136 research outputs found

    A Wavelet-Based Multiresolution Reconstruction Method for Fluorescent Molecular Tomography

    Get PDF
    Image reconstruction of fluorescent molecular tomography (FMT) often involves repeatedly solving large-dimensional matrix equations, which are computationally expensive, especially for the case where there are large deviations in the optical properties between the target and the reference medium. In this paper, a wavelet-based multiresolution reconstruction approach is proposed for the FMT reconstruction in combination with a parallel forward computing strategy, in which both the forward and the inverse problems of FMT are solved in the wavelet domain. Simulation results demonstrate that the proposed approach can significantly speed up the reconstruction process and improve the image quality of FMT

    Image reconstruction of fluorescent molecular tomography based on the simplified matrix system

    Get PDF
    Author name used in this publication: David Dagan FengVersion of RecordPublishe

    Patch-based anisotropic diffusion scheme for fluorescence diffuse optical tomography-part 1: technical principles

    Get PDF
    Fluorescence diffuse optical tomography (fDOT) provides 3D images of fluorescence distributions in biological tissue, which represent molecular and cellular processes. The image reconstruction problem is highly ill-posed and requires regularisation techniques to stabilise and find meaningful solutions. Quadratic regularisation tends to either oversmooth or generate very noisy reconstructions, depending on the regularisation strength. Edge preserving methods, such as anisotropic diffusion regularisation (AD), can preserve important features in the fluorescence image and smooth out noise. However, AD has limited ability to distinguish an edge from noise. In this two-part paper, we propose a patch-based anisotropic diffusion regularisation (PAD), where regularisation strength is determined by a weighted average according to the similarity between patches around voxels within a search window, instead of a simple local neighbourhood strategy. However, this method has higher computational complexity and, hence, we wavelet compress the patches (PAD-WT) to speed it up, while simultaneously taking advantage of the denoising properties of wavelet thresholding. The proposed method combines the nonlocal means (NLM), AD and wavelet shrinkage methods, which are image processing methods. Therefore, in this first paper, we used a denoising test problem to analyse the performance of the new method. Our results show that the proposed PAD-WT method provides better results than the AD or NLM methods alone. The efficacy of the method for fDOT image reconstruction problem is evaluated in part 2

    Compressed sensing in fluorescence microscopy.

    Get PDF
    Compressed sensing (CS) is a signal processing approach that solves ill-posed inverse problems, from under-sampled data with respect to the Nyquist criterium. CS exploits sparsity constraints based on the knowledge of prior information, relative to the structure of the object in the spatial or other domains. It is commonly used in image and video compression as well as in scientific and medical applications, including computed tomography and magnetic resonance imaging. In the field of fluorescence microscopy, it has been demonstrated to be valuable for fast and high-resolution imaging, from single-molecule localization, super-resolution to light-sheet microscopy. Furthermore, CS has found remarkable applications in the field of mesoscopic imaging, facilitating the study of small animals' organs and entire organisms. This review article illustrates the working principles of CS, its implementations in optical imaging and discusses several relevant uses of CS in the field of fluorescence imaging from super-resolution microscopy to mesoscopy

    Realistic optical cell modeling and diffraction imaging simulation for study of optical and morphological parameters of nucleus

    Get PDF
    Coherent light scattering presents complex spatial patterns that depend on morphological and molecular features of biological cells. We present a numerical approach to establish realistic optical cell models for generating virtual cells and accurate simulation of diffraction images that are comparable to measured data of prostate cells. With a contourlet transform algorithm, it has been shown that the simulated images and extracted parameters can be used to distinguish virtual cells of different nuclear volumes and refractive indices against the orientation variation. These results demonstrate significance of the new approach for development of rapid cell assay methods through diffraction imaging.ECU Open Access Publishing Support Fun

    Photoacoustic tomography: fundamentals, advances and prospects

    Get PDF
    Optical microscopy has been contributing to the development of life science for more than three centuries. However, due to strong optical scattering in tissue, its in vivo imaging ability has been restricted to studies at superficial depths. Advances in photoacoustic tomography (PAT) now allow multiscale imaging at depths from sub-millimeter to several centimeters, with spatial resolutions from sub-micrometer to sub-millimeter. Because of this high scalability and its unique optical absorption contrast, PAT is capable of performing anatomical, functional, molecular and fluid-dynamic imaging at various system levels, and is playing an increasingly important role in fundamental biological research and clinical practice. This Review discusses recent technical progress in PAT and presents corresponding applications. It ends with a discussion of several prospects and their technical challenges
    corecore