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Compressed sensing (CS) is a signal processing approach that solves ill-posed inverse problems, from
under-sampled data with respect to the Nyquist criterium. CS exploits sparsity constraints based on the
knowledge of prior information, relative to the structure of the object in the spatial or other domains. It is
commonly used in image and video compression as well as in scientific and medical applications,
including computed tomography and magnetic resonance imaging. In the field of fluorescence micro-
scopy, it has been demonstrated to be valuable for fast and high-resolution imaging, from single-
molecule localization, super-resolution to light-sheet microscopy. Furthermore, CS has found remark-
able applications in the field of mesoscopic imaging, facilitating the study of small animals’ organs and
entire organisms. This review article illustrates the working principles of CS, its implementations in
optical imaging and discusses several relevant uses of CS in the field of fluorescence imaging from super-
resolution microscopy to mesoscopy.
© 2021 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Principles of compressed sensing

1.1. Introduction

Compression is extensively used in the fields of signal and image
processing. When an image is acquired with a digital camera, the
raw data can be several megabytes large, reflecting the millions of
pixels that build the sensor. In many cases, said image can be
compressed, reducing its size down to kilobytes, apparently
without losing relevant information. For example, when com-
pressing an image in JPEG or JPEG2000 format, that image is
transformed by Discrete Cosine Transform (DCT) or in a wavelet
basis, that can provide an accurate representation using only
thousands of (non-zero) coefficients. However, the image is ac-
quired using millions of pixels and then transformed in the new
basis, introducing a storage and processing overhead.

Compressed Sensing (CS) extends the concept of compression to
signal and image acquisition. It aims at acquiring only relevant
informationwith a limited number of measurements. CS can lead to
a significant reduction in the data to be captured and stored,
making it a valid option in many scientific and industrial fields,
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including x-ray computed tomography (Chen et al., 2008), mag-
netic resonance imaging (Lustig et al., 2008), (Feng et al., 2017), THz
spectroscopy (Watts et al., 2014), (Chan et al., 2008), electron mi-
croscopy (Li et al., 2018), (Stevens et al., 2014), radar imaging
(Baraniuk and Steeghs, 2007) and astronomy (Starck and Bobin,
2010).

In fluorescence microscopy, fewer measurements imply a lower
amount of light shining the sample, thus reducing fluorophores
photobleaching and tissue damages caused by overexposing
(Waldchen et al., 2015). These aspects are relevant dealing with
biological samples. Moreover, CS can be exploited to increase
temporal resolution enabling faster acquisition at a given signal to
noise ratio (SNR), making it a good choice for 4D (spatial and
temporal) biological imaging. In addition, CS can be useful for
multidimensional fluorescence imaging, allowing hyperspectral
and lifetime imaging.

In this review article, we initially discuss the solution of linear
problems, introducing the regularization that is at the basis of CS
reconstructions. We then discuss its implementation in the field of
optics, with particular attention to the description of the concept of
Single Pixel Camera (SPC) and we review the applications of CS in
nder the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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fluorescence imaging. Focusing on biological imaging, we discuss
the use of CS at different spatial scales, from super-resolution mi-
croscopy to mesoscopy, the field of imaging that aims at studying
millimetre to centimetre-scaled biological samples.
Fig. 1. Scheme for: a) determined, b) over-determined, and c) under determined
problems. The CS framework is highlighted within the rectangular box and it is an ill-
posed problem. CS deals with reconstructing more parameters based on just a few
measurements.
1.2. Linear sampling and ill-posed problems

Let us consider a quantity x, to be sampled via the measurement
matrixF. In the following, we can think about x as an image (or as a
volumetric image) but, for the moment, it can be considered as a
generic vector composed byN parameters xn. WithinF, each vector
row 4m addresses a measurement in a given basis, and it is defined
by the elements 4nm that sample the features located at the n-th
position within x. In this framework, each measurement ym is
determined by the scalar product between themeasurement vector
and the unknown object, as:

ym ¼ 4m,x ¼
XN
n¼1

4nmxn for m ¼ 1;…;M: 1.1

By measuring the sample M times, we form the vector of the
measurements y. In a compact notation, we can write it as a linear
matrix multiplication y ¼ F,x, underlying a system of linear
equations that needs to be inverted to find x. If the measurement
basis F is constituted by linearly independent vectors and the
number of measurements equals the number of parameters M ¼
N, the system is said to be fully determined and admits a unique
solution. In an experimental scenario, the presence of the noise,
inaccuracies, and fluctuations of the measuring system may turn
the problem to be ill-posed. The solution of the inverse problem
aims to find x given y and F, even in the presence of noise ε, that
perturbs the equation in y ¼ F,xþ ε. For small ε, we may assume
that the measurement and the model are not too far from each
other, so that ky � F,xk � 0. This motivates the search for a solu-
tion that minimizes the squared distance, commonly referred to as
the linear least-square problem (for further details, a modern
reference is (Ruppert, 2004)). In practical terms, we search for the
parameters x that minimize the loss function:

argmin
x

 XM
m¼1

jym�ðF,xÞmj2
!

orequivalently

argmin
x

�
ky�F,xk2l2

� 1.2

Here, a generic lp-norm refers to the quantity ðP jxnjpÞ1=pthat
corresponds to the Euclidean distance for p ¼ 2. Compressed
sensing aims at reducing the number of measurements to recon-
struct the sample with M<N acquisitions, in a so called under-
determined measurement scheme. However, this scheme implies
that the inverse problem is ill-posed (Fig. 1). The next paragraph
describes how to tackle reconstructions in these conditions, intro-
ducing the concept of regularization.
1.3. Regularization of inverse problems

When an inverse problem is ill-posed, we have no guarantee
neither about the existence of a solution nor about its uniqueness. A
common practice to deal with ill-posedness consists in adding a
priori information to the problem, forcing the solution to meet
certain properties. By doing so, we restrict the optimization process
towards a more stable and unique solution. This procedure is called
regularization and it constitutes a pillar for any reconstruction in
the field of CS. There are several ways to regularize the problem, but
in general we can approach the problem by adding a penalty term
2

to the loss function:

argmin
x

�
ky � F,xk2l2 þ tR ðxÞ

�
; 1.3

Here, R ðxÞ is a generic regularization rule acting on the un-
known vector x, and t is a parameter to weight its contribution.
When ε follows Gaussian statistics, for example, a natural choice is
to look for the solution x that has the smallest Euclidean l2-norm,
defined as R ðxÞ ¼ kxkl2 . For CS applications, instead, the standard
choice is given by the sum of all the absolute values, R ðxÞ ¼P
n
kxnk ¼ kxkl1 . The l1-regularized problem is written as:

argmin
x

�
ky � F,xk2l2 þ tkxkl1

�
1.4

The difference between the l2 and l1-norms may sound trivial,
but it forces the solution to a completely different behaviour. From
the mathematical point of view, the problem remains convex,
guaranteeing that every local minimum is also a global minimum,
but it does not have a closed-form solution: it is the smallest-order
regularization that ensures the convexity of the linear problem
(Hastie et al., 2015). Due to the lack of a direct solution, we need to
approach an optimization procedure to solve it, such as gradient-
descent (Ruder, 2016) or conjugate-gradient (Hager and Zhang,
2006) methods. The discussion on the best optimization strategy
lies beyond the scope of the present review. Instead, we focus on its
property to perform feature selection. Intuitively, the solution of the
l1-regularized problem returns a vector x with the smallest sum of
its absolute parameters xn. This forces the solution to reconstruct
only few values, while setting all the others to zero. Hence, the
procedure selects the Ns most significant parameters of the solu-
tions, dropping all the remaining N � Ns terms. Because of this
peculiarity, the l1-norm is also known as lasso-regularization
(standing for “least absolute shrinkage and selection operator”) or
basis pursuit (Chen et al., 2001): its usage led to the exploitation of
signal compression strategies. For an intuitive visual description of
its action, we refer to (Romberg, 2008). It is worth mentioning that
the ideal regularizer that solely accomplishes feature-selection
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would be R ðxÞ≡kxkl0 , which simply counts the parameters xn
different from zero. This restricts the solution of the least-square
problem to the one that has the minimum number of non-null
parameters. Unfortunately, this problem is not convex and the
regularizationwith l0 is not even a norm. Bayesian approaches have
tried to deal with this by implementing a decimation procedure in
the attempt to pick the minimum statistically relevant number of
coefficients (Ancora and Leuzzi, 2019). However, in many practical
aspects, the l1 solution can be considered equivalent to the one that
one would obtain with l0 (Donoho and Tanner, 2009). In CS we
always prefer the former, as it provides a more tractable formalism.
1.4. Sparsity, compressibility, and incoherence

The most interesting feature of the l1-regularization concerns its
ability in promoting sparsity in the solution of under-sampled sys-
tems. Rigorously, a signal is sparse when its representation in a
certain basis has few non-null parameters. Operatively, the idea
behind data compression is to approximate the signal without losing
much of the information content. By relaxing this restriction, we
extend the concept of data sparsity also to signals that exhibit just a
few important parameters against others that are small but not null.

In this context, a signal is considered compressible (into a sparse
representation) if only a few parameters are important for its
description, whereas the others can be dropped without losing
accuracy. In practice, if we represent x in an appropriate basis J as
x ¼ J,w; the curve obtained by sorting the coefficient of w decays
rapidly (Candes and Wakin, 2008). Two examples are provided in
Fig. 2. A cleaver choice of J determines how sparse the signal w is
in that given basis. A consolidated approach is to expand the signal
in a wavelet representation. Wavelets are functions designed to
represents abrupt changes in signals (or images) that are limited in
size or duration. There are several families of wavelets, but all of
them begins at zero, exhibits localized oscillations, have null mean
and form an orthogonal set of transformation. Thanks to these
features, wavelets play a crucial role in the field of image
compression, having allowed the development of the standard
JPEG-2000 compression algorithm (Skodras et al., 2001). The latter
is a lossy compression, in which a portion of information is lost due
to truncation of less important wavelet coefficients. To avoid
confusion, let us explicitly separate the problem into two opposite
families. In case we have complete knowledge of a signal and we
Fig. 2. a) Image of a spatially sparse object, (fluorescent beads) and c) corresponding
coefficients in the direct and wavelet space. b) Image of an object (fluorescent
zebrafish muscle) sparse in the wavelet space but not in the real space and d) corre-
sponding coefficients. Few wavelet coefficients are sufficient to accurately represent
the original object in panel b), but many more coefficients are required to represent the
same image in the real space.

3

want to encode it into a compressed representation w, we are
talking about signal compression. On the other hand, if we decode an
unknown object x from an underdetermined set of measurements,
we are talking about compressed sensing: that is, we restore a signal
from less measurements than Nyquist-Shannon sampling theorem
requires.

In some cases, images may be sparse in the xy-coordinates and
their representation into another basis J is not necessary. For
example, a set of individual and separated emitters acquired by a
camera is already sparse in the spatial basis (like the fluorescent
beads in Fig. 2a). In this case, the best representation is the identity
J ¼ I, since a transformation may produce more coefficients than
those in the direct space (Fig. 2c). Expanding a generic image,
instead, into an appropriate basis (here, the wavelet basis) switches
the problem of recovery in a sparser domain (Fig. 2bed).

CS aims at sampling the object of interest x or its sparse rep-
resentation w to extrapolate a reconstruction from limited acqui-
sitions. Rather than sampling using a well-structured orthonormal
F, it is convenient to use an incoherent measuring system (Candes
and Wakin, 2008). Incoherent sampling relies on the fact that
each measurement vector in F should be completely uncorrelated
with respect to all the vectors inJ (Donoho and Huo, 2001), where
the representation is assumed to be sparse. For example, the best
way to sense the object of Fig. 2b would be to use functions that are
maximally incoherent with respect to wavelets. These apparently
random functions form the so-called noiselet transform, which is
dual to wavelets, as the canonical basis is dual to the Fourier rep-
resentation (Coifman et al., 2001). Intuitively, we can think about
incoherent sampling as a strategy to uniformly sample the whole
space. In this review we do not present the theoretical foundation
of the concept behind the incoherent sampling (the advantages of
which can be statistically proven (Cand�es et al., 2006)). The inter-
ested reader can refer to further articles that extensively analyze it
on a more theoretical basis (Cand�es and Romberg, 2007).

1.5. Solution of inverse problems with compressed sensing

CS has been developed to investigate the solution of sparse and
under-sampled linear problems. One of its most valuable result is
that, fromM measurements of a generic vector of length N, we can
reconstruct the most importantM=log N coefficients in the wavelet
expansion (Candes and Tao, 2006). To obtain faithful re-
constructions, CS relies on an incoherent measuring system. Here,
the usage of M elements of an orthonormal basis of length N is
unfeasible, because the measurement basis would be necessarily
incomplete. Sparsity and incoherent sampling play a crucial role
allowing the recovery of a compressed representation of the signal.
To aid the search towards a sparse representation, CS makes use of
the l1-norm regularization that performs feature selection,
favouring only few important features and setting all the rest to
zero. In this context, sparsity, incoherence and appropriate regu-
larization provide a framework useful to beat the Nyquist-Shannon
sampling theorem (Donoho, 2006). These, seemingly simple as-
sumptions, paved the road to several remarkable applications,
particularly in the field of image reconstruction.

1.6. Limitations of compressed sensing

The advantages of CS discussed so far are given at the cost of the
computational time for solving the optimization problem of Eq.
(1.3). In fact, the prior typically used and discussed in Paragraph 1.3
does not allow a matrix solution and iterative methods must be
implemented, thus increasing the reconstruction time. Moreover,
in CS one must guess the sparsifying basis J depending on the
characteristics of the expected image and tune the hyperparameter



Fig. 3. Compressive imaging with a single pixel camera, © 2007 IEEE. Reprinted, with
permission, from (Baraniuk, 2007) (a). Single pixel camera applied to fluorescence
microscopy (b), reprinted from (Studer et al., 2012) with permission.
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t depending on the measurement noise and compression. All these
considerations set a limit to the applicability of CS in real-time
imaging because a considerable work must be done in the post-
processing and image reconstruction stages. Nevertheless, in
many applications, a real-time reconstruction is not needed, and CS
can help to reduce the acquisition time with advantages in terms of
limited sample illumination and time resolution.

To summarize, problems in CS hardly generalize, and each so-
lution requires specific care to obtain faithful reconstructions, in
particular for highly compressed measurements.

2. Implementation of compressed sensing in optical imaging

2.1. Compressed sensing in imaging

Compressed Sensing finds applications in many fields such as
information theory, signal processing, computational statistics and,
among others, imaging. Let us consider the case in which the signal
to be sampled is two or three dimensional and can thus be repre-
sented as a 2D or 3D matrix. According to the notation introduced
in Paragraph 1.2, when considering imaging applications, N is the
number of points used to discretize the object plane, while M
represents the number of measurements. Considering a well posed
imaging problem, M ¼ N is the number of pixels at the detector. In
the ideal case, the corresponding sensing matrix F will reproduce
the object vector x at the image plane, therefore F is the identity
matrix I with rank N. In this simple case, each point at the object
plane has a unique correspondence at the image plane. Further-
more, optical systems have a characteristic Point Spread Function
(PSF) and are described by a sensing matrix F with time invariant
entries. The intensity at the detector is the convolution of the in-
tensity at the object plane with said PSF. In this context, l1 mini-
mization has been successfully used for deconvolution of the
blurred image (Chen et al., 2016). Notable examples are presented
in references (Krishnan et al., 2011) and (Kuo et al., 2020).

Compressed sensing is used when an a-priori information about
the sample is available, making it possible to reconstruct the n
pixels from m<n measurements. This includes cases where the
sample is spatially sparse, such as in the case of single molecule,
nanomaterials imaging (Zhu et al., 2012), (Xu et al., 2018) or iso-
lated emitters (Bishara et al., 2010), (Yanny et al., 2020); spatially
and temporally sparse, such as in the case of neural signals (P�egard
et al., 2016) or spectrally sparse, such as in fluorescence or Raman
imaging spectroscopy (Wang et al., 2017; Wadduwage et al., 2017;
Wilcox et al., 2013). To refer to the number of used measurements
with respect to the pixels, it is useful to define a compression ratio
CR ¼ 1� M=N, expressed in percentual units.

A common way to exploit the sparsity of the problem is to use
masks or spatial light modulators to structure the illumination or
the detected light. Neifeld and Ke (2007) provide an overview of
different optical architectures compatible with compressive imag-
ing, comparing them in terms of bandwidth and photons budget.
Among these different architectures, one popular optical scheme is
the Single Pixel Camera (Duarte et al., 2008), which will be
described in the next paragraphs. Since Compressed Sensing in
imaging has been successfully and extensively exploited together
with a single bucket detector, the presented review paper will be
focused on SPC compressed protocols. Nonetheless, in the next
sections they will also be introduced compressed imaging tech-
niques where 2-dimensional detectors are used.

2.2. The single pixel camera

Imaging in the visible and near infrared (NIR) spectral range is
commonly performed using CCD or CMOS cameras. These detectors
4

come with different sizes and features and most of them have
millions of pixels, making them a feasible solution for imaging.
Given their spectral properties, imaging outside of said regions
requires different sensors. In many cases such sensors are not
available as array or they are orders of magnitude more expensive
than those used for the visible-NIR range. An approach to deal with
the higher cost per pixel is to drastically lower the number of pixels
needed. In this context, a possible solution is the so-called Single
Pixel Camera (SPC) (Duarte et al., 2008), (Sun and Zhang, 2019).
Besides being a cheap alternative, SPC is a good candidate for im-
aging in many different conditions, such as fluorescence, multi-
spectral/hyperspectral (Studer et al., 2012), terahertz (Watts et al.,
2014), polarimetric (Soldevila et al., 2013), and ultrafast (Guo
et al., 2015).

In single pixel imaging, rather than directly measuring the light
coming from the sample, what is acquired is the inner product
between the sample spatial distribution and a family of test func-
tions. The light reflected or emitted by the object is spatially
modulated by a pattern and measured by a single pixel detector
which integrates the collected light (Fig. 3a). The light is then
sequentially acquired using a set of M patterns. Given a N-dis-
cretized representation of a continuous sample x and a two-
dimensional family of test functions F, this is formally equivalent
to computing the vector of projections y ¼ F$x. This technique can
be implemented thanks to the use of Spatial Light Modulators
(SLM), which, by shaping the light (projected or collected), can
generate the test function 4m. As an alternative, arrays of Light
Emitting Diodes (LED) (Salvador-Balaguer et al., 2018) can be used
to modulate the illumination light and generate the required
patterns.

A Spatial Light Modulator is an object that can shape the in-
tensity (and eventually the phase) of a light beam. The light mod-
ulation can be performed in a variety of ways, according to the
technology of the device. Spatial modulators have played a central



Fig. 4. CS at different spatial scales. A spatial light modulator is used to create a speckle pattern for super-resolution microscopy, reprinted from (Pascucci et al., 2019) under a
Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/) (a). A digital micromirror device is used for single pixel phase and fluo-
rescence microscopy, reprinted with permission from (Liu et al., 2018) © The Optical Society (b). Multiples DMDs are used for CS mesoscopic imaging coupled with spectral and
time-resolved detection, reprinted by permission from Springer Nature Customer Service Centre GmbH: Springer Nature Photonics (Pian et al., 2017) © 2017 (c).
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role in the implementation of CS from super-resolution to meso-
scopic imaging (Fig. 4). One of the most widespread elements for
light shaping is the so called Digital Micromirror Device (DMD)
(Dudley et al., 2003), a reflective spatial light modulator made by a
matrix of micromirrors, usually with about a million entries, which
are free to swing between two angles. The DMD can be pro-
grammed to selectively tilt the microscopic mirrors according to a
desired pattern. Due to their working principle, DMDs are widely
used as binary masks, with the two limit positions being inter-
preted as logic “0” or “1” state. Nonetheless, non-binary amplitudes
can be obtained bymodulating the duty cycle of the “on” logic state.

Light modulators can be alternatively placed either in the illu-
mination or in the detection path of the imaging setup. In the first
case (Fig. 3b), the DMD projects a time sequence of patterns on the
sample, which is selectively illuminated, whereas in the second
case, the DMD is placed in an image plane and reshapes the light
coming from the sample, which is illuminated by a uniform light.
However, DMDs are not the only option for spatial lightmodulators,
as liquid crystal devices (LCD) can be also employed in single pixel
camera schemes. The main feature of LCDs is the possibility to
control both the amplitude and the phase of light. Hence, LCDs are
mainly used in computational ghost imaging and lens-less
compressive imaging systems. Nonetheless, DMDs have a higher
modulation rate, lower cost and complexity. For these reasons, their
use is widespread in CS imaging systems (Edgar et al., 2019).

In a Compressed Sensing acquisition scheme, the single pixel
detector sequentially acquires M frames, with M< N, where N is
the number of modulating pixels. To correctly recover the image
spatial distribution, the matrix F must be designed so that its rows
are incoherent with x. Once the compressed measurement vector is
obtained, an optimization algorithm is used to recover x (as
formalized in Section 1). It is worth mentioning that, due to the
optimization procedure, despite the compression yielded by the
method, the time taken for this inversion might largely exceed the
time needed to acquire M<N frames. In literature, a big variety of
optimization algorithm has been proposed, as l1- norm minimiza-
tion (Van Ewout Berg and Friedlander, 2008), total variation or
gradient (Van Ewout Berg and Friedlander, 2008), (Figueiredo et al.,
2007).

Even if random patterns perform well with most real images,
compressibility can be increased with a different measurement
approach, i.e., using a sampling matrix whose test functions belong
to a specific basis, namely Hadamard, Wavelet and Fourier. On top
of that, the subset of patterns which better captures the sample
spatial features can be chosen via an a priori or a dynamic approach.
Experiments have been reported in which a sub dimensioned
measurement matrix was designed by assuming that adjacent
5

frames are more likely to carry out similar spatial information
(Radwell et al., 2014). In Time of Flight 3D imaging, the subset of
patterns was devised with the support of a 2D range information
from a coupled CCD device (Edgar et al., 2016 In other cases, this
result was obtained by exploiting low resolution measurements to
predict the field of viewwhen higher resolution sampling is needed
(Rousset et al., 2017), (Soldevila et al., 2015).

2.3. Selection of the patterns

As specified in the previous section, encoding spatial informa-
tion on a single pixel detector is made possible by the introduction
of pixelated masks, which are available to work both in reflection
and transmission. The use of transmissive light modulators has
been limited by the low light efficiency, nonetheless DMDs have
been widely used as reflective, programmable masks with the
possibility of singularly address any modulation pixel.

A possible choice of sensing matrices could be that of random
measurement matrices, which are known to be incoherent with
any other fixed representation basis. For their characteristics,
random patterns have been used to simulate speckle patterns, as
those given by diffusion in turbid media (Sun et al., 2012), even
though their correlationwith randomwaveforms (e.g., white noise)
implies that a bigger number of maskedmeasurements is needed to
increase the signal to noise ratio SNR (Sunet al., 2013). As for other
acquisition basis, differential measurements would also lead to a
most efficient acquisition strategy, at cost of doubling the detection
subsystems after the SLM.

Along with randommatrices, a possible alternative is Hadamard
functions. As suggested by Duarte et al. (2008), Hadamard matrices
are good candidates when modulating light with DMDs. These
matrices can be recursively defined by:

Hk ¼
1ffiffiffi
2

p
�
Hk�1 Hk�1
Hk�1 �Hk�1

�
; 2.1

where k is the order of the Hadamard transform and H0 ¼ 1. To
define the measurement matrix, we iterate the recursion up to k ¼
M. They consist of two-valued basis functions, namely þ1 and � 1,
which match the modulator behaviour. Hadamard patterns show
both positive and negative values, while the DMDs hardware
cannot display a negative light intensity value. To encode such
negative entries, it is either possible to take a differential mea-
surement or simply to take one single positive acquisition. In the
first case the Hadamard pattern is formed by subtracting two
sequentially acquired complementary patterns (Harwit et al., 1979),
while in the second case the acquired frames must be rescaled and

http://creativecommons.org/licenses/by/4.0/
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offset by the constant contribution given by a continuous illumi-
nation (Huynh et al., 2016). However, differential Hadamard mea-
surements can be also achieved simultaneously by splitting the
detection path (Soldevila et al., 2016).

Even though Hadamard patterns might not be the best choice
due to their non-sparse matrix shape and the resulting storage
needed (Sun et al., 2017), given any k-dimensional Hadamard ma-
trix it holds that HkHT

k ¼ kIk, meaning that well posed problems
with such matrix do not need matrix inversion. On top of that, the
heavy computation needed for dense matrix-vector product can be
bypassed by the fast Walsh-Hadamard transform, which requires a
computational complexity of M logðMÞ, instead of OðM2Þ (Geadah
and Corinthios, 1977).

Another option for the measurement matrix can be that of
Fourier patterns. These patterns have beenwidely deployed both in
super resolution imaging (Gustafsson, 2000), (Dan et al., 2013) and
single pixel imaging (Zhang et al., 2015). Differently from Hada-
mard matrices, Fourier transform basis also have nonbinary entries
which can be DMD encoded by dithering themicromirrors during a
single frame exposure.

Even though Fourier strategy has been proven to better
concentrate image energy than Hadamard (Zhang et al., 2017), it
has been also shown to provide worse noise robustness. Therefore,
for single pixel imaging, the first family of measurement matrix is
preferable when the light efficiency is a major concern; conversely,
Hadamard's is most suitable for situations in which the overall
image quality is the discriminating factor.

Alongside the cited deterministic models, however, more so-
phisticated approaches have been proposed. In adaptive strategies,
the measurement masks can be adapted to the scene as more and
more features are acquired (Rousset et al., 2018; Edgar et al., 2015;
Higham et al., 2018) or the information carried by the first patterns
can be used as further initial condition to set up for reconstruction.
2.4. Single pixel camera for spectral and temporal measurements

In single pixel imaging the spatial information about the sample
structure is intrinsically transferred from the detector array to the
plane of light modulation. The capability of optically projecting the
scene onto a set of preloaded measurement basis is one of the
reasons beyond the success of SPCs. This method has implications,
that go well beyond fluorescence microscopy, which works pri-
marily in the visible range. Ultraviolet or IR, for example, are two
spectral ranges that require expensive pixelated sensors, and
cheaper alternatives are offered by CS from microscopic
(Zimmermann et al., 2003), (Denk et al., 2019) to macroscopic
scenery (Okhrimenko et al., 2019).

The lack of compact, efficient light sources and detectors in the
spectral region spanning from 30 mm to 0.3 mm, has been the
technology limit beyond the late development of imaging tech-
niques in this range. Only in the last two decades (Ferguson and
Zhang, 2002), it has been possible to build spectral (Baxter and
Guglietta, 2011) or time domain imagers (Jepsen et al., 2011) in
the Terahertz region. Radiation in this spectral range has many
interesting properties: it can be used as testing probe for quality
assessment due to its ability to penetratemany insulatingmaterials
as paper and plastic. It excites molecules vibrational modes in
crystals, explosives and drugs; it can support wireless data trans-
mission (Ishigaki et al., 2012) and it has also been used to drive
electron acceleration (Nanniet al., 2015). Nonetheless, multiele-
ment image acquisition and raster scanning routines makes THz
imaging inefficiently long and/or complex. Compressive imaging,
based on spatial masks for THz detection is a valid alternative
(Watts et al., 2014), (Chan et al., 2008).
6

SPC has been also successfully applied for multispectral and
hyperspectral imaging, in order to reconstruct images at multiple
wavelengths. The idea is to simultaneously work with different
SPCs, each of them at a specific wavelength, by combining spectral
detectors (e.g., linear array coupled to a dispersive element) with
spatial light modulators (see Section 3) (Jin et al., 2014; Jin et al.,
2016; Davis et al., 2011).

Single pixel cameras can also be coupled to time-resolved
detection schemes, such as Time Correlated Single Photon Count-
ing (TCSPC). TCSPC is a statistical method that generates a histo-
gram of different photons arrival times, by synchronizing a train of
laser pulses with single photon detection. This can provide useful
insights about the sample's absorption, emission and scattering
(Howland et al., 2013). In particular, fluorescence Lifetime Imaging
at picosecond or nanosecond resolution finds a variety of applica-
tions spanning from biology and medicine (Marcu, 2012), (Elson
et al., 2004), to material sciences (Barnard et al., 2013), (Becker,
2012), providing information about the environmental pH, tem-
perature, polarity, and ion concentrations. In this context, CS can be
used to parallelize time-resolved detection, using arrays of time-
resolved detectors (Rousset et al., 2018). In addition, time
resolved detection can be combined with spectral detection (Liu
et al., 2019) to extract space-lifetime-spectral information
together, as described in Paragraphs 3.5 and 3.6.

3. Applications of compressed sensing: from super-resolution
microscopy to mesoscopy

3.1. Super-resolution microscopy

In case of individual, spatially separated fluorescent objects, it is
possible to resolve the different emitters at a subwavelength res-
olution. In this scenario, CS can be adapted to reconstruct the sparse
emitters (Gazit et al., 2010). However, when dealing with far field
fluorescence microscopy, the different emitters are not well sepa-
rated, and light diffraction limits the capability to resolve them.
Several super-resolution techniques have been developed to
address this limitation (Hell, 2007). Among them, Photo-activated
localization microscopy (PALM) (Betzig et al., 2006) and STochas-
tic Optical Reconstruction Microscopy (STORM) (Rust et al., 2006)
are based on the idea of activating a limited number of fluorescent
molecules in the field of view and to localize themwith a precision
higher than the diffraction limit.

In combination with STORM microscopy, CS is used to separate
single molecules even when the emitters are not directly distin-
guishable: said molecules are under-sampled during the acquisi-
tion and CS offers increased localization speed by an order of
magnitude (Zhu et al., 2012), (Babcock et al., 2013), (Cheng et al.,
2017). In this context, Wu et al. (2018) propose the use of model-
based sparse Bayesian learning, with the goal of achieving real-
time image reconstruction. In alternative, a frequency domain
compressed sensing technique can potentially be 1000 times faster
that CS-STORM (Zhang et al., 2019). To reduce the acquisition time
in singlemolecule localizationmicroscopy, Li et al. (2009) propose a
single-frame, wide-field nanoscopy system based on ghost imag-
ing: a random measurement matrix composed of speckles is
created with a phase modulator, which transforms the signal
measurement matrix to satisfy the sparsity requirement (Li et al.,
2019). The technique reconstructs a super-resolution image via
sparsity constraints from one low-resolution wide-field speckle
image. Furthermore, Compressed Sensing can be used in STORM
microscopy to enhance three-dimensional imaging, based on novel
molecules localization algorithms (Gu et al., 2014), or in combina-
tion with astigmatic imaging (Huang et al., 2015).
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An alternative to PALM and STORM, is super-resolution optical
fluctuation imaging (SOFI) (Dertinger et al., 2009) that from the
temporal statistics of the fluorescence emissions, produces sub-
diffraction images at higher temporal resolution but at cost of
spatial resolution. Solomon et al. (2018) demonstrate a super-
resolution microscopy technique which is based on sparsity in
the correlation domain. By assuming that the blinking emitters are
uncorrelated over time and space, the authors use CS to exploit the
speed of SOFI at higher spatial resolution.

Structured Illumination Microscopy (SIM) (Gustafsson, 2005)
has become one of the most widely used super-resolution micro-
scopy methods. SIM is based on the projection of modulated pat-
terns on the sample, at different spatial phases and angles. The
acquisitions are combined to extend the optical transfer function of
the imaging system beyond the diffraction limit. Compressed
sensing can be used to reduce the number of pixels sampled and
stored during the acquisition of the modulated images (Meiniel
et al., 2017). Furthermore, Pascucci et al. (2019) show that speckle
patterns can be used for SIM modulation and compressed recon-
struction (Fig. 4a). Similarly to Li et al. (2019), the authors take
advantage from the properties of speckle patterns created with a
spatial light modulator. Speckles are orthogonal at different depths
of propagation, maintaining high contrast. This allows the recon-
struction of sparse objects in three dimensions, acquiring a single
two-dimensional image. In SIM microscopy, SLM are commonly
exploited to generate the illumination patters but DMDs are also
widely used, even in combinationwith LED illumination (Dan et al.,
2013). Nonetheless, the concept of SPC is not commonly used for
super-resolution microscopy, but finds many applications in
widefield illumination microscopy.

3.2. Wide field fluorescence microscopy

In fluorescence microscopy, one of the main issues is the low
intensity of light emitted by the specimen. For this reason, in
fluorescence microscopy the SPC has evolved toward a scheme
where the illumination path is modulated, instead of the detection
(Studer et al., 2012) (Fig. 3). Hence, in a typical fluorescence mi-
croscope based on SPC, the excitation light is modulated by a DMD
and projected onto the sample. The fluorescence signal is then
collected by the single pixel detector.

Some specific problems related to widefield illumination should
be considered when dealing with this technique. For instance, a
coherent source would produce a speckle intensity distribution
which would overlap the illumination pattern. For this reason,
Studer et al. (2012) insert a diffuser in the illumination path
(Fig. 3b). By rotating a diffuser, speckle patterns are averaged in
time during the acquisition, resulting in an effective uniform illu-
mination. As an alternative, incoherent light can be efficiently used
as source (Salvador-Balaguer et al., 2018), (Yuan and Pang, 2016).
Furthermore, the area of the detector must be large enough to
collect all the incoherent photons emitted by the specimen. For this
reason, photomultipliers (PMT) are to be preferred over photodi-
odes, for their typically larger active areas. For what concerns the
detection optics, the light collected from the sample should be
maximized, whereas aberrations in the detection path are not a
major issue. Conversely, the quality of the illumination pattern
determines the achievable resolution of the system and the aber-
rations should be minimized in the optical system of the illumi-
nation path.

The single pixel scheme is used in many widefield-illumination
microscopes, primarily with the goal to extend the capabilities of
the optical system by introducing hyperspectral or time-resolved
detection (see Paragraphs 3.5 and 3.6). Due to its single active
element, the SPC becomes a valid candidate when designing low
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cost (Salvador-Balaguer et al., 2018), multimodal (Liu et al., 2018)
microscopes (Fig. 4b) or when fast acquisition is needed (Guo et al.,
2017). Finally, SPC finds applications in optical systems whose
detection is affected by aberrations or even in presence of light
diffusion between the sample and the detector (Rodríguez et al.,
2014).

3.3. Optical sectioning fluorescence microscopy

In widefield fluorescence microscopy, thick specimens not only
emit from the in-focus plane but from the whole illuminated vol-
ume: collecting out-of-focus light reduces the contrast and there-
fore the axial resolution of the acquired image. To overcome this
problem, several optical sectioning techniques have been devel-
oped, aimed at collecting light only from a single specimen's plane.
Among said techniques, the most widely used is confocal micro-
scopy (Conchello and Lichtman, 2005), (Mertz, 2011), where the
out-of-focus light is rejected by a pinhole placed in front of the
detector in a plane conjugated with the sample. Confocal micro-
scopy is a raster scan technique inwhich the illumination/detection
focal spot is moved through the entire specimen in the imaging
plane. Then, the depth of the imaging plane can be scanned along
the axial direction. Compressed sensing offers the possibility to
reduce the number of measurements, but standard confocal con-
figurations preclude the use of modulation devices (namely a
DMD). On top of this, the presence of a static pinhole in the
detection is not compatible with CS reconstruction algorithms.

Nonetheless, the possibility to apply CS concepts to confocal
microscopy is proposed in references (Kelly et al., 2007), (Sun et al.,
2008). Ye et al. (2009) show a scheme based on randomly sparse
binary masks, which are loaded on a DMD placed in the image
plane of the microscope. The light reflected (or emitted) by the
specimen is imaged back onto the DMD, which provides a mask to
capture only in-focus light, and then, with a beam splitter (or a
dichroic mirror in case of fluorescence (Wu et al., 2010)), is sent to a
bucket detector. It is true that a higher degree of sparsity of the
mask would result in a higher optical sectioning of the system, but
it would also lead to an inefficient detection path. Within this
framework, authors report the possibility to reduce the number of
measurements up to 90% with respect to raster scan. Wu et al.
(2010) study the optical sectioning capability of the method by
using Modified Scrambled Block Hadamard Ensemble patterns.
These masks are such that few “on” pixels are surrounded by “off”
pixels and are sparsely distributed. The surface extension of the
incoming light on the DMD, together with the mask sparsity, may
imply a great reduction in the excitation power, which could limit
the range of application of the technique. This is the case for
multiphoton and non-linear microscopy (see next Paragraph)
(Mertz, 2011). In addition, for low signal application, the masked
DMD reflection of the fluorescence signal, may critically lower the
system light throughput.

For these reasons, Pavillon and Smith (2016) propose a CS
confocal design which keeps the laser scanning concept whilst
reducing the number of measurements with a trivial subsampling
of the measurement matrix. Said subsampling alone is not suitable
for CS, because it does not respect the mutual incoherence between
the measurement and the sparsifying matrices and may lead to
reconstruction artifacts (Francis et al., 2019). Yet it is still possible to
reconstruct the dataset if the imaging system (namely its point
spread function, PSF) is taken into consideration. As amatter of fact,
the spreading of a signal caused by the PSF implies that each
measured point is the linear combination of values in the vicinity
and so the PSF acts as a smoothing operator that spreads the signal
contributions. The measurement matrix F is sparse by construc-
tion, and then F is applied not to x, but to the convolution between
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the PSF and x. The authors validated their scheme by simulations
and measurements, achieving compression ratios up to 94% and an
improved SNR. The main advantage of this approach is the ready
application to existing laser scanning system while the ultimate
compressibility is related to the PSF width. The problem of optical
reconstructions from under-sampled confocal measures is also
studied by Francis et al. (2019), at the regularization algorithm
level. They propose an adaptive regularizationmethod based on the
image structure, that considers the maximizer of information en-
tropy, achieving better reconstructions with respect to other
methods, like multi-resolution prior-based scattered data approx-
imation and l1 algorithms.

An alternative approach for optical sectioning is based on
Structured Illumination Microscopy (SIM). A series of light patterns
is projected on the microscope's object plane and the corre-
sponding modulated images are collected with a camera. Since in-
focus and out-of-focus light are modulated differently, it is possible
to reconstruct an optical section of the sample with computational
methods. Furthermore, SIM is a wide-field technique, and it can
provide high temporal resolution. Parot et al., 2019 use SIMwith CS,
to record fast neuronal activity in zebrafish. Their approach with
Hadamard patterns outperforms other implementations of SIM in
terms of high contrast PSF but it suffers from low time resolution.
However, with compressive sensing, the authors can push the time
resolution up to 500 Hz, taking advantage of the specimen features.
With respect to other compressive sensing application, where
spatial or temporal sparsity are enforced with adjustable parame-
ters of iterative optimizations, the optical section estimation results
from direct calculation.
3.4. Multiphoton and non linear microscopy

Multiphoton (MP) microscopy is another common paradigm to
obtain optical sectioning: a light pulse, with temporal duration of
about hundreds of fs, is used to cause the simultaneous absorption
of two (2-photon microscopy, 2PM) or more near-infrared photons
by a single fluorophore. This unlikely nonlinear event happens only
at the objective's focal plane, where the intensity of the excitation
light is the highest. Hence, only the fluorescence within the focal
plane is excited. Onemajor advantage of multiphotonmicroscopy is
the use of longer wavelengths compared to visible wavelengths,
resulting in a deeper penetration in scattering media, such as bio-
logical samples. For this reason, MP microscopy has opened a wide
horizon of feasible biological studies (Hoover and Squier, 2013).
Nonetheless, MP microscopy needs high intensities and its con-
ventional design involves femtosecond lasers (Denk et al., 1990).

There are numerous implementations to improve the MP mi-
croscopy performances, including high speed scan systems,
multimodal imaging, and multifocal excitation methods. Temporal
Focusing (TF) is one of those (Oron et al., 2005) aimed at improving
the acquisition speed and the sensitivity in depth (Papagiakoumou
et al., 2013; Zhu et al., 2005; Rowlands et al., 2017). The technique is
based on temporal broadening of ultrashort pulses and subsequent
recombination of the spectral components, with the shortest pulse
duration obtained only at the focal plane exploiting the dispersion
properties of the sample.

Escobet-Montalb�an et al. (2018) introduce a Temporal Focusing
microscopy with single-pixel detection (TRAFIX). This work ad-
dresses the problem of imaging deep in diffusive tissues, taking
advantage both of the TF for depth sensitivity and of the single-
pixel detector for scattering robustness (Tajahuerce et al., 2014).
The authors use a pulsed laser (140 fs, 80 MHz, 800 nm) and a
spatial modulator (a liquid crystal on silicon) imaged onto a blazed
diffraction grating to obtain pulse stretching. Specimen of different
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thickness (from approximately 50 to 550 mm) are illuminated with
a Hadamard basis scan. The authors present higher imaging quality
and less photobleaching compared to a point scanning 2PM.
Furthermore, the authors also perform a feasibility simulation for
3-photon TRAFIX (considering excitation at 1700 nm). Wijesinghe
et al. (2019) demonstrate that, in TRAFIX, random patterns
perform better than Hadamards, and, moreover, random Morlet
basis have the additional benefit to be fully transmitted through the
objective. A compression ratio up to 87.5% is achieved in imaging of
beads immersed in a thick (360 mm) scattering medium (approxi-
mately m0s ¼ 8:5).

A similar demonstration of the technique is provided by
Alemohammad et al. (2018), where a DMD is used both as
diffraction grating and pattern generator, simplifying the system. In
this work, the authors use pseudorandom patterns to scan fluo-
rescent beads in a scattering medium. Additionally, they propose to
use the system in a random-access imaging configuration, to target
different region of interest in parallel, and then apply an adaptive
sampling method to scan a subregion at finer resolution.

Multiphoton microscopy based on compressive random access
is proposed by Wen et al. (2019). A holography-based technique is
used to generate a multi-focus 3D scanning pattern with a DMD
(Geng et al., 2017). The system exploits a femtosecond laser (200 fs,
80 MHz, and 800 nm), a DMD coupled with a grating and a photo-
multiplier as detector. The multi-focus random access map, which
is loaded on the DMD, is generated via binary holography and a
weighted Gerchberg-Saxton algorithm. The authors also discuss the
possibility to perform sections not only by parallel planes, but also
with arbitrary optical sectioning surfaces (e.g., parabolic, sinusoidal
etc.) by properly programming the DMD.
3.5. Fluorescence Lifetime Imaging Microscopy

The information inferred from fluorescence microscopy can be
significatively increased if, in addition to intensity, the fluo-
rophore's lifetime is measured and used as an imaging parameter,
as in Fluorescence Lifetime Imaging Microscopy (FLIM). In fact, the
lifetime depends on de-excitation molecular processes and thus is
very sensitive to the microenvironment (namely pH, temperature,
intermolecular distance) and it is independent from the excitation
intensity. Progresses and applications of FLIM are reported in two
recent reviews (Liu et al., 2019), (Datta et al., 2020).

Conventional FLIM measurements can be performed with a
raster scanning approach coupled with Time Correlated Single
Photon Counting (TCSPC) detection systems. The need to both
reduce the acquisition time and the data set size, led to the use of
CS. In fact, the demand for fast FLIM is not only limited to the
measurement process, but it also involves data processing, since
lifetime estimation can be computationally heavy. A scan-less
lifetime measurement system based on a coding mask, which
modulates the collected light with Hadamard patterns (Hadamard
Transform Imaging, HTI), is reported by Hassler et al. (2005).
Mizuno and Iwata (2016) present an increment in sensitivity and
time resolution, with respect to 2D gated imaging detectors (i.e., a
CCD camera), by merging a method based on HTI with a Fourier-
transform phase modulation fluorometer. The presented system
is based on a time modulated LED matrix, and it therefore shows
limited spatial and temporal resolutions. Nonetheless, the authors
also propose alternatives to improve such performances, namely
the use of a pulsed laser and a DMD, and a heterodyne or photon
counting detection.

Outside the microscopy context, a mesoscopic compressive
fluorescence lifetime imaging system is proposed by Pian et al.
(2017). Their setup (Fig. 4c) involves three DMDs (enclosed in a
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projection system), to provide both patterned illumination and
detection, and canwork in reflectance and transmittance geometry
so to be adaptable to the specimen. Time-resolved signals for each
pattern are recorded with a photomultiplier; additionally, a camera
can be used for system calibration and reference images. This
technology can be employed to perform FRET measurements
in vitro and in vivo, obtaining spectrally resolved spatial maps in
intensity and lifetime. The authors report a measurement time of
14 min, but they point out that with pattern optimizations (Rousset
et al., 2018), (Ochoa et al., 2018), the number of measures can be
further reduced. Additionally, this system can be used combined
with a machine learning approach in data analysis (Yao et al., 2019).

Lifetime estimation is a non-trivial task: compressive sensing
finds another possible application as a method to retrieve fluores-
cence parameters. Yang et al. (2015a) show that a fluorescence
decay has a sparse representation, since it can be modeled as a sum
of a finite number of exponentials. Hence it is well suited for
compressive approaches. They model the time-resolved photon
counting data from a confocal microscope as a Poisson process of
unknown parameters and set the problem to retrieve such pa-
rameters with a negative Poisson log-likelihood. The sum between
the latter and a l1norm regularization term is the objective function
to be minimized, to obtain a sparse solution for the amplitudes and
lifetimes, by means of CS. This approach shows to be more robust
for low photon counts with respect to other techniques, i.e., non-
linear least squares fitting, fast fitting and maximum likelihood.

Recent developments in FLIM include the field of compressed
ultrafast photography (CUP) (Gao et al., 2014). Thompson et al.
(2017) were the first to report the possibility to acquire an entire
fluorescent lifetime image with a single laser pulse, directly on
cells, by means of a streak camera. The main benefit of CUP is that
complex and fast biological events can be seen with a one-shot
acquisition, unlike the more common ultrafast optical techniques
(e.g., pump-probe and up-conversion) for the study of ultra-fast
phenomena. Wang et al. (2020) demonstrate a single-shot spec-
trally resolved FLIM. In their system (Fig. 5b), the light from the
specimen is split into two paths: the first leading to a camera while
the second to a DMDwhich reflects light onto a streak camera. CS is
applied to retrieve a time and spectrum resolved image from the
Fig. 5. Four different methods to perform a spectrally resolved compressive fluorescence m
Society; (b) CUSP. Left: illumination section for the microscope. Right: complete CUSP setu
national License (http://creativecommons.org/licenses/by/4.0/), (c) IFTS, adapted with permis
(G1 and G2) generate the interferometer and a variation of the thickness of a glass block is us
orders. (d) Space-constrained computational spectral imaging detection system. Adapted w
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data collected within the two paths. Finally, the frame rate depends
on the sweeping speed of the streak tube and the camera's pixel
size, while the temporal information is retrieved with a single shot.
Despite samples are markers in cuvettes, preprints are reporting
that the technique is starting to be applied even in vivo in cells (Ma
et al., 2020).

3.6. Hyperspectral microscopy

Another possibility to enrich a fluorescence microscopy dataset
is to perform spectral imaging. This strategy is used to identify
spectrally overlapping emitters or to isolate markers from an
autofluorescent background, with the goal to collect structural and
functional information from cells, tissues, interacting proteins. As a
matter of fact, the spectrum is sensitive to the local microenvi-
ronment, similarly as the lifetime. Spectrally resolved microscopy is
employed, among others, in cellular imaging, gene mapping, and
pathology (Gao and Smith, 2015). The literature reports a distinc-
tion between two spectral domains: imaging is called multispectral
when the spectral resolution is >10 nm and the dataset in made of
3 to 10 normally spaced spectral bands. It is called hyperspectral
when the resolution is below 10 nm, from tens to hundreds of
nanometers wide bands.

Spectral measurements at high resolution require longer
acquisition time, which could be reduced with CS. The coded
aperture snapshot spectral imager (CASSI) discussed by Cull et al.
(2010), is a pioneer design to apply CS to fluorescence micro-
scopy. Said imager (Fig. 5a), is a prism-based system which can be
cascaded to a commercial fluorescence microscope. The collected
light is spectrally dispersed along one spatial dimension, then a
spatial modulation is applied to the sheared data, and finally the
spectral components are recombined. The data cube ðx; y; lÞ is
detected by a camera within a single shot. The dataset cube is
retrieved with a Two-step Iterative Shrinkage/Thresholding
(TwIST) algorithm with the total variation minimization.

An alternative technique is the compressed ultrafast spectral
photography (CUSP) presented by Wang et al. (2020) and already
discussed in the previous paragraph. According to this design
(Fig. 5b), spectral detection is achieved with a diffraction grating
icroscopy: (a) CASSI, reprinted with permission from (Cull et al., 2010) © The Optical
p. Adapted from (Wang et al., 2020) under a Creative Commons Attribution 4.0 Inter-
sion from (Wadduwage et al., 2017) © The Optical Society; here two diffraction gratings
ed to introduce a path length difference. An aperture (A) is introduced to block off-axis
ith permission from (Wang et al., 2019) © The Optical Society.

http://creativecommons.org/licenses/by/4.0/
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(G) that spatially disperses the fluorescence signal on the streak
camera. In such a way, the sweep of the streak camera detects the
time, the spatial position the spectrum, and the image is encoded
with a pattern projected on a DMD. The reconstruction is again
obtained using the TwIST algorithm.

The use of CS with SPC for hyperspectral imaging is originally
discussed in Studer et al. (2012) (Fig. 3b): a spectrometer coupled to
a linear Electron-multiplying CCD camera, provides nanometer
spectral resolution. A series of Hadamard patterns is used to encode
the data cube. The reconstruction can be obtained either by inde-
pendently considering the spectral bands or the intrinsic nature of
the data, which is sparser in spectrum than in space. In this way, the
authors apply a compression ratio of 97% (and up to 99%, but with
some information loss) in space and reconstruct the spectral in-
formation at a compression ratio of 98%, with some distortions in
the low intensity part of the spectrum. As optimization, the authors
propose a sampling strategy that acquires information in the low
and in the high part of the power spectrum. Pian et al. (2017) use a
commercial Czerny-Turner spectrometer coupled with a PMT de-
tector (Fig. 4c) in a SPC scheme.

Another class of spectral resolved schemes is based on inter-
ferometric methods, namely the Imaging Fourier transform spec-
trometry (IFTS). In IFTS, the signal collected by each point of the
specimen is split in two and sent to an interferometer. A path-
length difference is introduced between the two arms of the
interferometer, generating an interference figure at the detector.
The interferogram is recorded with a camera and the data cube is
retrieved with an inverse Fourier transform. One advantage of the
interferometric design is that the spectral bandwidth and resolu-
tion are tunable according to the path length differences. CS can be
applied to reduce the number of samples in the interferogram to be
acquired. However, it is crucial that the system outputs a uniform
phase difference across the entire field of view. An intrinsically
more stable design is IFTS based on a common path interferometer
(Candeo et al., 2019). Wadduwageet al. (2017) propose a nearly
common path IFTS, where the light is processed by the same optical
components except for a glass block. The system is drawn in Fig. 5c.
To apply CS, the optical phase can be varied either randomly or in
an optimized way. The IFTS approach is also implemented by
Moshtaghpour et al. (2019). This work reduces the light exposure
and optimizes the path difference scan, by keeping the photon
budget and spectral resolution fixed. The authors discuss two
illumination schemes based on temporal and spatial modulation.

Finally, Wang et al. (2019) propose a computational spectral
imaging strategy, where the spatial information from fluorescence
is used as a constraint for the multispectral reconstruction. The
specimen is illuminated with multiple randomly coded patterns.
Then, in the collection arm, half of the light leads directly to a
camera, the other is spectrally dispersed through a wedge, and is
then imaged in a different area of the same camera. With distinct
spectra, a 5 Hz frame rate is achieved.

3.7. Light sheet microscopy

Light Sheet Fluorescent Microscopy (LSFM) is a microscopy
technique in which excitation light is confined over a single plane
(light sheet) and the emitted fluorescence signal is collected on an
orthogonal path with a widefield detector (Huisken, 2004). This
design comes with intrinsic optical sectioning capability, together
with high-speed volumetric acquisition rate and low photo-
toxicity, which makes it a suitable tool for volumetric, time-lapse
measurements (Olarte et al., 2018). Together with Optical Projec-
tion Tomography (Correia et al., 2015), LSFM is a powerful tech-
nique to image living embryos and large mm-scaled chemically
cleared biological samples.
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An alternative to light sheet illumination consists in illumi-
nating a volume of the sample modulated along the detection di-
rection of the microscope (i.e., the axial direction of the
microscope). This can be obtained bymodulating the light intensity
while the light sheet is scanned axially through the sample
(Woringer et al., 2017) or projecting light patterns (e.g., with a
DMD) modulated along the axial direction (Calisesi et al., 2019). We
call this second method spatially modulated Selected Volume
Illumination Microscopy (smSVIM), which is also described in
Fig. 6. In both cases, the light collected by each pixel of the detector
is the integral of the product between the illumination pattern and
the fluorescence distribution along the axial direction.

For each pixel position ði; jÞ, the described situation is formally
equivalent to:

yði; jÞ ¼F,xði; jÞ 3.1

where yði;jÞ is the column vector of the intensities ym per each pixel
position, F is the overall measurement set, whose rows are the
basis measurement functions and xði;jÞ is the fluorescence concen-
tration profile along the axial direction, specified by the n-axis, at
the position ði; jÞ. This reconstructs the depth information along z,
on the direction perpendicular to the detection. Let us assume to
create the modulation with a DMD, as in a smSVIM setup. The
Walsh-Hadamard basis is the one of choice, due to its compatibility
with fast DMDmodulation and to its 50% fill factor. IfM ¼ N frames
are acquired, it is possible to reconstruct the fluorescence profile,
corresponding to n sections of the volume, by solving a well-posed
inverse problem, similarly to what done in single-pixel camera
applications. One advantage in using smSVIM, over LSFM, is given
by the possibility to use CS. Here, CS is used to reduce the numberM
of patterns projected on the sample to a number smaller than the
number of reconstructed planes N (the number of acquisitions that
would be required in LSFM). In this way the fluorescence bleaching
and the measurement time can be reduced (Calisesi et al., 2019).
3.8. Small animal imaging

Due to the large availability of fluorescent proteins and probes,
many different functional processes can be monitored in living
animals (Ntziachristos, 2006), (Weissleder and Ntziachristos,
2003). When dealing with thick biological tissues, the light enters
in a diffusive (or scattering) regime, thus strongly limiting the
achievable spatial resolution. Light propagating in a typical bio-
logical tissue experiences a mean-free path of about 100 mm (cor-
responding to a reduced scattering coefficient m0s ¼ 10 cm�1 with
anisotropy factor g ¼ 0:9) (Jacques, 2013). This means that a
dedicated model of its propagation in the medium is needed for
recovering the spatial distribution of the fluorescence inside the
volume.

The typical configuration for fluorescence imaging in the
macroscopic scale is depicted in Fig. 7. The sample is illuminated
with light which can be modulated in space or time. After injection,
the light propagating in the sample is scattered, absorbed, and
eventually excites fluorescence due to localized fluorescent
markers. In turn, this emitted light will propagate again under a
diffusive regime and will eventually be detected on the surface of
the sample. The aim is to recover the fluorescence distribution in-
side the sample from the measurements performed at the bound-
ary. This technique is called Fluorescence Molecular Tomography
(FMT), or Fluorescence Diffuse Optical Tomography (FDOT) (Arridge
and Schotland, 2009), (Darne et al., 2014). FDOT problem is
generally faced by calculating a Sensitivity matrix (or Jacobian ma-
trix), which represents the change in the detected fluorescence



Fig. 6. Schematics of smSVIM (a). Reconstruction of a chemically cleared biological sample, mouse brain labelled with Cy 5 (b) at different compression ratios, namely CR ¼ 50% (c),
CR ¼ 75% (d) and CR ¼ 87.5% (e), scale bar is 1 mm.

Fig. 7. Measurement scheme in Fluorescence Diffuse Optical Tomography.
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signal due to a small change of the yield in each voxel of the sample
(Arridge, 1995), (Arridge and Schweiger, 1995). It is worth noting
that under the assumption of known optical properties, at both the
excitation and emission wavelength, the problem becomes linear
with respect to the fluorescence yields, while the general problem
of Diffuse Optical Tomography is intrinsically nonlinear (Arridge
and Schotland, 2009), (Darne et al., 2014). To construct this ma-
trix, a proper model of the light-propagation from the source to the
detectors and inside the tissue is required. At this purpose, nu-
merical methods based on finite-elements (FEM) (Arridge et al.,
1993) or fast Monte-Carlo (MC) simulations (Fang and Boas,
2009), (Yao et al., 2016) can be used. These methods are suitable
for complex geometries like small animals, namely a mouse.

Once the sensitivity matrix is computed, the problem can be
formulated as in Eq. (1.1) where F is the sensitivity matrix, y is the
measurements vector and x is the unknown fluorescence ampli-
tude for each voxel. The problem is ill-posed because it is under-
determined (Arridge and Schotland, 2009), (Arridge, 1999), and
regularization is required. Thus, the solution is typically obtained
by solving the optimization problem in Eq. (1.3): where t is the
regularization parameter andR ðxÞ is a regularization functional (or
prior) which can be selected to drive the solution towards a certain
characteristic, such as sparsity in some domain, smoothing, etc.
(Correia et al., 2011).

Pioneering works on FDOT (Ntziachristos, 2006), (Weissleder
and Ntziachristos, 2003) use dense point-like illumination and
detections, with a high complexity of the setup. The initial idea was
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to cover the surface as much as possible with illumination/detec-
tion points to maximize the spatial resolution. For each injection
point all detectors were activated, thus generating a big quantity of
data. In this framework different compression strategies were
proposed, paving the way to the application of CS in fluorescence
molecular imaging of small animals.

The first proposed compression strategies rely on data
compression after measurement. The typical setup consists of a
point-source (usually a laser) for illumination and a CCD for
detection. Each pixel acts as a single point-like detector so that the
sensitivity matrix has to be constructed considering all the source-
detectors combinations. Moreover, considering the possibility of a
moving source, the number of combinations critically increases.
Considering that a biological tissue acts as a low-pass filter (Bassi
et al., 2008), the majority of the acquired images are compress-
ible in the Fourier space, thus allowing their storage with limited
Fourier coefficients. This approach is pursued by Ripoll (2010) un-
der a simple geometry of slab, for which the sensitivity matrix can
be analytically computed, due to the concise Fourier representation
of the point-like source/detection combination.

A similar approach is proposed by Rudge et al. (2010). In this
case the compression is performed in the wavelet-basis: the
wavelet-transform is applied to the CCD images, the coefficients
with smaller weights are filtered and the inversion is performed in
the wavelet-space. This filtering strongly reduces the number of
rows in the sensitivity matrix. Moreover, they use a FEM approach
which suites the application to a realistic small animal model.

The development of spatial light modulators, and particularly
DMDs, has made spatial light modulation straightforward both in
illumination and detection. An extensive use of structured illumi-
nation has been applied by Ducros et al. (D'Andrea et al., 2010;
Ducros et al., 2010; Ducros et al., 2012; Ducros et al., 2013; Ducros
et al., 2016): in these works, the authors investigate different illu-
mination patterns, ranging from Fourier to Haar wavelet basis,
coupled to a CCD acquisition. More details on the use of structured
illumination in biomedical imaging can be found elsewhere
(Angelo et al., 2018). The increasing availability of spatial light
modulators allowed the implementation of the single-pixel camera
in the field of macroscopic optical imaging. This approach paved the
way both to the development of advanced compression strategies
and to multi-dimensional imaging (space, wavelength, time): the
possibility of shrinking the space dimension into a single-detector
(either compressed or not) allows one to explore other di-
mensions with time- and/or space-resolved detectors. As an
example, Pian et al. (2017) report a system based on two DMDs, one
for illumination and the other one for detection, resolving in time,



G. Calisesi, A. Ghezzi, D. Ancora et al. Progress in Biophysics and Molecular Biology xxx (xxxx) xxx
space and wavelength, the fluorescence in F€orster Resonance En-
ergy Transfer (FRET) experiments. Moreover, thanks to the avail-
ability of programmable masks, strategies for data-driven
adaptation of the measurement have been developed. As an
example, Rousset et al. (2018) propose an adaptive strategy for
reducing up to a compression ratio of 93% the measurements per-
formed on a fluorescent sample, to obtain a hypercube data with
space, time and emission spectrum. An exhaustive comparison of
different illumination patterns, compressions and solvers is dis-
cussed by Ochoa et al. (2018).

Since the dimensionality of the measurement space is smaller
than that of the volume distribution of the fluorophores, the
problem formulated by FDOT is intrinsically ill-posed. Yet, in many
small animal imaging experiments, what we want to recover are
the localized distribution of the fluorescence signal. This means
that the searched signal is locally zero almost everywhere. By
introducing a proper penalty term R ðxÞ (such as l1 minimization,
described in Section 1), it is possible to promote sparsity in the
solution, obtaining sharper andmore accurate reconstructions. This
approach has been pursued by different research groups (Zhao
et al., 2014; Yang et al., 2018; Zhu and Li, 2014) with improved
reconstruction quality compared to classical l2-based methods. In
particular, the following works are remarkable: (Yang et al., 2015b)
which proposes the use of the l1-norm of the Fourier-transform
solution (Zhao et al., 2014), which introduces a general lp-norm
terms and compare reconstructions with p ¼ f1 =16; 1 =4; 1; 2g,
and lastly (Zhu and Li, 2014), which compares different regulari-
zation terms based on 3 different norms.

Due to the promising results given by sparse-reconstruction, CS
has been widely used for the optimization of the sampling strategy
in FDOT, by exploring the incoherence of the sensitivity matrix. Jin
et al. (2012) propose a method to construct preconditioners for the
sensitivity matrix aiming at reducing its coherence. The sensitivity
matrix W in CW-FDOT is the column-wise Kronecker product of
two matrices: the excitation field F, and the emission field G. By
reducing their coherence through proper preconditioners, it is
possible to reduce the coherence of W as well, thus improving the
quality of sparse reconstructions. The formulation of the two pre-
conditioners is equivalent to the calculation of optimal illumination
and detection masks. The experimental configuration is based on
different point sources and a CCD camera. The preconditioners are
calculated a-posteriori and applied before the reconstruction.

Yang and Yao (Yao et al., 2015), (Yang et al., 2018) implement this
approach in a setup based on a two-DMDs configuration, both in
illumination and detection, paired with a proper sparse-
reconstruction algorithm. The optimal illumination and detection
patterns are precomputed and loaded on the DMD during the
measurements, thus reducing the acquisition time whilst main-
taining the information content. The pre-computation of the
optimal patterns is possible under the assumption that medium
optical properties at both excitation and emission wavelengths are
known and do not vary during the experiment.

Overall CS in small animal imaging has been used both for
deriving sensing strategies (illumination and detection) to be
implemented in an experimental system and for reconstruction of
sparse signals. It is worth noting that, differently from other ap-
plications, the cited sensitivity matrix differs from a sensing matrix
since the input and output are decoupled by the scattering me-
dium: the projected pattern is not preserved inside the volume, but
it is distorted by the diffusion of light. Consequently, a double-DMD
configuration is typically required for implementing CS strategies
(Farina et al., 2017).
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4. Conclusions

First proposed in 2006, compressed sensing techniques have
since been steadily increasing in terms of rate of theoretical
development and applications. In the field of fluorescence micro-
scopy, CS facilitates image reconstructionwith a reduced amount of
acquired data, potentially speeding up measurement routines.
Furthermore, CS is at the basis of the development of single-pixel
camera methods. This technique is widely used in fluorescence
imaging, illuminating the sample with structured light, and col-
lecting the emitted fluorescence with a bucket detector. Coupled
with spectral and time-resolved detection, the single pixel camera
is a valuable option to achieve hyperspectral and fluorescence
lifetime imaging. Nonetheless, for its general mathematical
framework, CS algorithms are widely and successfully used in op-
tical imaging at multiple spatial scales, from super-resolution mi-
croscopy to mesoscopic imaging of small animals.
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