectories and trade-
offs in design space and niche space. In Helder Coelho, editor,
Progress in Artificial Intelligence, 6th Iberoamerican Conference on
AI (IBERAMIA), pages 27–38. Springer, Lecture Notes in Artificial
Intelligence, Lisbon, October 1998.

[21] D. Vernon, G. Metta, and G. Sandini. A survey of artificial cognitive
systems: Implications for the autonomous development of mental
capabilities in computational agents.Evolutionary Computation, IEEE
Transactions on, 11(2):151–180, April 2007.

18

BRAHMS: Novel middleware for integrated systems computation

B. Mitchinson, T.-S. Chan, J. Chambers, M. Humphries, C. Fox, K. Gurney and T. J. Prescott

Abstract— Computational modellers are becoming increas-
ingly interested in building large, eclectic, biological models.
These may integrate nervous system components at various
levels of description, other biological components (e.g. muscles),
non-biological components (e.g. statistical discriminators or
control software) and, in embodied modelling, even hardware
components, all potentially with different authors. There is
a need for middleware to facilitate these integrated systems.
BRAHMS, a Modular Execution Framework, fills that need
by defining a supervisor-process interface and an (extensible)
set of process-process interfaces; authors can write to these
interfaces, and processes will integrate as required. Additional
benefits include reuse (never code the same model twice),
cross-user readability, system-level parallelisation onmulti-core
or multi-node environments, cross-language integration,data
logging, performance analysis, and run-stop-examine-continue
execution. BRAHMS employs the nascent, and similarly general
purpose, model markup language, SystemML. This will, in
future, also facilitate repeatability (same answers ten years
from now), transparent automatic software distribution, and
interfacing with other SystemML tools.

I. INTRODUCTION

Fig. 1. Example block diagram of an integrated dynamic system built from
independent processes. Rectangles represent processes, circles output ports,
and arrows links between processes.

Moves are afoot in the world of computational neu-
roscience towards the construction of large integrated
models[1], [2], [3], [4], [5], [6], [7], [8], in the spirit
of Daniel Dennett’s ‘whole iguana’[9]. Multi-region brain
models are complex, so researchers necessarily develop them
as collections of sub-systems, or ‘processes’, which must
then be ‘linked’ together to form a ‘system’ that can be
computed, Fig. 1. This aside, modularity is widely consid-
ered to be a desirable trait in software design [10]. We

The authors are with the Adaptive Behaviour Research Group at the
Department Of Psychology, The University Of Sheffield, Western Bank,
Sheffield, S10 2TN, UK. Supported by European 6th Framework Grant IST
027819 ICEA and EPSRC Research Grant EP/C516303/1.

Corresponding authorb.mitchinson@shef.ac.uk.

define a Modular Execution Framework (MEF)1 to mean
any middleware that facilitates such linkage—a well-known
example is Simulink[11]. Neuroscientists are wont to repre-
sent processes at different levels of abstraction (biophysical,
neuronal, network, control-theoretic, etc.)[12], so it isnot
generally possible to compute all processes in one computa-
tion engine—rather, the task is to linkenginestogether[8].
Bespoke integration serves for any single project but, as
we will see, a general solution offers much more for less
effort, and the startup cost is considerably outweighed by
the immediate benefits.

In Section II, we run over the particular challenges and
requirements for integrated computation in academic re-
search. We go on in Section III to introduce our proposal,
BRAHMS[13], beginning with an overview of its use. In Sec-
tion IV, we contrast BRAHMS with existing and developing
solutions and show it to be well positioned with respect to
these. We report on project status in Section V and conclude
in Section VI that BRAHMS already offers a solution to
most of the identified challenges and will, through planned
developments, meet the remainder.

Whilst BRAHMS has its roots in solving problems in
and around computational neuroscience, we emphasise that
it is not limited by those origins, and we expect it to be of
equal interest to researchers in other fields. The problems
of integration, of course, become all the more visible when
crossing disciplinary boundaries.

II. CHALLENGES AND REQUIREMENTS

A. Varied Development

The primary challenge (as described above) is to integrate
software processes, and the primary requirement is, therefore,
to offer a middleware platform which will execute processes
in concert. Processes may be developed in, on, or by different
authors, labs, platforms, programming languages, human lan-
guages, programming styles and at different times. The inclu-
sion of non-neuroscience processes generalises the problem
across problem domains and technical languages. Without
direct communication and refactoring, such disparate offer-
ings will not generally be integrable. Software engineers
meet such challenges by offering fixed, public, interfaces
to develop against. In this context, an interface requires
two facets: one between process and framework, the other
between processes; these interfaces must be general (exclude
no possibilities), static (or maintain backward compatibility),
accessible and available in multiple programming languages
on multiple platforms.

1We prefer ‘Execution’ to ‘Simulation’ since, in general, some processes
will not be simulations.

19

B. Varied Deployment

High-end multiprocessing hardware is increasingly be-
coming available to research labs, supporting a rapid growth
in the development of ‘large-scale’ models[14] (models with
many dynamic states). At the same time, increasing focus on
‘embodied modelling’[15], [16] (deployment of behavioural
models on robotic hardware) is generating use cases based on
low-end hardware. These two trends push the computational
envelope at opposite ends, and any solution must be deploy-
able in all these environments. A researcher may develop
initially on a desktop machine, for convenience; experimental
work may involve large models or parameter spaces and,
thus, high-end hardware; embodied models will eventually be
deployed on robots, and, particularly if there is an intellectual
interest in mobile roboticsper se, this may mean running on
low-end embedded hardware. The requirements are, that a
researcher should only have to develop once for such varied
deployment cases, and that the middleware should be able
to take advantage of the resources of high-end and desktop
hardware without becoming unwieldy on low-end hardware.

C. Code Sharing

Computational researchers spend much time authoring
software, and disappointingly often this work is repeated
in other labs, by other researchers, or even by the same
researchers, when documentation, compatible source-code
and/or compatible binary code is, or becomes, unavail-
able. Anecdotal (and more concrete[5], [17]) evidence sug-
gests that ‘...easier to rewrite it myself than try and ob-
tain/understand/integrate their original code...’ is a common
story. Any solution should offer great potential for code
sharing and reuse, which is to say more than that the code
could be integrated—it must bestraightforward to do so.
This requires a (preferably, automatic) archiving/distribution
mechanism, that shared code be in a form that is immediately
usable (rather than having to be compiled, say), and that
the solution encourages authors to document their work[18]
(facilitating ‘intellectual’ integration).

In addition, ‘background functionality’ like parallelisation
or data marshalling is neither trivial nor quick to author (and
most researchers do not want to become software engineers),
so sharing such functionality with all process developers
is desirable. Therefore, as much functionality as possible
should be subsumed into the middleware—‘general’ process
code should be shared. We use the term ‘supervisor’ to refer
to this shared code, which might, at minimum, be responsible
for reading a system document, loading required processes,
connecting them together, progressing them through time,
collating results, and returning these to the caller.

D. Open Standards

There is more to working with systems than their execu-
tion; other possibilities include a system design GUI and an
archival/retrieval tool (see also Section II-C). It is, thus, a
requirement that the middleware should work with open and
extensible data standards. Moreover, the needs of academic
research are constantly changing and often cannot wait—the

solution must be able to support these changing needs in a
timely manner. In practice, therefore, it is a requirement that
the solution be open source and extensible by anyone.

E. Adoption

If they are to adopt any proposal, potential users must
perceive its advantages to outweigh its costs, both initially
and in the long-term. The short-term requirement is met
if the startup cost is sufficiently low—interfaces must be
few, simple, and well documented; immediately available
‘added value’ will help to offset this cost. The long-term
requirement is met if, in comparison with an equivalent
bespoke monolithic design, overall performance does not
suffer and per-process development effort is similar or less.
Furthermore, an integration solution should by its nature be
inclusive, so the solution must be available to all—this means
affordable (preferably with no cost). Adoption will be the
more willing the more freedom that is given to the developer
to do things their way—this means making the interface
available in multiple languages, on multiple platforms.

III. BRAHMS

A. Overview

BRAHMS represents part of our commitment to the phi-
losophy and methodologies of neuroinformatics: developing
general purpose tools that facilitate large-group working
in neuroscience, and sharing and reusing resources. It is
an MEF developed in-house during the course of a large-
scale, multicentre project (WhiskerBot [3]) which presented
many of the challenges outlined in Section II. This was
a computational neuroscience project, but from the outset
BRAHMS was required to integrate diverse processes (see
Section III-H). The design goals of BRAHMS are perfor-
mance, flexibility and extensibility. BRAHMS is open source
and licensed under the GNU General Public License.

BRAHMS operates on systems, Fig. 1, progressing them
through time and generating output, Fig. 2, which comprises,
in large part, logs of the links between processes. Processes
can be developed by dropping state initialization and update
code into one of the provided templates (using a program-
ming language that suits the developer). Systems are built
from these, processes developed by other researchers, and
processes provided with BRAHMS, in just a few lines of
script. BRAHMS is invoked to execute these systems, taking
advantage of parallel computing resources where available,
and the results can easily be pulled into an analysis envi-
ronment. BRAHMS is not tied to any particular interactive
environment but, currently, the support offered for working
in Matlab[11] is particularly strong. In time, the library of
available processes will increase and additional supervisor
functionality will accrue (see Section VI-B for future plans).

B. Systems

A BRAHMS system is a snapshot of a stateful dynamic
system in time; that is, a collection of stateful processes and
a collection of stateful links connecting them together. A
system is loaded from file at invocation, and stored back to

20

Fig. 2. Typical BRAHMS workflow: system and execution command file
design, execution by BRAHMS (progression of the system through time),
analysis of final system state and execution output.

file at termination (the file format used is SystemML[19], an
open XML-based format for representing stateful dynamic
systems). Each process is specified as a class, which indexes
an extensible set of process classes each implementing some
algorithm, and class-specific state data. A process may pub-
lish outputs, each of which specifies a transport protocol (pe-
riodic/aperiodic, sample rate) and a data container. Each data
container is specified as a class, which indexes an extensible
set of data container classes each implementing some data
structure, and class-specific state data. Each link specifies a
source output (implicitly, thus, a transport protocol and data
container class), a destination process, and a transport delay.

The class-specific process or data container state data
(termed ‘StateML’) is understood by design tools for and
implementations of those classes (for instance, NeuroML[8]
might be the StateML for some neural process classes).
These class-specific data are not used by BRAHMS so the set
of systems that can be represented is extensible simply by the
addition of new process or data classes. Transport protocols
are the responsibility of the middleware, however, so the
addition of new protocols requires updating BRAHMS.

C. Interfaces

The core of BRAHMS is the supervisor-process
interface—C was chosen as the language for this for its dura-

bility and interoperability with other languages. Language
bindings are provided for C++ and Matlab, and additional
bindings are expected to follow (Python bindings are cur-
rently under development). The interface as a whole has been
designed according to modern API design principles[20],
for example with an eye to minimality, extensibility, and
backward compatibility. It comprises four aspects, as follows.

First, processes offer an extensible events interface through
which the supervisor can invoke process operations (such as
initialization, progressing through time). The remainingthree
aspects are callback interfaces allowing processes to invoke
supervisor functionality. They are an implementation of parts
of the W3C XML Document Object Model interface[21]
(for manipulating StateML, amongst other things), the inter-
process interface (for interacting with links), and a general
interface of BRAHMS-specific functions.

In addition to the above, data container classes must
offer a class-specific interface to allow manipulation of their
contents by processes. Inter-process communication then
proceeds as follows: the source process publishes a port
during initialization, specifying the class and structureof data
containers to pass over it, and this forms one end of a link;
at run-time, the source process writes data into a container
using the class-specific interface, and passes the container
into the link; the destination process pulls the container from
the other end of the link and reads the contents using the
class-specific interface.

D. Modules

Process classes are implemented in modules, in one of
the languages for which bindings are provided. A process
module must respond to calls from the supervisor on the
events interface, performing the requested operations. A
simple process module might respond to only two events,
first to publish an output, and second to pass data into it on
each time step. Data classes are implemented in very similar
modules. A data module receives a different set of events
from a process module, but otherwise operation is similar.
A simple data module might respond to two events, to log
its current state for later retrieval, and to return its log to the
supervisor. In addition, a data module must offer an interface
to its content for use by processes, as mentioned above.

E. Supervisor

The BRAHMS supervisor is authored (in C++) as a stan-
dalone executable, so it does not require a virtual machine or
scripting engine and is therefore resource-light. It is invoked
with a command file, see Fig. 2. It then reads the system file,
instantiates the system (by loading modules and passing them
their state from the system file), connects processes together,
then supervises the progression of the system through time,
managing the transport of data through the links. At a
predetermined stop time (or following cancellation by the
user or by a process), it collates the state of all loaded
modules (processes and data containers) and links and writes
this back to a system file, also collating logs of each link
specified for logging in the command file and writing these

21

to an output file. Most often, it is this output file of logged
inter-process links that is the desired product of an execution.

Automatic parallelisation is provided at a coarse-grained
(process) level. Finer-grained parallelisation can be imple-
mented within processes, but it will generally be easier
to break processes up and let BRAHMS parallelise them
(models that consist of collections of similar objects, like
network models, lend themselves particularly to this tech-
nique). One implementation of the supervisor, ‘Solo’, offers
lightweight parallelisation in a shared-memory environment
using multithreading. Another, ‘Concerto’, offers multipro-
cessing for parallelisation over a computing cluster, currently
using either TCP/IP or MPI as the communications layer.

The data transport provided by the supervisor might com-
prise sharing a memory pointer (Solo), or routing a container
over ethernet (Concerto), or through a stateful system file
to another user, on another platform, at another time. Such
transport operations are achieved without onus on the process
developer. Background functionality beyond parallelisation
includes inter-process data compression (Concerto), win-
dowed data logging, distributed system performance monitor-
ing, and a completely general ‘pause & continue’ execution
model (allowing system snapshots at non-zero time to be
coherently stored, exchanged, examined or modified).

F. Accountability

One of the dimensions of Varied Development, above,
is time. This means that we should be able to integrate,
today, process code that was generated many years ago.
However, computing environments change, and researchers
forget. BRAHMS offers accountability; that is, everything
that bears on the results produced from an execution (de-
tails of each loaded library module, external library, of the
run-time environment, platform, operating system, etc.) is
recorded in an ‘execution report’. If a repeat of the execution
does not produce identical results, it is possible to identify
why (thus, accountability favours repeatability by identifying
sources of disagreement).

G. Software Development Kit

A BRAHMS release includes template processes and
tutorial examples (corresponding to tutorials in the documen-
tation) authored in all three currently supported languages.
Thus, creating a new BRAHMS process involves little more
than copying the template for the chosen programming
language, and adding the content that performs the actual
algorithm intended. Also included is a development version
of the BRAHMS ‘Standard Library’, a collection of pro-
cesses implementing simple operations (such as sum, product
and resample) which are intended to be useful in production
systems, whilst doubling as further illustrative material. This
library also includes the data container class that will be
most useful, ‘data/numeric’, which is a container for an N-
dimensional array of numeric data in a comprehensive (and
extensible) range of fixed-bit-width element formats.

Matlab interfaces for the command, system, and output
files, and for invocation of the BRAHMS executable, are also

include, such that BRAHMS can be called in Matlab using
normal function call syntax. These allow the construction
of systems from processes and links, and the design of
the generic StateML used by the processes in the Standard
Library. However, BRAHMS does not know about process
state, in general, so additional tools are needed to design
StateML for processes that do not use this generic StateML.
Interfaces to BRAHMS from other environments are ex-
pected to follow in future.

H. Work Experience

The WhiskerBot robot is an embodied model of rat be-
haviour with an eclectic control model including hardware
components (FPGA spiking neural simulators), neural soft-
ware (leaky integrator models of Superior Colliculus and
Basal Ganglia) and non-neural software (heuristic models of
fixed behaviours and arithmetic/geometric modules for robot
control). The model was developed on high-end desktop
hardware and deployed with modification of parameters only
on the low-end embedded compute platform of the robot,
meeting sub-millisecond real-time constraints consistently.
Large parts of the model have been adopted to contribute
to the control software of the ScratchBot robot, an artefact
of the ICEA project[4]. Other parts are currently in use
as part of the large-scale oculomotor control model of
the REVERB project[22] which deploys across a compute
cluster and a separate robot-control machine. In another
aspect of the ICEA project, existing WhiskerBot processes
have been interfaced successfully with the Freebots[23] robot
simulation environment. BRAHMS has also been chosen
as the integration platform for the large European project
BIOTACT[24]. Taken together, these use cases illustrate
reuse, various dimensions of integration, and varied sub-
strates of deployment.

IV. RELATED PROJECTS

We do not discuss neuroscience-only integration projects,
such as NSL[25], NEOSIM and CATACOMB[26], since they
do not attempt to solve the integration problem with the level
of generality discussed here.

A. Simulink

Simulink[11] has a long history, and is a useful tool for
learning about integrated systems. More recently, it offers
multi-language support (Matlab, C, C++, Ada, Fortran) but
as yet no standard support for parallelisation even within
a shared-memory space, and it suffers from computational
overhead. The data format is open (though not extensible,
since Simulink is proprietary). In the long-term, support may
improve in the technical areas where Simulink does not meet
the requirements, but it is likely to remain costly, closed
source and with a large resource footprint.

B. IKAROS

IKAROS[27] is a project of similar spirit to the BRAHMS
project, but has rather different focus. Its positive points
include the ‘WebUI’, which allows real-time monitoring of

22

system state through a browser, good documentation, and a
simple developer interface. But where BRAHMS aims for
to meet all the challenges listed above, IKAROS attempts
to solve a much more constrained problem, albeit in a
straightforward and effective way.

IKAROS is constrained to a single inter-process data-
type (2D single-precision matrices), does not support dy-
namic creation and sizing of outputs based on connectivity,
multiprocesses on a single machine only (currently), and
the plugin architecture requires the whole system to be
rebuilt from source when new modules are added. This last
is a particular problem for accountability, since the code
that executed to generate archived results is generally no
longer available. There is no discussion of bindings for
other languages; the IKAROS interface is authored in C++,
which might become a problem in the future if the project
intended to move towards dynamic loading or accountability.
IKAROS also lacks some background functionality available
in BRAHMS, though such features can probably, as for
BRAHMS, be added without modifying the plugin codebase.
In summary, we suspect that IKAROS and BRAHMS are
solutions to different, if not quite orthogonal, problems.

C. Large-Scale Modeling Program and MUSIC

The International Neuroinformatics Coordinating Facility
(INCF) have recently launched a program to foster infrastruc-
ture for researchers working with large-scale neural models.
Attendees of the first program workshop[8] noted the large
and growing set of neuron simulators available, and agreed
on the importance of interoperability and component reuse.
Focus was on modularity, particularly the supervisor-process
interface, process-process interface, and common file format.
Consequently, run-time inter-process communication was
also discussed as a necessary future development to integrate
computation engines into systems. They also highlighted
background functionality (node allocation, communications
initialisation) and marshaling of extremely large data sets.

All of these issues are addressed by our proposal. Other in-
teroperability concerns raised in the workshop report are not
applicable to BRAHMS; e.g. no application scripting is re-
quired since BRAHMS is responsible for procedure. Within
the program, a communications library called MUSIC[28] is
under development. The MUSIC approach leaves everything
but inter-process communication to the process, in stark
contrast to BRAHMS, which provides much common func-
tionality. Each approach has its advantages—in particular,
large and/or closed-source projects are more likely to suit
a MUSIC interface than a BRAHMS front-end (though the
latter need not be onerous). In contrast, BRAHMS allows
extremely rapid development of powerful cross-platform
engines, which MUSIC does not. We do not consider that
BRAHMS and MUSIC will be direct competitors, and expect
to offer a BRAHMS-MUSIC interface in future.

V. STATUS

BRAHMS has been public since April 2007, and is
now approaching version 0.7, expected midsummer 2008.

This branch will serve the ICEA, REVERB and BIOTACT
projects (for three years). Interface logic is unchanged since
December 2007 though minor syntax changes continue as
foundations are assured for planned features. At 0.7, syntax
will also freeze. Planned features will arrive in upcoming
minor branches (0.8, 0.9, ...) towards version 1.0 which will
end the initial development cycle. Processes authored against
0.7 will interoperate with future releases.

Solo is now fairly mature, having performed well with
only minor changes for some years. Concerto still has alpha
status, but is considered sufficiently mature for deployment in
the REVERB project. All releases are available for Windows
32-bit, GNU/Linux 32-bit (Ubuntu) and GNU/Linux 64-bit
(Debian). We anticipate offering builds for other platforms
in time. Aperiodic links, pause & continue execution, and
execution reports are not yet fully implemented.

VI. CONCLUSIONS AND FUTURE WORKS

A. Meeting The Challenges

BRAHMS solves the primary challenge of integration
across Varied Development by specifying a common, flex-
ible interface in multiple programming languages, against
which new computational engines can be developed, and
onto which existing computational engines can be imported.
It meets the challenge of Varied Deployment through im-
plementation as a lightweight standalone native executable
and by allowing processes to be developed in similarly
lightweight native code; a version of the supervisor is avail-
able without multiprocessing support for a further reduced
footprint. BRAHMS offers extensive (and accreting) back-
ground functionality in the supervisor, meeting one aspect
of the challenge of Code Sharing (a BRAHMS ‘hello world’
process written in C++ runs to about 25 lines of mostly
boilerplate code, yet can distribute its complex processing
across massively parallel resources).

BRAHMS supports the pragmatic challenges of sharing
process code (by allowing the distribution of pre-compiled
binaries rather than source code and by providing account-
ability) and goes some way to fostering documentation by
defining a public process interface (development against a
known interface self-documents to some extent, since a naı̈ve
reader knows at least some aspects of what a piece of code
is intended to do). However, it does not directly address
the challenge of sharing process code—see Section VI-B for
details of how this will be addressed by future developments.
BRAHMS employs Open Standards throughout. Adoption of
the pre-release platform continues: the success of BRAHMS
as the integration framework for the WhiskerBot project
has led to its being chosen for three other major projects,
involving varied use cases, and the early adopters have
reported finding the workflow agreeable. Indications are that
overall performance of systems executed using BRAHMS
perform favourably in comparison with monolithic equivalent
systems—quantitative metrics will follow in a later report.

New processes benefit from being built into the BRAHMS
framework by taking advantage of services provided by the

23

system, and are constrained in their operation only by the re-
quirements of the supervisor-process interface (i.e. a process
is free to interact with the operating system, with hardware,
with the user, as required). Integrating existing processes into
BRAHMS can be achieved either by ‘wrapping’ the existing
processing engine (contingent on cooperation and/or access
to source code) or by meeting the communications interface
of the existing software (Freebots was wrapped, for example,
by authoring a BRAHMS process that communicated with
it over TCP/IP).

None of the other proposals considered meet the re-
quirements for general integration. Some discussed features
are, as noted above, incomplete; however, users can begin
using BRAHMS immediately and take advantage of feature
additions as they become available.

B. Future Work

Above, we mentioned the SystemML file format, which
is used by BRAHMS to represent systems. This open
file format is a point of interface between BRAHMS and
other tools. Beyond that, however, SystemML will also,
in future, offer an infrastructure for the publication of
processes represented in such systems. Process data in the
infrastructure will include specification of parameterisation
and of input/output interfaces, as well as of the algorithm
itself. The infrastructure will provide archiving, distribution,
version control and automatic patching (without breaking
accountability) of published processes. The interplay of this
infrastructure with accountability will ease the identification
and removal of software bugs. This infrastructure will allow
BRAHMS to meet the final challenge identified above, that
of effective sharing of process code. It will also contribute to
the reduction of the problem of algorithmic details becoming
lost irrecoverably in undocumented optimised code.

Asked to execute a SystemML document, a naı̈ve installa-
tion of BRAHMS will be able to obtain implementations of
the specified processes through the SystemML infrastructure
and execute the model without human intervention. Thus,
processes published to the infrastructure will be immediately
available to co-workers. Not only will co-workers be able to
execute each other’s models, but they will be able to use
freely-available expertly-authored components in their own
models.

We are committed to completing the development of
Concerto, the BRAHMS Standard Library and the Python
language bindings, and we expect to develop bindings for
Java and Octave in future. In addition, we plan to develop
interfaces for the use of BRAHMS from other interactive en-
vironments (Octave, for example). Other possibilities include
a GUI system designer (operating within the SystemML
space entirely, this is actually independent of BRAHMS) and
the addition of a service equivalent to the IKAROS WebUI.

A future report will offer efficiency and scaling metrics,
including comparison with equivalent monolithic systems.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the contributions of
the other Adaptive Behaviour Research Group members in

testing, and particularly the patience and advice of Martin
Pearson as the main end user on the WhiskerBot project.

REFERENCES

[1] P. F. Dominey and M. A. Arbib, “A cortico-subcortical model for
generation of spatially accurate sequential saccades”,Cereb Cortex,
2:153-175, 1992.

[2] J. W. Brown, D. Bullock and S. Grossberg, “How laminar frontal
cortex and basal ganglia circuits interact to control planned and
reactive saccades”,Neural Networks, 17:471-510, 2004.

[3] M. J. Pearson, A. G. Pipe, C. Melhuish, B. Mitchinson and T. J.
Prescott, “Whiskerbot: A Robotic Active Touch System Modeled on
the Rat Whisker Sensory System”,Adaptive Behavior, 15:223-240,
2007.

[4] ICEA, European Union Framework 6 IST-027819,
http://www.iceaproject.eu.

[5] J. M. Chambers,Deciding where to look: A study of action selection
in the oculomotor system, PhD Thesis, The University Of Sheffield,
2007.

[6] J. G. Fleischer, J. A. Gally, G. M. Edelman and J. L. Krichmar, “Retro-
spective and prospective responses arising in a modeled hippocampus
during maze navigation by a brain-based device”,Proc Natl Acad Sci
U S A, 104:3556-3561, 2007.

[7] B. Girard, D. Filliat, J. Meyer, A. Berthoz and A. Guillot, “Integration
of Navigation and Action Selection Functionalities in a Computational
Model of Cortico-Basal-Ganglia-Thalamo-Cortical Loops”, Adaptive
Behaviour, 13(2):115-130, 2005.

[8] M. Djurfeldt and A. Lansner,Proceedings of 1st INCF Workshop on
Large-scale Modeling of the Nervous System, Stockholm, Sweden,
2006, in Nature Precedings, doi: 10.1038/npre.2007.262.1

[9] D. C. Dennett, “Why not the whole iguana?”,Behavioral and Brain
Sciences, 1:103–104, 1978.

[10] D. L. Parnas, “On the criteria to be used in decomposing systems into
modules”,Communications of the ACM, 15(12):1053-1058, 1972.

[11] Mathworks,Matlab & Simulink, http://www.mathworks.com.
[12] K. Gurney, T. J. Prescott, J. R. Wickens and P. Redgrave,“Computa-

tional models of the basal ganglia: from robots to membranes”, Trends
in Neuroscience, 27(8):453-459, 2004, doi: 10.1016/j.tins.2004.06.003

[13] B. Mitchinson and T.-S. Chan,BRAHMS,
http://sourceforge.net/projects/brahms.

[14] M. Djurfeldt, Ö. Ekeberg and A. Lansner, “Large-scale modeling
– a tool for conquering the complexity of the brain”,Frontiers in
Neuroinformatics, 2:1, 2008, doi: 10.3389/neuro.11.001.2008

[15] T. J. Prescott, F. M. Montes González, K. Gurney, M. D. Humphries
and P. Redgrave, “A robot model of the basal ganglia: Behavior and
intrinsic processing”,Neural Networks, 19(1):31-61, 2006.

[16] B. Webb,Biorobotics, AAAI Press, 2001.
[17] R. Chavarriaga, T. Strösslin, D. Sheynikhovich and W.Gerstner,

“A Computational model of parallel navigation systems in rodents”,
Neuroinformatics, 3(3):223-242, 2005.

[18] D. L. Parnas, “Software Aging”,in 16th international conference on
Software engineering, Sorrento, Italy, 2004, 279-287.

[19] B. Mitchinson and J. Chambers,SystemML,
http://sourceforge.net/projects/systemml.

[20] J. Bloch,How to Design a Good API and Why it Matters, Javapolis,
Antwerp, Belgium, December 12–16, 2005.

[21] Le Hors A. et al. (ed.), W3C Document Object Model Core,
http://www.w3.org/TR/DOM-Level-3-Core/core.html.

[22] REVERB, EPSRC Research Grant EP/C516303/1,
http://reverb.abrg.group.shef.ac.uk.

[23] ICEA Deliverable D27, http://www.iceaproject.eu.
[24] BIOTACT, European Union Framework 7 ICT-215910,

http://www.biotact.org.
[25] A. Weitzenfeld, M. A. Arbib and A. Alexander,The Neural Simulation

Language: A System for Brain Modeling, MIT Press, 2002.
[26] F. Howell, R. Cannon, N. Goddard, H. Bringmann, P. Rogister and

H. Cornelis, “Linking computational neuroscience simulation tools :
a pragmatic approach to component-based development”,Neurocom-
puting, 52-54:289-294, 2003.

[27] C. Balkeniuset al., IKAROS, http://www.ikaros-project.org.
[28] Ö. Ekeberg, M. Djurfeldt,MUSIC: Multi-Simulation Coordinator,

Request For Comments, http://www.incf.org, 2008.

24

Architecture paradigms for robotics applications

Michele Amoretti

Dipartimento di Ingegneria dell’Informazione

Università degli Studi di Parma,

43100 Parma, Italy

michele.amoretti@unipr.it

Monica Reggiani

Dipartimento di Tecnica e Gestione

dei Sistemi Industriali

Università degli Studi di Padova

36100 Vicenza, Italy

monica.reggiani@unipd.it

Abstract— In the latest years, several technical architec-
ture paradigms have been proposed to support the develop-
ment of distributed and concurrent systems. Object-oriented,
component-based, service-oriented architectures are among the
latest paradigms that have been driven the implementation
of heterogeneous software products requiring complex inter-
process communication and event synchronization. Despite the
sharing of common objectives, the robotics community is still
late in applying these research results in the development of its
architectures, often relying only on basic concepts.

In this paper we shortly illustrate these paradigms, their
characteristics and successful stories within the robotic domain.
We discuss benefits and tradeoffs of the different solutions
with the goal of deriving some practical principles and strate-
gies to be exploited in robotics practice. Understanding the
characteristics, features, advantages and drawbacks of the
different paradigms is indeed crucial for the successful design,
implementation, and use of a robotic architecture.

I. INTRODUCTION

The technological development of robotics research will

soon lead to the marketing of robots that can play a key

role in supporting people in their everyday tasks. Pursuing a

specific objective while dealing with a dynamic environment

and ensuring a safe interaction with human beings, requires

a complex multifunctional structure for the robot control,

where heterogeneous hardware and software components

interact in a coordinate manner. Additionally, the increasing

number of distributed embedded computing and communica-

tion devices, available in the environment, introduces further

requirements about interoperation with external systems.

The robotics community have recently proposed several

architectures for robot software control [1]–[6], where mono-

lithic development methodologies are avoided as unable to

deal with the problem complexity. Despite this large number

of significant proposals there is still a lack of a common,

suitable solution that would allow reuse of previous efforts.

The main reason for this failure is the difficulty of clearly

describe and formally define a problem domain which is still

unclear as the field of multifunctional robots. For the same

problem, different research projects still produce different

specifications for its domain. This has a huge impact on the

final software architectures as it often prevents the exchange

of software solutions developed by different research groups.

Even if the robotics community is still not in the stage of

avoiding the recreation of incompatible solutions, a plague

which is common to other software research fields, it could

greatly benefit from the advances and maturity reached by

distributed technology research. This research field is already

converging toward few technical architecture paradigms and

mature implementations of these ideas are freely available

in the form of software middlewares supporting complex

interprocess communication, event synchronization, and data

distribution. A thoughtful application of these research re-

sults in the development of robotics software architectures

would, at least, alleviate the cost of re-invention of core con-

cepts and techniques for the control of distributed devices.

Nevertheless, their application to robotics research is still

late, often relying only on the basic concepts of the available

middlewares.

In this paper we shortly introduce three technical archi-

tecture paradigms that have been successfully exploited in

several applications (Sec. II). Their characteristics and suc-

cessful stories within the robotic domain will then be detailed

in the following sections (III-V). We discuss benefits and

tradeoffs of the different solutions with the goal of deriving

some practical principles and strategies to be exploited in

robotics practice. Understanding the characteristics, features,

advantages and drawbacks of the different paradigms is

indeed crucial for the successful design, implementation, and

use of a robotic architecture.

II. ARCHITECTURE PARADIGMS

In the latest decade, the distributed computing community

has witnessed a rapid evolution in the paradigms for software

architectures. An increasing request for modularity, abstrac-

tion, and separation of concerns drove the development of

Distributed Object Architecture (DOA) paradigm (Sec. III).

DOA is based on the object oriented approach and is an

improvement over the first attempts to provide platform

independent solutions for interprocess communication such

as sockets, Java RMI, etc. A following step introduced the

concept of software components [7] with the objective of

promoting the reuse of design and implementation efforts.

The final objective of Component Based Architecture (CBA)

paradigm (Sec. IV) is the development of components, even-

tually from multiple sources, that can be deployed according

to customers’ needs, often evolving during project lifetime. A

recent trend of development of modern large-scale distributed

and mobile systems is calling for a new solution able to better

support an automated use of available distributed resources.

25

The idea of viewing software as a service is at the base of

Service-Oriented Architecture (SOA) paradigm (Sec. V) that

have been recently introduced to provide loosely coupled,

highly dynamic applications.

Next sections will introduce the basic characteristics of

each architecture paradigm, together with few representative

examples of their application in robotics domain. This lays

the background required to motivate the choice among the

different paradigms when a new robotics application must be

developed.

III. DISTRIBUTED OBJECT ARCHITECTURE

Distributed Object Architecture (DOA) concepts are the

result of the merging of object-oriented design techniques

and distributed computing systems. Indeed, DOA applica-

tions are ”composed of objects, individual units of running

software that combine functionality and data” (OMG) and

run on multiple computers to act as a scalable computational

resource. To support the interaction between server-side

objects and clients invoking them, DOA systems rely on the

definition of interfaces. Each distributed object must declare

the available operations so that the clients know which

requests they are allowed to perform, and the DOA system

knows how to marshal/unmarshal the arguments. As DOA is

an evolution of object-oriented techniques, often developers

identify fine-grained interfaces that need a high level of

control on concurrency during multiple objects interactions.

A. DOA Standards and Middlewares

Among the several DOA proposals in the latest fifteen

years, the Common Object Request Broker Architecture

(CORBA) has achieved the highest level of maturity and dif-

fusion. CORBA (http://www.corba.org) is a vendor-

independent specification promoted by the Object Man-

agement Group (OMG) (http://www.omg.org) that

overcomes the interoperability problem allowing smooth

integration of systems built using different software tech-

nologies, programming languages, operating systems, and

hardware. To ensure portability, reusability, and interoper-

ability, CORBA architecture is based on the Object Request

Broker (ORB), a fundamental component that behaves as

a system bus, connecting objects operating in an arbitrary

configuration (Figure 1). To achieve language independence,

CORBA requires developers to express how clients will make

a request using a standard and neutral language: the OMG

Interface Definition Language (IDL). After the interface

is defined, an IDL compiler automatically generates client

stubs and server skeletons according to the chosen language

and operating system. Client stub implementation produces

a thin layer of software that isolates the client from the

Object Request Broker, allowing distributed applications to

be developed transparently from object locations. The Object

Request Broker is in charge of translating client requests into

language-independent requests using the Generic Inter-ORB

Protocol (GIOP), of communicating with the Server through

the Internet Inter-ORB Protocol (IIOP), and of translating

again the request in the language chosen at the server side.

Together with the Object Request Broker, the architecture

proposed by OMG introduces several CORBA Services,

providing capabilities that are needed by other objects in

a distributed system.

1: CORBA ORB architecture

B. DOA Robotic Applications

CORBA is in wide use as a well-proved architecture

for building and deploying significant robotics systems. In

these sectors CORBA is growing because it can harness

the increasing number of operating systems, networks, and

protocols supporting real-time scheduling into an integrated

solution that provides end-to-end QoS guarantees to dis-

tributed object applications.

Initial robotics work using CORBA took a simple ap-

proach to ORB technology, ignoring fundamental com-

ponents such as the Naming Service for location trans-

parency [8], or exploiting CORBA only for interoperabil-

ity of previous developed components [9]. Following these

experiences, other investigations used CORBA to achieve in-

teroperability and location transparency in their applications

and to exploit other useful CORBA Services [10]–[14].

Several projects for the development of robot architectures

have recently based their work on CORBA. MIRO [2]

is an object-oriented robot middleware freely available as

open source. It supports multiple robotics platforms and

common operating systems and provides a set of interfaces

for communication among objects. The overall infrastruc-

ture is largely based on a client/server view build upon

standards and widely used CORBA packages to simplify

the integration of different robotics tasks. Humanoid control

architectures have also used CORBA for the implementation

of the communication layers. The large number of hardware

and software components, often heterogenous, that compose

a humanoid are already a distributed architecture that can

benefit from distributed middlewares to simplify the software

implementation [15]–[17].

The main area of applications of DOA technology is

currently the development of real-time and embedded sys-

tems. Stringent requirements about computing resources and

time-constraints have pushed the improvement on efficiency,

scalability, and predictability of DOA middleware imple-

mentations [18]. Most of the latest application of CORBA

26

have been successfully applied Real-Time CORBA ORBs

that allow these systems to use multithreading while con-

trolling the amount of memory and processor resources they

consume [19]–[21].

IV. COMPONENT-BASED ARCHITECTURE

Component-based architectures are based on the concept

of software component, i.e. a unit of composition with

contractually specified interface [22]. Following DOA ap-

proach, CBA also forces a strong separation between in-

terface and implementation to simplify the design of large

systems and promote software reuse. Nevertheless, DOA’s

objects are not candidates for CBA’s components. While

objects are tightly coupled with other objects, requiring their

presence to achieve their functionality, components should

be autonomous units whose purpose is well defined and

understood. As a consequence, components are generally

coarser-grained than objects.

Usually CBA approaches define a model that the com-

ponent developers have to follow in order to allow grace-

ful composition. Usually this model defines the creation,

use, and lifecycle management of components and includes

a programming model for their definition, assembly, and

deployment. Interactions can follow several schemes (syn-

chronous, asynchronous, by event, etc.) and they are usually

not statically defined but can be manipulated at runtime.

Additionally, to enable component composition at runtime,

CBA systems should provide introspective operations to au-

tomatically discover component functionality and properties.

A. CBA Standards and Middlewares

The literature on distributed systems has proposed several

implementation of the CBA concepts. The most mature

and generally applicable component models include the

Enterprise Java Beans (EJB) [23] of Sun Microsystems, the

Object Management Groups’s CORBA Component Model

(CCM) [24] of OMG, and the ZeroC’s Internet Communi-

cation Engine (ICE) [25]. We will limit our survey to CCM

and ICE as EJB had a limited impact on the robotics domain

because it is essentially tied to the Java world.

1) CORBA Component Model (CCM): The CORBA

Component Model (CCM) has been proposed by Object

Management Group (OMG) in CORBA 3.0 to enhance

CORBA object features and have them more suitable for

a component-based software development. It is a neutral

open standard supporting several programming languages,

operating systems, and networks, in a seamless way.

The standard extends the concept of object introducing the

component model and a set of new features to simplify and

automate the construction, composition, and configuration

of components. Each component usually identifies a coarser

unit of implementation with an interface that exposes ports

for the connection with other components. Ports include

facets, interfaces for synchronous method invocations, recep-

tacles, mechanisms to declare other component interfaces re-

quired for a proper functioning, and event sources/sinks for a

loose coupling among components through the asynchronous

exchange of event messages.

Additionally, CCM standard specification describes the

steps in the application development lifecycle. During the

design, component behavior and collaboration are defined

together with the required ports; the design is then imple-

mented, requiring the definition of runtime support through

component descriptors. Afterwards, component packages

bundle component implementations with descriptors that are

used by component assemblers connecting ports of com-

ponent instances. Finally the system is deployed, preparing

required resources and realizing assemblies of components.

2) Internet Communication Engine (ICE): Internet Com-

munication Engine (ICE) is an object oriented middleware

platform that has been developed by the ZeroC group as

an alternative to CORBA OMG standard. ZeroC project

aims at providing an efficient object-oriented middleware

platform suitable for heterogeneous environments and with

a full set of features to support the development of realistic

distributed applications for a wide area of domains. It also

aims at avoiding unnecessary complexity, for a platform

easy to learn and use. While most of ICE aims are shared

with other distributed middleware solutions, the attention to

a code suitable for not advanced users without sacrificing

the completeness of the middleware is something new and

definitively not shared with most of the previously proposed

solutions.

Two services included in the ZeroC middleware are of

preeminent importance: ICEGrid, that implements grid com-

puting services to discover and control remote resources, and

ICEStorm, to efficiently distribute data within the architec-

ture.

B. CBA Robotic Applications

In the latest years, an increasing number of robotic ar-

chitectures have been built upon CBA principles. Indeed,

the component-based approach allows to give a possible

solution for several weakness on the development of software

for robotics applications. A first problem is related to the

great effort required to develop complete control software

for robotics systems before being able to start with the

implementation of research issues. The aim is to develop

components for mature algorithms, sensor, and actuators

that can be easily downloaded or purchased and flexibly

combined. Additionally, the latest robotics applications often

require distributed environments providing location trans-

parency for easy component rearrangement on processing

and bandwidth constraints. Additional details about CBA and

robotics can be found in [26].

Among the several available proposals, two mature

projects are RT-Middleware [27], based on OMG con-

cepts, and ORCA [28] implemented on top of ICE. RT-

Middleware [29] is a development framework created at

the National Institute of Advanced Industrial Science and

Technology (AIST). Its main goal is to simplify system inte-

gration through a methodology for the creation of Robotics

Technology Component (RT-Component) and a framework

27

for their composition. RT-Components, built as CORBA

components, consist of the following objects and interfaces:

Component Object, Activity, continuously processing inputs,

InPort, as input port object, OutPort, as output port object,

and Command Interface. RT-Middleware supports several

methods to integrate RT-Components. Together with low

level integration methods directly using CORBA based sys-

tem application programs or applying the composite pattern

to RT-Component object structure, the framework makes

available an assembly GUI tool, a script language, and

XML configuration files. AIST research laboratory has also

developed OpenRTM-aist, a prototype implementation based

on RT-Middleware interface specification and RT-Component

model that has been used to develop several testbeds such

as a force controlled manipulator system [29], a service

robotic system for elderly care [30] and an image recognition

device [31].

ORCA is an open-source implementation framework for

developing component-based robotic systems [3]. The main

ORCA objective is to provide the tools for defining and

developing the components that will be combined together

to support the implementation of an arbitrary robotic archi-

tecture. ORCA achieves this goal through the adoption of

a component-based approach using ICE for the definition

of interface and communication, and with the development

of tools to support the implementation of components but

still keeping full access to underlying details. Through the

identification of common definitions for data structures and

interfaces frequently encountered in robotics, ORCA can

build a repository of reusable components, libraries, and

utilities [32].

V. SERVICE-ORIENTED ARCHITECTURE

Service-oriented computing defines an architectural style

whose goal is to achieve loose coupling (i.e. minimized

artificial dependencies) among interacting software entities.

The key concept of this approach is the service, a unit of

work executed by a service provider to achieve the desired

results for a service consumer. Both provider and consumer

are simply roles played by software entities on behalf of their

owners. Therefore, service requesters (i.e. consumers) can be

end users (provided with client tools) or other services. The

interaction pattern among service providers and consumers

is illustrated in figure 2.

2: Service-oriented interaction pattern

The most important achievement of SOA-based distributed

environment is that shared resources (principally, applica-

tions and data) are made available on demand as independent

services that can be accessed without knowledge of their

underlying platform implementation.

A. SOA Standards and Middlewares

A good starting point for understanding what SOAs are is

OWL-S [33], [34], a service ontology supplying a core set of

markup language constructs for describing services in unam-

biguous, computer-interpretable form. This would allow the

automatic discovery, invocation, composition, interoperation

and execution monitoring of services. OWL-S is attracting

a lot of interest even though it is still under development,

suffering some conceptual ambiguity and lacking of concise

axiomatising.

In the meanwhile, and even before the rise of OWL-

S driven by the Semantic Web Community, SOAs have

been mainly created and deployed using the Web Service

technology. The latter aims at moving beyond the tradi-

tional middleware and framework concepts, standardizing

the support of higher-level interactions, such as service flow

orchestration and enterprise application integration. A num-

ber of protocols and standards define Web Services. WSDL

(Web Services Description Language) documents describe

the Web Service interface, through the identification of the

supported operations and messages and their bounding to a

concrete network protocol and message format. Web Service

interfaces are usually listed in centralized repositories, such

as UDDI registers, but there is still no standard protocol for

distributed publication and discovery of Web Services.

The loose coupling between consumers and providers

is achieved through a stateless request/reply scheme for a

message-oriented interaction. Messages are typically con-

veyed using SOAP, i.e. HTTP with an XML serialization,

but any other communication protocol could be used for

message delivery. Any system supporting these standards will

be able to support Web Services. Recently, the Web Ser-

vices Resource Framework (WSRF) specification has been

introduced to support the creation of stateful Web Services.

The platform-neutral technology of Web Services has been

implemented on several platforms for their development and

deployment. J2EE and .NET are the most successful ones

and they will be shortly introduced in the following.

1) Web Services with J2EE: Among the several

J2EE competing environments, the most widely used is

JBOSS [35] that provides the whole range of J2EE features.

Additionally, JBOSS includes extended enterprise services

including clustering, caching, and persistence as well as a

J2EE certified platform for the development and deployment

of enterprise Java applications, Web applications, and Portals.

The open source community also provides important toolkits

for Java-based development of Web Service architectures.

Apache products are the most notable ones, ranging from

Web Service containers to specific protocols implementa-

tions. Tomcat [36] is the servlet container belonging to

the Apache suit and it is used in the official reference

implementation for the Java Servlet and JavaServer Pages

technologies. Axis [37] is instead the SOAP engine, i.e. a

framework for the construction of SOAP processors such

28

as clients, servers, gateways, etc. It also includes a simple

stand-alone server that can plug into servlet engines, such as

Tomcat, extensive support for WSDL 1.1, emitter tooling

that generates Java classes from WSDL, and a tool for

monitoring TCP/IP packets. The latest Axis version also

support advanced WS-related protocols, such as the Message

Transmission Optimization Mechanism for efficient distribu-

tion of binary data among Web Services.

2) Web Services with .NET: Windows Communication

Foundation (WCF) is the Microsoft platform for SOA [38].

It is a rich technology foundation that aims at building

distributed service-oriented applications for the enterprise

and the web. The latest version of .NET (3.0), officially

launched with Windows Vista in January 2007, introduced

WCF along with Windows Worflow Foundation for the

support of service workflow. This marked the release of

the first Microsoft web services platform for the design,

implementation and deployment of services with essential

plumbing for scalability, performance, security, reliable mes-

sage delivery, transactions, multithreading, and asynchronous

messaging.

Another important set of libraries, tools, and applications

which implements the WSRF specifications is WSRF.NET,

developed by the Grid Computing Groups of the University

of Virginia. This free software allows easy authoring of

WSRF-compliant services and clients and integrates many

Microsoft technologies.

Recently, Microsoft released the Microsoft Robotics Stu-

dio (MRS) [39] a software based on .NET that provides a

service-oriented architecture combining key aspects of tradi-

tional Web-based architectures with new concepts from Web

Service technologies. In particular, the MRS runtime adopts

the REST (REpresentational State Transfer) model as its

foundation, and extends it with structured data representation

and event notifications from the Web Service world. MRS

supports several programming languages, including those

in Microsoft Visual Studio (C# and VB.NET) as well as

scripting languages such as Python.

B. SOA Robotic Applications

The adoption of SOAs in distributed robotic applications

has passed through a first phase in which services were

simply wrappers of existing applications, with limited ex-

ploitation of SOA protocols and tools [40]–[43]. Recently,

the research community entered a second phase in which

applications are (re)designed according to service-centric

models, considering also advanced specifications such as

OWL-S and WSRF.

In this context, a work by Ha et al. [44] proposes the

automated integration of distributed robots, sensors and de-

vices into ubiquitous computing environments based on se-

mantically enriched Web Services. Their Ubiquitous Robotic

Service Framework (USRF) consists of three major compo-

nents: a Robotic Agent (RA), an Environmental Knowledge

Repository (EKR), and Device Web Services (DWS). The

RA includes a service application, a URSF Application

Programming Interface (API), a plan composition module,

a knowledge discovery module, a plan execution module,

an OWL reasoner, and a protocol stack for Web Service

execution including SOAP, XML and HTTP. To request a

service from a robot, a user can input a command with a

user interface for the service application. Then, the service

command is encoded with vocabularies in OWL-S profile

ontology and the concept ontology stored in the EKR so that

the knowledge discovery module and the plan composition

module can understand the user’s service request. DWS

are actually Web Services for ubiquitous devices including

mobile robots, sensors, actuators, digital appliances, etc.

The service-oriented architecture for Web Labs proposed

by Coelho et al. [45] is targeted to education applications. In

this architecture the building blocks are services that can be

recursively composed to produce other, more comprehensive,

services. Lab resources (physical and logical) are modeled

and implemented as services, e.g. a robot exports a set of

services, each one performing a specific function (sensing,

navigation, etc.). The concept of federation of services allows

Web Labs to use resources maintained by other Web Labs

located in different administrative domains. The composition

logic of the experiments can be expressed in specialized

languages such as BPEL (Business Process Execution Lan-

guage).

Gritti et al. [46] explore a reactive approach to self-

configuration of an ecology of robots inspired by ideas from

the field of semantic Web Services, even though the resulting

middleware (called PEIS-kernel) is neither based on J2EE

nor .NET technologies. Their work is a clear example of

how SOA principles can be decisive for solving complex

distributed robotic problems. Three are the main charac-

teristics of the proposed approach. First, there is a formal

description of functionalities so they can be exported to the

ecology and automatically processed. Second, a framework is

available for finding exported functionalities compatible with

their needs and compose them to configure at runtime a set of

functionalities from different robots that can solve the current

task. Finally, a mechanism for semantic interoperability

allows to match functionalities from heterogeneous devices

according to a unified onto logical classification.

The last application we consider is the healthcare robot

platform introduced by Lee et al. [47] which is based on a

Web Service Event-Condition-Action (WS-ECA) framework.

ECA rules consists of events, notification messages from

services or users, conditions, boolean expression that must

be satisfied to activate devices, and actions, instructions that

invoke services or generate events. The healthcare robot plat-

form is equipped with various sensors, including ultrasonic

sensors for distance measurement, IR human detection sen-

sors, navigation sensors, etc. It can collect vital signals, such

as heart rate, blood pressure, breath rate, from bio-sensors.

These sensors are active publishers of context events, which

can be registered by the WS-ECA engine as operators. This

ECA-based approach is becoming widely used in ambient

intelligence applications.

29

VI. CONCLUSIONS AND FUTURE WORK

In this paper we shortly reviewed three main architecture

paradigms for distributed applications and their successful

use within the robotics community. The survey showed that

the different paradigms have different characteristics and

properties that make them suitable for different distributed

applications. DOA is based on the fine-grained concept of

object which is suitable for lower layers where the developers

need high performance even if this requires a high level of

control on concurrency during multiple objects interactions.

CBA and related middlewares are instead more suitable

for mid-tiers where the objective is to develop autonomous

components that can be exchanged and composed based on

application needs. Finally, SOA is useful for the development

of loosely couple architectures where the interacting entities

can be accessed without previous knowledge.

Our future work will go into details in these differences to

develop an in-depth discussion about influences and impacts

of architecture paradigms on robotics applications, following

similar investigations in other research fields [48]–[50].

REFERENCES

[1] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in IEEE Int. Conf. Robotics and Automation, 2001.

[2] H. Utz, S. Sablatnog, S. Enderle, and G. Kraetzschamr, “Miro -
middleware for mobile robot applications,” IEEE Transactions on

Robotics and Automation, vol. 18, no. 2, pp. 493–497, 2002.

[3] A. Makarenko, A. Brooks, and T. Kaupp, “Orca: components for
robotics,” in IEEE/RSJ Int. Conf. on Intelligent Robots and Systems,
2006.

[4] R. Volpe, I. Nesnas, T. Estlin, D. Mutz, R. Petras, and H. Das,
“The claraty architecture for robotic autonomy,” in IEEE Aerospace

Conference, 2001.

[5] P. Fitzpatrick, G. Metta, and L. Natale, “Towards long-lived robot
genes,” Robot. Auton. Syst., vol. 56, no. 1, pp. 29–45, 2008.

[6] J. C. Baillie, “Urbi: Towards a universal robotic low-level pro-
gramming language,” in IEEE/RSJ Int. Conf. Intelligent Robots and

Systems, 2005.

[7] C. Szyperski, “Component technology - what, where, and how?” in
25th Int. Conf. on Software Engineering, 2003.

[8] R. L. Burchard and J. T. Feddema, “Generic robotic and motion control
API based on GISC-kit technology and CORBA communications,” in
IEEE Int. Conf. Robotics and Automation, 1996.

[9] C. Paolini and M. Vuskovic, “Integration of a robotics laboratory using
CORBA,” in IEEE Int. Conf. Systems, Man, and Cybernetics, 1997.

[10] B. Dalton and K. Taylor, “Distributed robotics over the internet,” IEEE

Robotics and Automation Magazine, vol. 7, no. 2, pp. 22–27, 2000.

[11] H. Hirukawa and I. Hara, “Web-top robotics,” IEEE Robotics and

Automation Magazine, vol. 7, no. 2, pp. 40–45, 2000.

[12] S. Jia, Y. Hada, Y. Gang, and K. Takase, “Distributed telecare robtoic
systems using CORBA as a communication architecture,” in IEEE Int.

Conf. Robotics and Automation, 2002.

[13] R. Siegwart, P. Blamer, C. Portal, C. Wannaz, R. Blank, and
G. Caprari.

[14] T. Ortmaier, D. Reintsema, U. Seibold, U. Hagn, and G. Hirzinger,
“The DLR minimally invasive robotics surgery scenario,” in Workshop

Advances in Interactive Multimodal Telepresence Systems, 2001.

[15] J. Lee, M. Jie, S. Kim, M. Jung, C. Kim, and B. You, “Balloon burster:
A CORBA-based visual servoing for humanoid robot in a distributed
environment,” in Annual Conference SICE, 2007.

[16] F. Kanehiro, Y. Ishiwata, H. Saito, K. Akachi, G. Miyamori,
T. Isozumi, K. Kaneko, and H. Hirukawa, “Distributed Control System
of Humanoid Robots based on Real-time Ethernet,” in IEEE/RSJ Int.

Conf. on Intelligent Robots and Systems, 2006.

[17] K. Takeda, Y. Nasu, G. Capi, M. Yamano, L. Barolli, and K. I. Mitobe,
“A CORBA-based approach for humanoid robot control,” ndustrial

Robot: An International Journal,, vol. 28, no. 3, pp. 242–250, 2001.

[18] “The Real-time CORBA with TAO.” [Online]. Available: http:
//www.cs.wustl.edu/∼schmidt/TAO.html

[19] Y.-H. Kuo and B. A. MacDonald, “A distributed real-time software
framework for robotic applications,” in IEEE Int. Conf. Robotics and

Automation, 2005.

[20] H. Song, Y. Li, F. Zhou, and L. Jia, “The Research and Application
of Real Time CORBA in Software Framework for Industrial Robot,”
in Int. Conf. on Integration Technology, 2007.

[21] M. Amoretti, S. Bottazzi, S. Caselli, and M. Reggiani, “Telerobotic
systems design based on real-time corba,” Journal of Robotic Systems,
vol. 22, no. 4, pp. 183–201, 2005.

[22] C. Szyperski, Component software: beyond object-oriented program-

ming, ser. The Component Software Series. Addison Wesley, 2002.

[23] Sun Microsystems, “Enterprise JavaBeans Technology.” [Online].
Available: http://java.sun.com/products/ejb/

[24] OMG, CORBA Component Model 4.0 Specification, April 2006,
version 4.0. [Online]. Available: http://www.omg.org/docs/formal/
06-04-01.pdf

[25] ZeroC, “Internet Communication Engine (ICE) Home Page.” [Online].
Available: http://www.zeroC.com/ice.html

[26] A. Brooks, T. Kaupp, A. Makarenko, S. Williams, and A. Oreback,
“Towards Component-Based Robotics,” in IEEE/RSJ Int. Conf. on

Intelligent Robots and Systems, 2005.

[27] AIST, “RT-Middleware.” [Online]. Available: http://www.is.aist.go.jp/
rt/OpenRTM-aist/

[28] A. Brooks, T. Kaupp, and A. Makarenko, “ORCA Project.” [Online].
Available: http://orca-robotics.sourceforge.net/

[29] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W. Yoon, “RT-
Component object model in RT-Middleware - distributed component
middleware for RT (Robot Technology),” in IEEE Int. Symp. Compu-

tational Intelligence in Robotics and Automation, 2005.

[30] S. Jia, E. Shang, T. Abe, F. Yang, and K. Takase, “Development of
service robotic system based on robot technology middleware,” in
IEEE Int. Conf. Mechatronics and Automation, 2005.

[31] A. Ikezoe, H. Nakamoto, and M. Nagas, “Development of RT-
middleware for image recognition module,” in ICE-ICASE Int. Joint

Conf., 2006.

[32] A. Makarenko, A. Brooks, and B. Upcroft, “An autonomous vehicle
using Ice and Orca,” ZeroC’s Connections newsletter, no. 22, April
2007.

[33] W3C member submission, “OWL-S: Semantic Markup for
Web Services.” [Online]. Available: http://www.w3.org/Submission/
OWL-S/

[34] D. Martin, M. Burstein, D. McDermott, S. McBraith, M. Paolucci,
K. Sycara, D. L. McGuinness, E. Sirin, and N. Srinivasan, “Bringing
Semantics to Web Services with OWL-S,” in World Wide Web, 2007.

[35] “JBoss Application Server.” [Online]. Available: http://www.jboss.
org/products/jbossas

[36] “Apache Tomcat.” [Online]. Available: http://tomcat.apache.org

[37] “Apache Axis 2.” [Online]. Available: http://ws.apache.org/axis2

[38] M. L. Bustamante, “Windows Communication Foundation: Applica-
tion Deployment Scenarios,” MSDN homepage, May 2008.

[39] “Microsoft Robotics Studio.” [Online]. Available: http://msdn.
microsoft.com/robotics/

[40] M. Ghaffari, S. Narayanan, B. Sethuramasamyraja, and E. L. Hall,
“Internet-based control for the intelligent unmanned ground vehicle:
Bearcat cub,” in Int. Conf. on Intelligent robots and computer vision

XXI : algorithms, techniques, and active vision, 2003.

[41] V. Gilart-Iglesias, F. Macia-Perez, and J. A. Gil-Martinez-Abarca, “In-
dustrial Machines as a Service: A Model Based on Embedded Devices
and Web Services,,” in IEEE Int. Conf. on Industrial Informatics, 2006.

[42] B. K. Kim, M. Miyazaki, K. Ohba, S. Hirai, and K. Tanie, “Web
Services Based Robot Control Platform for Ubiquitous Functions,” in
IEEE Int. Conf. Robotics and Automation, 2005.

[43] K. Naruse and M. Oya, “Muscle-like Control of Entertainment Robot
over Internet,” in Int. Conf. Advanced Intelligent Mechatronics, 2005.

[44] Y.-G. Ha, J.-C. Sohn, Y.-J. Cho, and Y. Yoon, “A robotic service
framework supporting automated integration of ubiquitous sensors and
devices,” Information Sciences, no. 177, pp. 657–679, 2007.

[45] P. Coelho, R. F. Sassi, E. Cardozo, E. G. Guimaraes, L. F. Faina, A. Z.
Lima, and R. P. Pinto, “A web lab for mobile robotics education,” in
IEEE Int. Conf. Robotics and Automation, 2007.

[46] M. Gritti, M. Broxwall, and A. Saffiotti, “Reactive Self-Configuration
of an Ecology of Robots,” in ICRA-07 Workshop on Network Robot

Systems, 2007.

30

[47] H. Lee, J. Park, P. Park, and D. Shin, “Development of a WS-
ECA framework for a healthcare robot platform,” in Int. Conf. on

Information Networking, 2008.
[48] G. Wang and C. K. Fung, “Architecture paradigms and their influences

and impacts on component-based software systems ,” in 37th Hawaii

Int. Conf. System Sciences, 2004.
[49] H. Breivold and M. Larsson, “Component-based and service-oriented

software engineering: Key concepts and principles,” in 33rd EUROMI-

CRO Conf. Software Engineering and Advanced Applications, 2007.
[50] M. Jiang and A. Willey, “Architecting systems with components and

services,” in IEEE Int. Conf.Information Reuse and Integration, 2005.

31

Reusing software components among different control architectures
with the GenoM tool

A. Mallet

Abstract— GenoM is a robotics component generator that
has been developped and used at LAAS for the last 15 years. It
is actively maintained and has been able to integrate complex
robotics demonstrations on all the LAAS robots. I will present
an overview of the internals of this tool, as well as the
architectural principles that lead to its design. In a second part,
I will present some prospective ideas on robotics component
homogenization that we consider in order to foster software
component reuse between research teams.

CNRS/LAAS, Toulouse, France

32

Aspects of sustainable software design for complex robot platforms in
multi-disciplinary research projects on embodied cognition

Martin Hülse and Mark Lee

Abstract— Sophisticated robot systems have become an im-
portant part in cognition research. On the one hand, au-
tonomous robots are intended to provide a proof of concept
for cognitive models. On the other hand, cognition research
becomes a source of inspiration in targeting current limitations
in the engineering of robust, flexible and adaptive artifacts.
In this work, we discuss aspects of software development and
integration for heterogeneous robotic systems in cognition re-
search. As we will argue, one important issue is the combination
of different computational paradigms within one robot system,
which are rooted in the divergent approaches of engineers and
scientists. This discussion lead to the introduction of a software
framework aiming to overcome some well known problems of
sustainable software development in robotics, but particular
important for multi-disciplinary and multi-center cognit ion
research projects. The introduced framework is based on well
established standards in software engineering and therefore can
be considered for a wide range of cognition research platforms
and projects. Further on, we will briefly present a robotic setup
where this framework is applied. It consists of a manipulator
of 14 DOF (degrees of freedom) and an active vision system
of 4 DOF. It is part of research activities aiming to model
behavior integration and action-selection mechanisms based in
large-scale neural networks.

I. INTRODUCTION

The progress in robotic manipulation and mobile robots
makes nowadays an autonomous robot platform more than
an object of investigation for its own right. Miniaturization
has led to platforms equipped with high dimensional sensors
and actuators with many degrees of freedom able to enter
the daily environment of human beings. In consequence,
the focus of research and development is turning to robust,
multi-modal, multi-functional and adaptive interaction of
an autonomous robot system in a complex and dynamic
environment. The creation of artefacts of such flexibility is
still a challenge, especially if scalability is considered.

Cognition research has become one source of inspiration
as well as a guidance to overcome current limitations in
engineering of more complex and adaptive systems. On the
other hand, cognition research projects have been utilizing
robot systems as demonstrators and therefore they serve as
an important proof of concept in this field. Furthermore,
embodied cognition, in particular, is focused on the crucial
role the body has for the development of cognitive behavior
and therefore it becomes rather usual that experiments in this
research involve robot systems of arbitrary complexity.

As soon as sophisticated robotic systems become part of a
cognition research project one is facing a multi-disciplinary

Dept. Computer Science, Aberystwyth University, Penglais, SY23 3DB,
Wales, UK{msh,mhl}@aber.ac.uk

and usually also a multi-center project. Robotic engineers
and scientists from different fields have to combine their
approaches and know-how in order to create systems beyond
the current state-of-the-art. One important area of this com-
bination is software development. Usually multi-disciplinary
research projects cannot start from scratch building up a new
system. They are rather confronted with a task of integration,
in which specific and very different software components
are combined to one complex system. Very often these
software components have been developed over years and
are tightly bonded to specific constraints, such as operation
system, programming language, middleware. The crucial
point for robotic platforms in cognition research projectsis
the difference between the domain of cognition research and
engineering, which is also indicated by the difference of the
applied software frameworks [1]. Due to missing standards
in robotics it is already difficult to extend or integrate robot
systems without considering high-level cognitive models.
Hence the integration of software developed in the domain
of cognitive science and robotics becomes rather a challenge
of its own.

The objective of this paper is to outline crucial aspects
that become relevant in software engineering of robotic
systems in cognition research projects. Based on our ex-
perience and recent reviews on software development and
integration in robotics we have developed a framework for
medium and large projects aiming for complex experimental
robotic platforms for cognitive models. This framework is
purely conceptual, based on design patterns and standards
in software engineering, and can therefore be applied to
any hardware and software environment. Furthermore, we
will explain some elements of this framework in detail,
based on examples of an ongoing project basically involving
a manipulator equipped with a three-finger system and a
stereo-vision system. This experimental platform is used for
the development of large-scale neural models coordinating
reaching and grasping tasks.

This paper is organized as follows. The next section
introduces the key aspect influencing the software integration
in cognition research projects. After this, the following two
sections give an overview of the-state-of-the-art in software
development / integration in robotics and outline our proposal
of a framework considering aspect of robotics in cognition
research. This is followed by a section which gives a concrete
example of this framework leading to the concluding section
of this work.

33

II. KEY ISSUES OF SOFTWARE DEVELOPMENT
IN ROBOTICS

The problem of sustainable software design has been
an important issues in software engineering in general and
therefore is widely and continuously discussed in many fields
and domains. Guiding issues like modular, interoperable
and reusable software have led to the promotion of object-
oriented design principles, design patterns as well as agile
and test-driven software design methods. These issues are
relevant in robotics indeed, but shall not be discussed here.
Nevertheless, the following collection outlines specific as-
pects of software design crucial for robotic related multi-
disciplinary research projects.

A. Prototypes and multi-components

Sophisticated robot systems are build up of different
components. Sensors, actuators and mechanics supposed to
establish a coherent robot system are very often products of
different manufactures. Sometimes these components have
even the character of a prototype, i.e. software and hardware
are not sufficiently tested and might lack in specific func-
tionalities and robustness. Furthermore, it is not unusualthat
the delivered driver software of hardware devices is very
rudimentary, though one might expect software providing
already solved and well known standard applications.

In consequence, for robotic components the first step is the
development of a software which provides robust and general
functionality and a proper error handling mechanism. This
includes also sufficient test cases, which support a robust and
smooth exchange of system components, if firmware and /
or hardware devices must be upgraded or exchanged.

B. Different representations and levels of abstraction

In research laboratories it is common that one device, i.e.
a whole robot system or a specific component, is used for
experiments in different domains. This might be necessary
because experiments in a project must be conducted on a
lower level of functionality in oder to decide future design
issues. On the other hand, a research laboratory might be
involved in other projects, currently or in future, and so itis
essential that specific components can efficiently be used in
very different experiments.

Therefore it becomes important for the software design to
provided different levels of abstraction and data representa-
tions and of course this should take as little effort as possible.
This refers to the need that the core functionality of robotic
devices can be used independently, and that the exchange
and extension of system services with respect to hardware
and software must be provided.

C. Distribution of computational resources

Robotic system components might only work in a specific
software environment. Some devices might also run on
specific hardware, such as FPGAs. It is also usual that
computational expensive processes have to be distributed
over different computers in order to guarantee real-time
constraints. Recent experiments in neuroscience also show

that clusters might be necessary to simulate large-scale neural
models driving a robot platform [2]. Hence, nowadays robust,
transparent and reliable interprocess communication is a need
for almost any nontrivial autonomous robot system.

D. Distributed teams

Where cognitive science and robotics meet it is very
likely that developers of specific system components are
geographically distributed. The exchange of source codes and
software libraries (sometimes even only pre-compiled) via
suitable software repositories becomes only one major issue
to consider in this process. Due to the division of knowledge
and competence within a project it also very likely that
software integration between the different partners is rather
vertical instead of horizontal.

Horizontal integration means that two or more project
partners deliver software which is horizontally organized
within the overall software architecture. For instance, one
team delivers the hardware and software of sensor typeA,
while another team is doing so for sensor typeB and another
team is responsible for an actuatorC. All three software
components can be developed independently.

A vertical integration starts if a fourth party develops
applicationsX on top A, B and C, taking data fromA
and B and generating data feed intoC. The success of
this type of integration depends on very carefully defined
and implemented interfaces. Since formal interface definition
languages are purely syntactic and cannot cover any semantic
information, this process must involve an understanding of
the constraints and needs of each part in a reasonable depth.
This usually requires time, rather days than hours.

E. Simulator

Almost every complex robotic project sooner or later
requires the use of a simulator, especially if an autonomous
robot system is intended as a test platform for learning
or other forms of self-organized mechanism of adaptation.
Simulations are an important tool to provide a proof of
concept for new methods and in order to tune important
system parameters in advance. However, it only makes sense
to use simulators if the control software under investigation
generates the same qualitative behavior in simulation as on
the real robot. It is also important that the same control
software can directly be used for both, simulator and real
platform, without any parameter changes or even refactoring.

F. Integration of different paradigms

Robotic related cognition research projects have to pay
particular attention to the coupling between high-level cogni-
tive models and hardware specific software. Cognitive mod-
els are grounded in specific paradigms of computation and
knowledge representation. Consequently, this leads to model-
implementations based on declarative or functional computer
languages or even simulations of neural networks. In contrast
hardware-close software is usually developed in procedural
computer languages strictly following this paradigm.

The problem with different paradigms is that sometimes
specific constraints present either in the higher-level model or

34

in the lower-level software cannot directly be representedin
the other domain. Hence, these constraints cannot be handled
at all and therefore cut the overall system performance.
Examples relevant in almost any systems combining robot
hardware and cognitive models are real-time constraints and
the different time-scales that specific system components are
operating on.

In consequence a lot of effort must be put into developing
efficient pre- and post-processing, scheduling and error-
handling for bridging robot hardware and cognitive models.

G. Flexibility

The aspect of different paradigms leads to another prob-
lem, also described in [1]. An engineer creates systems,
whose component functions are most efficient when they
meet a detailed set of specifications exactly. The consequence
is high performance for a very specific task. But as soon as
the application domain is extended or becomes more general
a decline of performance must be expected.

On the other hand, higher-level robotic applications, and
cognitive scientists are no exception, they develop their mod-
els, applications and experiments in a language grounded in
an ontology based on general principles. Hence, they expect
reasonable and scalable performance for general domains and
problem spaces.

The aspect of interface definition and description was al-
ready described in section II-D for geographically distributed
teams. In this context, interface definition and implementa-
tion become crucial because of the multi-disciplinary charac-
ter of cognitive science and engineering, thus, the different
approaches and the divergent expectations of specific and
general system performance.

In fact, one has to accept the inevitability of different
understandings between cognitive scientists and engineers
about the needs and the relevance of specific elements of
the targeted models and tasks. This discrepancy is often
overseen at the project-start but will emerge as soon as
lower and higher level implementations meet. As a matter
of fact, the re-definition of interfaces, frameworks or even
experiments will be the consequence. In our experience such
re-definitions will happen several times in larger projectsand
always go hand in hand with refactoring of certain extents.
It is therefore, important to be aware of this problem, and on
the other hand to provide a software engineering framework
which allows, with reasonable effort, the alteration of the
interfaces and the corresponding implementations on both
sides: robotic hardware functionality and high-level cognitive
models.

III. STATE OF THE ART

Robotics community is aware of the first five problems
issued in II-A – II-E, but very little attention is focused on
the problem of different paradigms. Nevertheless, standards
providing robust and flexible solutions for interoperable,
reusable robotic software does not exist yet. Although this
lack of standards is recognized by many researchers, the most
common solution to overcome this problem is to develop a

Fig. 1. The three software architecture layers of system design in robotics.
DA, driver and algorithms,CM interprocess communication layer andRF
robotic control framework, see also [3], [4] and [10].

new software. Mostly such implementations are claimed to
be more general, but indeed, are addressing only specific
needs and even more crucial the software is even immature.
Consequently, it is not used by other labs and therefore is
far away from providing a base for any standard.

Noticeable is the effort in many robotic projects devel-
oping middleware for a framework of handling distributed
robotic systems. However, interprocess communication is
an important aspect but not the only one for autonomous
robots. Recent reviews [3], [4] show that in robot systems
basically a 3-layered software architecture must be consid-
ered (see Fig. 1). In the lower levelDA software driver
and algorithm implementations are located. The middle level
CM provides interprocess communication. The top levelRF
is the place where the actual robotic control frameworks
are developed. It is this top layer where robotic projects
implement their strategies and models, generating intelligent
behavior. Some research projects claim that this level should
provide a declarative programming framework [3], because
they think it is the best way to implement intelligent behavior.
However, other projects would probably disagree introducing
a different framework for this level, which matches best with
their paradigm of computational intelligence.

Being aware of the subjectivity and biased view on the
top level, current activities in developing general robotic
programming frameworks are primarily focused on the two
lower levels:DA and CM. Player [5], for instance, delivers
a framework, whereDA and CM are interwoven [4]. The
YARPsoftware [6] actually provides only a framework for
the CM layer. The developers ofMIRO [7] had similar
intentions. However, they have builtMIRO as an extension of
CORBAin order to make this powerful middleware standard
easier to handle and faster to learn.ROCI [8] is based on
the philosophy that complex robot behavior is achieved by
“wiring” irreducible modules. In consequence, this software
provides the design of modules acting in a decentralized
manner. Therefore, inROCI all three layers collapse into
one network of interacting primitive modules.

Another strategy calledMARIE [9] tries to support the
reuse of existing programming environments and their con-
nections through a common middleware framework. Being
aware about the missing standards in interprocess commu-

35

nication MARIE provides basically a set of design patterns
able to integrate communication protocols present in systems
composed of heterogeneous hardware components. However,
the whole design is based on middleware.

Once again, these examples represent the focus on theCM
level, which shows that system design is almost completely
seen as a problem of reliable communication between the
components. However, reliable and transparent communi-
cation has always an offset. This offset is crucial if many
relative primitive interacting components have to cope with
real-time constraints. What we want to emphasize is, if a
framework based on interprocess communication is applied
for system integration, it follows that, the lower the levelof
system functions the more the reduction of system perfor-
mance due to the offset of communication.

It is this observation, that led us to the formulation of a
framework which tries to keep the middle layerCM as “thin
and high level” as possible. However, interprocess communi-
cation provided inCM is an essential part in order to connect
high-level cognitive models and robotic hardware. But in
using it very sparely one can apply computational expensive
but standardized and mature middleware solutions. In doing
so, one has a wide coverage of different software environ-
ments and on the same time one can handle many effective
real-time constraints on lower level functions without the
involvement of computationally expensive middleware. This
reduces also the effort needed for refactoring the interfaces
between high-level cognitive models and robot hardware.
However, the problem of modular, interoperable and reusable
software design in the basic layerDA must still be addressed
explicitly. We have done this by the usage of specific design
patterns, which will be explained in the next section.

IV. GENERAL FRAMEWORK

The general framework of our software architecture is
based on the the three-layered architecture as show in Fig. 1.
However, in the need for the support of a sustainable software
design inDA we have divided this lower level into two levels:
API andMVC (see Fig. 2).

The lowerAPI provides simple and almost purely hard-
ware related application interfaces. These interfaces provide
common and general functionality for specific hardware
devices, such as cameras, laser scanners, actuators. Although
these implementations will be usually very simple and
straight forward, they shall already make use of an object-
oriented design. Also important is the testability of each
component and the support for other software developers
through documentations and basic example applications. It
is also necessary that the components in theAPI layer
can independently be used and developed. This ensures the
smooth integration or update of new hardware and firmware.

On top of these APIs we only develop new system
functions based on the model-view-control design pattern
[11]. This design pattern supports a complete separation of
hardware from applications and the first level of abstraction.
While the model element provides all the hardware func-
tionality the view and control processes can independently

Fig. 2. The proposed software architecture framework in relation to the
3-layered variation in Fig. 1.

and parallel interacting with model. Different views can
provide different representations of the current data even
taking into account temporal aspects. Control elements can
either monitor and maintain defined constraints or instantiate
more sophisticated control schemas. It is also possible to
combine severalAPI components within one model.

As we have argued above, the middle levelCM primarily
connects the cognitive model implementations inRF with
the robot hardware and related services. Since the software
environment for cognitive models and robotic hardware is
probably very different, it is recommended to use standard
middleware solutions in order to cover as much diversity
as possible. And to our knowledge, these standards in the
domain of distributed systems will all support client-server
frameworks. Hence, robotic functionalities and services can
be provided by one or more server applications, while clients
are responsible to request and deliver data needed and
generated by the cognitive model running in theRF layer.
Notice, the usage of standard middleware solutions also
provides the distribution of lower robot functions, because
different servers can run on different machines.

V. ROBOTIC SETUP FOR THE REVERSE
ENGINEERING OF THE VERTEBRATE BRAIN

The above introduced framework is applied in a project,
called REVERB [14], in which behavior integration and
action-selection mechanisms are modelled based on biolog-
ically inspired large-scale neural networks. These models
are tested and developed on a robot platform basically
consisting of a 14 DOF (degrees of freedom) manipulator
and a vision system. The manipulator integrates a 7 DOF
Lightweight arm LWA3and a 7 DOFDextrous Hand SDH.
Both devices are manufactured by SCHUNK GmbH & Co.
KG [13]. The vision system is based on a 4 DOF pan-
tilt-verge platform equipped with two firewire cameras and
a SCAMP vision system [12]. The unique feature of the
SCAMPsystem is basically the pixel-per processor vision
chip based on analog technology. This allows the execution

36

Fig. 3. Robot hardware and corresponding distribution overtwo PCs. The
overall experimental platform consists of a manipulator of14 DOF and
vision system involving a pan-tilt-verge system, two firewire cameras and
a SCAMP vision system [12].

of computational expensive image processing algorithms in
real-time.

Almost typical for the integration of different devices, each
is based on a different communication channel, such as CAN-
bus, serial, USB, firewire and ethernet. Currently, the two
main hardware components are even connected to different
computers, (see Fig. 3).

A. Software architecture

Our software architecture has five independent compo-
nents in the API layer; each for every hardware device:
camera, pan-tilt-verge system,LWA3, SDH and SCAMP.
On top theMVC layer integrate some but not all of these
components.LWA3, SDH and SCAMPhave still their own
model-view-control implementation, while pan-tilt-verge and
cameras are integrated in one pattern (Fig. 4). This does
not mean that in the future no other additional patterns
will summarize other components. This depends on the
development in the project.

The applications in theMVC layer are wrapped by
CORBA server implementations providing an interface for
interprocess communication and distribution. CORBA-client
implementations in arbitrary software environments are now
able to access these hardware components and the services
provided in theMVC-level. Due to usage of CORBA the
interfaces must be written in IDL (interface description
language). This provides, at least on the syntactical level,
coherent interface definitions between low and high level
functionality.

Actually CORBA-clients are part of the processes which
establish the overall target of this software organization, that
is the cognitive model implementation. As we have men-
tioned, the cognitive model in this process is implemented
by large-scale artificial neural networks. The software used
to simulate these networks is calledBRAHMS[15]. Among
many features, withBRAHMSone is able to link different

Fig. 4. Software architecture, see text for explanation.

processes in an arbitrary manner. In such a way, different
layers of artificial neural networks can be connected, even re-
current. The processes can be implemented within a general
C++ environment and the connectivity with other processes
is defined in a XML-based language. It is also possible to
simulate the system in a MATLAB environment.

Due to its general character, CORBA-clients can straight-
forward be instantiated inBRAHMS-process. In such a way, a
distributed robot systems becomes part of a large-scale neural
model, which is simulated inBRAHMSand might itself be
executed on a cluster.

B. The usage of design patterns

The benefit of model-view-control based implementations
might be best briefly demonstrated by the following two ex-
amples. We have outlined above that reusability of software
involves the alterations of data representations and the level
of abstractions. For visual information this means, that image
data might be applied to different filters or feature detection
processes. Hence, we have used the views in the MVC-design
pattern in order to deliver different filters. The instantiations
of the view processes operate independently and parallel. On
one side, this supports the exploitation of multi-processor
system, but more important, the implemented filters can be
applied to any future instantiations of the corresponding
design pattern. Therefore, a set of independently used func-
tions can be generated which is totally separated from the
underlying hardware.

As only one example for theLWA3 7 DOF arm system
we have implemented a simple arm coordination task based
on two independently working control processes. The arm
coordination task is simply: while arm is moving, the ori-
entation of the last segment, the hand segment, shall remain
the same.

The corresponding MVC-pattern is initiated with only
two control process. The first is responsible for the global
orientation of the arm, while task for the second process is

37

to keep the orientation of the SDH hand in space constant.
The bottom-line of this example is that the first process is
actively changing the global configuration of the arm, while
the second is passively adjusting the remaining DOF, which,
in this case, maintains the orientation of the hand. Both
control processes are operating in parallel on the same data.
This avoids inconsistencies and makes the overall control
much easier.

C. Switch between simulator and real robot system

The usage of CORBA supports also the integration of sim-
ulators. As we have seen it for the robot hardware a CORBA
server can also be based on a robot simulator. If both server
implementations are based on the same interface definition
given in IDL, it makes actually no difference for a client
to which server it is talking. Hence, without any changes in
the client, it can communicate either with the simulator or
with the real robot. This type of integration is successfully
applied, for instance, for the mobile robot platform KURT3D
and the corresponding simulation MACSim [16], [17].

D. Summary

The brief introduction of our robotic platform already
outlines the importance of two key aspects in our software
architecture:MVC design patterns and CORBA as widely
supported middleware standard. TheMVC patterns guarantee
the strict separation of APIs and application layer right from
the beginning. This supports the independent, modular, test-
driven, and scalable software design of robotic components.
We have also elucidated, howMVC patterns can simplify the
control and provide different data representations. Complex,
multi-modal and computationally expensive algorithms can
already be implemented in theMVC-level without the usage
of middleware.

The usage ofMVC allows the integration of theCM
layer on a much higher level of abstraction, which can
lead to the reduction of interprocess communication. There-
fore, powerful and computationally expensive middleware
standards, like CORBA, can be applied without violating
real-time constraints in the overall system. As we see in
our example CORBA supports as wide range of software
environments, which enables us to couple our robot hardware
with a MATLAB framework. Further on, the IDL used
in CORBA provides robust interface definitions between
different developer teams and totally different data sources,
such as a simulator. It is this last issue, which enables us to
run a cognitive model either on a real robot or a simulator
without any changes.

VI. CONCLUSION

Focused on current standards in software engineering we
have introduced a software architecture particularly devel-
oped for robotic systems made of heterogeneous hardware
devices and components. We have outlined how model-
view-control design patterns and CORBA, as the leading
middleware standard, can provide a sustainable software
development for different levels of abstraction. As we have

argued, this supports the integration of different computa-
tional paradigms. The last aspect makes our framework par-
ticularly interesting for robotics in cognition research,where
engineers and scientists from different fields must integrate
their different ways of system design and modelling.

VII. ACKNOWLEDGMENTS

The authors gratefully acknowledge the support of EPSRC
through grant EP/C516303/1.

REFERENCES

[1] A. Farinelli, G. Grisetti and L. Iocchi, ”Design and implementation of
modular software for programming mobile robots”Int. J. of Advanced
Robotic Systemsvol. 3, 2006, pp. 37-42

[2] G.M. Edelman, ”Learning in and from Brain-Based Devices” Science,
vol. 318(5853), November, 2007, pp. 1103-1105

[3] I.A.D. Nesnas, R. Simmons, D. Gaines, C. Kunz, A. Diaz-Calderon,
T. Estlin, R. Madison, J. Guineau, M. McHenry, I-H. S. and D. Apfel-
baum. ”CLARAty: Challenges and Steps Toward Reusable Robotic
Software” Int. J. of Advanced Robotic Systemsvol. 3, 2006, pp. 23-30

[4] A. Makarenko, A. Brooks and T. Kaupp, ”On the Benefits of Making
Robotic Software Frameworks Thin”IEEE/RSJ Int. Conf. on Intelli-
gent Robots and Systems (IROS’07), San Diego CA, USA, 2007.

[5] T.H.J. Collett, B.A. MacDonald and B.P. Gerkey, ”Player2.0: Toward
a Practical Robot Programming Framework”Proc. of the Australasian
Conf. on Robotics and Automation (ACRA 2005), Sydney, Australia,
December 2005.

[6] G. Metta, P. Fitzpatrick and L. Natale, ”YARP: Yet Another Robot
Platform” Int. J. of Advanced Robotic Systemsvol. 3, 2006, pp. 43-
48.

[7] G.K. Kraetzschmar, H. Utz, S. Sablatnög, S. Enderle andG. Palm
”Miro - Middleware for Cooperative Robotics”RoboCup 2001: Robot
Soccer World Cup V, LNCS 2377, Springer, pp. 411-416.

[8] A. Farinelli, G. Grisetti and L. Iocchi, ”Design and implementation of
modular software for programming mobile robots”Int. J. of Advanced
Robotic Systemsvol. 3, 2006, pp. 37-42.

[9] C. Cote, D. Letourneau, F. Michaud and Y. Brosseau, ”Robotics
System Integration Frameworks : MARIE’s Approach to Software
Development and Integration” Springer Tracts in Advanced Robotics
: Software Engineering for Experimental Robotics, Springer, vol. 30,
March 2007.

[10] R.P. Bonasso, D. Kortenkamp, D.P. Miller and M.G. Slack, ”Experi-
ences with an Architecture for Intelligent Reactive Agents” Proc. of
the Int. Joint Conf. on Artificial Intelligence, 1995.

[11] E. Gamma, R. Helm, R. Johnson, and J. Vlisside ”Design patterns:
Elements of Reusable Object-Oriented Software”Addidon-Weslay,
USA, 1995.

[12] D. R. W. Barr, P. Dudek, J. Chambers and K. Gurney, ”Implementation
of Multi-layer Leaky Integrator Networks on a Cellular Processor
Array” Int. Joint Conf. on Neural Networks, IJCNN 2007, USA, 2007.

[13] SCHUNK GmbH & Co. KG,http://www.schunk.com, 2007.
[14] REVERB: Reverse Engineering the VERtebrate Brain,

http://www.abrg.group.shef.ac.uk/projects/reverb/public/ EPSRC
Research Grant no. EP/C516303/1, UK, 2007.

[15] BRAHMS, http://sourceforge.net/projects/abrg-brahms, 2007.
[16] Rome, E.; Paletta, L.; Sahin, E.; Dorffner, G.; Hertzberg, J.; Breithaupt,

R.; Fritz, G.; Irran, J.; Kintzler, F.; Lörken, C.; May, S.;Ugur, E. The
MACS project: An approach to affordance-inspired robot control. to
appear in: Towards Affordance-based Robot Control, Proceedings of
Dagstuhl Seminar 06231, Springer, LNAI 4760, Rome, E., Hertzberg,
J. and Dorffner, G. (eds.), 2007

[17] E. Ugur, M.R. Dogar, M. Cakmak and E. Sahin, ”The learning and
use of traversability affordance using range images on a mobile robot”,
Proc. of IEEE Int. Conf. on Robotics and Automation, ICRA07, 2007.

38

A modular architecture for the integration of high and low level

cognitive systems of autonomous robots

Michael Spranger, Christian Thiele, and Manfred Hild

Abstract— This paper presents an actively developed and
used software framework that integrates different computa-
tional paradigms to solve cognitive tasks of different levels.
The system has been employed to empower research on very
different platforms ranging from simple two-wheeled structures
with only a few cheap sensors, to complex two-legged humanoid
robots, with many actuators, degrees of freedom and sensors.
It is flexible and adjustable enough to be used in part or
as a whole, to target different research domains projects and
questions, including Evolutionary Robotics, RoboCup and Ar-
tificial Language Evolution on Autonomous Robots (ALEAR).
In contrast to many other frameworks, the system is such
that researchers can quickly adjust the architecture to differ-
ent problems and platforms, while allowing maximum reuse
of components and abstractions, separation of concerns and
extensibility.

I. INTRODUCTION

Current cognitive robotics research is a wide, interdis-

ciplinary field, which sees contributions from such diverse

fields as psychology, biology, neuroscience, linguistics, com-

puter science and artificial intelligence. The reason for this

wide spread influence of diverse fields lies at the heart

of building complete artificial systems, which resemble

and achieve different levels of intelligence, autonomy and

developmental capabilities. The manifold contributions of

different fields pose not only great opportunities but also

great challenges. Specifically when trying to understand and

model rich phenomena such as for example language in

a full systems approach, the involved subsystems easily

get complex and hard to manage. However, the research

in language evolution has greatly benefitted from groups

trying to build models capable of dealing with noisy real

visual data, motor control of real robots and populations of

real robots [1], [2], [3], [4]. Often the solutions found in

such full system scenarios differ significantly from simulated

approaches [5] leading to more robust, plausible and scalable

systems [6]. Even more, some people (especially in robotics)

vigorously stress the role of embodiment and sensorimotor

integration for intelligence and intelligence research [7], [8].

The system presented in this paper is used on multiple

robots in experiments targeting very different research do-

mains. One such domain is sensorimotor control, which is

explored in the current framework using a neural network

dynamical systems approach and artificial evolution. The

framework provides a layer of abstraction which has been

built to allow for research on different hardware platforms

M. Spranger, C. Thiele, and M. Hild are with the Neurorobotics Research
Laboratory, Artificial Intelligence Workgroup, Department of Computer
Science, Humboldt-Universität zu Berlin, Unter den Linden 6, 10099 Berlin
{spranger|thiele|hild}@informatik.hu-berlin.de

ranging from simple two-wheeled robots to two-legged hu-

manoid robots with many degrees of freedom. A second layer

is concerned with higher level perception, world modeling,

reasoning and planning. This second layer is used to explore

visual processing, cognitive environment mapping and de-

liberative and reflexive reasoning tasks. The concrete task

at hand is governed by the research domain targeted by a

particular researcher.

Our group is involved in two big research topics: RoboCup

and artificial language evolution. The presented architecture

is used in both scenarios. RoboCup [9] is an international

research effort to push research in autonomous systems

by introducing a dynamic scenario in which robots have

to play soccer in teams against each other. The domain

requires robots to perceive their environment, model it and

given appropriate representations ultimately requires balanc-

ing deliberate and reactive behavior decisions. The second

research domain concerns artificial language evolution on

autonomous robots. This domain focusses on experiments in

which autonomous humanoid robots self-organise rich con-

ceptual frameworks and communication systems with similar

features as those found in human languages. Language and

cognition are seen as complex adaptive system shaped in

interaction with the environment and in interaction with other

population members. That is, language and cognition are

grounded perceptually in the world and ones own body, but

also socially through repeated communicative interactions in

a community of agents. Both research domains are targeted

at building complete artificial systems. The whole chain

of information processing is taken into account to solve

problems involved in a high level activity at the appropriate

level of information processing.

The remaining of this paper details the architecture and

implementation of the software framework. The next section

explains the split of the framework into two big parts (1)

sensorimotor control and (2) higher level cognitive processes

and introduces mechanisms for data interchange between

these two parts. The following sections explain the two parts

of the framework in detail. The paper is concluded by a

conclusion and an outlook on future work.

II. SYSTEM OVERVIEW

The architecture integrates two different paradigms. First

low-level sensorimotor control systems based on adaptive

neural controllers are actively developed. The aim is to

find robust controllers capable of driving different robotic

platforms and to allow higher level cognitive processes to

use these behaviors. A low-level neural controller balancing

39

A i b o D o : L i t t l e O k t a v i o A � S e r i e s M � S e r i e s
R I S CP r o c e s s o r R I S CP r o c e s s o r 8d i s t r i b u t e dm o t i o nc o n t r o lu n i t s 8d i s t r i b u t e dm o t i o nc o n t r o lu n i t s > 2 0d i s t r i b u t e dm o t i o nc o n t r o lu n i t s

P D A F P G AH i g h L e v e l C o g n i t i o n
S e n s o r i 2 M o t o r C o n t r o l

Fig. 1. Systems build using the framework described in this paper.
The framework is split into two separate areas of interest (higher level
cognition and sensorimotor control), which on different platforms can either
be distributed across processes on a single central processing unit or can
be distributed over different processing entities. The top row names the
different robotic platforms built and under active development.

a two-legged humanoid robot, for instance, may prevent a

robot from falling over, while he is trying to grasp an object.

The higher level processes control the robots arm and hand,

while the balancing controller makes sure that the shift in

centre of mass is compensated. Such higher level cognitive

processes are organized in a second layer, called the cognitive

layer, which is designed for the modularized implementation

of such processes as modeling the environment, reasoning

and planning and visual perception. Both layers are loosely

coupled and allow for the interchange of data in many ways.

The sensorimotor layer has been implemented on a number

of platforms, such as the Do:Little, a simple single processor

equipped two-wheeled robot, to a full fledged multi-sensor

humanoid robot. While the humanoid robot is used for

research into complex walking and balancing tasks, the two-

wheeled robot is used to investigate the use of evolutionary

strategies for creating simple behavior controllers, such as

integrating sensory data from distance sensors and wheel

encoders into simple obstacle avoidance behaviors. Such

basic behaviors also include tropisms, such as light and

sound tropisms. In between these two platforms spanning

the complexity in terms of degrees of freedom and sensorial

configuration we are using a set of platforms to investigate

different aspects of sensorimotor intelligence and higher level

processes. The eight legged Oktavio robot was developed as

a demonstrator for neuronal control of biologically inspired

motions. The lab has also used AIBO robots produced

by Sony Corporation to investigate higher level cognitive

processes in the RoboCup domain. Please see section V

for detailed descriptions of all used platforms. Figure 2

introduces all platforms and the distribution of software

across processing entities.

This section will explain the two subsystems and their

integration given the latest platform built in the lab, called A-

Fig. 2. The main hardware platform running the architecture presented in
this paper, the A-series and one of the distributed circuit boards attached
to it. The platform is equipped with a PDA in the back executing higher
level cognitive processes, the smaller circuit boards are distributed across
the body and process sensorimotor data in a tight loop.

40

series. The A-series was constructed by augmenting a readily

available commercial Bioloid robot construction kit [10],

[11]. The Bioloid was extended morphologically through

specially crafted plastic parts and electronically through

special micro processor equipped sensor and actuator control

boards distributed across the whole body, a camera and

a Siemens Pocket Loox PDA. The original power supply

included in the robot kit was replaced by three lithium

polymer cells per robot, two at the let and right upper leg

limbs and one in the trunk. The eight sensor and actuator con-

trol boards, called AccelBoards, all feature simple two axis

acceleration sensors, a RS485 motor control bus interface

(used to drive the Dynamixel actuators) and a Renesas RISC

processor. Together they form a net of distributed processing

nodes, that are connected via a shared half-duplex RS485

bus, which is used to share the sensory and motor control

data. The AccelBoards are connected to the PDA via a RS232

bus. The PDA connects to the image stream provided by the

pan-tilt camera of the robot via a framegrabber device.

The sensorimotor control framework is specifically de-

signed to run on low cost embedded hardware present in

even the simplest hardware systems and is tightly coupled

with the different hardware architectures. The framework

provides a hardware abstraction layer for implementing neu-

ral systems on very different processor and hardware archi-

tectures. Neural controller can thus be very easily evaluated

in different settings and on different platforms. This reflects

the general idea of finding robust neural networks specific

either via artificial evolution and analysis of its outcomes or

via designing neural networks given profound knowledge of

underlying systems dynamics, signal processing capabilities

and properties of recurrent neural networks. The idea is to

use neural networks not only in an evolutionary approach,

but also to analyze the evolved controllers and to engineer

more complex networks given the obtained results.

The second framework modularizes tasks and allows for

independent component development and testing. It provides

mechanisms for the distribution of components over pro-

cesses, transparent inter-component and inter-process com-

munication as well as an elaborate debugging architecture.

This framework was and is used to engineer vision driven

object and world modeling tasks [12], [13], as well as

complex behavioral strategies [14].

Both systems can be loosely coupled across hardware

boundaries, which not only facilitates separate development

efforts in both frameworks, but via a defined interface enables

the group to integrate solutions a posteriori. On A-series

robots both systems communicate via a RS232 interface

which connects the central processing power of the attached

PDA with the distributed processing boards driving basal

motor capabilities. The defined interface allows for abstract

commands, such as walking with speed, direction and ro-

tation, while retaining possibilities for more fine grained

control such as driving concrete controllers with specialized

parameters to complete low level motor control exerted by

higher level processes. A simple blackboard architecture

allows reading and manipulating all data available in the

lower level processes. It is this blackboard which is used

to communicate between higher level processes and neural

motor control. Whether or not and how high level commands

are executed is up to lower level motor control processes. The

effect and success of higher level actions can be assessed by

the higher level processes through direct reading of sensor

values. Notice that this in turn enables for a dynamical

systems representationless motor control architecture, while

still allowing for kinematics to be established by higher level

processes, which means that behavior can be overlaid. A

grasp movement for instance can be controlled by visual

processes and is stabilized by the neural motor control and

in case of emergency operations (for instance when the robot

is falling) the robot to attain a safety posture. The blackboard

also allows the higher level processes to control motors

directly.

III. HIGHER LEVEL COGNITIVE PROCESSES /

COGNITION

This section deals with the part of the framework used in

modeling higher level cognitive processes such as modeling

the environment, planning and reasoning. Such processes

are predominantly developed for vision equipped robotic

agents, that are able to build up larger scale models of

the environment, which empower complex planning and

reasoning processes.

The software framework used to develop these different

processes is a successor of an architecture [15] used in

the development of complex, real time, autonomous robotic

agents for playing robot soccer in the RoboCup domain. The

original system was used quite successfully in that domain

and helped to become the World Champion in the four

legged league twice and has evolved quite substantially over

time [16], [17], [18]. The architecture is specifically aiming

to solve the problem of integrating software development

groups at different locations. Originally the software was run-

ning on top of the OPEN-R middleware (see for example [19]

for an early overview), a middleware system transparently

connecting components via hard and software boundaries.

The middleware was provided by SONY for the AIBO robot

platform and used internally by Sony laboratories, but also

externally through the RoboCup community. The architecture

provides four basic mechanisms

• a mechanism for splitting a task into smaller subtasks

(modularization)

• a mechanism for changing the implementation to the

problem posed by a subtask during runtime

• mechanisms for distributing modules across processes

and a simple inter-communication mechanism

• powerful debugging mechanisms

The main idea of the system is to provide an easy,

adjustable apparatus to split a computational task, like play-

ing soccer, into a number of smaller units called modules.

These units are defined through interfaces, which are sets of

data structures. These data structures, called representations

define the input and output of modules. That is modules

are clearly separated abstract components, which allows for

41

Fig. 4. Tools are an important part of every computational architecture. The image shows the tool used to inspect the internal state of different robots
and robot platforms. Depending on the task (robotic soccer, language evolution) developers and researchers have access to a variety of generic debugging
mechanisms implemented on all platforms. This includes such things as generic data inspection and modification mechanisms (upper right), generic drawing
(middle row, upper images: in-image drawing; lower image: world modeling drawings used in the RoboCup domain) and debug switch mechanisms (panel
on the left). The tool is connected to a AIBO robot.

different approaches to a certain subtask to be developed

independently and to be compared to other solutions of the

same (sub)problem or task. The actual implementation of

a module is called solution and reflects a certain mech-

anism to solve the problem posed by input, output data

structures, which means that given the input data, a solution

provides an algorithm to compute the output data. Modules

therefor allow clear separations of concerns through defined

contracts/interfaces. Solutions are the different algorithms

developed and used separately for solving a certain task

(e.g. visual object perception). Together with a mechanism

to switch solutions during runtime this provides easy testing

and comparison facilities for algorithms.

To assist the designer and researcher trying to model a

certain system, additional procedures for distributing mod-

ules across different processes and communication between

processes are provided. A simple message queue algorithm

driving an event provider and consumer model is used for

inter-process communication. Additionally message queues

can be sent via network TCP/IP mechanisms, rendering the

connection of processes across hardware devices transparent.

Basically processes fill data structures which are part of the

interface of one or more modules. Processes are usually

triggered by events like an incoming new image from the

raw camera, which means that they are tied to hardware level

processes. Additionally they may also communicate between

each other. The system allows to specify wether the update of

a certain data structure causes the process to be run, which

is a very flexible mechanism for defining execution times

(process relative) and ordering.

The architecture features three main debugging mecha-

nisms (1) debugging switches, which enables the conditional

execution of code (2) a generic drawing mechanism and (3) a

generic mechanism for manipulating data. These mechanisms

are mostly inspired by traditional debugging mechanisms

and are an attempt to replace debuggers, which may not be

available on all platforms. Debuggers can also cause signif-

icant overhead in execution time on some of the platforms

especially when used in remote debugging scenarios.

The proposed method of debugging switches, called debug

requests is used to enable and disable parts of the source

code. These switches are a runtime method, which enables

developers to switch on and off the execution of certain parts

of algorithms. The method is at the core of the debugging

mechanisms and is also used to trigger the sending of

debugging information used by the two other mechanisms.

The switches are implemented in terms of C++ macros

consisting of a textual key and the code to be executed

conditionally. A runtime system manages the state of the

keys and triggers the execution of the associated code parts

accordingly. An important feature of the implementation is

that the runtime system only manages debug states that are

visible and allows connecting debugging tools to query the

available keys. This enabled us to develop debugging tools

which are to a certain degree generic, that is it does not

matter which robot platform it connects too, but only the

support of these mechanisms is relevant.

Next to debugging switches the architecture provides a

way of drawing geometric figures in the robot control code.

The main idea here is that visualizations are a very useful

42

Fig. 3. Other hardware systems empowered by the architecture. From
top to bottom: the AIBO robot used in RoboCup, the eight legged Oktavio
walking machine and the Do:Little platform..

debugging tool and are typically algorithm specific, which

makes it useful to bundle actual code and interleave it at

the relevant places with visualizations. Since most of the

platforms do not come with a display, and those that do

(A-series) in principle can use the same system to separate

the visualization from the actual robot control code, the

visualization is usually run on an accompanying laptop or

PC used for debugging. The mechanism is implemented

using macros, which trigger the sending of debug messages.

The debug messages include an identifier of the shape to

be drawn and a variable number of parameters depending

on the shape (for instance four parameters: x, y, width

and height for a rectangle in the image) and the space the

shape is drawn too. Two coordinate systems are supported,

one for drawing into images and one for drawing objects

relative to the robots body on the ground. Next to this vector

graphics approach, a mechanism is available which allows

for direct pixel manipulation of images. The sending and

manipulation of these images is implemented similar to the

drawing mechanisms via C++ macros, which consist of a

textual id and some primitive drawing operations.

To be able to manipulate data in a generic way a data

manipulation scheme has been developed. Data can be

exchanged through the message passing and queuing for

inter-process communication. On top of the serialization of

objects into message and message queues we developed

a mechanism that gathers a additional information about

variable names and class inheritance hierarchies. The main

idea is that during serialization of objects, a specification

of the serialization is built up, which is later used to

create generic data manipulation and drawing dialogs. The

specification in itself is a description of serializable objects

on a byte level. That is every object serialization can be

decomposed into primitive data types (such as int or double)

with names. The mechanism is implemented as C++ macros,

which are used inside the serialize functions, which govern

the serialization process. For this to work in complicated

inheritance hierarchies, all objects in the hierarchy have to

use these macros.

All debugging techniques are easily accessible through

an external debugging tool which connects to the robot

processes and allows for the conditional execution of code on

the robot (via debug switches), inspection of debug drawings

and provides dialogs for manipulating and plotting data (see

figure 4). It also offers facilities for recording log files,

replaying them and even sending them to the robot hardware

acting. The latter of which is helpful in oracle scenarios,

where the robot is fed with artificial images or artificial world

models and so forth.

IV. SENSORIMOTOR CONTROL SYSTEM /

SPINALCORD / HARDWARE CONTROL SYSTEM

In earlier robotic systems built and operated in the lab, the

sensorimotor control system was separated from the higher

level cognitive processes through thread or process borders.

On newer hardware like the A-series, these processes are

split onto independent hardware. The aim is to have a

43

sensorimotor control, which is cheap but achieves guaranteed

execution times. In our view this can best be accomplished

using a distributed architecture, with small special devices

each handling a subpart of the overall task without adding

the overhead of process and task scheduling. The small and

cheap circuit boards distributed across the body of the A-

series for example, each control a few motors and read the

values of a few sensors. But they do so in a very reliable

and fast manner.

The distributed processing entities provide the data (motor

control and sensory data) on a shared communication bus,

called SpinalCord. The bus is updated with a frequency of

100 Hz, which is also the frequency for calculating new mo-

tor control data. However, sensor data like the data stemming

from the two dimensional acceleration sensors is acquired

more often and median filtered before data exchange.

The communication baud rate differs, but is at least one

MBaud with at least 256 bytes of data shared per time frame.

On newer systems like the currently designed M-Series

humanoid robot we will increase communication speed. The

communication protocol is exactly timed, so that defective

boards are handled gracefully. No data is transmitted from

the defective board and all other boards are using the

last received data. If e.g. one arm on a humanoid robot

malfunctioning, the rest of the system will stay operational.

This makes the system very reliable. An example of such an

architecture is the Oktavio. Legs can be added and removed

from the body trunk, while the robot is operating. The robot

can be repaired at runtime by changing legs, but the same

principle is used to investigate different configurations of

legs.

Luckily having a lot of distributed circuit boards does

not mean one has to develop more software. In a sense

the boards constitute a distributed but homogenous platform,

since every board runs the same firmware. However, in some

cases it makes sense to make the boards location aware. The

position of a board on the body is detected using the attached

hardware, e.g. on the A-Series humanoid robots each actuator

has an unique ID, which can be queried and serves as an

indicator of the board’s position on the body.

The SpinalCord data is read- and writable from high-level

cognition processes. So one way of controlling an actuator

is by using the high-level cognition framework introduced in

the previous section. This is used on the A-Series humanoids

for controlling the pan and tilt unit of the head (which

contains the camera).

The simplest way for on-board motion control is using

a keyframe technique. We are using one keyframe motion

net at a time, which encodes all needed motions. It contains

branching points for changing the currently played motion

using a selector (which is only one simple ASCII byte).

Building motions using the keyframe technique is simple

and fast.

Without using sensor data, unstable systems i.e. humanoid

robots are difficult to control. The architecture therefore

offers the possibility to control motions using a bytecode

language. Depending on the processor used, this language

Fig. 5. The MotionEditor software with a simple motion net on the left
and corresponding motor values on the right

has to be more or less simple. We at the Neurorobotics

Research Laboratory are using a neural bytecode describing

recurrent neural networks. With this language it is possible

to control the whole system using neural networks.

The two techniques could be merged in different ways. It

is possible to have some motions in keyframe technique and

some using neural networks. Furthermore it’s also possible to

let the keyframe technique calculate the next motor control

values and then adjust them using neural networks. These

are able to include sensor data and so it’s even possible to

stabilize keyframe motions.

Having these two techniques one has broad possibilities

for motion control: from simple and fast to develop keyframe

motions to robust and stabilized neural motions. So keyframe

motions could be used to easily analyze motions and then

develop motions using neural networks. It’s also possible

to convert keyframe motions to neural networks using the

neural one-shot introduced in [20].

Creating keyframe motions and linking them to neural

bytecode is made easy using a custom software called

MotionEditor (see figure 5). Keyframe nets are created

using a simple drag-and-drop interface. Using the syntax-

highlighting editor one is able to write neural ”programs” and

to link them to the keyframe net. Keyframe values could be

manually adjusted or the robot is put into a desired posture

and the values are read out. Therefor the robot is directly

linked to the PC using a standard USB connection. With

only one click it is possible to deploy keyframe nets into the

processor’s memory. The robot can then act autonomously.

The introduced simple bytecode is used on different

hardware platforms and is even implemented for PCs using

Windows and Linux for simulation purposes. In the project

e-Robot it will be possible to control simple robotic experi-

ments using such bytecode through the internet and watching

the results as a video.

This architecture is cheap and robust and offers keyframes

and neural networks to control the actuators. Like in real

humans and animals, the motion control is separated from the

44

high-level cognition and e.g. reflexes could be implemented

without changing the high-level part. The cognition only asks

for things like walk left and the motion control is highly

independent on how it achieves this. The high-level cognition

could also set values of input neurons and then ask for walk

and the robot walks into the direction corresponding to the

input value.

V. ADDITIONAL HARDWARE PLATFORMS

The architecture presented here has been used on different

platforms, with the already introduced A-series robots being

the most complex. However, we have also used other plat-

forms aimed at very specific research question, among them

small Do:Little robots.

The Do:Little is a two-wheeled robot designed for mass

production. It is equipped with a 20 MHz CISC processor

featuring additional DSP technology. The platform can sense

its environment using three brightness sensors, five infrared

distance sensors and two active ground gradient sensors,

which make the platform suitable for evolving neural con-

trollers in obstacle avoidance tasks and light tropisms. Ad-

ditionally, the robot features two microphones to investigate

phonotaxis and swarm behaviors. To study social behaviors

in groups the perimeter of the robot is bronze covered and

silver contacts are spread throughout the body which allow

robots to exchange energy. Special electronic circuit design

lets robots decide wether they want to act as an energy source

or sink.

One of the first bigger robots built to investigate walking

controllers was the Oktavio. Oktavio is designed to be

a universal platform for evolving walking machines with

different configurations of legs. Up to eight legs can be added

and removed while the robot is operating. Each leg is an

autonomous energy and processing entity, equipped with a

20 Mhz CISC processor, three joints powered by a set of

motors and electronic component as well as energy supplying

batteries. The legs can sense their environment and state

through motor encoders measuring the state of motors, two

infrared distance sensors, as well as a specially constructed

foot-ground contact sensor, which measures the exact ground

contact position and force of the leg. The body construct, a

plastic plate has eight connectors which allows for up to

eight legs to be added and a ring bus system allowing legs

to exchange signals and align their walking control patterns.

Another research avenue long pursued in the lab is the

RoboCup domain. One of the leagues in RoboCup uses

AIBO robots produced by Sony to investigate the integration

of perception, modeling, reasoning and planning and action

architectures and algorithms grounded in a dynamic environ-

ment of soccer playing robots. The robots are equipped with

a movable camera, distance sensors, as well as microphones

and a speaker. They can interact with the environment using

four legs, each with three degrees freedom and a foot-ground

contact sensor. All motors driving the degrees of freedom are

equipped with angular encoders. The platform is the starting

point for the part of the architecture integrating vision and

proprioceptive sensor data to drive complex environment

modeling processes which are used by behavior processes

to drive actions such as walking and shooting.

In an ongoing effort to combine experiences made with

all previous platforms, a new humanoid robot is developed

from scratch. This M-series is a successor of the A-series and

tries to scale the solutions developed for earlier platforms to a

much bigger robot. The robot will be about 1.20m tall and is

integrating experiments made in phonotaxis, speech synthesis

and recognition, motion balancing and two-legged walking

controllers with visual processing of a pan tilt camera in the

head. In addition it will feature two actuators at the end of

each arm for picking up and placing of objects, allowing for

complex interactions with the environment.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a loosely coupled software frame-

work used in very different research scenarios. We have

shown how the framework is used on multiple platforms,

allowing researchers to quickly adapt and integrate solutions

and algorithms developed. Additionally we showed how to

modularize specific parts of the architecture and how to

enable researchers and developers to interact with hardware

centric systems. Future work will mainly concentrate on

integrating the past research experience on a new hardware

platform, the M-series.

VII. ACKNOWLEDGEMENTS

This research has been carried out at the Neurorobotics

Research Laboratory, which is part of the Artificial Intel-

ligence Workgroup at the Humboldt-Universität zu Berlin

with partial support from the ALEAR project, funded by the

EU Cognitive Systems program. The information provided

here is the sole responsibility of the authors and does not

reflect the EU Commission’s opinion. The Commission is not

responsible for any use that may be made of data appearing

in this publication.

The authors would like to thank all members of the

Humanoid Team Humboldt who have worked on previous

versions of the software and who are filling the architecture

with life. We are also indebted to architects of the German-

Team contributing to the cognitive layer especially Matthias

Jüngel and Martin Löetzsch.

REFERENCES

[1] Steels, L.: Evolving Grounded Communication for Robots. Trends in
Cognitive Sciences 7(7) (2003) 308–312

[2] Steels, L.: Semiotic Dynamics for Embodied Agents. IEEE Intelligent
Systems Summer Issue (2006) 32–38

[3] Steels, L., Spranger, M.: The robot in the mirror. Connection Science
20(4) (2008)

[4] Steels, L., Lötzsch, M.: Perspective alignment in spatial language. In
Coventry, K.R., Tenbrink, T., Bateman, J.A., eds.: Spatial Language
and Dialogue. Oxford University Press (2008) To appear.

[5] Wellens, P., Lötzsch, M., Steels, L.: Flexible Word Meaning in
Embodied Agents. Connection Science 20(2) (2008) 173–191

[6] Thórisson, K.: Integrated AI Systems. Minds and Machines 17(1)
(2007) 11–25

[7] Pfeifer, R., Scheier, C.: Understanding Intelligence. MIT Press (1999)

[8] Pfeifer, R., Lungarella, M., Iida, F.: Self-organization, embodiment,
and biologically inspired robotics. Science 318 (November 2007)
1088–1093

45

[9] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E.: RoboCup:
The Robot World Cup Initiative. Proceedings of the first international
conference on Autonomous agents (1997) 340–347

[10] Hild, M., Jüngel, M., Spranger, M.: Humanoid team humboldt team
description 2006. In Lakemeyer, G., Sklar, E., Sorrenti, D., Takahashi,
T., eds.: RoboCup 2006: Robot Soccer World Cup X Preproceedings,
Bremen, Germany, RoboCup Federation (2006)

[11] Hild, M., Meissner, R., Spranger, M.: Humanoid team humboldt team
description 2007. In Visser, U., Ribeiro, F., Ohashi, T., Dellaert, F.,
eds.: RoboCup 2007: Robot Soccer World Cup XI Preproceedings,
Atlanta, USA, RoboCup Federation (2007)

[12] Jüngel, M., Hoffmann, J., Lötzsch, M.: A real-time auto-adjusting
vision system for robotic soccer. In Polani, D., Browning, B., Bonarini,
A., eds.: RoboCup 2003: Robot Soccer World Cup VII. Volume 3020
of Lecture Notes in Computer Science., Springer (2004) 214–225

[13] Spranger, M.: World models for grounded language games. Diploma
thesis. Humboldt-Universität zu Berlin (2008)

[14] Lötzsch, M., Bach, J., Burkhard, H.D., Jüngel, M.: Designing agent
behavior with the extensible agent behavior specification language
XABSL. In Polani, D., Browning, B., Bonarini, A., Yoshida, K., eds.:
RoboCup 2003: Robot Soccer World Cup VII. Volume 3020 of LNAI.,
Springer (2004) 114–124

[15] Röfer, T.: An Architecture for a National RoboCup Team. 2752 (2003)
417–425

[16] Röfer, T., Brunn, R., Dahm, I., Hebbel, M., Hoffmann, J., Jüngel,
M., Laue, T., Lötzsch, M., Nistico, W., Spranger, M.: GermanTeam
2004. In Nardi, D., Riedmiller, M., Sammut, C., Santos-Victor, J.,
eds.: RoboCup 2004: Robot Soccer World Cup VIII Preproceedings,
Lisbon, Portugal, RoboCup Federation (2004)

[17] Röfer, T., Brunn, R., Czarnetzki, S., Dassler, M., Hebbel, M., Jüngel,
M., Kerkhof, T., Nistico, W., Oberlies, T., Rohde, C., Spranger, M.,
Zarges, C.: GermanTeam 2005. In Bredenfeld, A., Jacoff, A., Noda,
I., Takahashi, Y., eds.: RoboCup 2005: Robot Soccer World Cup IX
Preproceedings, Osaka, Japan, RoboCup Federation (2005)

[18] Röfer, T., J., B., Carls, E., Carstens, J., Göhring, D., Jüngel, M.,
L., T., Oberlies, T., Oesau, S., Risler, M., Spranger, M., Werner, C.,
Zimmer, J.: GermanTeam 2006. In Lakemeyer, G., Sklar, E., Sorrenti,
D., Takahashi, T., eds.: RoboCup 2006: Robot Soccer World Cup X
Preproceedings, Bremen, Germany, RoboCup Federation (2006)

[19] Fujita, M., Kageyama, K.: An open architecture for robot entertain-
ment. Proceedings of the first international conference on Autonomous
agents (1997) 435–442

[20] Hild, M., Kubisch, M., Göhring, D.: How to Get from Interpolated
Keyframes to Neural Attractor Landscapes – and Why. 3rd European
Conference on Mobile Robots (2007)

46

Ikaros: Building Cognitive Models for Robots

Christian Balkenius, Jan Morén, Birger Johansson and Magnus Johnsson

Abstract— The Ikaros project started in 2001 with the aim
of developing an open infrastructure for system-level brain
modeling. The system has developed into a general tool for
cognitive modeling as well as robot control. Here we describe
the main parts of the Ikaros system and how it has been used to
implement various cognitive systems and to control a number
of different robots ranging from robot arms and hands to active
vision systems and mobile robots.

I. INTRODUCTION

The goal of the Ikaros project is to develop an open in-
frastructure for system level modelling of the brain including
databases of experimental data, computational models and
functional brain data. The infrastructure supports a seamless
transition from a pure modelling and simulation set-up to
real-time control systems for robots running on one or several
computers in a single or multiple threads. Computational
models are built by connecting individual modules that
implement a specific brain model or algorithm into larger
systems.

The system makes heavy use of the emerging standards
for Internet based information such as XML and makes all
part of the system accessible through an open web-based
interface. We believe that this project has the potential to
radically change the way system level modeling of the brain
is performed in the future by defining standard benchmarks
for brain models and substantially increase the gain from
cooperative research between groups.

A system like Ikaros can not operate in a vaccuum.
Instead, the goal is to allow Ikaros to easily work with as
many external sources of information as possible. There is
simply too many types of information that need to be used by
the system and without taking an inclusive approach, the task
of adapting information and models becomes too great. The
only viable solution is to integrate Ikaros with other similar
endeavors whenever possible. This inclusive approach means
that we want to offer a large corpus of experimental data
from cognitive experiments for use with Ikaros, but we also
strive to make it easy to adapt other experimental data for
use within the system.

Inclusivness also means making development a transparent
and straightforward process. As part of the standard infras-
tructure, Ikaros already contains a sizable number of standard
modules that are useful in a broad range of cognitive models.
The infrastructure also contain modules that allow for an

C. Balkenius, B. Johansson and M. Johnsson are with Lund Univeristy
Cognitive Science, Kungshuset, Lundagård, SE-222 22 Lund, Sweden.
christian.balkenius@lucs.lu.se

Jan Morén is with Knowledge Creating Communication Research Center,
NICT, 2-2-2 Hikaridai, Seika-cho, Soraku-gun, Kyoto 619-0288, Japan
jan.moren@gmail.com

easy interface with various types of hardware such as video
cameras and robots. For example, there are easy interfaces
to the various standards for video capture and video files, for
audio processing as well as for robot control through a set
of drivers for different hardware systems.

The goal of the infrastructure specification is to be mini-
mally demanding for anyone developing an Ikaros module.
It should be possible to learn to use it in a few minutes
while still providing support for very complex architectures.
In the following sections we describe the different parts of
the Ikaros system and the choices that have been made when
designing the different components.

II. SYSTEM-LEVEL MODELS

The core concept of system-level modeling is the module
which corresponds to a part of a model. A module can have
a number of inputs and outputs and encapsulates a particular
algorithm (Fig. 1). This does not mean that cognitive models
built using Ikaros must adhere to a modular view of cogni-
tion. Instead, a system-level approach to cognitive modeling
acknowledges that different cognitive components interact in
many ways and it is one of the strengths of the approach that
it explicitly shows these interactions as connections between
modules. A module in Ikaros is thus not a statement about
locality or impenetrability, it is only an acknowledgement
that a system is constructed from several components, and
these components or modules have different properties.

In general, to design a system-level model it is necessary
to answer four questions:

What are the components of the system?This entails
answering at what level the model should be described.
Are the components individual neurons or brain regions,
or are they some form of abstract description of functional
components without direct relation to the brain? There is no
single correct answer to these questions; it depends on the
model being implemented.

What are the relations between the components?Are
they parallel systems with little interaction, or are they
tightly coupled? Are they all at the same descriptive level
or are some components subparts of others? Is the system
heterogeneous or hierarchical?

Which function is performed by each component?How
can the functions be described as mathematical functions or
as algorithms? Ikaros supports systems built from standard
modules that implement elementary mathematical functions
as well as modules that are hand coded from scratch.

What information is transmitted between the components
and how is it coded?The question of coding is the most
important for a system-level model and the only one where

47

FIG. 1: A module with one input and one output.

FIG. 2: A small system with three modules A, B, C with connections
between them.

Ikaros puts any major constraints on the possible models. In
Ikaros, all inputs and outputs are coded as matrices of floats.
This limits the possible models in several ways that make
it more likely that different models can be interconnected.
Although Ikaros puts no constraints on the interpretation of
the matrices, this type of structure is best used for coding
in terms of numerical values, either directly or using some
form of distributed code.

In Ikaros, the components are specified using an XML-
based language which also describes the relation between the
components. The function in each component is described
either using standard modules or by writing new simulation
code. The transfer of information between components is
implicit in the coding of the different modules.

III. DESCRIBING MODELS

Fig. 1 shows a simple module. This module has a single
input through which it receives input data and a single output
through which it sends its output data. The input is read in
discrete time and the module also generates new output at
discrete intervals.

Modules can be connected together to form systems
(Fig. 2). This network of modules is what makes up a model
in Ikaros. Here, the model consists of three modules A, B
and C. Module A has one input (a) and two outputs (b and
e). Module B has two inputs (c and f) and a single output
(d). Finally, module C has one input (g) and one output (h).
The complete model has the single input a and the single
output d.

One of the greatest strengths of Ikaros is its ability to han-
dle large complicated cognitive models consisting of many
interacting subcomponents. To allow the specification of such
architectures, an XML-based description language has been
developed [6]. This language has three main components:
the module, the group and the connection.

A module element describes an instance of a particular
Ikaros module and sets its parameters. These parameters
are handled to the constructor function of the module as
described below. The only two required attributes areclass
and namethat decides what code the module will run and
how it will be referred.

<module
class = "MyClass"
name = "MyModule"
alpha = "3"
beta = "0.1"

/>

A connection between two modules is specified in a
connection element:

<connection
sourcemodule = "Thalamus"
source = "Output"
targetmodule = "Amygdala"
target = "Input"

/>

Finally, it is possible to group modules and connection in
to larger structures. The following example corresponds to
the structure shown in Fig. 3 and Fig. 4. It defines a group
(or new module) called X with an input x and an output y.
The group consists of three modules A, B and C which have
multiple connections between them. The input x is connected
to the input a of module A and the output y receives data
from output d of module B.

Groups can also be given inputs and outputs to let them
function as new modules or be read from external files and
be used as call descriptions. A specification of these features
is however beyond the current description.

IV. THE SIMULATION SYSTEM

Currently, the main part of Ikaros is the simulation system
which consists of a platform independent simulation kernel
together with a large set of modules that implements different
functions and models.

A. Design Criteria

There were a number of important considerations in the
choice of the simulation structure. The first was that it should
be platform independent. There are two reasons for this. The
first is that it was expected that the system would be required
to run on different architectures. The second, and more
important reason was that the we did not want to depend
on one particular compiler or operating system. It is well
known that code is only portable once it has been ported. By
simultaneously developing for several operating systems,it
would be almost guaranteed that Ikaros would be reasonably
portable. We have consequently strived to comply with the
relevant standards as much as possible. These includes ANSI
C++, POSIX and BSD sockets. A related choice was to
depend on as few external libraries as possible. Although the
current version of Ikaros uses external libraries for sockets,
timing, threads and mathematical operations, it can still be
run in a minimal version that only uses a small set of standard
C++ libraries.

The second main design choice was to use a discrete-time
model for simulation. Although this is the normal operation
for most neural network simulators, there are some notable
exception. However, to allow the easy integration of different

48

FIG. 3: A group consisting of three modules. The group is externallyconsidered as a module named X with one input x and one output
y. These inputs and outputs are internally connected to input a of module A and output d of module B.

<group name = "X">
<input name = "x" targetmodule = "A" target = "a" />
<output name = "y" sourcemodule = "B" target = "d" />
<module name="A" ... />
<module name="B" ... />
<module name="C" ... />
<connection sourcemodule= "A" source = "b" targetmodule = "B" target= "c" />
<connection sourcemodule= "A" source = "e" targetmodule = "C" target= "g"/>
<connection sourcemodule= "C" source = "h" targetmodule = "B" target= "f" />

</group>

FIG. 4: Example of a group of modules with its own input and output. The graphical representation of this system is shown in Fig. 3

types of algorithms, it was decided that a discrete time
simulator would be most useful. It is hard to imagine how
many algorithms could be adapted to a continuous time
framework. In most cases, this choice does not limit the
possible models that can be designed since it only relates
to the times when different modules communicate and not
their internal structure.

Another consideration was that to make the system attrac-
tive it should be as easy as possible to use many different
types of programming styles. As a consequence, we decided
to only use standard C data structures such as integers and
matrices of floats. The use of doubles was decided against
on grounds of efficiency and the lack of support for doubles
in most vector co-processors.

B. Module Interface

All inputs and output of modules are represented as arrays
or matrices of floats and the sizes of these matrices are
represented by integers. The sizes of all data structures
used by Ikaros are calculated during startup and can not be
changed during execution. This restriction only applies for
the data moved between modules; for internal data used in
modules there are no restrictions at all. The actual code in a
module can use any coding style as long as the inputs and
outputs are in the right format - indeed, it is entirely feasible
to embed or interface with an interpreter in a module for
a completely different language transparent to Ikaros itself.
Since Ikaros itself is written in C++, either C like or C++
like coding styles can be used as long at it is wrapped in a
C++ class. Although the inputs and outputs are part of the
Ikaros kernel data structures, the modules themselves does
not know about this. Instead, they can magically assume that
the input matrices are always filled with the required data.

This design decision has made it easy to incorporate code
not specifically written for Ikaros as long as it is reasonably
clean. For example, the main function of a trivial module
that would only copy its input to its output may look like
this:

MyModule::Tick()
{

for(int i=0; i<size; i++)
output[i] = input[i];

}

The point here is that this code looks like any C++
code and there is nothing Ikaros specific with it. When this
function is called, the array input will contain the input tothe
module and after execution, Ikaros takes care of the result
in the array output.

It was also considered fundamental that simulations using
Ikaros would not be slower than simulations made in a
dedicated system. Conceptually, all modules in Ikaros run
concurrently and synchronously. This mode of operation was
selected because it is the only possibility when it is necessary
that execution order is well defined, which is the case for
many algorithms. Because of the synchronous operation,
there will be a delay of exactly one time step (or tick)
between the production of an output from a module and the
time when it can be used by another module. In most cases,
this extra copying step is necessary anyway and does not
usually incur any extra execution cost.

Since this overhead is not always desired however, version
0.8.0 introduced zero-delay connection between modules.
Using this type of connections, there is no delay at all
between the production of an output and its use by other
modules. Instead, the second module refers directly to the

49

memory where the first module has produced its output. To
make the result well defined, zero-delay connections are only
allowed within subsets of the complete module networks
that form directed acyclical graphs. That this condition is
fulfilled is checked during start-up when all modules are
sorted according to their position in the graph. With zero-
delay connections, the input to the system can in principle be
processed in a single time step regardless of the number of
modules that the information passes on its way to the output.
In this case, the execution overhead is negligible.

The kernel also includes a small set of libraries that hides
system specific code for sockets, timing, threads and serial
communication. In addition there are utility libraries for
memory management, XML processing and mathematical
functions. In most cases, the programmers need not know
about any of these libraries to use Ikaros.

C. Kernel Start-Up

The kernel is responsible for the creation of the network
and its modules at startup, the scheduling during system
execution, and the propagation of data between modules.
Fig. 5 shows the main component of the running Ikaros
system.

Detailed knowledge of the kernel operation is not at all
necessary or even recommended for use of Ikaros. Knowing
why and in what order things are started do however make it
easier to understand the design decisions made. This section
can be skimmed lightly without any loss of understanding.

The most important aspect of the kernel is the creation
sequence that occurs when the system starts up. This happens
in six steps:

a) Class Registration:When the Ikaros program starts,
it first registers all code for the modules contained in the
system. This initialization step builds a data structure that
contains pointers to a creator function for each module type
and binds it to a module class name.

b) Module Creation: When the initialization has fin-
ished, the kernel reads the supplied control file in XML-
format, which specifies the modules to activate and gives
them instance names and other parameters. One instance of
each module specified is created for every occurrence of that
module in the control file. A module can thus have multiple
instantiations with different parameters. When each module
is created, it registers its inputs and outputs in the kernelto
allow them to be connected in the next step. At this stage,
the individual modules also gain access to any additional
parameters set in the control file for that particular module.

c) Connections:When all modules have been created,
the kernel continues to read the control file and make the
specified connections between modules.

d) Size Calculations:Most input and outputs have
dynamical sizes that are set during start-up. For example, if
the input of a module is connected to the output of another
module that produces a 4x4 matrix, the input of the second
module will adapt to this and set the size of its outputs
accordingly. There can be any relation between the size of
an input and the size of an output.

FIG. 6: The order of execution of three modules. The numbers on
the connections indicate the delay in the connections. The numbers
on the modules indicate the order in which they should be executed.
The two shaded areas correspond to two thread groups.

For example, the output from the module could be set to
have the double size of the input or some other more complex
relation. Since there can be a number of cyclical relations
between different modules, the calculation of output sizesis
performed iteratively until all sizes have been established. If
there are cyclical dependencies, these will be found during
this stage and an error message will be produced.

e) Sorting the Modules:All modules are sorted in two
ways (Fig. 6). The modules are partitioned into different
sets that each contains a directed acyclical graphs (DAG) of
modules with zero-delay connections between them and only
delayed connections to any other modules. Each of these sets
can be run in a separate thread and is called a thread group. A
topological sort is performed on the groups according to their
positions in the DAG which defines a partial order relation on
the modules. For modules that have zero-delay connections
between them, this order is used to make sure that a module
that produces data that another module will use is always
executed before that other module.

f) Module Initialization: When all modules have been
connected, the initialization phase starts. At this stage,the
size of the input that each module will receive is known and
each module is allowed to create any additional storage that
it needs and initialize variables. To do this, the kernel calls
an initialization function for each of the created modules.

D. Kernel Operation

The scheduling mechanism of the Ikaros kernel is re-
sponsible for calling the code of each module instance once
during each discrete time step (or tick).

In the simplest case, the scheduling consists of calling the
tick function for each module in the order in which they were
sorted during initialization. When Ikaros runs in threaded
mode, each thread group is handled separately in this way. In
threaded mode, there is no communication between modules
in different DAGs during this time which greatly simplifies
the operation of the kernel.

In a second step, the data propagation function is called
to copy data from outputs to the inputs of the modules.
Data propagation is done simultaneously for all modules.
The output for each module is copied to the input to which
it is connected. The propagation process is also responsible
for the simple data translation that is made by the system and

50

FIG. 5:The Ikaros kernel. The kernel starts a number of threads where a number of modules (A-G) are executed. The modules communicates
through a set of circular buffers that correspond to outputsfrom the modules. The kernel can also communicate with otherIkaros processes
running on the same or on a different processor or computer. In addition, the kernel communicates with an optional graphical user interface
client running in a web browser.

concatenation in the case when several outputs are connected
to the same input. In addition, this stage delays the data on
connections when this is set in the connection.

Finally, the kernel handles timing when Ikaros runs in
real-time mode. In this case, the kernel makes sure that the
execution of the tick did not take longer than allowed and
waits for the appropriate moment to start the next tick.

E. Anatomy of a Module

Every module in Ikaros implements five functions. For a
module named MyModule, the following functions are be
defined and called in the following order:

MyModule()The creator function registers all the inputs
and outputs of a module. It also gains access to all parameters
of this instance of the module from the control file.

SetSizes()This optional function is called repeatedly dur-
ing start-up to calculate the sizes of dynamic outputs based
on the sizes if the inputs to the module.

Init() The init function is called after kernel initialization
and lets the module gain access to its inputs and outputs.
This is also were any internal data structures are allocated.

Tick() The tick function is where the actual work is
being done by the module. It is called repeatedly during
the execution of a module and should calculate new outputs
based on its inputs (See example in section 3.1).
∼MyModule()This optional function deletes any module

specific memory that has been allocated in Init() and per-
forms other clean-up that may be necessary.

A template for new modules is available as part of Ikaros.
This template is named MyModule and a new module can
easily be added to Ikaros by simply renaming the template.

V. STANDARD MODULES

Ikaros contains a large number of standard modules. These
can be divided into a number of categories.

IO Modules:There is a set of modules that read data from
different file formats, for example text data or different media
files. Other modules are used to communicate with external
devices such as cameras or robots.

Utility Modules: To simplify the design of models, there
are also a large number of utility modules for simple
mathematical operations. This includes vector and matrix
operations and standard mathematical functions. Other utility
modules are used to collect data or statistics or to control an
experiment. A few utility modules are used to generate input
such as the function generator.

Image Processing Modules:Another set of modules im-
plement standard image processing functions. There are
modules to transform the colors in an image, modules that
scale images in different ways or performs other spatial
transforms. To apply different image processing operators
there is a module for convolution, but also modules for spe-
cific operators such as the Sobel operator and parametrically
defined Gabor filters. There are also several modules that
performs edge detection. A few vision modules are more
complex and implements a saliency map or an attention
focusing mechanism.

Environment Modules:To allow simulation of an agent
in an environment, there are a number of modules that
implements simple environments. The GridWorld module
implements a two-dimensional environment consisting of a
grid with obstacles together with an agent that can navigate
in it while being controlled by other Ikaros modules. There
is also a variant where the simulated robot can move con-
tinuously over the grid. This module also simulates a 2D
visual field using a ray casting algorithm. Another module
simulates an arm with arbitrary geometry.

Other Modules:The standard modules also include a
few neural network algorithms and some general learning

51

algorithms.

VI. REAL-TIME EXECUTION

When Ikaros is used to control robots it is necessary that
the precise timing of input and output can be controlled. To
accomplish this the kernel has functions to time the execution
of each tick. When Ikaros starts up it sets it time-base to the
required interval and tries to time the ticks to this time-base.
It internally controls that it is able to keep up with the desired
speed and will report delays in the execution.

Obviously, the accuracy of the timing will depend on the
underlying operating system. The real-time functionalityis
based on POSIX.4 [21], but since Ikaros is currently not run-
ning on real-time operating systems, any other process can
in principle interfere with real-time execution. In practice, it
is possible to get less than 1 ms resolution on the operating
systems we have tested.

An important factor that contributes to real-time perfor-
mance is the ability to run Ikaros in multi-threaded mode
[10]. In this mode, the kernel tries to run every module in
a separate thread. When there are zero-delay connections
between a set of modules, the kernel will automatically put
these in the same thread.

In thread mode, each module can be set to run at different
time intervals. For example, a slow visual processing module
may run 5 times per second while a faster motor control
module can be allowed to run 100 times per second. This
feature is very useful for robotic control where some loops
need to run at high speed while others are much heavier.

VII. A G RAPHICAL USER INTERFACE

To monitor ongoing simulations, Ikaros has a graphical
user interface. Like the modules and connections, this user
interface is specified using XML. This XML specification
is read by the Ikaros kernel which starts up an integrated
web-server which allows standard web browsers to act as
graphical clients. The browser gets a set of JavaScript rou-
tines from Ikaros that are run in the browser that implements
the graphical user interface [9]. The actual drawing is made
using SVG [8]. The choice of JavaScript+SVG was based
on the fact that this would make the system truly platform
independent.

For communication with the sever, the interface uses
JavaScript Object Notation (JSON). Although we initially
planned to use XML for this communication, JSON turned
out to be much simpler to use since it can be natively parsed
by JavaScript using the eval function.

Unfortunately, few browsers initially supported SVG and
we made the choice to only actively support FireFox. The
first version of Ikaros that used this graphical user interface
was released a few days before the first version of FireFox to
include native SVG rendering (version 1.5). Today, several
other browsers support SVG and JavaScript in the required
way including Safari and Opera.

Currently, Ikaros has support for graphical objects such
as bar graphs, different forms of 2D and 3D plots, images,
grids and vector fields. The graphical client can easily be

extended with new graphical objects by writing JavaScript
code for the drawing of the new object.

One limitation of this solution is that it is not as fast
as using a dedicated program for the client. However, we
felt that this solution has several advantages. First of all, it
means the whole system becomes totally platform indepen-
dent. But also, and perhaps more importantly, it enables us
to transparently monitor and control a running simulation
remotely, independent of what system the simulator and the
client is running, and we can do so with a simulation running
in another room or across two continents with no loss of
functionality.

If fast, concurrent representation is important, the very
open-ended structure of an Ikaros module enables users to
simply write a graphical module that includes the toolkit
or other representational system of their choice and display
data sent to the module from there. Likewise, a module that
receives user interaction can change the behavior of other
modules in the system accordingly by defining a ”command
channel” that sends data to other modules via the same
mechanism as ordinary data. Ikaros does not care how data
is interpreted within modules after all.

VIII. VALIDATING MODELS

To automatically validate a model against relevant data,
for example, neurobiological databases, the specificationof
a module can include themodelsattribute. For example, a
module that claims to model the amygdala could be describes
in the following way:

<module
class = "MyClass"
name = "MyModule"
models = "Amygdala"

/>

This information could be used to match the graph made
up of the modules in an Ikaros model to connectivity
data found in neurobiological databases. Some first attempts
towards such as system have been taken [11]. More recently,
we also interfaced the Ikaros validation system with the
CoCoMac database.

IX. EXPERIMENT DATABASE

In our earlier studies of classical conditioning we have
developed an extensive database of the design and results of
conditioning experiments. The development of this database
started in 1996 and now contains approximately 200 different
experiments. The database is stored in a way that allows the
experimental descriptions to be used as input to computer
simulations of learning by classical conditioning.

Unfortunately, this database was stored in a form that is
not easy to access unless the previous simulator developed
at LUCS is used. It also has the limitation that it only covers
classical conditioning and not other learning paradigms. As a
part of the Ikaros project, we want to extend the experiment
database by adding more experiment types and by translating
the database to a more accessible format.

52

In the future, we will add experiment description for
other learning paradigms besides classical conditioning.This
includes operant conditioning experiment as well as more
cognitively oriented experiments. The goal is to cover all
experiment types that are regularly used with animals and
humans. We estimate that the final database will include
approximately 1000 experiments.

The entry for each experiment will include all information
that is necessary to reproduce the experimental conditionsin
a simulator or a real experiment. This includes detailed data
of the stimuli used, the apparatus, the exact timing etc. It will
be important to differentiate between the part of the exper-
iment description that contains the logic of the experiment
and features such as timing and spatial location that are often
not essential. This will allow modelers to adapt experiments
to their needs in much the same way that an experiment
developed for one species has to be changed to fit another.
The database will also contain experiment descriptions in
narrative form and pointers to external databases such as
Medline and BIOSIS when appropriate.

To allow easy access to the experiment database, it will
be coded in the XML format that is widely used for on-
line data. The choice of XML for the database is natural
since it allows for an evolving and continually expanding
database structure. It can also be used to mediate the transfer
of information from other already existing databases. Apart
from translating the already existing database to this format,
we will also develop tools that can be used to encode and
visualize experiments through a web-based interface.

X. DISCUSSION

During the last few years, Ikaros has been used to build
a number of cognitive models and to control many different
robots. This has to date resulted in over 40 scientific pub-
lications. For example, for cognitive modeling, it has been
used in several models of cognitive development and the
modeling developmental disorders [3], [7], plasticity in the
somatosensory cortex [14] and to study different forms of
learning [5] and emotion [20], [4]. A lot of the work on
Ikaros has involved visual processing, for example models of
visual contour processing [19] and models of visual attention
[1], [2].

We have used Ikaros to control a number of different
robotic hands built at Lund University Cognitive Science
to investigate haptic perception [15], [16], [17], [18]. The
hands have different sensors and different degrees of freedom
and are all controlled by different neural network based
architectures. In another line of research, we have looked
at anticipation and navigation in mobile robots including the
e-puck and the BoeBot [12], [13]. Here, Ikaros is used to im-
plement very different models that are more classical in the
sense that they use potential fields or planning approaches.

The approach in Ikaros to be minimally demanding re-
garding the types of architectures that can be built and the
types of programming styles that can be used has proved to
be very successful. It is also clear that many of the design
choices made initially were sound and has contributed to

the usefulness of the system. Unlike most other frameworks,
Ikaros do not force the user into one theoretical model or into
using extensive libraries even though such support is offered.
This has made it easy for users of diverse backgrounds to
quickly learn to use the system.

On the other hand, there are certain restrictions that limits
for what systems Ikaros is useful. Some of these constraints
certainly makes Ikaros less useful for some systems, in
particular architectures that mainly relies on symbolic pro-
cessing rather than numerical computation. We believe that
for a tool to be useful, it is necessary that it is adapted for
specific tasks and this inevitably makes it less useful for other
tasks. For Ikaros, it was important that it could be used for
real-time processing and for robot control, which makes it
different from many other framework for more biologically
based modeling. We also wanted Ikaros to run on almost
any hardware which is the reason behind many of the design
choices.

In summary, Ikaros has proven to be a very useful tool for
building cognitive systems models and for robot control. It
has evolved into a mature and stable system and has currently
been adopted by several research groups within the cognitive
sciences.

XI. ACKNOWLEDGEMENTS

We would like to thank all the people that have tested
and commented on the system during its development, in
particular Takashi Omori, Håkan Jonson, Kolbjörn Gripne,
Lars Kopp, Chris Prince, Martin Butz, Stefan Karlsson,
Stefan Winberg, Anders Karlström, Mikael Asker, Vin
Thorsteinsdottir, Sigurbirna Haflidadottir, Kiril Kiryazov, Gi-
anguglielmo Calvi. More information about Ikaros can be
found at the project web site: http://www.ikaros-project.org.

REFERENCES

[1] C. Balkenius. Cognitive processes in contextual cueing. In F. Schmal-
hofer, R. M. Young, and G. Katz, editors,Proceedings of the European
Cognitive Science Conference 2003, pages 43–47. Lawrence Erlbaum
Associates, Mahwah, NJ, 2003.

[2] C. Balkenius, K. Åström, and A. P. Eriksson. Learning in visual
attention. In ICPR ’04 workshop on learning for adaptable visual
systems (LAVS). 2004.

[3] C. Balkenius and P. Björne. Toward a robot model of attention-deficit
hyperactivity disorder (adhd). In C. Balkenius, J. Zlatev,H. Kozima,
K. Dautenhahn, and C. Breazeal, editors,Proceedings of the First
International Workshop on Epigenetic Robotics: Modeling Cognitive
Development in Robotic Systems, volume 85 of Lund University
Cognitive Studies. 2001.

[4] C. Balkenius and J. Morén. Emotional learning: A computational
model of the amygdala.Cybernetics and Systems, 32(6):611–636,
2000.

[5] C. Balkenius and S. Winberg. Cognitive modeling with context
sensitive reinforcement learning. InProceedings of AILS ’04. Dept.
of Computer Science, Lund, 2004.

[6] Christian Balkenius, Birger Johansson, and Jan Moren.Ikaros
Control File Specification. http://www.ikaros-project.org/2007/IKC10-
20070601/, 2007.

[7] P. Björne and C. Balkenius. A model of attentional impairments in
autism: First steps toward a computational theory.Cognitive Systems
Research, 6(3):193–204, 2005.

[8] J. David Eisenberg.SVG Essentials. O’Reilly, 2002.
[9] David Flanagan. JavaScript: the definitive guide. O’Reilly, fourth

edition, 2002.

53

[10] Bill O. Gallmeister. POSIX.4—programming for the real world.
O’Reilly, 1995.

[11] M. Gustafsson and C. Balkenius. Using semantic web techniques
for validation of cognitive models against neuroscientificdata. In
Proceedings of AILS ’04. Dept. of Computer Science, Lund, 2004.

[12] B. Johansson. Elastic template matching in outdoor environments.
Master’s thesis, Lund Univeristy Cognitive Science, Lund,2004.

[13] B. Johansson and C. Balkenius. An experimental study ofanticipation
in simple robot navigation. In M. et al Butz, editor,Anticipatory
Behavior in Adaptive Learning Systems: From Brains to Individual
and Social Behavior. Springer, 2007.

[14] M. Johnsson. Cortical plasticity: A model of somatosensory cortex.
Master’s thesis, Lund Univeristy Cognitive Science, 2004.

[15] M. Johnsson and C. Balkenius. Experiments with artificial haptic
perception in a robotic hand.Journal of Intelligent and Fuzzy Systems,

17(4):377–385, 2006.
[16] M. Johnsson and C. Balkenius. LUCS haptic hand II. Technical

Report 9, LUCS Minor, 2006.
[17] M. Johnsson and C. Balkenius. Neural network models of haptic shape

perception.Robotics and Autonomous System, 22:720–727, 2007.
[18] M. Johnsson and C. Balkenius. Associating som representations of

haptic submodalities. InProceedings of TAROS 2008. Edinburgh, UK,
2008.

[19] Stefan Karlsson. Monocular depth from occluding edges. Master’s
thesis, Department of Mathematics, Lund Institute of Technology,
2004.

[20] J. Morén. Emotion and Learning - A Computational Model of the
Amygdala. Lund University Cognitive Studies, 2002.

[21] Bradford Nichols, Bick Buttlar, and Jackie Proulx Farrell. Pthreads
Programming. O’Reilly, 1996.

54

Multirobot Applications with the ThinkingCap-II
Java Framework

H. Matı́nez-Barberá
Dept. of Information and Communications Engineering

University of Murcia
30100 Murcia, Spain
humberto@um.es

D. Herrero-Pérez
Dept. of Systems and Automation Engineering

University Carlos III of Madrid
28911 Madrid, Spain

dherrero@ing.uc3m.es

Abstract—We present a Java framework, ThinkingCap-II,
for developing mobile multi-robot applications, which has been
successfully used in indoor, automotive and industrial robotics
applications. It consists on a reference cognitive architecture that
serves as a guide for making the functional decomposition of a
robotics system, a software architecture that allows a uniform
and reusable way of organising software components for robotics
applications, and a communication infrastructure that allows
software modules to communicate in a common way. A key aspect
of this software architecture is that it allows code reusability
by high level abstraction and a uniform way of accessing the
characteristics of the sensors. In order to show the suitability of
the framework an autonomous vehicle case study is discussed.

I. INTRODUCTION

The development of complex robotics applications involves
diverse areas with different needs, such as data acquisition,
signal processing, intelligent control, networking, etc. Large
robotics projects involving developer teams require the ef-
ficient collaboration of their members, and also the easy
integration of the individual developments. In the case of
small or reduced development groups, without considering the
economic factor, this becomes even more critical because the
development can be extended during non-bearable periods,
being of paramount importance fast prototyping and code
reusability. To allow for these, the abstraction, organisation,
and design of the software components are mandatory. In
addition, it is also mandatory to produce working, robust and
reliable applications.

The software aspects of this issue have not been discussed
in-depth by the robotics community [1], probably because it
is traditionally a software engineering topic. Nevertheless, the
need of standard specifications that deal with the recurrent
concepts and requirements of the robot software development
is certainly a key issue, which would allow to share, distribute
and/or reuse robotics software components. Thus, several
recent papers in journals address robotics software surveys,
analysis and comparisons (for instance see [2], [3]).

Traditionally, robotics software was basically the implemen-
tation of a functional architecture which was focused for a spe-
cific problem of set of problems. In this cases, the software was
divided into modules depending of their functionalities (like
TCA [4], AuRA [5], 3T [6], and Saphira [7]), most of them
obviating the transparency in communications, portability and
code reusability. These usually group the data acquisition, the

real-time reactive processing, and the computation of actua-
tors to perform certain actions in a single software module,
mainly due to the real-time constrain of these applications.
On the other hand, robotics frameworks focused on low-
level problems aims to provide an abstraction of the robotics
platform (like Player/Stage [8], Open-R [9], and OROCOS
[10]), which facilitates the reusability of software upon this
abstraction. From the software point of view, it would be
quite useful to define a generic robot and the separation of the
problems to address. Then it would be possible to build tools
to allow for productivity in the robotics development cycle
(like MissionLab [11], URBI [12]). In the last years there is
also an increasing trend in multi-platform support, either in the
development of the whole software framework (i.e. TeamBots
[13] written entirely in Java) or allowing clients developed
in other programming languages, be then interpreted, scripted
or compiled (i.e. both Player/Stage and URBI support remote
clients written in different programming languages like Java,
Python, etc).

When faced with the development of robotics applications
for different domains, platforms, sensors and actuators using
a reduced development team, like our research group is,
productivity is of paramount importance. In addition, if any
of the developments is to become a commercial or industrial
product, the robustness is also a must. We have summarised
important properties of selected frameworks regarding the
productivity and robustness goals in Table. I. The Research
column identifies the most relevant users base in the research
community. The Industrial column identifies which frame-
works are intended to be used for commercial or industrial
applications, and what degree of industrial grade has been
reached. The Prototyping column evaluates the simplicity or
easiness for fast prototyping, which is directly related to man-
hours effort. The Language column shows the language for
implementing and using the framework. In some cases, there
are available clients for additional languages. The Data Flow
column identifies if the data flow is fixed at compilation
time or can be configured at runtime. The Functional column
identifies which kind of functional architecture the frameworks
are related to, if any.

Because we are concerned on productivity, fast prototyping
is a property that is considered more than necessary. URBI,

55

Research Industrial Prototyping Language Data Flow Functional
Player Widespread C++/Clients
URBI Accademia Limited Excellent URBI/Clients Fixed FSM
Open-R RoboCup Full C++ Configurable
OROCOS EU Project Full C++ Configurable
TeamBots Limited Excellent Java Fixed Reactive
MissionLab Military Full Adequate C++ Fixed AuRa

TABLE I
SUMMARY OF SELECTED FRAMEWORKS PROPERTIES

TeamBots and MissionLab provide good support for this, but
only MissionLab and URBI can be qualified as industrial
grade. On the other hand, general usability is assured by
Player/Stage, Open-R and OROCOS, but only at a platform
level. In addition, Java multi-platform development has be-
come a standard feature in business, with many productivity
and development tools readily available. For this reason,
we have developed a Java software framework for robotics
applications that tries to keep productivity and robustness as
it main goals, while adopting the many interesting features of
the above mentioned frameworks.

This paper presents a software framework for developing
autonomous robots applications in diverse domains, like labo-
ratory robots, automotive and industrial vehicles are. The main
goal of the framework is to allow a high productivity while
obtaining robust code, adequate for commercial or industrial
applications. The Java framework has been successfully used
in different applications like laboratory robots, soccer-playing
robots, industrial robots and autonomous vehicles.

The paper is organized as follows. The first section de-
scribes the characteristics and design criteria of the software
robotics framework which is later used to control very different
platforms. The second section analyses and discusses the
most important features of the proposed framework. The third
section describes two case-studies: an autonomous car and
an industrial mobile robot. Finally, some conclusions are
presented.

II. THE THINKINGCAP-II FRAMEWORK

ThinkingCap-II (TC-II) is a Java framework for developing
mobile robot applications1. It is a joint effort between the
University of Murcia, Spain, and the University of Örebro,
Sweden, and it is based on previous work on ThinkingCap
[14], [15] and BGA [16] architectures. The framework consists
of a reference cognitive architecture (largely based on Think-
ingCap) that serves as a guide for making the functional de-
composition of a robotics system, a software architecture (par-
tially based on BGA) that allows a uniform and reusable way of
organising software components for robotics applications, and
a communication infrastructure that allows software modules
to communicate in a common way, independently of whether
they are local or remote.

A. Functional architecture

Although the TC-II framework is functional architecture-
free, we have developed most of our applications (like the the

1Additional information can be found at http://robolab.inf.um.es/tc2

Fig. 1. ThinkingCap-II functional architecture

case study described below) following a functional architecture
based on ThinkingCap [15]. It consists of a two-layer archi-
tecture (Fig. 1) for controlling mobile robots, one layer for
reactive processes and the other for deliberative processes. It
can be viewed as a stripped down instance of a 3T architecture.
The modules group the different functionalities present in typ-
ical mobile robotics systems (navigation, perception, control
and planning), in which sensing and acting are a must. An
important role is played by a centralised data structure called
Local Perceptual Space (LPS), borrowed from the Saphira
architecture [7]. It is a geometrically consistent robot centric
space which consists of a collection of Local Perceptual
Objects (LPOs). These LPOs model the local environment of
the robot, and take into account the a priori information (map)
and the currently perceived information (sensors) in a coherent
way.

A key point of the architecture is the VirtualRobot module,
which provides an abstract interface to the sensori-motoric
functionalities of the robot, effectively hiding the hardware
components, much like Open-R, Player/Stage, and OROCOS
do, but at a higher level. In this sense, we have developed Vir-
tualRobot modules that run on top of Open-R for controlling
AIBOs and on top of Player/Stage for controlling Pioneers.

This architecture has been implemented and used in dif-
ferent types of robots and has shown good capabilities as an
abstract guideline to organise the software which has to be run
in a robot.

B. Software architecture

The framework defines an abstract model of a TC-II module,
which all the modules must follow. Some of these modules
will correspond to modules of the functional architecture.
Depending on the complexity of the system there could be
one to one or one to many correspondences. For instance the
Perception can be implemented as a single module or as a
collection of sub-modules, but in either case the modules must

56

Fig. 2. Package tcdevs

stick to the abstract module definition, which has support for
single thread and multi thread execution.

As the modules can be distributed among a set of CPUs,
the framework relies on a centralised communication scheme,
where all the communication goes through a blackboard
(described in section II-C). In addition, this blackboard is
based on an event system so that modules do not need to
poll the blackboard but wait until the desired type of event
has occurred. The communication mechanism is detailed in
the next section. The abstract TC-II module includes a port
to put data into the blackboard and to receive data from the
blackboard (via both polling and events).

The software architecture makes extensive use of all the
Object Oriented features of the Java language, and it includes
and offers: specification of run-time parameters for the dif-
ferent modules, flexible configuration of the system (in terms
of modules, robots and CPUs), and a predefined components
library. These features are organised in different packages:

• tcdevs. This package deals with device communication
and data representation issues, both for sensors and
actuators (Fig. 2). It includes a broad range of sensor
types (laser, GPS, INS, radar, etc) and makes extensive
use of the Factory pattern to hide the implementation of
their device drivers, allowing the addition of additional
vendor specific drivers in a transparent way, which is
resolved at run time. The most important benefit of
this is that the robot code does not know about and is
independent of the actual devices, allowing for a high
degree of reusability. In addition, the package includes
implementations to access different data buses, like CAN,
I2C, RS-232, etc.

• tclib. This package is a repository of general algorithmic
solutions to standard mobile robotics problems (Fig. 3).
It includes code for localisation (fuzzy-Markov filter, par-

Fig. 3. Package tclib

ticle filter, Kalman filter), map-building (grid, fuzzy grid,
fuzzy segments), path-planning (A*, D*), task-planning
(topological planning, finite state machine, Petri net),
and behaviour execution (fuzzy hierarchical behaviours,
LUA embedded behaviours). The idea of this package
is to allow for new developments to be fast prototyped
by reusing previously used solutions. The designer has
simply to instantiate any of these methods from inside
the desired module. The included techniques make use
of the Model-View-Control pattern to allow for a general
implementation of the algorithms which is independent of
the visualisation of the results. Most techniques include a
default visualisation module which greatly simplifies the
debugging process.

• tcarch. This package deals with architectural issues, high
level communications and modularisation (Fig. 4). On the
one hand, it includes the implementation of the Linda
communication infrastructure (described in section II-C),
basic runtime operation (thread and event management),
and shared data types (LPS, LPO and world models). On
the other hand, it includes basic abstract implementations
of the different modules of the reference functional archi-
tecture (VirtualRobot, Controller, Perception, Navigation,
Planner, Monitor), which are then customised for any
given application by sub-classing.

One key aspect of the framework is that the run-time
characteristics of the system can be specified and customised
by the use of configuration files. The framework supports
two different types of general configuration files, and contains
methods to parse and verify them. The following configura-
tions are used by all the modules:

57

Fig. 4. Package tcarch

• Architecture Definition File (ADF). Specifies which mod-
ules are to be run, on which CPUs they will be running,
and which type of communication and process synchro-
nisation mechanism they will be using. The framework
provides methods to automatically instantiate the corre-
sponding classes at run-time. Thus, the use of ADF allows
for great flexibility when trying different approaches
and provides a very convenient method for specifying
a distributed system.

• Robot Description File (RDF). Specifies the different
parameters related to a given robot, like sensor number,
types, position and orientation, and platform kinematics
model and its parameters. It includes the specification of
the actual classes that will handle device-specific issues,
implementing interfaces defined in the tcdevs package.
The framework provides methods to access the definition
of the robot, and also to display it.

In addition to these, the framework also includes an appli-
cation specific configuration file, which may or may not be
used by the different modules:

• World Description File (WDF). Specifies the a pri-
ori knowledge of the robot environment, like walls,
rooms, corridors, landmarks, areas, waypoints, etc. The
framework provides methods to access and display this
information. The WDF can be left empty if no a pri-
ori information exists. The TC-II framework includes a
graphical tool for generating WDFs.

In order to execute a TC-II based robot, a valid ADF and
a unique name are needed. The name is used to identify the
robot should more than one is used. The framework parses the
ADF and then loads and instantiates all the different modules
specified, each with its corresponding parameters and the
desired Linda events that it will be listening to. All the modules
of a single robot connect to the robot local blackboard. In a

Fig. 5. Runtime module’s finite state machine

multi-robot scenario, the ADF also contains the address of the
global blackboard. Once a module is instantiated, it execution
state is controlled by a finite state machine (Fig. 5), which
can in one of the following states: LOADED (it have just
been instantiated), INITIALISED (a valid RDF and WDF has
been received from the blackboard, and the module is ready
for operation), CONTINUOUS (for continuous execution) or
STEP (for step by step execution for debugging purposes).

C. Communication support

In a distributed system, as many robotics applications are,
information sharing is a key point. Both the functional and
software architectures allow the execution of modules in differ-
ent processes or machines. To allow for a flexible information
exchange mechanism, TC-II relies on a shared blackboard
with similar services to those offered by a Linda system
[17]. As in typical blackboard systems, each module reads
information from the blackboard, processes it, and then writes
the corresponding results. Besides this, it can also work as an
event driven blackboard. In this way, each module registers
into the blackboard which kind of data it desires to receive.
When new data of such type is available it is sent directly to
the module.

Shared information is exchanged using tuples, a tuple being
a pair <key, item>. Key identifies the kind of data, and item
is the actual data. For instance there are some tuple types for
different purposes, like sensor data, motion commands, debug
information, navigation data and others. The object-oriented
capabilities of the Java language are used in this case to
define and implement all these tuples from an object-oriented
paradigm.

The blackboard of TC-II has been designed to work in
distributed scenarios, with different modules running in differ-
ent machines. In a multi-robot scenario, each robot maintains
its own local blackboard, and in addition there is a global
blackboard, which is an extension of the local blackboard
concept. In this case, information is now exchanged using
triples, a triple being <id, key, item>, where id uniquely iden-
tifies the robot that produced the information. The framework
includes a specialised module LindaRouter which connects
each local blackboard with the global one. This module is in
charge of filtering information sent to and received from the

58

global blackboard, thus acting as a lightweight communication
router.

III. FRAMEWORK DISCUSSION

A. On the use of Java

The TC-II framework has been fully implemented in Java.
One of the advantages of using Java is the real achievement
of having platform independence. Thus, the development of
the components is typically done in desktop computers with
standard operating systems, while the actual deployment oc-
curs in embedded systems that support Java. The current,
tested, deployment systems include both Linux and Linux
RT and embedded Java microcontrollers. Moreover, the Java
implementation makes the integration of the human-interfaces
in distributed scenarios a simple process. Being an interpreted
language, it is not suitable for computationally intensive tasks,
like real-time vision is. Because of this, the Java Native
Interface (JNI) provides a handy way of calling C-based
software by the virtual machine.

Some of the virtues of Java for development are related to
robustness (Java programs run in a protected virtual machine,
Java always performs runtime bounds checking) and reduced
debugging time (parameters always passed by value, except
objects that are accessed by reference, automatic garbage
collection, rigid type safety except for widening conversions).
Robotics applications may benefit from the productivity asso-
ciated, which is habitual in many corporative and enterprise
software developments.

An important feature of many robotics frameworks is the
ability of specifying the data flow at run-time. As such, Open-
R and OROCOS allow such possibility, in the first case by
means of configuration files. In TC-II, this is accomplished
by way of the ADFs, because they not only contain which
modules are to be active at runtime, but also which events
are to receive. The way this is actually implemented is by
registering a given module into the LindaSpace to receive a
set of tuple keys. When a new value for a given key is available,
the blackboard calls a notify() method of the registered module
with the corresponding tuple. By writing the appropriate code
in the notify() method, a different variety of data flows can
be accomplished. This registration occurs at runtime when
parsing some fields of the ADF for the corresponding module.
This is possible by making extensive use of Java’s reflection
properties and Factory patterns.

Another important aspect is code reusability. The framework
allows the developer to write robot independent code through
the use of RDFs. For instance if a developer writes a per-
ception routine that computes some feature depending on
the sensor configuration, the RDFs allow for a high level of
abstraction and a uniform way of accessing the characteristics
of the sensors. Then the system designer or integrator has
to provide only the number and location of the sensors to
use the routine. All the standard components library has
been written following this approach. This is also possible
by making extensive use of Java’s reflection properties and
Factory patterns.

A typical concern with Java is performance. While early
versions of Java were significantly outperformed by statically
compiled languages such as C++, and it may still be the case
for embedded systems because of the requirement for a small
footprint, current just in time (JIT) compiler technology are
closing the performance gap for long-running Java processes,
like robotics applications are, were the classes used during the
execution of the applications do not vary much during time.
Most modern Java virtual machines support JIT compilation
(as the one used in the iFork case study, section IV). One
comprehensive study of microbenchmarks [18] shows quite
a large variation in results but indicates that Java often
outperforms C++ in operations such as memory allocation and
file I/O while C++ often outperforms Java in arithmetic and
trigonometric operations.

B. On the functional architecture

We can distinguish between frameworks that provide tools
to design customised systems, and the frameworks that force
the use of specific functional architectures of the control
software. The first group includes Player, URBI, OPEN-R,
OROCOS, and TC-II while TeamBots and MissionLab belong
to the second group.

The first group provides a generic abstraction of the hard-
ware layer, which is quite useful to separate the robot control
and the real-time control of effectors. The different levels of
abstraction depend on the complexity of the hardware platform
for which they are designed. Player is intended to command
wheeled robots. URBI is designated to command more generic
platforms and although complex commands can be written, its
kernel is low level in essence. OROCOS propose to define a
generic robot by the specification of components, which are
completely decoupled of communications, and hence, control
flow and data flow are established outside of components.
The idea is that the user be able to assemble and achieve
the global functionality of the robot. The components used by
the application are chosen by the developer depending on the
functionalities needed.

TC-II follows a similar approach to that of OROCOS, and,
in essence, the software architecture is de-coupled from the
functional architecture. How is this related with what it is
stated in section II-A? Basically, the software architecture
does not know anything about the current functional architec-
ture, because the actual data flow is instanced at runtime, and
hence the functional architecture is then established. On the
other hand, our typical applications are layered up using the
described functional architecture, and thus we provide specific
classes to allow for a straightforward implementation of it, but
nonetheless, it is neither mandatory nor necessary to follow it.
In fact, one examples of the case studies presented below does
not strictly follows the functional architecture (see section IV).

C. Simulation

Platform independence is guaranteed by the use of the
Java language, and it is a very important feature of the
TC-II framework. Platform independence allows running and

59

Fig. 6. ThinkingCap-II simulator

debugging the code in personal computers and testing it
in the real platform. The TC-II framework takes advantage
of this and includes a Simulator module (Fig. 6) that can
simulate different sensor types, like range sensors (sonar, laser,
radar) and positioning sensors (GPS, laser, compass), and
platform models, like differential, tricycle, leg, and Ackerman
drives. The sensor simulation is realistic enough for taking
into account multi-path reflection, noise, and different firing
patterns, while the platform simulation is based on kinematics
equations and some pseudo dynamics constraints (i.e. the
minimum time to perform a full turn of the steering wheel).
The combination allows for testing of the efficiency and
performance of the different modules and their algorithms with
an acceptable degree of realism. In addition, the simulator can
simulate multiple robots, and their sensors not only reflect the
environment but also the other robots.

The Simulator is implemented as a VirtualRobot that is not
attached to any real device, and the same RDFs used by the
real robots are used by the simulator to configure the sensor
types and models and the platforms kinematics and constraints.
Thus, switching between a real robot and a simulated one is as
simple as changing a class name of the VirtualRobot section in
the ADF. In addition, the model of the environment is specified
using a WDF (which may be the same as that used by the
robots).

IV. CASE-STUDY: INTELLIGENT VEHICLES

This application is part of the MIMICS project, which aims
to develop an intelligent platoon of vehicles [19], where the

Fig. 7. The SatAnt autonomous car

leading vehicle (which is manned) acts as a guide for the
following vehicles (which are unmanned)2. Because of limited
budget, only one autonomous car has been developed and built.
The operation of the leading car is quite simple: it uses its
sensors to send information to the following car, which then
uses both its sensors and the information received to control
the actuators. All the information is shared using wireless
links.

The autonomous car, called SatAnt (Fig. 7), is based on a
COMARTH S1-50 sport car, which has been heavily modified
to allow it to be controlled by a computer based system. The
modifications include an automatic gearbox, electronic assisted
steering system, electronic speed control, and electronic brak-
ing system. For safety reasons, all electronic systems have
been designed in such way that they allow both manual and
automatic control, and at any time the electronic systems can
be disengaged. Both the frame and the outer shell have been
modified to accommodate for the non-standard equipment. The
sensors system includes a Novatel GPS (which provides global
positioning data), a Precision Navigation electronic compass
(which provides both heading and pitch/roll data), relative
encoders attached to the four wheels (which provide vehicle
speed), absolute encoder attached to the steering wheels arm
(which provides steering wheels angle), and a Fujitsu 77 GHz
radar (for detecting obstacles and the leading car). The manned
car is simply provided with portable equipment that contains
the positioning sensors, a small processing unit and the radio
communication link. This portable system can be used in any
standard car.

A typical instance of the MIMICS application consists of
(Fig. 8): one manned car, one SatAnt unmanned car, and an
operator base station. The base station holds the instance of the
global blackboard and a GIS application to monitor the state
of the system. The manned car holds a local blackboard with
has attached a VirtualRobot and a Peception module which
integrates sensor information (GPS position, electronic com-
pass heading and, optionally, pulses from the tachometer) into

2Details and videos can be found at http://robolab.inf.um.es/mimics

60

Fig. 8. The MIMICS application architecture

a Kalman filtered position estimation, which is then used as a
reference by the unmanned car. The unmanned car architecture
is more complex because processing is distributed into two
CPUs: one for time-critical modules (the reactive layer) and
the other for non time-critical modules (the deliberative layer
and the user interface), as depicted in Fig. 8. These modules
are:

• VirtualRobot reads sensor information (GPS position,
electronic compass heading, tachometer pulses from the
four wheels, and radar targets) and writes it into the local
Linda Space. It also reads control values from the Linda
Space and sends them to the corresponding actuators.
Both low level controllers and sensors are interfaced by a
CAN bus, which connects the VirtualRobot to a series of
Java programmed micro-controllers that perform velocity
control, steering wheel control and brake control.

• Perception reads the raw positioning data and applies a
Kalman filter to fuse them and produce a corrected global
position, which is then written into the Linda Space.
Moreover, the raw radar targets are stored in a radar
buffer, from which an estimate of the time for collision is
computed, and false targets are filtered out. This estimate
is also written into the Linda Space.

• Controller reads the positioning data, collision data, and
desired path from the Linda Space, executes the different
reactive behaviours, and then produces the corresponding
control values, which are written into the Linda Space.

• Navigation reads the position of the leading car from the
Linda Space and generates a path to guide the vehicle
(connecting the leading car positions) and the desired
velocity (averaging the leading car speed over a period).
Both the path and the velocity are written into the Linda
Space.

• Monitor simply displays the position of the different
vehicles and their trajectories on a map, and also allows
the operator to take control over an autonomous car and
teleoperate it using a joystick.

Being a complex and distributed application, it has benefited
from the TC-II architecture in a number of ways. The runtime

characteristics of the system allowed for a fast development of
the first prototype (9 man/months for the software compared
to 21 man/months for the hardware), in which only one full
scale test was conducted (it required booking a private car
race track, bringing the two cars, laboratory equipment and
a five persons team some 80 km from our lab). This was
possible due to the implementation in Java and the use of
ADFs, which allowed us to try different pieces of the system
in single desktop computers, single embedded computers, or
combinations of desktop and embedded computers. In addition
we reused algorithms and device drivers that were developed
for other projects.

V. CONCLUSIONS

This paper has shown ThinkingCap-II, a Java framework
for mobile robotics applications, which has been designed
with to main goals into mind: productivity and robustness.
These are achieved by a combination of a methodology to
decompose a robotics system into different modules based
on functionality, a software architecture to provide run-time
support, dynamic configuration and a components library, and
a communication infrastructure that allows distribution of the
different components. This framework has been successfully
used in indoor robotics, automotive and industrial applications,
where the physical platforms are quite different.

An application developed using the proposed framework has
been described and commented: an autonomous vehicle. It has
benefited of the properties of the framework, as fast prototyp-
ing, distributed nature and multi-platform are. Thus we have
also shown that Java can be used for real robotics applications,
even in demanding environments like the transportation one is.
Most concerns about Java performance are clarified by the use
of modern JIT technologies, which only add a small processing
overhead compared to natively compiled code. In addition,
using Java for the high-level framework has the advantage of
allowing a faster design and development cycle. In addition, all
the high level software can be effectively tested in any platform
before the actual deployment of the code. The advantages
of using the approach presented are very obvious for small
research and development teams.

ACKNOWLEDGMENTS

This work has been supported by CICYT projects TIC2001-
0245-C02-01, DPI-2004-07993-C03-02 and DPI-2007-66556-
C03-02 and PROFIT projects FIT-1602000-2001-53, FIT-
160300-2002-82, FIT-160300-2003-41, Spanish Ministry of
Science and Innovation. Special thanks to Alessandro Saffiotti
for his valuable help and comments.

REFERENCES

[1] J. Fernández-Madrigal, C. Galindo, J. González, E. Cruz-Martı́n, and
A. Cruz-Martı́n, “A software engineering approach for the develop-
ment of heterogeneous robotic applications,” Robotics and Computer-
Integrated Manufacturing, vol. 24, no. 1, pp. 150–166, 2008.

[2] A. Oreback and H. Christensen, “Evaluation of Architectures for Mobile
Robotics,” Autonomous Robot, vol. 14, pp. 33–49, January 2003.

[3] J. Kramer and M. Scheutz, “Development environments for autonomous
mobile robots: A survey,” Autonomous Robots, vol. 22, no. 2, pp. 101–
132, 2007.

61

[4] R. Simmons, “Structured Control for Autonomous Robots,” IEEE Trans-
actions on Robotics and Automation, vol. 10, no. 1, pp. 34–43, 1994.

[5] R. Arkin and T. Balch, “AuRA: Principles and Practice in Review,”
Journal of Experimental and Theoretical Artificial Intelligence (JETAI),
vol. 9, no. 2/3, pp. 175–188, 1997.

[6] R. Bonasso, R. Firby, E. Gat, D. Kortenkamp, D. Miller, and M. Slack,
“Experiences with an Architecture for Intelligent, Reactive Agents,”
Journal of Experimental and Theoretical Artificial Intelligence, vol. 9,
no. 2/3, pp. 237–256, 1997.

[7] K. Konolige, K. Myers, E. Ruspini, and A. Saffiotti, “The Saphira
Architecture: A Design for Autonomy,” Journal of Experimental and
Theoretical Artificial Intelligence (JETAI), vol. 9, no. 1, pp. 215–235,
1997.

[8] B. Gerkey, R. Vaughan, and A. Howard, “The Player/Stage Project:
Tools for Multi-Robot and Distributed Sensor Systems,” in International
Conference on Advanced Robotics (ICAR), Coimbra, Portugal, July
2003, pp. 317–323.

[9] M. Fujita and K. Kageyama, “An Open Architecture for Robot Enter-
tainment,” in International Conference on Autonomous Agents, Marina
del Rey, California, United States, 1997, pp. 435–442.

[10] H. Bruyninckx, “Open robot control software: the OROCOS project,”
in IEEE International Conference on Robotics and Automation (ICRA),
2001, pp. 2523–2528.

[11] D. Mackenzie, R. Arkin, and J. Cameron, “Multiagent mission speci-
fication and execution,” Autonomous Robots, vol. 4, no. 1, pp. 29–52,
1997.

[12] J. Baillie, “Urbi: towards a universal robotic low-level programming
language,” in IEEE/RSJ International Conference on Intelligent Robots
and Systems, 2005, pp. 820–825.

[13] T. Balch. (2000) TeamBots. [Online]. Available:
http://www.cs.cmu.edu/˜trb/TeamBots/

[14] A. Saffiotti, K. Konolige, and E. Ruspini, “A Multivalued-Logic Ap-
proach to Integrating Planning and Control,” Artificial Intelligence,
vol. 76, no. 1-2, pp. 481–526, 1995.

[15] A. Saffiotti, “Autonomous Robot Navigation: a Fuzzy Logic Approach,”
Ph.D. dissertation, Universite Libre de Bruxelles, Belgium, 1998.

[16] H. Martı́nez-Barberá and A. Gómez-Skarmeta, “A Framework for Defin-
ing and Learning Fuzzy Behaviours for Autonomous Mobile Robots,”
Intl. J. of Intelligent Systems, vol. 17, no. 1, pp. 1–20, 2002.

[17] D. Gelernter, “Generative Communication in Linda,” ACM Trans. on
Programming Languages and Systems, vol. 17, no. 1, pp. 80–112, 1985.

[18] T. Bruckschlegel, “Microbenchmarking C++, C] and Java,” Dr. Dobbs,
June 2005.

[19] A. Gómez-Skármeta, H. Martı́nez-Barberá, M. Zamora, B. Úbeda,
F. Gómez, and L. Tomás, “Mimics: exploiting satellite technology for an
intelligent convoy,” IEEE Intelligent Systems, vol. 17, no. 4, pp. 85–89,
2002.

62

Incremental Component-Based Construction and
Verification of a Robotic System

Ananda Basu, Matthieu Gallien, Charles Lesire, Thanh-Hung Nguyen,
Saddek Bensalem, Félix Ingrand and Joseph Sifakis

Abstract— Autonomous robots are complex systems that
require the interaction/cooperation of numerous heterogeneous
software components. Nowadays, robots are critical systems
and must meet safety properties including in particular tem-
poral and real-time constraints. We present a methodology
for modeling and analyzing a robotic system using the BIP
component framework integrated with an existing framework
and architecture, the LAAS Architecture for Autonomous
System, based on GenoM. The BIP componentization approach
has been successfully used in other domains. In this study,
we show how it can be seamlessly integrated in the preexisting
methodology. We present the componentization of the functional
level of a robot, the synthesis of an execution controller as
well as validation techniques for checking essential “safety”
properties.

I. INTRODUCTION

A central idea in systems engineering is that complex sys-
tems are built by assembling components (building blocks).
Components are systems characterized by an abstraction
that is adequate for composition and re-use. It is possible
to obtain large components by composing simpler ones.
Component-based design confers many advantages such as
reuse of solutions, modular analysis and validation, recon-
figurability, controllability, etc.

Autonomous robots are complex systems that require the
interaction/cooperation of numerous heterogeneous software
components. They are critical systems as they must meet
safety properties including in particular, temporal and real-
time constraints.

Component-based design relies on the separation between
coordination and computation. Systems are built from units
processing sequential code insulated from concurrent execu-
tion issues. The isolation of coordination mechanisms allows
a global treatment and analysis.

One of the main limitations of the current state-of-the-art
is the lack of a unified paradigm for describing and analyzing
the information flow between components. Such a paradigm
would allow system designers and implementers to formu-
late their solutions in terms of tangible, well-founded and
organized concepts instead of using dispersed coordination
mechanisms such as semaphores, monitors, message passing,
remote call, protocols, etc. It would allow in particular, a
comparison of otherwise unrelated architectural solutions and
could be a basis for evaluating them and deriving implemen-
tations in terms of specific coordination mechanisms.

A. Basu, T.-H. Nguyen, S. Bensalem and J. Sifakis are with VERIMAG
CNRS/University Joseph Fourier, Grenoble, France.

M. Gallien, C. Lesire and F. Ingrand are LAAS/CNRS, Unversity of
Toulouse, Toulouse, France.

The designers of complex systems such as autonomous
robots need scalable analysis techniques to guaranteeing es-
sential properties such as the one mentioned above. To cope
with complexity, these techniques are applied to component-
based descriptions of the system. Global properties are
enforced by construction or can be inferred from component
properties. Furthermore, componentized descriptions provide
a basis for reconfiguration and evolution.

We present an incremental componentization methodol-
ogy and technique which seamlessly integrate with the al-
ready existing LAAS architecture for autonomous robot. The
methodology considers that the global system architecture
can be obtained as the hierarchical composition of larger
components from a small set of classes of atomic compo-
nents. Atomic components are units processing sequential
code that offer interactions through their interface. The
technique is based on the use of the Behavior-Interaction-
Priority (BIP) [2] component framework which encompasses
incremental composition of heterogeneous real-time compo-
nents.

The main contributions of the paper include:

• A methodology for componentizing and architecting
autonomous robot systems applied to the existing LAAS
architecture.

• Composition techniques for organizing and enforcing
complex event-based interaction using the BIP frame-
work.

• Validation techniques for checking essential properties,
including scalable compositional techniques relying on
the analysis of the interactions between components.

The paper is structured as follows. In Section II we
illustrate with a real example, the preexisting architecture
(based on GenoM [6]) of an autonomous robotic software
developed at LAAS. From this architecture, we identify
the atomic components used for the componentization of
the robot software in BIP. Section III provides a succinct
description of the BIP component framework. Section IV
presents a methodology for building the BIP model of
existing GenoM functional modules and their integration with
the rest of the software. Controller synthesis results as well
as “safety” properties analysis are also presented. Section V
concludes the paper with a state of the art, an analysis of the
current results and future work directions.

63

Execution controller (R2C)

Pos
Y

Module
X Functional Module Poster

Procedural
executive

(open-PRS)

Planner and
temporal executive

(IxTeT)

Execution control level

OR

Functional level

Decisional level

Antenna
PosPOM

Po
sVME

Science

Aspect Obs

Laser
RF ScanCamera Im.

NDD Speed

PosRFLEX

Platine

Simulator
GAZEBO

Fig. 1. An instance of the LAAS architecture for the DALA Robot.

II. MODULAR ARCHITECTURE FOR AUTONOMOUS
SYSTEMS

At LAAS, researchers have developed a framework, a
global architecture, that enables the integration of processes
with different temporal properties and different representa-
tions. This architecture decomposes the robot system into
three main levels, having different temporal constraints and
manipulating different data representations [1]. This architec-
ture is used on a number of robots (e.g. DALA, an iRobot
ATRV) and is shown on Fig. 1. The levels in this architecture
are :

• a functional level: it includes all the basic built-in robot
action and perception capacities. These processing func-
tions and control loops (e.g., image processing, obstacle
avoidance, motion control, etc.) are encapsulated into
controllable communicating modules developed using
GenoM1. Each modules provide services which can be
activated by the decisional level according to the current
tasks, and posters containing data produced by the
module and for other (modules or the decisional level)
to use.

1The GenoM tool can be freely downloaded from:
http://softs.laas.fr/openrobots/wiki/genom

• a decisional level: this level includes the capacities of
producing the task plan and supervising its execution,
while being at the same time reactive to events from the
functional level.

• At the interface between the decisional and the func-
tional levels, lies an execution control level that controls
the proper execution of the services according to safety
constraints and rules, and prevents functional modules
from unforeseen interactions leading to catastrophic
outcomes. In recent years, we have used the R2C [14]
to play this role, yet it was programmed on the top
of existing functional modules, and controlling their
services execution and interactions, but not the internal
execution of the modules themselves.

The organization of the overall system in layers and the
functional level in modules are definitely a plus with respect
to the ease of integration and reusability. Yet, an architecture
and some tools are not “enough” to warrant a sound and safe
behavior of the overall system.

control
poster

functional
poster

Control Task

Execution Tasks

activities

Functional
IDSControl IDS

Posters interface

Request

Report

Services Interface

Fig. 2. A GenoM module organization.

In this paper the componentization method we propose
will allow us to synthesize a controller for the overall
execution of all the functional modules and will enforce by
construction the constraints and the rules between the various
functional modules. Hence, the ultimate goal of this work is
to implement both the current functional level and execution
control level with BIP.

A. GenoM Functional Modules

Each module of the LAAS architecture functional level is
responsible for a function of the robot. Complex modalities
(such as navigation) can be obtained by having modules
“working” together. For example in Fig. 1 (which only shows
the data flow of the functional level), there is an explicit
periodical processing loop. The module Laser RF acquires
the laser range finder and store them in the poster Scan,

64

from which Aspect builds the obstacles map Obs. The
module NDD (responsible for the navigation) avoids these
obstacles while periodically producing a Speed reference to
reach a given target from the current position Pos produced
by POM. Finally, this Speed reference is used by RFLEX,
which controls the speed of the robots wheels, and also
produces the odometry position to be used by POM to
generate the current position.2

All these modules are built using a unique generic canvas
(Fig. 2) which is then instantiated for a particular robot
function.

Each module can execute several services started upon
upper level requests. The module can send information
relative to the executed requests to the client (such as the
final report) or share data with other modules using posters.
E.g. the NDD module provides six services corresponding
to initializations of the navigation algorithm (SetParams,
SetDataSource andSetSpeed), launching and stopping the
path computation toward a given goal (Stop and GoTo)
and a permanent service (Permanent). To execute this path,
NDD exports the Speed poster which contains the speed
reference.

The services are managed by a control task responsible for
launching corresponding activities within execution tasks.

ETHER

START

EXEC IDLEFAIL

END

INTER

request(arg)/_ _/started

abort/_

abort/_

abort/__/interrupted

_/OK(ret)

_/failed

events :
 input / output

Fig. 3. Execution automaton of an activity.

Control and execution tasks share data using the internal
data structures (IDS). Moreover execution tasks have periods
in which the several associated activities are scheduled. It is
not necessary to have fixed length periods if some services
are aperiodic. Fig. 3 presents the automata of an activity.
Activity states correspond to the execution of particular
elementary code (codels) available through libraries and
dedicated either to initialize some parameters (START state),
to execute the activity (EXEC state) or to safely end the
activity leading to reseting parameters, sending error signals,
etc.

2This particular setup will serve as an example throughout the rest of the
paper.

III. THE BIP COMPONENT FRAMEWORK

BIP3 [2] is a software framework for modeling heteroge-
neous real-time components. The BIP component model is
the superposition of three layers: the lower layer describes
the behavior of a component as a set of transitions (i.e a finite
state automaton extended with data); the intermediate layer
includes connectors describing the interactions between tran-
sitions of the layer underneath; the upper layer consists of
a set of priority rules used to describe scheduling policies
for interactions. Such a layering offers a clear separation
between component behavior and structure of a system
(interactions and priorities).

BIP allows hierarchical construction of compound compo-
nents from atomic ones by using connectors and priorities.

An atomic component consists of a set of ports used
for the synchronization with other components, a set of
transitions and a set of local variables. Transitions describe
the behavior of the component. They are represented as a
labeled relation between control states.

in

0<x

y:=f(x) out

x y

outin empty

full

Fig. 4. An example of an atomic component in BIP.

Fig. 4 shows an example of an atomic component with two
ports in, out, variables x, y, and control states empty, full.
At control state empty, the transition labeled in is possible
if 0 < x. When an interaction through in takes place, the
variable x is eventually modified and a new value for y is
computed. From control state full, the transition labeled out
can occur.

Connectors specify the interactions between the atomic
components. A connector consists of a set of ports of the
atomic components which may interact. If all the ports
of a connector are incomplete then synchronization is by
rendezvous. That is, only one interaction is possible, the
interaction including all the ports of the connector. If a
connector has one complete port then synchronization is by
broadcast. That is, the complete port may synchronize with
the other ports of the connector. The possible interactions
are the non empty sublists containing this complete port.
the feasible interactions of a connector and in particular to
model the two basic modes of synchronization, rendezvous
and broadcast.

Priorities in BIP are a set of rules used to filter interactions
amongst the feasible ones.

The model of a system is represented as a BIP compound
component which defines new components from existing

3The BIP tool-set can be downloaded from:
http://www-verimag.imag.fr/˜async/BIP/bip.html.

65

!"#$%&

'&()*+&

'&()*+&,

-"./("%&(

0+1)*/2

'&()*+&

'&()*+&,

-"./("%&(

0+1)*/2

3"4/&(

3"4/&(

5,5,5

5,5,5

67&+$1".,894:

8*;&('+<&#$%&(,0+1)*/2

67&+$1".,894:

8*;&('+<&#$%&(,0+1)*/2

3"4/&(

5,5,5

Fig. 6. A componentized GenoM module.

components (atoms or compounds) by creating their in-
stances, specifying the connectors between them and the
priorities.

The BIP framework consists of a language and a toolset
including a front-end for editing and parsing BIP programs
and a dedicated platform for the model validation. The
platform consists of an engine and software infrastructure for
executing simulation traces of models. It also allows state
space exploration and provides access to model-checking
tools like Evaluator [10]. This permits to validate BIP models
and ensure that they meet properties such as deadlock-
freedom, state invariants and schedulability.

The back-end, which is the BIP engine, has been entirely
implemented in C++ on Linux to allow a smooth integration
of components with behavior expressed using plain C/C++
code.

IV. THE FUNCTIONAL LAYER IN BIP

The LAAS architecture makes use of a generic module for
its functional layer. If we model this generic module and its
components in BIP and if we then instantiate it and connect
the existing “codels” to the resulting component, then we
have a BIP model of the GenoM modules. Adding the BIP
model of the interaction between the modules will give us a
BIP model of the overall functional layer.

In order to formalize the componentization approach, we
propose the following mapping (+ for one component or
more, and . for composing components):

functional level ::= (module)+
module ::= (service)+ . (execution task) . (poster)+
service ::= (service controler) . (activity)
execution task ::= (timer) . (scheduler activity)

As shown in Fig. 5, a component modeling a generic
Service is obtained from composing the atomic components
service controller and activity. The left sub-component rep-
resents the execution task of a service. It is launched by
synchronization through port trigger. The service controller
then controls the validity of the parameters of the request
(if available) and will either reject the request or start the

activity by synchronizing with the activity component (right
sub-component). In each state, the status of the execution
task is available by synchronizing through port status. The
activity will then wait for execution (i.e. synchronization on
the exec port with the control task) and will either safely end,
fail, or abort. Each of the transitions control, start, exec, fail,
finish and inter may call an external function.

The service components are further composed with ex-
ecution task and poster components to obtain a module
component (See Fig. 6).

A. A Functional Module in BIP

The full BIP description of the functional level of the
robot, which consists of several modules, is beyond the scope
of this paper. We rather focus on the modeling of the NDD
module.

The NDD module contains six services, a poster and a
control task as sub-components and the connectors between
them, as shown in Fig. 7.

The control task wakes up periodically (managed by the
bottom-left component with alternating sleep and trigger
transitions) and always triggers the Permanent service at the
beginning of each period. During a period, the services will
have authorization to execute through interactions with the
control task.

Moreover, the BIP formalism allows complex relations to
be defined, such as:

• interruptions, as modeled by the connector joining
Stop.exec and GoTo.abort; if service Stop is executed,
the GoTo algorithm will be aborted;

• constraints, as modeled by the goTo connector (in blue);
service GoTo can be launched only if SetParams, Set-
Speed and SetDataSource have been already completed
(information available through their status port).

The BIP tool-chain generates code from the BIP model,
which can be executed by the BIP engine. The code contains
calls to functions from libraries originally designed for
GenoM modules, which executes the real activities of the
robotic system. The code generated for the NDD module has
been integrated and executed. In particular, it was fully inte-
grated with the decisional layer by replacing the functional
layer originally modeled with GenoM with the one modeled
in BIP.

B. Functional Level Controller Synthesis

Previously, in the LAAS architecture, a centralized con-
troller (R2C) was used to control the proper execution of the
services and to enforce the safety constraints and modules
interactions. On the contrary, in the BIP model, the proper
execution order and the safety properties are enforced by the
BIP connectors between the controllers of different services.
A BIP connector has guarded actions associated to each of
its possible interactions. Dependency between the controllers
of service in different modules are modeled by connectors
associated with guards which represents either some valid
execution condition or some safety rule. The composite
behavior of these local controllers, synchronized by the

66

!"

56758 46;86

;<=86 595:

56758 4>55?

;<=86

#$%&$

'($)& %*+&$,)-

)(.

/%'0

)-)1

!"#

$#$%$2#%&'&()

1+($&+0

/%'0

)(.

%*+&$

'($)&

3)4%$2#3)$4$%$2#

3)4%$2#

3)4%$2#

#$%$2#

#$%&$#$%&$

)(.)(.

/%'0/%'0

'($)&'($)&

%*+&$,)-

/%'0

/%'0

3)4%$2#

3)4%$2#

$&'33)&

$&'33)&

$&'33)&

1+($&+0

#$%&$

%*+&$

%*+&$

%*+&$,)-

%*+&$,)-

)&&+&

)-)1

)-)1

)(.

)(.

#$%&$

#$%&$

'($)&

'($)&

Fig. 5. BIP model of a service.

NDD

SetParams
trigger getStatus abort

start exec end fail inter

SetSpeed
trigger getStatus abort

start exec end fail inter
Stop

trigger getStatus abort

start exec end fail inter

Init
trigger getStatus abort

start exec end fail inter

GoTo
trigger getStatus abort

start exec end fail inter

Permanent
trigger getStatus abort

start exec end fail inter

Poster
write

read

a b c d
e

f
g

Timer
trigger

trigger
a b c

d
efg

trigger

Execution
Task

InitSetParams SetSpeed GoTo Stop

Poster

Fig. 7. The NDD module.

connectors and restricted by priorities, is equivalent to the
behavior of the centralized controller.

As an example, we had to enforce a rule between the
NDD and the POM modules which states that the robot can
navigate using the GoTo service of the NDD module only if
the module POM has already executed successfully its Run
service (which updates poster Pos). Such a rule is enforced
by constructing a connector between port trigger of the Goto

service and port status of the Run service, and guarded by
the status value.

C. Verification of Safety Properties

The BIP tool-set can perform an exhaustive state-space
exploration of the system. Additionally, it can detect potential
deadlocks in the system. These features have been used to
verify some properties in the model of the robot and for

67

detection of deadlocks. Two kinds of properties have been
verified.

1) Safety Properties: A safety property guarantees that
something unexpected will never happen. For the verification
of such properties, we used methods based on state-space
exploration. The basic idea is to generate all reachable states
and state changes of the system under consideration, and
represent this as a directed graph called the state-space. Two
different methods have been applied.

Model checking [15], [3] We used the model-checker
tool Evaluator [10] which performs on-the-fly verification
of temporal properties on the state-space generated by the
BIP engine on exploration of the system. As an example,
we describe the usage of this method in verifying a safety
property of the NDD module. It is required that the GoTo
service is triggered only after a successful termination of
SetSpeed service. To ensure this, in the BIP model of NDD,
we need to guarantee that the interaction GoTo:trigger occurs
only after the occurrence of the interaction SetSpeed:finish.
We checked for violations of this property, i.e finding a
transition sequence in the state-space where GoTo:trigger
is not preceded by SetSpeed:finish. The result obtained by
Evaluator proves that the initialization property is preserved
in the NDD module.

Verification using Observers [17], [13] For a given sys-
tem S and a safety property P , we construct first an observer
for P , i.e. an automaton which monitors the behavior of
S and reports an error on violation of P . The verification
consists of exploring the state-space of the product system.
Such a method has been used to verify a timing property in
the NDD module. It is needed to verify that the total time
taken by all the services called within a period does not
exceeds the period.

ERROR

trigger

IDLE EXEC
trigger
c := 0

tick
c < p
c := c+1

tick
c >= pfinish

tick finish

tick

p c

Fig. 8. Observer for the control task period verification.

In BIP, it is possible to model time as symbolic time [2]
by using tick ports and clock variables in every timed
component. Time progress is by strong synchronization of
all the tick ports. The clock variables are incremented on
a tick, to model function execution times. Fig. 8 shows the
observer component used to verify the timing property of the
NDD module. It has a clock variable c and a parameter p
representing the period of the control task. It synchronizes
with the control task and tracks the cumulative time taken
by the services triggered by control task. If this time exceeds
the period p, the observer moves to the ERROR state. During
exploration, if a global system state, containing the ERROR
state of the observer is reachable, then the property is

violated.
2) Deadlock Freedom: This is an essential correctness

property as it characterizes a system’s ability to perform
some activity over its life time. The BIP toolset allow
detection of potential deadlocks by static analysis of the
connectors in the BIP model [7]. It generates a dependency
graph and for each cycle in this graph, a boolean formula is
generated. The satisfiability of the formula is then checked
by the tool minisat [4], where a solution corresponds to a
potentially deadlocked global state. Presence of an actual
deadlock can then be verified by reachability analysis of
the deadlocked states, starting from the initial state of the
system. The analysis for the NDD module found a potential
deadlock for the state where all services are in the EXEC
state, all activities are in the ETHER state, and the control
task is in the Q0 state. However, this state is unreachable,
hence the deadlock is not possible.

V. STATE OF THE ART, CURRENT RESULTS AND
PROSPECTIVE

The design and development of autonomous robots and
systems is a very active research field. There are other
architectures addressing similar problems: to provide an
efficient, reusable and formally sound organization of robot
software. CLARAty [12], used on various NASA research
rovers, provides a nice object oriented hierarchical organi-
zation over two layers, but there is no formal model of
the component interactions, nor modules canvas. IDEA [5]
and T-REX [11], developed at NASA Ames and MBARI,
have an interesting modular/component organization with a
temporal constraint based formalism. However, complexity
of constraint propagation is an obstacle for effective deploy-
ment on real-time functional modules. RMPL [9], [18] and
its associated tools, propose a system based on a model-
based approach. The programmers specify state evolution
with invariants expressed in an “Esterel like” language and
a controller maintaining them.

In [8], the authors present the CIRCA SSP planner for
hard real-time controllers. This planner synthesizes off-line
controllers from a domain description and then deduce the
corresponding timed automata to control the system on-line.
These automata can be formally validated with model check-
ing techniques. However, this work focuses on the decisional
part of the overall architecture. In [16] the authors present a
system which allows the translation from MPL (Model-based
Processing Language) and TDL (Task Description Language)
to SMV, a symbolic model checker language. Compared to
our approach, this does not address componentization and
is designed for the high level specification of the decisional
level.

The paper presents an approach integrating component-
based construction and validation of robotic systems. It
shows that a complex robotic system can be considered as
the composition of a small set of atomic components. Even if
we build up on the pre-existing modular LAAS architecture
for autonomous robots, and model in BIP all the generic
components of this architecture, such an approach could be

68

used with other robot software architectures and tools. The
approach has been implemented and we now have a BIP
controller for a subset of the functional layer of DALA,
running in simulation and on the robot. The paper shows that
it is possible to combine standard verification techniques,
based on global state exploration, with structural analysis
techniques for deadlock detection. A useful work direction
is the online monitoring of the functional level execution
using observer components, which would be able to generate
feedback actions for the decisional level which can be useful
for error-recovery. Another work direction is to extend the
BIP model to take into account the decisional capabilities of
autonomous systems (action planning, execution control).

REFERENCES

[1] R. Alami, R. Chatila, S. Fleury, M. Ghallab, and F. Ingrand. An archi-
tecture for autonomy. IJRR, Special Issue on Integrated Architectures
for Robot Control and Programming, 17(4), 1998.

[2] A. Basu, M. Bozga, and J. Sifakis. Modeling heterogeneous real-time
components in BIP. In SEFM, Pune, India, 2006.

[3] E. M. Clarke and E. A. Emerson. Synthesis of synchronization
skeletons for branching time temporal logic. In Workshop on Logic of
Programs, Yorktown Heights, NY, USA, 1981.

[4] N. Eén and N. Sörensen. An extensible SAT−solver. In SAT,
Portofino, Italy, 2003.

[5] A. Finzi, F. Ingrand, and N. Muscettola. Robot action planning and
execution control. In IWPSS, Darmstadt, Germany, 2004.

[6] S. Fleury, M. Herrb, and R. Chatila. GenoM: A tool for the specification
and the implementation of operating modules in a distributed robot
architecture. In IROS, Grenoble, France, 1997.

[7] G. Goessler and J. Sifakis. Component-based construction of
deadlock-free systems. In FSTTCS, Bombay, India, 2003.

[8] R. P. Goldman and D. J. Musliner. Using model checking to plan
hard real-time controllers. In AIPS Workshop on Model-Theoretic
Approaches to Planning, Breckenridge, CO, USA, 2000.

[9] P. Kim, B. C. Williams, and M. Abramson. Executing reactive, model-
based programs throgh graph-based temporal planning. In IJCAI,
Seattle, WA, USA, 2001.

[10] R. Mateescu and M. Sighireanu. Efficient on-the-fly model-checking
for regular alternation-free mu-calculus. Technical Report 3899,
INRIA Rhône-Alpes, France, 2000.

[11] C. McGann, F. Py, K. Rajan, H. Thomas, R. Henthorn, and
R. McEwen. T-REX: A deliberative system for AUV control. In
ICAPS WS on Planning and Plan Execution for Real-World Systems,
Providence, RI, USA, 2007.

[12] I.A. Nesnas, A. Wright, M. Bajracharya, R. Simmons, and T. Estlin.
CLARAty and challenges of developing interoperable robotic soft-
ware. In IROS, Las Vegas, NV, USA, 2003.

[13] M. Phalippou. Executable testers. In IWPTS, Tokyo, Japan, 1994.
[14] F. Py and F. Ingrand. Dependable execution control for autonomous

robots. In IROS, Sendai, Japan, 2004.
[15] J-P. Queille and J. Sifakis. Specification and verification of concurrent

systems. In Int. Symposium on Programming, Torino, Italy, 1982.
[16] R. Simmons, C. Pecheur, and G. Srinivasan. Towards automatic

verification of autonomous systems. In IROS, Takamatsu, Japan, 2000.
[17] J. Tretmans. A formal approach to conformance testing. In IWPTS,

Tokyo, Japan, 1994.
[18] B. C. Williams, M. D. Ingham, S. Chung, P. Elliott, M. Hofbaur, and

G. T. Sullivan. Model-based programming of fault-aware systems.
Artificial Intelligence, 24(4), 2003.

69

