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Abstract 
There is a growing global demand for continuing adult higher education particularly in 
science and engineering subjects. New technologies are emerging which would enable 
the development of a Remote Access Laboratory for rapid prototyping of Artificial 
Intelligence, as a learning environment for mechatronic engineering, in which high 
precision electromechanical devices are designed to exhibit autonomous behaviour. 

Secondary research investigated the learning theories for a Remote Access Laboratory, 
and the current practices for distance learning, involving groupware in shared activity 
`collaboratories'. Having determined that the laboratory would need a multi-user 
interactive environment architecture, with the requirement for adaptability to rapid 
developments, a distributed software architecture was selected. The laboratory design 
was subsequently argued to be best served by Intelligent Agents in a Multi-Agent system. 

The aims of the research were to establish the viability of a Remote Access Laboratory 
for mechatronic experimentation, and to evaluate the technologies required to implement 
such a laboratory environment for rapid prototyping. These were achieved by developing 
a novel user interface, based on a multi-functional screen layout, and a graphical 
specification facility to provide robotic navigation that is intuitive to use and does not 
require text-based programming. 

The research investigated the prototyping of robotic behaviour, which used Programming 
by Demonstration as an innovative technique to prototype robot navigation. The method 
of designing behaviours met an anticipated need to allow the robot to interact with an 
environment, to achieve goals under conditions of uncertainty, while requiring a level of 
abstraction in the behaviour design. The interface structured a composite of the designed 
behaviours into prototype Artificial Intelligence using a hierarchical behaviour 
architecture, which complied with the principles of Object Orientated programming. This 
was subsequently a new and original programming method to facilitate rapid prototyping 
of Artificial Intelligence design and structuring. 

Experimentation involved 20 participants attempting to accomplish a series of tasks 
which involved using the prototyped interface and an existing text-based robot 
programming system. The participants were profiled by their formal qualifications, 
knowledge and experience. The experimental data obtained were used to establish a 
comparative measure of the prototype interface success compared with an existing 
distance-learning, home experiment kit, in the form of a small controllable model vehicle. 
The data obtained provided strong evidence to support the hypothesis that a 
Programming by Demonstration based system for rapid prototyping is more flexible and 
easier to use than a previously existing distance learning text-based system. The 
Programming by Demonstration system showed great promise, being quicker for 
prototyping, and more intuitive. The learning interface design pioneered new techniques 
and technologies for rapid prototyping of Artificial Intelligence in a Mechatronics 
Remote Access Laboratory. 
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Chapter 1 
Introduction to Remote Access to 

Prototyping Laboratories 

1.1 Context of the Research 

As concerns are now growing across the world about the increasing demand for adult 

higher education, universities and governments are investigating the potential of 

distance learning methods to meet this demand. The context of this investigation was to 

address the use of an internet-accessed laboratory as a component of a distance-learning 

course in mechatronics. Students have in the past undertaken experimentation in 

distance learning using an experiment kit at home, which was expensive. Reductions in 

costs of education are sought by replacing the home experiment kit with a remote access 

laboratory, either simulated or real, which could be used for all the experimentation, and 

accessed by an appropriate interface. 

New technologies are emerging which would enable the operation of an autonomous 

and robust remote access laboratory. Developments in Intelligent Agents (IA), and 

subsequent knowledge manipulation technologies could be used to develop an 

autonomous remote access laboratory. The integration of these new technologies is now 

identified as an achievable task. 

Within this environment the question addressed was how to develop a Remote Access 

Laboratory used to develop and test prototyped Artificial Intelligence (AI) in a 

coherent, cost-effective manner. This research anticipated a growing trend of distance 

learning in the 21st century, supported by autonomous laboratories, accessed over the 

Internet. 
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It sought to provide evidence for the viability of a remote access laboratory in the 

specific context of a distance learning course in mechatronics, where the student is 

designing prototype Artificial Intelligence for robots. 

1.2 Research Origins 

The initial speculative brief was as following: 

This particular research is concerned with an experimental system for 

remote access to the Open University Mechatronics Laboratory. It is 

proposed to design the following system. 

An existing autonomous intelligent vehicle, connected by an infrared 
communication system to a laboratory computer which, in turn, is 

connected to the Internet, operates in a designated area of the 
laboratory. A number of video cameras will monitor the movement of the 
vehicle connected to the same laboratory computer. 

Remotely located designers of the vehicle's artificial mind will download 
their prototype Artificial Intelligence to the laboratory computer, 
observing its behaviour, in real time, by video signals sent from the 
laboratory cameras and displayed on their machines. 

The task will include the design of a remote access system according to 
the above description, testing the system in operation and making 
suggestions for its further improvement. 

Mechatronics, as the fusion of electronics and mechanics in the design of devices, and 

programming, referred to above as the `artificial mind', is required to demonstrate 

Artificial Intelligence when controlling the devices. The `artificial mind' program for 

the remainder of this thesis is called prototype Artificial Intelligence (AI), where Al is 

defined as a system's ability to achieve a goal or sustain desired behaviour under 

conditions of uncertainty. 

The conclusions drawn from the brief, determined the initial course of research: 

" The laboratory was to be a mechatronic prototyping laboratory for analysing 

prototype Artificial Intelligence using a mechatronic device. 

2 



9A laboratory would be remotely accessed, using the Internet, such that: 

(i) The user designs and sends prototype Artificial Intelligence to the laboratory for 

evaluation. 

(ii) The laboratory transmits a video signal in real time to the user. 

" The laboratory user experiments with the prototype Artificial Intelligence to develop 

desired behaviour. 

The initial speculative brief provided an introduction to the project. However, 

preliminary research revealed evidence that there were wider issues involved. There 

was a significant growth in adult learning, which was not being catered for by 

traditional learning establishments. 

Mechatronics, as an engineering subject, has both theory and practice as important 

components. The majority of courses involve students attending physical laboratories as 

apprentices. The alternative is to use simulators, referred to as virtual laboratories, 

although there is some research about the use of real equipment remotely located at a 

distance. 

The theory for a form of interface to the laboratory is not established, but closest are the 

general theories for human-computing interfaces and for Intelligent Training Systems. 

These reflect emerging learning theories, providing a tutoring interaction with the 

student. However, the problem will be the need for flexibility to enable prototype 

Artificial Intelligence development, while also allowing for analysis of the completed 

prototype Artificial Intelligence. 
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A problem with current robotic programming is the use of computer programming 

language methodologies. A method was sought for developing prototype Artificial 

Intelligence, which both remains within the established science of computer language 

development and allows students the freedom of development without the use of a 

formal text-based computer language. To test prototype Artificial Intelligence quickly 

for correctness in behaviour, a simplified simulator is considered necessary. 

The research focus was on Programming by Demonstration as a software 

development method, to design prototype Artificial Intelligence. The underlying 

reasoning was that successful implementation of a Remote Access Laboratory was 

dependent on the user successfully designing prototype Artificial Intelligence, and that 

existing methods were not adequate for the task. Programming by Demonstration is 

described by Kaiser et al. [1995] as: 

Two basic aspects of the interaction between the robot and the 
user...... Firstly, the user wants to configure and instruct the robot. This 
requires translating the user's language into the robot's, i. e., to compile 
user intentions into actual robot programs. Secondly, to allow the user to 
efficiently control and maintain the robot, necessitating translating low- 
level numerical representations used by the robot into an understandable 
form, i. e., symbols have to be built from signals. What is desired is to 
enable the robot to perform these tasks partly autonomously, i. e., to learn 
semantically meaningful descriptions of its own perceptions, actions, and 
states, and to use these descriptions both to communicate the robot's 
knowledge to the user and to interpret the user's demonstrations, i. e., to 
acquire human knowledge from observing human performance. 

The Programming by Demonstration based interface was to be supported by an 

Intelligent Agent system. Intelligent agents are described in Maes [1994] as: 

An agent is a system that tries to fulfil a set of goals in a complex, 
dynamic environment: it can sense the environment, using its sensors and 
act upon the environment through its actuators. An agent's goals can 
take many different forms: they can be "end goals ", or particular states 
the agent tries to achieve; they can be a selective reinforcement or 
reward that the agent attempts to maximise; they can be internal needs or 
motivations that the agent has to keep within certain viability zones and 
so on. 
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1.3 Principle Research Issues 

The overall research problem was to identify the functional requirements of a remote 

access mechatronics laboratory, possessing the potential for both distance learning, and 

the ability to develop and test a device possessing prototype Artificial Intelligence. The 

results were intended to answer the research questions developed in Section 1.5. 

1.3.1 Requirements of a Distance Learning Environment 

The terms "distance education" or "distance learning" have been 
applied interchangeably by many different researchers to a great variety 
of programs, providers, audiences, and media. Its hallmarks are the 
separation of teacher and learner in space and/or time, the volitional 
control of communication between student and the distant instructor, and 
non-contiguous communication between student and teacher, mediated 
by print or some form of technology. [Sherry, 1996] 

To develop a distance learning laboratory, the first requirement to consider is what the 

premises of a higher educations operation are. 

Massy and Zemsky [1995] refers to higher education's belief in its own purpose and 

educational and intellectual values. 

9 Traditional academic values: teaching methods; notions of productivity; faculty 

autonomy, and standardised student-teacher ratios and class-sizes. 

" Productivity: Most faculties think in terms of scholarship, especially research, and 

teaching is usually viewed as scholarship related. 

" Research: incentives for teaching are few and research is significant, creating a 

`academic ratchet' a movement towards research production and reduced class 

loads. 

5 



Schamber [1988] proposes that: 

It is essential to consider their ages, needs, cultural and socio-economic 
backgrounds, interests and experiences, education levels and familiarity 
with distance education methods and delivery systems, of the distance 
learners. 

When considering the anticipated student, Fjuk [1995] reported that 

... The primary target group for most distance and open learning 
situations is the adult workforce of our society. The student - the adult 
worker, usually with an established life with family and friends - needs a 
flexible (further) educational situation free from place and often time, 
constraint. 

The above outlined the environment required for distance learning, explaining the 

current understanding of what distance learning means to both student and higher 

education establishments; with a discussion of higher education expectations and 

operational circumstances, with the needs of expected distance learning students. These 

are important determinants for any development of distance learning technology, with 

the expectation of an academic value by the higher education establishments and 

flexibility in the provision for learning by the student. 

1.3.2 Adopting Technology in Distance Learning 

Archer et al. [1999] provides an analysis of future distance learning development and 

growth based on the Christensen [1997] book, The Innovator's Dilemma: When New 

Technologies Cause Great Firms to Fail. The development of distance learning support 

technologies are argued to be a significant change affecting traditional universities, 

which can either adopt the technology or lose potential students. Myers et al. [2004] 

reviews the debate about adopting learning technologies, citing Carlson [2000] that 

distance learning technologies are being adopted by a need for technologically literate 

students, with continuous development of new distance learning technologies. 
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Massey and Zemsky [1995] reports that distance learning technology is adopted for 

both the expected gains from use, and a facility's ability to successfully teach in a 

distance learning environment: 

9 Economies of Scale: After an initial investment, the increase in cost per additional 

student is usually low. 

9 Mass Customisation: The technology must allow the faculty to accommodate 

individual differences in students goals, learning styles, and abilities, while 

providing improved convenience for both students and faculty of an "any time any 

place" operation. 

1.3.3 Defining the Problem 

Previous research on remote access laboratories, has had varying results, providing a 

development methodology, [Bourne et al. 2005; Johnson et al. 2003], and discussed in 

greater detail in 2.3 below. Research on online laboratory experimentation is still a 

developing and controversial subject. The problem of how a remote access laboratory 

can be designed for a mechatronics course comprises: 

" how a student could design Al to control a mechatronic device, 

" the design of the user interface, 

" the design of the physical laboratory. 

1.4 Research Aims 

The aims of the research were: 

1. To establish the viability of remote access facilities to augment distance learning. 

2. To design and evaluate technology which can provide an environment for students 

to learn to rapidly develop prototype Artificial Intelligence for a mechatronic 

device. 
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3. To test the hypothesis: 

Programming by Demonstration could prove a more intuitive 

approach to the complexity of developing an emergent intelligent 

behaviour than text-based programming. 

1.5 Research Questions 

The research, as expressed by the thesis title, was required to make a significant 

contribution to the evidence supporting the use of remote access laboratories within a 

distance learning based institution. The following research questions resulted: 

1 What are the criteria for designing a remote access laboratory for prototyping 

Artificial Intelligence, as part of a distance learning organisation's available tools? 

2 What fusion of technologies should be used to develop a Mechatronics prototyping 

laboratory? 

3 What methodology and technologies could assist in rapid prototyping Artificial 

Intelligence in a distance learning mechatronics course? 

4 What design of interface to such a laboratory would allow appropriate analysis and 

demonstration of prototype Artificial Intelligence? 

1.6 Research Objectives 

" Carry out the selection, design and application of technologies to establish a remote 

access laboratory, which can create and test prototype Artificial Intelligence 

programs. 

" Design a method for a user to develop prototype Artificial Intelligence. 

" Design and implement a prototype interface, which allowed a laboratory user ease 

of access to the laboratory's internal functions, without being made aware of the 

internal construction of the laboratory. 
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1.7 New Knowledge 

The research was intended to lead to a significant contribution in scholarship within the 

subject of Mechatronics at the Open University, and in a wider context of technology 

application, by establishing a novel contribution to support the use of Programming by 

Demonstration in developing prototype Artificial Intelligence, this was to be tested in a 

Remote Access Laboratory, within a distance learning environment. 

1.8 Structure of the Thesis 

This thesis considers the circumstances of designing a remote access laboratory, and 

what technologies should be used, and comprises the following chapters: 

Chapter 1 Introduction to Remote Access to Prototyping Laboratories 

This chapter has introduced the context and origins of the research, with the principle 

research issues and requirements for a remote access laboratory. The objectives are 

identified as a need for developing and testing a prototype Artificial Intelligence in a 

distance learning mechatronics engineering laboratory environment. 

Chapter 2 State-of-the-Art for a Distance Learning Laboratory 

The current theories for distance learning are discussed with current expectations and 

how they relate to a remote access laboratory. Current approaches relating to an 

engineering laboratory are examined next, beginning with the purposes of an 

engineering laboratory before reviewing current remote access laboratory design. 
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Chapter 3 State-of-the-Art for an Interface to a Distance Learning Laboratory 

The chapter establishes the design principles of Intelligent Tutoring Systems for 

distance learning. This outlines the use of internet-based interfaces and the problems 

associated with their design and application. The next research area considered is 

current Human-Computer Interface design theories. This firstly considers Cognitive 

Psychology approaches before Activity Theory based design. Finally, the research area 

of Programming by Demonstration and the related principles of communicating 

knowledge are reviewed, since the analysis of Programming by Demonstration is based 

on its suitability to develop prototype Artificial Intelligence, for testing in a Remote 

Access Laboratory. 

Chapter 4A Proposed Architecture for a Distance Learning Laboratory 

This chapter proposes an Intelligent Agent based architecture for a remote access 

laboratory. Intelligent Agents with blackboard based architectures for receiving 

designed prototype Artificial Intelligent behaviour are described. The agent 

architectures are further developed with proposals for their communication architecture 

with the separation between their specific functions and their communication 

knowledge. 

Chapter 5 Development of a Prototype Interface 

The prototype Programming by Demonstration based Human-Computer Interface for 

the laboratory is defined, with its potential application in developing a prototype 

Artificial Intelligence for a remote access laboratory. A method of developing a 

prototype Artificial Intelligence is described together with the principles of 

programming which determine the success of any programming methodology. 
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Chapter 6 Design of Experiments 

This chapter explains the scientific method of experimentation used in the research. The 

statistical analysis methods used are explained with an explanation of the errors 

associated with this experimentation. Finally the ethics involved in this experimentation 

is outlined. 

Chapter 7 Experimental Procedures 

This chapter explains the experimental procedures used, related to the objectives of the 

experiment and the variables involved in the experimentation. It also describes the 

experiment's activities and the equipment used. 

Chapter 8 Data Obtained and Interpretation 

This chapter provides the raw data obtained from the experimentation, with analysis, 

interpretation and summary. The implications of the results are discussed 

Chapter 9 Conclusions 

This chapter concludes the research findings, and discusses the validity of the 

hypothesis. It identifies specific areas for future research necessary to implement a 

remote access laboratory, and comments on the overall significance of this research. It 

includes a section on self-reflection, where the learning process resulting from 

undertaking a PhD is considered. 
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Chapter 2 
State-of-the-Art for a Distance Learning 

Laboratory 
2.1 Introduction 

This chapter initially discusses the principles and concepts of distance learning and 

remote access technologies, then examines specific, interrelated areas of research to 

establish the current state-of-the-art concepts and techniques necessary to design a 

remote access laboratory for a distance-learning course. The discussion follows the 

progression: 

" Distance Learning is a review of the current theories advocated for distance 

learning, and how they relate to a successful Remote Access Laboratory. 

" Distance Learning Laboratories is a review of the expectations and theory of a 

distance learning laboratory. The theory explains the objectives, types and designs 

of distance learning laboratories. 

" Collaboratories relate to software which allows multiple users to interact with each 

other and with tools in a laboratory setting, and an explanation of the theory and 

current designs. 

" Intelligent Agents relates to the design and application of intelligent agents which 

are advocated for the internal design of a remote access laboratory. 

2.2 Distance Learning Theories 

2.2.1 Introduction to Distance Learning Theories 

Johnson et al. [2003] defines learning as a: 

... formal educational process in which the majority of the instruction 
occurs when student and instructor are not in the same place. Instruction 
may be synchronous or asynchronous. Distance education may employ 
correspondence study, or audio, video, or computer technologies. 
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Morse and Truman [1996] argues that a learning institution's objective is to provide a 

means for students to learn, with the varying distance-learning philosophies' success 

depending on replicating face-to-face classroom interaction, unless the student 

characteristic reduces a need for classrooms. 

Bourne et al. [2005] promotes `five pillars of quality online learning', intended to 

evaluate distance learning progress. However, without providing a benchmark these 

become subjective and relativistic measurements. 

1. Learning effectiveness: Koper and Olivier [2004] citing Merrill [1994] states 

learning is effective when learners form new knowledge using existing knowledge 

to solve real problems. Menges and Austin [2001] were cited comparing studies of 

online and face-to-face instruction-based learning environments, stating the 

perceived wisdom that technology does not influence student results or satisfaction, 

citing Johnson et al. [2000]; enhance student learning, citing Moore and Kearsky 

[1996], Clark [1994]. Any student learning improvements are due to the teaching 

method built into the use of the technology [Setchi, 2007]. Massey and Zemsky 

[1995] argues that technology can overcome the limitations of time and space for 

traditional education activities, reasserting the importance of good communication 

between teachers and students, and arguing that extensive computer mediation is, 

however, not always compatible with fields of study concerning questions of 

meaning, values, culture and philosophy. 

2. Access: The issues are discussed in Coventry [1995]. Since the development and 

widespread adoption of Broadband the problems of internet connectivity has been 

solved. Hashemi et al. [2006] reports that students can make mistakes and working 

at any time, increases the student's opportunities to improve his/her competence in a 

physical laboratory. 
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3. Faculty satisfaction: Bourne et al. [2005] reports that this includes `support, 

rewards, and personal satisfaction'. Chickering and Erbmann [1996] and Graham et 

al. [2000] argues that online learning environments benefit faculty and students with 

improved: interaction between students, and with faculty, learning methods, 

communication of expectation, and learning method diversity. 

4. Student satisfaction: While argued as student satisfaction, Bourne et al. [2005] 

identifies more the need for eliciting student interaction or collaboration. By 

implementing and assessing laboratory formats, students are expected to collaborate 

in modelling and controlling dynamic engineering systems, and improving data 

capture for both conceptualization and theory use, [Kypuros and Connolly, 2005]. 

5. Cost effectiveness: Lifelong learning is becoming a competitive necessity in 

employment, with a shift from academic emphasis to competency attainment, and 

faculty roles becoming more specialized. Faculty are demanding reduced workloads 

implying automated work process support. A current issue is sustainable Open 

Educational Resources, which are: to support learning, teachers, and assure the 

quality of education (free) [Hylen, 2006, Johnstone, 2005]. Downes [2007] argues 

that they are sustainable, by adapting Wikipedia's model as an Open Resource. 

Experimentation is non-deterministic, challenging students to research, problem solve, 

and inquire about their own answers, [Mizell, 1994]. Laboratory work requires 

cognitive skills for problem solving. Dimitracopoulou and Petrou [2003] argues the 

development of collaborative technologies is due to advances in two fields of research: 

(a) The development of learning theories: The importance of a social element 

(interactivity between students) in learning, has led to new theories emerging with a 

social and cultural-based dimension to the learning process, resulting in further 

development of learning technologies. 
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(b) Advances in information and communication technologies: These have created 

new forms of communication, allowing networked cooperation and collaboration. 

The secondary research included reviewing collaboratory learning technologies, 

with various formats for a collaboratory in a learning context. 

A laboratory operates as a learning process function, where the learner tests new 

knowledge gained, and its operational success depends on providing the required 

experimentation interaction. Various Distance Learning Theories are examined next. 

2.2.2 Principle Distance Learning Theories Considered 

Table 2.1 An outline of current advocated learning theories 

Th Method of Teaching and Learning 
eory Author Presented Theory 

Origins Taught Practical 
Dialog 

Iterative Who to 
theory Experience Process learn from 

Coventry (Re)conceptualisation Kolb 
Yes Testing new For deep Yes Tutor [1995] Cycle 1984 knowledge learning 

Müller and 
Ferreira Experiential Learning 

Kolb 
No 

Starting point To share Yes Tutor 
[20051 [1984] for learning experience 

Koper & Social-Constructivist Vygotsky 
N Depends on on 

Olivier 2004 Learning 1978 o o 
problems learning es Yes learning 

Bonk & Social-Constructivist Vygotsky Embedded Social Depends on Cunningham 
Learning [1978] No learning in influence No learner 1998 authentic tasks on learning 

Siemens Social-Constructivist Vygotsky 
N Best teacher I r, rnin A learning 

2005 Learning 1978 o 
of knos%le(ge h) opinion 

Yes decision 

Nabeth et at. Model of Change Rogers Experience in Learning Knowledge 
[2005] Process [1995] No 

context 
Yes discovery! 

discussing 

Key: For Against 

The table establishes a diversity of theories on how students should learn a subject. The 

most important issue for any engineering and science-based subject is the tuition of a 

body of theory by an experienced tutor. The (Re)conceptualisation Cycle approves the 

teaching of theory, using a laboratory for testing newly learned knowledge. Experiential 

Learning advocates tuition from a tutor, but not the teaching of theory. Further, 

experimentation should be an examination of theory in realistic circumstances, which is 

supported by Social-Constructivist Learning and the (Re)Conceptualisation Cycle, but 

the experimentation-based learning process should be controlled, to maximise the 

student's learning experience, and prevent time-costly mistakes. 
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2.2.2.1 The (Re)conceptualisation Cycle 

The theory of Coventry's [1995] research paper on the `(Re)conceptualisation Cycle' 

uses constructivist principles, as Sherry [1996] explains, the student constructs 

knowledge by developing and using an image and interacting with the material to be 

learned. Coventry's proposal to provide effective distance learning theory requires clear 

communication and effective tools operation by both user and laboratory, and 

summarised as comprising: 

" Conceptualisation supporting the presentation of content which involves 

o Orientation - the outline of what to be learned 

o Exploration - independently exploring the subject being learnt 

o Experimentation - interacting with the learning environment 

9 Construction providing resources for the doing of learning tasks which involves 

o Selecting - picking out what is to be learned 

o Linking - combining old and new information 

o Classifying - comparing old and new information and linking the two 

" Dialogue support through communication which involves 

o Discussion - tutorial and peer-to-peer contact is paramount 

o Reflection - fundamental provided that the topic has been discussed 

o Reification - consolidation of discussion and reflection 

2.2.2.2 Experiential Learning 

Müller and Ferreira [2005] reports on the Virtual Laboratory MARVEL (Mechatronics: 

Access to Remote and Virtual E-Learning) project, which 

... is focused on supporting learning practice based on social 
constructivism, combined with experiential and collaborative learning. 

Experiential learning is learning both by `concrete experience', followed by `reflective 

observation'. 
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The Experiential Learning theory used by MARVEL advocates that knowledge is 

created by a cyclic iterative process transforming experiences, by `reflection and 

conceptualisation'. Müller and Ferreira's [2005] views of Experiential Learning is that: 

... Hands-on learning in real physical labs or workspaces provide reach 
opportunities for experiential learning, because the learner can 
`experience' theory in a more familiar form, since the practical 
experiment enables the students to "observe and reflect on" the results of 
learning tasks and assignments. Each experiment or practical work task 
may therefore be seen as a starting point to understand its underlying 
theoretical principles. 

This is a contradiction of the purpose of an experiment, where it is used to test a 

hypothesis. Developing the theory after running the experiment requires prescience in 

running the experiment, otherwise how does the researcher identify the key theoretical 

interest variables? 

2.2.2.3 Social-Constructivist Theory 

Bonk and Cunningham [1998] explains Social-Constructivist learning as: 

... Instruction [which] should provide opportunities for embedding 
learning in authentic tasks leading to participation in a community of 
practice. 

Siemens [2005] explains the ̀ community of practice' principle as: 

Decision making is itself a learning process. Choosing what to learn and 
the meaning of incoming information is seen through the lens of a 
shifting reality. While there is a right answer now, it may be wrong 
tomorrow due to alternations in the information climate affecting the 
decision. 

This theory places an emphasis on a `community of practice' to be both knowledgeable 

about a subject and a suitable source for tuition. Social-Constructivist theory is refuted 

for significant reasons: 

1. Both science and engineering have mathematical principles, immutable definitions 

and laws/rules for understanding the subject. 
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2. The philosophical principle underpinning Social-Constructivist Learning was first 

promoted by Spinoza, about whom Bertrand Russell stated ̀ Intellectually, some 

others have surpassed him, but ethically he is supreme. As a natural consequence, 

he was considered a man of appalling wickedness' [Russell, 1946]. Spinoza is cited 

by Russell as arguing: ̀ there is no right or wrong, for wrong consists in disobeying 

the law'. 

3. A good Engineering education is not learning the principles of engineering design 

by being prosecuted for ignoring health and safety rules and regulations, and having 

attendance at a Criminal Law Court as the learning experience. 

Social-Constructivist Theory of Learning is believed unsuitable for teaching any subject 

with an associated theory. 

2.2.2.4 The Centre for Advanced Learning Technologies (CALT) 

The European Union's CALT research focuses on both learning and change/innovation 

at the individual level. The methods involve the use of Intelligent Agents, multimedia 

and virtual reality to acquire and adopt new knowledge, by motivating the individual 

and engendering interaction. Nabeth et al. [2005] states that: 

... the success of e-Learning ... ... has been at best disappointing, and is 
certainly very far from fulfilling the high expectations that the more 
forward-looking students, educators and institutions had of it. The reason 
for this limited success originates, in our belief, from too narrow and 
conservative vision of the learning processes to be supported. In most of 
the cases, e-learning systems still rely upon the same good old 
educational classroom-based instructor-led teaching method that has 
existed for years...... and that is characterised by (1) A relatively passive 
and anonymous student considered as a recipient of learning materials 
that are delivered to him/her. (2) A body of knowledge to be offered that 
is dominantly of generic theoretical/conceptual nature...... [and tracking] 
how this material is actually absorbed by them. Whilst this method that 
has been successfully applied for mass education can be considered as 
adequate to complement the training of inexperienced learners co- 
located in a same campus or school for acquiring the basic body of 
theoretical knowledge, it falls short of accommodating the needs of more demanding and experienced distributed knowledge workers.... 
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The premises of the Centre for Advanced Learning Technologies projects are: 

... e-learning has to rely on a new vision that requires a fundamental shift 
from current content-oriented e-learning solutions towards a more user- 
centred interactive and collaborative model of learning. 

... the learner is no longer a simple passive receiver of data and 
information, but is seen as a participant that is actively engaged through 
a rich set of interactions (e. g. learning by doing, educational games, 
simulation environments, problem based learning, learning by 
discussing, knowledge discovery, etc). [Razmerita et al., 2004] 

Razmerita et al. [2004] explains that a model of participants' learning comprises `a 

model of change process', figure 2.1 below, [Angehen and Nabeth 1997; Manzoni and 

Angehm 1998]. 

Not Interested No Trial No Adoption 

Acquire fast Evaluate in Experience Evaluate 
knowledee context in context experienc 

Unaware II Aware II Interested II Trial II Adopter 

Figure 2.1 A model of the change process, [Razmerita et al., 2004] 

There is a difference from theory-based subjects, where student development depends 

on learning a presented body of theory; instead knowledge is subjectively provided, 

[Roda et al., 2001 ]. 

2.2.3 Conclusions about Distance Learning Theories 

The remote access laboratory is intended for a user to develop and test prototype 

Artificial Intelligence and it depends on operating as an instructional and development 

tool. The learning theories presented are now compared. 
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Morse and Truman [1996] premises distance learning theories on replicating campus- 

based learning, while Bourne et al. [2005] argues for `five pillars of quality online 

learning' which were subsequently analysed, with computer mediation considered not 

always effective for subjects requiring discernment of meaning, values, culture and 

philosophy. 

Finally, for the current learning theories advocated the (Re)conceptualisation Cycle 

approves the teaching of theory, using a laboratory for testing newly-learned 

knowledge. Experiential Learning advocates tuition from a Tutor, but not the tuition of 

theory. 

2.3 Distance Learning Engineering Laboratories 

This thesis will investigate distance learning engineering laboratories, for distance 

learning students to experiment relevant to their studies. Forinash and Wisman [2005] 

objects to adopting remote labs for distance learning engineering degrees, arguing that: 

No experiment can be performed with zero error, so one must determine 
with what degree of certainty the data support a particular hypothesis. 
Coming to terms with the inaccuracy and imprecision of results requires 
knowledge of the interplay between experimental design and data 
analysis. Some laboratory skills, such as statistical analysis of data, can 
be learned in the abstract, outside of the laboratory. Experimental 
design, however, can only be learned from using real equipment in real 
experiments, often through a certain amount of trial and error. It should 
be no great surprise that student practice, of experimentation is needed to 
understand science, that educational abstractions alone are not enough. 

The remote access laboratory being researched is intended for testing prototype 

Artificial Intelligence. The user will be working directly within a programming 

environment, with the subsequent mechatronic device activity considered suitable to 

operate remotely. 
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2.3.1 The Expectations of Engineering Laboratories 

Feisel and Rosa [2005] states: 

Engineering is a practising profession... ... 
The overall goal of 

engineering education is to prepare students to practice engineering... 
... Thus, from the earliest days of engineering education, instructional 
laboratories have been an essential part of undergraduate and, in some 
cases, graduate programs. Indeed, prior to the emphasis on engineering 
science, it could be said that most engineering instruction took place in 
the laboratory. 

The remote access laboratory being researched is aimed at being suitable for tuition, as 

the instructional work involves interacting with a programming environment. Having a 

mechatronic device located remotely will replace a real-world engineering laboratory, 

as the laboratory proposed is being used to establish the validity of a developed 

prototype Artificial Intelligence. 

2.3.2 Engineering Laboratory Theory 

2.3.2.1 Objectives of an Engineering Instructional Laboratory 

Feisel and Rosa [2005] describes an engineering instructional laboratory objectives in 

terms of the following characteristics and components: 

1. Instrumentation ... using sensors, instruments, and/or software to obtain data. 

2. Models ... evaluating a theory's ability to predict physical events, and test the 

relationship between measured data, theory and existing rules. 

3. Experimentation 
... learning to prepare an experiment, specifying equipment and 

procedures, implementing these procedures and interpreting the data to characterize 

an engineering material, component, or system. 

4. Data analysis ... learning to collect, analyse, and interpret data, to use measurement 

systems and conversions, to judge magnitudes and to form and support conclusions. 
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5. Design ... learning to design and assemble a product using equipment, materials or 

methodologies, to meet requirements and specifications, testing and debugging a 

prototype system or process to meet requirements. 

6. Learning from failure ... identifying the causes of failure and engineering effective 

solutions. 

7. Creativity ... demonstrating appropriate thinking for problem solving. 

8. Psychomotor skills ... demonstrating competence with the tools and resources. 

9. Safety 
... responsibly demonstrating health, safety and environmental issues. 

10. Communication ... learning to communicate effectively about laboratory work to 

various audiences. 

11. Teamwork. -working effectively together, assigning tasks and responsibilities to 

meet objectives, and reporting. 

12. Ethics in the laboratory. ... working ethically and with integrity, including 

reporting information objectively. 

13. Sensory Awareness. ... leaming the limitations of human abilities. 

The proposed remote access laboratory will support the objectives of an instructional 

laboratory. These objectives proposed above can be grouped into the ability to work in a 

laboratory setting, the ability to relate theory to practical work, the ability to problem 

solve and the ability to work with others. The element of teamwork cannot be deemed 

an absolute, as there is an expectation that an engineer may need to work independently. 

2.3.2.2 Types of Engineering Laboratories 

Feisel and Rosa [2005] argues that there are three types of engineering laboratory, 

possessing varying purposes: 
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" Development laboratories to obtain experimental data, for use in guiding design and 

development by answering specific questions, otherwise, to determine if a design 

performs as intended, by comparing results with specifications and to show 

compliance or where to make changes. 

" Research laboratories used for determining general and systemic knowledge to 

increase current global knowledge. 

" Instructional laboratories, to learn `something' that practising engineers know. The 

`something' needs defining if a laboratory's usage is to be beneficial. 

As an instructional laboratory, the remote access laboratory will be used for the student 

to learn how to program a mechatronic device's prototype Artificial Intelligence. 

2.3.2.3 Distance Learning Engineering Laboratory Design 

Bourne et al. [2005] argues there are two designs of distance learning online 

laboratories: 

0 Web-based simulations: often referred to as virtual labs; these are equivalent to 

physical labs for explaining and reinforcing concepts also supported by Forbus et 

al. [1999]. Simulations provide limited capability for experimentation and cannot 

always accurately apply theory or concepts to the physical world, while Page et al. 

[2000] argues that the poorly applied theory is the user's failings. 

" Remote laboratories: allow manipulation and observation of real equipment 

located at a distance, also reported by Campbell et al. [2002], Tait and Chao 

[2003], Gröber et al. [2007]. 

Bourne et al. [2005] considers that remote laboratories may become increasingly 

common, though the widespread adoption of remote access laboratories will depend on 

students accepting them for studying on distance-learning engineering degrees. 
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2.3.3 Access to Distance Learning Laboratories 

Johnson et al. [2003] investigates US Colleges exemplary distance learning courses. 

Three means of accessing a laboratory were identified for distance learning courses: 

(a) On-campus skill acquisition: students attend a college for laboratory work only. 

(b) Internships or clinical experience: students complete the laboratory course as 

either apprentices or student interns. Evidence of the laboratory work is submitted 

as work samples with verification from the supervisor. 

(c) Computer-based simulation: this allows the development of skills in a controlled 

environment without the danger or cost of a "real life" situation. 

The problem with on-campus skill acquisition identified above is that students still have 

to attend the college for the laboratory work. This negates Fjuk's [1995] assertion of 

`... a flexible (further) educational situation free from place and often time, constraints' 

referred to in 1.3.1 above. Internship and clinical experience entail a time constraint. 

The problem with a simulation which emulates perfect conditions is that, in reality, 

engineering experimentation is potentially less than perfect. 

2.3.4 Laboratory Architectures 

Kypuros and Connolly [2005] reports three laboratory architectures being tested in US 

Universities, using multiple visualization means, individual and collaborative exercises. 

1. Inter-university laboratory architecture is where two campuses' students work in 

joint collaborative learning. The first campus students develop a computerised 

simulation of the experimental system's test conditions and parameters. The second 

campus students perform the experiments, acquire and process the data. This format 

is designed to consolidate resources that are not equally available at both campuses, 

and the roles of the two campuses can be reversed for a subsequent project. 
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Z. A remote-accessible laboratory architecture is where students model a remotely- 

accessible system. The experiments are accessed using LabVIEW s Remote Panels, 

which allow parameter manipulation, data collection, and view real-time dynamic 

response via video feedback. The experiment can be a more complex real-world 

problem, animated in 3D developed using MSC VisualNastran 4D and be Internet 

accessible. This format develops the concepts of a remote access laboratory system, 

and is intended to help students expand the use of concepts to real-world 

engineering problems. The model allows students to change physical system 

parameters and to prototype controllers. 

3. A virtual laboratory architecture is similar to the previous laboratory except it uses 

a 3D virtual system [Johansson and Astrorn, 1996; Johansson et al., 1998] 

developed using MSC VisualNastran 4D. It provides animated output, and time- 

and/or frequency-domain plots. A Java applet allows remote access of the virtual 

system for simulation, data acquisition, and controller prototyping, without using 

any specialized software. Students develop models and simulations using 

MATLAB/SIMULINK and upload their controller designs to the virtual system, for 

testing, and viewing results. 

All three laboratory formats use simulators, which suffer from only working within the 

limits of designed parameters. Any parameter not designed for will not be used. 

Feisel and Rosa [2005] proposes using a simulated laboratory for several reasons: 

0 Pre-lab experience: this will help students prepare for experimentation in a 

physical lab, supported by Gleixner et al. [2002] and reduce experimentation time. 
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0 Experimental studies: laboratory simulations are suitable if systems are too large 

[Rauwerda et al., 2006], expensive or dangerous for students [Zary et al., 2006], 

[Bardeen et al., 2006]. Simulator laboratories are more realistic due to various 

innovations, for example, adding budget and time limits into the problem 

specifications, [Jayakumar et al., 1995]. Use of random elements can make 

simulations more realistic, and simulators may emulate physical experiments more 

closely in the future. 

0 Laboratory substitute: students who use simulators and two physical laboratory 

experiments have a similar performance to using traditional laboratories, [Cambell 

et al., 2002]. 

The use of a simulator is subsequently rejected for a physical remotely-accessed 

laboratory, as a simulator does not allow for unpredictability. The laboratory 

substitution argument mostly relies on the use of physical laboratory, requiring 

continued research to use a simulator to replace the physical laboratory. 

2.3.5 Conclusions about Distance Learning Engineering 

Laboratories 

A current research issue with a remote access laboratory is how to answer the question: 

can a remote access laboratory provide the same educational value as a physical 

laboratory? Forinash and Wisman's [2005] objections to distance learning laboratories, 

(see 2.3 above), argues against using simulators to replace physical laboratories. The 

use of a physical remotely accessed laboratory can adequately fulfil the expectations 

and objectives of an engineering instructional laboratory. This thesis provides a 

significant contribution to the validation of using a distance learning laboratory, through 

the use of both a simulator, and subsequent use of a physical laboratory. 
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2.4 Collaboratories 

Dewan et al. [1994] defines a collaborative application as: 

... a software application that (a) interacts with multiple users, that 
receives input from multiple users and displays output to multiple users, 
and (b) couples these users, that is, allows one user's input to influence 
the output displayed to another user. 

This definition is intended to cover all the possible concepts and designs of 

collaborative applications, because the connection between any two users is undefined. 

Dewan et al. [1994] supplies a detailed definition, but argues that the detail 

overqualifies an application, so is not general. 

2.4.1 Principles of Collaboratories 

Dewan et aL [1994] proposes some principles for a collabatory's functional design: 

" Specification: It should be easy for users to specify how to collaborate. 

9 Performance: A collaboratory's response time must be acceptable. 

" Grouping: Users should specify collaboration for a set of `objects' sharing a 

definition, instead of specifying collaboration for each individual ̀object'. 

" Automation: It should be easy for programmers to collaborate. 

2.4.2 Examples of Collaboratories 

2.4.2.1 Virtual Collaborative Environment (VCE) 

Davies et al. [1994] describes Sandia National Laboratory's Virtual Collaborative 

Environment (VCE), remote programming and control of mechatronic devices, which 

allow `expensive capital equipment' sharing. The VCE described has a high volume 

data network requiring high-speed network transmission. 
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The system requires the laboratory's users to have two computer workstations, one to 

handle the video conferencing and video interfacing, the other to operate the 

mechatronic device's interface, using a graphics control system. The current system 

components are: 

"A graphical model corresponding to the robot and its environment. 

"A graphics workstation simulating and displaying the robot interaction functions. 

" Simulation software to display and preview real-time robot motion for user 

validation before actuation, with automatic collision detection to verify safe paths of 

operation. 

Tasks are selected and defined by the user with an automated planning and 

programming system to fufill the instructions and the user accepts or rejects the plans. 

In contrast, the proposed remote access laboratory interface only uses one computer. 

The interface includes a simulator to model the mechatronic device and environment, 

which previews and validates a mechatronic device's behaviours. 

2.4.2.2 Distributed Collaboratory Experimental Environment (DCEE) 

Fernando and Dew [1998] reports on the DCEE architecture's primary function to 

integrate product data and engineering tools in a distributed environment. The DCEE 

allows geographically dispersed personnel to share and manipulate product data in a 3D 

environment, while discussing complex and detailed issues. The system requirements 

are to: 

" Provide synchronous data distribution amongst users with immediate changes 

propagation, 

" allow users to vary tools and information by having a user's perspective, 
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" support many development phases and be upgraded, 

" adhere to product data standards in data structures and data representation, 

" provide a virtual environment to represent data structures, 

" enable networking independence to utilise effectively a wide range of diverse 

networks. 

Maintaining a collaboratory's software architecture is considered essential in the design 

control software, as the equipment is changed regularly, requiring the experiment and 

interface control programs to reflect the changes. The system is expected to be updated 

easily, using programs as building blocks and not complete control systems. 

The underlying collaboratory infrastructure is a common interoperability framework, 

connecting various components with a common interface. Tools are ̀ plug and play' via 

a [logical] resource manager, requesting resources as necessary. Data and result files are 

available to all collaborators, [Altarwal et al., 1998]. 

The proposed laboratory internal software architecture will need to be flexible, allowing 

mechatronic device alterations to reflect technology advances. This is considered 

important, as the purpose of the laboratory is to allow students to learn how to program 

the technologies they will expect to meet in their subsequent career. 

2.4.2.3 A Virtual Training Laboratory at Queen Mary College 

Queen Mary College proposes a virtual laboratory controlled by intelligent agents, 

[Norman and Jennings, 2002], intended to improve postgraduate telecommunications 

students' training, allowing guidance and exchange of ideas with more experienced 

colleagues; access to research papers and books, and experimental tools for evaluating 

new ideas and hypotheses. 
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A multi-agent system allows the decomposition of a Remote Access Laboratory 

software control architecture from a single potentially cumbersome software entity, to 

agents managing scarce resources, and integrating any existing systems. The agents are 

anticipated to benefit users by introducing them to each other and providing relevant 

research material which they may not be previously aware of. 

2.4.3 Summary of Collaboratories 

The developed collaboratories corroborate the theory of Collaborative Applications 

proposed by Dewan et al. [1994], whose contribution to the subject is proposing 

multiuser-edited `whiteboards' suitable for users' interaction in collaborative 

applications. Dewan and Shen [1998] reports that the interaction structures between 

users require ̀ ... access specifications to be associated with persistent objects'. Golab 

and Özsu [2003] explains that this is a Data Stream Management problem requiring 

multiplexing and demultiplexing of data, or mixing both stream data with static data, 

and argues: 

designing an effective data stream management system requires extensive 
modifications of nearly every part of a traditional database, creating 
many interesting problems such as adding time, order, and windowing to 
data models and query languages. 

This problem is of current research interest in database management systems, because 

there is a growth in applications which have ̀ long-running, continuous, standing, and 

persistent queries', [Golab and Özsu, 2003], and in collaboratories the issue is 

connecting data to an object being examined and manipulating the data. This is 

important as a collaboratory's success depends on the methods used to store and 

retrieve experimental data, and introduce new experiments. 
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If a collaboratory is difficult to use, then internal and remote users will not be 

encouraged to use it, ultimately precipitating its demise. If the system is too 

complicated to add new experiments and technology, inflexibility would result in a loss 

of operational ability, making the collaboratory unattractive for future users. 

2.5 A Distance Learning Laboratory Architecture 

The proposed Remote Access Laboratory is expected to have an internal software 

architecture which allows a user's prototype Artificial Intelligence to operate a 

mechatronic device. The proposed laboratory has to be sufficiently flexible to allow 

mechatronic device alterations to reflect technology advances. This is considered 

important, as the purpose of the laboratory is for students to learn how to program the 

technologies they expect to meet in their subsequent careers. The laboratory's success 

depends on the flexibility to introduce new experiments, which could potentially be 

achieved by using the concept of Intelligent Agents to fragment and distribute control. 

Intelligent computer agents are both the original goal and the ultimate 
goal of artificial intelligence research. In striving toward that goal, our 
community has followed a practical research strategy of "divide and 
conquer, " with different sub-communities attacking important component 
functions of intelligence, such as planning, search, knowledge 
representation, vision, and natural language. [Hayes-Roth et al., 1995] 

2.5.1 Role of Intelligent Agents 

Intelligent agent architectures developed from implementing Distributed Intelligence 

Systems, or Multi-Agent Systems, with two competing architecture design principles: 

" Agents based on deliberation, generally planning, termed Deliberative Agents. 

" Agents, governed by situation reaction rules, termed Reactive Agents. 

Either one of these intelligent agent architecture's weakness is the other's strength 

[Davidsson, 1996]. 
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Bryson [2000] considers Autonomous Agent Architectures as design methodologies, a 

combination of design knowledge and strategies. The architecture design knowledge is 

argued as obtained by both reasoning and experience. Reasoning is argued as the early 

papers for an agent's architecture, which provide the hypothesis and early architectures 

as evidence. Experiential knowledge is argued as explicit reports and/or ̀ unpublished 

record of failed projects or missed deadlines'. The Intelligent Agents theories being 

examined are compared in table 2.2 below. 

Table 2.2 Comparison of agent theories 

Author 
Theory 

Provided 
Agent 

Architecture 

Multi 
Agent 

Multi Agent 
Communication S stem 

Hayes-Rothet al. [1995] Program based BBI No Not considered 
Hayes-Roth 1995 behaviours (blackboard agent) 

Sadeh et al. [2001] Knowledge encapsulated MASCOT No Not considered behaviours (blackboard agent) 

Corkill [2005] Principled agent 
High Level Data Fusion 

Agent No Not considered 
architecture (blackboard agent) 

Davidsson [1996] 
Agents which track A Linear Quasi- Yes Co-operation 

other agents Autonomous Agent 
Jennings eta!. 1995 Agent design framework ARCHON Yes Co-o eration 

Chavez et al. [1997] 
Decentralised multi Challenger Yes Negotiation 

agent framework 

Wooldridge et al. [2000] Design & analysis Gaia Yes Negotiation 
agents 

Helsinger & Wright Distributed blackboard COUGAAR Yes Negotiation 
[20051 1 agents (blackboard agent) 

The agents reported show an incremental development of Agent architecture theories, 

with a significant change in the theory from single agent based architectures with 

Hayes-Roth BB I to multi-agent based architectures with Helsinger and Wright's 

COUGAAR. The shift in research focus subsequently shows a change in the Multi- 

Agent architectures from co-operative to negotiated interaction. The research in the 

blackboard agent architecture has focused on the operation of a Blackboard control 

systems, which has proven problems, with a parallel growth in research of multi-agent 

systems comprising blackboard agents. 
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2.5.2 Role of Blackboard Agents 

A blackboard agent is an agent architecture which utilises a memory space for all the 

agents' operation knowledge. The importance of this architecture is the requirement of a 

mechatronics Remote Access Laboratory to have a means to receive and test the user's 

prototype Artificial Intelligence. 

The blackboard intelligent agent model was based on Feigenbaum [1977] and Shortliffe 

[1976]. Carver and Lesser [1992] outlines the basic blackboard agent architecture 

shown in figure 2.2 below, comprising a blackboard, knowledge sources and control 

mechanism. 

I 
Blackboard 

- 

sources 

0 Control Data 
Mechanisms 

Control 

Sensors II Actuators 

Figure 2.2 The basic blackboard agent architecture 

Corkill [2003] argues that a blackboard agent's collaborative power is the Knowledge 

Sources which provide limited data, since providing all the data is considered too 

distractive. With partial knowledge-sharing using the blackboard, knowledge sources 

are triggered by partial activation states, with a search to find additional data needed to 

activate their behaviours. The result is that when information is shared, locating 

information has to be fast, complete and highly relevant, [Lesser and Erman, 1980]. 

Corkill [2005] explains that previous Blackboard Systems have been criticised in recent 

years due to their ad-hoc evaluation of belief values, to determine control decisions. 
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2.5.2.1 The Blackboard Agent Architecture Components 

The blackboard is the agent's global database containing data and hypotheses, 

structured into areas, for possible efficient retrieval of associated hypotheses. A 

problem with a single blackboard is how to integrate goal-directed factors with data- 

directed, agenda-based control. 

The knowledge sources contain the agent's current state and are used to create new 

hypotheses or modify existing ones. Ideally knowledge sources are independent, with 

interactions incrementally and opportunistically modifying hypotheses on a blackboard. 

9 Incremental hypothesising (evidence aggregation) involves using incomplete data to 

hypothesise a partial solution, using additional data to verify the solution, [Rich, 

1991]. 

" Opportunistic hypothesising involves determining the best actions to achieve the 

agent's goal given the available knowledge. 

The control mechanisms are used to create complex, goal-directed strategies. Carver 

and Lesser [1992] explains the problem with blackboard architecture control, that a 

system needs to deal with multiple sensors, generating large amounts of data, or hard, 

real-time deadlines. Multiple passive sensors require control mechanisms to prevent 

blackboard data overloading, while real-time deadlines require deterministic control 

with the facility to assess possible action duration, and dynamically alter the Knowledge 

Source's activation conditions. Self-activating independent knowledge sources may not 

need control mechanism, but have two potential drawbacks: 

1. Knowledge sources require sequential execution, using multi-threaded 

programming. 
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2. Blackboard agents are typically used for combinational data problems, but only if a 

solution does not require executing all the possible solution knowledge sources. 

2.5.2.2 Examples of Blackboard Agent Implementation 

The BB1 Agent Architecture 

Hayes-Roth et al. [1995] research involved `multi-agents in unpredictable 

environments' using the BB 1 agent architecture `for spontaneous goal generation and 

selection'. The BB1 is a multi-layered blackboard agent architecture, with the 

blackboards having a component library and reusable domain expertise for knowledge 

sources; and an application configuration method to select and configure architecture 

components as a circumstantial control mechanism. 

A high level task specific language is developed to control both decision and domain- 

action specification, allowing control sharing strategies among similar task applications 

[Hayes-Roth, 1995]. The physical level behaviours are environment perceptions and 

actions, while the cognitive level behaviours provide more abstract reasoning. The 

examples given are `... situation assessment, planning, problem solving'. The control 

software is event-driven, with sequenced planned, stepped data comprising: start 

condition(s); intended activity and stop conditions. The software can be modified and 

developed dynamically, with competing behaviours providing adaptability through the 

criteria of a behaviour best performing a task within the current parameters, and 

matching the current constraints closest to the behaviour being executed, [Hayes-Roth, 

1995]. 
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MASCOT (Multi-Agent Supply Chain Coordination Tool) 

Sadeh et al. [2001] reports on the MASCOT architecture, which is based on previous 

architectures using modular encapsulation of problem-solving Knowledge Sources. 

These preceding architectures successfully integrated multiple knowledge sources to 

develop solutions using a shared data structure for a diversity of applications, [Erman et 

a!., 1980; Corkill, 1991; Carver and Lesser, 1992]. 

COUGAAR (Cognitive Agent Architecture) 

Helsinger and Wright [2005] describes the COUGAAR as a distributed agent 

architecture, comprising a COUGAAR Node, which may have multiple blackboard 

architecture agents sharing computer resources. The Blackboard is described as an 

agent's local memory store supporting, controlling and providing access for 

communications transactions. The advantage proposed is that it allows the agent's 

`developers to concentrate on the domain-specific issues of their application'. The 

agents are homogenous, with specific operations determined by a `plugin'. The 

Blackboard contents are tasks, assets and ̀ PlanElements'. 

Principled Blackboard Intelligent Agent Architecture 

Corkill [2005] explains that 34 participants at a DARPA-based workshop held in 

December 2001 recommended ̀the technical foundations for an advanced high-level 

data fusion approach' for an Intelligent Agent Architecture, uniting the Blackboard 

control methods advanced by Erman et al. [1980], Corkill [1991], Carver and Lesser 

[1992], `with a more "principled" Blackboard representation'. The advantage argued 

for Blackboard Intelligent Agent Architectures is control flexibility, as the agent 

operations can be either data-directed or model-directed as appropriate. 
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2.5.2.3 Summary of Blackboard Agent Architectures 

The Blackboard agent architecture can be adapted for testing prototype Artificial 

Intelligence, as the architecture allows the design of an external `intelligence' program 

for use as its Knowledge Sources. The BB 1 architecture provides significant functional 

evidence for using a programming language to create the Knowledge Sources, together 

with the COUGAAR architecture which is developed to allow external Knowledge 

Source design The transmission of a prototype Artificial Intelligence to a receiving 

intelligent agent is illustrated as a block diagram in Figure 2.3. 

Laboratory 

Intelligent Interface to 
Agent Q the 

laboratory 
Knowledge 

Blackboard 
sources 

0 prototype 
Artificial 

Control Intellignce 
mechanisms 

Robot 
_0 Data 

Sensors Actuators -º Control 

Figure 2.3 A blackboard agent architecture for the Remote Access Laboratory 

Sadeh et al. [2001 ] arguing the success of blackboard architectures to integrate multiple 

knowledge sources to support a diversity of applications, establishes the concept of a 

Blackboard Agent which can use a range of mechatronic devices. Corkill [2005] 

continues the argument with the principle of using either data-directed or model- 

directed blackboard architectures. This establishes an architecture format compatible 

with the expectations of the prototype Artificial Intelligence format being proposed for 

the user to develop. The prototype Artificial Intelligence is based on modelled actions, 

switching to data-driven actions when interacting with the environment. 
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2.5.3 Specific Agent Architectures 

2.5.3.1 An Agent Architecture for Tracking Other Agents 

The researched laboratory is intended to operate multiple mechatronic devices requiring 

agent tracking for intelligent interaction between the devices. This involves observing 

other agents' actions, and inferring the high-level goals, plans and behaviours, [Tambe 

and Rosenbloom, 1996]. 

The solution proposed by Davidsson's [1996] Linearly Quasi-Anticipatory Autonomous 

Agent Architecture, is to include a World Model for predicting an agent's interactions 

with both the world and other agents. Davidsson reported that the agent had tracking 

capabilities, predicting other agent's actions by evaluating what the reactive behaviour 

of other agents are if nothing unexpected occurs, and preventing interference with its 

own objectives by manipulating its own formulated action plan accordingly. 

2.5.3.2 A Knowledge Base Agent Architecture 

The proposed laboratory is expected to operate more than one mechatronic device, each 

operated by a prototype Artificial Intelligence, without co-operating. A proposed 

knowledge-base agent architecture design, would combine current and existing data to 

store, refer and retrieve current knowledge, and access; manipulate and modify existing 

databases' data, collaborating and cooperatively processing with planning agents. 

McKay et al. [1996] argues for an optimal architecture to comprise the following 

capabilities: accepting an agent's query; generalising the query to access, retrieve and 

compute both the sought and related knowledge, before returning the knowledge to the 

enquiring agent. 
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Queen Mary Virtual Laboratory 

Norman and Jennings [2002] describes the Queen Mary Virtual Laboratory used 

Knowledge-base agents as Mediator agents, which develop and maintain an abstraction 

of the system knowledge or resources. Mediator agents occupy a distinct, active layer 

between user-orientated information processing and resource management. 

2.5.3.3 Multi-Agent Architectures 

The structure of the agents and configuration that might be used is now considered. 

Since the early 1990s research has increasingly focused on the design of Multi-Agent 

Systems with their inter-agent interactions. The design of a multi-agent system includes 

the agents' ability to communicate with each other. Doran et al. [1997] argues that 

multi-agent system communication is based on three concepts: 

9 Deliberation: The agents plan actions to collaborate. 

" Negotiation: The agents plan actions in competition with each other. 

" Co-operation: defined as `... a property of the actions of the agents involved', 

arguing that agents are cooperating when a goal is achieved which no agent can 

accomplish alone, and achieve both their own, and other agents' goals. 

Further, co-operation can be classified by the agent's motives: 

" Self-interested co-operation: an agent co-operates to achieve its own goals. 

" Altruistic co-operation: an agent acts for a group's interests, without furthering its 

own goals. 

There are two methods of designing multi-agent systems from theory, using either 

specification languages such as Z, [Luck and d'Inverno, 1995], UML, [Odell et al., 

2000]; Logic Programming, [Thielscher, 2005], or software engineering methods, as 

described below. 
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ARCHON 

Jennings et al. [1995] describes ARCHON as a decentralised software engineering 

methodology, used as an agent's design framework. The agents localise the system's 

objectives and are the smallest possible coherent autonomous entity, determined by 

overall efficiency, with a system having a large number of agents. The agents' goals are 

often interrelated, requiring interaction (controlled by the agent's ARCHON multi-agent 

interaction Layer) to meet global constraints and provide services and information. 

Each agent's design either reuses existing software control systems, or uses control 

systems specifically designed for ARCHON functionality. The methodology 

consistently integrates multiple knowledge and data types, and produces partial results 

during component failure, due to overlapping functionalities. 

Gaia Architecture 

Wooldridge et al. [2000] reports that the Gaia architecture is intended to analyse and 

design agent-based systems, with explicit assumptions that the agents have access to 

computer resources equivalent to a UNIX process, and that the agents collaborate to 

achieve a global goal, without conflict(s). The Gaia architecture comprises a diversity of 

fewer than 100 separate agents' architectures including both a static multi-agent 

architecture and a static runtime operation. 

The multi-agent interactions are function-orientated, epitomised by their 

communication. The inter-agent communication model is described as a directed graph, 

and includes an acquaintance model to define the communication links, and identify any 

potential communication bottlenecks. 
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Challenger 

Chavez et al. [1997] reports `Challenger consists of Intelligent Agents which manage 

local resources individually and communicate with one another to share their 

resources... ' The agents have relatively simple behaviours and use local information by 

inter-agent communications to achieve desired objectives and share available resources. 

The design maximises performance by two properties: 

9 Robustness as it is argued that a multi-agent system with a centralised blackboard 

fails if the blackboard fails, the Challenger multi-agent system is decentralised. 

0 Adaptability the Challenger agents quickly adapt in a dynamic environment, 

providing minimal performance in the worst-case scenario. 

Challenger analyses network delays, calculating the average response time, and 

develops a world model of inter-agent interaction as form of agent tracking. This world 

model of interaction development allows predictions of future interactions and 

determines the time taken for another agent to finish a job. 

2.5.3.4 Summary of Specific Agent Architectures 

The agent tracking and the knowledge-base agents provide examples of specific agent 

architecture design, utilised in multi-agent systems. The ARCHON and GAIA 

architectures both use a variety of agent architectures, ARCHON re-using existing 

software structures and GAIA allowing analysis of agents' designs for development. 

Challenger as a multi-agent system was used to negotiate agent cooperation and 

collaboration, with the intent of maximising performance. 
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2.6 Conclusions about a Distance Learning Laboratory 

The research problem posed concerns the feasibility of a remote access mechatronic 

laboratory to test a prototype Artificial Intelligence for intelligent behaviour. The 

following is concluded from the research reported above. 

"A remote access laboratory is encapsulated by distance learning theory, serving the 

objectives of a distance learning institution. 

9 The learning theory which best fits an engineering remote access laboratory in 

distance learning requirements is the (Re)conceptualisation cycle, advocated by 

Coventry [1995]. This approves the teaching of theory, by using a laboratory for 

testing newly learned knowledge. 

" For instructional laboratories, the experimentation should be representative of the 

real world for applying the associated theory. 

9 Advances are being made in the theory of design and use of laboratory formats 

which support the concept of a remote access laboratory. 

The current principles for distance learning laboratories are either using simulator 

technologies, or physical attendance to a laboratory. Attending a physical laboratory 

is unsatisfactory for distance learning, and research in simulation established its 

lacking in imitating the real world, as the simulator only operates within the limits 

of its programmed parameters. 

" Collaboratory technology is providing evidence for the potential of remotely 

accessible prototyping laboratories, but its purpose is not conducive to collaborative 

interaction. 

" The blackboard agent is identified as the premise for architectural development of a 

remote access laboratory, and is considered in Chapter 4. Research on how to access 

a prototyping laboratory by having an appropriate Human Computer Interface is 

considered in Chapter 3. 
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This research aimed to establish the viability for a physical remote access laboratory, 

which would not require attendance at its location, re-asserting the any-time, any-place 

principle of Distance Learning. The internal architecture of such a Remote Access 

Laboratory would include a multi-agent system. This is argued to have a blackboard 

agent to facilitate testing prototype Artificial Intelligence, using the prototype Artificial 

Intelligence as the agent's knowledge sources. A laboratory operating two or more 

mechatronic devices, needs agents able to track other agents' operations and negotiate 

when necessary. As a part of a multi-agent system there is a need for Knowledge-base 

agents, used for storing the laboratory's knowledge, including the intended students' 

successful experiments for analysis (and tutor's assessment). The prototype Artificial 

Intelligence is designed and developed by use of Programming by Demonstration, 

discussed next in Chapter 3. 
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Chapter 3 

State-of-the-Art for an Interface to a Distance 

Learning Laboratory 

3.1 Introduction 

This chapter initially discusses the principles and concepts of Intelligent Training 

Systems within a distance learning environment; before examining specific, interrelated 

areas of research to establish the current state-of-the-art concepts and techniques 

necessary to design the interface for a distance learning Remote Access Laboratory. The 

discussion follows the progression: 

9A Distance Learning Environment: a review of the current theories advocated for 

distance learning, and how they relate to a successful Remote Access Laboratory 

interface. 

" Human Computer Interfacing: a review of the expectations and current theory for 

a Remote Access Laboratory interface. This critiques the current theories advocated 

as relevant for Human-Computer Interfaces. 

" Programming by Demonstration: relates to the design of software which allows a 

user to interact with tools for creating a program without the use of a programming 

language, and includes an explanation of the theory. 

3.2 A Distance Learning Environment 

Engineering education is science and mathematics based subjects that 
are traditionally the hardest to teach online because of the need for 
laboratories and equation manipulation. [Bourne et al., 2005] 
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A concern already expressed arises from Chapter 2.2, with distance learning theories 

abrogating the importance of teaching a body of theory. Mechatronics as an engineering 

subject has theory as a manifestly important component. 

3.2.1 Intelligent Tutoring Systems (ITS) 

Intelligent Training Systems reflect emerging learning theories, with the teaching 

process divided into four separate functions: the planning of teaching actions; the 

monitoring of these actions with students; diagnosing any discrepancies between a 

student's behaviour and the expected outcome, and determining and correcting an error, 

[Siemer and Angelides, 1998; Asami et al., 1998; Sison et al., 2000]. 

Research in ITS has been led by a desire to identify and rectify student errors. Whilst 

there is no standard for ITS, a consensus is that ITS should comprise: a domain model 

with the knowledge about the domain to be taught; a student model with the 

representation of the emerging knowledge and skills, and a tutoring model to design and 

regulate instructional interactions with students, [Siemer, 1998]. 

While each model includes processes necessary for tutoring interaction, the systems 

shortcomings are: lack of complete domain knowledge, which was a deciding factor for 

Asami et al. [1998] to limit the system's scope. Further incomplete domain knowledge 

can lead to behavioural errors, and there can be many correct approaches to a solution, 

[Siemer 1998; Asami et al., 1998; Sison, 2000]. Sison [2000] proposes a solution of 

unsupervised learning, where knowledge level errors are not known beforehand, with 

multiple classifications of a single object and variability allowed in the programming. 

Intention-based diagnosis should be made. Baker [2007] investigates the issue of off- 

task behaviour, and argues the student may be using the system as a game. 
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Ramadhan [1997] considers that Intelligent Tutoring Systems can be categorised by 

their primary means of solution analysis: 

" Systems that can diagnose partial solutions, either using passive analysis which does 

not trace the user's intention or the design decisions, or active analysis, subdividing 

the system into smaller steps, and predicting if the user is following a correct design 

path. 

" Systems that require entire solution code, which can be further subdivided according 

to its error handling: specification-based analysis, [Crowley and Medvedeva, 2005]; 

trace-based analysis, [Trella et al., 2005]; I/O based analysis, [Butz et al., 2006], 

and model answer based analysis, [Moritz et al., 2005]. 

3.2.2 Design Considerations 

Sherry [1996] provided a peer review on design considerations, arguing there are 5 

factors affecting successful distance learning provision: 

" Systematic design and development the laboratory flexibility has to allow for 

advances and developments, citing Willis [1992]. 

" Interactivity between the laboratory and users and amongst the users, citing 

Garrison [1990], NcNabb [1994]. 

" Active learning the users' involvement in their own learning, including 

understanding the material presented, citing Saettler [1990]. 

" Visual Imagery instructional images without `oversimplification' or `superficiality' 

citing White, [1987] or becoming entertainment, citing Ravitch [1987]. 

" Effective Communication so the user perceives things as intended by using 

appropriate objects with relevant attributes, citing Horton [1994]. 
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3.2.3 Summary of a Distance Learning Environment 

The system design to allow improvement requires structural flexibility, for continued 

future use. A rigid inflexible system would require significant alteration with any 

tutored course changes. Morse and Truman [1996] reports that while distance education 

and computer technologies augment the educational process, computer technology does 

not in itself improve education, but is only an enabling tool to be used in innovative and 

effective ways. 

3.3 Human Computer Interfacing 

One of the main impediments to an expanding role of robotics in society 
is the current difficult and unnatural programming interfaces available... 
[an] approach to robot programming is Programming by Demonstration 
(PbD)...... Such a programming interface is very natural for a human to 
use, it does not require specialist knowledge, and can potentially 
program very complex tasks. [Chen, 2005] 

Rogers [2004] states that during the 1980s and '90s Human Computer Interface (HCI) 

designers referred to `memory, attention, perception, learning, mental models and 

decision-making' cognitive models to understand computer users' performance. 

Familiar cognitive models helped designers with design characteristics, and the 

cognitive theories helped with design decisions, consequently developing icons to 

improve user interaction. The problems are the fragmented and slogan-based adoption 

of psychology findings, and a partiality for citing singular research findings extensively 

and ignoring the original research context, [Green et al., 1996]. 
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3.3.1 The Theories of Human Computer Interfacing 

Wright et al. [2000] explains most ̀ models of interaction are task-based' and a task is 

`the way in which a goal is attained taking into account factors such as competence, 

knowledge and constraints', citing Card et al. [1983], Johnson [1992] and Green et al. 

[1988]. Further Wright et al. [2000] refers to Suchman [1987] to premise their proposed 

`distributed information resources model', where an interface includes abstract 

information structures to identify action resources, and the reference knowledge is 

distributed between the interface and its user. Wright et al. [2000] specifically proposes 

that the model would apply to single user interaction with an interface. 

Rogers [2004] explains how Cognitive Theory failed as an HCI model in the 1980s, 

resulting in two new models to conceptualise and understand the assumed interactions 

taking place between a user and a computer: the Model Human Processor (MHP) and 

GOMS (Goals, Operators, Methods and Selection rules). Card et al. [1983] argues that 

MHP was a premise for predicting computer interface-user performance, and assessing 

the HCI's suitability for supporting various tasks. MHP was developed further with a 

set of predictive models, collectively referred to as GOMS. The various models and 

significant references are compared in Table 3.1. 

There are four theories represented in table 3.1. GOMS is dismissed as a theory due to 

its limitation of user interaction to data entry tasks, and not modelling flexible 

interaction. Distributed Cognition and External Cognition have a problem of not 

modelling user input, and Distributed Cognition ignores the activity involved. Activity 

Theory, while providing solutions, requires experimentation with the proposed interface 

design to determine effectiveness. 
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Table 3.1 Comparison of HCI design theories 
Theory Author Interface design Activity modelled User input HCI design User interaction 

GOMS Olson and Assists in new Limited to data Predictable Does not model 
Olson 1991 product effectiveness entry tasks behaviour flexible interaction 
Wright et al. Present knowledge What the user Does not take 

Distributed 2000 vital to achieve task needs to know account of action. 

Cognition Zhang and 
Norman [1994] Capture rules in Design does not Assimilate rules 
Zhan 1996 design consider tasks but ignores actions 

Green et al. `Cognitive Observe Abstract Observed 

Exte n l 
[1996] Dimensions' behaviour dimension cognitive 

i b h r a types av our e 
Cognition `fundamental Understood Optimum Can guide users' Rogers [2004] properties and cognitive effort' ------ `interactive 

' decisions design dimensions' content 

Kautb [1996] HCI operating at Cognitive Depends on 
Consider HCI 

at several 
Information 

several levels mediation work practice levels system research 
Activity 

"_'_ [2001] Based on ̀ Activity Analysed work Modelling Interpreted Modelled activity 
Theory Triangle Model' practices and tool work practice findings system 

B6guin and 
Rabardel Initial HCI design Activity process `Catacreses' `Instrumental Observe the user 

2001 imprecision of designing. genesis' construct 'the tool' 

3.3.1.1 Distributed Cognition 

Roberts [1964] heralds the concept of socially distributed cognition, with Wright et al. 

[2000] citing Norman [1988] to propose knowledge as a function of both the world and 

the person's cognitive ability. The information an interface presents is argued as 

important to achieving a task, as the user's knowledge of the interface, implying that an 

interface's design involves considering the knowledge a user needs to know, and recall. 

Suchman [1987] considers plans as representing possible action courses, arguing that 

they are subject to the consciousness, so can be manipulated and evaluated. Young et al. 

[1990] argues that a novice HCI user interprets choices to select which is appropriate, 

with Zhang and Norman [1994] presenting experimental evidence using Towers of 

Hanoi to demonstrate with disks, that the rule of not placing a larger disk on a smaller 

disk is held in the subject's memory, but a Russian Doll version captures the rule in its 

design. Scaife and Rogers [1996] advises considering how an interface can influence 

thinking and reasoning, while Zhang [1996] did not consider the role of tasks (actions) 

for designing displays. 
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Nardi [1996] [2002] advocates Activity Theory and criticises Distributed Cognition's 

usefulness to HCI, focusing on the extensive fieldwork required to obtain any 

conclusions or design decisions. The theory is considered significantly harder to apply 

than activity theory, as there are neither identifiable explicit data characteristics nor 

readily usable analytical methods. Rogers [2004] states that Distributed Cognition is not 

a quick-fix prescriptive method, but instead requires the interface designer to be 

accomplished in data analysis and uniting both detailed and abstracted investigation 

levels, instead demanding considerable time, effort and skill. For the HCI being 

prototyped, while allowing for various actions, the plans for actions are constrained. 

This limits the user action plans by defining the rules of the system within the system's 

state. 

3.3.1.2 Activity Theory 

Kaptelinin [1996] explains that Activity Theory originated from Soviet philosophy of 

analysing tool use by a subject to achieve an object/objective, arguing that the 

object(ive) motivates the activity (tool use), and specifies the activity's direction. Kuutti 

[1996] argues that mediation involves a form of cognition. 

Mwanza [2001] explains how Activity Theory methodologies were developed to 

analyse both organisations work practices and the supporting computer system design, 

originating with Vygotsky [1978] `Mediational Model', Figure 3.1. Further, Engeström 

[1987] augments Vygotsky's concept with a hierarchical model of human activity, 

establishing the expanded ̀ Mediational Model', figure 3.2, to imitate human social 

activity. 
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Mediator (Tools) 

_____ _ 
It4I1S"'T"1Ui; Outcome z--------------------- 

' Subject Object process 
Figure 3.1 `Mediational Model' Mwanza [2001] 

Mwanza [2001] argues that the Activity Triangle Model is a heuristic model capturing 

and unifying relevant concepts, providing a basis for interpreting and applying the 

theory, and placing an activity in a social and cultural framework. Nardi [1996] explains 

that the theory's advantage is its easily understood vocabulary, but there is no standard 

method for implementing the theory. Kaptelinin [1996] argues that the inapplicability of 

Activity Theory is due to its multiple basic principles for analysis, with an evolving 

theory framework, creating a variation in interpretation and application. 

T 

Subject --- - Object Transformation º Outcome 
process 

Rules 4:::: 141Division of labour 
Community 

Figure 3.2 The basic activity structure, ̀Activity Triangle Model' Mwanza [2001] 

Mwanza explains that the process of implementing the Activity Theory using the 

Activity Triangle Model involves: modelling the situation being examined to create the 

situation's Activity System; decomposing the situation's Activity System; generating 

research questions and conducting a detailed investigation, finally interpreting the 

findings. Further implementing the acquired model involves method validation and 

evidence of transferred and implemented theory. This complicated implementation 

method leads to a depiction of applying Activity Theory without explaining how the 

theory was applied. 
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Catacreses 

`Catacreses' are explained by Beguin and Rabardel [2001] as potential development 

and evolution of an Activity's `tool' from its original design. Catacreses are proposed 

for adoption in Activity Theory, since an activity should include obtaining, or 

constructing, an appropriate tool to achieve the attempted object(ive). The tool's 

development is considered as ̀ instrumental genesis', including spontaneous or planned 

systematic adaptation of a tool's function or structure. 

Beguin and Rabardel [2001] analyses the design process using a computer, with a 

designer creating something unknown and, for design flexibility, with persisting 

uncertainty. During early computerised design, imprecision is `impossible' and argued 

incompatible with the designer's need and hindering the computer's mediating role, due 

to imposed design constraints through accurate data entry requirements. The result is a 

data entry constraint that initially compromises the design, before the design is 

modified. 

3.3.1.3 External Cognition 

Nakakoji and Yamamoto [2003] explain that external cognition is the external 

representation of an entity, and in HCI the emphasis is on a graphical (iconographic) 

external representation of a process. 

Green et al. [1996] claims that `cognitive dimensions' suitably abstract different 

dimension types across applications, with solutions applicable to comparable problems. 

Designers and researchers consider `cognitive dimensions' easier to understand and 

learn than Activity Theory, as they encourage considering design solution trade-offs, 

and observed cognitive behaviour. 
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Rogers [2004] stated that her approach to `fundamental properties and design 

dimensions' can guide users' decisions, informing and confirming the external 

representation for the activity being designed, with Zhang [1997] proving that 

presentation is critical to the problem solving process. 

Rogers argues that her methodology can establish the optimum `interactive content' 

structure and presentation with reference to understood `cognitive effort', and 

`computational offloading' which is the degree various icons affect the cognitive effort 

required to carry out different activities. 

While external cognition has a proven track record in HCI with such icons as 

ý3 

ER and 
(5 

used to indicate print, the software package used for the interface's 

design and prototyping did not allow for the adoption of iconographic buttons. 

3.3.2 HCI Design in Practice 

Kuutti [1996] considers that HCI has garnered the eminence of a research subject, citing 

Carroll [1987] for perpetuating the assumption HCI is `grounded in the framework of 

cognitive science'. Kuutti's rebuttal comprises ̀ Research is not ahead of practice', 

instead current research is identifying why HCI solutions perform, and refutes the 

`framework of cognitive science' as the related theory is fragmented, disconnected and 

incoherent. Further Kuutti considers that there is a divide between HCI research and 

design, citing Bellotti [1988] survey of designs were not based on HCI research. 
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Kuutti [1996] cites Grudin [1990] reporting that HCI design has evolved from hardware 

`outwards', and Friedman [1989], with Human-Computer problems being relative to 

each other, with decreasing importance. Both Grudin and Friedman agree that problems 

are not solved, but when contrasted with new larger problems, recede in importance. 

Kuutti criticises Grudin for `computer-centrism', while accepting the advantage of 

considering HCI operating at several levels to solve conceptual problems and 

confusions, but Kuutti argues the theories did not help relate the concepts together. 

Rogers [2004] argues for clarity in the HCI theories' intentions, and cites the 

Shneiderman [2002] five required theory formats in HCI: descriptive, for `providing 

concepts'; explanatory, for `relationships and processes'; predictive for `user 

performance'; prescriptive for design guidance, and generative to enable discoveries. 

The argued problem is that HCI designers have an unmet demand in a multitude of 

purposes from the theory, and while there is a need for both theory and application 

methods, theory has difficulty in providing the application methods. 

Rogers proposes that designers be researchers, and that theory-based HCI designs can 

contribute to the adoption of new techniques with the development of a design language 

for future research and design. Rogers believes a common language is increasingly 

essential with HCI expanding in designers, products and users, requiring replacement of 

the theoretical jargon for the non-theorist and allow a greater knowledge transfer 

between designers and theorists. The problem is designers need advice at design time 

but researchers confirm design correctness after implementation. An answer is iterative 

design, involving users in the design process, but identifying real-life circumstances 

becomes a problem. The current alternative is to allow a user to personalise the HCI. 
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3.3.3 Summary of Human Computer Interfacing 

Rogers [2004] explains there is a re-emphasis for a theoretical component to parallel the 

procedural and theoretical developments in HCI interfaces interactive design. Barnard 

et al. [2000], Hollan et al. [2000], Kaptelinin [1996], and Sutcliffe [2000] argues for a 

theoretical foundation to HCI design, while Castel [2002] argues that there is a lack to 

current HCI design. 

Rogers argues that while the early application of cognitive human memory theories to 

HCI optimised icon design and command names, cognitive theories are based on 

experimental conditions not a workplace. Both Hollan et al. [2000] and Bourguin et al. 

[2001] agree that psychology based HCI premised on the `Human Information 

Processor' is limited, and new HCI developments can be supported by psychology's 

theoretical and experimental structure, but disagree with each other about the theory. 

Hollan et al. [2000], advocates Distributed Cognition, Bourguin et al. [2001] Activity 

Theory. The differences are the subject(s) of study is/are both the user and HCI for 

Distributed Cognition and just the HCI as a tool for Activity Theory. 

Barab and Plucker [2002] presents Distributed Cognition philosophy as external objects 

changing the system during activity, and affecting the user's knowledge citing Cole and 

Engeström [1993]; Perkins [1993]; Salomon [1993]. Distributed Cognition requires 

abstracting knowledge and action together, and by formalising this knowledge the 

ability and talent are distributed across a system and not embodied only in a person. 
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Activity Theorists are rebuked for focusing on activity to transform an object and the 

desire to appropriate an entire system's activity, without concern for isolated activity. 

Activity Theorists consider activity is distributed across subjects and tools from a 

subject's community relative perspective, but ignore both the person's state of mind, 

and the environment. The problem with modelling activity in an organization is the 

"Hawthorn Effect": people respond the way they think that the researchers want them to 

respond. The problem with any analysis of how people work is the reasons people go to 

work, identified in Human Resource Management as a mix of tangible goals, money 

and promotion, and intangible goals, satisfaction and self-esteem. Maslow's Hierarchy 

of Needs expresses this as the issue of Safety Needs with job security, and Social Needs 

with meeting people. When workers are studied, the need for job security is enhanced 

and their social needs are suppressed. 

3.4 Programming by Demonstration 

Ehrenmann et al. [2001] argues that as robots are adopted by a consumer market, the 

consumer will reject modem robotic user interfaces, and programming techniques. 

Biggs and MacDonald [2003] considers that most people have minimal technical skills 

requiring easier, flexible programming systems 

This research determined that Programming by Demonstration (PbD) Systems cannot 

be classified into mutually exclusive types. Subsequently to reflect the current 

dynamism of research in PbD, this report's taxonomy of PbD systems is based on 

knowledge: how it is obtained, and used. 

" How knowledge is obtained by the system: 

o Direct Programming: Text Based Systems, Iconic Programming 
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o Indirect Programming: Programming by 

Programming, Programming by Demonstration 

" How the knowledge controls the robot: 

o Reactive Systems 

o Deliberative Systems 

o Hybrid Systems 

o Behaviour Based Systems 

o Hierarchical Architectures 

Observation, Automatic 

As can be identified, this form of classification does not exclusively describe each PbD 

System. All PbD have some form of knowledge: input; format; storage; and operation. 

3.4.1 Programming Methods 

3.4.1.1 Direct Programming 

Wright and Cockburn [2005] explains that direct programming is when a robot's 

knowledge/behaviours are programmed using graphical or text-based systems The 

methods include adjustable preferences and defaults; macros based applications, and 

scripting languages. Lau and Weld [1998] explains that each technology resolves a 

programming issue, but has an associated limitation. Adjustable preferences and 

defaults interfaces are simple to use, but limited to operations considered and 

implemented during its design. Macros allow action sequence creation, but limited 

when variations are required during task repetition. Text-based programming is based 

on traditional programming languages. Scripting Languages create sophisticated control 

sequences, but require programming experience, with, knowledge of the scripting 

language and application interface. 
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This research is expected to overcome the `traditional' programming language 

problems allowing a user to develop skills to robotic behaviours design. 

3.4.1.2 Indirect Programming 

Wright and Cockburn [2005] explains that a robot's knowledge is programmed using 

Learning Systems: Programming by Demonstration, and Instructive Systems. Learning 

from a tutor providing, and explaining, case examples, is called: Programming by 

Demonstration (PbD), [Lieberman, 1993,1994; Friedrich et al., 1995; Schaude and 

Dilimann, 1995]. Chen [2005] explains that this form of programming is argued 

`natural for a human to use, it does not require specialist knowledge, and can 

potentially program very complex tasks'. Biggs and MacDonald [2003] explains that 

these programming systems, do not allow direct control of a robot. The system 

generates the robot's control code from the information entered into the system. 

Previous research in learning techniques divided tasks between development, and 

utilisation. During development is world model creation, the internal knowledge of the 

world, and initial program operations. For utilisation is action and knowledge 

refinement. Kaiser et al. [1995] reports two causes for the human-machine interaction, 

first a task the system cannot perform. Second, a specified object is unknown. 

In programming by observation the system learns by detecting and disseminating a 

teacher's demonstration. Voyles and Khosla [2001] explains a new task is demonstrated 

in real-time, without special behaviour requirements, or additional time. The only 

requirement is wearing tactile sensors: glove or fingertip coverings. The cause for errors 

is argued due to a robot's unstable grasps. 
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3.4.1.3 Learning by Human Demonstration 

Voyles and Khosla [2001] cite Patrick [1992] and argues 

Programming by Demonstration is the most natural paradigm for human 

programmers, because, training by demonstration and practice is the most 

often used method between humans. 

The assumption is when demonstrating a task robots can identify and parameterize the 

skills required by a task. An identified problem is: a robot dependency on both a 

teacher's ability and experience in providing knowledge or instructions, and the format 

of system instruction, either at skill or task level. Ehrenmann et al. [2001] argues that 

the PbD aims are to generalise and abstract the demonstration, to reflect a user's 

intention, and optimally model the problem solution. The best demonstration is a 

generalised problem with parameters for distinguishing both the specific problem being 

solved and a solution being demonstrated. 

Nicolescu [2003] argues that humans learn by complex interaction and instruction 

methods, comprising demonstration; instruction, and directive cues or gestures. The 

learner relies on task demonstration; supervised practice trials with rectifying feedback, 

and additional demonstrations to learn the generalisation. Complexity results in both 

effective teaching and learning. In contrast, during Learning by Demonstration, most of 

this complex interaction is overlooked, with instead the use of only 1 or few 

interactions. Nicolescu reasons that additional teaching 

significantly improves the learning process by conveying more 
information about the task, while ... allowing for a very flexible robot 
teaching approach. 

Callinon and Billard, [2007] addresses this issue by adding a social component to the 

teaching process and user interface. 
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This research developed a PbD system which is argued to have improved usability 

when developing a program. Edwards [2005] cites Norman [1988], for identifying 

usability problems, referred to as the `Gulfs of Execution and Evaluation'. Explaining 

the ̀ Gulf of Execution is the difficulty of translating a desired goal into an action to be 

executed', and the `Gulf of Evaluation is the difficulty of determining whether an 

observable state meets the desired goals'. These two gulfs are argued as a direct result 

of text based programming. The Gulf of Evaluation is not understanding a program's 

text, a task argued only a computer can do reliably. The Gulf of Execution is a small 

change to the program text, renders the program invalid. 

Circumventing these problems has led to partitioning large programs into smaller 

program components: Modules; Functions and Procedures. Edwards summarised the 

two gulfs problem with 

... a major reason that programming is so hard is that text strings are a 
poor representation for programs. [Edwards, 2005] 

3.4.2 Programming by Demonstration Methods 

Lau and Weld [1998] states that traditional PbD systems comprised: a Trace Generaliser 

to construct a program from a demonstration, including recognising conditional 

constructs, and an Interaction Manager, which describes a resulting program to the user, 

and obtains program execution authorisation. Biggs and MacDonald [2003] argue that 

these systems deficiency are they imitate single demonstrations, without allowing for 

changes or errors. A researched solution has been to introduce intelligence, resulting in 

both more sensor and actuator information from the demonstration, and flexible task 

execution. 
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Kaiser et al. [1995] argues a robotic control system's learning ability depends on how 

knowledge is contained and accessed for control. The efficiency of a learnt task is based 

on the PbD system's skill-base; cognitive and reasoning abilities, and its interface. The 

Human Computer Interface is detailed more fully below. 

A system's cognitive ability is its knowledge of objects, and the methods to detect 

and/or identify the objects. For this research, the system has limited cognitive ability, 

being unable to identify unique objects, but instead simple sensor activations, allowing 

a student to learn the principles of robotic programming, without the complexity of 

object identification, early in the learning process. 

A system's skill base is argued the basic robotic abilities without requiring a real-world 

model, and is defined as: ̀ the learned power of doing a thing competently' by Kaiser et 

al. [1996] and ̀A pattern of activity which describes an aptitude or ability that achieves 

or maintains a particular goal' by Nicolescu [2003]. Kaiser et al. [1995] define skill 

learning as `perception action transformations involving no model knowledge, that 

represent basic capabilities of the robot', defining tasks as ̀ sequences of actions that 

accomplish a complete goal directed behaviour'. Voyles and Khosla [2001] argues that 

as a skill is difficult to quantify, it is difficult to program. As the skill involved 

increases, the less a system is suited to using traditional program languages. 

Nicolescu [2003] argues that for any system to learn tasks directly, it is practical to 

supply a basic skill base. An approach to PbD learning tasks without having a pre- 

existing skill base has two problems: new skill learning may not use previously learnt 

skills, and complex tasks learning required learning both a skills set and sequencing. 
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Learning task complexity are argued due to: reactive policies map sensors directly to 

actuators, [Hayes and Demiris, 1994]; the progression of skills or tasks requiring 

explicit step sequences, [Kuniyoshi et al., 1994]; the environment allows implicit 

sequence representation, [Brooks et al., 1988]; Task complexity increases with higher 

level components and constraints, [Nicolescu, 2003]. The researched system skill-base 

comprised only the abilities to quantify sensor data, and determine unique motor 

outputs. 

A system's reasoning ability is the mechanism allowing a program generated to perform 

a specified task, combining a system's skill-base with available object knowledge. 

Nicolescu [2003] argues that: if the environment does not influence behaviour, then the 

system should learn to reproduce demonstrated trajectories, a strategy where a robot 

will fail to achieve its goal in a dynamic environment. If the environment influences the 

behaviours of the robot, the system should learn task representations. This research 

system's reasoning ability is intended to transform the system user's intentions into 

motor actions, display received sensor data to the user, and determine what 

demonstrated user intentions are for the circumstances presented to the system/robot. 

3.4.3 Programming by Demonstration Systems 

There are several types of PbD systems described in this section, Reactive and 

Deliberative, Hybrid, Behaviour and Hierarchical systems. 

Reactive Systems connect a robot's sensors to its effectors without using complex 

reasoning. Brooks [1986] argues that the results are rapid responses to unpredictable 

environments, and provide robustness. However, a reactive system does not maintain 

state or internal representation of the world and learning is limited to reactive policies. 
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Deliberative Systems use both sensory information and the stored knowledge of a world 

model, to determine next actions. The world model is either pre-programmed or 

developed from sensor information. Possible paths are planned using the world model 

to reach a given goal. The knowledge in the world model needs to be complete or 

highly detailed. 

Hybrid Systems comprise both the deliberative element of reasoning possible paths to 

the goal, and the reactive element of immediate actions. Any conflicts between reactive 

actions and deliberative planned actions are resolved by a middle (arbitration) layer, 

[Gat, 1998]. The arbitration layer is considered the hybrid systems design challenge. 

Matario [1997] argues that Behaviour Based Control design requires a centralised world 

model with behaviours using `fast, realtime responses, and similar representations and 

execution time', unlike a deliberative system which uses behaviours that operate on 

different time scales. Molnar et al. [2004] uses an embedded Behaviour Based Control 

system for a submersible. While a Hierarchical Partial Order Execution Architecture 

uses a task structure, which is: `dynamically expanded at execution time' [Pearson et al., 

1993; Simmons, 1994; Tambe and Rosenbloom, 1995]; `completely provided a priori' 

[Nicolescu and Matarie, 2002]. 

A Hierarchical Abstract Behaviour Based Architectures uses two components: 

perceptions, and actions, to build the architecture. Nicolescu and Mataria [2003] refers 

to perceptions as `abstract behaviour', containing its pre-conditions, goals and 

`primitive behaviours': the actions. Activation of a perception depends on specific pre- 

conditions, and the previous abstract behaviour post-conditions. 
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A `behaviour network' is built by connecting sequential abstract behaviours, and 

networking the behaviour sequences. The tasks connect into flexible abstractions with 

increasing complexity, allowing behaviour reusability: creation of complex behaviour 

sequences, and flexibility to learn new tasks, and the behaviour network develops 

increasing abstraction. 

The PbD system to be prototyped had a hierarchical behaviour control system, with 

reactive behaviours, allowing the prototype Artificial Intelligence to both operate with 

long term goals and resolve immediate problems. 

3.4.4 Programming using Programming by Demonstration 

Wright and Cockburn [2003] considers programming as three fundamental activities: 

Writing Programs; Reading Programs and Executing Programs. 

3.4.4.1 Writing Programs 

The knowledge transfer from designer to system using a representation the robot can 

store. Text-based programming is still the most common method of writing programs. 

Wright and Cockburn [2005] argues that the problems with text programming are 

difficulties in determining errors in the text, and correct programs can have execution 

errors, where an error can mask one or more other errors, or, accumulate to create an 

error which may be hard to diagnose and trace to sources. Ehrenmann et al. [2002] 

reports a robot programming method comprising demonstrating the actions performed 

between grasps, and during the grasps. Chen and McCarragher [1998], [2000], Chen 

and Zelinsky [2001] argues for using multiple demonstrations, as single demonstrations 

are rarely the optimal solution, and creates a flexibility of maximising speed or 

accuracy. 
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This research is based on providing a user with the ability to create intelligent behaviour 

comprising goal activated and, sensor activated action plans. The behaviours are 

demonstrated using diagrams. The Goal-Based Behaviours are designed by determining 

locations a robot is intended to move from and to. Goal-Activated Behaviours are 

activated at pre-determined goals, with Sensor-Activated Behaviours activated by 

sensor states. 

3.4.4.2 Reading Programs 

Wright and Cockburn [2005] argues that this is the understanding of stored knowledge. 

Onda et aL [2002] uses a virtual environment to perform demonstrations, allowing 

sensor information retrieval, and creating specialised behaviours. Zollner et al. [2002] 

reports using fingertip sensors to detect fine manipulation of objects. Kaiser et al. 

[1996] reports graphically viewing the complete demonstration results comprising 

viewing learnt demonstrated behaviours, and editing, rearranging, or using various 

segments separate of the learnt demonstration as reusable code. 

This research allows a user to view the robot's behaviours, as designed, with a 

presentation of sensor values. The angle and distance text values can be edited 

providing precision as graphic design can be imprecise. 

3.4.4.3 Executing Programs 

Wright and Cockburn [2005] argues that this is observing either a simulation or a 

robot's performance of its knowledge. A simulator is often provided with a 

programming language, but use of the simulator requires staff training. This research 

provides a simulation facility, allowing analysis of behaviours with a detail a laboratory 

may not physically provided. 
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3.4.5 The Limitations of Programming by Demonstration 

Witten et al. [1996] reports that a weakness in PbD is `an inability to take advantage of 

domain knowledge or user hints'. Nevill-Manning and Witten [1995] [1997] and Witten 

et al. [1996] reports a method `for detecting hierarchical structure in sequences' by 

determining patterns in the demonstration. While the methodology is argued as simple, 

it is not reported how to apply it to obtain appropriate knowledge. 

The system being researched needs to provide a hierarchical architecture allowing both 

deliberative and reactive behaviours, and as such this allows planning based on sensor 

operations, and specific action plans. Further, the sensor based reactive behaviours are 

both context specific and generalised sufficiently to be recursive. 

3.4.6 Programming Sub-Optimality 

Friedrich and Kaiser [1995] identify sub-optimality causes as: demonstrations including 

`unnecessary, incorrect, or unmotivated actions'; or ambiguity about when the action(s) 

operate. The demonstration may not accomplish the intended task if `the user does not 

know enough about the task'. Further, unintentional sub-optimality is when unnecessary 

actions are included in the task, or an action is not included in the task. 

Nicolescu, [2003] suggests that to prevent sub-optimality either include a user's 

intentions as data with various aspects of the demonstration, improving learning of the 

demonstration; or viewing task performance, to identify and resolve sub-optimality with 

feedback. Friedrich and Dillmann [1995] identifies as an issue that additional 

information is: `burdensome for the teacher as he or she needs to provide (at each step) 

information on what goals she/he had in mind, and what actions/used objects were 

relevant'. 
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Nicolescu [2003] argues that the immediate advantages of correcting a robot's observed 

task performance are: no knowledge is required about either the PbD system 

architecture, or, how the demonstrated task is coded. 

Chen [2005] argues that any demonstration can anticipate inconsistencies at both 

control and task level, with a resulting sub-optimality for the demonstration. Further it 

is an important part of a PbD system to identify a sub-optimality as noise, and remove it 

at both task and control levels. This is due to robotic performance not being enhanced 

by optimised task control details without optimising the actions. 

3.4.7 Summary of Programming by Demonstration 

Programming by Demonstration is based on resolving the problem of programming 

without using a text-based programming language. The researched system being 

prototyped allows development of robotic behaviour as a hierarchy of tasks with action 

sequences, a method proposed and used by di Iorio et al. [2007]. The instruction system 

design needed to resolve the problem of understanding human demonstration, and 

resolve two separate issues. Firstly, the PbD system has to resolve the two problems of 

the Gulf of Execution and the Gulf of Evaluation. These are the ability of a programmer 

designer to understand the program designed, and recognise if a program has achieved 

expectations. Secondly, the PbD system has to resolve the issues of sub-optimal 

programming and noise. This is where actions are specified for a task but do not 

optimise the task's operations. 

The systems ability to cognate, identify its surroundings is based on its sensors. For the 

purpose of tuition, this system does not uniquely identify macro objects, but allows the 

user to interact with sensor inputs, and relate these to reactive behaviours. 
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The user can both demonstrate expected behaviours and determine when behaviours 

should be acted on, in a hierarchical format. This though means that the user is 

presented with the design of the Hierarchy of Behaviours. The Sensor-Based 

Behaviours are recursive: the research has not provided evidence of other Hierarchical 

Behaviour Architectures with recursive behaviours. The prototyped architecture also 

includes Deliberative Behaviours, allowing the designer to create robot action plans. 

Further the researched system allows the design of actions based on sensor operations. 

3.5 Conclusions for an Interface to a Remote Access 

Laboratory 

The research problem posed concerns the environment for rapid development of a 

prototype Artificial Intelligence for intelligent behaviour. The following is concluded 

from the research reported above. 

" Accepting the interface to the laboratory is only an enabling tool suggests Morse 

and Truman [1996]. For developing a prototype Artificial Intelligence, the design of 

the interface as a tool can be determined by Activity Theory. 

9 The problem with Activity Theory is the analysis of an interface's design by 

experimentation is subject to the "Hawthorn Effect". 

" As a tool the Interface may be adapted by its users, and has to be allowed for, as this 

is catacreses, and can be analysed for `instrumental genesis'. 

9 There is a disparity between the theoretical approaches and application methods for 

HCI design. While Bourguin et al. [2001] and Hollan et al. [2000] both agree that 

HCI should have a psychological theory and experimental structure, but they 

disagree on the theory, arguing for Distributed Cognition and Activity Theory 

respectively. 
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9A problem with robot programming is the lack of wide-spread programming skills. 

A solution to this is not to `program' the robot but `demonstrate' the expected 

robotic behaviours, and create a program from the demonstration. There is a variety 

of demonstration methods, direct using graphical or text-based systems, and indirect 

which includes Programming by Demonstration (PbD). PbD is a method of 

programming which allows the programmer to demonstrate the intended behaviours 

for the robot to operate. 

" The programming usability problems are the `Gulf of Evaluation' and `Gulf of 

Execution' Norman [1988], and PbD is limited further by its cognitive and 

reasoning ability. 

" The proposed PbD system adds to the current body of knowledge by establishing a 

system where a robot is programmed without the use of a programming language. 

The current body of knowledge comprises the use of demonstration, which is either 

translated by video camera in Programming by Observation, or by physical 

manipulation of the robot, which is translated by means of a Trace Generaliser. 

Instead the programming is achieved by graphical demonstration. 

" The PbD programming method proposed is anticipated to overcome the gulfs of 

evaluation and execution and prevent programming sub-optimality. 

69 



Chapter 4 

A Proposed Architecture for a Distance Learning 

Laboratory 

This chapter develops an architecture for a remote access laboratory, based on the state- 

of-the-art discussed in chapter 2, and for testing prototype Artificial Intelligence, the 

design of which was discussed in Chapter 3. 

4.1 The Laboratory in Distance Learning 

Chapter 2 identified the benefits and drawbacks of a distance learning laboratory 

education, assuming the experiment for education is established, the equipment works, 

and that the experimentation is non-deterministic and requires problem solving 

solutions. A difficulty arises when a distance learning laboratory has to replicate 

physical interaction, including different approaches to a problem, each to achieve a 

working solution. Can a distance learning laboratory deal with multiple solutions to the 

same problem or different approaches to problem solving? The laboratories discussed 

were either purely software simulations or emulations of the laboratory experience. 

With the development of collaboratories, there is evidence that laboratories accessible 

over the Internet are feasible [Kies, 1997]. However these are under human control and 

supervision, and the question is whether humans can be replaced by intelligent agents, 

for supervising a laboratory's internal operations. Replacing humans is problematic for 

the physical maintainance of the laboratory for such actions as repairing a shorted cable, 

restarting ̀ crashed' machines, actions that still lie in the realm of human operation. 

Intelligent Agents only operate within their host machine using its accessible actuators, 

sensors and communications. 
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The proposed laboratory is activated by intelligent agents, operating as control software, 

testing the prototype Artificial Intelligence, which can be modified as the experiments 

are continued. 

4.2 A Proposed Laboratory Architecture 

4.2.1 Influences on the Laboratory Architecture 

The initial assumption was that the operations of the laboratory comprise three 

activities: testing the prototype Artificial Intelligence, amending it, and communicating 

with the laboratory user. 

4.2.1.1 The Prototype Artificial Intelligence 

The prototype Artificial Intelligence is expected to operate available mechatronic 

devices, activating appropriate actuators, and determining valid and useful data from 

sensors, and relating sensor data to actuator commands, to achieve goals. 

Transmission of the 
user's computer 

program, forte 
operating the 

mechatronic device 

Laboratory 

user 

Video image 
from the 

Laboratory interface 

Intelligent 
agents 

communication with 
mechatronic device 

Mechatronic device 

Figure 4.1 The user and laboratory interaction 
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Figure 4.1 illustrates the interaction between the laboratory and its user, enabled by the 

laboratory interface, which facilitates the transmission of the user's prototype Artificial 

Intelligence to the Laboratory, and a video signal from the laboratory to the user. 

Further, figure 4.1 illustrates the communication of the prototype Artificial Intelligence 

with the Intelligent Agents contained in the computer, and exemplifies a means of 

communication with the mechatronic device. 

Mechatronic 
Device 

Control Agent Intelligent 

Contained I Program 

wit in te Administrator 

computers 

Knowledgebase 
Agent 

Figure 4.2 The intelligent agents within the laboratory 

Figure 4.2 shows the intelligent agents proposed in Figure 4.1. The Mechatronic Device 

Control Agent is as proposed in Figure 2.3, section 2.5.2.3. The Knowledgebase Agent 

is as proposed in section 2.5.3.2. The Program Administrator operations are discussed 

further in 4.2.2.2. This figure illustrates that each agent is contained within its own 

computer, to prevent catastrophic failure if all the agents operated within a single 

computer, and the computer crashed, and to maximise the performance of each agent's 

operation. This also provides scope for a scalable MAS with the addition of 

mechatronic devices. 
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4.2.1.2 Communicating Intentions 

The prototype Artificial Intelligence is expected to react to all situations, so its 

intentions need to be easily understood and precise, as misunderstanding can lead to 

undesirable results. The only restrictions are the capabilities of the mechatronic device 

to perform an operation and any limits set for the operation of the mechatronic device. 

For communication of intentions there is a need to communicate with the Mechatronic 

Device Operating Agent, without which any intended work would not be achieved. 

4.2.1.3 Interpreting Intentions 

Testing a prototype Artificial Intelligence comprises the use of rules: 

functions/procedures, and, if... then.... else... computer language syntax, a complex issue. 

The Mechatronic Vehicle Operations Agents subsequently need the following 

programming knowledge: 

9 the programming syntax rules to code the prototype Artificial Intelligence, 

" the rules for function and scope of variables, and data creation, 

9a programming command set of available functions, 

"a means of defining the prototype Artificial Intelligence goals, 

9a means of detecting invalid or unachievable goals. 

To achieve this there is need for the following types of knowledge. 

" Syntax knowledge: comprising a program command set, variable and function scope, 

data rules and the rules to create, store, access and amend program knowledge. 

Syntax knowledge is maintained for testing programs. 
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I 

" Decision knowledge: comprising decision-making logic rules, to understand the 

prototype Artificial Intelligence program, requiring sensitivity to changes in 

conditions. Decision Knowledge determines how a program's knowledge is used to 

achieve goals. 

" Operation knowledge: required for data interaction with the mechatronic device, 

comprising valid commands to the device and receiving sensor data. Without 

operation knowledge the decision knowledge and syntax knowledge are `passive' 

programs possessing no reference to the mechatronic device. 

4.2.2 The Conceptual Design 

There are three types of Intelligent Agents proposed for the laboratory design: a 

Mechatronic Device Operating agent to test the prototype Artificial Intelligence, a 

Book-keeping agent to store the laboratory knowledge, and an interface to communicate 

between the agents and the user(s). The assumptions are that each intelligent agent: 

" operates autonomously within the context for which it was designed, 

" can collaborate or negotiate with other intelligent agents to achieve its goals, 

" can learn from past experience. 

For the proposed Mechatronic Device Operating agents, the Blackboard Agent 

Architecture is advocated to operate user-supplied control ̀ program' tasks. The agent 

would use the prototype behaviours to operate a mechatronic device within the 

laboratory, without prior knowledge of what the supplied goals will be. The Blackboard 

Agent Architecture (BB1) promoted by Hayes-Roth et al. [1995], Hayes-Roth [1995], is 

conceptually ideal for the laboratory, because it allows diagnosis of a user's software, 

and can support a multitude of separated goals. <split paragraph here> 
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The Blackboard agent can accept and operate a prototype Artificial Intelligence as part 

of the laboratory architecture, which would act as the agent's control plans. Hayes-Roth 

used an interpreter, as the control plans were a script of uncompiled program 

operations. 

4.2.2.1 The Mechatronic Device Control Agent 

The user is expected to transmit a prototype Artificial Intelligence to the laboratory, for 

the laboratory's Mechatronic Device Control Agent to test. 

The Mechatronic Device Control Agent subsequently contains programming rules for 

testing the prototype Artificial Intelligence relative to the mechatronic device's 

circumstances within the laboratory. This requires: 

" selecting an appropriate mechatronic device if more than one are available, 

" specifying the goals to be achieved, 

" identifying the user's intentions, activating appropriate actuators relative to 

sensor input. 

To achieve effective operation of the prototype Artificial Intelligence, the Mechatronic 

Device Agent has a Program Administrator. 

4.2.2.2 The Program Administrator 

The Program Administrator comprises a program interpreter, a mechatronic device 

operator, and a command set operator. 

" Program Interpreter: operating the prototype Artificial Intelligence akin to the 13131 

meta-controller, allowing access to sensor data, and to operate the actuators. 
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9 Mechatronic Device Operator: operating as an intermediary between the prototype 

Artificial Intelligence and the mechatronic device, necessitating: 

o Rules for transmitting data to the mechatronic device 

o Rules for receiving results from the mechatronic device 

o Knowledge expressing the mechatronic device's capabilities. 

" Command Set Operator: the set of fixed commands that operate the mechatronic 

device. It is assumed that the prototype Artificial Intelligence will not be written in 

the `base code' of the mechatronic device, instead being translated into these 

commands. 

4.2.2.3 The Mechatronic Device 

A mechatronic device is anticipated to generate information from its sensors, for which 

the prototype Artificial Intelligence is expected to transmit consequent actuator activity. 

4.2.2.4 The Knowledge-base Agent 

This will store all the multi-agent systems knowledge, comprising: 

"a means to store and access the system's knowledge, 

" rules for negotiating with other agents, 

is a knowledge store of previously successful programs for use by laboratory users, 

" rules for learning-based communication with the laboratory user. 

4.2.3 The Physical Design 

With the functional design of the laboratory established, the physical design of the 

laboratory is now discussed. 
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4.2.3.1 The Mechatronic Device Operator Agent 

The Mechatronic Device Operator Agent architecture will contain a Program 

Administrator, comprising a Program Interpreter, a Mechatronic Device Operator and a 

Command Set Operator. 

" The Program Interpreter: the rules and data for testing the prototype Artificial 

Intelligence. The rules determine the prototype Artificial Intelligence operation, 

using sensor data for sensitivity to changing operating circumstances. The data 

obtained is stored as variable knowledge. 

" The Mechatronic Device Operator: required for the prototype Artificial Intelligence 

to send and receive data to and from a mechatronic device. 

" The Command Set Operator: comprising the functions to operate the mechatronic 

device. 

This agent tests the prototype Artificial Intelligence, which will comprise: 

9a Blackboard to receive the prototype Artificial Intelligence, 

" rules to operate a mechatronic device's actuators, 

" rules to receive a mechatronic device's sensors, 

"a program administrator operating the prototype Artificial Intelligence with rules 

for: 

o communicating to and receiving sensor data from a mechatronic device, 

o the prototype Artificial Intelligence to operate the mechatronic device. 

This is shown in figure 4.3, below. 
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Figure 4.3 The Mechatronic Device Operator Agent based on the blackboard agent 
architecture 

Figure 4.3 illustrates development of the Blackboard Agent architecture shown in figure 

2.3, section 2.5.2.3. The data flow within a Mechatronic Device Operator Agent, 

together with its integration of the Program Administrator with the Mechatronic Device 

Control Agent, is shown in Figure 4.2 above as a separate agent. The data flow 

represents the use of the blackboard to store the prototype Artificial Intelligence which 

is then used to operate the Mechatronic Device while being moderated by Safety 

Routines. 

When considering a suitable Intelligent Agent architecture design, the Blackboard 

Architecture was judged most appropriate. The architecture allows the insertion of 

prototype Artificial Intelligence into the agent, for testing by analysis a mechatronic 

device's operation. Blackboard architectures allow the insertion of the prototype 

Artificial Intelligence for use as knowledge sources. <split paragraph here> 
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A Blackboard Architecture design is supported by Davies et al. [1994], as in 2.4.2.1 

above, which states that despite using graphical-based accurate models of an electro- 

mechanical system, there is a need for a device safety system, security command, and 

control system. These can be inserted into a blackboard architecture as knowledge 

sources, in case the laboratory is found to be fallible while testing the prototype 

Artificial Intelligence. Further, a Mechatronic Device Operator Agent will negotiate 

with other agents for problem solving. 

4.2.3.2 The Book-Keeping Agent 

The Book-Keeping Agent architecture is designed to contain a database comprising 

system knowledge, negotiation rules, previously successful programs and rules for 

communicating with the user. 

4.2.3.3 The interface between the Laboratory and its User 

The laboratory requires a presence on the Internet, provided by designing an 

hypermedia communications platform to facilitate: 

"a means to transmit the prototype Artificial Intelligence to the Mechatronic 

Device Control Agent, 

"a live video transmission of the mechatronic device being operated, 

" transmission of the mechatronic device's sensor data to the user, 

9a stop signal for an emergency while testing the prototype Artificial Intelligence. 

This is shown in Figure 4.4. 
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Figure 4.4 Communications between the interface and the laboratory 

Figure 4.4 shows the communication flows between the laboratory, its user(s), and the 

intelligent agents within it. The laboratory interface is illustrated as an internet presence 

connecting the user and the laboratory. The data flow to the user comprises the received 

Mechatronic device sensor values and the video output. The data transmitted from the 

user is the prototype Artificial Intelligence. The data transmitted within the laboratory is 

between the agents, and actuator data from the Mechatronic Device Control Agent to 

the mechatronic device, and sensor data from the Mechatronic Device. 

4.2.3.4 Communication between the Agents 

The assumption for the proposed multi-agent architecture is that the interface can 

communicate with all the Mechatronic Device Operator agents and the Book-Keeping 

agent, and the Book-Keeping Agent can communicate with all the other agents. A peer- 

to-peer and hierarchical multi-agent structuring is considered, shown in figure 4.5, 

below. 

The interface - 
Hypermedia user interface 

Interface agent 
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H Hierarchical communication 

Figure 4.5 Hierarchical and peer-to-peer communications 

The Mechatronic Device Operating agent needs to communicate with the interface to 

receive the prototype Artificial Intelligence for testing. Likewise the Book-keeping 

agent is expected to communicate with the other agents. A common communication 

interface for all the agents, similar to ARCHON, is considered appropriate, as this 

would allow the agents to communicate, as shown in figure 4.6, below. 

The Challenger agents were conceptually different from the laboratory agents proposed. 

The proposed laboratory will have a `Centralised Knowledge Agent' with the Book- 

keeping agent, with knowledge fundamental to operations, unlike Challenger, with its 

agent operations paramount. Challenger's importance is that agents uniquely track each 

others' performance. The laboratory's agents can adopt this unique tracking method for 

obtaining knowledge. 

The multi-agent systems papers, cited in 2.5.3.3 above, involve a communication 

package common to all the agents, to facilitate their inter-communication. Multi-agent 

interaction involves transmitting knowledge and intentions for negotiation, 

collaboration and co-operation, using a pre-determined format. 
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Figure 4.6 Multi-agent communications 

If mechatronic devices can interact and obstruct each other's ability to attain goals, then 

there is a cause for conflict. When it arises, negotiations are needed, but peer-to-peer 

negotiation is increasingly difficult to achieve with increasing agent numbers. The use 

of a negotiation-based communication interface layer within the agent is a simpler 

solution. The principle for negotiation is that each agent operates within a strictly pre- 

defined function, with no restrictions on communications between the agents, and the 

agents are only accessible through the interface for the laboratory user. Any Intelligent 

Agent has the capacity to contact any other for requesting information. The outline 

structure of the intelligent agent architecture is shown in figure 4.5 above, with each 

agent having a communications engine and interface. 
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4.3 Conclusions about a Proposed Architecture for a 

Distance Learning Laboratory 

Aim 1 of the research was to establish the viability of remote access facilities to 

augment distance learning. This has been the function of chapter 4. The internal 

laboratory functions are divided amongst specialised agents: Mechatronic Device 

Operating agents, and a Book-Keeping agent accessed by the user through an interface. 

Each agent contains a communication layer, to negotiate with other agents to resolve 

disputes and conflicts, as shown in figure 4.7 
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Figure 4.7 The complete laboratory architecture 

A number of benefits are anticipated: 

Laboratory 

Users user 

prototype 
Artificial 

-ý Sensor data flow 

-ý Actuator data flow 

" Each agent is distinctly designed to promote the separation of operations, and 

reduce the possibility of conflicts, while making modification easier. 

" The decentralised nature of a multi-agent system allows knowledge to be 

decentralised and relevant to the agent where it is stored. 
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9 The distribution of tasks amongst separate agents allows rapid assimilation of new 

mechatronic devices into the laboratory. 

9 Modifications are limited to the modified agent. 

" Adding agents is anticipated to not affect other agents' operability. 

"A Book-Keeping agent potentially allows the agents to improve their operation, 

using others' experience. 

"A decentralised multi-agent laboratory will be cheaper to design, program and 

maintain. 

9 The intelligence of the laboratory's multi-agent system will be emergent behaviour 

from the agents' interaction. 
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Chapter 5 

Development of a Prototype Interface 

5.1 Introduction 

To evaluate and support research of a Remote Access Laboratory, there follows an 

examination of a prototype interface. The interface will substantiate the viability of a 

remote access laboratory to support a distance learning course, through the 

determination of its suitability to develop prototype Artificial Intelligence. 

When designing the interface, the most important design considerations were: 

1. The interface is to operate as a tool, allowing a user to design a robot's prototype 

Artificial Intelligence. 

2. For education purposes, the interface has to be easy to understand, and invoke some 

form of enthusiasm. 

The prototype interface as stated in 3.2 needs to prove a flexible tool by using 

Programming by Demonstration. The PbD system was considered suitable through its 

utilisation of programming language principles, and was subsequently used to design 

MOYRA, Mechatronic Operations by Related Actions. 

5.1.1 The Design Proposals 

The design principles are primarily based on Activity Theory and Distributed 

Cognition, as discussed in 3.3 above. 
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5.1.1.1 Distributed Cognition 

Distributed Cognition is based on a user identifying the interface's available processes. 

The principles relating to HCI is that HCI should reduce the necessity for a user's recall 

about both its operations and the tasks available to the user. 

To deter the user from actions which could lead to frustration about the interface, 

developing doubt and considering further activity as a waste of time, the design is 

segmented into associated features. Buttons with related functions are placed in 

proximity to their target activity. 

5.1.1.2 Activity Theory 

Activity Theory analyses a tool's mediation between a subject and an object. As such, 

the interface is the tool between the mechatronic device and the mechatronic designer. 

The argument followed is that the object motivates activity, and specifies its direction. 

To this end, the tool has to efficiently mediate between the subject and the object. 

The problems of implementing Activity Theory are: while the Activity Triangle Model 

provides a reference, its use requires imitation of the circumstances being examined, 

creating an Activity System Model. The modelled Activity System is split into the 

constituent interactions, before research questions are generated and a detailed 

investigation carried out, to obtain findings for interpretation. The final problem is how 

to interpret the findings. 
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5.1.2 Anticipated Problems 

The interface's Programming by Demonstration function has to circumvent the related 

problems of the Gulfs of Execution and Evaluation, and the problems of sub-optimal 

programming and noise. The cause of the problems is the expectation for a mechatronic 

device's behaviour designer to conceptualise and model a behaviour in his/her head, 

before duplicating the modelled behaviour and writing it in computer textual language, 

while contending with the computer language's structure. The PbD system allows a 

purity of design for a robot's expected behaviours, with the activating conditions for 

each behaviour. 

As stated in 3.3.1.1 above, when a computer is used for design, precision is required, at 

a cost of inflexibility, which can be incompatible with a designer's potential need for 

ambiguity to change the design during development. The PbD system requires a 

designer to conceptualise a mechatronic device's required behaviour. The advantage of 

PbD is the elimination of the textual programming limitations, allowing a designer to 

replicate conceptualised behaviour. 

5.1.3 Principles of Prototyping 

A prototype is a generally accepted experimental tool, but is not a full product 

implementation. It enables future modification, with the intended user having an 

opportunity to comment on a system's current functionality. 
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The laboratory was prototyped, selecting from a range of methods, [Gordon and Bieman 

1995]: 

9 Throw away prototype: This is a working model with all the necessary features, 

but patched together. Users can interact with the system, getting accustomed to: the 

interface, the available features and output types. The prototype is intended for 

designers to realise the critical design considerations, which is important when the 

user is uncertain about the system's functionality. 

9A first implementation: The prototype is completely operational, anticipating a 

final product with identical features. This type is useful when planning multiple 

installations of the same system. A full-scale working model allows realistic 

interaction with the system, while minimizing development costs. 

" Evolutionary prototype: This is a model which includes some final system 

features, but not all. It develops a system incrementally in modules, so that features 

can be evaluated and incorporated into a final system without significant work to 

assemble the components. Prototypes of this type are generally part of the finished 

system. 

A prototype allows intended users of the finished system to interact, experimentally 

showing any unexpected interaction, both providing reactions to the prototype, and 

suggesting additions or deletions for the available features. The advantages of 

prototyping are that it provides: 

" the potential to change a system early in its development, 

" an opportunity to stop developing a system that is not working, 

0 the ability to develop a system which works closely to the users' needs. 
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The reason for developing the prototype was to allow comprehensive examination of 

user expectations of the remote access laboratory. The most important part of the 

prototype was the user interface, since the principle activity was to elicit users' 

feedback. 

5.2 Programming Language Development 

Wirth [1974] argues that a programming language should be both easy to learn and use, 

safe from misinterpretation and misuse, while extensible without changing existing 

features, and capable of withstanding logical scrutiny. The language should have a 

machine-independent definition, efficiently using computer resources with a fast and 

compact compiler efficiently coding and economising storage, without complex and 

rarely-used optimisation routines. The language definition should be self-contained and 

complete, while implementation provides ready access to other facilities such as 

program libraries and subprograms written in different languages. The language should 

be hardware-independent, with compilers adapted for various processors and chipsets, 

while minimising compiler development time and cost. 

The most important property of a program is whether it accomplishes the intentions of 

its user. Hoare [1973] states that a problem of program design is: `deciding what a 

program is intended to do, and formulating this as a clear, precise, and acceptable 

specification . Further, Hoare considers implementation is fraught with difficulties: the 

division of complex tasks into simpler subtasks, defining both the subtask rationale, 

with comprehensible, well-organized methods for subtasks to interact. The argument is 

that a well-designed programming language conveys both how a program operates and 

what the program is expected to achieve. 
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Hoare [1973] argues further, for a new language to supersede existing languages, its 

design has to be extremely simplistic, for programmers to both rapidly learn its features, 

and identify which elements will solve a problem, allowing a programmer to 

concentrate on solving problems. 

5.2.1 Programming Language Definition 

The problem with a programming language definition is: which definition? 

Programming language definitions are intended to serve as a specification of 

correctness for: 

1. the language implementation, 

2. the user to validate if a program performs its intended task. 

Wegner [1976] states that future programming languages should each have a tractable 

formal language definition to determine program correctness. In the 1970s one 

programming language design objective was `simplicity', increasingly defined as the 

ease of developing a formal definition. Now a program is considered a `what' 

specification, for designated tasks or functions, plus the associated ̀how' specification. 

A `correctness demonstration' demonstrates that the program `how' specification has 

implemented the independent `what' specification. 

Currently the method which a programmer uses to establish a program correctness, is to 

test particular cases and modify the program if the results are unexpected, [Hoare, 

1969]. 
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To establish correctness of the prototype Artificial Intelligence used for 

experimentation, it was tested continuously throughout an evolutionary prototyping 

development of the PbD system. The use of pure first and second level logic for the 

PbD system test was beyond this research's remit. The computer language developed is 

still a prototype; experimentation was to determine usability and continue improvement. 

5.2.2 Programming Language: `Vocabulary' 

The study of computer languages is concerned with defining the finite number of 

structures which allows languages an infinite number of sentences, [Wegner, 1976]. 

Wirth [1974] cited Van Wijngaarden [1963] with the principle of `Simplicity' stating 

that 

`... his point was languages are not only too complex, but due to this very 

complexity also too restrictive. `In order that a language be powerful and 

elegant it should not contain many concepts and it should not be defined 

with many words". 

This is interpreted as advocating analysing of a language and providing its fundamental 

principles unobstructed by the boundaries of applicability. However the counter- 

argument is that using languages without defined syntax rules, it can be difficult or 

impossible to identify programmed logic flaws. A solution is to design a programming 

language features in a form intuitive and memorable for both use and identifying logical 

consequences, to prevent ambiguous programming. 
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A language's crux is its variables, the named location in memory used by the program 

to store a value that may be modified. Hoare [19731 considers variables valuable, but 

potentially problematic as they can change register contents; store locations; contain 

peripheral conditions; or either change its own values or other programmed instructions. 

For high level languages, Hoare considers that this problem could have been avoided, 

but instead was worsened by pointers indirectly assigning variable values and, if 

accidentally misused, can cause disastrous data damage. A variable is normally declared 

before use with a declaration form of: 

type variable list; 

The PbD system uses sets of distinct variables to create a prototype Artificial 

Intelligence, associated with the goals to be achieved, and both the sensor inputs and 

outputs. These variables are not specifically declared, thereby preventing the designer 

from misusing them. 

5.2.3 Program Control Structures 

These apply to when a program includes conditional logic for program flow, and are 

achieved by modular decomposition of programs, suitable both for bottom-up and top- 

down development. Structured programming has placed greater emphasis on the if-then- 

else and while-do constructs. 

The underlying design principles are: 

" while <sensors not activated> do <continue current active behaviour> 

" if <sensors activated> then <Sensor Activated Behaviour> else <stop> 

" if <goal> then <Goal Activated Behaviour> else <next goal> 
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5.2.4 Programming Language: `Functions' 

The building blocks of modem High Level Programming Language are functions. If a 

function uses variables, they are either declared as formal parameters or as local 

variables, with the subsequent block operating on the variables. A high order 

programming language function general format is: 

<return variable type> Function-Name(formal parameter(s)); 

local variable declaration 

operations on variables 

The prototype Artificial Intelligence comprises behaviours which are specific to 

circumstances, the design of which were: 

< mechatronic device return state> Behaviour-Name<mechatronic device begin state> 

while <sensors not activated> 

if <sensors activated> 

then <Sensor Activated Behaviour> 

else <stop> 

do <behaviour> 

return <mechatronic device state> 

A function allows code compaction, with the function performing itself, known as 

recursion. The disadvantage of recursion is the memory overhead of stored variables. 

Hoare [1973] considers that functions should make variables operations `clearly 

manifest from its syntactic form' and `simple to understand and resistant to error'. 

Hoare states that the function interface is the boundary between programs parts, and 

argues that the suitability of a function's use should be subject to the most rigorous 

compile-time check. 
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The use of recursion was considered important for specifying how to design prototype 

Artificial Intelligence. This allowed the prototype Artificial Intelligence to be 

constructed from a set of generic behaviours, each equivalent to a function. 

5.2.5 Principles of Object Orientated Programming 

Object Orientated Programming involves fragmenting a program into subdivisions of 

self-contained units called objects, comprising variables and data with local reasoning 

about the variables and data behaviour. The objects are organised into a hierarchical 

structure within a container called a class. Characteristics of Object Orientated 

Programming are: encapsulation, polymorphism and inheritance. These concepts were 

used to organise a designed prototype Artificial Intelligence using the PbD system. 

Encapsulation This allows the private containment of behaviours. 

Polymorphism Polymorphism allows the same behaviour activation state to be 

declared for different circumstances. 

Inheritance This enables a behaviour to encapsulate another hierarchy of behaviours it 

depends on. 

This is discussed and illustrated further in section 5.3. 

5.3 The Prototype Interface Design 

5.3.1 The Human Computer Interface Methodologies 

The interface design was deliberately divided into three basic associated regions: user 

input, program output, and program manipulation, as shown below in Figure 5.1. 
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Figure 5.1 The outline of the interface in 3 segments: user input, program output and 
program manipulation 

The problem with applying Distributed Cognition was identified by Activity Theorists 

as the need to experiment to identify correct and adverse design decisions affecting the 

interface's utility. The problem is compounded by the lack of technical standards; there 

are no analytical tools and no data characteristics to identify. However, Hollan et al. 

[2000] describes two principles: 

1. A system can actively orchestrate subsystems to achieve different tasks. 

2. Cognition is distributed across both the HCI and user. 

Based on the Towers of Hanoi [Zhang and Norman, 19941 example in section 3.3.1.1, 

the HCI design is expected to capture the interface's operation knowledge, in 

responding to users' choices. The result is a dynamic interface responding to the users' 

actions when presenting available options. This methodology further constrains the user 

to action plans within the limitations of the interface. 
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Figures 5.2 to 5.8 below illustrate the interface design, and how its components relate to 

each other, in a design deemed most appropriate. 

The buttons' enabled and disabled states are based on user actions, as illustrated in 

Appendix A, with the intended dynamic of directing a user's activity. An explicit 

purpose is to prevent a user from attempting actions which would not progress program 

development. 
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The buttons to operate the Operations 
Map are situated below it. 

1. This prevents an unnecessary 
search for the associated buttons. 

2. Their activation state is dependent 
on the user's previous actions. 

Vdo* 

Figure 5.2 The Operations Map and associated buttons 

The Operations Map performs several functions, which are dependent on the user 

activity. For setting goal locations, locating obstacles and running the simulator, the 

Operations Map is a direct mapping onto the laboratory workspace. For the mechatronic 

device behaviours, in drawing a path to be navigated, it is orientated to the mechatronic 

device. When linked to the laboratory, a video image is presented. 
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Figure 5.3 The Operations Map and editing function 

The editing function for the Operations Map, shown in Figure 5.3, is placed at the 

bottom, as the editing is expected to be used least. The method of locating goals is 

`point-and-click'. The method of locating obstacles is to draw them, akin to any 

drawing package. The method for specifying the robotic behaviour is to draw it. This is 

intended to be easy for rapid development of prototype Artificial Intelligence. The 

Measurements panel is used to specify the angle of rotation and any distances a robot is 

being programmed (and expected) to travel. 

For editing the angles and distances, they are displayed in the Measurements Panel and 

can be textually edited. 
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Figure 5.4 The user input and text output 

Clem Lia4Sox Gr? Utt La" 

The output of the 
Operations Map is 

presented as text in the 
Operations Text box. 

The text box to the left of the Operations Map shown in Figure 5.4, can be adopted to 

facilitate a help function. The text box provides a duplicate description of the robotic 

operation being designed, with a function to allow the PbD user to view the underlying 

data describing the prototype Artificial Intelligence. The raw data is used to create the 

prototype Artificial Intelligence. The text box was considered important for future 

development. It was not developed further for the prototype, as it was considered an 

implementation issue. 
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Figure 5.5 Relation of sensor output to user input 

Figure 5.5 illustrates the relationship between the PbD interface's Sensor Output Box 

and the Operations Map during the design of robotic behaviour. The principle of using 

sensor activation for robotic behaviour allows the prototype Artificial Intelligence 

designer to explicitly translate sensor activations to actuator actions. The PbD interface 

calculates the sensor outputs by determining the angle of contact between the robot and 

the obstacle, as shown in figure 5.6 below. 
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Figure 5.6 The angle of incidence between the robot and obstacle, and activated sensors 
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Figure 5.7 Creating a mechatronic behaviour function 

Figure 5.7 above illustrates the method for creating mechatronic behaviour. This allows 

the designer to explicitly plot the expected path for the device to follow. The function 

follows a standard for programming design of: 

Function (input variables) 

{ function body } 

The input variables are the function's activating sensor values, which in figure 5.7 are 

`Sensor 2 and Sensor 3 are true'. The function body is the path being demonstrated. 

While the behaviour is being designed, the angles and lengths involved in the behaviour 

are displayed. 
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Figure 5.8 Manipulating a developed program 

Figure 5.8 shows the operations in detail of the Program Manipulation part of the PbD 

interface. At the top are the prototype Artificial Intelligence construction control 

buttons, used to manipulate the design of the prototype Artificial Intelligence as a 

hierarchical set of behaviours, which can be observed in `Robot's Behaviour View' 

above. At the bottom are the Save/Recall Programming buttons, used to save the 

hierarchy of robotic behaviours designed, or recall previously designed behaviours. 
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Figure 5.9 The means of activating the developed mechatronic program 

Figure 5.9 illustrates the method for testing prototype Artificial Intelligence, which 

includes the in-built simulator, used to validate the prototype Artificial Intelligence, and 

the connect/disconnect buttons to the Remote Access Laboratory. The in-built simulator 

buttons allow the user to start/stop/pause the simulation. 

Success depends on users believing the interface's use is not counterproductive. The 

user is expected to conform to a creation order for developing the mechatronic device's 

behaviour, comprising: creating the mechatronic goals to accomplish, before generating 

obstacle navigation behaviour, and associating them with the goals. 

5.3.2 Programming by Demonstration (PbD) 

The purpose of the interface design is to facilitate the development of a prototype 

Artificial Intelligence to operate as a mechatronic device. The development of a 

Programming by Demonstration based interface with the underlying data structures was 

intended to conform to programming language principles. Phi) was proposed for 

programming a prototype Artificial Intelligence, as current research provides evidence 

that students have problems with learning programming languages, causing high failure 

and drop-out rates, [Bergin and Reilly, 2005]. 
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Mamone [1992] reports analysis of why students want to learn to program, providing 

evidence that the long-term reasons change from a desire to be a professional 

programmer to gaining a useful secondary skill. The research issue was to identify the 

students' comfort-level; their ease when asking and answering programming questions, 

and their perception of programming achievement. 

Nevalainen and Sajaniemi [2005] argues that programming is difficult for many 

students to learn, as many programming skills require understanding abstract concepts 

loops, pointers, and array-based methods. A proposed solution is to use methods and 

techniques that assist and enhance learning about abstract entities. Petre and Blackwell 

[1999] proposes visualisations for learning ý expert programming reasoning, with 

Hundhausen et al. [2002] and Mulholland [1998] advancing visualisation to learn both 

program concepts and the program language. Nevalainen and Sajaniemi [2005] argues 

for a solution of needing a programming language which is easy to learn and use; safe 

from misinterpretation and misuses; and capable of withstanding logical scrutiny, 

possessing visualised variables, as these are essential for a computer program's 

operation and subsequent understanding. Programs comprise variables, and operations 

on the variables: for loop control, functions and procedures in functional and procedural 

based languages, to classes and structures in Object Orientated Languages. 

5.3.3 Object Orientation 

The PbD system uses program encapsulation as an implied part of programming design. 

It is based on the principle that a specific design of mechatronic device is used for each 

program design, and that encapsulation allows specific behaviours to be designed 

without the problem of external reference. This shown in figure 5.10, below. 
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Figure 5.10 The advantages of Object Orientated Programming for the Programming by 
Demonstration interface 

The program comprises functions defined by either sensor activation or by 

circumstance. The function names as demonstrated in Figure 5.10 above are: 

" Sensor activation: `Activate on Sensors:... ' 

" Circumstance activated: `Activate at Goal:... ' 

Polymorphism allows overloading of Sensor-Based Behaviours. Further to 

encapsulation, is inheritance, which is used for the development of complex programs, 

where the overarching goal-based behaviour inherits and encapsulates a multitude of 

situation-based behaviour(s). 

5.3.4 Goal-Based Behaviours 

The procedure for implementing Goal-Based Behaviours and determining goals for 

them is shown in Appendix A. Goal locations are required in establishing the basic 

behaviour for a mechatronic device. Goal-Based Behaviours describe how a 

mechatronic device is expected to move from a starting location (goal) to an end 

location (goal). The placement of goals for Goal-Based Behaviours is illustrated in 

Figure 5.11 below. 
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Figure 5.11 Locating goals on the Operations Map 

A program designer can divide goals into sub-goals for designing a specific behaviour, 

as shown in Figure 5.12 below and these sub-goals can then be re-grouped for any 

subsequent specific behaviour. The establishment of a hierarchy of behaviours allows 

for both a complex composite behaviour and flexibility in developing behaviours. 
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While figure 5.12 above illustrates that a goal is identified when the pointer approaches 

it, allowing rapid identification of possible sub-goals. What is not observable from 

figure 5.12, is that a single left mouse click can determine the identified goal as a sub- 

goal, without the pointer being `on top' of the goal. 

5.3.5 Sensor-Activated Behaviours 

The means for demonstrating Sensor-Activated Behaviours is illustrated in Figure 5.13 

below. 
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Figure 5.13 Demonstrating a Sensor-Activated Behaviour 

The screen interface allows the designer to directly translate the ideas of how a 

mechatronic device should behave when presented with an obstacle. The behaviour is 

initiated by the sensor values determined by the designer. 
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5.3.6 Goal-Activated Behaviours 

Goal-Activated Behaviours are more complicated than Sensor-Activated Behaviours. 

When the mechatronic device arrives at a specified goal this behaviour is identified and 

activated. The behaviour is an activity based on sensor interaction with the 

environment. The method of demonstrating this behaviour is illustrated in 5.14 below, 

with sensor activity demonstrated. The behaviour can include the use of sensors for 

interaction with the environment. In figure 5.14 the use of touch sensors is illustrated. If 

sensor states are activated, the resulting sensor values require confirmation before the 

designer continues the behaviour. 
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Figure 5.14 Demonstrating a Goal-Activated Behaviour with sensor activity 

5.3.7 Editing 

Hoare [1973] argues 

program debugging can often be the most tiresome, expensive, and 

unpredictable phase of program development, particularly at the stage of 

assembling subprograms written by many programmers over a long 

period. 
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The best solution is to not write `buggy' program code, and comprehensively comment 

on the algorithm(s). 

Wirth [1974] argues that a programmer should choose suitable language features for a 

programming task, predicting all the issues of combining the language features, and a 

good language design will prevent programmer mistakes. With regard to both Hoare's 

and Wirth's assertions, the advocated Programming by Demonstration Language allows 

visual confirmation of the programmed actions, and editing is different from 

programming element, being undertaken by alphanumeric input. The editing feature is 

only provided for vehicle actions. The method for editing is illustrated in Appendix A. 

The distance travelled and any angle the vehicle rotates are entered as numbers, while 

the directions of travel and rotation are provided as menu choices: of either forwards or 

reverse for direction of travel, and clockwise and anti-clockwise for rotation. 

5.4 Simulation Operations 

The simulator tries to operate the demonstrated behaviour, requiring it to `understand' a 

user. The simulator has three forms of operations: Goal Running, where the simulator 

emulates a mechatronic device going between two user-specified goals. The second is 

sensor-activated operations, which are emulated when the simulated mechatronic device 

meets an obstacle. Finally, Goal-Activated Behaviour is emulated when the mechatronic 

device ̀arrives' at a user-specified goal for the behaviour's activation. 

5.4.1 Goal-Based Operations 

The simulator starts by determining if there is a goal to go to, then `blindly' traces the 

shortest path a mechatronic device would undertake, as shown in Figure 5.15 below. 
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Figure 5.15 The simulation of a goal-to-goal based behaviour 

If the path being traced meets a simulated obstacle, the simulator stops tracing the path 

further and starts the process of obstacle avoidance using Sensor-Activated Behaviours. 

5.4.2 Sensor-Activated Operations 

Sensor-Activated Behaviours are expected to be simulated for obstacle avoidance, but 

can also be used during the simulation of Goal-Activated Behaviours. When the 

behaviour was created, the demonstrated activating sensor values were based on ANI) 

logic. To determine which Sensor-Activated Behaviour to use when the simulator meets 

an obstacle, a combination of AND and OR logic is used, as shown in Table 5.1 below. 

This is a simplified search pattern which provides an efficient means for obtaining a 

best fit of available functions to the current sensor activation. 

Sensor truth 
value 

Search pattern 

tirnsor II nie I rue I'rue False I rue False False I rue Fail 

Sensor 2= True I rue I rue I rue I rue False I rue False Fail 

Sensor 3= true I rue I 'me I rue False I rue False False Fail 

Sensor 4= False False I rue False False False False False Fail 

Table 5.1 The search pattern for determining a best fit of sensor activations to a Sensor- 
Activated Behaviour 
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The assumption is that sensor activations will include sensors I and 4 active and 2 and 3 

inactive. Although, conversely a sensor activation state of sensors I and 4 inactive and 

sensors 2 and 3 active is possible. 

When a match for the sensor states is not found, depending on circumstances, a wider 

search is undertaken, to see if there are any generic functions available. The wider 

search is only undertaken if the mechatronic device is moving between goals and not 

undertaking a Goal-Activated Behaviour. The search is shown in Figure 5.16 below. 
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Figure 5.16 The search for Sensor-Activated Behaviours 

For the demonstrated simulation, the most suitable Sensor-Activated Behaviour 

available is `Activate on Sensors :2 and 3'. The simulator then displays the 

mechatronic device's predicted path in white, before tracing the path in black, as 

illustrated in Figure 5.17 below. 

The simulator traces the 
potential path taken by the 
mechatronic device in white 

The simulator follows the 
plotted path outlined in 
white. 

Figure 5.17 The operation of a Sensor-Activated Behaviour 
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When the Sensor-Activated Behaviour is finished, the Simulator resumes its previous 

behaviour. If the simulator meets an obstacle when running a Sensor-Activated 

Behaviour, the simulator searches for an appropriate Sensor-Activated Behaviour to 

navigate the obstacle. This can be seen in Figure 5.18, where the simulator detects an 

obstacle repeatedly, and recursively calls the same Sensor-Activated Behaviour. 

  

The simulator is repeatedly 
using the same Sensor- 
Activated Behaviour for 
the same sensor activation. 

Figure 5.18 The recursive operation of a Sensor-Activated Behaviour 

5.4.3 Goal-Activated Operations 

When the simulated mechatronic device achieves a goal, the simulator determines if 

there are any Goal-Activated Behaviours, and simulates their behaviour, as illustrated in 

Figure 5.19 below. 

the simulator activates any 
relevant Goal-Activated 
Behaviour 

... 

... when arriving at 
a designated goal. 

  

Figure 5.19 The operation of a Goal-Activated Behaviour 
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A Goal-Activated Behaviour comprises two forms of mechatronic device operations. 

The first is a specifically demonstrated path, where a device is expected to travel a 

specific distance. The second uses sensor activations to determine activities, the sensors 

values being used to demonstrate activity interactions with the environment. The 

demonstrated mechatronic vehicle activity continues until the sensors are activated. 

During simulation, the simulator displays this behaviour as a projected path to beyond 

the laboratory edge. When the simulated interactions with the environment provide 

sensor inputs which do not match the Behaviour's designed sensor values, an 

appropriate Sensor-Activated Behaviour is sought, as shown in Figure 5.20, and if not 

found, the simulator halts. 
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Figure 5.20 Locating a Sensor-Activated Behaviour relevant to a Goal-Activated 
Behaviour 
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Figure 5.21 A Sensor-Activated Behaviour for continuing a Goal-Activated Behaviour 
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Figure 5.21 above illustrates the use of a Sensor-Activated Behaviour to continue a 

Goal-Activated Behaviour. The Sensor-Activated Behaviour allows the `re-alignment' 

of the simulated mechatronic device, for continuing the Goal-Activated Behaviour. 

Completion of the demonstrated behaviour is shown in Figure 5.22, below. This 

illustrates the expected behaviour designed during the experiment explained in Chapter 

7. 

Figure 5.22 The completed simulation of the demonstrated behaviour 

5.5 Conclusions 
The proposed laboratory interface for prototyping comprises the following. 

9 The interface, operated as a tool, allowing the user to design a prototype Artificial 

Intelligence, and be intuitive and experience some form of enthusiasm. 

" The interface design is based on both Distributed Cognition and Activity Theory. 

" The interface uses a PbD system using programming language principles, while 

circumventing the problems of the Gulfs of Execution and Evaluation. 
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" The PbD system allows the user to design behaviours graphically, with the designer 

directly translating the behaviour from thought to a series of actions. This form of 

robotic programming has not previously been designed. 

" The interface was prototyped, to allow interaction with intended user(s), providing 

reactions and suggested changes, with the advantage of accepting changes to the 

interface design early in its development. 

" The PbD program design involved encapsulated program elements. The hierarchical 

program structure was derived from the principles of Object Orientated 

Programming, and included Goal-Based Behaviours as the base class, Sensor- 

Activated Behaviours and Goal-Activated Behaviours. 

9 The PbD program was tested by the use of a simulator. 
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Chapter 6 

Design of the Experiment 

6.1 The Definition of an Experiment 

Festing [2001] provides a formal definition for an experiment, in his paper concerning 

ATLA (Alternatives to Laboratory Animals): 

An experiment is a procedure for collecting scientific data in a systematic 
way in order to maximize the chance of answering an hypothesis correctly 
(confirmatory research) or to provide material for the generation of new 
hypotheses (exploratory research). Sometimes, an experiment is replicated 
in different laboratories or at different erent times, but provided that all 
replications involve the same scientific objective, and the data are suitably 
combined in the statistical analysis, it is considered a single experiment. 
Confirmatory research will normally involve formal significance testing, 
whereas exploratory research will normally involve looking for patterns in 
the data, and may not involve formal significance testing. However, there 
may be some overlap between these two types of experiment. 

This is an appropriate definition relevant to the experiment run to support the 

hypothesis. The experiment described in Chapters 7 and 8 collected data to support the 

hypothesis posed, as a confirmatory research experiment. It searched for patterns in data 

and there was a minimal mathematical component to the experiment. 

6.2 Scientific Method 

Central Texas Science and Engineering Fair, [2007] explains Scientific Method as: 

The scientific method requires an initial proposal to explain initial 
observations. This is called the hypothesis. Experimentation is performed 
to reject, support or modify the initial hypothesis. 

An experiment is the study of cause and effect, with the Scientific Method considered 

the most productive to undertake for any experiment, involving the recognition of both 

control variables, and the deliberate manipulation other variables. 
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Wudka [1998] considers scientific method criticism that it often does not accept 

anything unproven, and facts previously thought impossible are now accepted. When 

investigating new events, existing theories are used and can be superseded by a new 

hypothesis to explain new experimental evidence, to develop a new theory. The feature 

of `Experimental Method' in eliciting scientific knowledge is the deliberate 

manipulation of variables. Further, the precision involved in the manipulation and 

control of variables allows replication of the experiment, in all details. Kim and Kalb 

[1996] argues a well designed and performed experiment provides accurate data from 

significantly fewer experimental runs. 

This experiment investigated the adoption of a new and novel form of programming for 

learning mechatronics. The precision in the control and manipulation of variables 

needed to be taken into account, as this experiment used human participants who can be 

unpredictable. 

6.3 Design of the Experiment 

The experiment might be conducted in a lab or in the 'field'. You might 
use direct observation to measure the [Direct Variables], or testing of 
some sort, or even a self-report, as in the imagery example. Try to be as 
objective and accurate as possible in recording your observations. Use a 
video or audio recording if necessary and possible, or prepare a 
checklist of target behaviours ahead of time, and keep accurate records. 
To control for experimenter bias, you might try to have an independent 
observer record and code the observations as noted above, ideally, one 
who doesn't know the purpose of the experiment. [Waters, 2005] 
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6.3.1 Premises For Experiment Design 

Kicinger and Wiegard [2003] proposes that good experiment design includes the 

following: 

" Exploration The secondary research described in chapter 3 provided knowledge 

about the problem or system under experimental examination, in particular the 

environment for distance learning and the resulting human-computer interface. 

" Comparison To define the controlled and measured variables during the 

experiment, with their levels or ranges of variation. This is described in sections 

7.3.7 and 7.3.8. Analysis of the controlled and measured variables should determine 

variables fluctuations and outputs and prevent input variables worst-case conditions. 

" Explanation An experiment creates a situation intended to examine any causal 

influence between two sets of identified variables. If the causal effect is identified 

during the experimental analysis, it is potential evidence that a causal link exists. 

This was undertaken in Chapter 8, in particular for the examination of participants' 

knowledge and experience, and the times taken to complete the tasks. 

" Demonstration Experimental results need to be confirmed by a final experiment 

identifying the optimum results. This reveals any factors not tested which affect the 

results, with confirmation provided by unexpected results. However as this 

experiment tested human participants, the optimum results cannot be reproduced to 

order. 

" Theory Validation In a proposed inferential experiment, the results support or 

contradict a formal causal relationship statement called the hypothesis. This is 

discussed in chapter 9, where suggestions for further research are made. 
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The premise for good experiment design has to consider the definitions above. The 

Alberta Government [2002] advises: 

Two key considerations in designing an experiment are 

(i) Simplicity: By simplicity, we mean that the simplest experimental design 
be chosen among many possible candidates to achieve the same proposed 
objective(s). 

(ii) Efficiency: By efficiency, we mean that the investigation should be 

conducted as efficiently as possible; that is, every effort should be made 
to save time, money, personnel and experimental materials... 

Fortunately, most simple designs are also of cient (both statistically and 
economically). 

For this experiment, simplicity is provided by using just two types of system. Efficiency 

is provided by having only 10 tasks, which attempt to achieve a level of similarity 

between the two systems of: move between two points, detect obstacle, navigate 

obstacle, and park in a corner. 

The Alberta Government [2002] considers the result of poor effective experimental 

design as 

... the data collected can potentially be of little or no value to the 
attempted solution of the problem being investigated, due to little or no 
prior consideration given to the Design of the Experiment. The Design of 
an Experiment is the complete sequence of steps taken ahead of time to 
ensure that the appropriate data will be obtained in a way that permits 
an objective analysis leading to valid inferences with respect to the stated 
problem. 

Appropriate data was obtained by considering the two systems differences, and creating 

a series of tasks that finish with an identical task: parking in a corner, see Appendix B. 
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6.3.2 Optimising the Experiment's Design 

In the Alberta Government [2002] paper, concerning how to undertake a research 

project, it proposes three basic principles to optimise experiment design: 

" Replication the repetition of an experiment's treatments for two reasons: 

(i) `Experimental error occurs when two or more identically treated 

experimental units fail to yield identical results'. Repetition of treatments 

provides an experimental error estimate. 

(ii) Replicating the precision in the estimation of a factor's effect. 

9 Randomization applies the law of chance to experimental data, ensuring that 

experimental data be free from any systematic error, by making experimental errors 

independent and providing unbiased estimates of them. 

" Local control experimental samples are grouped for homogeneity in each sample. 

For the experiment conducted, there is a problem with replication, due to the use of 

human participants. Replication could only (in theory) be possibly achieved by the use 

of twins. The element of randomisation is achieved by the variety of participants, no 

two of whom can be considered identical or having any element of co-variance. For 

local control, there was an attempt to created homogeneity in the participants, which 

can be observed in section 8.2. 

6.3.3 Variables 

Variables are properties or characteristics of events, objects or people which can vary. 

They can be categorised into various groupings: 

" Dependent and independent variables An independent variable is manipulated 

during an experiment, while a dependent variable is affected by an experiment's 

independent variable(s). 
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" Qualitative and quantitative variables Qualitative variables describe their 

attributes without numeric ordering, or are evaluated by categories. Quantitative 

variables are measured numerically. 

9 Discrete and continuous variables Discrete variables have discrete points on a 

scale. Continuous variables have a continuous scale. 

The variables for the experiment are discussed in chapter 7, Experimental Procedures, 

section 7.3. However, any variable not recognised and considered may prove to be a 

confounding (uncontrolled) variable. 

Graham [2006] considers the following as essential for the use of variables in an 

experiment: 

1. Population size Too small a population can cause a significant difference between 

sets of data when none exists, or can indicate that no difference exists when there is 

one. Choice of sample number is explained in sections 7.3.3 and 8.2. 

2. Components of variation The ability to impose control on the independent 

variables. The recorded components of variation for the'experiment are explained in 

sections 7.3.4 and 8.2. 

3. Randomisation A random experiment or trial provides results or observations, 

which are unpredictable or uncertain. It was intended to prevent any bias within the 

experimental data obtained. There was considered an element of randomisation 

when using human participants. Experience, knowledge, motivations and 

perspective are not identical for any two participants. 

4. Blocking Blocking is when known or suspected biases are removed, and achieved 

by carefully ordering the tests to be performed to remove bias. This was achieved by 

using human participants, divided into two groups. 
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When dealing with the statistical analysis of experimental data, the population size has 

to be large enough to minimize the chance of either Type I or Type II errors occurring 

with the statistical analysis. 

" Type I error The rejection of the hypothesis Ho when in fact it is true. No 

observation is impossible and the probability of this error is the same as the level of 

significance. 

" Type II error The acceptance of the hypothesis Ho when in fact it is false. Unlike a 

Type I error which as a constant is only dependent on the level of significance, this 

error is dependent on which alternative hypothesis is true. 

There was every attempt to prevent Type I and Type II errors. This was difficult due to 

the experiment not collecting statistical evidence, but using human experience and 

human opinions to gain sufficient data to support the hypothesis. The only solution was 

to use a sufficiently diverse sample from the parent population, and provide more than 

one measure to support or reject the hypothesis. 

6.4 Experiment Data Analysis 

Experimental data is based on a sample from some parent population, and a sample 

group statistic (parameter) is calculated as an estimate of the parameter's value in the 

entire population. Analysis involves calculating the following 

" Average or mean These two terms are interchangeable. The sample group mean 

values are often compared for variables of interest. The mean for each sample group 

experimental timings was calculated and is shown in section 8.2. 
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" Regression coefficient This statistic gives the average change in variable Y for each 

one-unit increase in variable X. For linear regression, the coefficient is the straight 

line slope. A regression equation can be used to predict dependent variable value for 

an independent variable value. A regression co-efficient is calculated on the means 

as determined in section 8.2. 

6.5 Error Analysis 

Every experimental result is subject to error. One can attempt to 
minimize errors but cannot eliminate them completely. [de Paula, 2001] 

The consideration of experimental error is important for the successful completion of 

the experiment. These are the causes which lead to Type I and Type II errors, discussed 

in section 6.4.4 above. 

6.5.1 Accuracy, Precision and Tolerance 

Any physical measurement is subject to some degree of uncertainty due to the 

limitations of both accuracy and precision. All instruments have designed tolerances. 

Simanek [1996] argues 

A measurement with relatively small indeterminate error is said to have 
high precision. A measurement with small indeterminate error and small 
determinate error is said to have high accuracy. Precision does not 
necessarily imply accuracy. A precise measurement may be inaccurate if 
it has a determinate error. 

6.5.1.1 Accuracy 

Accuracy refers to how close a measurement is to the correct value. It may be expressed 

in terms of absolute or relative error. 

" Absolute error the difference between an observed (measured) value and the 

accepted value of a physical quantity, often referred to as experimental error. 
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" Relative error a ratio of absolute error to the accepted value, expressed as a 

percentage. 

The accuracy of an experiment measurement can only be determined if, the measured 

quantity accepted correct value is already known. 

The experiment conducted was considered to be accurate, reflecting the parent 

population's anticipated reaction to the prototyped interface compared to a previously 

developed text-based system. However the correct value is not known. 

6.5.1.2 Precision 

Precision is the limitation of any measurements, determined by the scatter, or dispersal 

of obtained results, and a repeatedly measured quantity variance or standard deviation is 

considered an expedient guide to a methods precision. High precision is reflected by 

small variance. Precision is associated with random errors and can be improved by 

increasing the sample size. 

The experiment was run with no expected values. Any scatter was assumed to be a 

human variation which would not be ̀ uniform'. 

6.5.1.3 Tolerance 

Tolerance is the maximum allowable error for a measuring device. Instruments of high 

quality provide large measurement detail (good precision) and are designed for small 

error tolerance (good accuracy). 
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The measuring device was a video camera, and a `computer screen' videoing station. 

These both give a timing resolution of 1/25`h of a second. However, not every 

experiment was recorded with a time-frame reference. This was problematic for 

analysis. 

6.5.2 Experimental Errors 

Experimental error, when two identical experiments fail to give identical measurements, 

is due to: 

" Mistakes made in implementing the experimental design, including mistakes in 

measuring experiment responses. 

" All the uncontrolled variables combined effects which can influence the 

experiment's results whether identified by the investigator or not, but were assumed 

to be controlled through randomisation (randomised variables). 

An anticipated problem was that a number of variables were based on experience. 

Errors: Errors are normally classified in three categories: 

1. Systematic Errors 

2. Random Errors 

3. Blunders 

6.5.3 Systematic Errors 

Systematic Errors come from identifiable causes and should be detected and eliminated. 

This type of errors results in measurements which are consistently either too high or too 

low. These errors are a failure in accuracy. They may be of four kinds: 

1. Instrumental. When a poorly calibrated instrument provides an error, 
it is a repetitive error. This error is consistent when the circumstances 
are repeated, and forms a bias in the statistics collated. 
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2. Observational. This is where the experimenter has made an identical 
and persistent mistake in all the statistics taken. 

3. Environmental. This is where factors used as part of the model of the 
system provide a continuous erroneous output, such as low power 
outputs. 

4. Theoretical. These are due to simplification of the model system or 
the use of approximations in the equations describing it. 

The potential issues related to these errors in the experiment were: 

1. The video camera could not be calibrated. 

2. Experimenter error, not corrected by the experimenter identifying it. 

3. The tasks undertaken. All had to be achievable by at least one participant. 

4. The experiment tested a novel programming system, and did not have associated 

mathematical equations. The experiment did not involve a simulation to simplify the 

system. 

6.5.4 Random Errors 

Random errors are positive and negative fluctuations and the sources of such errors 

cannot always be identified. Possible sources are as follows: 

1. Observational Errors in an observer's judgment when recording a measuring 

device (timer/potentiometer) scale 

2. Environmental The unpredictable fluctuations in equipment performance. 

Random errors, unlike systematic errors, can often be quantified by statistical analysis. 

Therefore, the effects of random errors on the quantity or physical law under 

investigation can often be identified. 
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Observational errors were resolved by using a video camera, for the analysis. The 

environmental factors could not be accounted for, but the assumption was that the video 

camera could operate within a fluctuating temperature range which is comfortable for 

the human participant, without significant change in performance. The random errors 

were considered to be negligible. However, there were no physical law or quantity to be 

measured. 

6.5.5 Blunders 

A final source of error, called a blunder, is an outright mistake. This is the recording of 

a wrong value, a misread scale, a forgotten digit when reading a scale or recording a 

measurement. A blunder would be evident if there were multiple measurements or if 

one person checks the work of another. There were no unanticipated blunders in the 

analysis of the experiment. Any blunders possible were the misidentification of the task 

being performed, or not identifying when there was an attempt to operate the RBS robot 

or PbD simulator. 

6.6 Experimental Ethics 

Scientific experimentation is about more than just the statistical tools available; it 

includes the scientist's decisions to obtain and interpret data. This includes the need for 

ethical behaviour in the performance of an experiment for future reproduction of results. 

The modem Ethical Experimentation code results from the Nuremberg War Crimes 

Trials. 

6.6.1 Consent 

The requirement is for informed and voluntary consent to participate. 
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The requirement is that the person involved is legally capable of consent, and can 

exercise free power of choice, the ESRC (the Engineering and Science Research 

Council) [2007] guidelines expect `Research participants must participate in a 

voluntary way, free from any coercion'. 

The ESRC states further that the `... subjects must be informed fully about the purpose, 

methods and intended possible uses of the research, what their participation in the 

research entails and what risks, if any are involved'. Consent should be obtained in a 

consistent manner, as specified in the Research Ethics Framework, normally by use of a 

signed consent form, and sufficient time should be allowed from supplying the sheet to 

gaining consent, to prevent deception. 

In all cases of research, researchers should inform subjects of their right 
to refuse to participate or withdraw from the investigation whenever and 
for whatever reason they wish. There should be no coercion of research 
subjects to participate in the research. [ESRC, 2007] 

This is summarised as ̀ the right to withdraw consent at any time'. Further, any data 

provided is destroyed if requested, without adverse consequences. 

Every participant was informed at the start of the experimental proceedings that the 

participant had the right to stop the experiments or leave the laboratory. 

6.6.2 Responsibility 

The responsibility for conduct of the research in line with relevant 
principles rests with the principal investigator. [ESRC, 20071 
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The Open University requires that approval for experimentation be obtained from the 

Open University Human Participants and Material Ethics Committee (HPMEC) before 

experimentation and data collection commences. Consent was obtained by identifying 

any possible risks to the participants and explaining how the experimental conduct 

would prevent any risk from occurring. 

6.6.3 Experimental Preparation 

Proper preparations should be made and adequate facilities provided to 
protect the experimental subject against even remote possibilities of 
injury, disability or death. Nuremberg War Crime Trials [1949] 

The Open University requires that there is a risk analysis before experimentation, with a 

risk management and harm alleviation protocol if necessary. The need is to make every 

effort to minimise the risk of harm, physical or psychological, from any researcher, 

institution, funding body or other persons. 

This was undertaken for the issue of the robot falling off the laboratory work surface. 

To prevent this from happening, the work surface had a raised edge as a barrier. 

6.6.4 Confidentiality 

The Open University states that except through explicit written consent, researchers 

should respect and preserve participants' confidentiality. The experiment started with 

the participant signing a consent form which stated that no participant would be 

identified in relation to or by this research. Confidentiality of the participants has been 

maintained. 
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6.7 Conclusions to Design of the Experiment 

The key issues addressed in the experiment were: 

" The experiment was run by the principles of Scientific Method. This is a formalised 

method of designing and running an experiment, the principles of which were to 

determine the variables in the experiment, both dependent and independent, because 

any unrecognised variable would be a confounding variable. There was a 

sufficiently large sample to prevent a false result. 

9 The experiment design explored the environment for distance learning, and 

compared the controlled and measured variables, before examining for any causal 

links which needed to be explained, while it was kept simple by using just two types 

of systems for analysis, and efficient by having similar tasks for the two systems. 

" The experiment was designed and conducted in such a way that the results could be 

replicated, preventing any systematic error. The problem was that human 

participants are not homogenous, and the experimental results were derived from 

human experience; the optimum results may not be reproduced to order, but were 

intended to support or reject the hypothesis. 

"A problem to prevent with data analysis is Type I and Type II errors, which reject of 

the hypothesis when it is true, or support the hypothesis when it is false. The means 

to prevent these errors while using human participant knowledge and opinions, was 

to determine the results using multiple data sources for testing the hypothesis. 

" This leads to the issue of preventing errors obtained during experimentation. Errors 

include incorrect recording of data and lack of precision subject to the tolerance in 

the measurement equipment. This can be due to mistakes in experiment design, 

comprising systematic errors, which could be due to the video camera, the 

experimenter, the tasks or the programming systems. There could be random errors, 

due to the experimenter or the equipment, or blunders. 
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9 The use of human participants required ethical experimentation, with the 

participants both legally capable of consent and providing informed consent to 

participate, and with the right to withdraw consent at any time. Confidentiality must 

be maintained during reporting the results of the experiments. 

" Preparation for the experiment has to include risk management and prevention of 

harm. 
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Chapter 7 

Experimental Procedures 

7.1 Introduction 

A checklist is provided in synopsis on how to perform an experiment in the National 

Institute of Standards and Technology e-Handbook of Statistical Methods 

[KIST/SEMATECH, 2006]. 

Checklist for successful DOE 

" Check performance of measurement devices first. 

" Keep the experiment as simple as possible. 

" Check that all planned runs are feasible. 

9 Watch out for process drifts and shifts during the run. 

" Avoid unplanned changes. 

9 Allow some time (and back-up) for unexpected events. 

" Maintain effective ownership of each step in the experimental plan. 

" Preserve all the raw data-do not keep only summary averages! 

" Record everything that happens. 

" Reset equipment to its original state after the experiment. 

The experiment was to evaluate the differences between an existing text-based 

programming system and a prototype multi-agent programming by demonstration 

system, based on participant performance. The experiment design was guided by 

StatSoft, Inc, [StatSoft, 2003]. 
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The participants were required to use the two systems to accomplish a series of 

increasingly difficult tasks. Instructional information was provided with the tasks, for 

the participants to accomplish them. For example the rules based system included 

exampled instructions on how to program the rules into the system, see Appendix B. 

7.2 The Aim of the Experiment 

The aim of the experiment was to test the hypothesis, which was: 

Programming by Demonstration would prove a more intuitive 

approach to the complexity of developing an emergent intelligent 

behaviour than text-based programming. 

To evaluate the hypothesis fully required analysis of the following: 

9 The intuitiveness of the interface for design of programs 

9 The complexity of the designed robotic behaviour(s) 

7.2.1 The Objective of the Experiment 

The experimental objective was to compare a Programming by Demonstration interface 

based system with an existing Mechatronics course (T395) interface system, providing 

evidence that the Programming by Demonstration system was: 

" easier for participants who do not specialise in science or engineering subjects, 

" easier for developing complex tasks, 

" more flexible for programming the mechatronic device. 
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By directly comparing the two systems the experiments provided results for analysing 

the proposed programming by demonstration system strengths and weaknesses. The 

experiment revealed limitations, which could guide future research for distance learning 

systems, significantly improving the prototyped system. 

To obtain desired results, each participant was expected to report on: 

" Ease of use - the simplicity of methods to program tasks for a mechatronic device. 

" Rapid prototyping development - which system allowed faster development of a 

mechatronic device autonomous behaviours. 

9 Reduced mistakes and corrections - using a Programming by Demonstration 

interface allowed a user to rapidly prototype behaviours and the mechatronic device 

to enact these behaviours. 

" Reduced need to learn new skills - an issue of programming a mechatronic device 

was learning a programming language. A participant was hopefully expected to 

prefer the Programming by Demonstration interface compared with having to learn 

a computer language first, however simple the computer language. 

To evaluate the hypothesis involved comparing a Programming by Demonstration 

interface's effectiveness with the existing mechatronics distance learning system. 

7.3 The Variables 

The dependent variables comprised analysing the characteristics of the participants. The 

independent Variables involved analysing the participants, who (as above) were 

categorised by: 

1. The current education level. This was detailed as existing degree level 

qualification, from under-graduate to doctorate. 

2. Previous experience background. 
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The independent variable was tested for by the participants completing a questionnaire 

before undertaking any actions on either of the two Interfaces. 

7.3.1 Required Degree of Certainty `In all things that are 

uncertain at the start' 

This related the two different systems' operability being compared for their ease of use 

to achieve an expected task, and developing a program suite allowing the mechatronic 

device to operate autonomously. 

Because the experiment analysed two different systems, utilising tasks of similar 

complexity for each, there was still uncertainty with the participants deciding which 

system was preferred, which was subjective for each participant. Reducing each 

participant's decision arbitrariness was achieved by directing their critique to a 

questionnaire, see Appendix C. The difficulty with a participant's critique was an 

overlap with pedagogy in the systems analysis. The experiments were intended to 

examine the practice of using a Programming by Demonstration System for the specific 

purpose of mechatronic device programming. 

The principles of experiment design required records of relevant material properties and 

robot specifications, to allow any differences between the two systems to be identified 

and to prevent any skewing of results due to differences in system details. 
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7.3.2 The Participants 

The participants were randomly selected, were given no prior notice of the details about 

the experiment to be undertaken. They were divided into two groups. One group 

undertook one system first, the second group undertook the other system first. The 

participants were in 2 groups of 10, which were considered to be sufficiently large to 

provide a statistically justifiable result, to reflect the parent population, and to support 

or reject the hypothesis. 

7.3.3 Components of Variation 

The categories by which the participants were assessed are: 

" Robotic specialists Participants who were expected to be familiar with the 

principles of robotics, or specifically the T395 course system used as the alternative 

(text-based) system, from experience. 

" Graphic programmers These were participants who were assumed to be familiar 

with the principles of graphic drawing, giving a potentially unique advantage in the 

use of the PbD system. 

" Computer programmers These were assumed to be familiar with programming. 

" Computer users These were assumed to be unfamiliar with the principles of 

programming, robotics or graphic programming. 

7.3.4 Randomisation 

Unpredictability could only be achieved by not knowing who the various participants 

were going to be, and the participants were unaware of the experiments in advance. 
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7.3.5 Blocking 

For these experiments, the blocking was undertaken to avoid any prior experimental 

knowledge with one set of tasks, which could influence the results with the other 

system. From the four categories of participants defined in section 7.3.4, there were two 

groupings of each. 

" One group undertook the T395 interface system tasks first, and then the 

Programming by Demonstration interface tasks. 

" The second group undertook the Programming by Demonstration interface tasks 

first and then the set of T395 interface system tasks. 

This prevented bias from only one experimentation format, causing a statistical skew. 

7.3.6 The Independent Variables 

The participants comprised Open University faculty members, students and other 

acquaintances, who were considered potential students for a Mechatronics course. 

The constituency was expected to be sufficiently diffuse to allow a sub-ordering of 

results for analysis by: 

" Qualification by education level Was the participant a member of faculty, post- 

graduate student or undergraduate currently studying for a degree? This allowed 

categorisation of participant ability to assimilate, understand and use new 

information. 

" Qualification by knowledge area This categorised by familiarity with 

programming concepts. Too narrow a remit for knowledge would have skewed the 

results. 
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" Qualification by age was considered for 3 major reasons: 

o The humanities (psychology and education-based studies) argue that 

youthfulness allows greater versatility of thought processes, through greater ease 

or rapid assimilation of new unfamiliar concepts. 

o Computers are a recent development. Tuition of computer technology has 

proliferated to school level GCSE since 1988. 

o Age could be determined as a confounding variable if not accounted as a 

possible variable. As an uncontrolled confounding variable, any results provided 

could not be stated with any certainty. 

The alternative to a possible confounding variable (a variable that can affect the 

results but was not being measured), was to eliminate the variable. This would have 

been achieved by stating that each participant must be within a particular age range. 

" Qualification by computer literacy The development of computers is relatively 

recent. In 1980 to 1990 home computing started to proliferate, comprising ZX 

80/81/Spectrum, BBC A/B and Electron, Commodore Pet/64/128, Atari 5200. Mass 

manufactured Apple Mac and IBM/IBM compatible computers entered the general 

home ownership circa 1990. The internet had not become a popular tool until 

-1992/5. Computer literacy as a pre-requisite through ownership and use of a 

computer was not a given universal. 

The problems associated with these categories though had to be recognised. 

9 The participant's education level The hypothesis being tested included whether a 

PbD interface could allow the participant to program without relevant previous 

knowledge. While qualification level can be sub-divided into `Had the participant 

got a Bachelor Degree? A Masters Degree or a PhD? ' the first degrees could be 

categorised further was a thorny issue. 
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" The participant's specific knowledge could likewise have been problematic. A 

participant may not have a single `core' of academic learning; there could be a 

knowledge spread, for example: my BSc(Hons) comprises both Business 

(Commerce) and Computing (Engineering) with significant (but not distinctly 

qualified in) Operations Research (Science/Maths), followed by an MSc in both 

Opto and Digital Electronics (Engineering). My external interests include music, 

(arts). Any categorisation of knowledge had to reveal programming-related 

knowledge. 

" Categorising the participants by age could potentially yield an interesting skew 

on the results. Neither the participant's age nor how long a participant had used a 

computer could reliably measure either their ability or agility with computers or 

computer interfaces. However both length of time using computers and age could be 

more revealing. The younger a participant was, the more likely the participant had 

received a formal education in computer use, (GCSE/'A' Level). A more senior 

participant's computer literacy would be increasingly experience-based. 

" Categorising participants by computer literacy There are two types of computer 

knowledge learning: formal and experiential. The categorisation could include: 

o the ability to navigate the operating system and use applications, 

o formal programming knowledge. 

If a participant whose computer literacy was based significantly on experience, 

navigating an operating system (GUI based, for example Windows or X-Windows) 

and application use, a question was whether the applications require any 

programming? 
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7.3.7 The Dependent Variables 

Three variables could be analysed for the two systems: 

9 Total time taken to accomplish the tasks 

" Number of errors 

" Subjective satisfaction 

The total time taken was measured in seconds from the beginning of the task until it was 

accomplished. The number of errors was the number of times the participant attempted 

to complete any of the tasks without success. Subjective satisfaction was assessed by 

using a questionnaire, Appendix C. 

The experiment would obtain data to analyse the programming involved with both 

systems, for a mechatronic device to achieve increasingly complex tasks autonomously. 

The criteria for comparison were: 

" Time taken to complete tasks to provide evidence of intuitiveness 

" Number of mistakes, repeats, retries and attempts This was expected to be an 

indication of 

o the intuitiveness of the interface, 

o the complexity of the task to be undertaken, 

o enthusiasm. 

" Completion of tasks A task would be unfinished for a combination of reasons. 

They require the ability to: 

o understand the problem 

o consider a solution 

o program the solution. 

" Test for efficiency: This was the extent to which the system required minimal time 

to successfully complete tasks. 
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7.3.8 Maximising the Data Obtained 

Maximising experimental data collection was achieved by using a videotape. The 

advantage was the ability to record the chronology of events, allowing a greater depth 

of analysis of the participants' behaviour, with recorded evidence of what each was 

experiencing when testing the two interfaces, through them undertaking a talk-through. 

7.3.9 Minimizing the Required Number of Experiments 

This was achieved by using videotape during experimentation, so there was a reduced 

need to repeat it. Further experimentation would have been to explore and analyse in 

greater depth any unexpected results. 

7.4 Experiment Activities 

The experiment was conducted at the Open University in a dedicated private laboratory. 

Participants entered the laboratory and were seated in front of a computer. They were 

asked to sign a consent form, and complete a questionnaire, comprising categorical 

questions about age, subjects studied and to what qualification level, and their 

background in computer education and experience. 

Next, each participant was provided with an explanation of the experiment and 

instructions appropriate to the mechatronic programming system and interface being 

examined. After completing the second experiment system, participants were requested 

to complete a concluding questionnaire to examine their satisfaction with the two 

interfaces. 
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As the hypothesis sought to determine if a Programming by Demonstration System was 

an intuitive tool requiring no previous familiarity, there was no formal induction to 

either system used by the participant, other than a simple explanation that the systems 

were intended to program a robot to achieve a set of tasks within the experiment 

instructions. The tasks are attached in Appendix B. 

7.5 Experimental Equipment 

The resources acquired were: 

A room with sufficient space for a work surface; a video-camera (fixed on a tripod), 2 

chairs, one each for the participant, and the observer/experiment supervisor: 

1. Work surface This needed to be large enough to support 

"A personal computer to operate both the programming systems, 

" The work space sufficient for a person to occupy 

"A mechatronic device The space required was estimated to be about lmetre 

square with the edges raised sufficiently to prevent the mechatronic device from 

falling off the workspace, and potentially injuring the participant. 

2. A personal computer to operate both programming systems. The computer had an 

infra-red link for communication with the mechatronic device. 

3. A video camera to record the participants' behaviour during the experiment. The 

video camera's positioning was intended to observe both the participant, and the 

activity on the computer screen. 

4. A computer screen recorder to record the activity on the screen, which would be 

combined with the video camera view for the final document. 

5. Chairs The participant and observer were both seated. 

The layout of the experimentation room is shown in Figure 7.1 below 
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Figure 7.1 The layout of the experimentation laboratory 

Figure 7.2 below shows the physical layout of the laboratory. 

ý. 
I! 

Figure 7.2 The physical layout of the laboratory 

Figure 7.3 shows a close-up of the robotic vehicle used for the demonstration of the 

text-based system. The computer was run in stand-alone mode, and had copy of both 

systems on its hard-drive. 
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Figure 7.3 A close-up of the robotic vehicle 

7.5.1 The Tasks 

To test the effectiveness of a Program by Demonstration system, the tasks provided to 

both sets of participants were similar, see Appendix B. 

Each participant was presented with an experiment packet containing a consent form, a 

preliminary questionnaire, and an exit questionnaire, reproduced in Appendix C. There 

were initial familiarising instruction of the two programming systems with formal 

instructions of what was expected for each task, see Appendix B. 

The timed programme the participants were required to perform were 

"a set of sub-tasks - these were for the robot to `travel' from one point to another 

in a controlled manner, 

" to associate a range of inputs from sensors to resulting actions, 

" to `park the robot in a corner'. This was a more abstract problem, requiring the 

participants to fully utilise the programming functionality. 
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The timing started as soon as the participant began to read the tasks to be accomplished. 

The videotape recorded the participant from as soon as he/she entered the laboratory. 

An error was recorded if the participant 

9 was unable to complete a task, 

" did not correctly accomplish any part of a task, 

" had to make a correction. 

7.6 "Buy-in" of Results 

This was to be determined by a questionnaire-based analysis of the two different 

systems, and the objective satisfaction of the participants. To obtain the objective 

satisfaction of the participants a questionnaire was utilised, comprising the questions: 

" Which system did the participant consider was easier to use? 

" Which system did the participant consider was more intuitive to use? 

" Which system did the participant consider was more flexible to use? 

7.7 Conclusions of Experimental Procedures 

The following were concluded from Chapter 7 

9 The experiment was to compare an existing text-based system with the PbD 

interface. 

9 The experiment tested the hypothesis, evaluating the intuitiveness and complexity of 

designed robotic behaviours for the two systems. 

" The independent variables being recorded were the current education of the 

participant and their previous background. The participants were randomly selected 

and analysed by education level, specific knowledge and, to prevent a confounding 

variable, age. 

9 The experiment tasks were of similar complexity in programmed behaviour. 
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" The dependent variables being measured were the total time taken to accomplish the 

tasks, the number of errors and the participant's subjective satisfaction with the 

system. This would comprise time taken to complete tasks, the number of mistakes, 

repeats, retries and attempts, the completion of tasks, and testing for efficiency. 

" The experiments were video-taped to minimise the experiment runs and maximise 

data obtained. A questionnaire was presented at the end of the experiment. 

" The hypothesised results were that the participants reported ease of use, rapid 

prototyping development, reduced mistakes and corrections and a reduced need to 

learn new skills, for the PbD system. 

" The participants answered a questionnaire to determine which system they 

considered to be easier, more intuitive and more flexible to use. 
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Chapter 8 
Data Obtained and Interpretation 

8.1 Introduction to Data Obtained and Interpretation 

This chapter describes the data obtained from the experimentation, and discusses the 

data's significance for supporting or rejecting the hypothesis. Throughout the chapter 

there are references to the two systems used for the experiment: the Rule Based System, 

previously successfully used for the Open University T395 home experimentation kit, 

and the Simulator System, which employs the Programming by Demonstration 

described in chapter 5. Throughout the chapter the T395 home experimentation kit is 

referred to as the RBS system, and the Programming by Demonstration/Simulator 

system as the PbD system. 

8.2 The Participants 

The 20 participants involved in the experimentation are profiled below in Table 8.1, 

which includes their formal qualifications, knowledge and experience. The participants 

were divided into 2 groups; the first tested the PbD system before testing the RBS, 

subsequently referred to as the PbD-first sample group; the second tested the RBS 

before the PbD system and are referred to as the RBS-first sample group. Both sample 

group participants were randomly selected. 
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Table 8.1 A description of the participants 
Sub jects Studied K nowledge and Experience 

Participant Se: Age First Second PhD Computer Programming Robotics 
Graphic 

pro ramming Degree Degree Familiarity g 
Digital 

1 cd' 35-40 BEng No Imaging 22 years -20 years None Expert 

progress 

2 d" 60-65 BSc MSc Al 39 years -10years Familiar Familiar 

3 V- 26-30 BA/BSc No No 13 years Principles None None 

4 0 50-55 BSc No Yes 34 years Sporadic Familiar Familiar 

5 d' 40-45 I BSc No In 13 years Principles Expert Expert 
progress 

6 $ 50-55 BA No No -20 years None None Expert 

7 ci" 30-35 BSc No In 25 years -20 years T395 Expert 
progress 

8 d' 50-55 BA No 
Digital 

Imaging -20 years -20 years None Expert 

9 cd' 50-55 BSc MSc Yes 25 years None None Familiar 

10 35-40 BSc MSc Yes -25years -10years Familiar None 

11 c7' 25-30 BSc No No 15 years 4 years None Familiar 

12 cd' 60-65 BSc No No 40 years 40 years T395 None 

13 0 30-35 BSc PGCE No 26 years 22 years Familiar Expert 

14 d" 60-65 BSc No No 25 years -100 hours Expert None 

15 d' 45-50 BSc No Yes 20 years -20 years Expert Expert 

16 ds 30-35 BSc No 15-17 years Principles None Expert 
progress 

17 " 50-55 BA No Psych in 35+ years 13 min None Familiar 
progress 

18 36-40 BA MA Psych in 27 years -20 years None Familiar 
progress 
Business/ 

19 $ 46-50 BA MSc/MA Sociology 20 years None None None 

progress 
20 0-4 35-40 BSc No Yes 25years -25years Yes None 

The distribution of the two sample groups in terms of their relevant experience is 

illustrated in the `Star Diagram' in Figure 8.1. The `Star Diagram' illustrates the 4 

dimensions of the participants' experience. These were: the ability to program, 

experience in robotics, computer familiarity and graphic programming. Computer 

familiarity and programming experience were considered as distributed over time, 

although, the experience for either is not a linear gain. There is a significant gain early 

in the learning period, to obtain competence, with further gain being in specific areas of 

the subject. 
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Robotics and graphic programming were considered to be specialist subjects, and 

involve immersion in the subject. The diagram shows that there was a good spread of 

participants from the target parent population. 

Programming 

2,4 

3,4,10,13 

ýýDY 9,11, 
5 

....: ý:.. _ 18 

N20 
6,8 1 
lo' l 

8 
I17O30 

40 yeas 

P-N PbD-RBS test group 
Computer RBS-PbD test group 

familiarity V) Area of inexperience 

Figure 8.1 The distribution of the sampled participants 

Robotics 
7,12,1 Expert 

and T395 

1,5,6,7 
8,13 

M15,16 
Expert 

Graphic 
programming 

The sample of participants used for the experimentation was considered representative 

of the parent population. Familiarity with the T395 Open University Mechatronics 

Course was considered a measure of robotic expertise for the experimentation, as the 

Open University's T395 instructions were used as a premise for the Rule Based 

System's experimentation instructions. Two participants, 7 and 12, were respectively a 

graduate who studied T395 and a T395 course tutor, and both were considered to have 

expertise in using the system through prior familiarity. 
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There was a lack of 25+ years computer users who were experts in graphic 

programming, This is considered due to the development of home computing about 25 

years ago, with computer users prior to 25 years ago being generally text-based 

programmers. 

The evidence supporting the need for 20 participants was determined by identifying the 

trend for experimental task average times taken, illustrated in Figure 8.2 below. The 

mean is an arithmetic mean, recalculated with each new participant's timings. This 

moving mean was then used for calculating a power-based trend-line, which shows a 

convergence on the Parent Population Mean. 

The Participants' Experiment Timings 
1: 55: 12 ----- ---- 

1: 40: 48 

1: 26: 24 

1: 12: 00 

E 0: 57: 36 

0: 43: 12 

0: 28: 48 

0: 14: 24 

- ----- 
  

0: 00: 00 1 
123456789 1011 121314151617181920 

Participants 
  Time Taken With PbD Tasks   Time Taken with RBS Tasks 

Average Time Taken For PbD Tasks Average Time for RBS Tasks 
--Power (Average Time Taken For PbD Tasks) -Power (Average Time for RBS Tusks) 

Figure 8.2 The participants' experiment timings 
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The R2 value, is the 'co-efficient of determination', calculated as the proportion of the 

variation in results, which can be explained with the calculation of the trend-line. The 

Total 
plained Variation 

With the closer W approaches 1 the closer the co-efficient is R2 = 
Ex 

trend-line corresponds to the data. Although the R2 value for the RBS is below 0.5, 

without participant 20, the R2 value is 0.551, due to participant 20 taking a long time 

working on RBS task 5. Participant 20's results are discussed later. As the purpose of 

the experiment sample was to represent the parent population, this was considered 

achieved. Despite the individual scatter of results the conclusion is that 20 participants 

were sufficient for the experiment. 

8.3 Raw Data Gathered 

8.3.1 Comparison of Participants' Timed Activity 

The time taken for each part of the experiment is shown below as a set of bar charts. 

The average figure presented is calculated as: each task's average for all participants 

who attempted the task. The timings do not include when tasks were repeated. The first 

set of timings presented is the participants of the PbD-first sample group. All 

participants attempted to complete all the tasks. 

Figure 8.3 presents the groups individual times, although as a group, all the participants 

attempted all the tasks. Participants 14 and 15 managed to complete the tasks in 

significantly less than the average times, being the two identified robotics experts, 

expected to rapidly present correct solutions for the PbD system. Participants 3,16 and 

17 who took the longest time did not have robotics experience. Most noticeable is 

participant 16 who had graphical systems programming experience, but was 

significantly slower than the average to complete the tasks. 
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sample group 

The second sample group were the RBS-first sample group participants. Participant 9 

quit the experimentation during the Rule Base System tasks, otherwise all the remaining 

participants attempted all the tasks. 

Average 
Sample 

r... Group 6 --- &Min,, L- 
_77.77 - 

00: 00 07: 12 14: 24 21: 36 28: 48 36: 00 43: 12 
Time 

®PbD 1  PbD 2Q PbD 3o PbD 4 

Figure 8.4 The timings for testing the PbD System by the RBS-first sample group 
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All who attempted the PbD system tasks attempted the final task. Participants 5,7 and 

12 completed the tasks in less than average time, which could be explained by the fact 

that each had expertise in robotics. It is believed that as 5 and 7 both had expertise in 

graphic programming and robotics, this resulted in their significantly reduced time 

taken to complete the tasks. 

Figure 8.5 presents the set of timings for the RBS-first group of participants' test of the 

RBS System. 

0: 00: 00 0: 14: 24 0: 28: 48 0: 43: 12 0: 57: 36 
Time 

®RBS1  RBS2QRBS3QRBS4 RBS51RBS6 

1: 12: 00 1: 26: 

Figure 8.5 The timings for testing the RBS System by the PbD-first sample group 

Only 7 participants attempted all the tasks. The only person to finish the tasks in less 

than the sample's average is participant 15. This is considered due to the participant 

having expertise in robotics. Participant 3 was the outlier, finishing all the RBS tasks in 

less than the average time without having a significant background in either 

programming or robotics. 

Figure 8.6 presents the timings of the RBS-first participants' test of the RBS System. 
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The test of the RBS System by the RBS-first sample group 
5 
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9 
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0: 00: 00 0: 14: 24 0: 28: 48 0: 43: 12 0: 57: 36 1: 12: 00 1: 26: 24 1: 40: 48 1: 55: 12 
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12 Rule 1  Rule 20 Rule 3c Rule 4  Rule 5D Rule 6 

Figure 8.6 The timings for testing the RBS System by the RBS-first sample group 

7 participants attempted all the RBS tasks. All attempted the first 3 tasks. These 3 tasks 

involved selecting and running a menu item, typing in a set of written instructions and 

typing in a second set of instructions similar to the first set, with 2 amendments. 

Participants 8 and 9 quit the RBS experiment early. Participant 8 was unable to continue 

the experiment when presented with RBS task 3, but continued to attempt the PbD 

experiments. Participant 9 attempted RBS Task 3, but decided to halt the experiments 

and left the laboratory. 

The outlier result is participant 6, who expressed no previous experience in robotics or 

programming, but who attempted all the tasks and succeeded in the shortest time. 

Further, there was an apparent disparity between the two sets of timings, with the PbD- 

first participants appearing to be quicker in completing the tasks. The possibility is that 

the group had experienced similar tasks when using the PbD system previously, while it 

has to be acknowledged that 5,7 and 12 had a background in robotics. 
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Participant 20, is the anomalous result, however, deciding against attempting to 

complete RBS task 3 using the instructed task as the purpose of the experiment, but 

instead attempting to create generic behaviours which exceeded the task's expectations. 

8.3.2 Measures of Activity Success 

Tables 8.2 and 8.3 show who accomplished the tasks in the timescales given above, 

together with the number of attempts taken to complete the task. 

Table 8.2 The PbD-first group's attempts to achieve success 
Experiment PhD System Experiment Tasks RBS Experiment Tasks Stated 
Participant 

Test order I -4 
i -ý T Preference 

I PbD - RBS 1 1 3 2 1 1 2 1 5 1 PbD 

2 PbD - RBS 1 1 1 2 1 1 1 5 PbD 

3 PbD - RBS I 1 3 1 1 1 3 9 6 1 Rule Base 

4 PbD - RBS 1 1 5 8 1 I 0 0 11 IL j PbD 

10 PbD - RBS 1 I 2 1 I 1 4 a I Rule Base 

14 PbD - RBS 1 1 2 1 1 1 4 2 Z. 30 LIMM PbD 

15 PbD - RBS I 1 3 2 1 1 2 2 3 4 PbD 
16 PbD - RBS 2 1 3 5 1 2 5 3 2 Rule Base 
17 PbD - RBS I 2 5 3 2 2 5 2 11 6 Rule B 

18 PbD - RBS 1 2 2 

L3 

1 2 I 4 1 3 Unknown 

Key: MýI! Task 

This showed that while the sampled group attempted but may not have completed the 

PbD tasks, there were 5 participants who were unable to attempt all the RBS tasks. This 

also shows that participants 3,17 and 18 successfully finished the final task in the Rule 

Based System despite being unable to complete the tasks using the PbD system. 

Participant 15 did not need guidance during PbD system task 3 on how to design the 

obstacle avoidance behaviour; however, the PbD simulator system failed to work 

properly. With the final task for the PbD system, participant 15 completed it with the 

minimum of help. 
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Table 8.3 The RBS-first group's attempts to achieve success 
Experiment RBS Experi ment Tasks PbD System Exp eriment Tasks Stated 

Participant 
Test order 1 2 3 4 5 6 1 2 3 Preference 

5 RBS - Phi) 1 I 2 3 2 1 1 1 1 4 PbD 

6 RBS - PbD 1 1 2 3 2 2 1 1 3 2 Rule Base 

7 RBS - PhD 3 1 1 1 2 3 1 1 1 3 Rule Base 

8 RBS - Phi) 1 1 2 2 2 PbD 

9 RBS-Phi) I 1 Unknown 

II RBS - PhI 1 1 2 6 1 r"" 1 1 1 1 PbD 

12 RBS - PhD 1 3 1 4 2 4 1 1 3 2 PbD 

13 RBS - Phi) 1 3 3 7 4 14 1 1 3 2 PbD 

19 RBS PbD 1 1 3 1 2 1 1 3 1 PbD 

20 RBS-PbD 1 2 1 2 19 8 1 1 1 1 Rule Base 

Key: 

Catacreses 

Catacreses are discussed in 3.2.1.3 as the modification of a `tool' from its intended 

purpose, and were observed occurring during the PbD tasks. The PbD system had 2 

tasks which comprised the design of a mechatronic vehicle's behaviours. Task 3, to 

negotiate an obstacle, and task 4, for the mechatronic vehicle to park itself in a corner. 

For task 3, the majority of participants ignored the task instructions, which included the 

figure below. 

Opaawr map 
Oa 

Forwards 

Figure 8.7 The mechatronic vehicle orientation for design of behaviours 
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The participants attempted to design a specific obstacle avoidance behaviour for the 

obstacle presented. During the design stage of the interface, this method of behaviour 

design was considered and rejected. The principle was that the designer could design a 

generic behaviour, using a simple format for the design map. The use of a specific 

circumstance could lead to a behaviour specification which would not be effective or 

appropriate for all circumstances. Further, when the prototyped Artificial Intelligence is 

tested in the Remote Access Laboratory, the obstacle(s) presented may not be known in 

advance. The principle for a generic behaviour is that the behaviour can respond to all 

circumstances. 

Task 4 involved designing a behaviour or a set of behaviours for the vehicle to park in 

the corner, as described in Chapter 5. Participant 5 designed a set of obstacles to guide 

the mechatronic vehicle into a corner, and used the obstacle avoidance behaviours 

designed to direct the simulated vehicle to a ̀ corner'. Although, this has been marked as 

a failure, as it did not complete the task by the expected means, this was a `success', as 

the vehicle was `in a corner', and the participant introduced an innovative method to 

obtain the result. 

8.3.3 The Participants' Dialogue 

Table 8.4 summarises the dialogue provided by the participants. The dialogue is 

reduced to 5 general categories for the table, comprising `Likes', which are positive 

expressions about the system being used for the experiment task, `Dislikes' being 

negative expressions about the system; ̀ Questions' and ̀ Answers', `Questions' identify 

when the participant requires assistance. ̀Answers' are when there has been a necessary 

response in some way to the participant, either by activity or by a literal question, or a 

response to `Comments'. 
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`Comments' are remarks by the participant which may neither be described as 

`Positive', ̀ Negative', or as a ̀ Question'. During the introduction to the experiment the 

participants were asked to supply a running commentary effectively creating a 

documentary of the experiment. This led to general text of up to 1600 lines of 

transcribable dialogue per experiment. 

Table 8.4 Participant dialogue during the experiments 

Participant 
Like Dislike 

Rule Based 
Question 

System 
Response Comment 

Programming by 
Like Dislike Question 

Demonstrat 
Response 

ion 
Comment 

1 360 58 122 255 431 265 54 65 261 167 
2 103 18 84 116 94 324 61 164 287 130 
3 231 12 45 272 145 164 19 33 183 111 
4 45 4 19 51 117 159 19 31 159 124 
5 39 30 52 128 73 5 3 12 35 41 
6 5 19 23 67 65 10 12 17 87 80 
7 324 31 64 94 68 87 12 30 128 57 
8 74 35 42 123 98 198 23 56 140 193 
9 46 80 14 100 94 0 0 0 0 0 
10 68 21 25 76 80 70 39 41 119 111 
11 42 5 30 74 61 12 3 6 21 67 
12 448 39 140 313 320 190 13 77 159 136 
13 121 21 13 60 72 65 6 14 98 40 
14 96 19 38 80 87 41 7 19 33 12 
15 281 32 81 210 270 142 11 181 241 247 
16 71 10 25 105 58 45 13 24 87 62 
17 242 38 66 53 122 183 27 26 23 63 
18 311 23 15 50 71 226 10 33 70 156 
19 160 11 113 79 54 48 14 43 29 32 
20 252 130 184 403 478 140 49 90 275 239 

Participants17 and 19 asked rhetorical questions. The comments for all the experiments 

have a particular element of the participant reading aloud the experiment's instructions. 

The experiments did not solely comprise completing task 1, start task 2... but had an 

element of dialogue between tasks including question and answer routines. For example 

participants 17 and 18 over-analysed the RBS system, expressing how they would park 

the vehicle, using a metaphor of how they would drive their car. 
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A determinant of whether a person liked or disliked a system was undertaken by 

examination of the ratio of expressed likes to dislikes, which has the problem that the 

two systems are very different. The number of questions asked was an indication of how 

much assistance a person needed while attempting the tasks. On its own, this would be 

misleading, as the assumption would be that the participants were only asking one form 

of question. However, many of the participants were interested in how the systems 

worked. As a result, table 8.9 the ration of likes/dislikes, includes the success in the 

fmal task for both systems. 

8.3.4 The Usability Questionnaire Results 

8.3.4.1 The PbD System Questions 

After completing the tasks, each participant was requested to fill-in a Usability 

Questionnaire, which comprised the following questions on the PbD system, referred to 

as ̀ the Simulator' as task results were provided by use of a simulation. 

1. Do you think that the Simulator system provides a sufficient degree of detail about 

what is happening on the screen? 

2. Do you understand the Simulator's systems information on the screen? 

3. How intuitive did you find the Simulator system? 

4. Did you find it hard to remember how to do anything with the Simulator System? 

5. How did you find the Simulator interface prompted you to particular actions? 

6. Do you believe that any part of the Simulator interface was unnecessary? 

7. Are you satisfied with the Interface's names? 

8. What would you like as further dialogue from the Simulator System's Interface? 

9. What are your thoughts about the methods of determining the Vehicle Behaviours 

using the Robot's Behaviour View? 

10. Do you believe you needed a Help System with the Simulator system's Interface? 
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11. Did you find the Simulator system's Interface easy to use? 

Table 8.5, below, illustrates what the participants considered were positive and negative 

aspects of the PbD based Interface. 

Table 8.5 Usability questionnaire responses for the PbD system 

Tester Qn I Qn 2 Qn 3 Qn 4 Qn 5 Qn 6 Qn 7 Qn 8 Qn 9 Qn 10 Qn 11 
Detail Info Intuitive Recall Prompt Surplus Names Dialogue Methods Help Easy 

I Yes 
Yes, Had 

Not Huge Easy 
Measurements 

Yes 
Not 

intuitive, Yes Yes 
to ask Scale 5: 1 Hierarchical 

Mostly, Not Very 
Jargon at OK, some Line Useful and Prompt Reasonably 

2 Yes esp. visual Very 
obvious little 

bottom right could be drawing is 
Expressive based easy behaviour hand corner Improved Sufficient 

3 Fairly easy seer- Very Parking Yes No Yes, 
satisfied 

Guidance Efficient Beneficial Yes 

4 Yes _ Became Too many NO When Yes, Contextual Not Yes 
No, easier 

__ 
familiar buttons Familiar satisfied Help intuitive than RBS 

5 Depends 
Well 

named but Quite No Fairly Not aware of Yes, 
Keep 
Goals Had to look Possibly Yes 

difficult clear any satisfied Visible elsewhere 

6 
Not 

activity Yes OK Not Fairly 
Hard to say OK Don't 

Yes OK 
related obvious well know 

7 
abstToo ract 

Yes instantly No All at once Orientation Yes Moderate 

8 Need n Needs Partially Yes N o No No Yes 
c ' ) m 

9 

10 
Very busy 

A little, Not 
Yes 

Not 
All at once No 

Interface 
Confusing Tutorial No screen really well animation 

11 Yes Some of it 
Quite No No Yes 

Yes, Goal Can be 
No No 

unclear satisfied set/view understood 
12 Yes Not fully 

Fairly At first OK No Yes, Can 
Interesting Yes Yes, with 

yet satisfied improve ractice 

13 Yes Yes Fairly Orientated No Yes No Direction Quick No Yes, max 
Situational headings info 

Visuals 
OK, but OK, but 

Too much When 
Yes, bette Need Not Need to Yes, better 

14 Useful some can to recall familiar Don't know with more block intuitive but see block with 
d lici im rove familiarity diagram useful diagram familiarity 

15 

16 No No Not 
intuitive Yes Measurements No Yes No 

17 eed more adequate 
Some Needed to fairly No - but a lot No No more! 

Had to be Yes Improved 
feedback aspects refer to take in nudged with time 

18 

19 Probabl y 
of i t 

Needed 
No Very No - it was al l Yes, 

O i t ti 
Usually 

enough sheet little useful satisfied r en a on useful 
Fairly 

20 No, 
difficult 

No - 
Confused 

When 
familiar 

Second 
run ea ie 

Didn't 
l) Measurement s Not really 

Visual Orientation 
Depends When 

s r rea Cues confusing familiar 

Key: Positive statements 

Familiarity issues 

Negative statements 

Not answered 
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No participant provided only positive answers, although participants 10 and 16 provided 

only negative answers. There were 19 familiarity issue answers provided by 

participants, 4,5,6,7,8,11,12 14 and 20. Participants 2,3,4,5,6,8,11,12,14, and 

17 stated that the PbD Interface was intuitive; only participants 10 and 16 stated they 

found the PbD Interface was not intuitive. 

7 participants 1,2,3,4,13,14,19 found the simulator sufficiently detailed in its 

instructions and could understand the screen information, the main criticisms being that 

the screen was too abstract or too much information was provided, with participants 5, 

8,11 and 12 stating familiarity issues. 

Only participants 1 and 5 found that the Interface prompted their next action or could 

easily remember how to use it. The main criticisms were that there was too much to 

recall or that functions were not obvious. Participant 13 expressed that a significant 

problem was that the `Operations Map' mapped the laboratory when creating Goal- 

Based Behaviours, and used a fixed orientation premised on a mechatronic device, as 

shown in Figure 8.7 above, for creating Sensor-Activated and Goal-Activated 

Behaviours. The overall impression was that the interface could be initially 

intimidating. 

Participants 7 and 10 both criticised the interface for presenting everything all at once. 

Participant 7 wanted parts of the interface to appear when necessary, while participant 

10 wanted buttons hidden when not used. 
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When attempting to find out if there should be more dialogue presented on the interface, 

suggestions were mostly related to the `Use of Laboratory Map' for locating goals, and 

for the design of behaviours independent of the laboratory setting. This was summarised 

by participant 13 who suggested a directional headings for the vehicle actions. Of the 

two positive comments, participant 17's reply was a veiled criticism about the amount 

of data already presented on the screen. 

When considering the creation of behaviours on the Use of Operations Map, 

participants 1,4 and 14 found the method not intuitive. The positive comments were 

that this method was ̀ a useful and expressive form of output' by participant 2, 'ef cient 

way of monitoring the vehicle's behaviour' by participant 3, and `seemed quick to 

assemble behaviours' by participant 13. 

Question 10 enquired about the provision of a help function. 2 participants considered 

that there was no need for help, participant 13 arguing that the system is `assisted by 

limited button operations' that users can interact with. There were suggestions of what 

type of help system would be most useful - `prompt system' from participant 2, 

`contextual help' from participant 4, `a tutorial' from participant 10, ̀ a block diagram' 

from participant 14. 

Questioning the `ease of use' allowed participants to express a final verdict. Only 3 

participants, 10,11, and 16, found that the Interface was not easy to use, and participant 

10 had a familiarity issue with the ease of use. 

Eight participants thought there were parts of the interface that were unnecessary, six 

who thought that all parts of the interface were necessary, three who were unable to 

decide. Participant 8 gave a caveat of `maybe it is used at a later stage'. 
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Question 7 was the issue of the buttons names. 10 Participants expressed that they were 

happy with the names, with 6 participants expressing their criticisms of the existing 

names; of these 6 only 3 suggested alternatives. Participants, 8,13 and 20, with both 13 

and 20 suggested that the names should be context or situational sensitive. Table 8.6 

lists the suggested alternative names. 

Table 8.6 The suggested names for buttons on the PbD interface 

N Participant 
ames Original 

1 2 3 8 13 14 20 

Use of Operations View of Laboratory 
Vehicle Operations Map View of 

Map Movement Area (changes name) O erations Ma 

Set Goal Locations Position Goals Goals 
Set Vehicle Goals 

Set laboratory Map Fix Goal Locations 
Set use of 
Vehicle 

'Routing' Actions 

Set Obstacles Place Obstacle Obstacles 

Clear Obstacles Remove Obstacle Clear 

Vehicle Actions Vehicle Route 
Vehicle 

Behaviour 
Goal Achieved 

Clear Operations Map Reset Delete Operations Clear 

Specify Vehicle Specify Vehicle Behaviour 
Behaviour Route 

Resulting Vehicle Show Action(s) 
Behaviour 

Behaviour Map 
Robot's Behaviour Program Robot's Behaviour Tree? Set? 

View Running Hierarchy 

Context Sensitive 

For the suggested alternative to `Use of Operations Map', the suggestions of `View 

of... ' is not favoured, as the `Use of Operations Map' is used for both viewing the 

simulation and for creating the mechatronic vehicle's behaviours. The suggestion of 

changing the name for the context of use, is considered impractical, as in either case the 

alternative name is hidden. Participant I suggested renaming `Clear Operations Map' 

as ̀ Reset'. This is accepted as a useful suggestion, along with `Delete Operations' from 

participant 3, and ̀ Clear'. 
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Participant 20's suggestions are mostly questionable, as the use of single words 

becomes too abstract, not descriptive enough, which could prove to be problematic 

when there is already a potential problem of the Interface not providing sufficient 

prompts. Likewise there are reservations about most of participant 2's suggestions, with 

the suggestion `Robot Behaviour' being considered. The suggestion of `Robot 

Behaviour View' (the view of the program(s) being develop or tested) as `Program 

Running' by participant 1 is questionable, as there could be alternative prototyped 

Artificial Intelligences. 

8.3.4.2 The RBS System Questions 

The questionnaire also had the following questions on the Rule Based System 

(alternative system). 

1. Do you think that the Rule Based system provides a sufficient degree of detail about 

the what is happening to the screen? 

2. Do you understand the Rule Based systems information on the screen? 

3. How intuitive did you find the Rule Based system? 

4. Did you find it hard to remember how to do anything with the Rule Based system? 

5. How did you find the Rule Based system interface prompted you to particular 

actions? 

6. Do you believe that any part of the Rule Based Interface was unnecessary? 

7. What would you like as further Dialogue from the Rule Based system's Interface? 

8. What are your thoughts about the methods of determining the Vehicle Behaviours 

using the Rule Based system? 

9. Did you find the Interface easy to use? 
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There were only 9 questions, as the study was not trying to validate the naming of the 

various elements of the Rule Base System, or enquire if the system would require a help 

function. Table 8.7 below, illustrates the participants' range of replies to the questions. 

Table 8.7 Usability questionnaire responses for the RBS system 
Qn I Qn 2 Qn 3 Qn 4 Qn 5 Qn 6 Qn 7 Qn 8 Qn 9 

Tester Detail Info Intuitive Recall Prompt Surplus Dialogue Methods Eas 

No Minimal Not really Easy, By leaving Vehicle Restricted in Reasonably, 
2 Feedback, Yes Odd familiarised blanks No activity and actions not intuitive 

observe buggy concept in -30mins fault action 

3 
Yes, 

Yes 
Very 

y 
Easy to No Demonstration Obvious, Yes 

Eno able intuitive follow of commands easier control 

4 Probably if No 
Not Yes 

Followed Can't tell No 
Understood intuitive Instructions 

5 
Not 

Not for me 
Not Yes 

Got stuck Difficult Mind set Mind set No 
particularly articularl regularly for me required required 

Yes, but 
Once ýý 

Logical & 
simple, 

Needed Feedback 
' 

OK, once 
6 have to think it is OK when 

experimenter No about Vehicle t know Don 
moped 

about it familiar prompts activity 

7 Yes Yes Very No Reasonably Dishýa 
Yes 

8 reasonably 

- - 9 T 
to Yes Yes Fairly Not v. hard No Fairly Easier, less 

.. a bit intuitive buttons 

11 Yes Think so Quite No No Clarify where Quite useful No 
rule starts if visual 

12 Yes Largely yes 
Quite 

intuitive 
Need 

reminder 
Quite well No limited 

capabilities 
Yes 

Requires Once Looked at Only help Display Requires Math skills No help, no 
13 programming Yes accustomed previous from user box De-bugger to zone debug, little 

experience not too bad rules guide ensor value unclear 
Understood 

Remember No way Visual of 
Needs Needs 

14 
Secondary 

principles, 
When structures Mismatch 

of resulting 
additional 

" 
Structure 

Visual but not fluent familiar when facts-tasks judging program 
data info - 

" 
Diagram 

familiar dictionary 

15 

Not Didn't use Yes, 16 No Yes intuitive No Variable Sometimes 
Database 

17 Yes Yes 
Fairly Easy, need Informed Display Pop-up dialogs Appears 

easier intuitive reminder progress complete 
18 

19 Yes Difficult to Not at all 
Copied Dialogue box Variables Mind set Mind set No follow instructions provided Display required required 

Initial Drop down Highlights Powerful, 
20 Yes - almost No 

confusion 
No hints handy No prompts on when OK 

acitivity understood 

Key: Positive statements 

Familiarity issues 

Negative statements 

Not answered 
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The PbD based interface received 63 positive remarks, 55 negative remarks, and 6 

stated familiarity issues. The familiarity issues are more significant as the participants 

had a greater time exposure to the RBS system than the PbD system. Participants 1,9, 

15 and 18 supplied no answers. 

Participant 5 supplied no positive statements about the Rule Based System, while 

participant 10 supplied no negative statements about it. The physical issue with the Rule 

Based System was that it did not supply sufficient dialogue. The principle dialogue 

criticism was that it does not provide visual feedback, with participants 2,3,6,11 and 

14 requesting some form of visualisation of how the program worked. The RBS system 

problem was, as expressed by participants 5 and 19, that it required a `mind set' and 

participant 13 stated that it requires ̀ programming experience'. 

Participants 2,4,5,13 and 16 expressed that the RBS system was not intuitive, with 

participants 4,5,6, and 13 expressing that they found the RBS system did not provide 

any prompts on how to progress, with participants 19 and 20 expressing that they did 

not find the system provided sufficient information, and participants 4,5,12,13,14 and 

19 stating that the Rule Base system did not provide any help in remembering how to do 

any particular operation. 

When questioned about the system methods, participants 2,12 and 13 all expressed that 

the it had limited capabilities. 
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8.4 Comparative Usability of the Two Interfaces 

This includes an examination of how the participants responded to the two different 

systems tasks. The principle measure of analysis was the extent to which the 

participants repeated the tasks or task results. 

8.4.1 Repetitions of the Experiment 

A number of the participants, after achieving a task decided to repeat it. These are 

shown in Table 8.8 below. The importance of task repetition is that the participant 

showed an ease with the system being tested, and this can interpreted as the participant 

enjoyed the experiment. 

Table 8.8 Repetitions of the experiment 

P ti i t 
Rule Base System Programming b Demons tration ar c pan Task I Task 2 Task 3 Task 4 Task 5 Task 6 Task 1 Task 2 "Task 3 Task 4 

1 Yes Yes Yes Yes Yes Yes Yes 
2 Yes Yes Yes 
3 Yes Yes Yes Yes Yes Yes 
4 Yes Yes Yes Yes 
5 Yes Yes 
6 Yes Yes Yes 
7 
8 
9 
10 Yes Yes Yes 

11 
12 Yes Yes 
13 Yes Yes Yes Yes 
14 Yes 
15 Yes Yes Yes Yes 

16 Yes Yes 
17 Yes 
18 Yes 
19 Yes Yes 
20 Yes Yes Yes Yes 

Key: 0 Repeated run (for vindication) 
0 Repeated programming (from enthusiasm) 
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Participant 13 successfully repeated the entire PbD tasks after accidently deleting the 

experimental data, in 3V2 minutes, compared with the average time for completing the 

PbD tasks of -23 minutes. This repetition included running the simulator for each task. 

As can be observed from Table 8.8, with the PbD based interface more people repeated 

the task programming from enthusiasm, because it was found to be easy, while with the 

RBS system 8 participants quit. The only person to quit the PbD System was participant 

9 who had already walked out. 

8.4.2 The Like/Dislike Ratio from the Experiment Dialogue 

Table 8.9 below comprises the ratio of likes to dislikes obtained from 8.3.3 above. This 

is combined with the participants' success in the final task, `Parking in a corner' 

Table 8.9 The ratio of likes/dislikes 

System 
12 3 4 5 6- T-7 8 9 

Partici 
10 

pants 
11 12 13 1 14 15 16 17 18 19 20 

RBS 
Likes 360 103 231 45 39 5 3241 74 46 68 42 448 121 96 281 71 242 311 160 252 

Dislikes 58 18 12 4 30 19 31 35 80 21 5 39 21 19 32 10 38 23 11 130 
Ratio 

Success 
PbD 

6.2 5.7 19.3 11.31 1.3 10.26 10.512.1 10.58 3.2 8.4 11.5 5.8 5.1 8.78 7.1 16.4 13.5 14. 1.9 

Likes 64 159 5 10 87 198 0 70 12 190 65 41 142 45 183 226 48 140 
Dislikes 

LL 
9 19 3 12 12 23 0 39 3 13 6 7 11 13 27 10 14 49 

Ratio 
Success .6 

8.3 1.67 0.87 7.25 8.61 1.79 4 114.6_10.815.9 1]-'). 913.466 
. 
78 2. 3.4 2.86 

This table appears counter-intuitive. Participants 2,4,10,11,16 and 19 all had a greater 

like- to-dislike ratio in favour of the RBS system, but then quit the last task. For the 

participants who completed all the PbD tasks, participants 1,2,7 and 16 all had a 

greater like-to-dislike ratio in favour of the RBS system. 
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8.5 General Conclusions about the Experimentation 

In section 8.3 above, participant 14 achieved an unexpected result of completing the 

tasks for the PbD system in less than overall average times, which would initially 

appear to be anomalous. However, participant 19 claimed in the usability questionnaire 

that this experimentation required the ability to think logically. Participant 14 provided 

the feedback of mapping `thoughts as diagrams', which is the fundamental principle 

underlying PbD. 

Table 8.10 The evidential and stated preference of the participants 

Participant 
Evidential preference based on experimental 

data 
Timings Success 

I PbD PbD 
2 PbD ) I'M) 
3 Rule Base 
4 PbD I'hi ) 
5 PbD Rule Base 
6 Rule Base 
7 PbD PbD 
8 PbD PbD 
9 Unknown Unknown 
10 PbD PbD 
11 PbD PbD 
12 PbD PbD 
13 PbD 
14 PbD PbD 
15 PbD PbD 
16 PhD 
17 PbD Rule Base 
18 PbD Rule Base 
19 
20 

PbD PhD 

-Mli 

Nearly twice as many preferred the PbD system to the RBS system. There was no 

distinguishing variable such as age, gender, education which influenced the 

determination of preference. Evidence from timing and success rates was mostly, but 

not always coincidental with the stated preference. There was complete agreement with 

participants 1,2,3,4,6,8,11,12,14,15,16,19 and 20, partial agreement with 5,13, 

16, and 17 and complete disagreement with participants 7 and 10. 
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The Rule Base System: The first two tasks were found to be easy, but they became 

progressively more difficult. There was a high drop-out rate for tasks 4 to 6. Only one 

person showed enthusiasm for using the system. Participants took longer to achieve the 

tasks. For detailed statistics see appendix D. 

The PbD System: The first two tasks were found to be easy. Tasks 3 and 4 were found to 

be more problematic, because with task 3, there was a problem with map orientation and 

map scaling and with task 4, there was a problem of abstraction in understanding how to 

design the complex behaviours. There was a zero dropout rate for all who attempted the 

tasks, and approximately half the sample found the system a pleasure to use. Overall 

timings were a lot less than for the RBS. For detailed statistics see appendix D. 

In conclusion the PbD system shows great promise, but could be improved by some 

form of on-screen help to resolve the PbD design orientation problem, highlighted in the 

questionnaire responses. The interface could be improved by some renaming of the 

buttons, or using icon-based buttons. 
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Chapter 9 

Conclusions 

This chapter draws conclusions on the entirety of the research, with proposals for 

further research, consideration of reflective practice, and puts forward implications of 

the research. 

9.1 Conclusions to the Research Questions 

1 What are the criteria for designing a remote access laboratory for prototyping 

Artificial Intelligence, as part of a distance learning organisation's available 

tools? 

"A critical criterion is how to present experiments which accurately represent the 

physical world, applying the associated theory being learned. The emphasis is on 

the laboratory's design as a tool for appropriate student learning, only achieved by 

a physical, remote access laboratory, allowing `any-time, any-place' access. 

" The laboratory is to be flexible, facilitating students carrying out individual work 

or group activities, and adaptable to course contents developments, while invoking 

enthusiasm to facilitate a successful course and continued learning. 

" Experimental problem solving is expected to provide the same solutions to 

problems as occurs in good engineering practice. 

These criteria were established in chapters 2 and 4, which drew upon the literature 

and the practical experience of using the facilities of an existing Mechatronics course. 
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2 What fusion of technologies should be used to develop a Mechatronics 

prototyping laboratory? 

This was established in chapter 4, which drew upon the recommendations from the 

research in collaboratories to propose a multi-agent system architecture, which is a 

network of autonomous agents. The fusion envisaged comprises: 

"A multi-user interactive environment architecture with the expectation of 

adaptability to rapid developments, best served by a distributed software 

architecture, and developed as a multi-agent system, comprising : 

(i) a Blackboard agent architecture developed as a Mechatronic Device Operating 

agent to test a received prototype Artificial Intelligence safely, 

(ii) a Knowledge-base agent architecture to store the system's knowledge. 

"a Mechatronic Device with both sensors and actuators to be accessed during 

experiments, 

"a Programming by Demonstration Interface as a programming tool. The 

experimentation demonstrated its potential to engender enthusiasm, which is 

important for the laboratory's success. 

3 What methodology and technologies could assist in rapid prototyping Artificial 

Intelligence in a distance learning mechatronics course? 

" Programming by Demonstration method. This involves a directness of designing 

robot behaviours, with an immediate visualisation of the behaviour being 

designed. The experimental results described in Chapter 8.3.1 show this is easy to 

learn, and from 8.3.4, that it is demonstrably intuitive, with 8.4.1 showing that it 

engenders enthusiasm. 
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9 An Object Orientated approach to create a hierarchy of robots behaviours. The 

experimentation established that this allows the assembly of a prototype Artificial 

Intelligence using minimal of effort, with chapter 8.3.4 demonstrating its 

efficiency and usefulness, though in its current implementation it needs 

modification to aid orientation while designing the demonstrated robot path. 

4 What design of interface to such a laboratory would allow appropriate analysis 

and demonstration of prototype Artificial Intelligence? 

" The current design of the interface, which focuses on designing, analysing and 

demonstrating a prototype Artificial Intelligence, was demonstrated to be 

effective, in section 8.3.2. Section 8.4.1 shows that some participants had 

problems with the scaling and orientation of the robot's path. 

" The use of Distributed Cognition methods for the interface design can help prompt 

the next part of the programming process as shown in 8.4.1, by limiting the 

interactivity of the interface to appropriate predetermined choices, although there 

is an issue of presenting too much information to the user all at once. 

" The use of a pop-up based help system to guide the design and development of the 

prototype Artificial Intelligence would help overcome the issues of interface 

navigation. 

" The use of simulation to help rapidly test the prototype Artificial Intelligence 

before use in a laboratory was found to be effective. It allowed an immediacy of 

recognition of robotic behaviours designed and their activity, as shown in section 

53.4 to section 5.4.3, and in section 8.3.4. 

" The use of a video-linked image to the interface from the laboratory to show the 

mechatronic device while under test, described in section 5.4.4. 

172 



9.2 Conclusions to the Aims and Hypothesis 

The aims of the research were: 

1. To establish the viability of remote access facilities to augment distance learning. 

This was established in chapter 4, with the design proposal for a laboratory. Particular 

attributes taken into consideration were that it must be: 

" easy to assimilate new mechatronic technologies for the courses offered, to keep it 

relevant, 

" easy to scale the laboratory software with a distributed multi-agent system, within 

the constraints of the laboratory's physical size, number of computers, and the 

available bandwidth for internet use. 

2. To design and evaluate technology which can provide an environment for students 

to learn to rapidly develop prototype Artificial Intelligence for a mechatronic 

device. 

This was achieved through experimentation with a novel prototyping interface, which 

included the use of Programming of Demonstration. 

" Chapter 8 described how seven participants managed to complete the 

Programming by Demonstration final task of `parking in a corner', with minimal 

tutoring, a sample average of 23 minutes, compared to the Rule Base System, 

where only 4 people finished the final task with a sample average time for using 

the interface of 50 minutes. 
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3. To test the hypothesis: 

Programming by Demonstration could prove a more intuitive 

approach to the complexity of developing an emergent intelligent 

behaviour than text-based programming. 

The hypothesis is supported by strong experimental evidence described in section 8.5, 

which establishes that 11 participants of a sample of 20 stated a preference for using 

the Programming by Demonstration based interface compared with an established 

text-based programming system. While using the text-based programming system, 

one participant left the laboratory and 7 other participants quit the experimentation. 

No participants quit while using the Programming by Demonstration system, and 7 

showed enthusiasm for the system. 

The particular feature of the PbD was the ease of developing and assimilating 

behaviours. It was found easy to repeat and modify the behaviours designed. The text- 

based system was found to be slow to implement, and difficult to debug and modify; 

furthermore it was found difficult to relate the programming to the mechatronic 

device's actions. 

9.3 Conclusions for Remote Access to a Prototyping 

Laboratory 

This research sought to increase the knowledge of theories relating to Remote Access 

Laboratories. The first issue to be determined was that the laboratory can only operate 

in an education environment, as explained by Coventry's [1995] 

(Re)conceptualisation Cycle, which approves the teaching of theory and emphasises 

the necessity for presenting authentic problems during the experimental process. 
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Current research in distance learning laboratories was considered, with the 

expectations and objectives for an engineering laboratory, the crucial point being that 

experimentation had to be an accurate representation of the physical world for 

applying the associated theory. This led to rejecting a simulated laboratory. The 

proposal of a physical Remote Access Laboratory maintains the `any-where, any- 

time' principle of distance learning. 

With the requirements for an engineering instructional laboratory to support 

teamwork, the principles of a collaboratory were considered essential for the `access 

architecture' to the laboratory. An established need for data sharing, with simplicity of 

use when adopting new technologies, necessitated a form of easily updated distributed 

software architecture, to support a variable number of users working in groups, or 

individually in the laboratory. The proposed use of a Multi-Agent System was 

intended to achieve optimal design of a Remote Access Laboratory. 

The design of the laboratory interface could not be satisfied by the principles of 

Intelligent Training Systems which are the current design principles applied to 

hypermedia-based learning systems. The laboratory interface design had to draw on 

the theory of Human-Computer Interfacing, which is fragmented, and problematic due 

to the disconnection between theory and practice. Also the application of theory 

requires experimentation, which may provide spurious results described by the 

`Hawthorne Effect'. 
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The question of how to rapidly prototype Artificial Intelligence was addressed. The 

problem was that using text-based languages resulted in students having to learn a 

computer language before programming a prototype Artificial Intelligence, which can 

be a time-consuming process. 

The solution was the use of Programming by Demonstration, which allowed the 

designer to directly prototype Artificial Intelligence, without the demands of a 

structured language forcing its constraints and requirements on the prototyping 

process. Further, the problem of translating the intended prototype Artificial 

Intelligence program into a programming language is compounded by the `Gulfs of 

Execution and Evaluation'. 

9.4 Further Research 

There is a need for further research to bring the remote access laboratory closer to 

implementation. 

1 Further development of the interface 

to increase the intuitive nature of the Programming by Demonstration interface, it will 

be essential to examine further the design, with additional work in: 

" developing appropriate and intuitive buttons for rapid understanding and use of a 

Programming by Demonstration system for prototype Artificial Intelligence 

development, 

" developing a more intuitive method of assimilating the Robotic Behaviours into 

an integrated prototype Artificial Intelligence. 
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2 Development of a prototyping laboratory 

Experimentation is proposed to: 

" establish the viability of a multi-agent system which can support a multi-user 

interactive environment architecture which operates a physical laboratory, 

" connect the laboratory interface design to the laboratory allowing remote 

experimentation of the prototype Artificial Intelligence. 

3 Development of the communications architecture 

Before further testing, there is a need to develop the communications infrastructure. 

This will allow deeper exploration of the facilities needed for mechatronics learning, 

including: 

9a method of transmitting the prototype Artificial Intelligence to the laboratory for 

testing, 

"a connection of the Interface to a mechatronic device with actuators and sensors, 

allowing the responses to be relayed to the interface in real-time, 

"a means for the users to collaborate, sharing real-time data and results. This will 

involve an architecture to access the laboratory, for the communication of data, 

and combining multiple streams of real-time user data with the laboratory's data. 

Finally, the knowledge-base agents will need to be developed to support the 

combination of multiple real-time data streams with previous knowledge. 

4 Further analysis of the applicability to Mechatronics 

Mechatronics is the fusion of three engineering subjects: mechanics, electronics and 

intelligent control systems. For greater applicability to Mechatronics, the laboratory 

could be reasonably expected to allow experimental examination of: 
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9 other physical behaviours of intelligent control systems. Robots are not just 

expected to move forwards and backwards. Intelligent control systems are being 

used in aircraft, helicopters and submersibles to enable autonomous, unmanned 

control. 

9 other AI software methods such as Neural Networks, Fuzzy Logic systems and 

computer vision. 

" co-operation between robots, and the design of co-operative robotics. This is a 

current sphere of growing research interest, from robo-football to swarm-based 

robotics, relevant to remote, harsh environments such as required by a Mars 

explorer, for which co-operative robotics could provide resilience. 

" expanded testing of a complete course, or sections of a course. The current state of 

developments gives encouragement that this is now worth considering as a next 

piece of research 

9.5 Future Open-Learning Access to Online 

Laboratories 

Open access to learning material is currently limited to a few applications and 

organisations. However, with the development of web-based technologies which 

contribute to the globalisation of information transfer, the issue of whether and how 

online laboratories would be widely accessible becomes of increasing significance. 

Research into how such facilities as web 2.0/semantic web, open source and wiki 

models could influence future developments in engineering design learning and its 

commercial development. 
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The semantic web is broadly but vaguely understood as an extension to the worldwide 

web, in which the contents are no longer just freestanding items comprising text, 

images and software that require humans to understand and utilise them. The 

development would involve a search engine to access information available on the 

internet, using a set of inference rules for automated reasoning. The current solution 

provided is the use of XML, eXtensible Markup Language, a set of tags for a 

document providing details of its contents, without providing details of its structure. 

Additionally the contents would be in a form that could be utilised by autonomous 

intelligent agents, allowing integration and sharing of information in a substantially 

automated form of engineering design. This suggests that the Programming by 

Demonstration approach of this research could lead to PbD at a higher level, in which 

demonstrable functions would be web accessed and be of wider application than 

vehicle navigation. 

Similarly, open source could allow a wider community of researchers, students and 

professional engineers to use an online laboratory. At a basic level, software 

components could be freely obtained as `objects'. For example: the laboratory 

Bookkeeping agent could provide an open access library of programmes for students 

to use as part of their learning how to design prototype Artificial Intelligence. This 

would be a library of previously designed and tested prototype Artificial Intelligences 

which achieve similar objectives to a learner's intended prototype Artificial 

Intelligence. The learner could examine the provided source to obtain an insight to 

solutions of the posed problem. Further, this would allow development of the 

laboratory by establishing potentially more efficient or innovative solutions to 

problems. 
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The use of a Wiki model concept with an open access library, could be useful as a 

means of collaboration amongst groups of learners or designers. There is currently a 

problem with vandalism such as the creation of deliberately inaccurate data in a Wiki 

entry. By the deliberate design of behaviours which visibly display the program 

operation (circumventing the Gulf of Execution), this problem could be reduced. 

Adopting Wikipedia's new concept of a `trusted' user, would further promote 

trustworthiness based on creating a hierarchy of contributors, with their rankings 

based on verification of the material supplied. Any new prototype Artificial 

Intelligence placed as an open resource could be moderated and assessed for 

trustworthiness. 

9.6 Reflective Practice 

My aim was to develop my research skills to the extent of being able to continue from 

this research to working without the need for supervision. 

Before beginning the PhD I completed an MSc in Digital and Opto Electronics, where 

the research for the final project (in real-time video colour restoration-based computer 

vision) had been extensive, but mainly comprised surveying background knowledge, 

and providing a context for the development. I employed this form of background 

research in the beginning of the PhD, providing an original 80-page state-of-the-art 

report which did not initially survey the literature in a critical manner. 
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From the original research proposal, I outlined a plan to research and test a remotely 

accessed laboratory. The initial research was directed at the laboratory development, 

which was an over-ambitious development of a laboratory which allowed a user to 

program nearly every aspect it, with a catalogue of about 7 different agents, to test 

prototype Artificial Intelligence including prototype Computer Vision Al. I started 

with the Programming by Demonstration system, but had difficulty formulating the 

`end product', as I was unaware of any comparable software system to investigate for 

design and development guidance. As the system developed, the ideas for the system 

started to emerge. This was achieved by considering what would be expected from a 

prototype Artificial Intelligence's behaviour. 

My first learning step was to critique the initial background research to a greater 

depth, compared with the standards attained previously for my Masters degree. My 

next step was to consider carefully, what I wanted to achieve and how to achieve it. I 

had to learn to work to a greater degree to a structured outline, to plan the progress, as 

much as possible. Part of this lesson was as much the importance of structuring 

software. Ad-hoc software development is notoriously `buggy', and without structure 

it quickly becomes too complex and hard to manage. 

I started to work on a focused piece of software, the PbD system. I had an 

understanding of what was expected from the system, although the development was 

laborious. The focused development was useful; this also guided my research, as I 

was now able to clearly determine what I was attempting to achieve. Although, from 

the outset, I was able to do my own research, and report on it, I subsequently learned 

the difference between summarising and critical assessment of research papers. 
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While working on the research I gained experience and skills that would enable me to 

continue with further research independently, having learnt a number of lessons from 

this experience. These are: 

" The importance of structuring research. I have learnt that there is a diversity of 

opinions for solutions to a problem, and there is a need to assemble and critique 

the variety of opinions. 

" To progress the research, I had to identify key issues, and ultimately place them 

within a wider context. 

9 To develop the experimental software system, I had to become adept at structuring 

my approach to problem solving. As I needed to develop a Programming by 

Demonstration system, without any equivalent software as a guide, I had to learn 

to develop it in distinct progressive stages, towards a prototyped system. 

" As a part of the experiments, I had to work with people, and I learned the 

importance of ethical behaviour in the conduct of experimentation. During the 

experimentation, I perceived that I was also a participant, because my comments 

affected the outcome of the participants' efforts. It became clear that although I 

intended to be an independent, objective observer, I was inevitably also a 

stakeholder in the research. 
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9.7 Implications of the Research 

The significance of the work reported is that it is a response to the growing need for 

distance learning, particularly for an adult population that is seeking to progress in an 

environment of life-long learning. Currently resources and efforts are being ploughed 

into the development and maintenance of conventional laboratories, as part of an 

expansion in higher education, led by Government policies. There is a continuing 

need for modem engineering techniques and laboratories to achieve competitiveness 

in a globalised market. 

Continuation of this research should be viewed not merely as an interesting academic 

exercise, but as an urgently needed tool for the development of skills for engineering 

as a whole. 
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The Interface Design 
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An Introduction to the Rule Base System 

" This Rule Based system is based on: 
oA Computer with the Rule Base System 
o An Infra-Red Communications Link 
oA Vehicle under the control of the Rule Based System via tl :!,! i-Red Link. 

This Rule Based System's interface displays a toolbar, and tour internal N% indo%ý s. 
The means ol'operation is by using the Toolbar, which comprises: 

I< 11 Stopped System Fired : None Rules Fired :0 Comets 

[ý<] Stop and Reset: To stop the system and re-initialises the variables. 
[>] Run: "ho run the system's current data. 
[ýý] Step Through: Run the system one rule at a time. 

Further, on the "Toolbar there are: 
1. State Indicator: this can be Stopped, Running or Stepping. 
2. System Fired: Conflict Resolution Mode Indicator. 
3. Rules Fired: Number of times the rules have been examined. 
4. Comms: The communications light. This indicates the current status of 

communication between the rulebase and the Vehicle. 

Additional Notes: 
[Esc] The `Panic Button': When the vehicle runs out of control pressing the 'panic 
button,. i uýuall\ at the top left of the keyboard) will stop the vehicle's motors. 
The Communications light: This is on the Toolbar at the top right of the screen. 

( ýýý»ý>>uniýatiýýns have not been initiated: 
Comm 

" .,:; mit. itions is working properly. 
Comms 

f, imposed t cn stop the pro-gram. IL 

Comms 
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TASK 1: Testing Motors and Sensors 
This Task is intended to: 

" Test the communication between the vehicle and the computer, 
" Demonstrate that the vehicle is under the computer's control. 
" Allow initial interaction 

Help to Complete the Task: 
1. Left click on File 
2. select Test Motors and Sensors. 
3. Start the selected rules by left clicking the Run Button 1>1 

" The task initialises the infra-red communications between the computer and the 
Vehicle. 

" The task has the vehicle moving forward using the left and right motors 
alternatively twice. 

" The task displays the current sensor values in the bottom left of the screen. 

Additional Notes 
1. The Motors: l'he motors on both sides of the vehicle activate alternately twice. 

: Aller 111 P, the sensors can be tested. 
2. The Sensors: look at the value of the variable all sensors in the Variable 

Database ý\ indow (Bottom left of the screen). It should be zero. If not check that 
one or more of the sensors (springs) is not touching the common earth rail. 
o Press any of the sensors springs on the Vehicle to see the sensor v alues 

change. 

The sensors have the following values: 
Your Left Right 
Vehicle Right Left 
123456789 10 lI 12 

4096 2048 1024 512 256 128 64 32 16 842 

" To stop the experiment from ruºnning: press the stop button 11<1 

" The emergency stop button is the [ESC] button on the ke\ hoard 
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Task 2: Make Vehicle Move Forwards 

This task is to edit existing rules 1 and 2 to match the rules below: 

IF 
1 

THEN 

initialise communications 

communicate(1) 
initialise communications 
go forwards 

is True 

Action 
is False 
is True 

iF is True J 

JJ 

THEN communicate(l) Action 

Check f initialise communications is False 

go forwards is True 

Cancel 

OK 

� Forward 

1. Edit Rule 2 to below 
IF go forwards is True 
THEN go(5) Action 

pause(2.1) Action 
stop() Action 
go forwards is False 

2. In the top left hand screen, there is a Fact Database. 
Set go forwards is False 

Start the selected rules by left clicking the Run Button 1>1 

Additional 
. 
Votes: 

1. Modifying Rules: double left-click a rule to produce the rule's edit window. 
2. Adding New Rules: double left-click the Rules Database top-most clear line to 

bring, up a \N indow for inputting new rules. 
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Task 3: Make the Vehicle Move Backwards 
This task is to Design and edit a new rule, which allows the vehicle to move 
backwards. 

Help to complete the task: 
An explanation of rule construction 

IF RULE NAME is True 
THEN ... command Action 

... RULE NAME is False 

... 
NEXT RULE is True 

The Actions use the available commands given below. 

command left motor right motor vehicle moves: 
go(O) off off stopped 
go(1) off forward turn forward anticlockwise 
go(2) forward off turn forward clockwise 
go(3) off backward turn backward clockwise 
go(4) backward off turn backwards anticlockwise 
go(5) forward forward forward 
go(6) backward backward backward 
go(7) forward backward rotate clockwise 
go(8) backward forward rotate anticlockwise 
pause(s) the rulebase pauses for s seconds, 

pause(s) has a range of 0.0 and 65.0 seconds, 
as s has a resolution of 0.1 is 0.055seconds. 

stop() this is equivalent to go(0) and stops the vehicle 

: (Iditional Notes: 
Rule 1 

As the Rule Name is initialise communications, Rule I starts with 
IF Initialise Communications is True. 

o The commands in Rule 1 are: 
o communicate(1) initialises the infra-red communications. 
o initialise communications is False Rule I is not to be performed again. 
o go forwards is True execute go forward as a set ot'rules. 

Rule 2 
I he Rule Name is go forwards, Rule ? starts with 

IF go forwards is True 
The Rule will only execute when go forwards as a rule set is True 
Rule 1 has: go forwards is True. 

o The commands in Rule 2 are: 
THEN go(5) Action both motors set forwards 

pause(2.1) Action Pause for 1.165s betöre 
stop() Action stop the vehicle. 

o The Rule Name is False to prevent repetition 
go forwards is False 
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Task 4: Detecting Obstacles 
Amend rules to receive and react to sensor input. 
The vehicle should move forwards, detect an obstacle and move backwards. 

Help to complete the task: 
o The previous rules drove the Vehicle backwards and forwards irrespective of 

external conditions. 
o The rules will be modified to use sensors (the set of springs on the front of the 

Vehicle) to control in different circumstances. 

Rule 2 
IF go forwards is True 
THEN go(5) Action 

go forwards is False 
test sensors is True 

Rule 4 
IF test sensors is True 
THEN all_sensors = allSensors() Assign 

Rule 5 
IF test sensors is True 
and all sensors >0 is True 
THEN stop() Action 

test sensors is False 
go backwards is True 

Additional Notes: 
Rule 4 

all_Sensors = allSensors() Assign 
all-Sensors is a variable with the value given by the allSensorsO command 

Rule 5 
I he Rule Name is 

IF test sensors is True 
and all sensors >0 is True 

The Rule will only execute when both test sensors as a rule set is True 
and all-sensors is a positive value. 

Rule 2 has: test sensors is True 
Rule 4 provides all sensors with its value. 
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Task 5: Obstacle Navigation 
The task is creating rules to react to specific sensor values and negotiate an obstacle. 

Help to complete the task: 
1. The sensors have the following values: 

Left 
123456 
248 16 32 64 

126 

Right 
789 10 11 12 
128 256 512 1024 2048 4096 

8064 

2. all_Sensors has the sensors value provided by the allSensorsO command. 
If some of the sensors on the left have been activated, but none on the right, the 
following would be true: 

" bitAnd(all sensors, 126) >0 
" bitAnd(all sensors, 8064) =0 

3. These conditions can be used to test if a detected object is on the right or the left. 
The following rule outline can be used for determining the vehicles behaviour. 

Rule 5 
IF bitAnd(all_sensors, 126) >0 TRUE 
and bitAnd(all_sensors, 8064) =0 TRUE 
THEN all sensors =0 Action 

4. To rotate the vehicle 90° either 
" clockwise 

go(7) Action 
pause(2.1) Action 
stopp ý Action 

or 
" anticlockwise 

go(8) Action 
pause(2.1) Action 
stopp Action 
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Task 6: Park in a Corner 
Create rules for the vehicle to park in a corner parallel to one of the walls. 

Additional Notes: 
The Commands for the Rule-Based System are: 
allSensors() This returns the status of the sensors as a number between 0 and 2+4+8 

+ 16 +32 +64+ 128+256+512+ 1024+2048+4096= 8190 

collisionMode() After this command, the moving vehicle will stop when any of the 
sensors are activated. Once the vehicle has stopped, or the motors have timed out, 
this mode is cancelled. 

communicate(1) This command initialises the infra-red communications. 
communicate(O) This command closes down communications 

go(n) This determines the motor directions. 
command left motor right motor vehicle moves: 
go(O) off off stopped 
go(1) off forward turn forward anticlockwise 
go(2) forward off turn forward clockwise 
go(3) off backward turn backward clockwise 
go(4) backward off turn backward anticlockwise 
go(5) forward forward forward 
go(6) backward backward backward 
go(7) forward backward rotate clockwise 
go(8) backward forward rotate anticlockwise 
neverStop() This is the equivalent to stopAfter(O). 

pause(s) The rulebase pauses for s seconds, where s is in the range of 0.0 and 65.0 
seconds, with a resolution of 0.1 is 0.055seconds. 

stop() This is equivalent to go(0) and stops the vehicle 
stopAfter(time) The Vehicle is instructed how long to obey the last go(n) command. 
The time can be between 0.1 and 25.4 seconds, with a resolution of 0.1 seconds. The 
default is 5.0 seconds. Setting stopAfter(0) sets the command as continuous. 

The Sensors have the following values: 
The sensors have the following values: 
Your Left Right 
Vehicle Right Left 
123456789 10 lI 12 

4096 2048 1024 512 256 128 64 32 16 842 
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An introduction to the Programming by 
Demonstration System 

This Programming by Demonstration System is based on: 
" Graphically designed instructions, allowing a designer: 

o To design the robot's program in a visual format. 

o To check the robot's program by inspection. 
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Generally: Input Output Robot Behaviour Details 

This systems interface has: 
1. Operations Map: This is where the robot is graphically programmed, and where 

the simulation of the robotic programming is observed. 
2. Use of Operations Map: This set of Buttons affect the operation of the 

Operations Map. 
3. Specify Vehicle Behaviour: This allows design of robot behaviours related to 

sensor activation values. 
4. Measurements: As the program is designed the details of program length, and 

direction of travel, angle and direction of rotation is given. 
5. Operations Text: This is where the interface provides information about what the 

interface is doing. 
6. Mechatronic Device Output: This is the robot's sensors values. 
7. Operations: The robots program is tested, by using simulation, or connection to a 

laboratory. 
8. Control Buttons: These buttons manipulate the elements of the robot's intended 

designed behaviour. 
9. Robot's Behaviour View: This displays the elements of the robot's programmed 

behaviour. 
10. Save/Recall Behaviours: These two buttons save the Robots behaviours to a file, 

and recall a robot's behaviours from a previously saved file. 

7» 



Task 1: Initial Goal Setting 
Set some initial goals for the interface to simulate a robot's behaviour. 

Help to complete the task: 
1. Left click on Use of Operations MapiSet Goal Locations button. 

Use of oo. an. M, 

2. Left click on the Operations Map area to locate the two `Goals'. 
" The first goal is where the robot is intended to start. 

3. 

"A subsequent goal is a location where the robot is intended to go to. 
" Arrival at a goal location is an accomplishment of the task set for the robot. 
Left click on Save button. 

ýbýt, ear. a, v 
M Rayem: 

4. Left click on the Robot's Behaviour View area, locating and highlighting `Goal 
States of: 1& 2'. 

Rood'. Bdh- Vw 
P apps 

5. Left click the Run Button in OperationsiSimulator to operate the Simulator. 
r 

Op", 5m1aka 

P. 
Remae lýuý 

Additional Notes: 
" The Simulator will begin by placing on the Operations Map the First Goal 

Location, and subsequently performs a path following cycle 
o The Simulator determines if there is another location to `go to', then places 

this location on the Operations Map. 
o The Simulator then `follows' the path which is displayed as a black line. 

1. To pause and restart a simulation: press the Pause button in 
OperationslSimulator. 

2. To stop a simulation: press the Stop button in OperationsiSimulator. 
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Task 2: Creating Obstacles 
The Task's Intentions: 
Create a simple obstacle which the simulator is expected to interact with, and a robot 
may encounter. 

Help to complete the task: 
1. Clear the Operations Map (Left Click the Use of Laboratory MapiClear 

Operations Map). 
2. Left Click Use of Laboratory MapISet Operations Map. 

The goals currently being identified in Robot's Behaviour View are presented on 
the Operations Map. 

3. To outline an obstacle, 
a. Single left click to define an start point for drawing an obstacle. 
b. When satisfied with an obstacle's length and direction, single left click for the 

end point. 

Once the obstacle(s) have been illustrated 
4. Operate the Simulator, and examine the robot's behaviour when the robot 

contacts an obstacle. 
5. If the Simulator contacts an obstacle, the simulator determines what the sensor 

outputs are and Displays the sensor outputs in Mechatronic Device 
OutputlSensor Output Box. 

Additional Notes: 

o To use the Simulator, Left Click the Run Button in OperationsiSimulator. 
o The Simulator performs the following path following cycle. 

o The Simulator determines if there is a location to `go to', then places this 
location on the Operations Map. 

o The Simulator then `follows' the path which is displayed as a black line, as 
the Simulator follows the line, it performs this cycle 
1. Determine what the sensor outputs are and Displays the sensor outputs in 

the Sensor Output Box. 
2. Use the Sensor Data to determine the robot's obstacle avoidance 

behaviour. 
3. If the Simulator does not find an appropriate behaviour to avoid an 

obstacle, the simulator will stop. 

o The sensors are intended to simulate the sensors on the robot shown below, they 
are at the front and are activated by touching an ohject. 
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Task 3: Obstacle Avoidance 
Create a simple generic behaviour for the simulated robot to avoid the simulated 
obstacle, and observe the simulated behaviour results. 

The behaviour is not situation specific, but is intended to operate in all circumstances 
where the sensors have been activated regardless of orientation. 

Help to complete the task: 
1. Single left click the Specify Vehicle BehaviouriSensor buttons to specifiy which 

sensors activate the robot's behaviour. 

o As each Sensor Button is pressed, an indicator to the left switches colour, 
Black indicates an inactive state, and Red an activated state. 

Sý WW B« 
Swam swum z Sý4 

2. Single left click Specify Vehicle Behaviourl Resulting Vehicle Behaviour 
3. Use the Operations Map to design the behaviour 

o The Operations Map is relative to the Vehicle. Thus: 
Ope'Mmc Map n.,. 

Forwards 

o To start designing the behaviour single left click on the Operations Map. 
o As each part of the Robot's behaviour is determined, single left click. 
o To finish illustrating the behaviour, use a double left click. 
o During design, the behaviour is magnified, at a scale of 5: 1. 

4. When the behaviour has been demonstrated: double left click to finish. 
5. Click on `Goal States of :1& 2', within the Robot's Behaviour View area. 
6. Click the Save Button in the Behaviour Buttons panel. 

Additional Notes: 
While designing the Behaviour, the interface displays the measurements detailed by 
the behaviour in the Measurements Panel. 
o Angle of Rotation: shows the angle in degrees and automatically determines if 

this is clockwise or anti-clockwise rotation. 
o Distance: determines if the vehicle is moving forwards or backwards, and shows 

the distance being measured during the design. 

This information is duplicated to the right in the Operations Text box. 
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Task 4: Park in a Corner 
The Task's Intentions: 

" Create a rule for the rulebase to detect the edges of the robot's work area and park 
in a corner parallel to one of the walls. 

Help to complete the task: 
o The Behaviour designed to park in a corner is generic 

1. Highlight Goal States I&2, in the Robot's Behaviour View. 
2. Press the Set Goals Locations button. When the mouse is on the Operations 

Map, the nearest goal is displayed. 
3. Select the Goal the behaviour is expected to be activated at. 
4. Save the Goal state selected, and highlight the saved goal state. 
5. Press the `Clear Operations Map', then `Set Obstacles'. 
6. Create the obstacles which the robot's behaviour is expected to interact with. 
7. Press Use of laboratory MaplVehicle Actions button to design the behaviour. 
8. Single left click on Operations Map initialising the Goal Activated Behaviour. 
9. Demonstrate the expected robot actions to park in a corner noting: 

o When the behaviour interacts with an obstacle: 
The behaviour design includes 

ovum interaction with obstacles. The 
designed behaviour stops until 
the sensor values are confirmed. 

The sensor values are 
displayed. Pressing 
Confirm recontinues 
the behaviour design. 

The design of the behaviour 
will continue when the mouse 
comes into close proximity to 
the last position of the 
designed robotic behaviour. 
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o The behaviour is built up from a series of independent (and relatively co- 
ordinated) actions that result in an overall behaviour which achieves the 
objective designed. 

10. Double left click to Finish 
11. Select `Goal States of : 2' in Robot Behaviour View, and Save the behaviour. 
12. Each Goal Activated Behaviour is saved with `Goal States of : 2' selected 
13. Select `Goal States of :1& 2' and run the simulator. 

Additional Notes: 
Sensor Activated Behaviours have to be created to compensate for any mis-matches 
between the `physical results' compared to the designed Goal Activated Behaviour. 
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Appendix C 

Usability Questionnaire 
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Usability Questionaire. 

Do you think that the Simulator system provides a sufficient degree of 
detail about what is happening on the screen? 

Do you understand the Simulator's systems information on the screen? 

How intuitive did you find the Simulator system? 

Did you find it hard to remember how to do anything with the Simulator 
System? 

How did you find the Simulator interface prompted you to particular 
actions? 

Do you believe that any part of the Simulator interface was unnecessary? 
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Are you satisfied with the Interface's Names? 

Use of Laboratory Map? 
What you consider a better alternative? 

Set Goal Locations? 

QDDDQQDQDQQQQQQQQQ 
Set Laboratory Map? 

QDQQDDQQQQQQQQQQQQ 
Set Obstacles? 

QQQQDQQQQQQQQQQQQQ 
Clear Obstacles? 

QQDQDQQQQQQQQQQQQQ 
Vehicle Actions? 

QQQQQQQQQQQQQQQQQQ 
Clear Operations Map? 

QQQQQDQQDDQQQQQQQQ 
Specify Vehicle Behaviour ? 

QQQQQQQQQQQQQQQQQQQ 
QQQQQQQQQQQQQQQQQQQ 
Resulting Vehicle Behaviour? 

QQQQQQQQQQQQQQQQQQQ 
QQQQQQQQQQQQQQQQQQQ 
Robot's Behaviour View 
QQQQQQQQQQQQQQQQQQQ 

QQQQQQQQQQQQQQQQQQQ 
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What would you like as further dialog from the Simulator System's 
Interface? 

What are your thoughts about the methods of determining the Vehicle 
Behaviours using the Robot's Behaviour View? 

Do you believe you needed a Help System with the Simulator system's 
Interface? 

Did you find the Simulator system's Interface easy to use? 
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Do you think that the Rule Based system provides a sufficient degree of 
detail about what is happening on the screen? 

Do you understand the Rule Based systems information on the screen? 

How intuitive did you find the Rule Based system? 

Did you find it hard to remember how to do anything with the Rule Based 
system? 

How did you find the Rule Based system interface prompted you to 
particular actions? 

Do you believe that any part of the Rule Based interface was 
unnecessary? 
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What would you like as further dialog from the Rule Based system's 
Interface? 

What are your thoughts about the methods of determining the Vehicle 
Behaviours using the Rule Based system? 

Did you find the Interface easy to use? 

Which System did you prefer and why? 
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Appendix D 

Participant Timings 
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Participant Timings 

Table D. 1 The test of the PbD system by the PbD first sample group 
PbD - Averagess Partici pants 
RBS Group Sample is 17 16 15 14 10 4 3 2 1 

PbD I 03: 19 02: 51 01: 59 03: 27 12: 12 01: 46 02: 20 01: 26 02: 49 02: 31 03: 00 01: 42 
PbD 2 02: 24 02: 11 04: 28 02: 48 02: 07 01: 51 01: 40 01: 47 02: 16 02: 22 02: 10 02: 27 
PbD 3 09: 59 08: 18 09: 26 16: 03 05: 43 04: 49 06: 05 11: 32 14: 31 15: 04 06: 08 10: 28 
PbD 4 11: 50 09: 43 10: 05 13: 42 13: 49 05: 27 04: 28 08: 06 10: 42 24: 23 15: 16 12: 19 

1 27: 31 1 23: 02 

Table D. 2 The test of the RBS system by the PbD-first sample group 
PbD - Averages Participants 
RBS Group Sample 18 17 16 15 14 10 4 3 2 1 

RBS I 02: 10 02: 30 02: 08 03: 01 03: 26 01: 36 01: 33 00: 39 01: 30 01: 09 03: 15 03: 22 
RBS 2 05: 35 06: 52 06: 48 04: 54 07: 26 04: 10 08: 25 04: 26 05: 01 04: 16 05: 33 04: 46 
RBS 3 06: 59 07: 33 05: 14 10: 25 13: 21 04: 55 09: 08 05: 40 03: 28 05: 43 06: 59 04: 59 
RBS 4 08: 01 08: 36 08: 48 10: 37 04: 41 04: 37 08: 08 00: 00 03: 50 09: 04 20: 40 01: 42 
RBS 5 10: 48 12: 49 13: 14 22: 42 10: 55 07: 16 06: 37 00: 00 09: 33 05: 18 00: 00 10: 53 
RBS 6 15: 04 12: 31 14: 13 19: 30 00: 00 06: 16 00: 00 00: 00 00: 00 13: 41 00: 00 21: 40 

148: 37 1 50: 51 

Table D. 3 The test of the PbD system by the RBS-first sample group 
RBS - Averages Particip ants 
PbD Group Sample 20 19 13 12 11 9 8 7 6 5 

PbD I 02: 05 02: 51 02: 06 02: 40 02: 09 02: 46 02: 58 00: 00 03: 02 01: 25 01: 37 02: 11 
PbD 2 01: 44 02: 11 04: 18 01: 13 01: 17 01: 57 03: 22 00: 00 02: 29 00: 41 01: 06 01: 02 
PbD 3 05: 47 08: 18 06: 22 07: 12 04: 49 05: 07 10: 25 00: 00 11: 24 02: 51 06: 04 03: 33 
PbD 4 06: 38 09: 43 05: 43 06: 40 05: 45 06: 01 17: 47 00: 00 10: 07 05: 29 05: 07 03: 38 

16: 14 1 23: 02 

Table D. 4 The test of the RBS system by the RBS-first sample group 
RBS - Averages Participants 
PbD Group Sample 20 19 13 12 11 9 8 7 6 5 

Rule I 02: 50 02: 30 02: 29 05: 05 01: 30 03: 25 02: 00 01: 37 03: 08 03: 23 01: 37 04: 08 
Rule 2 08: 09 06: 52 05: 51 18: 01 10: 26 07: 08 06: 51 07: 25 11: 40 02: 58 05: 06 06: 05 
Rule 3 08: 10 07: 33 07: 04 27: 59 05: 32 05: 11 05: 42 03: 08 00: 00 03: 35 05: 52 09: 25 
Rule 4 09: 15 08: 36 07: 09 05: 24 10: 51 11: 50 20: 24 00: 00 00: 00 04: 29 05: 13 08: 37 
Rule 5 14: 50 12: 49 53: 03 07: 28 10: 16 10: 00 15: 39 00: 00 00: 00 08: 07 04: 21 09: 46 
Rule 6 10: 24 12: 31 23: 08 00: 00 12: 49 10: 48 00: 00 00: 00 00: 00 07: 58 06: 54 00: 49 

53: 38 1 50: 51 
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