
Open Research Online
The Open University’s repository of research publications
and other research outputs

Remote Access to a Prototyping Laboratory
Thesis
How to cite:

Lathwell, Stephen (2007). Remote Access to a Prototyping Laboratory. PhD thesis The Open University.

For guidance on citations see FAQs.

c© 2007 The Author

Version: Version of Record

Copyright and Moral Rights for the articles on this site are retained by the individual authors and/or other copyright
owners. For more information on Open Research Online’s data policy on reuse of materials please consult the policies
page.

oro.open.ac.uk

http://oro.open.ac.uk/help/helpfaq.html
http://oro.open.ac.uk/policies.html

Remote Access to a Prototyping Laboratory

Stephen Lathwell BSc (Hons), MSc (Optoelectronics)

A thesis submitted for the degree of

DOCTOR OF PHILOSOPHY

of the Open University

August 2007

Department of Design and Innovation

The Open University

Walton Hall

Milton Keynes

f- .v Sch 0 uF S. Sßrý º SS ýoý : t24

Te op ea University

27 NOV 2007

EX12
RESEARCH SCHOOL

Library Authorisation Form

W

2
4ýSr

`

"r 1

a)

O
a)
F-

Please return this form to the Research School with the two bound copies of your thesis to be
deposited with the University Library. All candidates should complete parts one and two of the form.
Part three only applies to PhD candidates.

Part One: Candidates Details

Name:.
`,

r,
1p

...
ýC--ý. L. PI: .

a. Q
...

b
................

Degree: ...
v4ap'....... 0-c... . i\. 4C? Sp. ýkýy

..

Thesis title: "'`MAZ............... ý7.... "Sý('Cýý

r
Part Two: Open University Library Authorisation

I confirm that I am willing for my thesis to be made available to readers by The Open University
Library, and that it may be photocopied, subject to the discretion of the Librarian.

Signed: ... ý:..: ti Date: . ý. "cý

Part Three: British Library Authorisation [PhD candidates only]

If you want a copy of your PhD thesis to be available on loan to the British Library Thesis Service as
and when it is requested, you must sign a British Library Doctoral Thesis Agreement Form. Please
return it to the Research School with this form. The British Library will publicise the details of your
thesis and may request a copy on loan from the University Library. Information on the presentation
of the thesis is given in the Agreement Form.

Please note the British Library have requested that theses should be printed on one side only to
enable them to produce a clear microfilm. The Open University Library sends the fully bound copy
of theses to the British Library.

The University has agreed that your participation in the British Library Thesis Service should be
voluntary. Please tick either (a) or (b) to indicate your intentions.

(a) R! r I am willing for The Open University to loan the British Library a copy of my thesis.
A signed Agreement Form is attached

(b) I do not wish The Open University to loan the British Library a copy of my thesis.

Signed: ý4ý
.... Date: ..

5º. -, 1... '. aZi4,.

\\Jensen\H_RDT\VAXM\WORD\Forms\New Brand Examination\EX12. doc

Abstract
There is a growing global demand for continuing adult higher education particularly in
science and engineering subjects. New technologies are emerging which would enable
the development of a Remote Access Laboratory for rapid prototyping of Artificial
Intelligence, as a learning environment for mechatronic engineering, in which high
precision electromechanical devices are designed to exhibit autonomous behaviour.

Secondary research investigated the learning theories for a Remote Access Laboratory,
and the current practices for distance learning, involving groupware in shared activity
`collaboratories'. Having determined that the laboratory would need a multi-user
interactive environment architecture, with the requirement for adaptability to rapid
developments, a distributed software architecture was selected. The laboratory design
was subsequently argued to be best served by Intelligent Agents in a Multi-Agent system.

The aims of the research were to establish the viability of a Remote Access Laboratory
for mechatronic experimentation, and to evaluate the technologies required to implement
such a laboratory environment for rapid prototyping. These were achieved by developing
a novel user interface, based on a multi-functional screen layout, and a graphical
specification facility to provide robotic navigation that is intuitive to use and does not
require text-based programming.

The research investigated the prototyping of robotic behaviour, which used Programming
by Demonstration as an innovative technique to prototype robot navigation. The method
of designing behaviours met an anticipated need to allow the robot to interact with an
environment, to achieve goals under conditions of uncertainty, while requiring a level of
abstraction in the behaviour design. The interface structured a composite of the designed
behaviours into prototype Artificial Intelligence using a hierarchical behaviour
architecture, which complied with the principles of Object Orientated programming. This
was subsequently a new and original programming method to facilitate rapid prototyping
of Artificial Intelligence design and structuring.

Experimentation involved 20 participants attempting to accomplish a series of tasks
which involved using the prototyped interface and an existing text-based robot
programming system. The participants were profiled by their formal qualifications,
knowledge and experience. The experimental data obtained were used to establish a
comparative measure of the prototype interface success compared with an existing
distance-learning, home experiment kit, in the form of a small controllable model vehicle.
The data obtained provided strong evidence to support the hypothesis that a
Programming by Demonstration based system for rapid prototyping is more flexible and
easier to use than a previously existing distance learning text-based system. The
Programming by Demonstration system showed great promise, being quicker for
prototyping, and more intuitive. The learning interface design pioneered new techniques
and technologies for rapid prototyping of Artificial Intelligence in a Mechatronics
Remote Access Laboratory.

Acknowledgements

Particular thanks are due for:

My supervisor Dr. Anthony Lucas-Smith, who taught me the difference between
background knowledge, and a critical review of the literature, and fortunately had a sense
of humour and great patience.

Professor George Rzevski, who gave me the initial idea for the PhD.

Claire (`Squeekie') who helped by listening, transcribing the experimental recordings,
cooking the food, and never having any doubts.

Professor Stephen Potter, who kindly gave valuable advice and recommendations.

The 20 participants who all generously gave their valuable time to do the
experimentation.

Richard Hearne who managed to combine 2 video streams of recorded data onto a CD in
less than 24 hours, on 20 occasions.

George Bellis who supplied technical advice for the robots when needed.

The Lucas-Smith household who suffered the 10.30 -11pm telephone calls, when I was
seeking immediate, and probably not as important as it seemed at the time, advice.

Rodney Buckland who gave encouragement, and I still owe him a pint.

My parents who gave moral support during the hardships in my personal life, so I could
continue with this, plus the holidays, just to make sure there were some.

My brother Nicholas, who made sure I got out occasionally, and tried to keep me
informed about the world beyond my computer.

Claire's parents who kept Claire and me well fed.

11

Contents
Page

Abstract i
Acknowledgements ii
Contents iii
Figures vii
Tables ix
Glossary xi

Chapter 1 Introduction to Remote Access to Prototyping Laboratories 1
1.1 Context of the Research 1
1.2 Research Origins 2
1.3 Principle Research Issues 5

1.3.1 Requirements of a Distance Learning Environment 5
1.3.2 Adopting Technology in Distance Learning 6
1.3.3 Defining the Problem 7

1.4 Research Aims 7
1.5 Research Questions 8
1.6 Research Objectives 8
1.7 New Knowledge 9
1.8 Structure of the Thesis 9

Chapter 2 State-of-the-Art for a Distance Learning Laboratory 12
2.1 Introduction 12
2.2 Distance Learning Theories 12

2.2.1 Introduction to Distance Learning Theories 12
2.2.2 Principle Distance Learning Theories Considered 15

2.2.2.1 The (Re)conceptualisation Cycle 16
2.2.2.2 Experiential Learning 16
2.2.2.3 Social-Constructivist Theory 17
2.2.2.4 The Centre for Advanced Learning Technologies (CALT) 18

2.2.3 Conclusions about Distance Learning Theories 19
2.3 Distance Learning Engineering Laboratories 20

2.3.1 The Expectations of Engineering Laboratories 21
2.3.2 Engineering Laboratory Theory 21

2.3.2.1 Objectives of an Engineering Instructional Laboratory 21
2.3.2.2 Types of Engineering Laboratories 22
2.3.2.3 Distance Learning Engineering Laboratory Design 23

2.3.3 Access to Distance Learning Laboratories 24
2.3.4 Laboratory Architectures 24
2.3.5 Conclusions about Distance Learning Engineering Laboratories 26

2.4 Collaboratories 27
2.4.1 Principles of Collaboratories 27
2.4.2 Examples of Collaboratories 27

2.4.2.1 Virtual Collaborative Environment (VCE) 27
2.4.2.2 Distributed Collaboratory Experimental Environment

(DCEE) 28
2.4.2.3 A Virtual Training Laboratory at Queen Mary College 29

iii

Page

2.4.3 Summary of Collaboratories 30
2.5 A Distance Learning Laboratory Architecture 31

2.5.1 Role of Intelligent Agents 31
2.5.2 Role of Blackboard Agents 33

2.5.2.1 The Blackboard Agent Architecture Components 34
2.5.2.2 Examples of Blackboard Agent Implementation 35
2.5.2.3 Summary of Blackboard Agent Architectures 37

2.5.3 Specific Agent Architectures 38
2.5.3.1 An Agent Architecture for Tracking Other Agents 38
2.5.3.2 A Knowledge Base Agent Architecture 38
2.5.3.3 Multi Agent Architectures 39
2.5.3.4 Summary of Specific Agent Architectures 41

2.6 Conclusions about a Distance Learning Laboratory 42

Chapter 3 State-of-the-Art for an Interface to a Distance Learning
Laboratory 44

3.1 Introduction 44
3.2 A Distance Learning Environment 44

3.2.1 Intelligent Tutoring Systems (ITS) 45
3.2.2 Design Considerations 46
3.2.3 Summary of a Distance Learning Environment 47

3.3 Human Computer Interfacing 47
3.3.1 The Theories of Human Computer Interfacing 48

3.3.1.1 Distributed Cognition 49
3.3.1.2 Activity Theory 50
3.3.1.3 External Cognition 52

3.3.2 HCI Design in Practice 53
3.3.3 Summary of Human Computing Interfacing 55

3.4 Programming by Demonstration 56
3.4.1 Programming Methods 57

3.4.1.1 Direct Programming 57
3.4.1.2 Indirect Programming 58
3.4.1.3 Learning by Human Demonstration 59

3.4.2 Programming by Demonstration Methods 60
3.4.3 Programming by Demonstration Systems 62
3.4.4 Programming using Programming by Demonstration 64

3.4.4.1 Writing Programs 64
3.4.4.2 Reading Programs 65
3.4.4.3 Executing Programs 65

3.4.5 The Limitations of Programming by Demonstration 66
3.4.6 Programming Sub-Optimality 66
3.4.7 Summary of Programming by Demonstration 67

3.5 Conclusions for an Interface to a Remote Access Laboratory 68

Chapter 4A Proposed Architecture for a Distance Learning Laboratory 70
4.1 A Laboratory in Distance Learning 70
4.2 A Proposed Laboratory Architecture 71

iv

Page

4.2.1 Influences on the Laboratory Architecture 71
4.2.1.1 The Prototype Artificial Intelligence 71
4.2.1.2 Communicating Intentions 73
4.2.1.3 Interpreting Intentions 73

4.2.2 The Conceptual Design 74
4.2.2.1 The Mechatronic Device Control Agent 75
4.2.2.2 The Program Administrator 75
4.2.2.3 The Mechatronic Device 76
4.2.2.4 The Knowledge-base Agent 76

4.2.3 The Physical Design 76
4.2.3.1 The Mechatronic Device Operator Agent 77
4.2.3.2 The Book-Keeping Agent 79
4.2.3.3 The Interface between the Laboratory and its User 79
4.2.3.4 Communication between the Agents 80

4.3 Conclusions about a Proposed Architecture for a Distance Learning
Laboratory 83

Chapter 5 Development of a Prototype Interface 85
5.1 Introduction 85

5.1.1 The Design Proposals 85
5.1.1.1 Distributed Cognition 86
5.1.1.2 Activity Theory 86

5.1.2 Anticipated Problems 87
5.1.3 Principles of Prototyping 87

5.2 Programming Language Development 89
5.2.1 Programming Language Definition 90
5.2.2 Programming Language: ̀Vocabulary' 91

5.2.3 Program Control Structures 92

5.2.4 Programming Language: ̀Functions' 93

5.2.5 Principles of Object Orientated Programming 94

5.3 The Prototype Interface Design 94
94 5.3.1 The Human Computer Interface Methodologies

5.3.2 Programming by Demonstration (PbD) 102

5.3.3 Object Orientation 103
104 5.3.4 Goal-Based Behaviours 106 5.3.5 Sensor-Activated Behaviours 107 5.3.6 Goal-Activated Behaviours 107 5.3.7 Editing 108 5.4 Simulation Operations 108 5.4.1 Goal-Based Operations 109

5.4.2 Sensor-Activated Operations 111
5.4.3 Goal-Activated Operations 113

5.5 Conclusions

115
Chapter 6 Design of the Experiment 115

6.1 The Definition of an Experiment 115
6.2 Scientific Method

V

Page

6.3 Design of the Experiment 116
6.3.1 Premises for Experiment Design 117
6.3.2 Optimising the Experiment's Design 119
6.3.3 Variables 119

6.4 Experiment Data Analysis 121
6.5 Error Analysis 122

6.5.1 Accuracy, Precision and Tolerance 122
6.5.1.1 Accuracy 122
6.5.1.2 Precision 123
6.5.1.3 Tolerance 123

6.5.2 Experimental Errors 124
6.5.3 Systemic Errors 124
6.5.4 Random Errors 125
6.5.5 Blunders 126

6.6 Experimental Ethics 126
6.6.1 Consent 126
6.6.2 Responsibility 127
6.6.3 Experimental Preparation 128
6.6.4 Confidentiality 128

6.7 Conclusions to Design of the Experiment 129

Chapter 7 Experimental Procedures 131
7.1 Introduction 131
7.2 The Aim of the Experiment 132

7.2.1 The Objective of the Experiment 132
7.3 The Variables 133

7.3.1 Required Degree of Certainty ̀ In all things that are
uncertain at the start' 134

7.3.2 The Participants 135
7.3.3 Components of Variation 135
7.3.4 Randomisation 135
7.3.5 Blocking 136
7.3.6 The Independent Variables 136
7.3.7 The Dependent Variables 139
7.3.8 Maximising the Data Obtained 140
7.3.9 Minimizing the Required Number of Experiments 140

7.4 Experiment Activities 140
7.5 Experimental Equipment 141

7.5.1 The Tasks 143
7.6 "Buy-in" of Results 144
7.7 Conclusions of Experimental Procedures 144

Chapter 8 Data Obtained and Interpretation 146
8.1 Introduction to Data Obtained and Interpretation 146
8.2 The Participants 146

vi

Page

8.3 Raw Data Gathered 150
8.3.1 Comparison of Participants' Timed Activity 150
8.3.2 Measures of Activity Success 154
8.3.3 The Participants' Dialogue 156
8.3.4 The Usability Questionnaire Results 158

8.3.4.1 The PbD System Questions 158
8.3.4.2 The RBS System Questions 163

8.4 Comparative Usability of the Two Interfaces 166
8.4.1 Repetitions of the Experiment 166
8.4.2 The Like/Dislike Ratio from the Experiment Dialogue 167

8.5 General Conclusions about the Experimentation 168

Chapter 9 Conclusions 170
9.1 Conclusions to the Research Questions 170
9.2 Conclusions to the Aims and Hypothesis 173
9.3 Conclusions for Remote Access to Prototyping Laboratories 174
9.4 Further Research 176
9.5 Future Open-Learning Access to Online Laboratories 178
9.6 Reflective Practice 180
9.7 Implications of the Research 183

References 184

Appendices 200
Appendix A The Interface Design 200
Appendix B An Explanation of the Experiment 204
Appendix C Usability Questionnaire 217
Appendix D Experimentation Timings 223

vi'

Figures
Page

2.1 A model of the change process, Razmerita et al. [2004] 19
2.2 The basic blackboard agent architecture 33
2.3 A blackboard agent architecture for the Remote Access Laboratory 37

3.1 `Mediational Model' Mwanza [2001] 51
3.2 The basic activity structure, `Activity Triangle Model' Mwanza [2001] 51

4.1 The user and laboratory interaction 71
4.2 The intelligent agents within the laboratory 72
4.3 The Mechatronic Device Operator Agent based on the blackboard

agent architecture 78
4.4 Communications between the interface and the laboratory 80
4.5 Hierarchical and peer-to-peer communications 81
4.6 Multi-agent communications 82
4.7 The complete laboratory architecture 83

5.1 The outline of the interface in 3 segments: user input; program output
and program manipulation 95

5.2 The Operations Map and associated buttons 96
5.3 The Operations Map and editing function 97
5.4 The user input and text output 98
5.5 Relation of sensor output to user input 99
5.6 The angle of incidence between the robot and obstacle, and activated

sensors 99
5.7 Creating a mechatronic behaviour function 100
5.8 Manipulating a developed program 101
5.9 The means of activating the developed mechatronic program 102
5.10 The advantages of Object Orientated Programming for the Programming

by Demonstration interface 104
5.11 Locating goals on the Operations Map 105
5.12 Identifying sub-goals 105
5.13 Demonstrating a sensor-Activated Behaviour 106
5.14 Demonstrating a goal-Activated Behaviour with sensor activity 107
5.15 The simulation of a goal-to-goal based behaviour 109
5.16 The search for Sensor-Activated Behaviours 110
5.17 The operation of a Sensor-Activated Behaviour 110
5.18 The recursive operation of a Sensor-Activated Behaviour 111
5.19 The operation of a Goal-Activated Behaviour 111
5.20 Locating a Sensor-Activated Behaviour relevant to a Goal-Activated

Behaviour 112
5.21 A Sensor-Activated Behaviour for continuing a Goal-Activated Behaviour 112
5.22 The completed simulation of the demonstrated behaviour 113

vii'

Page

7.1 The layout of the experimentation laboratory 142
7.2 The physical layout of the laboratory 142
7.3 A close-up of the robotic vehicle 143

8.1 The distribution of the sampled participants 148
8.2 The participants' experiment timings 149
8.3 The timings for testing the PbD System by the PbD-first sample group 151
8.4 The timings for testing the PbD System by the RBS-first sample group 151
8.5 The timings for testing the RBS System by the PbD-first sample group 152
8.6 The timings for testing the RBS System by the RBS-first sample group 153
8.7 The mechatronic vehicle orientation for design of behaviours 155

A. 1 Goal-Based Behaviour 201
A. 2 Sensor-Activated Behaviour 201
A. 3 Determining sub-goals 202
A. 4 Goal-Activated Behaviours 202
A. 5 Operating simulator functions 203
A. 6 Editing designed robot behaviour 203

ix

Tables
Page

2.1 An outline of current advocated learning theories 15
2.2 Comparison of agent theories 32

3.1 Comparison of HCI design theories 49

5.1 The search pattern for determining a best fit of sensor activations to a
Sensor-Activated Behaviour 109

8.1 A description of the participants 147
8.2 The PbD-first group's attempts to achieve success 154
8.3 The RBS-first group's attempts to achieve success 155
8.4 Participant dialogue during the experiments 157
8.5 Usability questionnaire responses for the PbD system 159
8.6 The suggested names for buttons on the PbD interface 162
8.7 Usability questionnaire responses for the RBS system 164
8.8 Repetitions of the experiment 166
8.9 The ratio of likes/dislikes 167
8.10 The evidential and stated preference of the participants 168

D. 1 The test of the PbD system by the PbD first sample group 224
D. 2 The test of the RBS system by the PbD-first sample group 224
D. 3 The test of the PbD system by the RBS-first sample group 224
D. 4 The test of the RBS system by the RBS-first sample group 224

X

Glossary
Agent Architecture The internal design of an Intelligent Agent
ALQAAA A Linear Quasi-Autonomous Agent Architecture:

an agent tracking architecture
ARCHON An Intelligent Agent design methodology with a

common communication platform
Artificial Intelligence (AI) A program which can operate under conditions of

uncertainty
ATLA Alternatives to Laboratory Animals
BB1 B. Hayes-Roth Blackboard Agent Architecture
Blackboard Agent An Intelligent Agent which has a blackboard for

centralised control
CALT Centre for Advance Learning Technologies: The

European Union's research into distance learning
Collaboratory A software application for multiple users to

collaborate
Cognitive Dimensions An abstraction for describing features of a design

in Psychology's External Cognition theory
COUGAAR Cognitive Agent Architecture: A Distributed

Agent Architecture
CTSEF Central Texas Science and Engineering Fair
Data Stream Management The software control of Input and Ouput data
DARPA (US) Defence Advanced Research Projects

Agency
DCEE Distributed Collaboratory Experiment

Environment: an integrated environment of
product data and engineering tools

Distance Learning Learning from a location geographically separate
from the education provider

Distributed Agent Architecture A form of Multi-Agent System where agents'
knowledge overlaps

Distributed Intelligent System A large software system with emergent intelligent
behaviour

e-learning Learning using education resources on the internet
ESRC Engineering and Science Research Council, UK

funding body for Research.
GALA A methodology for agent-orientated analysis and

design
GOMS Goals Operations Methods and Selection Rules. A

method of designing a computer software interface
HCI Human Computer Interface
HPMEC Open University Human Participants and Material

Ethics Committee
Intelligent Agents (IA) Software which tries to fulfil a set of goals in a

complex, dynamic environment
Intelligent Training Systems A software architecture intended for user learning
(ITS)
LabVIEW A laboratory equipment simulator software

package

xi

Knowledge Source (KS) A blackboard agent's data
MASCOT Multi-Agent Supply Chain Coordination Tool:

agent based software architecture design tool
MATLAB/SIMULINK A laboratory equipment simulator software

package
Mechatronics A fusion of mechanics, electronics and intelligent

control systems
MHP Model Human Processor: a method of designing a

computer software interface
MOYRA Mechatronic Operations by Related Actions: the

PbD system designed during this research
MSC VisualNastran 4D A Laboratory equipment simulator software

package
Multi-Agent System (MAS) Multi-Agent System: a system comprising more

than one agent
Programming by Demonstration A programming method based on acquiring
(PbD) human knowledge from observing human

performance
Remote Access Laboratory A laboratory which is geographically remote from

its user, and accessed via the Internet
UML Unified Modelling Language: a methodology for

modelling Object Oriented Software
VCE Virtual Collaborative Environment: Sandia's

National Laboratory application to remotely
program and control mechatronic devices

Z A program specification language

xii

Chapter 1
Introduction to Remote Access to

Prototyping Laboratories

1.1 Context of the Research

As concerns are now growing across the world about the increasing demand for adult

higher education, universities and governments are investigating the potential of

distance learning methods to meet this demand. The context of this investigation was to

address the use of an internet-accessed laboratory as a component of a distance-learning

course in mechatronics. Students have in the past undertaken experimentation in

distance learning using an experiment kit at home, which was expensive. Reductions in

costs of education are sought by replacing the home experiment kit with a remote access

laboratory, either simulated or real, which could be used for all the experimentation, and

accessed by an appropriate interface.

New technologies are emerging which would enable the operation of an autonomous

and robust remote access laboratory. Developments in Intelligent Agents (IA), and

subsequent knowledge manipulation technologies could be used to develop an

autonomous remote access laboratory. The integration of these new technologies is now

identified as an achievable task.

Within this environment the question addressed was how to develop a Remote Access

Laboratory used to develop and test prototyped Artificial Intelligence (AI) in a

coherent, cost-effective manner. This research anticipated a growing trend of distance

learning in the 21st century, supported by autonomous laboratories, accessed over the

Internet.

1

It sought to provide evidence for the viability of a remote access laboratory in the

specific context of a distance learning course in mechatronics, where the student is

designing prototype Artificial Intelligence for robots.

1.2 Research Origins

The initial speculative brief was as following:

This particular research is concerned with an experimental system for

remote access to the Open University Mechatronics Laboratory. It is

proposed to design the following system.

An existing autonomous intelligent vehicle, connected by an infrared
communication system to a laboratory computer which, in turn, is

connected to the Internet, operates in a designated area of the
laboratory. A number of video cameras will monitor the movement of the
vehicle connected to the same laboratory computer.

Remotely located designers of the vehicle's artificial mind will download
their prototype Artificial Intelligence to the laboratory computer,
observing its behaviour, in real time, by video signals sent from the
laboratory cameras and displayed on their machines.

The task will include the design of a remote access system according to
the above description, testing the system in operation and making
suggestions for its further improvement.

Mechatronics, as the fusion of electronics and mechanics in the design of devices, and

programming, referred to above as the `artificial mind', is required to demonstrate

Artificial Intelligence when controlling the devices. The `artificial mind' program for

the remainder of this thesis is called prototype Artificial Intelligence (AI), where Al is

defined as a system's ability to achieve a goal or sustain desired behaviour under

conditions of uncertainty.

The conclusions drawn from the brief, determined the initial course of research:

" The laboratory was to be a mechatronic prototyping laboratory for analysing

prototype Artificial Intelligence using a mechatronic device.

2

9A laboratory would be remotely accessed, using the Internet, such that:

(i) The user designs and sends prototype Artificial Intelligence to the laboratory for

evaluation.

(ii) The laboratory transmits a video signal in real time to the user.

" The laboratory user experiments with the prototype Artificial Intelligence to develop

desired behaviour.

The initial speculative brief provided an introduction to the project. However,

preliminary research revealed evidence that there were wider issues involved. There

was a significant growth in adult learning, which was not being catered for by

traditional learning establishments.

Mechatronics, as an engineering subject, has both theory and practice as important

components. The majority of courses involve students attending physical laboratories as

apprentices. The alternative is to use simulators, referred to as virtual laboratories,

although there is some research about the use of real equipment remotely located at a

distance.

The theory for a form of interface to the laboratory is not established, but closest are the

general theories for human-computing interfaces and for Intelligent Training Systems.

These reflect emerging learning theories, providing a tutoring interaction with the

student. However, the problem will be the need for flexibility to enable prototype

Artificial Intelligence development, while also allowing for analysis of the completed

prototype Artificial Intelligence.

3

A problem with current robotic programming is the use of computer programming

language methodologies. A method was sought for developing prototype Artificial

Intelligence, which both remains within the established science of computer language

development and allows students the freedom of development without the use of a

formal text-based computer language. To test prototype Artificial Intelligence quickly

for correctness in behaviour, a simplified simulator is considered necessary.

The research focus was on Programming by Demonstration as a software

development method, to design prototype Artificial Intelligence. The underlying

reasoning was that successful implementation of a Remote Access Laboratory was

dependent on the user successfully designing prototype Artificial Intelligence, and that

existing methods were not adequate for the task. Programming by Demonstration is

described by Kaiser et al. [1995] as:

Two basic aspects of the interaction between the robot and the
user...... Firstly, the user wants to configure and instruct the robot. This
requires translating the user's language into the robot's, i. e., to compile
user intentions into actual robot programs. Secondly, to allow the user to
efficiently control and maintain the robot, necessitating translating low-
level numerical representations used by the robot into an understandable
form, i. e., symbols have to be built from signals. What is desired is to
enable the robot to perform these tasks partly autonomously, i. e., to learn
semantically meaningful descriptions of its own perceptions, actions, and
states, and to use these descriptions both to communicate the robot's
knowledge to the user and to interpret the user's demonstrations, i. e., to
acquire human knowledge from observing human performance.

The Programming by Demonstration based interface was to be supported by an

Intelligent Agent system. Intelligent agents are described in Maes [1994] as:

An agent is a system that tries to fulfil a set of goals in a complex,
dynamic environment: it can sense the environment, using its sensors and
act upon the environment through its actuators. An agent's goals can
take many different forms: they can be "end goals ", or particular states
the agent tries to achieve; they can be a selective reinforcement or
reward that the agent attempts to maximise; they can be internal needs or
motivations that the agent has to keep within certain viability zones and
so on.

4

1.3 Principle Research Issues

The overall research problem was to identify the functional requirements of a remote

access mechatronics laboratory, possessing the potential for both distance learning, and

the ability to develop and test a device possessing prototype Artificial Intelligence. The

results were intended to answer the research questions developed in Section 1.5.

1.3.1 Requirements of a Distance Learning Environment

The terms "distance education" or "distance learning" have been
applied interchangeably by many different researchers to a great variety
of programs, providers, audiences, and media. Its hallmarks are the
separation of teacher and learner in space and/or time, the volitional
control of communication between student and the distant instructor, and
non-contiguous communication between student and teacher, mediated
by print or some form of technology. [Sherry, 1996]

To develop a distance learning laboratory, the first requirement to consider is what the

premises of a higher educations operation are.

Massy and Zemsky [1995] refers to higher education's belief in its own purpose and

educational and intellectual values.

9 Traditional academic values: teaching methods; notions of productivity; faculty

autonomy, and standardised student-teacher ratios and class-sizes.

" Productivity: Most faculties think in terms of scholarship, especially research, and

teaching is usually viewed as scholarship related.

" Research: incentives for teaching are few and research is significant, creating a

`academic ratchet' a movement towards research production and reduced class

loads.

5

Schamber [1988] proposes that:

It is essential to consider their ages, needs, cultural and socio-economic
backgrounds, interests and experiences, education levels and familiarity
with distance education methods and delivery systems, of the distance
learners.

When considering the anticipated student, Fjuk [1995] reported that

... The primary target group for most distance and open learning
situations is the adult workforce of our society. The student - the adult
worker, usually with an established life with family and friends - needs a
flexible (further) educational situation free from place and often time,
constraint.

The above outlined the environment required for distance learning, explaining the

current understanding of what distance learning means to both student and higher

education establishments; with a discussion of higher education expectations and

operational circumstances, with the needs of expected distance learning students. These

are important determinants for any development of distance learning technology, with

the expectation of an academic value by the higher education establishments and

flexibility in the provision for learning by the student.

1.3.2 Adopting Technology in Distance Learning

Archer et al. [1999] provides an analysis of future distance learning development and

growth based on the Christensen [1997] book, The Innovator's Dilemma: When New

Technologies Cause Great Firms to Fail. The development of distance learning support

technologies are argued to be a significant change affecting traditional universities,

which can either adopt the technology or lose potential students. Myers et al. [2004]

reviews the debate about adopting learning technologies, citing Carlson [2000] that

distance learning technologies are being adopted by a need for technologically literate

students, with continuous development of new distance learning technologies.

6

Massey and Zemsky [1995] reports that distance learning technology is adopted for

both the expected gains from use, and a facility's ability to successfully teach in a

distance learning environment:

9 Economies of Scale: After an initial investment, the increase in cost per additional

student is usually low.

9 Mass Customisation: The technology must allow the faculty to accommodate

individual differences in students goals, learning styles, and abilities, while

providing improved convenience for both students and faculty of an "any time any

place" operation.

1.3.3 Defining the Problem

Previous research on remote access laboratories, has had varying results, providing a

development methodology, [Bourne et al. 2005; Johnson et al. 2003], and discussed in

greater detail in 2.3 below. Research on online laboratory experimentation is still a

developing and controversial subject. The problem of how a remote access laboratory

can be designed for a mechatronics course comprises:

" how a student could design Al to control a mechatronic device,

" the design of the user interface,

" the design of the physical laboratory.

1.4 Research Aims

The aims of the research were:

1. To establish the viability of remote access facilities to augment distance learning.

2. To design and evaluate technology which can provide an environment for students

to learn to rapidly develop prototype Artificial Intelligence for a mechatronic

device.

7

3. To test the hypothesis:

Programming by Demonstration could prove a more intuitive

approach to the complexity of developing an emergent intelligent

behaviour than text-based programming.

1.5 Research Questions

The research, as expressed by the thesis title, was required to make a significant

contribution to the evidence supporting the use of remote access laboratories within a

distance learning based institution. The following research questions resulted:

1 What are the criteria for designing a remote access laboratory for prototyping

Artificial Intelligence, as part of a distance learning organisation's available tools?

2 What fusion of technologies should be used to develop a Mechatronics prototyping

laboratory?

3 What methodology and technologies could assist in rapid prototyping Artificial

Intelligence in a distance learning mechatronics course?

4 What design of interface to such a laboratory would allow appropriate analysis and

demonstration of prototype Artificial Intelligence?

1.6 Research Objectives

" Carry out the selection, design and application of technologies to establish a remote

access laboratory, which can create and test prototype Artificial Intelligence

programs.

" Design a method for a user to develop prototype Artificial Intelligence.

" Design and implement a prototype interface, which allowed a laboratory user ease

of access to the laboratory's internal functions, without being made aware of the

internal construction of the laboratory.

8

1.7 New Knowledge

The research was intended to lead to a significant contribution in scholarship within the

subject of Mechatronics at the Open University, and in a wider context of technology

application, by establishing a novel contribution to support the use of Programming by

Demonstration in developing prototype Artificial Intelligence, this was to be tested in a

Remote Access Laboratory, within a distance learning environment.

1.8 Structure of the Thesis

This thesis considers the circumstances of designing a remote access laboratory, and

what technologies should be used, and comprises the following chapters:

Chapter 1 Introduction to Remote Access to Prototyping Laboratories

This chapter has introduced the context and origins of the research, with the principle

research issues and requirements for a remote access laboratory. The objectives are

identified as a need for developing and testing a prototype Artificial Intelligence in a

distance learning mechatronics engineering laboratory environment.

Chapter 2 State-of-the-Art for a Distance Learning Laboratory

The current theories for distance learning are discussed with current expectations and

how they relate to a remote access laboratory. Current approaches relating to an

engineering laboratory are examined next, beginning with the purposes of an

engineering laboratory before reviewing current remote access laboratory design.

9

Chapter 3 State-of-the-Art for an Interface to a Distance Learning Laboratory

The chapter establishes the design principles of Intelligent Tutoring Systems for

distance learning. This outlines the use of internet-based interfaces and the problems

associated with their design and application. The next research area considered is

current Human-Computer Interface design theories. This firstly considers Cognitive

Psychology approaches before Activity Theory based design. Finally, the research area

of Programming by Demonstration and the related principles of communicating

knowledge are reviewed, since the analysis of Programming by Demonstration is based

on its suitability to develop prototype Artificial Intelligence, for testing in a Remote

Access Laboratory.

Chapter 4A Proposed Architecture for a Distance Learning Laboratory

This chapter proposes an Intelligent Agent based architecture for a remote access

laboratory. Intelligent Agents with blackboard based architectures for receiving

designed prototype Artificial Intelligent behaviour are described. The agent

architectures are further developed with proposals for their communication architecture

with the separation between their specific functions and their communication

knowledge.

Chapter 5 Development of a Prototype Interface

The prototype Programming by Demonstration based Human-Computer Interface for

the laboratory is defined, with its potential application in developing a prototype

Artificial Intelligence for a remote access laboratory. A method of developing a

prototype Artificial Intelligence is described together with the principles of

programming which determine the success of any programming methodology.

10

Chapter 6 Design of Experiments

This chapter explains the scientific method of experimentation used in the research. The

statistical analysis methods used are explained with an explanation of the errors

associated with this experimentation. Finally the ethics involved in this experimentation

is outlined.

Chapter 7 Experimental Procedures

This chapter explains the experimental procedures used, related to the objectives of the

experiment and the variables involved in the experimentation. It also describes the

experiment's activities and the equipment used.

Chapter 8 Data Obtained and Interpretation

This chapter provides the raw data obtained from the experimentation, with analysis,

interpretation and summary. The implications of the results are discussed

Chapter 9 Conclusions

This chapter concludes the research findings, and discusses the validity of the

hypothesis. It identifies specific areas for future research necessary to implement a

remote access laboratory, and comments on the overall significance of this research. It

includes a section on self-reflection, where the learning process resulting from

undertaking a PhD is considered.

11

Chapter 2
State-of-the-Art for a Distance Learning

Laboratory
2.1 Introduction

This chapter initially discusses the principles and concepts of distance learning and

remote access technologies, then examines specific, interrelated areas of research to

establish the current state-of-the-art concepts and techniques necessary to design a

remote access laboratory for a distance-learning course. The discussion follows the

progression:

" Distance Learning is a review of the current theories advocated for distance

learning, and how they relate to a successful Remote Access Laboratory.

" Distance Learning Laboratories is a review of the expectations and theory of a

distance learning laboratory. The theory explains the objectives, types and designs

of distance learning laboratories.

" Collaboratories relate to software which allows multiple users to interact with each

other and with tools in a laboratory setting, and an explanation of the theory and

current designs.

" Intelligent Agents relates to the design and application of intelligent agents which

are advocated for the internal design of a remote access laboratory.

2.2 Distance Learning Theories

2.2.1 Introduction to Distance Learning Theories

Johnson et al. [2003] defines learning as a:

... formal educational process in which the majority of the instruction
occurs when student and instructor are not in the same place. Instruction
may be synchronous or asynchronous. Distance education may employ
correspondence study, or audio, video, or computer technologies.

12

Morse and Truman [1996] argues that a learning institution's objective is to provide a

means for students to learn, with the varying distance-learning philosophies' success

depending on replicating face-to-face classroom interaction, unless the student

characteristic reduces a need for classrooms.

Bourne et al. [2005] promotes `five pillars of quality online learning', intended to

evaluate distance learning progress. However, without providing a benchmark these

become subjective and relativistic measurements.

1. Learning effectiveness: Koper and Olivier [2004] citing Merrill [1994] states

learning is effective when learners form new knowledge using existing knowledge

to solve real problems. Menges and Austin [2001] were cited comparing studies of

online and face-to-face instruction-based learning environments, stating the

perceived wisdom that technology does not influence student results or satisfaction,

citing Johnson et al. [2000]; enhance student learning, citing Moore and Kearsky

[1996], Clark [1994]. Any student learning improvements are due to the teaching

method built into the use of the technology [Setchi, 2007]. Massey and Zemsky

[1995] argues that technology can overcome the limitations of time and space for

traditional education activities, reasserting the importance of good communication

between teachers and students, and arguing that extensive computer mediation is,

however, not always compatible with fields of study concerning questions of

meaning, values, culture and philosophy.

2. Access: The issues are discussed in Coventry [1995]. Since the development and

widespread adoption of Broadband the problems of internet connectivity has been

solved. Hashemi et al. [2006] reports that students can make mistakes and working

at any time, increases the student's opportunities to improve his/her competence in a

physical laboratory.

13

3. Faculty satisfaction: Bourne et al. [2005] reports that this includes `support,

rewards, and personal satisfaction'. Chickering and Erbmann [1996] and Graham et

al. [2000] argues that online learning environments benefit faculty and students with

improved: interaction between students, and with faculty, learning methods,

communication of expectation, and learning method diversity.

4. Student satisfaction: While argued as student satisfaction, Bourne et al. [2005]

identifies more the need for eliciting student interaction or collaboration. By

implementing and assessing laboratory formats, students are expected to collaborate

in modelling and controlling dynamic engineering systems, and improving data

capture for both conceptualization and theory use, [Kypuros and Connolly, 2005].

5. Cost effectiveness: Lifelong learning is becoming a competitive necessity in

employment, with a shift from academic emphasis to competency attainment, and

faculty roles becoming more specialized. Faculty are demanding reduced workloads

implying automated work process support. A current issue is sustainable Open

Educational Resources, which are: to support learning, teachers, and assure the

quality of education (free) [Hylen, 2006, Johnstone, 2005]. Downes [2007] argues

that they are sustainable, by adapting Wikipedia's model as an Open Resource.

Experimentation is non-deterministic, challenging students to research, problem solve,

and inquire about their own answers, [Mizell, 1994]. Laboratory work requires

cognitive skills for problem solving. Dimitracopoulou and Petrou [2003] argues the

development of collaborative technologies is due to advances in two fields of research:

(a) The development of learning theories: The importance of a social element

(interactivity between students) in learning, has led to new theories emerging with a

social and cultural-based dimension to the learning process, resulting in further

development of learning technologies.

14

(b) Advances in information and communication technologies: These have created

new forms of communication, allowing networked cooperation and collaboration.

The secondary research included reviewing collaboratory learning technologies,

with various formats for a collaboratory in a learning context.

A laboratory operates as a learning process function, where the learner tests new

knowledge gained, and its operational success depends on providing the required

experimentation interaction. Various Distance Learning Theories are examined next.

2.2.2 Principle Distance Learning Theories Considered

Table 2.1 An outline of current advocated learning theories

Th Method of Teaching and Learning
eory Author Presented Theory

Origins Taught Practical
Dialog

Iterative Who to
theory Experience Process learn from

Coventry (Re)conceptualisation Kolb
Yes Testing new For deep Yes Tutor [1995] Cycle 1984 knowledge learning

Müller and
Ferreira Experiential Learning

Kolb
No

Starting point To share Yes Tutor
[20051 [1984] for learning experience

Koper & Social-Constructivist Vygotsky
N Depends on on

Olivier 2004 Learning 1978 o o
problems learning es Yes learning

Bonk & Social-Constructivist Vygotsky Embedded Social Depends on Cunningham
Learning [1978] No learning in influence No learner 1998 authentic tasks on learning

Siemens Social-Constructivist Vygotsky
N Best teacher I r, rnin A learning

2005 Learning 1978 o
of knos%le(ge h) opinion

Yes decision

Nabeth et at. Model of Change Rogers Experience in Learning Knowledge
[2005] Process [1995] No

context
Yes discovery!

discussing

Key: For Against

The table establishes a diversity of theories on how students should learn a subject. The

most important issue for any engineering and science-based subject is the tuition of a

body of theory by an experienced tutor. The (Re)conceptualisation Cycle approves the

teaching of theory, using a laboratory for testing newly learned knowledge. Experiential

Learning advocates tuition from a tutor, but not the teaching of theory. Further,

experimentation should be an examination of theory in realistic circumstances, which is

supported by Social-Constructivist Learning and the (Re)Conceptualisation Cycle, but

the experimentation-based learning process should be controlled, to maximise the

student's learning experience, and prevent time-costly mistakes.

15

2.2.2.1 The (Re)conceptualisation Cycle

The theory of Coventry's [1995] research paper on the `(Re)conceptualisation Cycle'

uses constructivist principles, as Sherry [1996] explains, the student constructs

knowledge by developing and using an image and interacting with the material to be

learned. Coventry's proposal to provide effective distance learning theory requires clear

communication and effective tools operation by both user and laboratory, and

summarised as comprising:

" Conceptualisation supporting the presentation of content which involves

o Orientation - the outline of what to be learned

o Exploration - independently exploring the subject being learnt

o Experimentation - interacting with the learning environment

9 Construction providing resources for the doing of learning tasks which involves

o Selecting - picking out what is to be learned

o Linking - combining old and new information

o Classifying - comparing old and new information and linking the two

" Dialogue support through communication which involves

o Discussion - tutorial and peer-to-peer contact is paramount

o Reflection - fundamental provided that the topic has been discussed

o Reification - consolidation of discussion and reflection

2.2.2.2 Experiential Learning

Müller and Ferreira [2005] reports on the Virtual Laboratory MARVEL (Mechatronics:

Access to Remote and Virtual E-Learning) project, which

... is focused on supporting learning practice based on social
constructivism, combined with experiential and collaborative learning.

Experiential learning is learning both by `concrete experience', followed by `reflective

observation'.

16

The Experiential Learning theory used by MARVEL advocates that knowledge is

created by a cyclic iterative process transforming experiences, by `reflection and

conceptualisation'. Müller and Ferreira's [2005] views of Experiential Learning is that:

... Hands-on learning in real physical labs or workspaces provide reach
opportunities for experiential learning, because the learner can
`experience' theory in a more familiar form, since the practical
experiment enables the students to "observe and reflect on" the results of
learning tasks and assignments. Each experiment or practical work task
may therefore be seen as a starting point to understand its underlying
theoretical principles.

This is a contradiction of the purpose of an experiment, where it is used to test a

hypothesis. Developing the theory after running the experiment requires prescience in

running the experiment, otherwise how does the researcher identify the key theoretical

interest variables?

2.2.2.3 Social-Constructivist Theory

Bonk and Cunningham [1998] explains Social-Constructivist learning as:

... Instruction [which] should provide opportunities for embedding
learning in authentic tasks leading to participation in a community of
practice.

Siemens [2005] explains the ̀ community of practice' principle as:

Decision making is itself a learning process. Choosing what to learn and
the meaning of incoming information is seen through the lens of a
shifting reality. While there is a right answer now, it may be wrong
tomorrow due to alternations in the information climate affecting the
decision.

This theory places an emphasis on a `community of practice' to be both knowledgeable

about a subject and a suitable source for tuition. Social-Constructivist theory is refuted

for significant reasons:

1. Both science and engineering have mathematical principles, immutable definitions

and laws/rules for understanding the subject.

17

2. The philosophical principle underpinning Social-Constructivist Learning was first

promoted by Spinoza, about whom Bertrand Russell stated ̀ Intellectually, some

others have surpassed him, but ethically he is supreme. As a natural consequence,

he was considered a man of appalling wickedness' [Russell, 1946]. Spinoza is cited

by Russell as arguing: ̀ there is no right or wrong, for wrong consists in disobeying

the law'.

3. A good Engineering education is not learning the principles of engineering design

by being prosecuted for ignoring health and safety rules and regulations, and having

attendance at a Criminal Law Court as the learning experience.

Social-Constructivist Theory of Learning is believed unsuitable for teaching any subject

with an associated theory.

2.2.2.4 The Centre for Advanced Learning Technologies (CALT)

The European Union's CALT research focuses on both learning and change/innovation

at the individual level. The methods involve the use of Intelligent Agents, multimedia

and virtual reality to acquire and adopt new knowledge, by motivating the individual

and engendering interaction. Nabeth et al. [2005] states that:

... the success of e-Learning has been at best disappointing, and is
certainly very far from fulfilling the high expectations that the more
forward-looking students, educators and institutions had of it. The reason
for this limited success originates, in our belief, from too narrow and
conservative vision of the learning processes to be supported. In most of
the cases, e-learning systems still rely upon the same good old
educational classroom-based instructor-led teaching method that has
existed for years...... and that is characterised by (1) A relatively passive
and anonymous student considered as a recipient of learning materials
that are delivered to him/her. (2) A body of knowledge to be offered that
is dominantly of generic theoretical/conceptual nature...... [and tracking]
how this material is actually absorbed by them. Whilst this method that
has been successfully applied for mass education can be considered as
adequate to complement the training of inexperienced learners co-
located in a same campus or school for acquiring the basic body of
theoretical knowledge, it falls short of accommodating the needs of more demanding and experienced distributed knowledge workers....

18

The premises of the Centre for Advanced Learning Technologies projects are:

... e-learning has to rely on a new vision that requires a fundamental shift
from current content-oriented e-learning solutions towards a more user-
centred interactive and collaborative model of learning.

... the learner is no longer a simple passive receiver of data and
information, but is seen as a participant that is actively engaged through
a rich set of interactions (e. g. learning by doing, educational games,
simulation environments, problem based learning, learning by
discussing, knowledge discovery, etc). [Razmerita et al., 2004]

Razmerita et al. [2004] explains that a model of participants' learning comprises `a

model of change process', figure 2.1 below, [Angehen and Nabeth 1997; Manzoni and

Angehm 1998].

Not Interested No Trial No Adoption

Acquire fast Evaluate in Experience Evaluate
knowledee context in context experienc

Unaware II Aware II Interested II Trial II Adopter

Figure 2.1 A model of the change process, [Razmerita et al., 2004]

There is a difference from theory-based subjects, where student development depends

on learning a presented body of theory; instead knowledge is subjectively provided,

[Roda et al., 2001].

2.2.3 Conclusions about Distance Learning Theories

The remote access laboratory is intended for a user to develop and test prototype

Artificial Intelligence and it depends on operating as an instructional and development

tool. The learning theories presented are now compared.

19

Morse and Truman [1996] premises distance learning theories on replicating campus-

based learning, while Bourne et al. [2005] argues for `five pillars of quality online

learning' which were subsequently analysed, with computer mediation considered not

always effective for subjects requiring discernment of meaning, values, culture and

philosophy.

Finally, for the current learning theories advocated the (Re)conceptualisation Cycle

approves the teaching of theory, using a laboratory for testing newly-learned

knowledge. Experiential Learning advocates tuition from a Tutor, but not the tuition of

theory.

2.3 Distance Learning Engineering Laboratories

This thesis will investigate distance learning engineering laboratories, for distance

learning students to experiment relevant to their studies. Forinash and Wisman [2005]

objects to adopting remote labs for distance learning engineering degrees, arguing that:

No experiment can be performed with zero error, so one must determine
with what degree of certainty the data support a particular hypothesis.
Coming to terms with the inaccuracy and imprecision of results requires
knowledge of the interplay between experimental design and data
analysis. Some laboratory skills, such as statistical analysis of data, can
be learned in the abstract, outside of the laboratory. Experimental
design, however, can only be learned from using real equipment in real
experiments, often through a certain amount of trial and error. It should
be no great surprise that student practice, of experimentation is needed to
understand science, that educational abstractions alone are not enough.

The remote access laboratory being researched is intended for testing prototype

Artificial Intelligence. The user will be working directly within a programming

environment, with the subsequent mechatronic device activity considered suitable to

operate remotely.

20

2.3.1 The Expectations of Engineering Laboratories

Feisel and Rosa [2005] states:

Engineering is a practising profession... ...
The overall goal of

engineering education is to prepare students to practice engineering...
... Thus, from the earliest days of engineering education, instructional
laboratories have been an essential part of undergraduate and, in some
cases, graduate programs. Indeed, prior to the emphasis on engineering
science, it could be said that most engineering instruction took place in
the laboratory.

The remote access laboratory being researched is aimed at being suitable for tuition, as

the instructional work involves interacting with a programming environment. Having a

mechatronic device located remotely will replace a real-world engineering laboratory,

as the laboratory proposed is being used to establish the validity of a developed

prototype Artificial Intelligence.

2.3.2 Engineering Laboratory Theory

2.3.2.1 Objectives of an Engineering Instructional Laboratory

Feisel and Rosa [2005] describes an engineering instructional laboratory objectives in

terms of the following characteristics and components:

1. Instrumentation ... using sensors, instruments, and/or software to obtain data.

2. Models ... evaluating a theory's ability to predict physical events, and test the

relationship between measured data, theory and existing rules.

3. Experimentation
... learning to prepare an experiment, specifying equipment and

procedures, implementing these procedures and interpreting the data to characterize

an engineering material, component, or system.

4. Data analysis ... learning to collect, analyse, and interpret data, to use measurement

systems and conversions, to judge magnitudes and to form and support conclusions.

21

5. Design ... learning to design and assemble a product using equipment, materials or

methodologies, to meet requirements and specifications, testing and debugging a

prototype system or process to meet requirements.

6. Learning from failure ... identifying the causes of failure and engineering effective

solutions.

7. Creativity ... demonstrating appropriate thinking for problem solving.

8. Psychomotor skills ... demonstrating competence with the tools and resources.

9. Safety
... responsibly demonstrating health, safety and environmental issues.

10. Communication ... learning to communicate effectively about laboratory work to

various audiences.

11. Teamwork. -working effectively together, assigning tasks and responsibilities to

meet objectives, and reporting.

12. Ethics in the laboratory. ... working ethically and with integrity, including

reporting information objectively.

13. Sensory Awareness. ... leaming the limitations of human abilities.

The proposed remote access laboratory will support the objectives of an instructional

laboratory. These objectives proposed above can be grouped into the ability to work in a

laboratory setting, the ability to relate theory to practical work, the ability to problem

solve and the ability to work with others. The element of teamwork cannot be deemed

an absolute, as there is an expectation that an engineer may need to work independently.

2.3.2.2 Types of Engineering Laboratories

Feisel and Rosa [2005] argues that there are three types of engineering laboratory,

possessing varying purposes:

22

" Development laboratories to obtain experimental data, for use in guiding design and

development by answering specific questions, otherwise, to determine if a design

performs as intended, by comparing results with specifications and to show

compliance or where to make changes.

" Research laboratories used for determining general and systemic knowledge to

increase current global knowledge.

" Instructional laboratories, to learn `something' that practising engineers know. The

`something' needs defining if a laboratory's usage is to be beneficial.

As an instructional laboratory, the remote access laboratory will be used for the student

to learn how to program a mechatronic device's prototype Artificial Intelligence.

2.3.2.3 Distance Learning Engineering Laboratory Design

Bourne et al. [2005] argues there are two designs of distance learning online

laboratories:

0 Web-based simulations: often referred to as virtual labs; these are equivalent to

physical labs for explaining and reinforcing concepts also supported by Forbus et

al. [1999]. Simulations provide limited capability for experimentation and cannot

always accurately apply theory or concepts to the physical world, while Page et al.

[2000] argues that the poorly applied theory is the user's failings.

" Remote laboratories: allow manipulation and observation of real equipment

located at a distance, also reported by Campbell et al. [2002], Tait and Chao

[2003], Gröber et al. [2007].

Bourne et al. [2005] considers that remote laboratories may become increasingly

common, though the widespread adoption of remote access laboratories will depend on

students accepting them for studying on distance-learning engineering degrees.

23

2.3.3 Access to Distance Learning Laboratories

Johnson et al. [2003] investigates US Colleges exemplary distance learning courses.

Three means of accessing a laboratory were identified for distance learning courses:

(a) On-campus skill acquisition: students attend a college for laboratory work only.

(b) Internships or clinical experience: students complete the laboratory course as

either apprentices or student interns. Evidence of the laboratory work is submitted

as work samples with verification from the supervisor.

(c) Computer-based simulation: this allows the development of skills in a controlled

environment without the danger or cost of a "real life" situation.

The problem with on-campus skill acquisition identified above is that students still have

to attend the college for the laboratory work. This negates Fjuk's [1995] assertion of

`... a flexible (further) educational situation free from place and often time, constraints'

referred to in 1.3.1 above. Internship and clinical experience entail a time constraint.

The problem with a simulation which emulates perfect conditions is that, in reality,

engineering experimentation is potentially less than perfect.

2.3.4 Laboratory Architectures

Kypuros and Connolly [2005] reports three laboratory architectures being tested in US

Universities, using multiple visualization means, individual and collaborative exercises.

1. Inter-university laboratory architecture is where two campuses' students work in

joint collaborative learning. The first campus students develop a computerised

simulation of the experimental system's test conditions and parameters. The second

campus students perform the experiments, acquire and process the data. This format

is designed to consolidate resources that are not equally available at both campuses,

and the roles of the two campuses can be reversed for a subsequent project.

24

Z. A remote-accessible laboratory architecture is where students model a remotely-

accessible system. The experiments are accessed using LabVIEW s Remote Panels,

which allow parameter manipulation, data collection, and view real-time dynamic

response via video feedback. The experiment can be a more complex real-world

problem, animated in 3D developed using MSC VisualNastran 4D and be Internet

accessible. This format develops the concepts of a remote access laboratory system,

and is intended to help students expand the use of concepts to real-world

engineering problems. The model allows students to change physical system

parameters and to prototype controllers.

3. A virtual laboratory architecture is similar to the previous laboratory except it uses

a 3D virtual system [Johansson and Astrorn, 1996; Johansson et al., 1998]

developed using MSC VisualNastran 4D. It provides animated output, and time-

and/or frequency-domain plots. A Java applet allows remote access of the virtual

system for simulation, data acquisition, and controller prototyping, without using

any specialized software. Students develop models and simulations using

MATLAB/SIMULINK and upload their controller designs to the virtual system, for

testing, and viewing results.

All three laboratory formats use simulators, which suffer from only working within the

limits of designed parameters. Any parameter not designed for will not be used.

Feisel and Rosa [2005] proposes using a simulated laboratory for several reasons:

0 Pre-lab experience: this will help students prepare for experimentation in a

physical lab, supported by Gleixner et al. [2002] and reduce experimentation time.

25

0 Experimental studies: laboratory simulations are suitable if systems are too large

[Rauwerda et al., 2006], expensive or dangerous for students [Zary et al., 2006],

[Bardeen et al., 2006]. Simulator laboratories are more realistic due to various

innovations, for example, adding budget and time limits into the problem

specifications, [Jayakumar et al., 1995]. Use of random elements can make

simulations more realistic, and simulators may emulate physical experiments more

closely in the future.

0 Laboratory substitute: students who use simulators and two physical laboratory

experiments have a similar performance to using traditional laboratories, [Cambell

et al., 2002].

The use of a simulator is subsequently rejected for a physical remotely-accessed

laboratory, as a simulator does not allow for unpredictability. The laboratory

substitution argument mostly relies on the use of physical laboratory, requiring

continued research to use a simulator to replace the physical laboratory.

2.3.5 Conclusions about Distance Learning Engineering

Laboratories

A current research issue with a remote access laboratory is how to answer the question:

can a remote access laboratory provide the same educational value as a physical

laboratory? Forinash and Wisman's [2005] objections to distance learning laboratories,

(see 2.3 above), argues against using simulators to replace physical laboratories. The

use of a physical remotely accessed laboratory can adequately fulfil the expectations

and objectives of an engineering instructional laboratory. This thesis provides a

significant contribution to the validation of using a distance learning laboratory, through

the use of both a simulator, and subsequent use of a physical laboratory.

26

2.4 Collaboratories

Dewan et al. [1994] defines a collaborative application as:

... a software application that (a) interacts with multiple users, that
receives input from multiple users and displays output to multiple users,
and (b) couples these users, that is, allows one user's input to influence
the output displayed to another user.

This definition is intended to cover all the possible concepts and designs of

collaborative applications, because the connection between any two users is undefined.

Dewan et al. [1994] supplies a detailed definition, but argues that the detail

overqualifies an application, so is not general.

2.4.1 Principles of Collaboratories

Dewan et aL [1994] proposes some principles for a collabatory's functional design:

" Specification: It should be easy for users to specify how to collaborate.

9 Performance: A collaboratory's response time must be acceptable.

" Grouping: Users should specify collaboration for a set of `objects' sharing a

definition, instead of specifying collaboration for each individual ̀object'.

" Automation: It should be easy for programmers to collaborate.

2.4.2 Examples of Collaboratories

2.4.2.1 Virtual Collaborative Environment (VCE)

Davies et al. [1994] describes Sandia National Laboratory's Virtual Collaborative

Environment (VCE), remote programming and control of mechatronic devices, which

allow `expensive capital equipment' sharing. The VCE described has a high volume

data network requiring high-speed network transmission.

27

The system requires the laboratory's users to have two computer workstations, one to

handle the video conferencing and video interfacing, the other to operate the

mechatronic device's interface, using a graphics control system. The current system

components are:

"A graphical model corresponding to the robot and its environment.

"A graphics workstation simulating and displaying the robot interaction functions.

" Simulation software to display and preview real-time robot motion for user

validation before actuation, with automatic collision detection to verify safe paths of

operation.

Tasks are selected and defined by the user with an automated planning and

programming system to fufill the instructions and the user accepts or rejects the plans.

In contrast, the proposed remote access laboratory interface only uses one computer.

The interface includes a simulator to model the mechatronic device and environment,

which previews and validates a mechatronic device's behaviours.

2.4.2.2 Distributed Collaboratory Experimental Environment (DCEE)

Fernando and Dew [1998] reports on the DCEE architecture's primary function to

integrate product data and engineering tools in a distributed environment. The DCEE

allows geographically dispersed personnel to share and manipulate product data in a 3D

environment, while discussing complex and detailed issues. The system requirements

are to:

" Provide synchronous data distribution amongst users with immediate changes

propagation,

" allow users to vary tools and information by having a user's perspective,

28

" support many development phases and be upgraded,

" adhere to product data standards in data structures and data representation,

" provide a virtual environment to represent data structures,

" enable networking independence to utilise effectively a wide range of diverse

networks.

Maintaining a collaboratory's software architecture is considered essential in the design

control software, as the equipment is changed regularly, requiring the experiment and

interface control programs to reflect the changes. The system is expected to be updated

easily, using programs as building blocks and not complete control systems.

The underlying collaboratory infrastructure is a common interoperability framework,

connecting various components with a common interface. Tools are ̀ plug and play' via

a [logical] resource manager, requesting resources as necessary. Data and result files are

available to all collaborators, [Altarwal et al., 1998].

The proposed laboratory internal software architecture will need to be flexible, allowing

mechatronic device alterations to reflect technology advances. This is considered

important, as the purpose of the laboratory is to allow students to learn how to program

the technologies they will expect to meet in their subsequent career.

2.4.2.3 A Virtual Training Laboratory at Queen Mary College

Queen Mary College proposes a virtual laboratory controlled by intelligent agents,

[Norman and Jennings, 2002], intended to improve postgraduate telecommunications

students' training, allowing guidance and exchange of ideas with more experienced

colleagues; access to research papers and books, and experimental tools for evaluating

new ideas and hypotheses.

29

A multi-agent system allows the decomposition of a Remote Access Laboratory

software control architecture from a single potentially cumbersome software entity, to

agents managing scarce resources, and integrating any existing systems. The agents are

anticipated to benefit users by introducing them to each other and providing relevant

research material which they may not be previously aware of.

2.4.3 Summary of Collaboratories

The developed collaboratories corroborate the theory of Collaborative Applications

proposed by Dewan et al. [1994], whose contribution to the subject is proposing

multiuser-edited `whiteboards' suitable for users' interaction in collaborative

applications. Dewan and Shen [1998] reports that the interaction structures between

users require ̀ ... access specifications to be associated with persistent objects'. Golab

and Özsu [2003] explains that this is a Data Stream Management problem requiring

multiplexing and demultiplexing of data, or mixing both stream data with static data,

and argues:

designing an effective data stream management system requires extensive
modifications of nearly every part of a traditional database, creating
many interesting problems such as adding time, order, and windowing to
data models and query languages.

This problem is of current research interest in database management systems, because

there is a growth in applications which have ̀ long-running, continuous, standing, and

persistent queries', [Golab and Özsu, 2003], and in collaboratories the issue is

connecting data to an object being examined and manipulating the data. This is

important as a collaboratory's success depends on the methods used to store and

retrieve experimental data, and introduce new experiments.

30

If a collaboratory is difficult to use, then internal and remote users will not be

encouraged to use it, ultimately precipitating its demise. If the system is too

complicated to add new experiments and technology, inflexibility would result in a loss

of operational ability, making the collaboratory unattractive for future users.

2.5 A Distance Learning Laboratory Architecture

The proposed Remote Access Laboratory is expected to have an internal software

architecture which allows a user's prototype Artificial Intelligence to operate a

mechatronic device. The proposed laboratory has to be sufficiently flexible to allow

mechatronic device alterations to reflect technology advances. This is considered

important, as the purpose of the laboratory is for students to learn how to program the

technologies they expect to meet in their subsequent careers. The laboratory's success

depends on the flexibility to introduce new experiments, which could potentially be

achieved by using the concept of Intelligent Agents to fragment and distribute control.

Intelligent computer agents are both the original goal and the ultimate
goal of artificial intelligence research. In striving toward that goal, our
community has followed a practical research strategy of "divide and
conquer, " with different sub-communities attacking important component
functions of intelligence, such as planning, search, knowledge
representation, vision, and natural language. [Hayes-Roth et al., 1995]

2.5.1 Role of Intelligent Agents

Intelligent agent architectures developed from implementing Distributed Intelligence

Systems, or Multi-Agent Systems, with two competing architecture design principles:

" Agents based on deliberation, generally planning, termed Deliberative Agents.

" Agents, governed by situation reaction rules, termed Reactive Agents.

Either one of these intelligent agent architecture's weakness is the other's strength

[Davidsson, 1996].

31

Bryson [2000] considers Autonomous Agent Architectures as design methodologies, a

combination of design knowledge and strategies. The architecture design knowledge is

argued as obtained by both reasoning and experience. Reasoning is argued as the early

papers for an agent's architecture, which provide the hypothesis and early architectures

as evidence. Experiential knowledge is argued as explicit reports and/or ̀ unpublished

record of failed projects or missed deadlines'. The Intelligent Agents theories being

examined are compared in table 2.2 below.

Table 2.2 Comparison of agent theories

Author
Theory

Provided
Agent

Architecture

Multi
Agent

Multi Agent
Communication S stem

Hayes-Rothet al. [1995] Program based BBI No Not considered
Hayes-Roth 1995 behaviours (blackboard agent)

Sadeh et al. [2001] Knowledge encapsulated MASCOT No Not considered behaviours (blackboard agent)

Corkill [2005] Principled agent
High Level Data Fusion

Agent No Not considered
architecture (blackboard agent)

Davidsson [1996]
Agents which track A Linear Quasi- Yes Co-operation

other agents Autonomous Agent
Jennings eta!. 1995 Agent design framework ARCHON Yes Co-o eration

Chavez et al. [1997]
Decentralised multi Challenger Yes Negotiation

agent framework

Wooldridge et al. [2000] Design & analysis Gaia Yes Negotiation
agents

Helsinger & Wright Distributed blackboard COUGAAR Yes Negotiation
[20051 1 agents (blackboard agent)

The agents reported show an incremental development of Agent architecture theories,

with a significant change in the theory from single agent based architectures with

Hayes-Roth BB I to multi-agent based architectures with Helsinger and Wright's

COUGAAR. The shift in research focus subsequently shows a change in the Multi-

Agent architectures from co-operative to negotiated interaction. The research in the

blackboard agent architecture has focused on the operation of a Blackboard control

systems, which has proven problems, with a parallel growth in research of multi-agent

systems comprising blackboard agents.

32

2.5.2 Role of Blackboard Agents

A blackboard agent is an agent architecture which utilises a memory space for all the

agents' operation knowledge. The importance of this architecture is the requirement of a

mechatronics Remote Access Laboratory to have a means to receive and test the user's

prototype Artificial Intelligence.

The blackboard intelligent agent model was based on Feigenbaum [1977] and Shortliffe

[1976]. Carver and Lesser [1992] outlines the basic blackboard agent architecture

shown in figure 2.2 below, comprising a blackboard, knowledge sources and control

mechanism.

I
Blackboard

-

sources

0 Control Data
Mechanisms

Control

Sensors II Actuators

Figure 2.2 The basic blackboard agent architecture

Corkill [2003] argues that a blackboard agent's collaborative power is the Knowledge

Sources which provide limited data, since providing all the data is considered too

distractive. With partial knowledge-sharing using the blackboard, knowledge sources

are triggered by partial activation states, with a search to find additional data needed to

activate their behaviours. The result is that when information is shared, locating

information has to be fast, complete and highly relevant, [Lesser and Erman, 1980].

Corkill [2005] explains that previous Blackboard Systems have been criticised in recent

years due to their ad-hoc evaluation of belief values, to determine control decisions.

33

2.5.2.1 The Blackboard Agent Architecture Components

The blackboard is the agent's global database containing data and hypotheses,

structured into areas, for possible efficient retrieval of associated hypotheses. A

problem with a single blackboard is how to integrate goal-directed factors with data-

directed, agenda-based control.

The knowledge sources contain the agent's current state and are used to create new

hypotheses or modify existing ones. Ideally knowledge sources are independent, with

interactions incrementally and opportunistically modifying hypotheses on a blackboard.

9 Incremental hypothesising (evidence aggregation) involves using incomplete data to

hypothesise a partial solution, using additional data to verify the solution, [Rich,

1991].

" Opportunistic hypothesising involves determining the best actions to achieve the

agent's goal given the available knowledge.

The control mechanisms are used to create complex, goal-directed strategies. Carver

and Lesser [1992] explains the problem with blackboard architecture control, that a

system needs to deal with multiple sensors, generating large amounts of data, or hard,

real-time deadlines. Multiple passive sensors require control mechanisms to prevent

blackboard data overloading, while real-time deadlines require deterministic control

with the facility to assess possible action duration, and dynamically alter the Knowledge

Source's activation conditions. Self-activating independent knowledge sources may not

need control mechanism, but have two potential drawbacks:

1. Knowledge sources require sequential execution, using multi-threaded

programming.

34

2. Blackboard agents are typically used for combinational data problems, but only if a

solution does not require executing all the possible solution knowledge sources.

2.5.2.2 Examples of Blackboard Agent Implementation

The BB1 Agent Architecture

Hayes-Roth et al. [1995] research involved `multi-agents in unpredictable

environments' using the BB 1 agent architecture `for spontaneous goal generation and

selection'. The BB1 is a multi-layered blackboard agent architecture, with the

blackboards having a component library and reusable domain expertise for knowledge

sources; and an application configuration method to select and configure architecture

components as a circumstantial control mechanism.

A high level task specific language is developed to control both decision and domain-

action specification, allowing control sharing strategies among similar task applications

[Hayes-Roth, 1995]. The physical level behaviours are environment perceptions and

actions, while the cognitive level behaviours provide more abstract reasoning. The

examples given are `... situation assessment, planning, problem solving'. The control

software is event-driven, with sequenced planned, stepped data comprising: start

condition(s); intended activity and stop conditions. The software can be modified and

developed dynamically, with competing behaviours providing adaptability through the

criteria of a behaviour best performing a task within the current parameters, and

matching the current constraints closest to the behaviour being executed, [Hayes-Roth,

1995].

35

MASCOT (Multi-Agent Supply Chain Coordination Tool)

Sadeh et al. [2001] reports on the MASCOT architecture, which is based on previous

architectures using modular encapsulation of problem-solving Knowledge Sources.

These preceding architectures successfully integrated multiple knowledge sources to

develop solutions using a shared data structure for a diversity of applications, [Erman et

a!., 1980; Corkill, 1991; Carver and Lesser, 1992].

COUGAAR (Cognitive Agent Architecture)

Helsinger and Wright [2005] describes the COUGAAR as a distributed agent

architecture, comprising a COUGAAR Node, which may have multiple blackboard

architecture agents sharing computer resources. The Blackboard is described as an

agent's local memory store supporting, controlling and providing access for

communications transactions. The advantage proposed is that it allows the agent's

`developers to concentrate on the domain-specific issues of their application'. The

agents are homogenous, with specific operations determined by a `plugin'. The

Blackboard contents are tasks, assets and ̀ PlanElements'.

Principled Blackboard Intelligent Agent Architecture

Corkill [2005] explains that 34 participants at a DARPA-based workshop held in

December 2001 recommended ̀the technical foundations for an advanced high-level

data fusion approach' for an Intelligent Agent Architecture, uniting the Blackboard

control methods advanced by Erman et al. [1980], Corkill [1991], Carver and Lesser

[1992], `with a more "principled" Blackboard representation'. The advantage argued

for Blackboard Intelligent Agent Architectures is control flexibility, as the agent

operations can be either data-directed or model-directed as appropriate.

36

2.5.2.3 Summary of Blackboard Agent Architectures

The Blackboard agent architecture can be adapted for testing prototype Artificial

Intelligence, as the architecture allows the design of an external `intelligence' program

for use as its Knowledge Sources. The BB 1 architecture provides significant functional

evidence for using a programming language to create the Knowledge Sources, together

with the COUGAAR architecture which is developed to allow external Knowledge

Source design The transmission of a prototype Artificial Intelligence to a receiving

intelligent agent is illustrated as a block diagram in Figure 2.3.

Laboratory

Intelligent Interface to
Agent Q the

laboratory
Knowledge

Blackboard
sources

0 prototype
Artificial

Control Intellignce
mechanisms

Robot
_0 Data

Sensors Actuators -º Control

Figure 2.3 A blackboard agent architecture for the Remote Access Laboratory

Sadeh et al. [2001] arguing the success of blackboard architectures to integrate multiple

knowledge sources to support a diversity of applications, establishes the concept of a

Blackboard Agent which can use a range of mechatronic devices. Corkill [2005]

continues the argument with the principle of using either data-directed or model-

directed blackboard architectures. This establishes an architecture format compatible

with the expectations of the prototype Artificial Intelligence format being proposed for

the user to develop. The prototype Artificial Intelligence is based on modelled actions,

switching to data-driven actions when interacting with the environment.

37

2.5.3 Specific Agent Architectures

2.5.3.1 An Agent Architecture for Tracking Other Agents

The researched laboratory is intended to operate multiple mechatronic devices requiring

agent tracking for intelligent interaction between the devices. This involves observing

other agents' actions, and inferring the high-level goals, plans and behaviours, [Tambe

and Rosenbloom, 1996].

The solution proposed by Davidsson's [1996] Linearly Quasi-Anticipatory Autonomous

Agent Architecture, is to include a World Model for predicting an agent's interactions

with both the world and other agents. Davidsson reported that the agent had tracking

capabilities, predicting other agent's actions by evaluating what the reactive behaviour

of other agents are if nothing unexpected occurs, and preventing interference with its

own objectives by manipulating its own formulated action plan accordingly.

2.5.3.2 A Knowledge Base Agent Architecture

The proposed laboratory is expected to operate more than one mechatronic device, each

operated by a prototype Artificial Intelligence, without co-operating. A proposed

knowledge-base agent architecture design, would combine current and existing data to

store, refer and retrieve current knowledge, and access; manipulate and modify existing

databases' data, collaborating and cooperatively processing with planning agents.

McKay et al. [1996] argues for an optimal architecture to comprise the following

capabilities: accepting an agent's query; generalising the query to access, retrieve and

compute both the sought and related knowledge, before returning the knowledge to the

enquiring agent.

38

Queen Mary Virtual Laboratory

Norman and Jennings [2002] describes the Queen Mary Virtual Laboratory used

Knowledge-base agents as Mediator agents, which develop and maintain an abstraction

of the system knowledge or resources. Mediator agents occupy a distinct, active layer

between user-orientated information processing and resource management.

2.5.3.3 Multi-Agent Architectures

The structure of the agents and configuration that might be used is now considered.

Since the early 1990s research has increasingly focused on the design of Multi-Agent

Systems with their inter-agent interactions. The design of a multi-agent system includes

the agents' ability to communicate with each other. Doran et al. [1997] argues that

multi-agent system communication is based on three concepts:

9 Deliberation: The agents plan actions to collaborate.

" Negotiation: The agents plan actions in competition with each other.

" Co-operation: defined as `... a property of the actions of the agents involved',

arguing that agents are cooperating when a goal is achieved which no agent can

accomplish alone, and achieve both their own, and other agents' goals.

Further, co-operation can be classified by the agent's motives:

" Self-interested co-operation: an agent co-operates to achieve its own goals.

" Altruistic co-operation: an agent acts for a group's interests, without furthering its

own goals.

There are two methods of designing multi-agent systems from theory, using either

specification languages such as Z, [Luck and d'Inverno, 1995], UML, [Odell et al.,

2000]; Logic Programming, [Thielscher, 2005], or software engineering methods, as

described below.

39

ARCHON

Jennings et al. [1995] describes ARCHON as a decentralised software engineering

methodology, used as an agent's design framework. The agents localise the system's

objectives and are the smallest possible coherent autonomous entity, determined by

overall efficiency, with a system having a large number of agents. The agents' goals are

often interrelated, requiring interaction (controlled by the agent's ARCHON multi-agent

interaction Layer) to meet global constraints and provide services and information.

Each agent's design either reuses existing software control systems, or uses control

systems specifically designed for ARCHON functionality. The methodology

consistently integrates multiple knowledge and data types, and produces partial results

during component failure, due to overlapping functionalities.

Gaia Architecture

Wooldridge et al. [2000] reports that the Gaia architecture is intended to analyse and

design agent-based systems, with explicit assumptions that the agents have access to

computer resources equivalent to a UNIX process, and that the agents collaborate to

achieve a global goal, without conflict(s). The Gaia architecture comprises a diversity of

fewer than 100 separate agents' architectures including both a static multi-agent

architecture and a static runtime operation.

The multi-agent interactions are function-orientated, epitomised by their

communication. The inter-agent communication model is described as a directed graph,

and includes an acquaintance model to define the communication links, and identify any

potential communication bottlenecks.

40

Challenger

Chavez et al. [1997] reports `Challenger consists of Intelligent Agents which manage

local resources individually and communicate with one another to share their

resources... ' The agents have relatively simple behaviours and use local information by

inter-agent communications to achieve desired objectives and share available resources.

The design maximises performance by two properties:

9 Robustness as it is argued that a multi-agent system with a centralised blackboard

fails if the blackboard fails, the Challenger multi-agent system is decentralised.

0 Adaptability the Challenger agents quickly adapt in a dynamic environment,

providing minimal performance in the worst-case scenario.

Challenger analyses network delays, calculating the average response time, and

develops a world model of inter-agent interaction as form of agent tracking. This world

model of interaction development allows predictions of future interactions and

determines the time taken for another agent to finish a job.

2.5.3.4 Summary of Specific Agent Architectures

The agent tracking and the knowledge-base agents provide examples of specific agent

architecture design, utilised in multi-agent systems. The ARCHON and GAIA

architectures both use a variety of agent architectures, ARCHON re-using existing

software structures and GAIA allowing analysis of agents' designs for development.

Challenger as a multi-agent system was used to negotiate agent cooperation and

collaboration, with the intent of maximising performance.

41

2.6 Conclusions about a Distance Learning Laboratory

The research problem posed concerns the feasibility of a remote access mechatronic

laboratory to test a prototype Artificial Intelligence for intelligent behaviour. The

following is concluded from the research reported above.

"A remote access laboratory is encapsulated by distance learning theory, serving the

objectives of a distance learning institution.

9 The learning theory which best fits an engineering remote access laboratory in

distance learning requirements is the (Re)conceptualisation cycle, advocated by

Coventry [1995]. This approves the teaching of theory, by using a laboratory for

testing newly learned knowledge.

" For instructional laboratories, the experimentation should be representative of the

real world for applying the associated theory.

9 Advances are being made in the theory of design and use of laboratory formats

which support the concept of a remote access laboratory.

The current principles for distance learning laboratories are either using simulator

technologies, or physical attendance to a laboratory. Attending a physical laboratory

is unsatisfactory for distance learning, and research in simulation established its

lacking in imitating the real world, as the simulator only operates within the limits

of its programmed parameters.

" Collaboratory technology is providing evidence for the potential of remotely

accessible prototyping laboratories, but its purpose is not conducive to collaborative

interaction.

" The blackboard agent is identified as the premise for architectural development of a

remote access laboratory, and is considered in Chapter 4. Research on how to access

a prototyping laboratory by having an appropriate Human Computer Interface is

considered in Chapter 3.

42

This research aimed to establish the viability for a physical remote access laboratory,

which would not require attendance at its location, re-asserting the any-time, any-place

principle of Distance Learning. The internal architecture of such a Remote Access

Laboratory would include a multi-agent system. This is argued to have a blackboard

agent to facilitate testing prototype Artificial Intelligence, using the prototype Artificial

Intelligence as the agent's knowledge sources. A laboratory operating two or more

mechatronic devices, needs agents able to track other agents' operations and negotiate

when necessary. As a part of a multi-agent system there is a need for Knowledge-base

agents, used for storing the laboratory's knowledge, including the intended students'

successful experiments for analysis (and tutor's assessment). The prototype Artificial

Intelligence is designed and developed by use of Programming by Demonstration,

discussed next in Chapter 3.

43

Chapter 3

State-of-the-Art for an Interface to a Distance

Learning Laboratory

3.1 Introduction

This chapter initially discusses the principles and concepts of Intelligent Training

Systems within a distance learning environment; before examining specific, interrelated

areas of research to establish the current state-of-the-art concepts and techniques

necessary to design the interface for a distance learning Remote Access Laboratory. The

discussion follows the progression:

9A Distance Learning Environment: a review of the current theories advocated for

distance learning, and how they relate to a successful Remote Access Laboratory

interface.

" Human Computer Interfacing: a review of the expectations and current theory for

a Remote Access Laboratory interface. This critiques the current theories advocated

as relevant for Human-Computer Interfaces.

" Programming by Demonstration: relates to the design of software which allows a

user to interact with tools for creating a program without the use of a programming

language, and includes an explanation of the theory.

3.2 A Distance Learning Environment

Engineering education is science and mathematics based subjects that
are traditionally the hardest to teach online because of the need for
laboratories and equation manipulation. [Bourne et al., 2005]

44

A concern already expressed arises from Chapter 2.2, with distance learning theories

abrogating the importance of teaching a body of theory. Mechatronics as an engineering

subject has theory as a manifestly important component.

3.2.1 Intelligent Tutoring Systems (ITS)

Intelligent Training Systems reflect emerging learning theories, with the teaching

process divided into four separate functions: the planning of teaching actions; the

monitoring of these actions with students; diagnosing any discrepancies between a

student's behaviour and the expected outcome, and determining and correcting an error,

[Siemer and Angelides, 1998; Asami et al., 1998; Sison et al., 2000].

Research in ITS has been led by a desire to identify and rectify student errors. Whilst

there is no standard for ITS, a consensus is that ITS should comprise: a domain model

with the knowledge about the domain to be taught; a student model with the

representation of the emerging knowledge and skills, and a tutoring model to design and

regulate instructional interactions with students, [Siemer, 1998].

While each model includes processes necessary for tutoring interaction, the systems

shortcomings are: lack of complete domain knowledge, which was a deciding factor for

Asami et al. [1998] to limit the system's scope. Further incomplete domain knowledge

can lead to behavioural errors, and there can be many correct approaches to a solution,

[Siemer 1998; Asami et al., 1998; Sison, 2000]. Sison [2000] proposes a solution of

unsupervised learning, where knowledge level errors are not known beforehand, with

multiple classifications of a single object and variability allowed in the programming.

Intention-based diagnosis should be made. Baker [2007] investigates the issue of off-

task behaviour, and argues the student may be using the system as a game.

45

Ramadhan [1997] considers that Intelligent Tutoring Systems can be categorised by

their primary means of solution analysis:

" Systems that can diagnose partial solutions, either using passive analysis which does

not trace the user's intention or the design decisions, or active analysis, subdividing

the system into smaller steps, and predicting if the user is following a correct design

path.

" Systems that require entire solution code, which can be further subdivided according

to its error handling: specification-based analysis, [Crowley and Medvedeva, 2005];

trace-based analysis, [Trella et al., 2005]; I/O based analysis, [Butz et al., 2006],

and model answer based analysis, [Moritz et al., 2005].

3.2.2 Design Considerations

Sherry [1996] provided a peer review on design considerations, arguing there are 5

factors affecting successful distance learning provision:

" Systematic design and development the laboratory flexibility has to allow for

advances and developments, citing Willis [1992].

" Interactivity between the laboratory and users and amongst the users, citing

Garrison [1990], NcNabb [1994].

" Active learning the users' involvement in their own learning, including

understanding the material presented, citing Saettler [1990].

" Visual Imagery instructional images without `oversimplification' or `superficiality'

citing White, [1987] or becoming entertainment, citing Ravitch [1987].

" Effective Communication so the user perceives things as intended by using

appropriate objects with relevant attributes, citing Horton [1994].

46

3.2.3 Summary of a Distance Learning Environment

The system design to allow improvement requires structural flexibility, for continued

future use. A rigid inflexible system would require significant alteration with any

tutored course changes. Morse and Truman [1996] reports that while distance education

and computer technologies augment the educational process, computer technology does

not in itself improve education, but is only an enabling tool to be used in innovative and

effective ways.

3.3 Human Computer Interfacing

One of the main impediments to an expanding role of robotics in society
is the current difficult and unnatural programming interfaces available...
[an] approach to robot programming is Programming by Demonstration
(PbD)...... Such a programming interface is very natural for a human to
use, it does not require specialist knowledge, and can potentially
program very complex tasks. [Chen, 2005]

Rogers [2004] states that during the 1980s and '90s Human Computer Interface (HCI)

designers referred to `memory, attention, perception, learning, mental models and

decision-making' cognitive models to understand computer users' performance.

Familiar cognitive models helped designers with design characteristics, and the

cognitive theories helped with design decisions, consequently developing icons to

improve user interaction. The problems are the fragmented and slogan-based adoption

of psychology findings, and a partiality for citing singular research findings extensively

and ignoring the original research context, [Green et al., 1996].

47

3.3.1 The Theories of Human Computer Interfacing

Wright et al. [2000] explains most ̀ models of interaction are task-based' and a task is

`the way in which a goal is attained taking into account factors such as competence,

knowledge and constraints', citing Card et al. [1983], Johnson [1992] and Green et al.

[1988]. Further Wright et al. [2000] refers to Suchman [1987] to premise their proposed

`distributed information resources model', where an interface includes abstract

information structures to identify action resources, and the reference knowledge is

distributed between the interface and its user. Wright et al. [2000] specifically proposes

that the model would apply to single user interaction with an interface.

Rogers [2004] explains how Cognitive Theory failed as an HCI model in the 1980s,

resulting in two new models to conceptualise and understand the assumed interactions

taking place between a user and a computer: the Model Human Processor (MHP) and

GOMS (Goals, Operators, Methods and Selection rules). Card et al. [1983] argues that

MHP was a premise for predicting computer interface-user performance, and assessing

the HCI's suitability for supporting various tasks. MHP was developed further with a

set of predictive models, collectively referred to as GOMS. The various models and

significant references are compared in Table 3.1.

There are four theories represented in table 3.1. GOMS is dismissed as a theory due to

its limitation of user interaction to data entry tasks, and not modelling flexible

interaction. Distributed Cognition and External Cognition have a problem of not

modelling user input, and Distributed Cognition ignores the activity involved. Activity

Theory, while providing solutions, requires experimentation with the proposed interface

design to determine effectiveness.

48

Table 3.1 Comparison of HCI design theories
Theory Author Interface design Activity modelled User input HCI design User interaction

GOMS Olson and Assists in new Limited to data Predictable Does not model
Olson 1991 product effectiveness entry tasks behaviour flexible interaction
Wright et al. Present knowledge What the user Does not take

Distributed 2000 vital to achieve task needs to know account of action.

Cognition Zhang and
Norman [1994] Capture rules in Design does not Assimilate rules
Zhan 1996 design consider tasks but ignores actions

Green et al. `Cognitive Observe Abstract Observed

Exte n l
[1996] Dimensions' behaviour dimension cognitive

i b h r a types av our e
Cognition `fundamental Understood Optimum Can guide users' Rogers [2004] properties and cognitive effort' ------ `interactive

' decisions design dimensions' content

Kautb [1996] HCI operating at Cognitive Depends on
Consider HCI

at several
Information

several levels mediation work practice levels system research
Activity

"_'_ [2001] Based on ̀ Activity Analysed work Modelling Interpreted Modelled activity
Theory Triangle Model' practices and tool work practice findings system

B6guin and
Rabardel Initial HCI design Activity process `Catacreses' `Instrumental Observe the user

2001 imprecision of designing. genesis' construct 'the tool'

3.3.1.1 Distributed Cognition

Roberts [1964] heralds the concept of socially distributed cognition, with Wright et al.

[2000] citing Norman [1988] to propose knowledge as a function of both the world and

the person's cognitive ability. The information an interface presents is argued as

important to achieving a task, as the user's knowledge of the interface, implying that an

interface's design involves considering the knowledge a user needs to know, and recall.

Suchman [1987] considers plans as representing possible action courses, arguing that

they are subject to the consciousness, so can be manipulated and evaluated. Young et al.

[1990] argues that a novice HCI user interprets choices to select which is appropriate,

with Zhang and Norman [1994] presenting experimental evidence using Towers of

Hanoi to demonstrate with disks, that the rule of not placing a larger disk on a smaller

disk is held in the subject's memory, but a Russian Doll version captures the rule in its

design. Scaife and Rogers [1996] advises considering how an interface can influence

thinking and reasoning, while Zhang [1996] did not consider the role of tasks (actions)

for designing displays.

49

Nardi [1996] [2002] advocates Activity Theory and criticises Distributed Cognition's

usefulness to HCI, focusing on the extensive fieldwork required to obtain any

conclusions or design decisions. The theory is considered significantly harder to apply

than activity theory, as there are neither identifiable explicit data characteristics nor

readily usable analytical methods. Rogers [2004] states that Distributed Cognition is not

a quick-fix prescriptive method, but instead requires the interface designer to be

accomplished in data analysis and uniting both detailed and abstracted investigation

levels, instead demanding considerable time, effort and skill. For the HCI being

prototyped, while allowing for various actions, the plans for actions are constrained.

This limits the user action plans by defining the rules of the system within the system's

state.

3.3.1.2 Activity Theory

Kaptelinin [1996] explains that Activity Theory originated from Soviet philosophy of

analysing tool use by a subject to achieve an object/objective, arguing that the

object(ive) motivates the activity (tool use), and specifies the activity's direction. Kuutti

[1996] argues that mediation involves a form of cognition.

Mwanza [2001] explains how Activity Theory methodologies were developed to

analyse both organisations work practices and the supporting computer system design,

originating with Vygotsky [1978] `Mediational Model', Figure 3.1. Further, Engeström

[1987] augments Vygotsky's concept with a hierarchical model of human activity,

establishing the expanded ̀ Mediational Model', figure 3.2, to imitate human social

activity.

50

Mediator (Tools)

_____ _
It4I1S"'T"1Ui; Outcome z---------------------

' Subject Object process
Figure 3.1 `Mediational Model' Mwanza [2001]

Mwanza [2001] argues that the Activity Triangle Model is a heuristic model capturing

and unifying relevant concepts, providing a basis for interpreting and applying the

theory, and placing an activity in a social and cultural framework. Nardi [1996] explains

that the theory's advantage is its easily understood vocabulary, but there is no standard

method for implementing the theory. Kaptelinin [1996] argues that the inapplicability of

Activity Theory is due to its multiple basic principles for analysis, with an evolving

theory framework, creating a variation in interpretation and application.

T

Subject --- - Object Transformation º Outcome
process

Rules 4:::: 141Division of labour
Community

Figure 3.2 The basic activity structure, ̀Activity Triangle Model' Mwanza [2001]

Mwanza explains that the process of implementing the Activity Theory using the

Activity Triangle Model involves: modelling the situation being examined to create the

situation's Activity System; decomposing the situation's Activity System; generating

research questions and conducting a detailed investigation, finally interpreting the

findings. Further implementing the acquired model involves method validation and

evidence of transferred and implemented theory. This complicated implementation

method leads to a depiction of applying Activity Theory without explaining how the

theory was applied.

51

Catacreses

`Catacreses' are explained by Beguin and Rabardel [2001] as potential development

and evolution of an Activity's `tool' from its original design. Catacreses are proposed

for adoption in Activity Theory, since an activity should include obtaining, or

constructing, an appropriate tool to achieve the attempted object(ive). The tool's

development is considered as ̀ instrumental genesis', including spontaneous or planned

systematic adaptation of a tool's function or structure.

Beguin and Rabardel [2001] analyses the design process using a computer, with a

designer creating something unknown and, for design flexibility, with persisting

uncertainty. During early computerised design, imprecision is `impossible' and argued

incompatible with the designer's need and hindering the computer's mediating role, due

to imposed design constraints through accurate data entry requirements. The result is a

data entry constraint that initially compromises the design, before the design is

modified.

3.3.1.3 External Cognition

Nakakoji and Yamamoto [2003] explain that external cognition is the external

representation of an entity, and in HCI the emphasis is on a graphical (iconographic)

external representation of a process.

Green et al. [1996] claims that `cognitive dimensions' suitably abstract different

dimension types across applications, with solutions applicable to comparable problems.

Designers and researchers consider `cognitive dimensions' easier to understand and

learn than Activity Theory, as they encourage considering design solution trade-offs,

and observed cognitive behaviour.

52

Rogers [2004] stated that her approach to `fundamental properties and design

dimensions' can guide users' decisions, informing and confirming the external

representation for the activity being designed, with Zhang [1997] proving that

presentation is critical to the problem solving process.

Rogers argues that her methodology can establish the optimum `interactive content'

structure and presentation with reference to understood `cognitive effort', and

`computational offloading' which is the degree various icons affect the cognitive effort

required to carry out different activities.

While external cognition has a proven track record in HCI with such icons as

ý3

ER and
(5

used to indicate print, the software package used for the interface's

design and prototyping did not allow for the adoption of iconographic buttons.

3.3.2 HCI Design in Practice

Kuutti [1996] considers that HCI has garnered the eminence of a research subject, citing

Carroll [1987] for perpetuating the assumption HCI is `grounded in the framework of

cognitive science'. Kuutti's rebuttal comprises ̀ Research is not ahead of practice',

instead current research is identifying why HCI solutions perform, and refutes the

`framework of cognitive science' as the related theory is fragmented, disconnected and

incoherent. Further Kuutti considers that there is a divide between HCI research and

design, citing Bellotti [1988] survey of designs were not based on HCI research.

53

Kuutti [1996] cites Grudin [1990] reporting that HCI design has evolved from hardware

`outwards', and Friedman [1989], with Human-Computer problems being relative to

each other, with decreasing importance. Both Grudin and Friedman agree that problems

are not solved, but when contrasted with new larger problems, recede in importance.

Kuutti criticises Grudin for `computer-centrism', while accepting the advantage of

considering HCI operating at several levels to solve conceptual problems and

confusions, but Kuutti argues the theories did not help relate the concepts together.

Rogers [2004] argues for clarity in the HCI theories' intentions, and cites the

Shneiderman [2002] five required theory formats in HCI: descriptive, for `providing

concepts'; explanatory, for `relationships and processes'; predictive for `user

performance'; prescriptive for design guidance, and generative to enable discoveries.

The argued problem is that HCI designers have an unmet demand in a multitude of

purposes from the theory, and while there is a need for both theory and application

methods, theory has difficulty in providing the application methods.

Rogers proposes that designers be researchers, and that theory-based HCI designs can

contribute to the adoption of new techniques with the development of a design language

for future research and design. Rogers believes a common language is increasingly

essential with HCI expanding in designers, products and users, requiring replacement of

the theoretical jargon for the non-theorist and allow a greater knowledge transfer

between designers and theorists. The problem is designers need advice at design time

but researchers confirm design correctness after implementation. An answer is iterative

design, involving users in the design process, but identifying real-life circumstances

becomes a problem. The current alternative is to allow a user to personalise the HCI.

54

3.3.3 Summary of Human Computer Interfacing

Rogers [2004] explains there is a re-emphasis for a theoretical component to parallel the

procedural and theoretical developments in HCI interfaces interactive design. Barnard

et al. [2000], Hollan et al. [2000], Kaptelinin [1996], and Sutcliffe [2000] argues for a

theoretical foundation to HCI design, while Castel [2002] argues that there is a lack to

current HCI design.

Rogers argues that while the early application of cognitive human memory theories to

HCI optimised icon design and command names, cognitive theories are based on

experimental conditions not a workplace. Both Hollan et al. [2000] and Bourguin et al.

[2001] agree that psychology based HCI premised on the `Human Information

Processor' is limited, and new HCI developments can be supported by psychology's

theoretical and experimental structure, but disagree with each other about the theory.

Hollan et al. [2000], advocates Distributed Cognition, Bourguin et al. [2001] Activity

Theory. The differences are the subject(s) of study is/are both the user and HCI for

Distributed Cognition and just the HCI as a tool for Activity Theory.

Barab and Plucker [2002] presents Distributed Cognition philosophy as external objects

changing the system during activity, and affecting the user's knowledge citing Cole and

Engeström [1993]; Perkins [1993]; Salomon [1993]. Distributed Cognition requires

abstracting knowledge and action together, and by formalising this knowledge the

ability and talent are distributed across a system and not embodied only in a person.

55

Activity Theorists are rebuked for focusing on activity to transform an object and the

desire to appropriate an entire system's activity, without concern for isolated activity.

Activity Theorists consider activity is distributed across subjects and tools from a

subject's community relative perspective, but ignore both the person's state of mind,

and the environment. The problem with modelling activity in an organization is the

"Hawthorn Effect": people respond the way they think that the researchers want them to

respond. The problem with any analysis of how people work is the reasons people go to

work, identified in Human Resource Management as a mix of tangible goals, money

and promotion, and intangible goals, satisfaction and self-esteem. Maslow's Hierarchy

of Needs expresses this as the issue of Safety Needs with job security, and Social Needs

with meeting people. When workers are studied, the need for job security is enhanced

and their social needs are suppressed.

3.4 Programming by Demonstration

Ehrenmann et al. [2001] argues that as robots are adopted by a consumer market, the

consumer will reject modem robotic user interfaces, and programming techniques.

Biggs and MacDonald [2003] considers that most people have minimal technical skills

requiring easier, flexible programming systems

This research determined that Programming by Demonstration (PbD) Systems cannot

be classified into mutually exclusive types. Subsequently to reflect the current

dynamism of research in PbD, this report's taxonomy of PbD systems is based on

knowledge: how it is obtained, and used.

" How knowledge is obtained by the system:

o Direct Programming: Text Based Systems, Iconic Programming

56

o Indirect Programming: Programming by

Programming, Programming by Demonstration

" How the knowledge controls the robot:

o Reactive Systems

o Deliberative Systems

o Hybrid Systems

o Behaviour Based Systems

o Hierarchical Architectures

Observation, Automatic

As can be identified, this form of classification does not exclusively describe each PbD

System. All PbD have some form of knowledge: input; format; storage; and operation.

3.4.1 Programming Methods

3.4.1.1 Direct Programming

Wright and Cockburn [2005] explains that direct programming is when a robot's

knowledge/behaviours are programmed using graphical or text-based systems The

methods include adjustable preferences and defaults; macros based applications, and

scripting languages. Lau and Weld [1998] explains that each technology resolves a

programming issue, but has an associated limitation. Adjustable preferences and

defaults interfaces are simple to use, but limited to operations considered and

implemented during its design. Macros allow action sequence creation, but limited

when variations are required during task repetition. Text-based programming is based

on traditional programming languages. Scripting Languages create sophisticated control

sequences, but require programming experience, with, knowledge of the scripting

language and application interface.

57

This research is expected to overcome the `traditional' programming language

problems allowing a user to develop skills to robotic behaviours design.

3.4.1.2 Indirect Programming

Wright and Cockburn [2005] explains that a robot's knowledge is programmed using

Learning Systems: Programming by Demonstration, and Instructive Systems. Learning

from a tutor providing, and explaining, case examples, is called: Programming by

Demonstration (PbD), [Lieberman, 1993,1994; Friedrich et al., 1995; Schaude and

Dilimann, 1995]. Chen [2005] explains that this form of programming is argued

`natural for a human to use, it does not require specialist knowledge, and can

potentially program very complex tasks'. Biggs and MacDonald [2003] explains that

these programming systems, do not allow direct control of a robot. The system

generates the robot's control code from the information entered into the system.

Previous research in learning techniques divided tasks between development, and

utilisation. During development is world model creation, the internal knowledge of the

world, and initial program operations. For utilisation is action and knowledge

refinement. Kaiser et al. [1995] reports two causes for the human-machine interaction,

first a task the system cannot perform. Second, a specified object is unknown.

In programming by observation the system learns by detecting and disseminating a

teacher's demonstration. Voyles and Khosla [2001] explains a new task is demonstrated

in real-time, without special behaviour requirements, or additional time. The only

requirement is wearing tactile sensors: glove or fingertip coverings. The cause for errors

is argued due to a robot's unstable grasps.

58

3.4.1.3 Learning by Human Demonstration

Voyles and Khosla [2001] cite Patrick [1992] and argues

Programming by Demonstration is the most natural paradigm for human

programmers, because, training by demonstration and practice is the most

often used method between humans.

The assumption is when demonstrating a task robots can identify and parameterize the

skills required by a task. An identified problem is: a robot dependency on both a

teacher's ability and experience in providing knowledge or instructions, and the format

of system instruction, either at skill or task level. Ehrenmann et al. [2001] argues that

the PbD aims are to generalise and abstract the demonstration, to reflect a user's

intention, and optimally model the problem solution. The best demonstration is a

generalised problem with parameters for distinguishing both the specific problem being

solved and a solution being demonstrated.

Nicolescu [2003] argues that humans learn by complex interaction and instruction

methods, comprising demonstration; instruction, and directive cues or gestures. The

learner relies on task demonstration; supervised practice trials with rectifying feedback,

and additional demonstrations to learn the generalisation. Complexity results in both

effective teaching and learning. In contrast, during Learning by Demonstration, most of

this complex interaction is overlooked, with instead the use of only 1 or few

interactions. Nicolescu reasons that additional teaching

significantly improves the learning process by conveying more
information about the task, while ... allowing for a very flexible robot
teaching approach.

Callinon and Billard, [2007] addresses this issue by adding a social component to the

teaching process and user interface.

59

This research developed a PbD system which is argued to have improved usability

when developing a program. Edwards [2005] cites Norman [1988], for identifying

usability problems, referred to as the `Gulfs of Execution and Evaluation'. Explaining

the ̀ Gulf of Execution is the difficulty of translating a desired goal into an action to be

executed', and the `Gulf of Evaluation is the difficulty of determining whether an

observable state meets the desired goals'. These two gulfs are argued as a direct result

of text based programming. The Gulf of Evaluation is not understanding a program's

text, a task argued only a computer can do reliably. The Gulf of Execution is a small

change to the program text, renders the program invalid.

Circumventing these problems has led to partitioning large programs into smaller

program components: Modules; Functions and Procedures. Edwards summarised the

two gulfs problem with

... a major reason that programming is so hard is that text strings are a
poor representation for programs. [Edwards, 2005]

3.4.2 Programming by Demonstration Methods

Lau and Weld [1998] states that traditional PbD systems comprised: a Trace Generaliser

to construct a program from a demonstration, including recognising conditional

constructs, and an Interaction Manager, which describes a resulting program to the user,

and obtains program execution authorisation. Biggs and MacDonald [2003] argue that

these systems deficiency are they imitate single demonstrations, without allowing for

changes or errors. A researched solution has been to introduce intelligence, resulting in

both more sensor and actuator information from the demonstration, and flexible task

execution.

60

Kaiser et al. [1995] argues a robotic control system's learning ability depends on how

knowledge is contained and accessed for control. The efficiency of a learnt task is based

on the PbD system's skill-base; cognitive and reasoning abilities, and its interface. The

Human Computer Interface is detailed more fully below.

A system's cognitive ability is its knowledge of objects, and the methods to detect

and/or identify the objects. For this research, the system has limited cognitive ability,

being unable to identify unique objects, but instead simple sensor activations, allowing

a student to learn the principles of robotic programming, without the complexity of

object identification, early in the learning process.

A system's skill base is argued the basic robotic abilities without requiring a real-world

model, and is defined as: ̀ the learned power of doing a thing competently' by Kaiser et

al. [1996] and ̀A pattern of activity which describes an aptitude or ability that achieves

or maintains a particular goal' by Nicolescu [2003]. Kaiser et al. [1995] define skill

learning as `perception action transformations involving no model knowledge, that

represent basic capabilities of the robot', defining tasks as ̀ sequences of actions that

accomplish a complete goal directed behaviour'. Voyles and Khosla [2001] argues that

as a skill is difficult to quantify, it is difficult to program. As the skill involved

increases, the less a system is suited to using traditional program languages.

Nicolescu [2003] argues that for any system to learn tasks directly, it is practical to

supply a basic skill base. An approach to PbD learning tasks without having a pre-

existing skill base has two problems: new skill learning may not use previously learnt

skills, and complex tasks learning required learning both a skills set and sequencing.

61

Learning task complexity are argued due to: reactive policies map sensors directly to

actuators, [Hayes and Demiris, 1994]; the progression of skills or tasks requiring

explicit step sequences, [Kuniyoshi et al., 1994]; the environment allows implicit

sequence representation, [Brooks et al., 1988]; Task complexity increases with higher

level components and constraints, [Nicolescu, 2003]. The researched system skill-base

comprised only the abilities to quantify sensor data, and determine unique motor

outputs.

A system's reasoning ability is the mechanism allowing a program generated to perform

a specified task, combining a system's skill-base with available object knowledge.

Nicolescu [2003] argues that: if the environment does not influence behaviour, then the

system should learn to reproduce demonstrated trajectories, a strategy where a robot

will fail to achieve its goal in a dynamic environment. If the environment influences the

behaviours of the robot, the system should learn task representations. This research

system's reasoning ability is intended to transform the system user's intentions into

motor actions, display received sensor data to the user, and determine what

demonstrated user intentions are for the circumstances presented to the system/robot.

3.4.3 Programming by Demonstration Systems

There are several types of PbD systems described in this section, Reactive and

Deliberative, Hybrid, Behaviour and Hierarchical systems.

Reactive Systems connect a robot's sensors to its effectors without using complex

reasoning. Brooks [1986] argues that the results are rapid responses to unpredictable

environments, and provide robustness. However, a reactive system does not maintain

state or internal representation of the world and learning is limited to reactive policies.

62

Deliberative Systems use both sensory information and the stored knowledge of a world

model, to determine next actions. The world model is either pre-programmed or

developed from sensor information. Possible paths are planned using the world model

to reach a given goal. The knowledge in the world model needs to be complete or

highly detailed.

Hybrid Systems comprise both the deliberative element of reasoning possible paths to

the goal, and the reactive element of immediate actions. Any conflicts between reactive

actions and deliberative planned actions are resolved by a middle (arbitration) layer,

[Gat, 1998]. The arbitration layer is considered the hybrid systems design challenge.

Matario [1997] argues that Behaviour Based Control design requires a centralised world

model with behaviours using `fast, realtime responses, and similar representations and

execution time', unlike a deliberative system which uses behaviours that operate on

different time scales. Molnar et al. [2004] uses an embedded Behaviour Based Control

system for a submersible. While a Hierarchical Partial Order Execution Architecture

uses a task structure, which is: `dynamically expanded at execution time' [Pearson et al.,

1993; Simmons, 1994; Tambe and Rosenbloom, 1995]; `completely provided a priori'

[Nicolescu and Matarie, 2002].

A Hierarchical Abstract Behaviour Based Architectures uses two components:

perceptions, and actions, to build the architecture. Nicolescu and Mataria [2003] refers

to perceptions as `abstract behaviour', containing its pre-conditions, goals and

`primitive behaviours': the actions. Activation of a perception depends on specific pre-

conditions, and the previous abstract behaviour post-conditions.

63

A `behaviour network' is built by connecting sequential abstract behaviours, and

networking the behaviour sequences. The tasks connect into flexible abstractions with

increasing complexity, allowing behaviour reusability: creation of complex behaviour

sequences, and flexibility to learn new tasks, and the behaviour network develops

increasing abstraction.

The PbD system to be prototyped had a hierarchical behaviour control system, with

reactive behaviours, allowing the prototype Artificial Intelligence to both operate with

long term goals and resolve immediate problems.

3.4.4 Programming using Programming by Demonstration

Wright and Cockburn [2003] considers programming as three fundamental activities:

Writing Programs; Reading Programs and Executing Programs.

3.4.4.1 Writing Programs

The knowledge transfer from designer to system using a representation the robot can

store. Text-based programming is still the most common method of writing programs.

Wright and Cockburn [2005] argues that the problems with text programming are

difficulties in determining errors in the text, and correct programs can have execution

errors, where an error can mask one or more other errors, or, accumulate to create an

error which may be hard to diagnose and trace to sources. Ehrenmann et al. [2002]

reports a robot programming method comprising demonstrating the actions performed

between grasps, and during the grasps. Chen and McCarragher [1998], [2000], Chen

and Zelinsky [2001] argues for using multiple demonstrations, as single demonstrations

are rarely the optimal solution, and creates a flexibility of maximising speed or

accuracy.

64

This research is based on providing a user with the ability to create intelligent behaviour

comprising goal activated and, sensor activated action plans. The behaviours are

demonstrated using diagrams. The Goal-Based Behaviours are designed by determining

locations a robot is intended to move from and to. Goal-Activated Behaviours are

activated at pre-determined goals, with Sensor-Activated Behaviours activated by

sensor states.

3.4.4.2 Reading Programs

Wright and Cockburn [2005] argues that this is the understanding of stored knowledge.

Onda et aL [2002] uses a virtual environment to perform demonstrations, allowing

sensor information retrieval, and creating specialised behaviours. Zollner et al. [2002]

reports using fingertip sensors to detect fine manipulation of objects. Kaiser et al.

[1996] reports graphically viewing the complete demonstration results comprising

viewing learnt demonstrated behaviours, and editing, rearranging, or using various

segments separate of the learnt demonstration as reusable code.

This research allows a user to view the robot's behaviours, as designed, with a

presentation of sensor values. The angle and distance text values can be edited

providing precision as graphic design can be imprecise.

3.4.4.3 Executing Programs

Wright and Cockburn [2005] argues that this is observing either a simulation or a

robot's performance of its knowledge. A simulator is often provided with a

programming language, but use of the simulator requires staff training. This research

provides a simulation facility, allowing analysis of behaviours with a detail a laboratory

may not physically provided.

65

3.4.5 The Limitations of Programming by Demonstration

Witten et al. [1996] reports that a weakness in PbD is `an inability to take advantage of

domain knowledge or user hints'. Nevill-Manning and Witten [1995] [1997] and Witten

et al. [1996] reports a method `for detecting hierarchical structure in sequences' by

determining patterns in the demonstration. While the methodology is argued as simple,

it is not reported how to apply it to obtain appropriate knowledge.

The system being researched needs to provide a hierarchical architecture allowing both

deliberative and reactive behaviours, and as such this allows planning based on sensor

operations, and specific action plans. Further, the sensor based reactive behaviours are

both context specific and generalised sufficiently to be recursive.

3.4.6 Programming Sub-Optimality

Friedrich and Kaiser [1995] identify sub-optimality causes as: demonstrations including

`unnecessary, incorrect, or unmotivated actions'; or ambiguity about when the action(s)

operate. The demonstration may not accomplish the intended task if `the user does not

know enough about the task'. Further, unintentional sub-optimality is when unnecessary

actions are included in the task, or an action is not included in the task.

Nicolescu, [2003] suggests that to prevent sub-optimality either include a user's

intentions as data with various aspects of the demonstration, improving learning of the

demonstration; or viewing task performance, to identify and resolve sub-optimality with

feedback. Friedrich and Dillmann [1995] identifies as an issue that additional

information is: `burdensome for the teacher as he or she needs to provide (at each step)

information on what goals she/he had in mind, and what actions/used objects were

relevant'.

66

Nicolescu [2003] argues that the immediate advantages of correcting a robot's observed

task performance are: no knowledge is required about either the PbD system

architecture, or, how the demonstrated task is coded.

Chen [2005] argues that any demonstration can anticipate inconsistencies at both

control and task level, with a resulting sub-optimality for the demonstration. Further it

is an important part of a PbD system to identify a sub-optimality as noise, and remove it

at both task and control levels. This is due to robotic performance not being enhanced

by optimised task control details without optimising the actions.

3.4.7 Summary of Programming by Demonstration

Programming by Demonstration is based on resolving the problem of programming

without using a text-based programming language. The researched system being

prototyped allows development of robotic behaviour as a hierarchy of tasks with action

sequences, a method proposed and used by di Iorio et al. [2007]. The instruction system

design needed to resolve the problem of understanding human demonstration, and

resolve two separate issues. Firstly, the PbD system has to resolve the two problems of

the Gulf of Execution and the Gulf of Evaluation. These are the ability of a programmer

designer to understand the program designed, and recognise if a program has achieved

expectations. Secondly, the PbD system has to resolve the issues of sub-optimal

programming and noise. This is where actions are specified for a task but do not

optimise the task's operations.

The systems ability to cognate, identify its surroundings is based on its sensors. For the

purpose of tuition, this system does not uniquely identify macro objects, but allows the

user to interact with sensor inputs, and relate these to reactive behaviours.

67

The user can both demonstrate expected behaviours and determine when behaviours

should be acted on, in a hierarchical format. This though means that the user is

presented with the design of the Hierarchy of Behaviours. The Sensor-Based

Behaviours are recursive: the research has not provided evidence of other Hierarchical

Behaviour Architectures with recursive behaviours. The prototyped architecture also

includes Deliberative Behaviours, allowing the designer to create robot action plans.

Further the researched system allows the design of actions based on sensor operations.

3.5 Conclusions for an Interface to a Remote Access

Laboratory

The research problem posed concerns the environment for rapid development of a

prototype Artificial Intelligence for intelligent behaviour. The following is concluded

from the research reported above.

" Accepting the interface to the laboratory is only an enabling tool suggests Morse

and Truman [1996]. For developing a prototype Artificial Intelligence, the design of

the interface as a tool can be determined by Activity Theory.

9 The problem with Activity Theory is the analysis of an interface's design by

experimentation is subject to the "Hawthorn Effect".

" As a tool the Interface may be adapted by its users, and has to be allowed for, as this

is catacreses, and can be analysed for `instrumental genesis'.

9 There is a disparity between the theoretical approaches and application methods for

HCI design. While Bourguin et al. [2001] and Hollan et al. [2000] both agree that

HCI should have a psychological theory and experimental structure, but they

disagree on the theory, arguing for Distributed Cognition and Activity Theory

respectively.

68

9A problem with robot programming is the lack of wide-spread programming skills.

A solution to this is not to `program' the robot but `demonstrate' the expected

robotic behaviours, and create a program from the demonstration. There is a variety

of demonstration methods, direct using graphical or text-based systems, and indirect

which includes Programming by Demonstration (PbD). PbD is a method of

programming which allows the programmer to demonstrate the intended behaviours

for the robot to operate.

" The programming usability problems are the `Gulf of Evaluation' and `Gulf of

Execution' Norman [1988], and PbD is limited further by its cognitive and

reasoning ability.

" The proposed PbD system adds to the current body of knowledge by establishing a

system where a robot is programmed without the use of a programming language.

The current body of knowledge comprises the use of demonstration, which is either

translated by video camera in Programming by Observation, or by physical

manipulation of the robot, which is translated by means of a Trace Generaliser.

Instead the programming is achieved by graphical demonstration.

" The PbD programming method proposed is anticipated to overcome the gulfs of

evaluation and execution and prevent programming sub-optimality.

69

Chapter 4

A Proposed Architecture for a Distance Learning

Laboratory

This chapter develops an architecture for a remote access laboratory, based on the state-

of-the-art discussed in chapter 2, and for testing prototype Artificial Intelligence, the

design of which was discussed in Chapter 3.

4.1 The Laboratory in Distance Learning

Chapter 2 identified the benefits and drawbacks of a distance learning laboratory

education, assuming the experiment for education is established, the equipment works,

and that the experimentation is non-deterministic and requires problem solving

solutions. A difficulty arises when a distance learning laboratory has to replicate

physical interaction, including different approaches to a problem, each to achieve a

working solution. Can a distance learning laboratory deal with multiple solutions to the

same problem or different approaches to problem solving? The laboratories discussed

were either purely software simulations or emulations of the laboratory experience.

With the development of collaboratories, there is evidence that laboratories accessible

over the Internet are feasible [Kies, 1997]. However these are under human control and

supervision, and the question is whether humans can be replaced by intelligent agents,

for supervising a laboratory's internal operations. Replacing humans is problematic for

the physical maintainance of the laboratory for such actions as repairing a shorted cable,

restarting ̀ crashed' machines, actions that still lie in the realm of human operation.

Intelligent Agents only operate within their host machine using its accessible actuators,

sensors and communications.

70

The proposed laboratory is activated by intelligent agents, operating as control software,

testing the prototype Artificial Intelligence, which can be modified as the experiments

are continued.

4.2 A Proposed Laboratory Architecture

4.2.1 Influences on the Laboratory Architecture

The initial assumption was that the operations of the laboratory comprise three

activities: testing the prototype Artificial Intelligence, amending it, and communicating

with the laboratory user.

4.2.1.1 The Prototype Artificial Intelligence

The prototype Artificial Intelligence is expected to operate available mechatronic

devices, activating appropriate actuators, and determining valid and useful data from

sensors, and relating sensor data to actuator commands, to achieve goals.

Transmission of the
user's computer

program, forte
operating the

mechatronic device

Laboratory

user

Video image
from the

Laboratory interface

Intelligent
agents

communication with
mechatronic device

Mechatronic device

Figure 4.1 The user and laboratory interaction

71

Figure 4.1 illustrates the interaction between the laboratory and its user, enabled by the

laboratory interface, which facilitates the transmission of the user's prototype Artificial

Intelligence to the Laboratory, and a video signal from the laboratory to the user.

Further, figure 4.1 illustrates the communication of the prototype Artificial Intelligence

with the Intelligent Agents contained in the computer, and exemplifies a means of

communication with the mechatronic device.

Mechatronic
Device

Control Agent Intelligent

Contained I Program

wit in te Administrator

computers

Knowledgebase
Agent

Figure 4.2 The intelligent agents within the laboratory

Figure 4.2 shows the intelligent agents proposed in Figure 4.1. The Mechatronic Device

Control Agent is as proposed in Figure 2.3, section 2.5.2.3. The Knowledgebase Agent

is as proposed in section 2.5.3.2. The Program Administrator operations are discussed

further in 4.2.2.2. This figure illustrates that each agent is contained within its own

computer, to prevent catastrophic failure if all the agents operated within a single

computer, and the computer crashed, and to maximise the performance of each agent's

operation. This also provides scope for a scalable MAS with the addition of

mechatronic devices.

72

4.2.1.2 Communicating Intentions

The prototype Artificial Intelligence is expected to react to all situations, so its

intentions need to be easily understood and precise, as misunderstanding can lead to

undesirable results. The only restrictions are the capabilities of the mechatronic device

to perform an operation and any limits set for the operation of the mechatronic device.

For communication of intentions there is a need to communicate with the Mechatronic

Device Operating Agent, without which any intended work would not be achieved.

4.2.1.3 Interpreting Intentions

Testing a prototype Artificial Intelligence comprises the use of rules:

functions/procedures, and, if... then.... else... computer language syntax, a complex issue.

The Mechatronic Vehicle Operations Agents subsequently need the following

programming knowledge:

9 the programming syntax rules to code the prototype Artificial Intelligence,

" the rules for function and scope of variables, and data creation,

9a programming command set of available functions,

"a means of defining the prototype Artificial Intelligence goals,

9a means of detecting invalid or unachievable goals.

To achieve this there is need for the following types of knowledge.

" Syntax knowledge: comprising a program command set, variable and function scope,

data rules and the rules to create, store, access and amend program knowledge.

Syntax knowledge is maintained for testing programs.

73

I

" Decision knowledge: comprising decision-making logic rules, to understand the

prototype Artificial Intelligence program, requiring sensitivity to changes in

conditions. Decision Knowledge determines how a program's knowledge is used to

achieve goals.

" Operation knowledge: required for data interaction with the mechatronic device,

comprising valid commands to the device and receiving sensor data. Without

operation knowledge the decision knowledge and syntax knowledge are `passive'

programs possessing no reference to the mechatronic device.

4.2.2 The Conceptual Design

There are three types of Intelligent Agents proposed for the laboratory design: a

Mechatronic Device Operating agent to test the prototype Artificial Intelligence, a

Book-keeping agent to store the laboratory knowledge, and an interface to communicate

between the agents and the user(s). The assumptions are that each intelligent agent:

" operates autonomously within the context for which it was designed,

" can collaborate or negotiate with other intelligent agents to achieve its goals,

" can learn from past experience.

For the proposed Mechatronic Device Operating agents, the Blackboard Agent

Architecture is advocated to operate user-supplied control ̀ program' tasks. The agent

would use the prototype behaviours to operate a mechatronic device within the

laboratory, without prior knowledge of what the supplied goals will be. The Blackboard

Agent Architecture (BB1) promoted by Hayes-Roth et al. [1995], Hayes-Roth [1995], is

conceptually ideal for the laboratory, because it allows diagnosis of a user's software,

and can support a multitude of separated goals. <split paragraph here>

74

The Blackboard agent can accept and operate a prototype Artificial Intelligence as part

of the laboratory architecture, which would act as the agent's control plans. Hayes-Roth

used an interpreter, as the control plans were a script of uncompiled program

operations.

4.2.2.1 The Mechatronic Device Control Agent

The user is expected to transmit a prototype Artificial Intelligence to the laboratory, for

the laboratory's Mechatronic Device Control Agent to test.

The Mechatronic Device Control Agent subsequently contains programming rules for

testing the prototype Artificial Intelligence relative to the mechatronic device's

circumstances within the laboratory. This requires:

" selecting an appropriate mechatronic device if more than one are available,

" specifying the goals to be achieved,

" identifying the user's intentions, activating appropriate actuators relative to

sensor input.

To achieve effective operation of the prototype Artificial Intelligence, the Mechatronic

Device Agent has a Program Administrator.

4.2.2.2 The Program Administrator

The Program Administrator comprises a program interpreter, a mechatronic device

operator, and a command set operator.

" Program Interpreter: operating the prototype Artificial Intelligence akin to the 13131

meta-controller, allowing access to sensor data, and to operate the actuators.

75

9 Mechatronic Device Operator: operating as an intermediary between the prototype

Artificial Intelligence and the mechatronic device, necessitating:

o Rules for transmitting data to the mechatronic device

o Rules for receiving results from the mechatronic device

o Knowledge expressing the mechatronic device's capabilities.

" Command Set Operator: the set of fixed commands that operate the mechatronic

device. It is assumed that the prototype Artificial Intelligence will not be written in

the `base code' of the mechatronic device, instead being translated into these

commands.

4.2.2.3 The Mechatronic Device

A mechatronic device is anticipated to generate information from its sensors, for which

the prototype Artificial Intelligence is expected to transmit consequent actuator activity.

4.2.2.4 The Knowledge-base Agent

This will store all the multi-agent systems knowledge, comprising:

"a means to store and access the system's knowledge,

" rules for negotiating with other agents,

is a knowledge store of previously successful programs for use by laboratory users,

" rules for learning-based communication with the laboratory user.

4.2.3 The Physical Design

With the functional design of the laboratory established, the physical design of the

laboratory is now discussed.

76

4.2.3.1 The Mechatronic Device Operator Agent

The Mechatronic Device Operator Agent architecture will contain a Program

Administrator, comprising a Program Interpreter, a Mechatronic Device Operator and a

Command Set Operator.

" The Program Interpreter: the rules and data for testing the prototype Artificial

Intelligence. The rules determine the prototype Artificial Intelligence operation,

using sensor data for sensitivity to changing operating circumstances. The data

obtained is stored as variable knowledge.

" The Mechatronic Device Operator: required for the prototype Artificial Intelligence

to send and receive data to and from a mechatronic device.

" The Command Set Operator: comprising the functions to operate the mechatronic

device.

This agent tests the prototype Artificial Intelligence, which will comprise:

9a Blackboard to receive the prototype Artificial Intelligence,

" rules to operate a mechatronic device's actuators,

" rules to receive a mechatronic device's sensors,

"a program administrator operating the prototype Artificial Intelligence with rules

for:

o communicating to and receiving sensor data from a mechatronic device,

o the prototype Artificial Intelligence to operate the mechatronic device.

This is shown in figure 4.3, below.

77

Mechatronic device
safety routines

User's (knowledge
prototype sources)
Artificial

Intelligence User's prototype
Artificial

Program Administrator Intelligence
(Blackboard) Program Mechatronic

interpreter device operator
(control logic) (knowledge

sources _____ ' Command set
' operator

Sensor data flow Communication

. --)o Actuator data flow with mechatronic

---) Program data flow Mechatronic evice device

Figure 4.3 The Mechatronic Device Operator Agent based on the blackboard agent
architecture

Figure 4.3 illustrates development of the Blackboard Agent architecture shown in figure

2.3, section 2.5.2.3. The data flow within a Mechatronic Device Operator Agent,

together with its integration of the Program Administrator with the Mechatronic Device

Control Agent, is shown in Figure 4.2 above as a separate agent. The data flow

represents the use of the blackboard to store the prototype Artificial Intelligence which

is then used to operate the Mechatronic Device while being moderated by Safety

Routines.

When considering a suitable Intelligent Agent architecture design, the Blackboard

Architecture was judged most appropriate. The architecture allows the insertion of

prototype Artificial Intelligence into the agent, for testing by analysis a mechatronic

device's operation. Blackboard architectures allow the insertion of the prototype

Artificial Intelligence for use as knowledge sources. <split paragraph here>

78

A Blackboard Architecture design is supported by Davies et al. [1994], as in 2.4.2.1

above, which states that despite using graphical-based accurate models of an electro-

mechanical system, there is a need for a device safety system, security command, and

control system. These can be inserted into a blackboard architecture as knowledge

sources, in case the laboratory is found to be fallible while testing the prototype

Artificial Intelligence. Further, a Mechatronic Device Operator Agent will negotiate

with other agents for problem solving.

4.2.3.2 The Book-Keeping Agent

The Book-Keeping Agent architecture is designed to contain a database comprising

system knowledge, negotiation rules, previously successful programs and rules for

communicating with the user.

4.2.3.3 The interface between the Laboratory and its User

The laboratory requires a presence on the Internet, provided by designing an

hypermedia communications platform to facilitate:

"a means to transmit the prototype Artificial Intelligence to the Mechatronic

Device Control Agent,

"a live video transmission of the mechatronic device being operated,

" transmission of the mechatronic device's sensor data to the user,

9a stop signal for an emergency while testing the prototype Artificial Intelligence.

This is shown in Figure 4.4.

79

Transmission of the
nrototvoe Artificial

Book-keeping
agent

Laboratory Q

ED r-----ter

Intelligence to the User input

laboratory and)o Video output
sensor and video Sensor output
data to the user. - Inter-agent Q

communication

%1cc: hatronic
Mechatronic device

device
operator agent

Figure 4.4 Communications between the interface and the laboratory

Figure 4.4 shows the communication flows between the laboratory, its user(s), and the

intelligent agents within it. The laboratory interface is illustrated as an internet presence

connecting the user and the laboratory. The data flow to the user comprises the received

Mechatronic device sensor values and the video output. The data transmitted from the

user is the prototype Artificial Intelligence. The data transmitted within the laboratory is

between the agents, and actuator data from the Mechatronic Device Control Agent to

the mechatronic device, and sensor data from the Mechatronic Device.

4.2.3.4 Communication between the Agents

The assumption for the proposed multi-agent architecture is that the interface can

communicate with all the Mechatronic Device Operator agents and the Book-Keeping

agent, and the Book-Keeping Agent can communicate with all the other agents. A peer-

to-peer and hierarchical multi-agent structuring is considered, shown in figure 4.5,

below.

The interface -
Hypermedia user interface

Interface agent

80

H Hierarchical communication

Figure 4.5 Hierarchical and peer-to-peer communications

The Mechatronic Device Operating agent needs to communicate with the interface to

receive the prototype Artificial Intelligence for testing. Likewise the Book-keeping

agent is expected to communicate with the other agents. A common communication

interface for all the agents, similar to ARCHON, is considered appropriate, as this

would allow the agents to communicate, as shown in figure 4.6, below.

The Challenger agents were conceptually different from the laboratory agents proposed.

The proposed laboratory will have a `Centralised Knowledge Agent' with the Book-

keeping agent, with knowledge fundamental to operations, unlike Challenger, with its

agent operations paramount. Challenger's importance is that agents uniquely track each

others' performance. The laboratory's agents can adopt this unique tracking method for

obtaining knowledge.

The multi-agent systems papers, cited in 2.5.3.3 above, involve a communication

package common to all the agents, to facilitate their inter-communication. Multi-agent

interaction involves transmitting knowledge and intentions for negotiation,

collaboration and co-operation, using a pre-determined format.

81

*'-"- >Peer-to-peer
communication

Intelligent agent II Intelligent agent

. _. _. _. _. _. _. _. _. _. _. _. _. _. a 1

Communication Communication
interface interface

Communication to and
from other agents

Common communication amongst agents

Figure 4.6 Multi-agent communications

If mechatronic devices can interact and obstruct each other's ability to attain goals, then

there is a cause for conflict. When it arises, negotiations are needed, but peer-to-peer

negotiation is increasingly difficult to achieve with increasing agent numbers. The use

of a negotiation-based communication interface layer within the agent is a simpler

solution. The principle for negotiation is that each agent operates within a strictly pre-

defined function, with no restrictions on communications between the agents, and the

agents are only accessible through the interface for the laboratory user. Any Intelligent

Agent has the capacity to contact any other for requesting information. The outline

structure of the intelligent agent architecture is shown in figure 4.5 above, with each

agent having a communications engine and interface.

82

4.3 Conclusions about a Proposed Architecture for a

Distance Learning Laboratory

Aim 1 of the research was to establish the viability of remote access facilities to

augment distance learning. This has been the function of chapter 4. The internal

laboratory functions are divided amongst specialised agents: Mechatronic Device

Operating agents, and a Book-Keeping agent accessed by the user through an interface.

Each agent contains a communication layer, to negotiate with other agents to resolve

disputes and conflicts, as shown in figure 4.7

Interface--____

Book-keeping agent

Communication
interface

Mechatronic device
operator agent ,

Communication

interface

)mmunication to and
from other agents

Communication
with mechatronic

device

device

Common communication amongst agents

Figure 4.7 The complete laboratory architecture

A number of benefits are anticipated:

Laboratory

Users user

prototype
Artificial

-ý Sensor data flow

-ý Actuator data flow

" Each agent is distinctly designed to promote the separation of operations, and

reduce the possibility of conflicts, while making modification easier.

" The decentralised nature of a multi-agent system allows knowledge to be

decentralised and relevant to the agent where it is stored.

83

9 The distribution of tasks amongst separate agents allows rapid assimilation of new

mechatronic devices into the laboratory.

9 Modifications are limited to the modified agent.

" Adding agents is anticipated to not affect other agents' operability.

"A Book-Keeping agent potentially allows the agents to improve their operation,

using others' experience.

"A decentralised multi-agent laboratory will be cheaper to design, program and

maintain.

9 The intelligence of the laboratory's multi-agent system will be emergent behaviour

from the agents' interaction.

84

Chapter 5

Development of a Prototype Interface

5.1 Introduction

To evaluate and support research of a Remote Access Laboratory, there follows an

examination of a prototype interface. The interface will substantiate the viability of a

remote access laboratory to support a distance learning course, through the

determination of its suitability to develop prototype Artificial Intelligence.

When designing the interface, the most important design considerations were:

1. The interface is to operate as a tool, allowing a user to design a robot's prototype

Artificial Intelligence.

2. For education purposes, the interface has to be easy to understand, and invoke some

form of enthusiasm.

The prototype interface as stated in 3.2 needs to prove a flexible tool by using

Programming by Demonstration. The PbD system was considered suitable through its

utilisation of programming language principles, and was subsequently used to design

MOYRA, Mechatronic Operations by Related Actions.

5.1.1 The Design Proposals

The design principles are primarily based on Activity Theory and Distributed

Cognition, as discussed in 3.3 above.

85

5.1.1.1 Distributed Cognition

Distributed Cognition is based on a user identifying the interface's available processes.

The principles relating to HCI is that HCI should reduce the necessity for a user's recall

about both its operations and the tasks available to the user.

To deter the user from actions which could lead to frustration about the interface,

developing doubt and considering further activity as a waste of time, the design is

segmented into associated features. Buttons with related functions are placed in

proximity to their target activity.

5.1.1.2 Activity Theory

Activity Theory analyses a tool's mediation between a subject and an object. As such,

the interface is the tool between the mechatronic device and the mechatronic designer.

The argument followed is that the object motivates activity, and specifies its direction.

To this end, the tool has to efficiently mediate between the subject and the object.

The problems of implementing Activity Theory are: while the Activity Triangle Model

provides a reference, its use requires imitation of the circumstances being examined,

creating an Activity System Model. The modelled Activity System is split into the

constituent interactions, before research questions are generated and a detailed

investigation carried out, to obtain findings for interpretation. The final problem is how

to interpret the findings.

86

5.1.2 Anticipated Problems

The interface's Programming by Demonstration function has to circumvent the related

problems of the Gulfs of Execution and Evaluation, and the problems of sub-optimal

programming and noise. The cause of the problems is the expectation for a mechatronic

device's behaviour designer to conceptualise and model a behaviour in his/her head,

before duplicating the modelled behaviour and writing it in computer textual language,

while contending with the computer language's structure. The PbD system allows a

purity of design for a robot's expected behaviours, with the activating conditions for

each behaviour.

As stated in 3.3.1.1 above, when a computer is used for design, precision is required, at

a cost of inflexibility, which can be incompatible with a designer's potential need for

ambiguity to change the design during development. The PbD system requires a

designer to conceptualise a mechatronic device's required behaviour. The advantage of

PbD is the elimination of the textual programming limitations, allowing a designer to

replicate conceptualised behaviour.

5.1.3 Principles of Prototyping

A prototype is a generally accepted experimental tool, but is not a full product

implementation. It enables future modification, with the intended user having an

opportunity to comment on a system's current functionality.

87

The laboratory was prototyped, selecting from a range of methods, [Gordon and Bieman

1995]:

9 Throw away prototype: This is a working model with all the necessary features,

but patched together. Users can interact with the system, getting accustomed to: the

interface, the available features and output types. The prototype is intended for

designers to realise the critical design considerations, which is important when the

user is uncertain about the system's functionality.

9A first implementation: The prototype is completely operational, anticipating a

final product with identical features. This type is useful when planning multiple

installations of the same system. A full-scale working model allows realistic

interaction with the system, while minimizing development costs.

" Evolutionary prototype: This is a model which includes some final system

features, but not all. It develops a system incrementally in modules, so that features

can be evaluated and incorporated into a final system without significant work to

assemble the components. Prototypes of this type are generally part of the finished

system.

A prototype allows intended users of the finished system to interact, experimentally

showing any unexpected interaction, both providing reactions to the prototype, and

suggesting additions or deletions for the available features. The advantages of

prototyping are that it provides:

" the potential to change a system early in its development,

" an opportunity to stop developing a system that is not working,

0 the ability to develop a system which works closely to the users' needs.

88

The reason for developing the prototype was to allow comprehensive examination of

user expectations of the remote access laboratory. The most important part of the

prototype was the user interface, since the principle activity was to elicit users'

feedback.

5.2 Programming Language Development

Wirth [1974] argues that a programming language should be both easy to learn and use,

safe from misinterpretation and misuse, while extensible without changing existing

features, and capable of withstanding logical scrutiny. The language should have a

machine-independent definition, efficiently using computer resources with a fast and

compact compiler efficiently coding and economising storage, without complex and

rarely-used optimisation routines. The language definition should be self-contained and

complete, while implementation provides ready access to other facilities such as

program libraries and subprograms written in different languages. The language should

be hardware-independent, with compilers adapted for various processors and chipsets,

while minimising compiler development time and cost.

The most important property of a program is whether it accomplishes the intentions of

its user. Hoare [1973] states that a problem of program design is: `deciding what a

program is intended to do, and formulating this as a clear, precise, and acceptable

specification . Further, Hoare considers implementation is fraught with difficulties: the

division of complex tasks into simpler subtasks, defining both the subtask rationale,

with comprehensible, well-organized methods for subtasks to interact. The argument is

that a well-designed programming language conveys both how a program operates and

what the program is expected to achieve.

89

Hoare [1973] argues further, for a new language to supersede existing languages, its

design has to be extremely simplistic, for programmers to both rapidly learn its features,

and identify which elements will solve a problem, allowing a programmer to

concentrate on solving problems.

5.2.1 Programming Language Definition

The problem with a programming language definition is: which definition?

Programming language definitions are intended to serve as a specification of

correctness for:

1. the language implementation,

2. the user to validate if a program performs its intended task.

Wegner [1976] states that future programming languages should each have a tractable

formal language definition to determine program correctness. In the 1970s one

programming language design objective was `simplicity', increasingly defined as the

ease of developing a formal definition. Now a program is considered a `what'

specification, for designated tasks or functions, plus the associated ̀how' specification.

A `correctness demonstration' demonstrates that the program `how' specification has

implemented the independent `what' specification.

Currently the method which a programmer uses to establish a program correctness, is to

test particular cases and modify the program if the results are unexpected, [Hoare,

1969].

90

To establish correctness of the prototype Artificial Intelligence used for

experimentation, it was tested continuously throughout an evolutionary prototyping

development of the PbD system. The use of pure first and second level logic for the

PbD system test was beyond this research's remit. The computer language developed is

still a prototype; experimentation was to determine usability and continue improvement.

5.2.2 Programming Language: `Vocabulary'

The study of computer languages is concerned with defining the finite number of

structures which allows languages an infinite number of sentences, [Wegner, 1976].

Wirth [1974] cited Van Wijngaarden [1963] with the principle of `Simplicity' stating

that

`... his point was languages are not only too complex, but due to this very

complexity also too restrictive. `In order that a language be powerful and

elegant it should not contain many concepts and it should not be defined

with many words".

This is interpreted as advocating analysing of a language and providing its fundamental

principles unobstructed by the boundaries of applicability. However the counter-

argument is that using languages without defined syntax rules, it can be difficult or

impossible to identify programmed logic flaws. A solution is to design a programming

language features in a form intuitive and memorable for both use and identifying logical

consequences, to prevent ambiguous programming.

91

A language's crux is its variables, the named location in memory used by the program

to store a value that may be modified. Hoare [19731 considers variables valuable, but

potentially problematic as they can change register contents; store locations; contain

peripheral conditions; or either change its own values or other programmed instructions.

For high level languages, Hoare considers that this problem could have been avoided,

but instead was worsened by pointers indirectly assigning variable values and, if

accidentally misused, can cause disastrous data damage. A variable is normally declared

before use with a declaration form of:

type variable list;

The PbD system uses sets of distinct variables to create a prototype Artificial

Intelligence, associated with the goals to be achieved, and both the sensor inputs and

outputs. These variables are not specifically declared, thereby preventing the designer

from misusing them.

5.2.3 Program Control Structures

These apply to when a program includes conditional logic for program flow, and are

achieved by modular decomposition of programs, suitable both for bottom-up and top-

down development. Structured programming has placed greater emphasis on the if-then-

else and while-do constructs.

The underlying design principles are:

" while <sensors not activated> do <continue current active behaviour>

" if <sensors activated> then <Sensor Activated Behaviour> else <stop>

" if <goal> then <Goal Activated Behaviour> else <next goal>

92

5.2.4 Programming Language: `Functions'

The building blocks of modem High Level Programming Language are functions. If a

function uses variables, they are either declared as formal parameters or as local

variables, with the subsequent block operating on the variables. A high order

programming language function general format is:

<return variable type> Function-Name(formal parameter(s));

local variable declaration

operations on variables

The prototype Artificial Intelligence comprises behaviours which are specific to

circumstances, the design of which were:

< mechatronic device return state> Behaviour-Name<mechatronic device begin state>

while <sensors not activated>

if <sensors activated>

then <Sensor Activated Behaviour>

else <stop>

do <behaviour>

return <mechatronic device state>

A function allows code compaction, with the function performing itself, known as

recursion. The disadvantage of recursion is the memory overhead of stored variables.

Hoare [1973] considers that functions should make variables operations `clearly

manifest from its syntactic form' and `simple to understand and resistant to error'.

Hoare states that the function interface is the boundary between programs parts, and

argues that the suitability of a function's use should be subject to the most rigorous

compile-time check.

93

The use of recursion was considered important for specifying how to design prototype

Artificial Intelligence. This allowed the prototype Artificial Intelligence to be

constructed from a set of generic behaviours, each equivalent to a function.

5.2.5 Principles of Object Orientated Programming

Object Orientated Programming involves fragmenting a program into subdivisions of

self-contained units called objects, comprising variables and data with local reasoning

about the variables and data behaviour. The objects are organised into a hierarchical

structure within a container called a class. Characteristics of Object Orientated

Programming are: encapsulation, polymorphism and inheritance. These concepts were

used to organise a designed prototype Artificial Intelligence using the PbD system.

Encapsulation This allows the private containment of behaviours.

Polymorphism Polymorphism allows the same behaviour activation state to be

declared for different circumstances.

Inheritance This enables a behaviour to encapsulate another hierarchy of behaviours it

depends on.

This is discussed and illustrated further in section 5.3.

5.3 The Prototype Interface Design

5.3.1 The Human Computer Interface Methodologies

The interface design was deliberately divided into three basic associated regions: user

input, program output, and program manipulation, as shown below in Figure 5.1.

94

waams Tme

User input
Program output

Behau, B Ins

Ssve

RoW's Behavgu Ve .

Program
manipulation

Used La oyMsD
`sNCi« .IJ

c1 Lrc18a I GrFIýM Lignp

Mech , Oe
Specly Velrcle Beira

JJ
v¢e Output

Serra OWpW Sm
Santa Mpi B

Senta 1 Sena 2 Senor' 3 Senses !
Santa 1 Senta 2 Senta 3 Santa

Res*J gVehcie Behsva I Corim I

Meewems is OW ab"
iv* dRdeban

F- F-
Sm1eýa

Distance Ts. +d
[II

Remde Lab-o y

R. cd Progrrmrw Si s oPmrmw

Figure 5.1 The outline of the interface in 3 segments: user input, program output and
program manipulation

The problem with applying Distributed Cognition was identified by Activity Theorists

as the need to experiment to identify correct and adverse design decisions affecting the

interface's utility. The problem is compounded by the lack of technical standards; there

are no analytical tools and no data characteristics to identify. However, Hollan et al.

[2000] describes two principles:

1. A system can actively orchestrate subsystems to achieve different tasks.

2. Cognition is distributed across both the HCI and user.

Based on the Towers of Hanoi [Zhang and Norman, 19941 example in section 3.3.1.1,

the HCI design is expected to capture the interface's operation knowledge, in

responding to users' choices. The result is a dynamic interface responding to the users'

actions when presenting available options. This methodology further constrains the user

to action plans within the limitations of the interface.

95

Figures 5.2 to 5.8 below illustrate the interface design, and how its components relate to

each other, in a design deemed most appropriate.

The buttons' enabled and disabled states are based on user actions, as illustrated in

Appendix A, with the intended dynamic of directing a user's activity. An explicit

purpose is to prevent a user from attempting actions which would not progress program

development.

Overatiar Map

Use of Lebaab" Map
Sd 6od Loceliae

,

Speciy Vehdr Bdhaeou
Sensa Ingi Box

M Seroa 1 Sens 2 Sens* 3E Sensa 4

ResuAn Velý[MBdseviau I ýý

Measumnais

Arab d AMarm
F-

DiMa oe Twreled
F-

The buttons to operate the Operations
Map are situated below it.

1. This prevents an unnecessary
search for the associated buttons.

2. Their activation state is dependent
on the user's previous actions.

Vdo*

Figure 5.2 The Operations Map and associated buttons

The Operations Map performs several functions, which are dependent on the user

activity. For setting goal locations, locating obstacles and running the simulator, the

Operations Map is a direct mapping onto the laboratory workspace. For the mechatronic

device behaviours, in drawing a path to be navigated, it is orientated to the mechatronic

device. When linked to the laboratory, a video image is presented.

96

Opetalom ºao

Use rA LthciMay Map

Set Goal Location:
.

Specly Vehc e Behaves r
Senses InpA Box

Senor 1 Saga 2 Senta 3 Senmr 4

Rest mgVehdeBeheviow

Measuemenh

Angled Rcd on
I

D s(c. Tiaveled

vdcy --1

The editing function of the
user input is placed

beneath the user input area
(the Operations Map)

Figure 5.3 The Operations Map and editing function

The editing function for the Operations Map, shown in Figure 5.3, is placed at the

bottom, as the editing is expected to be used least. The method of locating goals is

`point-and-click'. The method of locating obstacles is to draw them, akin to any

drawing package. The method for specifying the robotic behaviour is to draw it. This is

intended to be easy for rapid development of prototype Artificial Intelligence. The

Measurements panel is used to specify the angle of rotation and any distances a robot is

being programmed (and expected) to travel.

For editing the angles and distances, they are displayed in the Measurements Panel and

can be textually edited.

97

OPe om Map Oydawns Text

Use d Opaalans Map
I `Set God Location:

Specty Vehck Behaviax
SementrpSBox

Seme 1 Serra 20 Sena 3a4

Ret gVehicleBehaviou

Msasuemes'As

labe d Rotation
F-

DistanceTiavded
r-

vdDCAY- -ýJ

Figure 5.4 The user input and text output

Clem Lia4Sox Gr? Utt La"

The output of the
Operations Map is

presented as text in the
Operations Text box.

The text box to the left of the Operations Map shown in Figure 5.4, can be adopted to

facilitate a help function. The text box provides a duplicate description of the robotic

operation being designed, with a function to allow the PbD user to view the underlying

data describing the prototype Artificial Intelligence. The raw data is used to create the

prototype Artificial Intelligence. The text box was considered important for future

development. It was not developed further for the prototype, as it was considered an

implementation issue.

98

)pesations Text

f Simulated sensor activation

Sensor output

L -- -J Use of Opesahons Map

Clear Opaetions Map Set Obstacles Set Goal Locations

I pear Obstacles Set Operawns Map

Specify Vehcle Behaviou

Senses Input Box
Saga 1 Senses 2 Senses 3 Senses 4

III
Cleat ListBox ist t

M onic ev ut
Senses Box

aesukrqV ee .

The sensor outputs presented (and demonstrated), are parallel to the
program input sensor values.

These provide the current simulated sensor values.
Activated sensor are presented in red.

Figure 5.5 Relation of sensor output to user input

Figure 5.5 illustrates the relationship between the PbD interface's Sensor Output Box

and the Operations Map during the design of robotic behaviour. The principle of using

sensor activation for robotic behaviour allows the prototype Artificial Intelligence

designer to explicitly translate sensor activations to actuator actions. The PbD interface

calculates the sensor outputs by determining the angle of contact between the robot and

the obstacle, as shown in figure 5.6 below.

Sensor l
/

Sensors 1&21
activated

ýý 103 2

Sensors 1,2 &3 Sensors
activated 1,2,3 &4

activated

4 activated

' Sensörs 3&4
\activated

sors2,3&4
activated

Figure 5.6 The angle of incidence between the robot and obstacle, and activated sensors

99

Peations
The behaviour

operations text

is demonstrated
Distance is

.
71. Fawaids

Argk is
.

111, Clockwise

Measurement
output during a

behaviour's
creation is
duplicated

Use of Operations Map

Gear Operations Map Set Obstales Set Goal Locatkin: 4J
ListBOx GM-List ustnq Clear Obstxbs J Set Operations Map,

Sense Inp A Box
Serra 1 See« 2 Senna 3 Senses 4

................ Rb

Meesuements

Angle d Rdetion 111 CIockml; e

Distance Travebd
F F-d

ve, " The activating

_J
_ý sensor values

Figure 5.7 Creating a mechatronic behaviour function

Figure 5.7 above illustrates the method for creating mechatronic behaviour. This allows

the designer to explicitly plot the expected path for the device to follow. The function

follows a standard for programming design of:

Function (input variables)

{ function body }

The input variables are the function's activating sensor values, which in figure 5.7 are

`Sensor 2 and Sensor 3 are true'. The function body is the path being demonstrated.

While the behaviour is being designed, the angles and lengths involved in the behaviour

are displayed.

100

Behaviou Buttons

Save Comment

Recai Edit

View Delete

Robot's Behaviou View

- AM Piogams

- Goal Slates of 1&2
Adrvate on Sensors 2&3

Activate at Goal 2
Activate on Sensois 1&2
Activate on Sensors 3&4

Recal ßogramrig

The control buttons: Save,
Recall, View, Comment, Edit

and Delete

The Prototype Al, comprises:

The goals to be achieved
Obstacle avoidance behaviour

Goals determined for
Goal-Activated Behaviour

E

The Goal-Activated Behaviour

Sa,,,, ýý,,,,, m�
II 't Save and restore program

Figure 5.8 Manipulating a developed program

Figure 5.8 shows the operations in detail of the Program Manipulation part of the PbD

interface. At the top are the prototype Artificial Intelligence construction control

buttons, used to manipulate the design of the prototype Artificial Intelligence as a

hierarchical set of behaviours, which can be observed in `Robot's Behaviour View'

above. At the bottom are the Save/Recall Programming buttons, used to save the

hierarchy of robotic behaviours designed, or recall previously designed behaviours.

101

Op«atiou

S'"d°'" Simulator operations

R. ernotý
W

Run - Stop - Pause

Connect/Disconnect to a
physical laboratory

Figure 5.9 The means of activating the developed mechatronic program

Figure 5.9 illustrates the method for testing prototype Artificial Intelligence, which

includes the in-built simulator, used to validate the prototype Artificial Intelligence, and

the connect/disconnect buttons to the Remote Access Laboratory. The in-built simulator

buttons allow the user to start/stop/pause the simulation.

Success depends on users believing the interface's use is not counterproductive. The

user is expected to conform to a creation order for developing the mechatronic device's

behaviour, comprising: creating the mechatronic goals to accomplish, before generating

obstacle navigation behaviour, and associating them with the goals.

5.3.2 Programming by Demonstration (PbD)

The purpose of the interface design is to facilitate the development of a prototype

Artificial Intelligence to operate as a mechatronic device. The development of a

Programming by Demonstration based interface with the underlying data structures was

intended to conform to programming language principles. Phi) was proposed for

programming a prototype Artificial Intelligence, as current research provides evidence

that students have problems with learning programming languages, causing high failure

and drop-out rates, [Bergin and Reilly, 2005].

102

Mamone [1992] reports analysis of why students want to learn to program, providing

evidence that the long-term reasons change from a desire to be a professional

programmer to gaining a useful secondary skill. The research issue was to identify the

students' comfort-level; their ease when asking and answering programming questions,

and their perception of programming achievement.

Nevalainen and Sajaniemi [2005] argues that programming is difficult for many

students to learn, as many programming skills require understanding abstract concepts

loops, pointers, and array-based methods. A proposed solution is to use methods and

techniques that assist and enhance learning about abstract entities. Petre and Blackwell

[1999] proposes visualisations for learning ý expert programming reasoning, with

Hundhausen et al. [2002] and Mulholland [1998] advancing visualisation to learn both

program concepts and the program language. Nevalainen and Sajaniemi [2005] argues

for a solution of needing a programming language which is easy to learn and use; safe

from misinterpretation and misuses; and capable of withstanding logical scrutiny,

possessing visualised variables, as these are essential for a computer program's

operation and subsequent understanding. Programs comprise variables, and operations

on the variables: for loop control, functions and procedures in functional and procedural

based languages, to classes and structures in Object Orientated Languages.

5.3.3 Object Orientation

The PbD system uses program encapsulation as an implied part of programming design.

It is based on the principle that a specific design of mechatronic device is used for each

program design, and that encapsulation allows specific behaviours to be designed

without the problem of external reference. This shown in figure 5.10, below.

103

robot's Behaviour View -

- All Program
Goal States of :1&2

Activate on Sensors :2&3

Activate at Goal :2
- Goal States of: 3,4,5,6,7,8,9,10&11

Activate on Sensors :2&3 '-

Encapsulated behaviours
prevent behaviours being
used externally.

Overloaded functions allows
a variety of behaviours be
demonstrated, for different
circumstances.

Figure 5.10 The advantages of Object Orientated Programming for the Programming by
Demonstration interface

The program comprises functions defined by either sensor activation or by

circumstance. The function names as demonstrated in Figure 5.10 above are:

" Sensor activation: `Activate on Sensors:... '

" Circumstance activated: `Activate at Goal:... '

Polymorphism allows overloading of Sensor-Based Behaviours. Further to

encapsulation, is inheritance, which is used for the development of complex programs,

where the overarching goal-based behaviour inherits and encapsulates a multitude of

situation-based behaviour(s).

5.3.4 Goal-Based Behaviours

The procedure for implementing Goal-Based Behaviours and determining goals for

them is shown in Appendix A. Goal locations are required in establishing the basic

behaviour for a mechatronic device. Goal-Based Behaviours describe how a

mechatronic device is expected to move from a starting location (goal) to an end

location (goal). The placement of goals for Goal-Based Behaviours is illustrated in

Figure 5.11 below.

104

oa«eeons M

The location of goals is
determined by mouse clicks

ßr,,,

Figure 5.11 Locating goals on the Operations Map

A program designer can divide goals into sub-goals for designing a specific behaviour,

as shown in Figure 5.12 below and these sub-goals can then be re-grouped for any

subsequent specific behaviour. The establishment of a hierarchy of behaviours allows

for both a complex composite behaviour and flexibility in developing behaviours.

Operatvn Map Opmabons Map

372

11

11

72

65

t8

1

The location and
enumeration of the goals

for easy identification

Figure 5.12 Identifying sub-goals

i e

As the pointer is
moved, the closest
`goal' is identified

Clicking when a goal
is identified

determines a subgoal

105

While figure 5.12 above illustrates that a goal is identified when the pointer approaches

it, allowing rapid identification of possible sub-goals. What is not observable from

figure 5.12, is that a single left mouse click can determine the identified goal as a sub-

goal, without the pointer being `on top' of the goal.

5.3.5 Sensor-Activated Behaviours

The means for demonstrating Sensor-Activated Behaviours is illustrated in Figure 5.13

below.

ODeiebmMap
OpmammText

, ý". Y. ""ý. `"ýy, _""ý

DMence is 65, Fawads

lode e: 79
,
AMi Cbckwise

iQ
Use of Ope. abom Map

Clem Operahom Map SM

The expected path for the
demonstrated behaviour is
drawn using the mouse.

SellaMpUBox
Serra I Sense, 20 Semi 3 Sensor 4

Meesuerorts
ý-

Arie d Rotation I" {kx se

Dnle ice Traveled I°`' Fawai

Vebcty

The demonstrated behaviour
details are shown on the left
and below

The activation Sensor States

Figure 5.13 Demonstrating a Sensor-Activated Behaviour

The screen interface allows the designer to directly translate the ideas of how a

mechatronic device should behave when presented with an obstacle. The behaviour is

initiated by the sensor values determined by the designer.

106

5.3.6 Goal-Activated Behaviours

Goal-Activated Behaviours are more complicated than Sensor-Activated Behaviours.

When the mechatronic device arrives at a specified goal this behaviour is identified and

activated. The behaviour is an activity based on sensor interaction with the

environment. The method of demonstrating this behaviour is illustrated in 5.14 below,

with sensor activity demonstrated. The behaviour can include the use of sensors for

interaction with the environment. In figure 5.14 the use of touch sensors is illustrated. If

sensor states are activated, the resulting sensor values require confirmation before the

designer continues the behaviour.

The sensor activation state
is demonstrated, and has
to be confirmed before
continuing to demonstrate
the behaviour

of Opnaim 410 Use

CIM op ah r Nap Sd Obtadu Sd Goal Locab"

F- i -VW Muc
_
Cl- ObAedm SM op"41 u map

Sansn 1 Sasa 2 S. 3 Swra 4

RewAg Vah WS h-

- mwp- ý
Car" I

Figure 5.14 Demonstrating a Goal-Activated Behaviour with sensor activity

5.3.7 Editing

Hoare [1973] argues

program debugging can often be the most tiresome, expensive, and

unpredictable phase of program development, particularly at the stage of

assembling subprograms written by many programmers over a long

period.

107

OP. *- MW

The best solution is to not write `buggy' program code, and comprehensively comment

on the algorithm(s).

Wirth [1974] argues that a programmer should choose suitable language features for a

programming task, predicting all the issues of combining the language features, and a

good language design will prevent programmer mistakes. With regard to both Hoare's

and Wirth's assertions, the advocated Programming by Demonstration Language allows

visual confirmation of the programmed actions, and editing is different from

programming element, being undertaken by alphanumeric input. The editing feature is

only provided for vehicle actions. The method for editing is illustrated in Appendix A.

The distance travelled and any angle the vehicle rotates are entered as numbers, while

the directions of travel and rotation are provided as menu choices: of either forwards or

reverse for direction of travel, and clockwise and anti-clockwise for rotation.

5.4 Simulation Operations

The simulator tries to operate the demonstrated behaviour, requiring it to `understand' a

user. The simulator has three forms of operations: Goal Running, where the simulator

emulates a mechatronic device going between two user-specified goals. The second is

sensor-activated operations, which are emulated when the simulated mechatronic device

meets an obstacle. Finally, Goal-Activated Behaviour is emulated when the mechatronic

device ̀arrives' at a user-specified goal for the behaviour's activation.

5.4.1 Goal-Based Operations

The simulator starts by determining if there is a goal to go to, then `blindly' traces the

shortest path a mechatronic device would undertake, as shown in Figure 5.15 below.

108

rte-

The goals:
Going To (Goal 2)

Going from (Goal 1)

Figure 5.15 The simulation of a goal-to-goal based behaviour

If the path being traced meets a simulated obstacle, the simulator stops tracing the path

further and starts the process of obstacle avoidance using Sensor-Activated Behaviours.

5.4.2 Sensor-Activated Operations

Sensor-Activated Behaviours are expected to be simulated for obstacle avoidance, but

can also be used during the simulation of Goal-Activated Behaviours. When the

behaviour was created, the demonstrated activating sensor values were based on ANI)

logic. To determine which Sensor-Activated Behaviour to use when the simulator meets

an obstacle, a combination of AND and OR logic is used, as shown in Table 5.1 below.

This is a simplified search pattern which provides an efficient means for obtaining a

best fit of available functions to the current sensor activation.

Sensor truth
value

Search pattern

tirnsor II nie I rue I'rue False I rue False False I rue Fail

Sensor 2= True I rue I rue I rue I rue False I rue False Fail

Sensor 3= true I rue I 'me I rue False I rue False False Fail

Sensor 4= False False I rue False False False False False Fail

Table 5.1 The search pattern for determining a best fit of sensor activations to a Sensor-
Activated Behaviour

109

The assumption is that sensor activations will include sensors I and 4 active and 2 and 3

inactive. Although, conversely a sensor activation state of sensors I and 4 inactive and

sensors 2 and 3 active is possible.

When a match for the sensor states is not found, depending on circumstances, a wider

search is undertaken, to see if there are any generic functions available. The wider

search is only undertaken if the mechatronic device is moving between goals and not

undertaking a Goal-Activated Behaviour. The search is shown in Figure 5.16 below.

Robots Bai eviaa View

AcivaeemSent=: 1.23&4
v-

- God Stete: d: 2
Activate at God 2

Activate on Serras. 3

M, tivete on S arson 1.2.314

- God States of 3.4.5.67.8.9110
God States of. 4,8.619

If only sensors 1,2 and 3 are
activated. The closest fit is:
Activate on Sensors 2 and 3

A search for generic functions
provides a closer fit with:
: 1rtl\ate un Scnsor, I. _'. 3 anal 4

Figure 5.16 The search for Sensor-Activated Behaviours

For the demonstrated simulation, the most suitable Sensor-Activated Behaviour

available is `Activate on Sensors :2 and 3'. The simulator then displays the

mechatronic device's predicted path in white, before tracing the path in black, as

illustrated in Figure 5.17 below.

The simulator traces the
potential path taken by the
mechatronic device in white

The simulator follows the
plotted path outlined in
white.

Figure 5.17 The operation of a Sensor-Activated Behaviour

110

When the Sensor-Activated Behaviour is finished, the Simulator resumes its previous

behaviour. If the simulator meets an obstacle when running a Sensor-Activated

Behaviour, the simulator searches for an appropriate Sensor-Activated Behaviour to

navigate the obstacle. This can be seen in Figure 5.18, where the simulator detects an

obstacle repeatedly, and recursively calls the same Sensor-Activated Behaviour.

The simulator is repeatedly
using the same Sensor-
Activated Behaviour for
the same sensor activation.

Figure 5.18 The recursive operation of a Sensor-Activated Behaviour

5.4.3 Goal-Activated Operations

When the simulated mechatronic device achieves a goal, the simulator determines if

there are any Goal-Activated Behaviours, and simulates their behaviour, as illustrated in

Figure 5.19 below.

the simulator activates any
relevant Goal-Activated
Behaviour

...

... when arriving at
a designated goal.

Figure 5.19 The operation of a Goal-Activated Behaviour

111

A Goal-Activated Behaviour comprises two forms of mechatronic device operations.

The first is a specifically demonstrated path, where a device is expected to travel a

specific distance. The second uses sensor activations to determine activities, the sensors

values being used to demonstrate activity interactions with the environment. The

demonstrated mechatronic vehicle activity continues until the sensors are activated.

During simulation, the simulator displays this behaviour as a projected path to beyond

the laboratory edge. When the simulated interactions with the environment provide

sensor inputs which do not match the Behaviour's designed sensor values, an

appropriate Sensor-Activated Behaviour is sought, as shown in Figure 5.20, and if not

found, the simulator halts.

Roboes Bdwoa Vew

- Al P wam

- God Sur of 'i
Aüyab m Sýs 213

AA. atedGod 2
Myvaee m Sen. xs ti2
Ac eb m Senses= 3&4

L The Goal-Based
r Behaviour

The related Sensor-
Based Behaviours

Figure 5.20 Locating a Sensor-Activated Behaviour relevant to a Goal-Activated
Behaviour

Interface
R-Z- u

Simulated
Mechatronic

Vehicle interaction

with the
environment...

... resulting in

sensor activity

Figure 5.21 A Sensor-Activated Behaviour for continuing a Goal-Activated Behaviour

112

Figure 5.21 above illustrates the use of a Sensor-Activated Behaviour to continue a

Goal-Activated Behaviour. The Sensor-Activated Behaviour allows the `re-alignment'

of the simulated mechatronic device, for continuing the Goal-Activated Behaviour.

Completion of the demonstrated behaviour is shown in Figure 5.22, below. This

illustrates the expected behaviour designed during the experiment explained in Chapter

7.

Figure 5.22 The completed simulation of the demonstrated behaviour

5.5 Conclusions
The proposed laboratory interface for prototyping comprises the following.

9 The interface, operated as a tool, allowing the user to design a prototype Artificial

Intelligence, and be intuitive and experience some form of enthusiasm.

" The interface design is based on both Distributed Cognition and Activity Theory.

" The interface uses a PbD system using programming language principles, while

circumventing the problems of the Gulfs of Execution and Evaluation.

113

" The PbD system allows the user to design behaviours graphically, with the designer

directly translating the behaviour from thought to a series of actions. This form of

robotic programming has not previously been designed.

" The interface was prototyped, to allow interaction with intended user(s), providing

reactions and suggested changes, with the advantage of accepting changes to the

interface design early in its development.

" The PbD program design involved encapsulated program elements. The hierarchical

program structure was derived from the principles of Object Orientated

Programming, and included Goal-Based Behaviours as the base class, Sensor-

Activated Behaviours and Goal-Activated Behaviours.

9 The PbD program was tested by the use of a simulator.

114

Chapter 6

Design of the Experiment

6.1 The Definition of an Experiment

Festing [2001] provides a formal definition for an experiment, in his paper concerning

ATLA (Alternatives to Laboratory Animals):

An experiment is a procedure for collecting scientific data in a systematic
way in order to maximize the chance of answering an hypothesis correctly
(confirmatory research) or to provide material for the generation of new
hypotheses (exploratory research). Sometimes, an experiment is replicated
in different laboratories or at different erent times, but provided that all
replications involve the same scientific objective, and the data are suitably
combined in the statistical analysis, it is considered a single experiment.
Confirmatory research will normally involve formal significance testing,
whereas exploratory research will normally involve looking for patterns in
the data, and may not involve formal significance testing. However, there
may be some overlap between these two types of experiment.

This is an appropriate definition relevant to the experiment run to support the

hypothesis. The experiment described in Chapters 7 and 8 collected data to support the

hypothesis posed, as a confirmatory research experiment. It searched for patterns in data

and there was a minimal mathematical component to the experiment.

6.2 Scientific Method

Central Texas Science and Engineering Fair, [2007] explains Scientific Method as:

The scientific method requires an initial proposal to explain initial
observations. This is called the hypothesis. Experimentation is performed
to reject, support or modify the initial hypothesis.

An experiment is the study of cause and effect, with the Scientific Method considered

the most productive to undertake for any experiment, involving the recognition of both

control variables, and the deliberate manipulation other variables.

115

Wudka [1998] considers scientific method criticism that it often does not accept

anything unproven, and facts previously thought impossible are now accepted. When

investigating new events, existing theories are used and can be superseded by a new

hypothesis to explain new experimental evidence, to develop a new theory. The feature

of `Experimental Method' in eliciting scientific knowledge is the deliberate

manipulation of variables. Further, the precision involved in the manipulation and

control of variables allows replication of the experiment, in all details. Kim and Kalb

[1996] argues a well designed and performed experiment provides accurate data from

significantly fewer experimental runs.

This experiment investigated the adoption of a new and novel form of programming for

learning mechatronics. The precision in the control and manipulation of variables

needed to be taken into account, as this experiment used human participants who can be

unpredictable.

6.3 Design of the Experiment

The experiment might be conducted in a lab or in the 'field'. You might
use direct observation to measure the [Direct Variables], or testing of
some sort, or even a self-report, as in the imagery example. Try to be as
objective and accurate as possible in recording your observations. Use a
video or audio recording if necessary and possible, or prepare a
checklist of target behaviours ahead of time, and keep accurate records.
To control for experimenter bias, you might try to have an independent
observer record and code the observations as noted above, ideally, one
who doesn't know the purpose of the experiment. [Waters, 2005]

116

6.3.1 Premises For Experiment Design

Kicinger and Wiegard [2003] proposes that good experiment design includes the

following:

" Exploration The secondary research described in chapter 3 provided knowledge

about the problem or system under experimental examination, in particular the

environment for distance learning and the resulting human-computer interface.

" Comparison To define the controlled and measured variables during the

experiment, with their levels or ranges of variation. This is described in sections

7.3.7 and 7.3.8. Analysis of the controlled and measured variables should determine

variables fluctuations and outputs and prevent input variables worst-case conditions.

" Explanation An experiment creates a situation intended to examine any causal

influence between two sets of identified variables. If the causal effect is identified

during the experimental analysis, it is potential evidence that a causal link exists.

This was undertaken in Chapter 8, in particular for the examination of participants'

knowledge and experience, and the times taken to complete the tasks.

" Demonstration Experimental results need to be confirmed by a final experiment

identifying the optimum results. This reveals any factors not tested which affect the

results, with confirmation provided by unexpected results. However as this

experiment tested human participants, the optimum results cannot be reproduced to

order.

" Theory Validation In a proposed inferential experiment, the results support or

contradict a formal causal relationship statement called the hypothesis. This is

discussed in chapter 9, where suggestions for further research are made.

117

The premise for good experiment design has to consider the definitions above. The

Alberta Government [2002] advises:

Two key considerations in designing an experiment are

(i) Simplicity: By simplicity, we mean that the simplest experimental design
be chosen among many possible candidates to achieve the same proposed
objective(s).

(ii) Efficiency: By efficiency, we mean that the investigation should be

conducted as efficiently as possible; that is, every effort should be made
to save time, money, personnel and experimental materials...

Fortunately, most simple designs are also of cient (both statistically and
economically).

For this experiment, simplicity is provided by using just two types of system. Efficiency

is provided by having only 10 tasks, which attempt to achieve a level of similarity

between the two systems of: move between two points, detect obstacle, navigate

obstacle, and park in a corner.

The Alberta Government [2002] considers the result of poor effective experimental

design as

... the data collected can potentially be of little or no value to the
attempted solution of the problem being investigated, due to little or no
prior consideration given to the Design of the Experiment. The Design of
an Experiment is the complete sequence of steps taken ahead of time to
ensure that the appropriate data will be obtained in a way that permits
an objective analysis leading to valid inferences with respect to the stated
problem.

Appropriate data was obtained by considering the two systems differences, and creating

a series of tasks that finish with an identical task: parking in a corner, see Appendix B.

118

6.3.2 Optimising the Experiment's Design

In the Alberta Government [2002] paper, concerning how to undertake a research

project, it proposes three basic principles to optimise experiment design:

" Replication the repetition of an experiment's treatments for two reasons:

(i) `Experimental error occurs when two or more identically treated

experimental units fail to yield identical results'. Repetition of treatments

provides an experimental error estimate.

(ii) Replicating the precision in the estimation of a factor's effect.

9 Randomization applies the law of chance to experimental data, ensuring that

experimental data be free from any systematic error, by making experimental errors

independent and providing unbiased estimates of them.

" Local control experimental samples are grouped for homogeneity in each sample.

For the experiment conducted, there is a problem with replication, due to the use of

human participants. Replication could only (in theory) be possibly achieved by the use

of twins. The element of randomisation is achieved by the variety of participants, no

two of whom can be considered identical or having any element of co-variance. For

local control, there was an attempt to created homogeneity in the participants, which

can be observed in section 8.2.

6.3.3 Variables

Variables are properties or characteristics of events, objects or people which can vary.

They can be categorised into various groupings:

" Dependent and independent variables An independent variable is manipulated

during an experiment, while a dependent variable is affected by an experiment's

independent variable(s).

119

" Qualitative and quantitative variables Qualitative variables describe their

attributes without numeric ordering, or are evaluated by categories. Quantitative

variables are measured numerically.

9 Discrete and continuous variables Discrete variables have discrete points on a

scale. Continuous variables have a continuous scale.

The variables for the experiment are discussed in chapter 7, Experimental Procedures,

section 7.3. However, any variable not recognised and considered may prove to be a

confounding (uncontrolled) variable.

Graham [2006] considers the following as essential for the use of variables in an

experiment:

1. Population size Too small a population can cause a significant difference between

sets of data when none exists, or can indicate that no difference exists when there is

one. Choice of sample number is explained in sections 7.3.3 and 8.2.

2. Components of variation The ability to impose control on the independent

variables. The recorded components of variation for the'experiment are explained in

sections 7.3.4 and 8.2.

3. Randomisation A random experiment or trial provides results or observations,

which are unpredictable or uncertain. It was intended to prevent any bias within the

experimental data obtained. There was considered an element of randomisation

when using human participants. Experience, knowledge, motivations and

perspective are not identical for any two participants.

4. Blocking Blocking is when known or suspected biases are removed, and achieved

by carefully ordering the tests to be performed to remove bias. This was achieved by

using human participants, divided into two groups.

120

When dealing with the statistical analysis of experimental data, the population size has

to be large enough to minimize the chance of either Type I or Type II errors occurring

with the statistical analysis.

" Type I error The rejection of the hypothesis Ho when in fact it is true. No

observation is impossible and the probability of this error is the same as the level of

significance.

" Type II error The acceptance of the hypothesis Ho when in fact it is false. Unlike a

Type I error which as a constant is only dependent on the level of significance, this

error is dependent on which alternative hypothesis is true.

There was every attempt to prevent Type I and Type II errors. This was difficult due to

the experiment not collecting statistical evidence, but using human experience and

human opinions to gain sufficient data to support the hypothesis. The only solution was

to use a sufficiently diverse sample from the parent population, and provide more than

one measure to support or reject the hypothesis.

6.4 Experiment Data Analysis

Experimental data is based on a sample from some parent population, and a sample

group statistic (parameter) is calculated as an estimate of the parameter's value in the

entire population. Analysis involves calculating the following

" Average or mean These two terms are interchangeable. The sample group mean

values are often compared for variables of interest. The mean for each sample group

experimental timings was calculated and is shown in section 8.2.

121

" Regression coefficient This statistic gives the average change in variable Y for each

one-unit increase in variable X. For linear regression, the coefficient is the straight

line slope. A regression equation can be used to predict dependent variable value for

an independent variable value. A regression co-efficient is calculated on the means

as determined in section 8.2.

6.5 Error Analysis

Every experimental result is subject to error. One can attempt to
minimize errors but cannot eliminate them completely. [de Paula, 2001]

The consideration of experimental error is important for the successful completion of

the experiment. These are the causes which lead to Type I and Type II errors, discussed

in section 6.4.4 above.

6.5.1 Accuracy, Precision and Tolerance

Any physical measurement is subject to some degree of uncertainty due to the

limitations of both accuracy and precision. All instruments have designed tolerances.

Simanek [1996] argues

A measurement with relatively small indeterminate error is said to have
high precision. A measurement with small indeterminate error and small
determinate error is said to have high accuracy. Precision does not
necessarily imply accuracy. A precise measurement may be inaccurate if
it has a determinate error.

6.5.1.1 Accuracy

Accuracy refers to how close a measurement is to the correct value. It may be expressed

in terms of absolute or relative error.

" Absolute error the difference between an observed (measured) value and the

accepted value of a physical quantity, often referred to as experimental error.

122

" Relative error a ratio of absolute error to the accepted value, expressed as a

percentage.

The accuracy of an experiment measurement can only be determined if, the measured

quantity accepted correct value is already known.

The experiment conducted was considered to be accurate, reflecting the parent

population's anticipated reaction to the prototyped interface compared to a previously

developed text-based system. However the correct value is not known.

6.5.1.2 Precision

Precision is the limitation of any measurements, determined by the scatter, or dispersal

of obtained results, and a repeatedly measured quantity variance or standard deviation is

considered an expedient guide to a methods precision. High precision is reflected by

small variance. Precision is associated with random errors and can be improved by

increasing the sample size.

The experiment was run with no expected values. Any scatter was assumed to be a

human variation which would not be ̀ uniform'.

6.5.1.3 Tolerance

Tolerance is the maximum allowable error for a measuring device. Instruments of high

quality provide large measurement detail (good precision) and are designed for small

error tolerance (good accuracy).

123

The measuring device was a video camera, and a `computer screen' videoing station.

These both give a timing resolution of 1/25`h of a second. However, not every

experiment was recorded with a time-frame reference. This was problematic for

analysis.

6.5.2 Experimental Errors

Experimental error, when two identical experiments fail to give identical measurements,

is due to:

" Mistakes made in implementing the experimental design, including mistakes in

measuring experiment responses.

" All the uncontrolled variables combined effects which can influence the

experiment's results whether identified by the investigator or not, but were assumed

to be controlled through randomisation (randomised variables).

An anticipated problem was that a number of variables were based on experience.

Errors: Errors are normally classified in three categories:

1. Systematic Errors

2. Random Errors

3. Blunders

6.5.3 Systematic Errors

Systematic Errors come from identifiable causes and should be detected and eliminated.

This type of errors results in measurements which are consistently either too high or too

low. These errors are a failure in accuracy. They may be of four kinds:

1. Instrumental. When a poorly calibrated instrument provides an error,
it is a repetitive error. This error is consistent when the circumstances
are repeated, and forms a bias in the statistics collated.

124

2. Observational. This is where the experimenter has made an identical
and persistent mistake in all the statistics taken.

3. Environmental. This is where factors used as part of the model of the
system provide a continuous erroneous output, such as low power
outputs.

4. Theoretical. These are due to simplification of the model system or
the use of approximations in the equations describing it.

The potential issues related to these errors in the experiment were:

1. The video camera could not be calibrated.

2. Experimenter error, not corrected by the experimenter identifying it.

3. The tasks undertaken. All had to be achievable by at least one participant.

4. The experiment tested a novel programming system, and did not have associated

mathematical equations. The experiment did not involve a simulation to simplify the

system.

6.5.4 Random Errors

Random errors are positive and negative fluctuations and the sources of such errors

cannot always be identified. Possible sources are as follows:

1. Observational Errors in an observer's judgment when recording a measuring

device (timer/potentiometer) scale

2. Environmental The unpredictable fluctuations in equipment performance.

Random errors, unlike systematic errors, can often be quantified by statistical analysis.

Therefore, the effects of random errors on the quantity or physical law under

investigation can often be identified.

125

Observational errors were resolved by using a video camera, for the analysis. The

environmental factors could not be accounted for, but the assumption was that the video

camera could operate within a fluctuating temperature range which is comfortable for

the human participant, without significant change in performance. The random errors

were considered to be negligible. However, there were no physical law or quantity to be

measured.

6.5.5 Blunders

A final source of error, called a blunder, is an outright mistake. This is the recording of

a wrong value, a misread scale, a forgotten digit when reading a scale or recording a

measurement. A blunder would be evident if there were multiple measurements or if

one person checks the work of another. There were no unanticipated blunders in the

analysis of the experiment. Any blunders possible were the misidentification of the task

being performed, or not identifying when there was an attempt to operate the RBS robot

or PbD simulator.

6.6 Experimental Ethics

Scientific experimentation is about more than just the statistical tools available; it

includes the scientist's decisions to obtain and interpret data. This includes the need for

ethical behaviour in the performance of an experiment for future reproduction of results.

The modem Ethical Experimentation code results from the Nuremberg War Crimes

Trials.

6.6.1 Consent

The requirement is for informed and voluntary consent to participate.

126

The requirement is that the person involved is legally capable of consent, and can

exercise free power of choice, the ESRC (the Engineering and Science Research

Council) [2007] guidelines expect `Research participants must participate in a

voluntary way, free from any coercion'.

The ESRC states further that the `... subjects must be informed fully about the purpose,

methods and intended possible uses of the research, what their participation in the

research entails and what risks, if any are involved'. Consent should be obtained in a

consistent manner, as specified in the Research Ethics Framework, normally by use of a

signed consent form, and sufficient time should be allowed from supplying the sheet to

gaining consent, to prevent deception.

In all cases of research, researchers should inform subjects of their right
to refuse to participate or withdraw from the investigation whenever and
for whatever reason they wish. There should be no coercion of research
subjects to participate in the research. [ESRC, 2007]

This is summarised as ̀ the right to withdraw consent at any time'. Further, any data

provided is destroyed if requested, without adverse consequences.

Every participant was informed at the start of the experimental proceedings that the

participant had the right to stop the experiments or leave the laboratory.

6.6.2 Responsibility

The responsibility for conduct of the research in line with relevant
principles rests with the principal investigator. [ESRC, 20071

127

The Open University requires that approval for experimentation be obtained from the

Open University Human Participants and Material Ethics Committee (HPMEC) before

experimentation and data collection commences. Consent was obtained by identifying

any possible risks to the participants and explaining how the experimental conduct

would prevent any risk from occurring.

6.6.3 Experimental Preparation

Proper preparations should be made and adequate facilities provided to
protect the experimental subject against even remote possibilities of
injury, disability or death. Nuremberg War Crime Trials [1949]

The Open University requires that there is a risk analysis before experimentation, with a

risk management and harm alleviation protocol if necessary. The need is to make every

effort to minimise the risk of harm, physical or psychological, from any researcher,

institution, funding body or other persons.

This was undertaken for the issue of the robot falling off the laboratory work surface.

To prevent this from happening, the work surface had a raised edge as a barrier.

6.6.4 Confidentiality

The Open University states that except through explicit written consent, researchers

should respect and preserve participants' confidentiality. The experiment started with

the participant signing a consent form which stated that no participant would be

identified in relation to or by this research. Confidentiality of the participants has been

maintained.

128

6.7 Conclusions to Design of the Experiment

The key issues addressed in the experiment were:

" The experiment was run by the principles of Scientific Method. This is a formalised

method of designing and running an experiment, the principles of which were to

determine the variables in the experiment, both dependent and independent, because

any unrecognised variable would be a confounding variable. There was a

sufficiently large sample to prevent a false result.

9 The experiment design explored the environment for distance learning, and

compared the controlled and measured variables, before examining for any causal

links which needed to be explained, while it was kept simple by using just two types

of systems for analysis, and efficient by having similar tasks for the two systems.

" The experiment was designed and conducted in such a way that the results could be

replicated, preventing any systematic error. The problem was that human

participants are not homogenous, and the experimental results were derived from

human experience; the optimum results may not be reproduced to order, but were

intended to support or reject the hypothesis.

"A problem to prevent with data analysis is Type I and Type II errors, which reject of

the hypothesis when it is true, or support the hypothesis when it is false. The means

to prevent these errors while using human participant knowledge and opinions, was

to determine the results using multiple data sources for testing the hypothesis.

" This leads to the issue of preventing errors obtained during experimentation. Errors

include incorrect recording of data and lack of precision subject to the tolerance in

the measurement equipment. This can be due to mistakes in experiment design,

comprising systematic errors, which could be due to the video camera, the

experimenter, the tasks or the programming systems. There could be random errors,

due to the experimenter or the equipment, or blunders.

129

9 The use of human participants required ethical experimentation, with the

participants both legally capable of consent and providing informed consent to

participate, and with the right to withdraw consent at any time. Confidentiality must

be maintained during reporting the results of the experiments.

" Preparation for the experiment has to include risk management and prevention of

harm.

130

Chapter 7

Experimental Procedures

7.1 Introduction

A checklist is provided in synopsis on how to perform an experiment in the National

Institute of Standards and Technology e-Handbook of Statistical Methods

[KIST/SEMATECH, 2006].

Checklist for successful DOE

" Check performance of measurement devices first.

" Keep the experiment as simple as possible.

" Check that all planned runs are feasible.

9 Watch out for process drifts and shifts during the run.

" Avoid unplanned changes.

9 Allow some time (and back-up) for unexpected events.

" Maintain effective ownership of each step in the experimental plan.

" Preserve all the raw data-do not keep only summary averages!

" Record everything that happens.

" Reset equipment to its original state after the experiment.

The experiment was to evaluate the differences between an existing text-based

programming system and a prototype multi-agent programming by demonstration

system, based on participant performance. The experiment design was guided by

StatSoft, Inc, [StatSoft, 2003].

131

The participants were required to use the two systems to accomplish a series of

increasingly difficult tasks. Instructional information was provided with the tasks, for

the participants to accomplish them. For example the rules based system included

exampled instructions on how to program the rules into the system, see Appendix B.

7.2 The Aim of the Experiment

The aim of the experiment was to test the hypothesis, which was:

Programming by Demonstration would prove a more intuitive

approach to the complexity of developing an emergent intelligent

behaviour than text-based programming.

To evaluate the hypothesis fully required analysis of the following:

9 The intuitiveness of the interface for design of programs

9 The complexity of the designed robotic behaviour(s)

7.2.1 The Objective of the Experiment

The experimental objective was to compare a Programming by Demonstration interface

based system with an existing Mechatronics course (T395) interface system, providing

evidence that the Programming by Demonstration system was:

" easier for participants who do not specialise in science or engineering subjects,

" easier for developing complex tasks,

" more flexible for programming the mechatronic device.

132

By directly comparing the two systems the experiments provided results for analysing

the proposed programming by demonstration system strengths and weaknesses. The

experiment revealed limitations, which could guide future research for distance learning

systems, significantly improving the prototyped system.

To obtain desired results, each participant was expected to report on:

" Ease of use - the simplicity of methods to program tasks for a mechatronic device.

" Rapid prototyping development - which system allowed faster development of a

mechatronic device autonomous behaviours.

9 Reduced mistakes and corrections - using a Programming by Demonstration

interface allowed a user to rapidly prototype behaviours and the mechatronic device

to enact these behaviours.

" Reduced need to learn new skills - an issue of programming a mechatronic device

was learning a programming language. A participant was hopefully expected to

prefer the Programming by Demonstration interface compared with having to learn

a computer language first, however simple the computer language.

To evaluate the hypothesis involved comparing a Programming by Demonstration

interface's effectiveness with the existing mechatronics distance learning system.

7.3 The Variables

The dependent variables comprised analysing the characteristics of the participants. The

independent Variables involved analysing the participants, who (as above) were

categorised by:

1. The current education level. This was detailed as existing degree level

qualification, from under-graduate to doctorate.

2. Previous experience background.

133

The independent variable was tested for by the participants completing a questionnaire

before undertaking any actions on either of the two Interfaces.

7.3.1 Required Degree of Certainty `In all things that are

uncertain at the start'

This related the two different systems' operability being compared for their ease of use

to achieve an expected task, and developing a program suite allowing the mechatronic

device to operate autonomously.

Because the experiment analysed two different systems, utilising tasks of similar

complexity for each, there was still uncertainty with the participants deciding which

system was preferred, which was subjective for each participant. Reducing each

participant's decision arbitrariness was achieved by directing their critique to a

questionnaire, see Appendix C. The difficulty with a participant's critique was an

overlap with pedagogy in the systems analysis. The experiments were intended to

examine the practice of using a Programming by Demonstration System for the specific

purpose of mechatronic device programming.

The principles of experiment design required records of relevant material properties and

robot specifications, to allow any differences between the two systems to be identified

and to prevent any skewing of results due to differences in system details.

134

7.3.2 The Participants

The participants were randomly selected, were given no prior notice of the details about

the experiment to be undertaken. They were divided into two groups. One group

undertook one system first, the second group undertook the other system first. The

participants were in 2 groups of 10, which were considered to be sufficiently large to

provide a statistically justifiable result, to reflect the parent population, and to support

or reject the hypothesis.

7.3.3 Components of Variation

The categories by which the participants were assessed are:

" Robotic specialists Participants who were expected to be familiar with the

principles of robotics, or specifically the T395 course system used as the alternative

(text-based) system, from experience.

" Graphic programmers These were participants who were assumed to be familiar

with the principles of graphic drawing, giving a potentially unique advantage in the

use of the PbD system.

" Computer programmers These were assumed to be familiar with programming.

" Computer users These were assumed to be unfamiliar with the principles of

programming, robotics or graphic programming.

7.3.4 Randomisation

Unpredictability could only be achieved by not knowing who the various participants

were going to be, and the participants were unaware of the experiments in advance.

135

7.3.5 Blocking

For these experiments, the blocking was undertaken to avoid any prior experimental

knowledge with one set of tasks, which could influence the results with the other

system. From the four categories of participants defined in section 7.3.4, there were two

groupings of each.

" One group undertook the T395 interface system tasks first, and then the

Programming by Demonstration interface tasks.

" The second group undertook the Programming by Demonstration interface tasks

first and then the set of T395 interface system tasks.

This prevented bias from only one experimentation format, causing a statistical skew.

7.3.6 The Independent Variables

The participants comprised Open University faculty members, students and other

acquaintances, who were considered potential students for a Mechatronics course.

The constituency was expected to be sufficiently diffuse to allow a sub-ordering of

results for analysis by:

" Qualification by education level Was the participant a member of faculty, post-

graduate student or undergraduate currently studying for a degree? This allowed

categorisation of participant ability to assimilate, understand and use new

information.

" Qualification by knowledge area This categorised by familiarity with

programming concepts. Too narrow a remit for knowledge would have skewed the

results.

136

" Qualification by age was considered for 3 major reasons:

o The humanities (psychology and education-based studies) argue that

youthfulness allows greater versatility of thought processes, through greater ease

or rapid assimilation of new unfamiliar concepts.

o Computers are a recent development. Tuition of computer technology has

proliferated to school level GCSE since 1988.

o Age could be determined as a confounding variable if not accounted as a

possible variable. As an uncontrolled confounding variable, any results provided

could not be stated with any certainty.

The alternative to a possible confounding variable (a variable that can affect the

results but was not being measured), was to eliminate the variable. This would have

been achieved by stating that each participant must be within a particular age range.

" Qualification by computer literacy The development of computers is relatively

recent. In 1980 to 1990 home computing started to proliferate, comprising ZX

80/81/Spectrum, BBC A/B and Electron, Commodore Pet/64/128, Atari 5200. Mass

manufactured Apple Mac and IBM/IBM compatible computers entered the general

home ownership circa 1990. The internet had not become a popular tool until

-1992/5. Computer literacy as a pre-requisite through ownership and use of a

computer was not a given universal.

The problems associated with these categories though had to be recognised.

9 The participant's education level The hypothesis being tested included whether a

PbD interface could allow the participant to program without relevant previous

knowledge. While qualification level can be sub-divided into `Had the participant

got a Bachelor Degree? A Masters Degree or a PhD? ' the first degrees could be

categorised further was a thorny issue.

137

" The participant's specific knowledge could likewise have been problematic. A

participant may not have a single `core' of academic learning; there could be a

knowledge spread, for example: my BSc(Hons) comprises both Business

(Commerce) and Computing (Engineering) with significant (but not distinctly

qualified in) Operations Research (Science/Maths), followed by an MSc in both

Opto and Digital Electronics (Engineering). My external interests include music,

(arts). Any categorisation of knowledge had to reveal programming-related

knowledge.

" Categorising the participants by age could potentially yield an interesting skew

on the results. Neither the participant's age nor how long a participant had used a

computer could reliably measure either their ability or agility with computers or

computer interfaces. However both length of time using computers and age could be

more revealing. The younger a participant was, the more likely the participant had

received a formal education in computer use, (GCSE/'A' Level). A more senior

participant's computer literacy would be increasingly experience-based.

" Categorising participants by computer literacy There are two types of computer

knowledge learning: formal and experiential. The categorisation could include:

o the ability to navigate the operating system and use applications,

o formal programming knowledge.

If a participant whose computer literacy was based significantly on experience,

navigating an operating system (GUI based, for example Windows or X-Windows)

and application use, a question was whether the applications require any

programming?

138

7.3.7 The Dependent Variables

Three variables could be analysed for the two systems:

9 Total time taken to accomplish the tasks

" Number of errors

" Subjective satisfaction

The total time taken was measured in seconds from the beginning of the task until it was

accomplished. The number of errors was the number of times the participant attempted

to complete any of the tasks without success. Subjective satisfaction was assessed by

using a questionnaire, Appendix C.

The experiment would obtain data to analyse the programming involved with both

systems, for a mechatronic device to achieve increasingly complex tasks autonomously.

The criteria for comparison were:

" Time taken to complete tasks to provide evidence of intuitiveness

" Number of mistakes, repeats, retries and attempts This was expected to be an

indication of

o the intuitiveness of the interface,

o the complexity of the task to be undertaken,

o enthusiasm.

" Completion of tasks A task would be unfinished for a combination of reasons.

They require the ability to:

o understand the problem

o consider a solution

o program the solution.

" Test for efficiency: This was the extent to which the system required minimal time

to successfully complete tasks.

139

7.3.8 Maximising the Data Obtained

Maximising experimental data collection was achieved by using a videotape. The

advantage was the ability to record the chronology of events, allowing a greater depth

of analysis of the participants' behaviour, with recorded evidence of what each was

experiencing when testing the two interfaces, through them undertaking a talk-through.

7.3.9 Minimizing the Required Number of Experiments

This was achieved by using videotape during experimentation, so there was a reduced

need to repeat it. Further experimentation would have been to explore and analyse in

greater depth any unexpected results.

7.4 Experiment Activities

The experiment was conducted at the Open University in a dedicated private laboratory.

Participants entered the laboratory and were seated in front of a computer. They were

asked to sign a consent form, and complete a questionnaire, comprising categorical

questions about age, subjects studied and to what qualification level, and their

background in computer education and experience.

Next, each participant was provided with an explanation of the experiment and

instructions appropriate to the mechatronic programming system and interface being

examined. After completing the second experiment system, participants were requested

to complete a concluding questionnaire to examine their satisfaction with the two

interfaces.

140

As the hypothesis sought to determine if a Programming by Demonstration System was

an intuitive tool requiring no previous familiarity, there was no formal induction to

either system used by the participant, other than a simple explanation that the systems

were intended to program a robot to achieve a set of tasks within the experiment

instructions. The tasks are attached in Appendix B.

7.5 Experimental Equipment

The resources acquired were:

A room with sufficient space for a work surface; a video-camera (fixed on a tripod), 2

chairs, one each for the participant, and the observer/experiment supervisor:

1. Work surface This needed to be large enough to support

"A personal computer to operate both the programming systems,

" The work space sufficient for a person to occupy

"A mechatronic device The space required was estimated to be about lmetre

square with the edges raised sufficiently to prevent the mechatronic device from

falling off the workspace, and potentially injuring the participant.

2. A personal computer to operate both programming systems. The computer had an

infra-red link for communication with the mechatronic device.

3. A video camera to record the participants' behaviour during the experiment. The

video camera's positioning was intended to observe both the participant, and the

activity on the computer screen.

4. A computer screen recorder to record the activity on the screen, which would be

combined with the video camera view for the final document.

5. Chairs The participant and observer were both seated.

The layout of the experimentation room is shown in Figure 7.1 below

141

Mechatronic Work surface
Video camera

Door
device

\

Infra-red
communications

Observer

L Participant Computer
screen

recorder
Personal
com uter

Chair Chair

Figure 7.1 The layout of the experimentation laboratory

Figure 7.2 below shows the physical layout of the laboratory.

ý.
I!

Figure 7.2 The physical layout of the laboratory

Figure 7.3 shows a close-up of the robotic vehicle used for the demonstration of the

text-based system. The computer was run in stand-alone mode, and had copy of both

systems on its hard-drive.

142

Figure 7.3 A close-up of the robotic vehicle

7.5.1 The Tasks

To test the effectiveness of a Program by Demonstration system, the tasks provided to

both sets of participants were similar, see Appendix B.

Each participant was presented with an experiment packet containing a consent form, a

preliminary questionnaire, and an exit questionnaire, reproduced in Appendix C. There

were initial familiarising instruction of the two programming systems with formal

instructions of what was expected for each task, see Appendix B.

The timed programme the participants were required to perform were

"a set of sub-tasks - these were for the robot to `travel' from one point to another

in a controlled manner,

" to associate a range of inputs from sensors to resulting actions,

" to `park the robot in a corner'. This was a more abstract problem, requiring the

participants to fully utilise the programming functionality.

143

The timing started as soon as the participant began to read the tasks to be accomplished.

The videotape recorded the participant from as soon as he/she entered the laboratory.

An error was recorded if the participant

9 was unable to complete a task,

" did not correctly accomplish any part of a task,

" had to make a correction.

7.6 "Buy-in" of Results

This was to be determined by a questionnaire-based analysis of the two different

systems, and the objective satisfaction of the participants. To obtain the objective

satisfaction of the participants a questionnaire was utilised, comprising the questions:

" Which system did the participant consider was easier to use?

" Which system did the participant consider was more intuitive to use?

" Which system did the participant consider was more flexible to use?

7.7 Conclusions of Experimental Procedures

The following were concluded from Chapter 7

9 The experiment was to compare an existing text-based system with the PbD

interface.

9 The experiment tested the hypothesis, evaluating the intuitiveness and complexity of

designed robotic behaviours for the two systems.

" The independent variables being recorded were the current education of the

participant and their previous background. The participants were randomly selected

and analysed by education level, specific knowledge and, to prevent a confounding

variable, age.

9 The experiment tasks were of similar complexity in programmed behaviour.

144

" The dependent variables being measured were the total time taken to accomplish the

tasks, the number of errors and the participant's subjective satisfaction with the

system. This would comprise time taken to complete tasks, the number of mistakes,

repeats, retries and attempts, the completion of tasks, and testing for efficiency.

" The experiments were video-taped to minimise the experiment runs and maximise

data obtained. A questionnaire was presented at the end of the experiment.

" The hypothesised results were that the participants reported ease of use, rapid

prototyping development, reduced mistakes and corrections and a reduced need to

learn new skills, for the PbD system.

" The participants answered a questionnaire to determine which system they

considered to be easier, more intuitive and more flexible to use.

145

Chapter 8
Data Obtained and Interpretation

8.1 Introduction to Data Obtained and Interpretation

This chapter describes the data obtained from the experimentation, and discusses the

data's significance for supporting or rejecting the hypothesis. Throughout the chapter

there are references to the two systems used for the experiment: the Rule Based System,

previously successfully used for the Open University T395 home experimentation kit,

and the Simulator System, which employs the Programming by Demonstration

described in chapter 5. Throughout the chapter the T395 home experimentation kit is

referred to as the RBS system, and the Programming by Demonstration/Simulator

system as the PbD system.

8.2 The Participants

The 20 participants involved in the experimentation are profiled below in Table 8.1,

which includes their formal qualifications, knowledge and experience. The participants

were divided into 2 groups; the first tested the PbD system before testing the RBS,

subsequently referred to as the PbD-first sample group; the second tested the RBS

before the PbD system and are referred to as the RBS-first sample group. Both sample

group participants were randomly selected.

146

Table 8.1 A description of the participants
Sub jects Studied K nowledge and Experience

Participant Se: Age First Second PhD Computer Programming Robotics
Graphic

pro ramming Degree Degree Familiarity g
Digital

1 cd' 35-40 BEng No Imaging 22 years -20 years None Expert

progress

2 d" 60-65 BSc MSc Al 39 years -10years Familiar Familiar

3 V- 26-30 BA/BSc No No 13 years Principles None None

4 0 50-55 BSc No Yes 34 years Sporadic Familiar Familiar

5 d' 40-45 I BSc No In 13 years Principles Expert Expert
progress

6 $ 50-55 BA No No -20 years None None Expert

7 ci" 30-35 BSc No In 25 years -20 years T395 Expert
progress

8 d' 50-55 BA No
Digital

Imaging -20 years -20 years None Expert

9 cd' 50-55 BSc MSc Yes 25 years None None Familiar

10 35-40 BSc MSc Yes -25years -10years Familiar None

11 c7' 25-30 BSc No No 15 years 4 years None Familiar

12 cd' 60-65 BSc No No 40 years 40 years T395 None

13 0 30-35 BSc PGCE No 26 years 22 years Familiar Expert

14 d" 60-65 BSc No No 25 years -100 hours Expert None

15 d' 45-50 BSc No Yes 20 years -20 years Expert Expert

16 ds 30-35 BSc No 15-17 years Principles None Expert
progress

17 " 50-55 BA No Psych in 35+ years 13 min None Familiar
progress

18 36-40 BA MA Psych in 27 years -20 years None Familiar
progress
Business/

19 $ 46-50 BA MSc/MA Sociology 20 years None None None

progress
20 0-4 35-40 BSc No Yes 25years -25years Yes None

The distribution of the two sample groups in terms of their relevant experience is

illustrated in the `Star Diagram' in Figure 8.1. The `Star Diagram' illustrates the 4

dimensions of the participants' experience. These were: the ability to program,

experience in robotics, computer familiarity and graphic programming. Computer

familiarity and programming experience were considered as distributed over time,

although, the experience for either is not a linear gain. There is a significant gain early

in the learning period, to obtain competence, with further gain being in specific areas of

the subject.

147

Robotics and graphic programming were considered to be specialist subjects, and

involve immersion in the subject. The diagram shows that there was a good spread of

participants from the target parent population.

Programming

2,4

3,4,10,13

ýýDY 9,11,
5

....: ý:.. _ 18

N20
6,8 1
lo' l

8
I17O30

40 yeas

P-N PbD-RBS test group
Computer RBS-PbD test group

familiarity V) Area of inexperience

Figure 8.1 The distribution of the sampled participants

Robotics
7,12,1 Expert

and T395

1,5,6,7
8,13

M15,16
Expert

Graphic
programming

The sample of participants used for the experimentation was considered representative

of the parent population. Familiarity with the T395 Open University Mechatronics

Course was considered a measure of robotic expertise for the experimentation, as the

Open University's T395 instructions were used as a premise for the Rule Based

System's experimentation instructions. Two participants, 7 and 12, were respectively a

graduate who studied T395 and a T395 course tutor, and both were considered to have

expertise in using the system through prior familiarity.

148

There was a lack of 25+ years computer users who were experts in graphic

programming, This is considered due to the development of home computing about 25

years ago, with computer users prior to 25 years ago being generally text-based

programmers.

The evidence supporting the need for 20 participants was determined by identifying the

trend for experimental task average times taken, illustrated in Figure 8.2 below. The

mean is an arithmetic mean, recalculated with each new participant's timings. This

moving mean was then used for calculating a power-based trend-line, which shows a

convergence on the Parent Population Mean.

The Participants' Experiment Timings
1: 55: 12 ----- ----

1: 40: 48

1: 26: 24

1: 12: 00

E 0: 57: 36

0: 43: 12

0: 28: 48

0: 14: 24

- -----

0: 00: 00 1
123456789 1011 121314151617181920

Participants
 Time Taken With PbD Tasks Time Taken with RBS Tasks

Average Time Taken For PbD Tasks Average Time for RBS Tasks
--Power (Average Time Taken For PbD Tasks) -Power (Average Time for RBS Tusks)

Figure 8.2 The participants' experiment timings

149

The R2 value, is the 'co-efficient of determination', calculated as the proportion of the

variation in results, which can be explained with the calculation of the trend-line. The

Total
plained Variation

With the closer W approaches 1 the closer the co-efficient is R2 =
Ex

trend-line corresponds to the data. Although the R2 value for the RBS is below 0.5,

without participant 20, the R2 value is 0.551, due to participant 20 taking a long time

working on RBS task 5. Participant 20's results are discussed later. As the purpose of

the experiment sample was to represent the parent population, this was considered

achieved. Despite the individual scatter of results the conclusion is that 20 participants

were sufficient for the experiment.

8.3 Raw Data Gathered

8.3.1 Comparison of Participants' Timed Activity

The time taken for each part of the experiment is shown below as a set of bar charts.

The average figure presented is calculated as: each task's average for all participants

who attempted the task. The timings do not include when tasks were repeated. The first

set of timings presented is the participants of the PbD-first sample group. All

participants attempted to complete all the tasks.

Figure 8.3 presents the groups individual times, although as a group, all the participants

attempted all the tasks. Participants 14 and 15 managed to complete the tasks in

significantly less than the average times, being the two identified robotics experts,

expected to rapidly present correct solutions for the PbD system. Participants 3,16 and

17 who took the longest time did not have robotics experience. Most noticeable is

participant 16 who had graphical systems programming experience, but was

significantly slower than the average to complete the tasks.

150

sample group

The second sample group were the RBS-first sample group participants. Participant 9

quit the experimentation during the Rule Base System tasks, otherwise all the remaining

participants attempted all the tasks.

Average
Sample

r... Group 6 --- &Min,, L-
_77.77 -

00: 00 07: 12 14: 24 21: 36 28: 48 36: 00 43: 12
Time

®PbD 1 PbD 2Q PbD 3o PbD 4

Figure 8.4 The timings for testing the PbD System by the RBS-first sample group

151

Figure 8.3 The timings for testing the PbD System by the PbD-first sample group

All who attempted the PbD system tasks attempted the final task. Participants 5,7 and

12 completed the tasks in less than average time, which could be explained by the fact

that each had expertise in robotics. It is believed that as 5 and 7 both had expertise in

graphic programming and robotics, this resulted in their significantly reduced time

taken to complete the tasks.

Figure 8.5 presents the set of timings for the RBS-first group of participants' test of the

RBS System.

0: 00: 00 0: 14: 24 0: 28: 48 0: 43: 12 0: 57: 36
Time

®RBS1 RBS2QRBS3QRBS4 RBS51RBS6

1: 12: 00 1: 26:

Figure 8.5 The timings for testing the RBS System by the PbD-first sample group

Only 7 participants attempted all the tasks. The only person to finish the tasks in less

than the sample's average is participant 15. This is considered due to the participant

having expertise in robotics. Participant 3 was the outlier, finishing all the RBS tasks in

less than the average time without having a significant background in either

programming or robotics.

Figure 8.6 presents the timings of the RBS-first participants' test of the RBS System.

152

The test of the RBS System by the RBS-first sample group
5
6
7
8
9

ä 11
12

eia
13

IL 19
20 4301 -w

Ave rage
Sample
Group

0: 00: 00 0: 14: 24 0: 28: 48 0: 43: 12 0: 57: 36 1: 12: 00 1: 26: 24 1: 40: 48 1: 55: 12
L Time

12 Rule 1 Rule 20 Rule 3c Rule 4 Rule 5D Rule 6

Figure 8.6 The timings for testing the RBS System by the RBS-first sample group

7 participants attempted all the RBS tasks. All attempted the first 3 tasks. These 3 tasks

involved selecting and running a menu item, typing in a set of written instructions and

typing in a second set of instructions similar to the first set, with 2 amendments.

Participants 8 and 9 quit the RBS experiment early. Participant 8 was unable to continue

the experiment when presented with RBS task 3, but continued to attempt the PbD

experiments. Participant 9 attempted RBS Task 3, but decided to halt the experiments

and left the laboratory.

The outlier result is participant 6, who expressed no previous experience in robotics or

programming, but who attempted all the tasks and succeeded in the shortest time.

Further, there was an apparent disparity between the two sets of timings, with the PbD-

first participants appearing to be quicker in completing the tasks. The possibility is that

the group had experienced similar tasks when using the PbD system previously, while it

has to be acknowledged that 5,7 and 12 had a background in robotics.

153

Participant 20, is the anomalous result, however, deciding against attempting to

complete RBS task 3 using the instructed task as the purpose of the experiment, but

instead attempting to create generic behaviours which exceeded the task's expectations.

8.3.2 Measures of Activity Success

Tables 8.2 and 8.3 show who accomplished the tasks in the timescales given above,

together with the number of attempts taken to complete the task.

Table 8.2 The PbD-first group's attempts to achieve success
Experiment PhD System Experiment Tasks RBS Experiment Tasks Stated
Participant

Test order I -4
i -ý T Preference

I PbD - RBS 1 1 3 2 1 1 2 1 5 1 PbD

2 PbD - RBS 1 1 1 2 1 1 1 5 PbD

3 PbD - RBS I 1 3 1 1 1 3 9 6 1 Rule Base

4 PbD - RBS 1 1 5 8 1 I 0 0 11 IL j PbD

10 PbD - RBS 1 I 2 1 I 1 4 a I Rule Base

14 PbD - RBS 1 1 2 1 1 1 4 2 Z. 30 LIMM PbD

15 PbD - RBS I 1 3 2 1 1 2 2 3 4 PbD
16 PbD - RBS 2 1 3 5 1 2 5 3 2 Rule Base
17 PbD - RBS I 2 5 3 2 2 5 2 11 6 Rule B

18 PbD - RBS 1 2 2

L3

1 2 I 4 1 3 Unknown

Key: MýI! Task

This showed that while the sampled group attempted but may not have completed the

PbD tasks, there were 5 participants who were unable to attempt all the RBS tasks. This

also shows that participants 3,17 and 18 successfully finished the final task in the Rule

Based System despite being unable to complete the tasks using the PbD system.

Participant 15 did not need guidance during PbD system task 3 on how to design the

obstacle avoidance behaviour; however, the PbD simulator system failed to work

properly. With the final task for the PbD system, participant 15 completed it with the

minimum of help.

154

Table 8.3 The RBS-first group's attempts to achieve success
Experiment RBS Experi ment Tasks PbD System Exp eriment Tasks Stated

Participant
Test order 1 2 3 4 5 6 1 2 3 Preference

5 RBS - Phi) 1 I 2 3 2 1 1 1 1 4 PbD

6 RBS - PbD 1 1 2 3 2 2 1 1 3 2 Rule Base

7 RBS - PhD 3 1 1 1 2 3 1 1 1 3 Rule Base

8 RBS - Phi) 1 1 2 2 2 PbD

9 RBS-Phi) I 1 Unknown

II RBS - PhI 1 1 2 6 1 r"" 1 1 1 1 PbD

12 RBS - PhD 1 3 1 4 2 4 1 1 3 2 PbD

13 RBS - Phi) 1 3 3 7 4 14 1 1 3 2 PbD

19 RBS PbD 1 1 3 1 2 1 1 3 1 PbD

20 RBS-PbD 1 2 1 2 19 8 1 1 1 1 Rule Base

Key:

Catacreses

Catacreses are discussed in 3.2.1.3 as the modification of a `tool' from its intended

purpose, and were observed occurring during the PbD tasks. The PbD system had 2

tasks which comprised the design of a mechatronic vehicle's behaviours. Task 3, to

negotiate an obstacle, and task 4, for the mechatronic vehicle to park itself in a corner.

For task 3, the majority of participants ignored the task instructions, which included the

figure below.

Opaawr map
Oa

Forwards

Figure 8.7 The mechatronic vehicle orientation for design of behaviours

155

Reverse

The participants attempted to design a specific obstacle avoidance behaviour for the

obstacle presented. During the design stage of the interface, this method of behaviour

design was considered and rejected. The principle was that the designer could design a

generic behaviour, using a simple format for the design map. The use of a specific

circumstance could lead to a behaviour specification which would not be effective or

appropriate for all circumstances. Further, when the prototyped Artificial Intelligence is

tested in the Remote Access Laboratory, the obstacle(s) presented may not be known in

advance. The principle for a generic behaviour is that the behaviour can respond to all

circumstances.

Task 4 involved designing a behaviour or a set of behaviours for the vehicle to park in

the corner, as described in Chapter 5. Participant 5 designed a set of obstacles to guide

the mechatronic vehicle into a corner, and used the obstacle avoidance behaviours

designed to direct the simulated vehicle to a ̀ corner'. Although, this has been marked as

a failure, as it did not complete the task by the expected means, this was a `success', as

the vehicle was `in a corner', and the participant introduced an innovative method to

obtain the result.

8.3.3 The Participants' Dialogue

Table 8.4 summarises the dialogue provided by the participants. The dialogue is

reduced to 5 general categories for the table, comprising `Likes', which are positive

expressions about the system being used for the experiment task, `Dislikes' being

negative expressions about the system; ̀ Questions' and ̀ Answers', `Questions' identify

when the participant requires assistance. ̀Answers' are when there has been a necessary

response in some way to the participant, either by activity or by a literal question, or a

response to `Comments'.

156

`Comments' are remarks by the participant which may neither be described as

`Positive', ̀ Negative', or as a ̀ Question'. During the introduction to the experiment the

participants were asked to supply a running commentary effectively creating a

documentary of the experiment. This led to general text of up to 1600 lines of

transcribable dialogue per experiment.

Table 8.4 Participant dialogue during the experiments

Participant
Like Dislike

Rule Based
Question

System
Response Comment

Programming by
Like Dislike Question

Demonstrat
Response

ion
Comment

1 360 58 122 255 431 265 54 65 261 167
2 103 18 84 116 94 324 61 164 287 130
3 231 12 45 272 145 164 19 33 183 111
4 45 4 19 51 117 159 19 31 159 124
5 39 30 52 128 73 5 3 12 35 41
6 5 19 23 67 65 10 12 17 87 80
7 324 31 64 94 68 87 12 30 128 57
8 74 35 42 123 98 198 23 56 140 193
9 46 80 14 100 94 0 0 0 0 0
10 68 21 25 76 80 70 39 41 119 111
11 42 5 30 74 61 12 3 6 21 67
12 448 39 140 313 320 190 13 77 159 136
13 121 21 13 60 72 65 6 14 98 40
14 96 19 38 80 87 41 7 19 33 12
15 281 32 81 210 270 142 11 181 241 247
16 71 10 25 105 58 45 13 24 87 62
17 242 38 66 53 122 183 27 26 23 63
18 311 23 15 50 71 226 10 33 70 156
19 160 11 113 79 54 48 14 43 29 32
20 252 130 184 403 478 140 49 90 275 239

Participants17 and 19 asked rhetorical questions. The comments for all the experiments

have a particular element of the participant reading aloud the experiment's instructions.

The experiments did not solely comprise completing task 1, start task 2... but had an

element of dialogue between tasks including question and answer routines. For example

participants 17 and 18 over-analysed the RBS system, expressing how they would park

the vehicle, using a metaphor of how they would drive their car.

157

A determinant of whether a person liked or disliked a system was undertaken by

examination of the ratio of expressed likes to dislikes, which has the problem that the

two systems are very different. The number of questions asked was an indication of how

much assistance a person needed while attempting the tasks. On its own, this would be

misleading, as the assumption would be that the participants were only asking one form

of question. However, many of the participants were interested in how the systems

worked. As a result, table 8.9 the ration of likes/dislikes, includes the success in the

fmal task for both systems.

8.3.4 The Usability Questionnaire Results

8.3.4.1 The PbD System Questions

After completing the tasks, each participant was requested to fill-in a Usability

Questionnaire, which comprised the following questions on the PbD system, referred to

as ̀ the Simulator' as task results were provided by use of a simulation.

1. Do you think that the Simulator system provides a sufficient degree of detail about

what is happening on the screen?

2. Do you understand the Simulator's systems information on the screen?

3. How intuitive did you find the Simulator system?

4. Did you find it hard to remember how to do anything with the Simulator System?

5. How did you find the Simulator interface prompted you to particular actions?

6. Do you believe that any part of the Simulator interface was unnecessary?

7. Are you satisfied with the Interface's names?

8. What would you like as further dialogue from the Simulator System's Interface?

9. What are your thoughts about the methods of determining the Vehicle Behaviours

using the Robot's Behaviour View?

10. Do you believe you needed a Help System with the Simulator system's Interface?

158

11. Did you find the Simulator system's Interface easy to use?

Table 8.5, below, illustrates what the participants considered were positive and negative

aspects of the PbD based Interface.

Table 8.5 Usability questionnaire responses for the PbD system

Tester Qn I Qn 2 Qn 3 Qn 4 Qn 5 Qn 6 Qn 7 Qn 8 Qn 9 Qn 10 Qn 11
Detail Info Intuitive Recall Prompt Surplus Names Dialogue Methods Help Easy

I Yes
Yes, Had

Not Huge Easy
Measurements

Yes
Not

intuitive, Yes Yes
to ask Scale 5: 1 Hierarchical

Mostly, Not Very
Jargon at OK, some Line Useful and Prompt Reasonably

2 Yes esp. visual Very
obvious little

bottom right could be drawing is
Expressive based easy behaviour hand corner Improved Sufficient

3 Fairly easy seer- Very Parking Yes No Yes,
satisfied

Guidance Efficient Beneficial Yes

4 Yes _ Became Too many NO When Yes, Contextual Not Yes
No, easier

__
familiar buttons Familiar satisfied Help intuitive than RBS

5 Depends
Well

named but Quite No Fairly Not aware of Yes,
Keep
Goals Had to look Possibly Yes

difficult clear any satisfied Visible elsewhere

6
Not

activity Yes OK Not Fairly
Hard to say OK Don't

Yes OK
related obvious well know

7
abstToo ract

Yes instantly No All at once Orientation Yes Moderate

8 Need n Needs Partially Yes N o No No Yes
c ') m

9

10
Very busy

A little, Not
Yes

Not
All at once No

Interface
Confusing Tutorial No screen really well animation

11 Yes Some of it
Quite No No Yes

Yes, Goal Can be
No No

unclear satisfied set/view understood
12 Yes Not fully

Fairly At first OK No Yes, Can
Interesting Yes Yes, with

yet satisfied improve ractice

13 Yes Yes Fairly Orientated No Yes No Direction Quick No Yes, max
Situational headings info

Visuals
OK, but OK, but

Too much When
Yes, bette Need Not Need to Yes, better

14 Useful some can to recall familiar Don't know with more block intuitive but see block with
d lici im rove familiarity diagram useful diagram familiarity

15

16 No No Not
intuitive Yes Measurements No Yes No

17 eed more adequate
Some Needed to fairly No - but a lot No No more!

Had to be Yes Improved
feedback aspects refer to take in nudged with time

18

19 Probabl y
of i t

Needed
No Very No - it was al l Yes,

O i t ti
Usually

enough sheet little useful satisfied r en a on useful
Fairly

20 No,
difficult

No -
Confused

When
familiar

Second
run ea ie

Didn't
l) Measurement s Not really

Visual Orientation
Depends When

s r rea Cues confusing familiar

Key: Positive statements

Familiarity issues

Negative statements

Not answered

159

No participant provided only positive answers, although participants 10 and 16 provided

only negative answers. There were 19 familiarity issue answers provided by

participants, 4,5,6,7,8,11,12 14 and 20. Participants 2,3,4,5,6,8,11,12,14, and

17 stated that the PbD Interface was intuitive; only participants 10 and 16 stated they

found the PbD Interface was not intuitive.

7 participants 1,2,3,4,13,14,19 found the simulator sufficiently detailed in its

instructions and could understand the screen information, the main criticisms being that

the screen was too abstract or too much information was provided, with participants 5,

8,11 and 12 stating familiarity issues.

Only participants 1 and 5 found that the Interface prompted their next action or could

easily remember how to use it. The main criticisms were that there was too much to

recall or that functions were not obvious. Participant 13 expressed that a significant

problem was that the `Operations Map' mapped the laboratory when creating Goal-

Based Behaviours, and used a fixed orientation premised on a mechatronic device, as

shown in Figure 8.7 above, for creating Sensor-Activated and Goal-Activated

Behaviours. The overall impression was that the interface could be initially

intimidating.

Participants 7 and 10 both criticised the interface for presenting everything all at once.

Participant 7 wanted parts of the interface to appear when necessary, while participant

10 wanted buttons hidden when not used.

160

When attempting to find out if there should be more dialogue presented on the interface,

suggestions were mostly related to the `Use of Laboratory Map' for locating goals, and

for the design of behaviours independent of the laboratory setting. This was summarised

by participant 13 who suggested a directional headings for the vehicle actions. Of the

two positive comments, participant 17's reply was a veiled criticism about the amount

of data already presented on the screen.

When considering the creation of behaviours on the Use of Operations Map,

participants 1,4 and 14 found the method not intuitive. The positive comments were

that this method was ̀ a useful and expressive form of output' by participant 2, 'ef cient

way of monitoring the vehicle's behaviour' by participant 3, and `seemed quick to

assemble behaviours' by participant 13.

Question 10 enquired about the provision of a help function. 2 participants considered

that there was no need for help, participant 13 arguing that the system is `assisted by

limited button operations' that users can interact with. There were suggestions of what

type of help system would be most useful - `prompt system' from participant 2,

`contextual help' from participant 4, `a tutorial' from participant 10, ̀ a block diagram'

from participant 14.

Questioning the `ease of use' allowed participants to express a final verdict. Only 3

participants, 10,11, and 16, found that the Interface was not easy to use, and participant

10 had a familiarity issue with the ease of use.

Eight participants thought there were parts of the interface that were unnecessary, six

who thought that all parts of the interface were necessary, three who were unable to

decide. Participant 8 gave a caveat of `maybe it is used at a later stage'.

161

Question 7 was the issue of the buttons names. 10 Participants expressed that they were

happy with the names, with 6 participants expressing their criticisms of the existing

names; of these 6 only 3 suggested alternatives. Participants, 8,13 and 20, with both 13

and 20 suggested that the names should be context or situational sensitive. Table 8.6

lists the suggested alternative names.

Table 8.6 The suggested names for buttons on the PbD interface

N Participant
ames Original

1 2 3 8 13 14 20

Use of Operations View of Laboratory
Vehicle Operations Map View of

Map Movement Area (changes name) O erations Ma

Set Goal Locations Position Goals Goals
Set Vehicle Goals

Set laboratory Map Fix Goal Locations
Set use of
Vehicle

'Routing' Actions

Set Obstacles Place Obstacle Obstacles

Clear Obstacles Remove Obstacle Clear

Vehicle Actions Vehicle Route
Vehicle

Behaviour
Goal Achieved

Clear Operations Map Reset Delete Operations Clear

Specify Vehicle Specify Vehicle Behaviour
Behaviour Route

Resulting Vehicle Show Action(s)
Behaviour

Behaviour Map
Robot's Behaviour Program Robot's Behaviour Tree? Set?

View Running Hierarchy

Context Sensitive

For the suggested alternative to `Use of Operations Map', the suggestions of `View

of... ' is not favoured, as the `Use of Operations Map' is used for both viewing the

simulation and for creating the mechatronic vehicle's behaviours. The suggestion of

changing the name for the context of use, is considered impractical, as in either case the

alternative name is hidden. Participant I suggested renaming `Clear Operations Map'

as ̀ Reset'. This is accepted as a useful suggestion, along with `Delete Operations' from

participant 3, and ̀ Clear'.

162

Participant 20's suggestions are mostly questionable, as the use of single words

becomes too abstract, not descriptive enough, which could prove to be problematic

when there is already a potential problem of the Interface not providing sufficient

prompts. Likewise there are reservations about most of participant 2's suggestions, with

the suggestion `Robot Behaviour' being considered. The suggestion of `Robot

Behaviour View' (the view of the program(s) being develop or tested) as `Program

Running' by participant 1 is questionable, as there could be alternative prototyped

Artificial Intelligences.

8.3.4.2 The RBS System Questions

The questionnaire also had the following questions on the Rule Based System

(alternative system).

1. Do you think that the Rule Based system provides a sufficient degree of detail about

the what is happening to the screen?

2. Do you understand the Rule Based systems information on the screen?

3. How intuitive did you find the Rule Based system?

4. Did you find it hard to remember how to do anything with the Rule Based system?

5. How did you find the Rule Based system interface prompted you to particular

actions?

6. Do you believe that any part of the Rule Based Interface was unnecessary?

7. What would you like as further Dialogue from the Rule Based system's Interface?

8. What are your thoughts about the methods of determining the Vehicle Behaviours

using the Rule Based system?

9. Did you find the Interface easy to use?

163

There were only 9 questions, as the study was not trying to validate the naming of the

various elements of the Rule Base System, or enquire if the system would require a help

function. Table 8.7 below, illustrates the participants' range of replies to the questions.

Table 8.7 Usability questionnaire responses for the RBS system
Qn I Qn 2 Qn 3 Qn 4 Qn 5 Qn 6 Qn 7 Qn 8 Qn 9

Tester Detail Info Intuitive Recall Prompt Surplus Dialogue Methods Eas

No Minimal Not really Easy, By leaving Vehicle Restricted in Reasonably,
2 Feedback, Yes Odd familiarised blanks No activity and actions not intuitive

observe buggy concept in -30mins fault action

3
Yes,

Yes
Very

y
Easy to No Demonstration Obvious, Yes

Eno able intuitive follow of commands easier control

4 Probably if No
Not Yes

Followed Can't tell No
Understood intuitive Instructions

5
Not

Not for me
Not Yes

Got stuck Difficult Mind set Mind set No
particularly articularl regularly for me required required

Yes, but
Once ýý

Logical &
simple,

Needed Feedback
'

OK, once
6 have to think it is OK when

experimenter No about Vehicle t know Don
moped

about it familiar prompts activity

7 Yes Yes Very No Reasonably Dishýa
Yes

8 reasonably

- - 9 T
to Yes Yes Fairly Not v. hard No Fairly Easier, less

.. a bit intuitive buttons

11 Yes Think so Quite No No Clarify where Quite useful No
rule starts if visual

12 Yes Largely yes
Quite

intuitive
Need

reminder
Quite well No limited

capabilities
Yes

Requires Once Looked at Only help Display Requires Math skills No help, no
13 programming Yes accustomed previous from user box De-bugger to zone debug, little

experience not too bad rules guide ensor value unclear
Understood

Remember No way Visual of
Needs Needs

14
Secondary

principles,
When structures Mismatch

of resulting
additional

"
Structure

Visual but not fluent familiar when facts-tasks judging program
data info -

"
Diagram

familiar dictionary

15

Not Didn't use Yes, 16 No Yes intuitive No Variable Sometimes
Database

17 Yes Yes
Fairly Easy, need Informed Display Pop-up dialogs Appears

easier intuitive reminder progress complete
18

19 Yes Difficult to Not at all
Copied Dialogue box Variables Mind set Mind set No follow instructions provided Display required required

Initial Drop down Highlights Powerful,
20 Yes - almost No

confusion
No hints handy No prompts on when OK

acitivity understood

Key: Positive statements

Familiarity issues

Negative statements

Not answered

164

The PbD based interface received 63 positive remarks, 55 negative remarks, and 6

stated familiarity issues. The familiarity issues are more significant as the participants

had a greater time exposure to the RBS system than the PbD system. Participants 1,9,

15 and 18 supplied no answers.

Participant 5 supplied no positive statements about the Rule Based System, while

participant 10 supplied no negative statements about it. The physical issue with the Rule

Based System was that it did not supply sufficient dialogue. The principle dialogue

criticism was that it does not provide visual feedback, with participants 2,3,6,11 and

14 requesting some form of visualisation of how the program worked. The RBS system

problem was, as expressed by participants 5 and 19, that it required a `mind set' and

participant 13 stated that it requires ̀ programming experience'.

Participants 2,4,5,13 and 16 expressed that the RBS system was not intuitive, with

participants 4,5,6, and 13 expressing that they found the RBS system did not provide

any prompts on how to progress, with participants 19 and 20 expressing that they did

not find the system provided sufficient information, and participants 4,5,12,13,14 and

19 stating that the Rule Base system did not provide any help in remembering how to do

any particular operation.

When questioned about the system methods, participants 2,12 and 13 all expressed that

the it had limited capabilities.

165

8.4 Comparative Usability of the Two Interfaces

This includes an examination of how the participants responded to the two different

systems tasks. The principle measure of analysis was the extent to which the

participants repeated the tasks or task results.

8.4.1 Repetitions of the Experiment

A number of the participants, after achieving a task decided to repeat it. These are

shown in Table 8.8 below. The importance of task repetition is that the participant

showed an ease with the system being tested, and this can interpreted as the participant

enjoyed the experiment.

Table 8.8 Repetitions of the experiment

P ti i t
Rule Base System Programming b Demons tration ar c pan Task I Task 2 Task 3 Task 4 Task 5 Task 6 Task 1 Task 2 "Task 3 Task 4

1 Yes Yes Yes Yes Yes Yes Yes
2 Yes Yes Yes
3 Yes Yes Yes Yes Yes Yes
4 Yes Yes Yes Yes
5 Yes Yes
6 Yes Yes Yes
7
8
9
10 Yes Yes Yes

11
12 Yes Yes
13 Yes Yes Yes Yes
14 Yes
15 Yes Yes Yes Yes

16 Yes Yes
17 Yes
18 Yes
19 Yes Yes
20 Yes Yes Yes Yes

Key: 0 Repeated run (for vindication)
0 Repeated programming (from enthusiasm)

166

Participant 13 successfully repeated the entire PbD tasks after accidently deleting the

experimental data, in 3V2 minutes, compared with the average time for completing the

PbD tasks of -23 minutes. This repetition included running the simulator for each task.

As can be observed from Table 8.8, with the PbD based interface more people repeated

the task programming from enthusiasm, because it was found to be easy, while with the

RBS system 8 participants quit. The only person to quit the PbD System was participant

9 who had already walked out.

8.4.2 The Like/Dislike Ratio from the Experiment Dialogue

Table 8.9 below comprises the ratio of likes to dislikes obtained from 8.3.3 above. This

is combined with the participants' success in the final task, `Parking in a corner'

Table 8.9 The ratio of likes/dislikes

System
12 3 4 5 6- T-7 8 9

Partici
10

pants
11 12 13 1 14 15 16 17 18 19 20

RBS
Likes 360 103 231 45 39 5 3241 74 46 68 42 448 121 96 281 71 242 311 160 252

Dislikes 58 18 12 4 30 19 31 35 80 21 5 39 21 19 32 10 38 23 11 130
Ratio

Success
PbD

6.2 5.7 19.3 11.31 1.3 10.26 10.512.1 10.58 3.2 8.4 11.5 5.8 5.1 8.78 7.1 16.4 13.5 14. 1.9

Likes 64 159 5 10 87 198 0 70 12 190 65 41 142 45 183 226 48 140
Dislikes

LL
9 19 3 12 12 23 0 39 3 13 6 7 11 13 27 10 14 49

Ratio
Success .6

8.3 1.67 0.87 7.25 8.61 1.79 4 114.6_10.815.9 1]-'). 913.466
.
78 2. 3.4 2.86

This table appears counter-intuitive. Participants 2,4,10,11,16 and 19 all had a greater

like- to-dislike ratio in favour of the RBS system, but then quit the last task. For the

participants who completed all the PbD tasks, participants 1,2,7 and 16 all had a

greater like-to-dislike ratio in favour of the RBS system.

167

8.5 General Conclusions about the Experimentation

In section 8.3 above, participant 14 achieved an unexpected result of completing the

tasks for the PbD system in less than overall average times, which would initially

appear to be anomalous. However, participant 19 claimed in the usability questionnaire

that this experimentation required the ability to think logically. Participant 14 provided

the feedback of mapping `thoughts as diagrams', which is the fundamental principle

underlying PbD.

Table 8.10 The evidential and stated preference of the participants

Participant
Evidential preference based on experimental

data
Timings Success

I PbD PbD
2 PbD) I'M)
3 Rule Base
4 PbD I'hi)
5 PbD Rule Base
6 Rule Base
7 PbD PbD
8 PbD PbD
9 Unknown Unknown
10 PbD PbD
11 PbD PbD
12 PbD PbD
13 PbD
14 PbD PbD
15 PbD PbD
16 PhD
17 PbD Rule Base
18 PbD Rule Base
19
20

PbD PhD

-Mli

Nearly twice as many preferred the PbD system to the RBS system. There was no

distinguishing variable such as age, gender, education which influenced the

determination of preference. Evidence from timing and success rates was mostly, but

not always coincidental with the stated preference. There was complete agreement with

participants 1,2,3,4,6,8,11,12,14,15,16,19 and 20, partial agreement with 5,13,

16, and 17 and complete disagreement with participants 7 and 10.

168

The Rule Base System: The first two tasks were found to be easy, but they became

progressively more difficult. There was a high drop-out rate for tasks 4 to 6. Only one

person showed enthusiasm for using the system. Participants took longer to achieve the

tasks. For detailed statistics see appendix D.

The PbD System: The first two tasks were found to be easy. Tasks 3 and 4 were found to

be more problematic, because with task 3, there was a problem with map orientation and

map scaling and with task 4, there was a problem of abstraction in understanding how to

design the complex behaviours. There was a zero dropout rate for all who attempted the

tasks, and approximately half the sample found the system a pleasure to use. Overall

timings were a lot less than for the RBS. For detailed statistics see appendix D.

In conclusion the PbD system shows great promise, but could be improved by some

form of on-screen help to resolve the PbD design orientation problem, highlighted in the

questionnaire responses. The interface could be improved by some renaming of the

buttons, or using icon-based buttons.

169

Chapter 9

Conclusions

This chapter draws conclusions on the entirety of the research, with proposals for

further research, consideration of reflective practice, and puts forward implications of

the research.

9.1 Conclusions to the Research Questions

1 What are the criteria for designing a remote access laboratory for prototyping

Artificial Intelligence, as part of a distance learning organisation's available

tools?

"A critical criterion is how to present experiments which accurately represent the

physical world, applying the associated theory being learned. The emphasis is on

the laboratory's design as a tool for appropriate student learning, only achieved by

a physical, remote access laboratory, allowing `any-time, any-place' access.

" The laboratory is to be flexible, facilitating students carrying out individual work

or group activities, and adaptable to course contents developments, while invoking

enthusiasm to facilitate a successful course and continued learning.

" Experimental problem solving is expected to provide the same solutions to

problems as occurs in good engineering practice.

These criteria were established in chapters 2 and 4, which drew upon the literature

and the practical experience of using the facilities of an existing Mechatronics course.

170

2 What fusion of technologies should be used to develop a Mechatronics

prototyping laboratory?

This was established in chapter 4, which drew upon the recommendations from the

research in collaboratories to propose a multi-agent system architecture, which is a

network of autonomous agents. The fusion envisaged comprises:

"A multi-user interactive environment architecture with the expectation of

adaptability to rapid developments, best served by a distributed software

architecture, and developed as a multi-agent system, comprising :

(i) a Blackboard agent architecture developed as a Mechatronic Device Operating

agent to test a received prototype Artificial Intelligence safely,

(ii) a Knowledge-base agent architecture to store the system's knowledge.

"a Mechatronic Device with both sensors and actuators to be accessed during

experiments,

"a Programming by Demonstration Interface as a programming tool. The

experimentation demonstrated its potential to engender enthusiasm, which is

important for the laboratory's success.

3 What methodology and technologies could assist in rapid prototyping Artificial

Intelligence in a distance learning mechatronics course?

" Programming by Demonstration method. This involves a directness of designing

robot behaviours, with an immediate visualisation of the behaviour being

designed. The experimental results described in Chapter 8.3.1 show this is easy to

learn, and from 8.3.4, that it is demonstrably intuitive, with 8.4.1 showing that it

engenders enthusiasm.

171

9 An Object Orientated approach to create a hierarchy of robots behaviours. The

experimentation established that this allows the assembly of a prototype Artificial

Intelligence using minimal of effort, with chapter 8.3.4 demonstrating its

efficiency and usefulness, though in its current implementation it needs

modification to aid orientation while designing the demonstrated robot path.

4 What design of interface to such a laboratory would allow appropriate analysis

and demonstration of prototype Artificial Intelligence?

" The current design of the interface, which focuses on designing, analysing and

demonstrating a prototype Artificial Intelligence, was demonstrated to be

effective, in section 8.3.2. Section 8.4.1 shows that some participants had

problems with the scaling and orientation of the robot's path.

" The use of Distributed Cognition methods for the interface design can help prompt

the next part of the programming process as shown in 8.4.1, by limiting the

interactivity of the interface to appropriate predetermined choices, although there

is an issue of presenting too much information to the user all at once.

" The use of a pop-up based help system to guide the design and development of the

prototype Artificial Intelligence would help overcome the issues of interface

navigation.

" The use of simulation to help rapidly test the prototype Artificial Intelligence

before use in a laboratory was found to be effective. It allowed an immediacy of

recognition of robotic behaviours designed and their activity, as shown in section

53.4 to section 5.4.3, and in section 8.3.4.

" The use of a video-linked image to the interface from the laboratory to show the

mechatronic device while under test, described in section 5.4.4.

172

9.2 Conclusions to the Aims and Hypothesis

The aims of the research were:

1. To establish the viability of remote access facilities to augment distance learning.

This was established in chapter 4, with the design proposal for a laboratory. Particular

attributes taken into consideration were that it must be:

" easy to assimilate new mechatronic technologies for the courses offered, to keep it

relevant,

" easy to scale the laboratory software with a distributed multi-agent system, within

the constraints of the laboratory's physical size, number of computers, and the

available bandwidth for internet use.

2. To design and evaluate technology which can provide an environment for students

to learn to rapidly develop prototype Artificial Intelligence for a mechatronic

device.

This was achieved through experimentation with a novel prototyping interface, which

included the use of Programming of Demonstration.

" Chapter 8 described how seven participants managed to complete the

Programming by Demonstration final task of `parking in a corner', with minimal

tutoring, a sample average of 23 minutes, compared to the Rule Base System,

where only 4 people finished the final task with a sample average time for using

the interface of 50 minutes.

173

3. To test the hypothesis:

Programming by Demonstration could prove a more intuitive

approach to the complexity of developing an emergent intelligent

behaviour than text-based programming.

The hypothesis is supported by strong experimental evidence described in section 8.5,

which establishes that 11 participants of a sample of 20 stated a preference for using

the Programming by Demonstration based interface compared with an established

text-based programming system. While using the text-based programming system,

one participant left the laboratory and 7 other participants quit the experimentation.

No participants quit while using the Programming by Demonstration system, and 7

showed enthusiasm for the system.

The particular feature of the PbD was the ease of developing and assimilating

behaviours. It was found easy to repeat and modify the behaviours designed. The text-

based system was found to be slow to implement, and difficult to debug and modify;

furthermore it was found difficult to relate the programming to the mechatronic

device's actions.

9.3 Conclusions for Remote Access to a Prototyping

Laboratory

This research sought to increase the knowledge of theories relating to Remote Access

Laboratories. The first issue to be determined was that the laboratory can only operate

in an education environment, as explained by Coventry's [1995]

(Re)conceptualisation Cycle, which approves the teaching of theory and emphasises

the necessity for presenting authentic problems during the experimental process.

174

Current research in distance learning laboratories was considered, with the

expectations and objectives for an engineering laboratory, the crucial point being that

experimentation had to be an accurate representation of the physical world for

applying the associated theory. This led to rejecting a simulated laboratory. The

proposal of a physical Remote Access Laboratory maintains the `any-where, any-

time' principle of distance learning.

With the requirements for an engineering instructional laboratory to support

teamwork, the principles of a collaboratory were considered essential for the `access

architecture' to the laboratory. An established need for data sharing, with simplicity of

use when adopting new technologies, necessitated a form of easily updated distributed

software architecture, to support a variable number of users working in groups, or

individually in the laboratory. The proposed use of a Multi-Agent System was

intended to achieve optimal design of a Remote Access Laboratory.

The design of the laboratory interface could not be satisfied by the principles of

Intelligent Training Systems which are the current design principles applied to

hypermedia-based learning systems. The laboratory interface design had to draw on

the theory of Human-Computer Interfacing, which is fragmented, and problematic due

to the disconnection between theory and practice. Also the application of theory

requires experimentation, which may provide spurious results described by the

`Hawthorne Effect'.

175

The question of how to rapidly prototype Artificial Intelligence was addressed. The

problem was that using text-based languages resulted in students having to learn a

computer language before programming a prototype Artificial Intelligence, which can

be a time-consuming process.

The solution was the use of Programming by Demonstration, which allowed the

designer to directly prototype Artificial Intelligence, without the demands of a

structured language forcing its constraints and requirements on the prototyping

process. Further, the problem of translating the intended prototype Artificial

Intelligence program into a programming language is compounded by the `Gulfs of

Execution and Evaluation'.

9.4 Further Research

There is a need for further research to bring the remote access laboratory closer to

implementation.

1 Further development of the interface

to increase the intuitive nature of the Programming by Demonstration interface, it will

be essential to examine further the design, with additional work in:

" developing appropriate and intuitive buttons for rapid understanding and use of a

Programming by Demonstration system for prototype Artificial Intelligence

development,

" developing a more intuitive method of assimilating the Robotic Behaviours into

an integrated prototype Artificial Intelligence.

176

2 Development of a prototyping laboratory

Experimentation is proposed to:

" establish the viability of a multi-agent system which can support a multi-user

interactive environment architecture which operates a physical laboratory,

" connect the laboratory interface design to the laboratory allowing remote

experimentation of the prototype Artificial Intelligence.

3 Development of the communications architecture

Before further testing, there is a need to develop the communications infrastructure.

This will allow deeper exploration of the facilities needed for mechatronics learning,

including:

9a method of transmitting the prototype Artificial Intelligence to the laboratory for

testing,

"a connection of the Interface to a mechatronic device with actuators and sensors,

allowing the responses to be relayed to the interface in real-time,

"a means for the users to collaborate, sharing real-time data and results. This will

involve an architecture to access the laboratory, for the communication of data,

and combining multiple streams of real-time user data with the laboratory's data.

Finally, the knowledge-base agents will need to be developed to support the

combination of multiple real-time data streams with previous knowledge.

4 Further analysis of the applicability to Mechatronics

Mechatronics is the fusion of three engineering subjects: mechanics, electronics and

intelligent control systems. For greater applicability to Mechatronics, the laboratory

could be reasonably expected to allow experimental examination of:

177

9 other physical behaviours of intelligent control systems. Robots are not just

expected to move forwards and backwards. Intelligent control systems are being

used in aircraft, helicopters and submersibles to enable autonomous, unmanned

control.

9 other AI software methods such as Neural Networks, Fuzzy Logic systems and

computer vision.

" co-operation between robots, and the design of co-operative robotics. This is a

current sphere of growing research interest, from robo-football to swarm-based

robotics, relevant to remote, harsh environments such as required by a Mars

explorer, for which co-operative robotics could provide resilience.

" expanded testing of a complete course, or sections of a course. The current state of

developments gives encouragement that this is now worth considering as a next

piece of research

9.5 Future Open-Learning Access to Online

Laboratories

Open access to learning material is currently limited to a few applications and

organisations. However, with the development of web-based technologies which

contribute to the globalisation of information transfer, the issue of whether and how

online laboratories would be widely accessible becomes of increasing significance.

Research into how such facilities as web 2.0/semantic web, open source and wiki

models could influence future developments in engineering design learning and its

commercial development.

178

The semantic web is broadly but vaguely understood as an extension to the worldwide

web, in which the contents are no longer just freestanding items comprising text,

images and software that require humans to understand and utilise them. The

development would involve a search engine to access information available on the

internet, using a set of inference rules for automated reasoning. The current solution

provided is the use of XML, eXtensible Markup Language, a set of tags for a

document providing details of its contents, without providing details of its structure.

Additionally the contents would be in a form that could be utilised by autonomous

intelligent agents, allowing integration and sharing of information in a substantially

automated form of engineering design. This suggests that the Programming by

Demonstration approach of this research could lead to PbD at a higher level, in which

demonstrable functions would be web accessed and be of wider application than

vehicle navigation.

Similarly, open source could allow a wider community of researchers, students and

professional engineers to use an online laboratory. At a basic level, software

components could be freely obtained as `objects'. For example: the laboratory

Bookkeeping agent could provide an open access library of programmes for students

to use as part of their learning how to design prototype Artificial Intelligence. This

would be a library of previously designed and tested prototype Artificial Intelligences

which achieve similar objectives to a learner's intended prototype Artificial

Intelligence. The learner could examine the provided source to obtain an insight to

solutions of the posed problem. Further, this would allow development of the

laboratory by establishing potentially more efficient or innovative solutions to

problems.

179

The use of a Wiki model concept with an open access library, could be useful as a

means of collaboration amongst groups of learners or designers. There is currently a

problem with vandalism such as the creation of deliberately inaccurate data in a Wiki

entry. By the deliberate design of behaviours which visibly display the program

operation (circumventing the Gulf of Execution), this problem could be reduced.

Adopting Wikipedia's new concept of a `trusted' user, would further promote

trustworthiness based on creating a hierarchy of contributors, with their rankings

based on verification of the material supplied. Any new prototype Artificial

Intelligence placed as an open resource could be moderated and assessed for

trustworthiness.

9.6 Reflective Practice

My aim was to develop my research skills to the extent of being able to continue from

this research to working without the need for supervision.

Before beginning the PhD I completed an MSc in Digital and Opto Electronics, where

the research for the final project (in real-time video colour restoration-based computer

vision) had been extensive, but mainly comprised surveying background knowledge,

and providing a context for the development. I employed this form of background

research in the beginning of the PhD, providing an original 80-page state-of-the-art

report which did not initially survey the literature in a critical manner.

180

From the original research proposal, I outlined a plan to research and test a remotely

accessed laboratory. The initial research was directed at the laboratory development,

which was an over-ambitious development of a laboratory which allowed a user to

program nearly every aspect it, with a catalogue of about 7 different agents, to test

prototype Artificial Intelligence including prototype Computer Vision Al. I started

with the Programming by Demonstration system, but had difficulty formulating the

`end product', as I was unaware of any comparable software system to investigate for

design and development guidance. As the system developed, the ideas for the system

started to emerge. This was achieved by considering what would be expected from a

prototype Artificial Intelligence's behaviour.

My first learning step was to critique the initial background research to a greater

depth, compared with the standards attained previously for my Masters degree. My

next step was to consider carefully, what I wanted to achieve and how to achieve it. I

had to learn to work to a greater degree to a structured outline, to plan the progress, as

much as possible. Part of this lesson was as much the importance of structuring

software. Ad-hoc software development is notoriously `buggy', and without structure

it quickly becomes too complex and hard to manage.

I started to work on a focused piece of software, the PbD system. I had an

understanding of what was expected from the system, although the development was

laborious. The focused development was useful; this also guided my research, as I

was now able to clearly determine what I was attempting to achieve. Although, from

the outset, I was able to do my own research, and report on it, I subsequently learned

the difference between summarising and critical assessment of research papers.

181

While working on the research I gained experience and skills that would enable me to

continue with further research independently, having learnt a number of lessons from

this experience. These are:

" The importance of structuring research. I have learnt that there is a diversity of

opinions for solutions to a problem, and there is a need to assemble and critique

the variety of opinions.

" To progress the research, I had to identify key issues, and ultimately place them

within a wider context.

9 To develop the experimental software system, I had to become adept at structuring

my approach to problem solving. As I needed to develop a Programming by

Demonstration system, without any equivalent software as a guide, I had to learn

to develop it in distinct progressive stages, towards a prototyped system.

" As a part of the experiments, I had to work with people, and I learned the

importance of ethical behaviour in the conduct of experimentation. During the

experimentation, I perceived that I was also a participant, because my comments

affected the outcome of the participants' efforts. It became clear that although I

intended to be an independent, objective observer, I was inevitably also a

stakeholder in the research.

182

9.7 Implications of the Research

The significance of the work reported is that it is a response to the growing need for

distance learning, particularly for an adult population that is seeking to progress in an

environment of life-long learning. Currently resources and efforts are being ploughed

into the development and maintenance of conventional laboratories, as part of an

expansion in higher education, led by Government policies. There is a continuing

need for modem engineering techniques and laboratories to achieve competitiveness

in a globalised market.

Continuation of this research should be viewed not merely as an interesting academic

exercise, but as an urgently needed tool for the development of skills for engineering

as a whole.

183

References
Agarwal D., Sachs S. R., Johnston W. E., 1998, The Reality of Collaboratories,

Computer Physics Communications, Vol.! 10(1), pp. 134-141

Alberta Government, 2002, Understanding Design and Analysis of Research
Experiments, The Alberta Government, Department of Agriculture and Food,
Website
wwwl. agric. gov. ab. ca/$department/deptdocs. nsf/all/webdoc3033
accessed: 22 August 2007

Angehrn A., and Nabeth T., 1997, Leveraging Emerging Technologies in Management
Education: Research and Experiences, European Management Journal,
Vol. 15(3), pp. 275-285

Archer W., Garrison R, Anderson T., 1999, Adopting Disruptive Technologies in
Traditional Universities: Continuing Education as an Incubator for
Innovation, Canadian Journal of University Continuing Education Vol. 25(l),
Spring, pp. 13-30

Asami K., Takeuchi A., Otsuki S., 1998, A Dialogue Method for Assisting Students in
Understanding Causalities in Physical Systems, Systems and Computers in
Japan, Vol. 29, Issue 6, pp. 1-15

Baker R. S. J., 2007, Modelling and Understanding Students' Ofd Task Behaviour in
Intelligent Tutoring Systems, Proceedings of the SIGCHI conference on
Human Factors in Computing Systems, pp. 1059-1068.

Barab S., and Plucker J., 2002, Smart Contexts: Smart People or Smart Contexts?
Cognition, Ability, and Talent Developments in an Age of Situated
Approaches to Knowing and Learning, Educational Psychologist Vol. 37(3),
pp. 165-182.

Bardeen M., Gilbert E., Jordan T., Nepywoda P., Quigg E., Wilde M., Yong Z., 2006,
The QuarkNet/Grid Collaborative Learning e-Lab, Future Generation
Computer Systems, Vol. 22 Issue6, pp. 700-708.

Barnard P., May, J., Duke, D., Duce, D., 2000, Systems Interactions and Macrotheory.
Transactions On Computer Human Interaction, Vol. (7), pp. 222-262.

Seguin P., and Rabardel, P., 2001, Designing for Instrument Mediated Activity,
Scandinavian Journal of Information Systems, Vol(12), pp. 173-190.

Bellotti V., 1988, Implications of Current Design Practice for the Use of IICI
Techniques, People and Computers IV pp. 13-34, Cambridge: Cambridge
Univ. Press.

Bergin S., and Reilly R., 2005, The Influence of Motivation and Comfort-Level on
Learning to Program, 17th Workshop of the Psychology of Programming
Interest Group, Sussex University, pp. 293-304.

184

Biggs G., and MacDonald B., 2003, A Survey of Robot of Programming Systems,
Proceedings of the 2003 Australian Conference on Robotics and Automation
CSIRO
www araa. asn. au/acra/acra2003/papers/27. pdf
accessed: 22 August 2007

Bonk C., and Cunningham D., 1998, Searching for Learner-Centred, Constructivist,

and Sociocultural Components of Collaborative Educational Learning,
Journal of Electronic Collaborators: Learner-Centred Technologies for
Literacy, Apprenticeship, and Discourse, pp. 25-50.

Bourguin G., Derycke A., Tarby J., 2001, Beyond the interfaces, Co-evolution inside
Interactive Systems: A proposal founded on the Activity Theory, People and
Computers, pp. 297-310.

Bourne J., Harris D., Mayadas F., 2005, Online Engineering Education: Learning
Anywhere, Anytime, Journal of Online Engineering Education, Vol. 94(1),

pp. 131-146.

Brooks R., 1986, A Robust Layered Control System for a Mobile Robot, IEEE Journal

of Robotics and Automation 2(1), pp. 14-23.

Brooks R., Connell J., Ning P., 1988, HERBERT: A Second Generation Mobile Robot,
Technical Report AIM 1016, MIT Al Lab, Cambridge, MA.

Bryson J., 2000, Cross-Paradigm Analysis of Autonomous Agent Architecture, Journal
of Experimental and Theoretical Artificial Intelligence, Vol. 12(2),
pp. 165-190

Butz B., Duarte M., Miller S., 2006, An Intelligent Tutoring System for Circuit Analysis,
IEEE Transactions on Education, Vol. 49(2), pp. 216-223

Calinon S., and Billard A., 2007, Incremental Learning of gestures by Imitation in a
Humanoid Robot, Proceedings of the ACM/ICCC International Conference
on Human Robot Interaction (HRI)

Campbell J., Bourne J., Mosterman P., Brodersen A., 2002, The Effectiveness of
Learning Simulations for Electronic Laboratories, Journal of Engineering
Education 91(1) pp. 81-87

Card S., Moran, T., Newell, A., 1983, The Psychology of Human-Computer Interaction.
Lawrence Erlbaum Assoc. Inc., Hillsdale, NJ.

Carlson S., 2000, Campus Survey Finds that Adding Technology to Teaching is a Top
Issue. The Chronicle of Higher Education, 47, A46

Carroll J., 1987. Interfacing Thought: Cognitive Aspects of Human-Computer
Interaction. Cambridge, Mass. MIT Press

Carver N., and Lesser V., 1992, The Evolution of Blackboard Based Architectures,
CPMSCI Technical Report, Dept of Computer Science, University of
Massachusetts, pp. 92-71

185

Castel, F., 2002, Theory, Theory On The Wall...., CACM, Vol. 45,25-26, Cognitive
Science, 18, pp. 87-122.

Central Texas Science and Engineering Fair, 2007, The Scientific Method, Website

ctsef orglmisc/scientific method. htm
accessed: 22 August 2007

Chavez A., Moukas A., Maes P., 1997, Challenger: a Multi-Agent System for
Distributed Resource Allocation, Proceedings of the First International
Conference on Autonomous Agents `97, Marina Del Ray, California,
pp. 323-331

Chen J., 2005, Constructing Task-Level Assembly Strategies in Robot Programming by
Demonstration, International Journal of Robotics Research. Vol. 24(12),
pp. 1073-1085.

Chen J., and McCarragher B, 1998, Robot Programming by Demonstration-Selecting
Optimal Event Paths, Robotics and Automation, 1998. Proceedings. 1998
IEEE International Conference on, Vol. 1, pp. 518-523,

Chen J., and McCarragher B., 2000, Programming by demonstration - constructing task
level plans in hybrid dynamic framework, Proceedings of the IEEE Intl.
Conf. on Robotics and Automation (ICRA'00), Vol. 2, pp. 1402-1407,

Chen J., and Zelinsky A., 2001, Programming by demonstration: removing suboptimal
actions in a partially known configuration space, Proceedings of the IEEE
Intl. Conf. on Robotics and Automation (ICRA'01), Vol. 4, pp. 4096-4103,

Chickering A., and Ehrmann, S., 1996, Implementing the Seven Principles: Technology
as a Lever. American Association for Higher Education Bulletin, Vol. 49(2),
pp. 3-6

Christensen C., 1997, The Innovator's Dilemma: When New Technologies Cause Great
Firms to Fail, Boston: Harvard Business School Press

Clark R., 1994, Media Will Never Influence Learning, Educational Technology
Research & Development, 42, pp. 21-29

Cole, M., and Engeström, Y., 1993. A Cultural-Historical Approach to Distributed
Cognition. Distributed cognitions: Psychological and educational
considerations (pp. 1-46). New York: Cambridge University Press

Corkill D., 1991, Blackboard Systems, AI Expert, 6(9) pp. 40-47,

Corkill D., 2003, Collaborating Software: Blackboard and Multi-Agent Systems and the
Future, Proceedings of the International Lisp Conference, New York,

Corkill D., 2005, Representation and Contribution-Integration Challenges in
Collaborative Situation Assessment, Proceedings of the 8th International
Conference on Information Fusion (Fusion 2005)

186

Coventry L., 1995, Video Conferencing in Higher Education and Business
www. agocg. ac. uk/reports/mmedia/video3/contents. htm
accessed: 22 August 2007

Crowley S., and Medvedeva 0., 2006, An Intelligent Tutoring System for Visual
Classification Problem Solving, Artificial Intelligence in Medicine,
Vol. 36(1), pp. 85-117

Davidsson P., 1996, A Linear Quasi Anticipatory Agent Architecture for Adaptive
Intelligent Systems: Some Preliminary Experiments, Distributed Artificial
Intelligence Architecture and Modelling (Lecture notes in Artificial
Intelligence 1087), C. Zhang and D. Lukose (ed) Springer Verlag,
pp. 189-203

Davies B., McDonald M., Harrigan R., 1994, Virtual Collaborative Environments:
Programming and Controlling Robotic Devices Remotely, Proceedings of
the SPIE - The International Society for Optical Engineering 2351 pp. 34-43

de Paula J., 2001, Experimental Errors and Data Analysis, Haverford College,
Department of Chemistry, Laboratory in Chemical Structure and Reactivity
haverford. edu/chem/302/data. pdf
accessed: 22 August 2007

Dewan P., Rajiv C., Honghai S., 1994, An Editing-Based Characterisation of the
Design Space of Collaborative Applications, Journal of Organizational
Computing, Vol. 4 (3), pp-1-19

Dewan P., and Shen H., 1998, Controlling Access in Multiuser Interfaces, ACM
Transactions on Computer-Human Interaction, Vol. 5(1), pp. 34-62

di Iorio V., Coura D., Reis L., Oilawa M., Junior C., 2007, A Visual Language for
Animated Simulation, Journal of Universal Computer Science, Vol. 13(6)
pp. 767-785

Dimitracopoulou A., and Petrou A., 2003, Advanced Collaborative Distance Learning
Systems for young students: Design Issues and current trends on new
cognitive and metacognitive tools, In Themes in Education International
Journal, Special Issue, Issues and Trends Regarding the Application of
Information and Communication Technologies to Distance Learning, pp. 1-
83

Doran J., Franklin S., Jennings N., Norman T., 1997, On Cooperation in Multi-Agent
Systems, The Knowledge Engineering Review, Vol. 12(3), pp. 309-314

Downes S., 2007, Models for Sustainable Open Educational Resources,
Interdisciplinary Journal of Knowledge and Learning Objects, Vol. 3,
pp. 29-44

Edwards J., 2005, Subtext: Uncovering the Simplicity of Programming, Proceedings of
the 20th Annual ACM SIGPLAN Conference on Object Oriented
Programming Systems, languages, and applications, San Diego, CA, USA,
pp. 505-518

187

Ehrenmann M., Rogalla O. Zöllner R. and Dillmann R., 2001, Teaching Service Robots
Complex Tasks: Programming by Demonstration for Workshop and
Household Environments, Proceedings of the IEEE International Conference
on field and Service Robotics 2001 (FRS), pp. 397-402

Ehrenmann M., Zollner R., Rogalla 0., and Dillmann R., 2002. Programming Service
Tasks in Household Environments by Human Demonstration, Robot and
Human Interactive Communication, Proceedings. 11th IEEE International
Workshop on, pp. 460-467

Engeström Y., 1987, Learning by Expanding. Helsinki, Finland: Orienta-konsultit

Engeström Y., 1993, Developmental Studies of Work as a Testbench ofActivity Theory:
The Case of Primary Care Medical Practice, Understanding practice:
Perspectives on activity and context pp. 64-103, Cambridge, MA: Cambridge
University Press

Erman L., Hayes-Roth F., Lesser V., Reddy R., 1980, The Hearsay II Speech
Understanding System: Integrating Knowledge to Resolve Uncertainty,
Computing Surveys, 12(2) pp. 213-253

ESRC, 2007, Research Ethics Framework.
www. ESRC. ac. uk/ESRCInfoCentre/Imaizes/ESRC_RE Ethics FRAME tc
m6-11291. pdf
Accessed: 23 rd August 2007

Feigenbaum E., 1977, The Art of Artificial Intelligence: Themes and Case Studies of
Knowledge Engineering', 5th International Joint Conference Artificial
Intellignence, pp. 1049-1029

Feisel L., and Rosa A., 2005, The Role of the Laboratory in Undergraduate
Engineering Education, Journal of Engineering Education, pp. 121-130,

Fernando T., and Dew P., 1998, A Distributed Virtual Environment for Collaborative
Engineering, Presence: Teleoperators and Virtual Environments, Vol. 7(3),
pp. 241-261

Festing M., 2001, Guidelines for the Design and Statistical Analysis of Experiments, in
Papers Submitted to ATLA (Alternatives to Laboratory Animals), ATLA 29,
pp. 427-446,

Fjuk A., 1995, Towards an Analytical framework for CSCdistanceL, Department of
Informatics University of Oslo, pp. 1-9
www. telenor. no/fou/program/nomad iske/art icles/CSCL95. pd f
accessed: 22 August 2007

Forbus K., Whalley P., Everett J., Ureel L., Brokowski M., Baher J., Kuehne S., 1999,
CyclePad: An Articulate Virtual Laboratory for Engineering
Thermodynamics, Artificial Intelligence 114, pp. 297-347,

188

Forinash K., and Wisman R., 2005, Building Real Laboratories on the Internet,
International Journal of Continuing Engineering Education and Lifelong
Learning, Vol. l(1), pp. 56-66

Friedman A., 1989, Computer Systems Development: History, Organization and
Implementation, Chichester: John Wiley

Friedrich H., and Dillmann R., 1995, Robot Programming Based on a Single
Demonstration and User Intentions, 3`d European Workshop on Learning
Robots (ECML95)

Friedrich H., and Kaiser M., 1995, What can Robots Learn from Humans, IFC
Workshop on Human-Orientated Design of Advanced Robotics Systems,
(DARS `95), Vienna, Austria, pp. 47-74

Friedrich H., Münch S., Dillmann R., Bocionek S., Sassin M., 1996, Robot

programming by demonstration: Supporting the induction by human
interaction, Machine Learning, Seiten pp. 163-189

Garrison, 1990, An Analysis and Evaluation of Audio Teleconferencing to Facilitate
Education at a Distance, The American Journal of Distance Education,
Vol. 4(3), pp. 16-23

Gat E., 1998, On Three-Layer Architectures, Artificial Intelligence and Mobile
Robotics, AAAI Press, pp. 195-210

Gleixner S., Young G., Vanasupa L., Dessouky Y., Allen E., Parent D., 2002, Teaching
Design of Experiments and Statistical Analysis of Data Through Laboratory
Experiments, Frontiers in Education Conference, Vol. It pT2D -1

Golab L., and Özsu M., 2003, Issues in Data Stream Management, SIGMOD Record,
Vol. 32(2), pp. 5-14.

Gordon V., and Bieman J., 1995, Rapid Prototyping: Lesson Learned, IEEE Software,
12(1) pp. 85-95

Graham C., Cagiltay, K., Craner, J., Lim B., Duffy, T., 2000, Teaching in a Web-Based
Distance Learning Environment: An Evaluation Summary Based on Four
Courses. Center for Research on Learning and Technology Technical Report
No. 13-00. Bloomington, IN: Indiana University

Graham R., 2006, Experiment Design, The Engineers Companion Website, College of
New Jersey
www. tcni. edu/-rgraham/rhetoric/experiment-design. html
accessed: 22 August 2007

Green, T., Schiele, F. and Payne, S., 1988, Formalisable models of user knowledge in
human-computer interaction, Working with Computers: Theory versus
outcome, London: Academic Press, pp. 3-46

189

Green T., Davies, S., Gilmore, D., 1996, Delivering Cognitive Psychology to HCl: the
Problems of Common Language and of Knowledge Transfer, Interacting

with Computers, 8 (1), pp. 89-111

Gröber S., Vetter M., Eckert B., Jodl H. J., 2007, Experimenting from a Distance-
Remotely Controlled Laboratory, European Journal of Physics, Vol. 28 pp.
s127-sl41.

Grudin, J., 1990, The Computer Reaches Out., The Historical Continuity of User
Interface Design, Proceedings of CHI '90, ACM SIGCHI Conference,
Seattle, Wash., USA

Hashemi J., Kholamkar S., Chandrashekar N. Anderson E., 2006, Web-Based Delivery
of Laboratory Experiments and Its Effectiveness Based on Student Learning
Style, ASEE Annual Conference and Exposition: Excellence in Education,
USA, June

Hayes G., Demiris J., 1994, A Robot Controller Using Learning by Imitation,
Proceedings of the Symposium on Intelligent Robotic Systems, Grenoble,
France, pp. 198-204

Hayes-Roth B., Pfleger K., Lalanda K., Morignot P., 1995, A Domain Specific Software
Architecture for Adaptive Intelligent Systems, Knowledge Systems
Laboratory Report No. 94-11
ftp: //ksi. stanford. edu/pub/KSL Reports/KSL-94-1 1/ps. gz
accessed: 22 August 2007

Hayes-Roth B., 1995, Agents on Stage, Advancing the State of the Art of AI, Knowledge
Systems Laboratory Report No. KSL 95-50
ftR: //ksl. stanford. edu/pub/KSL-Reports/KSL-95-50. ps. gz
Accessed: 22 August 2007

Helsinger A., and Wright T., 2005, Cougaar: A Robust Configurable Multi Agent
Platform, IEEE Aerospace Conference pp. 1-10

Hoare C., 1969, An Axiomatic Basis for Computer Programming, Communications of
the ACM Vol. 12, (10), pp. 576-581

Hoare C., 1973, Hints on Programming Language Design, Stanford Artificial
Intelligence Laboratory, Memo AIM 224, Computer Science Department
Report No. CS-403

Hollan J., Hutchins E., Kirsh D., 2000, Distributed Cognition: Toward a New
Foundation for Human-Computer Interaction Research, Computer-Human
Interaction, Vol. 7, No. 2, pp. 174 -196

Horton W., 1994, How We Communicate. Paper Presented at the Meeting of the Rocky
Mountain Chapter of the Society for Technical Communication, Denver, CO

Hundhausen C., Douglas S., Stasko J., 2002, A Meta-Study of Algorithm Visualization
Effectiveness, Journal of Visual Languages and Computing 13 pp. 259-290

190

Hylen, 2006, Open Educational resources: Opportunities and Challenges, Open
Education, pp. 49-63

Jayakumar S., Squires R. G., Reklaitis G. V., Andersen P. K., Dietrich B. K., 1995, The
Purdue-Dow Styrene-utadiene Polymerization Simulation, Journal of
Engineering Education, Vol. 84(3), pp. 271-277

Jennings N., Corera J., Laresgoiti I., 1995, Developing Industrial Multi Agent Systems,
Proceedings of the First International Conference on Multi-Agent Systems,

pp. 423-430

Johansson M., and Astrorn K., 1996, Virtual Interactive Systems for Control Education,
Proceedings of the IEEE Conference of Decision and Control, pp. 3888-3889

Johansson M., Gafvert M., Astrore K., 1998, Interactive Tools for Education in
Automatic Control, IEEE Control Systems Magazine, 18(3), pp. 33-40

Johnson P., 1992, Human-Computer Interaction: Psychology, Task Analysis and
Software Engineering, New York: McGraw Hill

Johnson S., Aragon S., Shaik N., Palma-Rivas N., 2000, Compararive Analysis of
Learning Satisfaction and Learning Outcomes in Online and Face-to-Face
Learning Environments, Journal of Interactive Learning Research,
Vol. I1(1), pp. 29-50

Johnson S., Benson A., Duncan J., Shinkareva 0., Taylor G., Treat T., 2003, Distance
Learning in Postsecondary Career and Technical Education, University of
Minnesota, St Paul MN: National Research Center for Career and Technical
Education,

Johnstone S. M., 2005, Open Educational Resources Serve the World, Educause
Quarterly, Vol. 28(3), p 15-19

Kaiser M., Friedrich H., Dillmann It., 1995, Obtaining good performance from a bad
teacher, In Workshop: Programming by Demonstration vs Learning from
Examples, International Conference on Machine Learning, California, USA,

Kaptelinin V., 1996, Activity Theory : Implications for Human-Computer Interaction,
Context and Consciousness; Activity Theory and Human-Computer
Interaction, MIT, Massachusetts, pp. 103-116

Kicinger R., and Wiegard R., 2003, Experiment Design and Methodology: Basic
Lessons in Empricism, 2003 Summer Lecture Series
www. kicin erg com/presentations/pdf/MethodologyLectureGAG2003. pdf
Accessed: 22 August 2007

Kies J., 1997, Empirical Methods for Evaluating Video-Mediated Collaborative Work,
PhD Thesis, Virginia Polytechnic Institute and State University

Kim J., and Kalb J., 1996, Design of Experiments: An Overview and Application
Example, Medical Device and Diagnostic Industry Magazine, pp. 78-88

191

Kolb D., 1984, Experiential Learning, Englewood Cliffs, NJ: Prentice-Hall

Koper R., and Olivier B., 2004, Representing the Learning Design of Units of Learning,
Educational Technology and Society, 7(3), pp. 97-111

Kuniyoshi Y., Inaba M., Inoue H., 1994, Learning by Watching: Extracting Reusable
Task Knowledge from Visual Observation of Human Performance, IEEE
Transaction on Robotics and Automation 10(6), pp. 799-822

Kuutti K., 1996, Activity Theory as a Potential Framework for Human-Computer
Interaction Research, Context and Consciousness; Activity Theory and
Human-Computer Interaction, MIT, Massachusetts, pp. 18-44

Kypuros J., and Connolly T., 2005, Collaborative Experimentation and Simulation: A
Pathway to Improving Student Conceptualization of the Essentials of System
Dynamics and Control Theory, Proceedings of the American Society for
Engineering Education Annual Conference and Exposition: The Changing
Landscape of Engineering and Technology Education in a Global World

Lau T., and Weld D., 1998, Programming by Demonstration: An Inductive Learning
Formulation, Proceedings of the Fourth International Conference on
Intelligent User Interfaces, pp. 145 -152

Lesser V., and Erman, L., 1980, Distributed Interpretation: A Model and Experiment,
IEEE Transactions on Computers, C-29(12) pp. 1144 -1163

Lieberman H., 1993, Tinker: A Programming by Demonstration System for Beginning
Programmers, Watch What I Do: Programming by Demonstration, Allen
Cypher, MIT Press

Lieberman H., 1994, A User Interface for Knowledge Acquisition from Video,
Proceedings of the 12th National Conference of the American Association
for Artificial Intelligence, Seattle, pp. 527-534,

Luck M., and d'Inverno M., 1995, Structuring aZ Specification to Provide a Formal
Framework for Autonomous Agent Systems, Computer Science, 967,
Springer-Verlag pp. 47-62 Heidelberg

Maes P., 1994, Modeling Adaptive Autonomous Agents, Artificial Life, Vol. 1(1),
pp. 135-162, MIT Press

Mainone S., 1992, Empirical Study of Motivation in an Entry Level Programming
Course. ACM SIGPLAN Notices Vol. 27(3), pp. 54-60

Manzone J., and Angehm A., 1997, Understanding Organizational Dynamics of IT-
Enabled Change: A Multi-Media Simulation Approach, Journal of
Management Systems, Vol. 14(3) 1997, pp. 109-140

Massy W., and Zemsky R, 1995, Using Information Technology to Enhance Academic
Productivity, Washington DC: Educom
www. educause. edu/ir/library/htmVnli004. htmi
Accessed: 22 August 2007

192

Matario M., 1997, Behaviour-Based Control: Examples from Navigation, Learning and
Group Behaviour, Journal of Experimental and Theoretical Artificial
Intelligence 9(2-3), pp. 323-336

McKay D., Presor J. and McEntire R., Finin T., 1996, An Architecture for Information
Agents Proceedings of the 3`d International Conference of Artificial
Intelligence Planning Systems, (ARPI Supplement) (AIPS 96) AAAI Press,
pp. 1-8

McNabb J., 1994, Telecourse Effectiveness: Findings in the Current Literature. Tech
Trends, 39(4), pp. 39-40

Menges R., and Austin, A., 2001, Teaching in Higher Education, Handbook of research
on teaching, 4 th Edition, Washington, DC: American Educational Research
Association, pp. 1122-115 6

Merrill M., 1994, Instructional Design Theory, Englewood Cliffs: Educational
Technology Publications

Mizell A., 1994, Graduate Education through Telecommunications: The Computer and
You, AECT National Convention, Annual Meeting of the Association for
Educational Communication and Technology, Nashville, Tennessee, pp. 1-13

Molnar L., Omerdic E., van de Ven P., Toal D., Flanagan C., 2004, On the Development
of Tethra Submersible Vehicle for Autonomous and Remotely Operated
Modes, WSEAS Transactions on Systems, Vol. 3(6), pp. 2454-2459

Moore M., and Kearsky, G., 1996, Distance Education: A Systems View, Belmont, CA:
Wadsworth

Moritz S., Wei F., Blank G., 2005, From Objects-First to Design-First with Multimedia
and Intelligent Tutoring, ACM Association for Computing Machinary,
Vol. 37(3), pp. 99-103

Morse L., and Truman B., 1996, A Distance Education Infrastructure, MC Journal: The
-Journal of Academic Media Librarianship, Vol. 4(1)

Mulholland P., 1998, A Principled Approach to the Evaluation of SV. " A Case Study in
Prolog, Software Visualization - Programming as a Multimedia Experience,
The MIT Press pp. 453-480

Müller D. and Ferreira J., 2005, Online Labs and the MARVEL Experience,
International Journal of Online Engineering, Vol. 1(1)
www. i-ioe. org/ois/include/ etdoc php? id=41&article=4&mode=pdf
Accessed: 22 August 2007

Mwanza D., 2001, Where Theory meets Practice: A Case for an Activity Theory based
Methodology to guide Computer System Design, Proceedings of INTERACT
2001: 8th IFIP TC 13 Conference on Human-Computer Interaction
kmi. open. ac. uk/publications/t)df7kmi-01-7. T)df
Accessed: 22 August 2007

193

Myers C., Bennett, D., Brown G., Henderson T., 2004, Emerging Online Learning
Environments and Student Learning: An Analysis of Faculty Perceptions.
Educational Technology & Society, 7(1), pp. 78-86.

Nabeth T., Razmerita L., Anghem A., Roda C., 2005, InCA: A Cognitive Multi-Agents
Architecture for Designing Intelligent & Adaptive Learning Systems,
ComSIS journal Vol. 2(2)

www. Comsis. fon. bg. ac. yi/ComSIS/vol2No2/Re uularPapers/pdf/paper5. pdf
Accessed: 22 August 2007

Nakakoji and Yamamoto, 2003, Toward a Taxonomy of Interaction Design Techniques
for Externalizing in Creative Work, Proceedings of the 10 International
Conference on Human Computer Interaction (HCII 2005) Vol. 2, Theory and
Practice (Part II), pp. 1258-1262

Nardi B., 1996, Context and Consciousness; Activity Theory and Human-Computer
Interaction, MIT, Massachusetts, pp. 235-246

Nardi B., 2002, Coda and response to Christine Halverson. CSCW, pp. 269-275

Nevalainen S., and Sajaniemi J., 2005, Short-Term Effects of Graphical versus Textual
Visualisations of Variables on Program Perception, 17th Workshop of the
Psychology of Programming interest Group, Sussex University, pp. 77-91

Nevill-Manning C., and Witten I., 1995, Detecting Sequential Structure, Proceedings of
the Workshop on Programming by Demonstration, pp. 49-56

Nevill-Manning C., and Witten I., 1997, Identifying Hierarchical Structure in
Sequences: A linear-time algorithm. Journal of Artificial Intelligence
Research, 7 pp. 67-82

Nicolescu M., 2003, A Framework for Learning from Demonstration, Generalization
and Practice in Human-Robot Domains, PhD Thesis, Faculty of the
Graduate School, University of Southern California

NicolescuM., and Matarie M., 2002, A Hierarchical Architecture for Behaviour-Based
Robots, Proceedings of the First International Joint conference on
Autonomous Agents and Multi-Agent Systems, Bologna, Italy, pp. 227-233

Nicolescu M. Matari6 M., 2003, Linking Perception and Action in a Control
Architecture for Human-Robot Domains, Proceedings of the 36`h Annual
Hawaii International Conference on System Sciences, IEEE Computer
Society, Hawaii, USA

NIST/SEMATECH, 2006, eHandbook of Statistical Methods
www. iti. nist. aov/div898/handbook/
Accessed: 22 August 2007

Norman D., 1988, The Design of Everyday Things, Basic Books, New York

194

Norman T., and Jennings N., 2002, Constructing a Virtual Training Laboratory using
Intelligent Agents, International Journal of Continuing Engineering
Education and Lifelong Learning, Vol. 12, Numbers 1-4, pp. 201-213

Odell J., Parunak H, Bauer B., 2000, Extending UML for Agents, Proceedings of the 2nd
International Bi-Confernece Workshop on Agent-Orientated Information
Systems, AOIS'00, pp. 3-17

Olson J., Olson, G., 1991, The Growth of Cognitive Modeling since GOMS. Human
Computer Interaction, Vol. 5, pp. 221-266

Onda H., Suehiro T., Kitagaki K., 2002, Teaching by Demonstration of Assembly
Motion in VR - Non-deterministic Search-Type Motion in the Teaching
Stage, Intelligent Robots and System, 2002. IEEE/RSJ International
Conference on, Vol. 3, pp. 3066-3072

Page E., Buss A., Fishwick P., Healy K, Nance R., Paul R., 2000, Web-Based
Simulation: Revolution or Evolution?, ACM Transactions on Modelling and
Computer simulation, Vol. 10(1), pp. 3-17

Patrick J., 1992, Training: Research and Practice, Academic Press, San Diego, CA

Pearson D., Huffman S. Willis M. Laird J. and Jones R., 1993, A Symbolic Solution to
Intelligent Real-Time Control, Robotics and Autonomous Systems, Vol. 11,
pp. 279-291

Perkins D., 1993, Person-Plus: A Distributed View of Thinking and Learning,
Distributed cognitions: Psychological and educational considerations
pp. 47-87, New York: Cambridge University Press

Petre M., Blackwell A., 1999, Mental Imagery in Program Design and Visual
Programming, Intenational Journal of Human-Computer Studies, Vol. 1,
pp. 7-30

Ramadhan H., 1997, Improving the Engineering of Model Tracing based Intelligent
Programming Diagnosis, IEE Proceedings - Software Engineering,
Vol. 144(3), pp. 149-161

Ravitch D., 1987, Technology and the Curriculum, What curriculum for the Information
age?, Hillsdale, NJ: Lawrence Erlbaum Associates, Inc

Rauwerda H., Roos M., Hertzberger B., Breit T., 2006, The Promise of a Virtual Lab in
Drug Discovery, Drug Discovery Today, Vol. 11(5-6), pp. 228-236

Razmerita L., Nabeth T., Angehrn A., Roda C., 2004, INCA: An Intelligent Cognitive
Agent Based Framework for Adaptive and Interactive Learning, Proceedings
of the IEEE International Conference on Cognition and Expiratory Learning
in the Digital Age (IADIS CELDA 2004) pp. 373-380.

Rich E., Knight K., 1991, Artificial Intelligence, Mc Graw-Hill,

195

Roberts J., 1964, The Self-Management of Culture. In Explorations in Cultural
Anthropology: Essays in Honor of George Peter Murdoc, W. Goodenough,
Ed. McGraw-Hill, London, UK

Roda C., Angehrn A., Nabeth T., 2001, Matching Competencies to Enhance
Organisational Knowledge Sharing: An Inelligent Agents Approach,
Proceedings of the 7th International Netties Conference, pp. 931-938

Rogers E., 1995, Diffusion of Innovation, 4t' Edition, Free Press, NY.

Rogers Y., 2004, New Theoretical Approaches For HCI, ARIST: Annual Review of
Information Science and Technology, Vol. 38, pp. 38-144

Russell B., 1946, A History of Western Philosophy, George Allen and Unwin
(Publishers) Ltd.

Sadeh N., Hildum D., Kjenstad D., Tseng A., 2001, MASCOT: An Agent-Based
Architecture for Dynamic Supply Chain Creation and Coordination in the
Internet Economy, Production Planning and Control, Vol. 12(3), pp. 212-223

Saettler P., 1990, A History of Instructional Technology, Englewood, Co: Libraries
Unlimited

Setchi R., 2007, Personalisation in professional e-Learning and Performance Support,
Challenges in Higher Education and Research in 21s` Century, CHER21'07,
Sozopol, Bulgaria, 5-9 June

Salomon G., 1993, Distributed Cognitions: Psychological and Educational
Considerations. Learning in Doing: Social, Cognitive, and Computational
Perspectives, Cambridge University Press, New York, NY

Scaife M., and Rogers Y., 1996, External Cognition: How Do Graphical
Representations Work?, International Journal of Human-Computer Studies,
Vol. 45, pp. 185-213

Schamber L., 1988, Delivery Systems for Distance Education, Eric Clearinghouse on
Information Resources, Syracuse University, School of Education, School of
Information Studies

Schaude H., and Dillmann R., 1995, Integration of World creation and World model
Adaptation for Planning and Simulation in Telerobotics, Institute for Real-
Time Computing and Robotics, University of Karlsruhe, Proceedings of the
International Conference on Modelling and Simulation, Colombo, Sri Lanka
wwwipr. ira. uka. de/en/Publications/detailed publication. htm? id=975588905
Accessed: 22 August 2007

Sherry L., 1996, Issues in Distance Learning, International Journal of Educational
Telecommunications Vol. 1(4), pp. 337-365

Shneiderman B., 2002, HCI Theory is Like the Public Library, Posting to CHIplace
online discussion forum, Oct 15`h
www. chiplace. org/index. php? name=PNphpBB2&file=viewtopic&t=227

196

Shortliffe E., 1976, Computer-Based Medical Consultation MYCiN, Elsevier, New York

Siemens G., 2005, Connectivism: A learning Theory for the Digital Age, International
Journal of Instructional Technology and Distance Learning, Vol. 2(l),

pp. 521-528

Siemer J., and Angelides M., 1998, A Comprehensive Method for the Evaluation of
Complete Intelligent Tutoring Systems, Decision Support Systems,
Vol. 22(1), pp. 85-102

Simanek D., 1996, Error Analysis (Non-Calculus), Donald Simanek's Pp., Lock Haven
University of Pennsylvania, Website.

www. lhup. edu/-dsimanek/errrors. htm
Accessed: 22 August 2007

Simmons R., 1994, Structured Control for Autonomous Robots, IEEE Transactions on
Robotics and Automation 10(1), pp. 34-43

Sison R., Numao M., Shimura M., 2000, Multistrategy Discovery and Detection of
Novice Programmer Errors, Machine Learning 38, Klewer Academic
Publishers, Vol. 38(1-2), pp. 157-180

Statsoft, 2003, Statsoft Experiment Design (Industrial DOE), Statsoft Inc, Website:
www. statsoft. com/textbook/stexdes. html
Accessed: 22 August 2007

Suchman L., 1987, Plans and Situated Actions: The Problem of Human-Machine
Communication, Cambridge University Press, New York, NY

Sutcliffe A., 2000, On the Effective Use and Reuse of HCI Knowledge, Transactions on
Computer-Human Interaction, Vol. 7(2), pp. 197-221

Tait G., and Chao N., 2003, Hands-On Remote Laboratory for Freshman Engineering
Education, 33rd ASEE/IEEE Frontiers in Education Conference T3E-7

Tambe M., and Rosenbloom P., 1996, Architectures for Agents that Track other Agents
in Multi-Agent Worlds, Intelligent Agents, Vol. 11, Springer Verlag Lccture
Notes in Artificial Intelligence, (LNAI 1037), Issue 1037, pp. 156-170

Thielscher M., 2005, FLUX. - A Logic Programming Method for Reasoning Agents,
Theory and Practice of Logic Programming, Vol. 5(4-5), pp. 533-565

Trella M., Carmona C., Conejo R., 2005, MEDEA: An Open Service-Based Learning
Platform for Developing Intelligent Educational System for the Web,
Proceedings of Workshop on Adaptive Systems for Web-based Education as
12th International Conference on Artificial Intelligence, Vol. 12, pp. 27-34

Van Wijngaarden A., 1963, Generalised ALGOL, Annotated Revision in Automated
Programming 3, pp. 17-26

197

Voyles R., and Khosla P., 2001, A Multi-Agent System for Programming Robots by

Human Demonstration, Integrated Computer-Aided Engineering, Vol. 8(1),

pp. 59-67

Vygotsky L., 1978, Mind in Society - The Development of Higher Psychological
Processes, Harvard University Press

Waters J., 2005, Experimental Research: Research Design, Research Guidelines,
Department of Psychology, Capilano College, North Vancouver, Website:

www capcollege be ca/pro rg ams/psychology/students/research/experiment. h

tml
Accessed 22 August 2007

Wegner P., 1976, Programming Languages - The First 25 Years, IEEE Transactions on
Computers, pp. 1207-1225

White M., 1987, Information and imagery education, What Curriculum for the
Information Age?, Hillsdale, NJ: Lawrence Erlbaum Associates, Inc

Willis B., 1992, Instructional Development for Distance Education, ERIC Clearing
House on Information Resources, Document Reproduction Service, No ED
351 007, pp. 1-5

Wirth N., 1974, On The Design of Programming Languages, Proceedings of IFIP
Congress 74, pp. 386-393

Witten I., Nevill-Manning C., Maulsby D., 1996, Interacting with Learning Agents:
Implications for ml from HCI, Workshop on Machine Learning meets
Human-Computer Interaction, ML'-6, pp. 51-58

Wooldridge M., Jennings N., Kinny D., 2000, The Gala Methodology for Agent-
Orientated Analysis and Design, Autonomous Agents and Multi-Agent
Systems, Vol. 3, pp. 285-312

Wright P., Fields R. Harrison M., 2000, Analysing Human-Computer Interaction as
Distributed Cognition; The Resources Model, Human-Computer interaction
Vol. 15(1), pp. 1-42

Wright T., and Cockburn A., 2003, A Language and Task-Based Taxonomy of
Programming Environments, IEEE Symposia on Human-Centric Languages
and Environments, Auckland, New Zealand, pp. 192-194

Wright T., and Cockburn A., 2005, Evaluation of Two Textual Programming Notations
for Children, Proceedings of the Sixth Australasian Conference on User
Interface, Vol. 40, pp. 55-62

Wudka J., 1998, The Scientific Method, Department of Physics and Astronomy at the
University of California, Riverside, Website
physics. ucr. edu/-wudka/Physics7Notes www/Node5. html
Accessed: 22 August 2007

198

Young R., Howes A., Whittington J., 1990, A Knowledge Analysis of Interactivity.
Proceedings of INTERACT `90 International Conference on
Human-Computer Interaction, pp. 1 15-120. Amsterdam: North Holland

Zary N., Johnson G., Boberg J., Uno F., 2006, Development, Implementation and Pilot
Evaluation of a Web-based Virtual patient Case Simulation Enviroment -
Web-SP, BMC Medical Education 6: 10, doi: 10.1186/1472-6920-6-10
www. biomedcentral. com/1472-6920/6/10
Accessed: 22 August 2007

Zhang J., 1996, A Representational Analysis of Relational Information Displays,
International Journal of Human-Computer Studies, Vol. 45, pp. 59-74

Zhang J., 1997, The Nature of External Representations in Problem Solving. Cognitive
Science, Vol. 21(2), pp. 179-217

Zhang J., and Norman D., 1994, Representations in Distributed Cognitive Tasks.
Cognitive Science, Vol. 18, pp. 87-122

Zollner R., Rogalla 0., Dillmann R., Zollner M., 2002. Understanding Users Intention:
Programming Fine Manipulation Tasks by Demonstration, Intelligent
Robots and System, IEEE/RSJ International Conference on, Vol. 2,

pp. 1114-1119

199

Appendix A

The Interface Design

200

The Interface Design

Use d Operations Map

Set Goal Locetionsý

Clear Operations Map : Disabled
Vehicle Actions : Disabled
Set Obstacles : Disabled
Clear Obstacles : Disabled
Set Operations Map : Disabled
Set Goal Locations : Enabled

Rdds Bdw Vew

- 6d S1Wad 142
Mvdb mSwas: 2&3

- cod SWs. d 2
Ar1-W. God 2

A. b. ds m Swan: 1&2

buds m Seroa: 314

J

Select : Goals

Choice
Set SubGoals
Set Obstacles
Create Vehicle Actions
Run Simulator

Figure A. 1 Goal-Based Behaviour

Behaviou Buttons

Save

Recal

View

Sine: Enabled
Recall : Disabled
View : Disabled
Edit : Disabled
Delete : Disabled

DoWe

-!! -i

Save : Disabled Save : Enabled
Recall : Disabled Recall : Enabled
View : Disabled I)c

Eu
Enabled View:

Edit : Disabled Edit : Disabled
Delete : Disabled Delete : Enabled

Clear Operations Map : Enabled
Vehicle Actions : Disabled
Set Obstacles : Enabled
Clear Obstacles : Disabled
Set Operations Map : Enabled
Set Goal Locations : Enabled

Sp. * Vd I. BV. Spsdy Vehcb 8*w
Sm WVA Ba S., w I'W Ba

se r1 Serve 2 S. ra 3 Srm 4 Sara 1 Ssro 2 Swa 3 Saw 4
Kiwii0 VMiclýý-ilwoý

tiensorl : Enabled Resulting Vehicle Rehas lour : Enabled
Sensor2 : Enabled
Sensor3 : Enabled RoWsBea , Vmw
Sensor4 : Enabled - Pfograms

8dW. as Budom

- God States d162

- j Save

Rec Edk

11\ ý
Say e: Enabled

Select : Sensor Recall : Enabled

vom, Delft
Activated Behaviour View : Enabled

Edit : Disabled
Delete : Enabled

Save : Enabled
Recall : Enabled Save : Enabled
View : Enabled Recall : Enabled
Edit : Enabled View : Enabled
Delete : Enabled Edit : Disabled

Delete : Enabled

Figure A. 2 Sensor-Activated Behaviour

201

aomr. Bd 8dwrAms View
_ Al Piogiartvs

- God state: dt&2
Acwde or, Sonsm 213

Acwate alGoai 2
Activate on s cruse. IL2

Select : Goals

Use of Operations Map

Clear Operations Map Set Obst acift Set God Locations

Set Operations Map

Behavoms Buttons

S.

Racal

Yew Delete

Sa% e: Enabled
Recall : Enabled
View : Enabled
Edit : Disabled
Delete : Enabled

Figure A. 3 Determining sub-goals

Clear Operations Map : Enabled
Vehicle Actions : Disabled
Set Obstacles : Enabled
Clear Obstacles : Disabled
Set Operations Map : Enabled
Set Goal Locations : Enabled

Use of Operations Map

Clm Operations Map

Vth de Actions

Set Obstales Set Goal Locatiau

Set Opewations Map

Clear Operations Map: Enabled
Vehicle Actions : Enabled
Set Obstacles : Enabled
Clear Obstacles : Disabled
Set Operations Map : Enabled
Set Goal Locations : Enabled

N Rupsr

- Gd SI d 112
A. W&4 - ssru. 1.2,3&4

Select : Sub-Goals
Bdheyia Bt

Sew

Roca J
ý oý Say e: Enabled

Recall : Enabled
View : Enabled
Edit : Disabled
Delete : Enabled

Use of Opeeations Map

Clear OpeieI Map Set Obetarlx Set Goal Lotet

i_.
ýI::

Clow Obdedet Set Opwatiorn Map

Clear Operation Map : Enabled
Vehicle

. Actions : Enabled
Set Obstacles : Enabled
Clear Obstacles : Enabled
Set Operations Map : Enabled
Set Goal Locations : Enabled

sý oua, c eý

corfim

(oitirin : Enabled

Figure A. 4 Goal-Activated Behaviours

202

Opegabms
s. mrata

Run Stop Pane

Simulator : Simulator :
Run : Enabled Run Run : Disabled
Stop : Disabled Stop : Enabled
Pause : Disabled Pause : Enabled

Figure A. 5 Operating simulator functions

Rdbd's Behevnu View

- Goal Stiles of. 1L2

8tha t BtStorc

Save

- God Statu of 2
Activate at God 2
Activate an Swum 1&2

Reoa1 E9

Activate on Serras .3&4

View Delete

Save: Enabled
Recall: Enabled

Select: Sensor View: Enabled
Activated Behaviour Edit: -

I Enabled
Delete:

V
Enabled

Messuemxds

Angle of R&Abon I9 DDckvai°

Distance Traveled
1136 Forward

v- ...
Prevauc Part Edi Measueme 1* Nd PoN 1

Measuemsts

,,, ge0, Ratehon Remorse Prev Point: Enabled
Next Point: Enabled

DW, m=@Tmveted
67 Re "s°

Edit 11caxurcments: Enabled

Vom -
_ý

ýrtet Mee enlý Ned Pvi

Angle of Rotation: Numeric Edit Input
Direction: Clockwise/Anticlockwise

Direction of Travel: Numeric Edit Input
Direction: Forward/Reverse

Prev Point: Enabled
Next Point: Enabled
Enter 1lea'. uremcnts: Enabled

Figure A. 6 Editing designed robot behaviour

Pre-* Point: if Enabled
or Next Point: if Enabled
Edit Measurements: Enabled

203

Appendix B

An Explanation of the Experiment

204

An Introduction to the Rule Base System

" This Rule Based system is based on:
oA Computer with the Rule Base System
o An Infra-Red Communications Link
oA Vehicle under the control of the Rule Based System via tl :!,! i-Red Link.

This Rule Based System's interface displays a toolbar, and tour internal N% indo%ý s.
The means ol'operation is by using the Toolbar, which comprises:

I< 11 Stopped System Fired : None Rules Fired :0 Comets

[ý<] Stop and Reset: To stop the system and re-initialises the variables.
[>] Run: "ho run the system's current data.
[ýý] Step Through: Run the system one rule at a time.

Further, on the "Toolbar there are:
1. State Indicator: this can be Stopped, Running or Stepping.
2. System Fired: Conflict Resolution Mode Indicator.
3. Rules Fired: Number of times the rules have been examined.
4. Comms: The communications light. This indicates the current status of

communication between the rulebase and the Vehicle.

Additional Notes:
[Esc] The `Panic Button': When the vehicle runs out of control pressing the 'panic
button,. i uýuall\ at the top left of the keyboard) will stop the vehicle's motors.
The Communications light: This is on the Toolbar at the top right of the screen.

(ýýý»ý>>uniýatiýýns have not been initiated:
Comm

" .,:; mit. itions is working properly.
Comms

f, imposed t cn stop the pro-gram. IL

Comms

205

TASK 1: Testing Motors and Sensors
This Task is intended to:

" Test the communication between the vehicle and the computer,
" Demonstrate that the vehicle is under the computer's control.
" Allow initial interaction

Help to Complete the Task:
1. Left click on File
2. select Test Motors and Sensors.
3. Start the selected rules by left clicking the Run Button 1>1

" The task initialises the infra-red communications between the computer and the
Vehicle.

" The task has the vehicle moving forward using the left and right motors
alternatively twice.

" The task displays the current sensor values in the bottom left of the screen.

Additional Notes
1. The Motors: l'he motors on both sides of the vehicle activate alternately twice.

: Aller 111 P, the sensors can be tested.
2. The Sensors: look at the value of the variable all sensors in the Variable

Database ý\ indow (Bottom left of the screen). It should be zero. If not check that
one or more of the sensors (springs) is not touching the common earth rail.
o Press any of the sensors springs on the Vehicle to see the sensor v alues

change.

The sensors have the following values:
Your Left Right
Vehicle Right Left
123456789 10 lI 12

4096 2048 1024 512 256 128 64 32 16 842

" To stop the experiment from ruºnning: press the stop button 11<1

" The emergency stop button is the [ESC] button on the ke\ hoard

206

Task 2: Make Vehicle Move Forwards

This task is to edit existing rules 1 and 2 to match the rules below:

IF
1

THEN

initialise communications

communicate(1)
initialise communications
go forwards

is True

Action
is False
is True

iF is True J

JJ

THEN communicate(l) Action

Check f initialise communications is False

go forwards is True

Cancel

OK

� Forward

1. Edit Rule 2 to below
IF go forwards is True
THEN go(5) Action

pause(2.1) Action
stop() Action
go forwards is False

2. In the top left hand screen, there is a Fact Database.
Set go forwards is False

Start the selected rules by left clicking the Run Button 1>1

Additional
.
Votes:

1. Modifying Rules: double left-click a rule to produce the rule's edit window.
2. Adding New Rules: double left-click the Rules Database top-most clear line to

bring, up a \N indow for inputting new rules.

207

Task 3: Make the Vehicle Move Backwards
This task is to Design and edit a new rule, which allows the vehicle to move
backwards.

Help to complete the task:
An explanation of rule construction

IF RULE NAME is True
THEN ... command Action

... RULE NAME is False

...
NEXT RULE is True

The Actions use the available commands given below.

command left motor right motor vehicle moves:
go(O) off off stopped
go(1) off forward turn forward anticlockwise
go(2) forward off turn forward clockwise
go(3) off backward turn backward clockwise
go(4) backward off turn backwards anticlockwise
go(5) forward forward forward
go(6) backward backward backward
go(7) forward backward rotate clockwise
go(8) backward forward rotate anticlockwise
pause(s) the rulebase pauses for s seconds,

pause(s) has a range of 0.0 and 65.0 seconds,
as s has a resolution of 0.1 is 0.055seconds.

stop() this is equivalent to go(0) and stops the vehicle

: (Iditional Notes:
Rule 1

As the Rule Name is initialise communications, Rule I starts with
IF Initialise Communications is True.

o The commands in Rule 1 are:
o communicate(1) initialises the infra-red communications.
o initialise communications is False Rule I is not to be performed again.
o go forwards is True execute go forward as a set ot'rules.

Rule 2
I he Rule Name is go forwards, Rule ? starts with

IF go forwards is True
The Rule will only execute when go forwards as a rule set is True
Rule 1 has: go forwards is True.

o The commands in Rule 2 are:
THEN go(5) Action both motors set forwards

pause(2.1) Action Pause for 1.165s betöre
stop() Action stop the vehicle.

o The Rule Name is False to prevent repetition
go forwards is False

208

Task 4: Detecting Obstacles
Amend rules to receive and react to sensor input.
The vehicle should move forwards, detect an obstacle and move backwards.

Help to complete the task:
o The previous rules drove the Vehicle backwards and forwards irrespective of

external conditions.
o The rules will be modified to use sensors (the set of springs on the front of the

Vehicle) to control in different circumstances.

Rule 2
IF go forwards is True
THEN go(5) Action

go forwards is False
test sensors is True

Rule 4
IF test sensors is True
THEN all_sensors = allSensors() Assign

Rule 5
IF test sensors is True
and all sensors >0 is True
THEN stop() Action

test sensors is False
go backwards is True

Additional Notes:
Rule 4

all_Sensors = allSensors() Assign
all-Sensors is a variable with the value given by the allSensorsO command

Rule 5
I he Rule Name is

IF test sensors is True
and all sensors >0 is True

The Rule will only execute when both test sensors as a rule set is True
and all-sensors is a positive value.

Rule 2 has: test sensors is True
Rule 4 provides all sensors with its value.

209

Task 5: Obstacle Navigation
The task is creating rules to react to specific sensor values and negotiate an obstacle.

Help to complete the task:
1. The sensors have the following values:

Left
123456
248 16 32 64

126

Right
789 10 11 12
128 256 512 1024 2048 4096

8064

2. all_Sensors has the sensors value provided by the allSensorsO command.
If some of the sensors on the left have been activated, but none on the right, the
following would be true:

" bitAnd(all sensors, 126) >0
" bitAnd(all sensors, 8064) =0

3. These conditions can be used to test if a detected object is on the right or the left.
The following rule outline can be used for determining the vehicles behaviour.

Rule 5
IF bitAnd(all_sensors, 126) >0 TRUE
and bitAnd(all_sensors, 8064) =0 TRUE
THEN all sensors =0 Action

4. To rotate the vehicle 90° either
" clockwise

go(7) Action
pause(2.1) Action
stopp ý Action

or
" anticlockwise

go(8) Action
pause(2.1) Action
stopp Action

210

Task 6: Park in a Corner
Create rules for the vehicle to park in a corner parallel to one of the walls.

Additional Notes:
The Commands for the Rule-Based System are:
allSensors() This returns the status of the sensors as a number between 0 and 2+4+8

+ 16 +32 +64+ 128+256+512+ 1024+2048+4096= 8190

collisionMode() After this command, the moving vehicle will stop when any of the
sensors are activated. Once the vehicle has stopped, or the motors have timed out,
this mode is cancelled.

communicate(1) This command initialises the infra-red communications.
communicate(O) This command closes down communications

go(n) This determines the motor directions.
command left motor right motor vehicle moves:
go(O) off off stopped
go(1) off forward turn forward anticlockwise
go(2) forward off turn forward clockwise
go(3) off backward turn backward clockwise
go(4) backward off turn backward anticlockwise
go(5) forward forward forward
go(6) backward backward backward
go(7) forward backward rotate clockwise
go(8) backward forward rotate anticlockwise
neverStop() This is the equivalent to stopAfter(O).

pause(s) The rulebase pauses for s seconds, where s is in the range of 0.0 and 65.0
seconds, with a resolution of 0.1 is 0.055seconds.

stop() This is equivalent to go(0) and stops the vehicle
stopAfter(time) The Vehicle is instructed how long to obey the last go(n) command.
The time can be between 0.1 and 25.4 seconds, with a resolution of 0.1 seconds. The
default is 5.0 seconds. Setting stopAfter(0) sets the command as continuous.

The Sensors have the following values:
The sensors have the following values:
Your Left Right
Vehicle Right Left
123456789 10 lI 12

4096 2048 1024 512 256 128 64 32 16 842

211

An introduction to the Programming by
Demonstration System

This Programming by Demonstration System is based on:
" Graphically designed instructions, allowing a designer:

o To design the robot's program in a visual format.

o To check the robot's program by inspection.

Dmaims 7 er

F-1 I

Be '. co Bunons

SM

Row,, Baw VKw

i i.. Ni , ý.. ý.. ý ums.

ýIIw nagwns

V .
iJen_OpelRa N! p 50 UbAxw. Sad GON Lotillps

vr. aerýmn

_J

ckv oer. e.
]

_Seý

ýeAaawvý Cos 1 RrFUe Laery

Spy V dck Behavne MechMbwc Dev¢e OtAp i

Seren MW 8w Senw WN B.

Sawa 1. SM- 2 Saw 3J Serua 4 Ss 1 Serra 2 Swaa 3 Sosoi 4

3 ResI gVehd. Bdwna J1 Cml'm

Mew». ss

F- F- Smle1n

__ Rin ar.
, --

I Remde leboi stay
vel"

0

sý, ým«a Hasa ý eýý,

Save Roprrrq
-

Generally: Input Output Robot Behaviour Details

This systems interface has:
1. Operations Map: This is where the robot is graphically programmed, and where

the simulation of the robotic programming is observed.
2. Use of Operations Map: This set of Buttons affect the operation of the

Operations Map.
3. Specify Vehicle Behaviour: This allows design of robot behaviours related to

sensor activation values.
4. Measurements: As the program is designed the details of program length, and

direction of travel, angle and direction of rotation is given.
5. Operations Text: This is where the interface provides information about what the

interface is doing.
6. Mechatronic Device Output: This is the robot's sensors values.
7. Operations: The robots program is tested, by using simulation, or connection to a

laboratory.
8. Control Buttons: These buttons manipulate the elements of the robot's intended

designed behaviour.
9. Robot's Behaviour View: This displays the elements of the robot's programmed

behaviour.
10. Save/Recall Behaviours: These two buttons save the Robots behaviours to a file,

and recall a robot's behaviours from a previously saved file.

7»

Task 1: Initial Goal Setting
Set some initial goals for the interface to simulate a robot's behaviour.

Help to complete the task:
1. Left click on Use of Operations MapiSet Goal Locations button.

Use of oo. an. M,

2. Left click on the Operations Map area to locate the two `Goals'.
" The first goal is where the robot is intended to start.

3.

"A subsequent goal is a location where the robot is intended to go to.
" Arrival at a goal location is an accomplishment of the task set for the robot.
Left click on Save button.

ýbýt, ear. a, v
M Rayem:

4. Left click on the Robot's Behaviour View area, locating and highlighting `Goal
States of: 1& 2'.

Rood'. Bdh- Vw
P apps

5. Left click the Run Button in OperationsiSimulator to operate the Simulator.
r

Op", 5m1aka

P.
Remae lýuý

Additional Notes:
" The Simulator will begin by placing on the Operations Map the First Goal

Location, and subsequently performs a path following cycle
o The Simulator determines if there is another location to `go to', then places

this location on the Operations Map.
o The Simulator then `follows' the path which is displayed as a black line.

1. To pause and restart a simulation: press the Pause button in
OperationslSimulator.

2. To stop a simulation: press the Stop button in OperationsiSimulator.

213

Task 2: Creating Obstacles
The Task's Intentions:
Create a simple obstacle which the simulator is expected to interact with, and a robot
may encounter.

Help to complete the task:
1. Clear the Operations Map (Left Click the Use of Laboratory MapiClear

Operations Map).
2. Left Click Use of Laboratory MapISet Operations Map.

The goals currently being identified in Robot's Behaviour View are presented on
the Operations Map.

3. To outline an obstacle,
a. Single left click to define an start point for drawing an obstacle.
b. When satisfied with an obstacle's length and direction, single left click for the

end point.

Once the obstacle(s) have been illustrated
4. Operate the Simulator, and examine the robot's behaviour when the robot

contacts an obstacle.
5. If the Simulator contacts an obstacle, the simulator determines what the sensor

outputs are and Displays the sensor outputs in Mechatronic Device
OutputlSensor Output Box.

Additional Notes:

o To use the Simulator, Left Click the Run Button in OperationsiSimulator.
o The Simulator performs the following path following cycle.

o The Simulator determines if there is a location to `go to', then places this
location on the Operations Map.

o The Simulator then `follows' the path which is displayed as a black line, as
the Simulator follows the line, it performs this cycle
1. Determine what the sensor outputs are and Displays the sensor outputs in

the Sensor Output Box.
2. Use the Sensor Data to determine the robot's obstacle avoidance

behaviour.
3. If the Simulator does not find an appropriate behaviour to avoid an

obstacle, the simulator will stop.

o The sensors are intended to simulate the sensors on the robot shown below, they
are at the front and are activated by touching an ohject.

214

Task 3: Obstacle Avoidance
Create a simple generic behaviour for the simulated robot to avoid the simulated
obstacle, and observe the simulated behaviour results.

The behaviour is not situation specific, but is intended to operate in all circumstances
where the sensors have been activated regardless of orientation.

Help to complete the task:
1. Single left click the Specify Vehicle BehaviouriSensor buttons to specifiy which

sensors activate the robot's behaviour.

o As each Sensor Button is pressed, an indicator to the left switches colour,
Black indicates an inactive state, and Red an activated state.

Sý WW B«
Swam swum z Sý4

2. Single left click Specify Vehicle Behaviourl Resulting Vehicle Behaviour
3. Use the Operations Map to design the behaviour

o The Operations Map is relative to the Vehicle. Thus:
Ope'Mmc Map n.,.

Forwards

o To start designing the behaviour single left click on the Operations Map.
o As each part of the Robot's behaviour is determined, single left click.
o To finish illustrating the behaviour, use a double left click.
o During design, the behaviour is magnified, at a scale of 5: 1.

4. When the behaviour has been demonstrated: double left click to finish.
5. Click on `Goal States of :1& 2', within the Robot's Behaviour View area.
6. Click the Save Button in the Behaviour Buttons panel.

Additional Notes:
While designing the Behaviour, the interface displays the measurements detailed by
the behaviour in the Measurements Panel.
o Angle of Rotation: shows the angle in degrees and automatically determines if

this is clockwise or anti-clockwise rotation.
o Distance: determines if the vehicle is moving forwards or backwards, and shows

the distance being measured during the design.

This information is duplicated to the right in the Operations Text box.

215

Reverse

Task 4: Park in a Corner
The Task's Intentions:

" Create a rule for the rulebase to detect the edges of the robot's work area and park
in a corner parallel to one of the walls.

Help to complete the task:
o The Behaviour designed to park in a corner is generic

1. Highlight Goal States I&2, in the Robot's Behaviour View.
2. Press the Set Goals Locations button. When the mouse is on the Operations

Map, the nearest goal is displayed.
3. Select the Goal the behaviour is expected to be activated at.
4. Save the Goal state selected, and highlight the saved goal state.
5. Press the `Clear Operations Map', then `Set Obstacles'.
6. Create the obstacles which the robot's behaviour is expected to interact with.
7. Press Use of laboratory MaplVehicle Actions button to design the behaviour.
8. Single left click on Operations Map initialising the Goal Activated Behaviour.
9. Demonstrate the expected robot actions to park in a corner noting:

o When the behaviour interacts with an obstacle:
The behaviour design includes

ovum interaction with obstacles. The
designed behaviour stops until
the sensor values are confirmed.

The sensor values are
displayed. Pressing
Confirm recontinues
the behaviour design.

The design of the behaviour
will continue when the mouse
comes into close proximity to
the last position of the
designed robotic behaviour.

aea Wrew &i'wu. uc

D. . DýAgr
M Ba

Canino

o The behaviour is built up from a series of independent (and relatively co-
ordinated) actions that result in an overall behaviour which achieves the
objective designed.

10. Double left click to Finish
11. Select `Goal States of : 2' in Robot Behaviour View, and Save the behaviour.
12. Each Goal Activated Behaviour is saved with `Goal States of : 2' selected
13. Select `Goal States of :1& 2' and run the simulator.

Additional Notes:
Sensor Activated Behaviours have to be created to compensate for any mis-matches
between the `physical results' compared to the designed Goal Activated Behaviour.

216

Appendix C

Usability Questionnaire

217

Usability Questionaire.

Do you think that the Simulator system provides a sufficient degree of
detail about what is happening on the screen?

Do you understand the Simulator's systems information on the screen?

How intuitive did you find the Simulator system?

Did you find it hard to remember how to do anything with the Simulator
System?

How did you find the Simulator interface prompted you to particular
actions?

Do you believe that any part of the Simulator interface was unnecessary?

218

Are you satisfied with the Interface's Names?

Use of Laboratory Map?
What you consider a better alternative?

Set Goal Locations?

QDDDQQDQDQQQQQQQQQ
Set Laboratory Map?

QDQQDDQQQQQQQQQQQQ
Set Obstacles?

QQQQDQQQQQQQQQQQQQ
Clear Obstacles?

QQDQDQQQQQQQQQQQQQ
Vehicle Actions?

QQQQQQQQQQQQQQQQQQ
Clear Operations Map?

QQQQQDQQDDQQQQQQQQ
Specify Vehicle Behaviour ?

QQQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQ
Resulting Vehicle Behaviour?

QQQQQQQQQQQQQQQQQQQ
QQQQQQQQQQQQQQQQQQQ
Robot's Behaviour View
QQQQQQQQQQQQQQQQQQQ

QQQQQQQQQQQQQQQQQQQ

219

What would you like as further dialog from the Simulator System's
Interface?

What are your thoughts about the methods of determining the Vehicle
Behaviours using the Robot's Behaviour View?

Do you believe you needed a Help System with the Simulator system's
Interface?

Did you find the Simulator system's Interface easy to use?

220

Do you think that the Rule Based system provides a sufficient degree of
detail about what is happening on the screen?

Do you understand the Rule Based systems information on the screen?

How intuitive did you find the Rule Based system?

Did you find it hard to remember how to do anything with the Rule Based
system?

How did you find the Rule Based system interface prompted you to
particular actions?

Do you believe that any part of the Rule Based interface was
unnecessary?

221

What would you like as further dialog from the Rule Based system's
Interface?

What are your thoughts about the methods of determining the Vehicle
Behaviours using the Rule Based system?

Did you find the Interface easy to use?

Which System did you prefer and why?

222

Appendix D

Participant Timings

223

Participant Timings

Table D. 1 The test of the PbD system by the PbD first sample group
PbD - Averagess Partici pants
RBS Group Sample is 17 16 15 14 10 4 3 2 1

PbD I 03: 19 02: 51 01: 59 03: 27 12: 12 01: 46 02: 20 01: 26 02: 49 02: 31 03: 00 01: 42
PbD 2 02: 24 02: 11 04: 28 02: 48 02: 07 01: 51 01: 40 01: 47 02: 16 02: 22 02: 10 02: 27
PbD 3 09: 59 08: 18 09: 26 16: 03 05: 43 04: 49 06: 05 11: 32 14: 31 15: 04 06: 08 10: 28
PbD 4 11: 50 09: 43 10: 05 13: 42 13: 49 05: 27 04: 28 08: 06 10: 42 24: 23 15: 16 12: 19

1 27: 31 1 23: 02

Table D. 2 The test of the RBS system by the PbD-first sample group
PbD - Averages Participants
RBS Group Sample 18 17 16 15 14 10 4 3 2 1

RBS I 02: 10 02: 30 02: 08 03: 01 03: 26 01: 36 01: 33 00: 39 01: 30 01: 09 03: 15 03: 22
RBS 2 05: 35 06: 52 06: 48 04: 54 07: 26 04: 10 08: 25 04: 26 05: 01 04: 16 05: 33 04: 46
RBS 3 06: 59 07: 33 05: 14 10: 25 13: 21 04: 55 09: 08 05: 40 03: 28 05: 43 06: 59 04: 59
RBS 4 08: 01 08: 36 08: 48 10: 37 04: 41 04: 37 08: 08 00: 00 03: 50 09: 04 20: 40 01: 42
RBS 5 10: 48 12: 49 13: 14 22: 42 10: 55 07: 16 06: 37 00: 00 09: 33 05: 18 00: 00 10: 53
RBS 6 15: 04 12: 31 14: 13 19: 30 00: 00 06: 16 00: 00 00: 00 00: 00 13: 41 00: 00 21: 40

148: 37 1 50: 51

Table D. 3 The test of the PbD system by the RBS-first sample group
RBS - Averages Particip ants
PbD Group Sample 20 19 13 12 11 9 8 7 6 5

PbD I 02: 05 02: 51 02: 06 02: 40 02: 09 02: 46 02: 58 00: 00 03: 02 01: 25 01: 37 02: 11
PbD 2 01: 44 02: 11 04: 18 01: 13 01: 17 01: 57 03: 22 00: 00 02: 29 00: 41 01: 06 01: 02
PbD 3 05: 47 08: 18 06: 22 07: 12 04: 49 05: 07 10: 25 00: 00 11: 24 02: 51 06: 04 03: 33
PbD 4 06: 38 09: 43 05: 43 06: 40 05: 45 06: 01 17: 47 00: 00 10: 07 05: 29 05: 07 03: 38

16: 14 1 23: 02

Table D. 4 The test of the RBS system by the RBS-first sample group
RBS - Averages Participants
PbD Group Sample 20 19 13 12 11 9 8 7 6 5

Rule I 02: 50 02: 30 02: 29 05: 05 01: 30 03: 25 02: 00 01: 37 03: 08 03: 23 01: 37 04: 08
Rule 2 08: 09 06: 52 05: 51 18: 01 10: 26 07: 08 06: 51 07: 25 11: 40 02: 58 05: 06 06: 05
Rule 3 08: 10 07: 33 07: 04 27: 59 05: 32 05: 11 05: 42 03: 08 00: 00 03: 35 05: 52 09: 25
Rule 4 09: 15 08: 36 07: 09 05: 24 10: 51 11: 50 20: 24 00: 00 00: 00 04: 29 05: 13 08: 37
Rule 5 14: 50 12: 49 53: 03 07: 28 10: 16 10: 00 15: 39 00: 00 00: 00 08: 07 04: 21 09: 46
Rule 6 10: 24 12: 31 23: 08 00: 00 12: 49 10: 48 00: 00 00: 00 00: 00 07: 58 06: 54 00: 49

53: 38 1 50: 51

224

