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Abstract
Fluorescence diffuse optical tomography (fDOT) provides 3D images of 
fluorescence distributions in biological tissue, which represent molecular and 
cellular processes. The image reconstruction problem is highly ill-posed and 
requires regularisation techniques to stabilise and find meaningful solutions. 
Quadratic regularisation tends to either oversmooth or generate very noisy 
reconstructions, depending on the regularisation strength. Edge preserving 
methods, such as anisotropic diffusion regularisation (AD), can preserve 
important features in the fluorescence image and smooth out noise. However, 
AD has limited ability to distinguish an edge from noise. In this two-part 
paper, we propose a patch-based anisotropic diffusion regularisation (PAD), 
where regularisation strength is determined by a weighted average according 
to the similarity between patches around voxels within a search window, 
instead of a simple local neighbourhood strategy. However, this method 
has higher computational complexity and, hence, we wavelet compress the 
patches (PAD-WT) to speed it up, while simultaneously taking advantage 
of the denoising properties of wavelet thresholding. The proposed method 
combines the nonlocal means (NLM), AD and wavelet shrinkage methods, 
which are image processing methods. Therefore, in this first paper, we used 
a denoising test problem to analyse the performance of the new method. Our 
results show that the proposed PAD-WT method provides better results than 
the AD or NLM methods alone. The efficacy of the method for fDOT image 
reconstruction problem is evaluated in part 2.
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1. Introduction

Fluorescence diffuse optical tomography (fDOT) is an optical imaging modality that pro-
vides three-dimensional (3D) images of fluorescent source distributions inside biological 
tissue (Ntziachristos 2006). The image reconstruction in fDOT is very challenging due to ill-
posedness of the inverse problem, which is a consequence of the multiple scattering nature of 
biological tissues. To overcome this problem, regularisation methods are commonly used to 
stabilise the solution. Usually, a quadratic (L2 norm) regularisation or penalty term is added to 
the least squares objective function to enforce smoothness in the reconstructed image (Hansen 
1998, Zacharopoulos et al 2009). In Correia et al (2011) we proposed to use a nonlinear 
anisotropic diffusion regularisation method, which has the ability to smooth out noise while 
preserving edges in images, and showed that spatial localisation and size of fluorescence 
inclusions can be accurately estimated. In this method, a reconstruction step alternates with 
the regularisation step, i.e. a nonlinear anisotropic diffusion (AD) filtering step (Perona and 
Malik 1990). The AD method is a well-known and widely used image processing technique 
that provides satisfactory noise suppression and edge enhancement results.

Buades et al (2005a) proposed the nonlocal means method (NLM), an image processing 
algorithm that surpasses the AD method. In the NLM method, pixels are averaged according 
to similarity between patches around pixels within a search window W, instead of a simple 
averaging strategy within a local neighbourhood. NLM exploits the redundancy of informa-
tion within an image, by assuming that patches from different regions contain similar patterns 
and averaging them effectively reduces noise.

The NLM has superior denoising performance than local-based methods, but at the expense 
of higher computational complexity. Several methods have been proposed to accelerate the 
NLM without loss of denoising performance, such as a block-wise implementation of the 
NLM (Buades et al 2005b, Coupé et al 2008), preselection of similar patches based on mean 
and average gradient of patches (Mahmoudi and Sapiro 2005) or mean and variance (Coupé 
et al 2008), arrangement of patches in a cluster tree (Brox et al 2008), singular value decom-
position (SVD) (Orchard et al 2008) and principal component analysis (PCA) (Tasdizen 
2008). NLM using PCA compressed patches not only reduces the computational time, but 
also improves the denoising performance (Tasdizen 2008).

Another popular denoising/compression method is the wavelet shrinkage, which is based 
on the process of transforming an image into the wavelet domain (Donoho and Malik 1994, 
Donoho 1995, Donoho and Johnstone 1995). Important information is encoded by large wave-
let coefficients, whereas most of small coefficients represent noise and can be removed using 
thresholding techniques. The denoised image is obtained by transforming the thresholded 
coefficients into the image domain.

The NLM method has been successfully used in medical imaging, for example, as a denois-
ing technique (Coupé et al 2012, Chen et al 2012, Dutta et al 2013, Chan et al 2014) and in 
image reconstruction as a regularisation method with (Chen et al 2008, Chun et al 2012, Wang 
and Qi 2012, Nguyen and Lee 2013). Here, motivated by the effectiveness of the NLM method 
in medical imaging applications, we propose a modification to our nonlinear anisotropic 
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diffusion regularisation method for fDOT image reconstruction (Correia et al 2011). In this 
work, instead of the previous local strategy, we consider a patch-based approach where we 
use a robust edge-preserving potential function. We refer to this method as patch-based aniso-
tropic diffusion (PAD). Moreover, we propose to reduce patch dimensions using wavelet com-
pression, not only to reduce computational complexity but also to increase the robustness of 
the method to noise. Therefore, the new method combines the advantages of NLM, AD and 
wavelet shrinkage methods. We refer to this method as patch-based anisotropic diffusion with 
wavelet patch compression (PAT-WT). Since our new method is based on the NLM method, 
which was initially proposed for image denoising, we begin by assessing the performance 
of the PAD(-WT) method using a 2D denoising test problem (an ill-posed inverse problem).  
In the second part of this two-part paper, we study the performance of the PAD-WT method in 
fDOT image reconstruction as a regulariser.

2. Methods

Consider a noisy image of the form:

f f ,noise true ε= + (1)

where ftrue is the true image and ε is the noise. Denoising algorithms aim at removing noise 
from the observed noisy image fnoise, returning an image as close as possible to ftrue. The NLM 
and AD are examples of widely used image denoising methods.

2.1. Anisotropic diffusion

In the image space f 2∈R  the discretised anisotropic diffusion method is given by the follow-
ing iterative scheme (Perona and Malik 1990):
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where k is the iteration number, 0, 1[ ]τ∈  is the time step, iW( ) is the set of neighbours of pixel 
i with constant dimension, iW( )| | is the number of neighbours (here iW 4, 2( )| | =  neighbours 
per direction) and g is an edge-preserving function such as Huber, Tukey, Total Variation, 
Perona–Malik, etc (Correia et al 2011). Here, we use the Perona–Malik function defined by 
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, for a pixel j iW( )∈ . The parameter T is the threshold and 

can be selected using the normalised cumulative histogram (NCH) of the gradient (Correia 

et al 2011). This method is commonly used in edge detection problems. The NCH indicates 
the probability ℘ of a gradient taking on a value less than or equal to the value X that the bin 
represents, i.e. Xf fj i( ⩽ )℘ | − | . It increases monotonically and the smoothness/sharpness of 
the curve indicates how smooth/sharp the edges are. The threshold can be calculated from the 
NCH by setting the threshold at, for example, 90 percent.

2.2. Patch-based anisotropic diffusion

We propose the following modification to the previous method:
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where wij is the weight that measures the similarity between two neighbourhoods (patches with 
fixed size P N N= × ) centred at pixel i and j, in a search window W 2 1 2 1( ) ( )= + × +W W  
centred at pixel i, where W is the maximum distance from pixel i (see figure 1 for an example). 
The weight wij is defined as:

⎧
⎨
⎩

⎫
⎬
⎭

w f
C i

f f

h

1
exp ,ij

i j

2
( )

( )
( ( ) ( ))
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−D N N
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where iN  and jN  are the neighbourhoods centred at pixel i and j, respectively. The parameter 
h controls the exponential decay and C(i) is a normalising constant given by:
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where fip and fjp represent the p element of the patches f i( )N  and f j( )N , respectively. Therefore, 
the weights wij are large when patches are similar and small when they are much different.

2.3. Nonlocal means

The new patch-based anisotropic diffusion method is based on the nonlocal means denoising 
method (Buades et al 2005a, 2005b):

wf f f .
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i jNLM
W

, ( )
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∈

 (7)

NLM can be considered as a one step of a fixed point iteration (Brox et al 2008), and denois-
ing results can be improved by performing a few iterations:
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The iterative NLM method computes a weighted average of pixel intensities at each iteration. 

In our proposed method, pixel intensities are replaced by g f f f fj
k

i
k

j
k

i
k( )( )[ ] [ ] [ ] [ ]| − | − . Note 

that the patch-based anisotropic diffusion (PAD) method becomes the local AD when N 1=  
and 1=W .

2.4. Patch compression

NLM methods have superior denoising performance than local methods, but at the expense of 
computational complexity. Principal component analysis (PCA) has been used to reduce data 
dimensionality and speed up the NLM method (Tasdizen 2008). Furthermore, accuracy of the 
solution was shown to improve since principal components that represent noise, i.e. with small 
variance, are removed. We propose to use a wavelet transform (WT) compression method 
instead. In this method, the high frequency coefficients are removed, preserving the main 
information of the data, while removing noise. Compression is applied to the patches, which 
are previously converted into single dimension arrays to simplify and speed up computations.
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The patch-based anisotropic diffusion method with wavelet patch compression (PAD-WT) 
is our proposed method.

2.4.1. Principal component analysis. PCA is a statistical method widely used in data analysis 
and compression. PCA identifies similarities and differences in the data, by representing the 
signal in terms of a set of new orthogonal variables called principal components. The first and 
last components have the largest and smallest variance, respectively.

Consider a patch f i( )N  with P elements, the mean of its elements fī and covariance 

f f f f fcov / P 1i p ip i ip i
T

1
P( )( ( )) ( ¯ )( ¯ ) ( )= ∑ − − −=N . The eigendecomposition of the covariance 

matrix is f U U U Ucov i
T1( ( )) = Λ = Λ−N , where Λ is a diagonal matrix whose elements are 

the eigenvalues and the columns of the orthonormal matrix U are the eigenvectors of the 
covariance matrix. The principal components are the eigenvectors ordered by descending 
magnitude of the corresponding eigenvalues. The first component is the principal component 
and represents the largest variance of the data. The dimensionality of the data can be reduced 
to d by projecting the patch f i( )N  onto the new orthogonal basis, p U fi d

T
i( )= N , where the d 

largest eigenvectors are kept, i.e. the first d columns of U, and the less significant components 
are discarded.

2.4.2. Wavelet transform. The fast wavelet transform (FWT) decomposes a signal or function 
into different frequency subbands (Mallat 2008). It uses a low-pass filter H and a high-pass 
filter G to obtain the approximation cϖ  and detail dϖ  coefficients. The approximation coef-
ficients represent the approximation of the signal at a resolution 2r, where r is an integer that 
specifies the resolution level. The detail coefficients contain the details of the original signal, 
i.e. the high-frequency information. For a signal f n r n1,i( ) ( )ϖ= + , with n samples and at a 
starting scale r  +  1:

Figure 1. Similar to the NLM method, the patch-based anisotropic diffusion method 
is based on patch similarity. A square search window W is defined surrounding pixel i. 
The method estimates pixel i by taking a weighted average of all pixels j within W. The 
weight wij is calculated based on the similarity between two neighbourhoods or patches 

( )Nf i  and ( )Nf j , centred around pixel i and j, respectively. Similar patches give larger 
weights. In this 2D example, patches have dimensions = ×P 3 3, hence, patch length is 
=N 3, and the window = ×W 7 7 or =W 3, meaning that the maximum pixel distance 

from pixel i is 3 pixels.

T Correia and S Arridge Phys. Med. Biol. 61 (2016) 1439
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r n H n r n, 1, 2,c c( ) ( ) ( )ϖ ϖ= − ∗ + ↓ (9)

r n G n r n, 1, 2.d d( ) ( ) ( )ϖ ϖ= − ∗ + ↓ (10)

Thus, the FWT consists of a convolution, followed by downsampling by a factor of 2 ( 2↓ ), i.e. 
keeping the even index samples. The wavelet transform can be implemented as a decomposi-
tion filter bank, where the initial signal goes through a series of filters. Note that the filters are 
related to each other by G n H n1 1n( ) ( ) ( )= − − .

Data compression is used to reduce the dimensions of the patches for computational effi-
ciency. If a two-level 1D FWT is applied to patch f i( )N , the obtained wavelet coefficients are 

r n r n r n1, , 1, , ,c d di { ( ) ( ) ( )}ϖ ϖ ϖ ϖ= − − . The vectorised patch is compressed by keeping 
the � largest coefficients, which contain most of the relevant information. Thus, the weights in 
equations (3) and (4) are calculated using:

f f ,i j
p

ip jp
1

2( ( ) ( )) ( )∑ ϖ ϖ− = −
=

�

D N N (11)

where ipϖ  and jpϖ  represent the p wavelet coefficient of the wavelet transformed patches f i( )N  
and f j( )N , respectively.

3. Evaluation

We used an image denoising problem to test the hypotheses that the proposed method is 
superior to NLM, anisotropic diffusion filtering and that WT is an efficient patch compression 
method. We used several images corrupted with Gaussian noise in the denoising test. First, 
we analysed the performance of the PAD-WT method for different wavelet types. Finally, 
we solved the denoising problem using the following iterative methods: (1) NLM (see equa-
tion  (8)), (2) NLM with patch compression using PCA (NLM-PCA), (3) NLM with patch 
compression using wavelets (NLM-WT), (4) AD or local PAD (see equation (2)), (5) PAD 
(see equation (3)), (6) PAD with patch compression using PCA (PAD-PCA) and (7) PAD-WT.

We considered two tests: Test (1) using a test image (figure 2) corrupted by Gaussian noise 
with different noise levels, ranging from 10% to 50% in steps of 10%, and Test (2) several 
standard test images (figure 2) with the same noise level (20% Gaussian noise). All the images 
had 320 320×  pixels.

We assessed the denoising quality with a widely used figure of merit in image processing, 
the peak signal to noise ratio (PSNR) between the original image ftrue and the denoised image 

f: fPSNR 10 log max /MSE10 true( ( ) )= , where f fMSE i i
1

NP 1
NP

true
2

i
( )= ∑ −=  and NP is the total 

number of pixels in the image.
We solved the denoising problem for 20 noise realisations for each noise level and image. 

For all the methods, the iterative process was automatically stopped when PSNR PSNRk k1<+ . 
We averaged the resulting PSNRs and calculated the corresponding standard deviations.

As mentioned previously, the parameters T and h can be calculated from the NCH by set-
ting the threshold at a certain percentage. The PSNR was calculated for different possible 
combinations of percentages (for NLM-based methods we only calculated h). The parameters 
that resulted in the highest PSNR were the ones used to generate the results presented here. 
The time step was set to 1τ =  for the PAD and AD methods. All methods were run on a linux 
PC with an Intel Xeon E5-2665 CPU @ 2.4 GHz using Matlab Mex-files.
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4. Results and discussion

4.1. Wavelet types

We used Test 1 (left image in figure 2 with different noise levels) to identify a suitable wavelet 
type for the patch compression. The wavelet types tested were (Salomon and Motta 2009): 
Haar, Vaidyanathan, Daubechies of order 2, 4 and 6, Battle-Lemarié of order 1, 3 and 5, and 
Coiflet of order 1, 3 and 5. The patch and search window sizes of the PAD-WT method were 
set to N 3=  and 5=W , respectively. The largest N N /4⌈( ) ⌉= ×�  wavelet coefficients are 
kept, where ⌈ ⌉⋅  denotes the ceil function. For a N 3=  patch, 3=� , which is considered to be 
the maximum compression for this patch size.

Table 1 shows the averaged PSNRs (and standard deviations) obtained using the proposed 
method with different wavelet types to remove noise from an image corrupted with 5 different 
noise levels. The best results were obtained using Daubechies wavelets of order 4. Therefore, 
Daubechies wavelets of order 4 were used to compress the patches in the following analysis.

4.2. Comparison between denoising methods

First, we used Test 1 to compare the iterative NLM method with PAD and their local versions. 
As mentioned previously, the methods are considered local when N 1=  and 1=W . We com-
pared the performance of the previous methods to their equivalent with patch compression, 
using PCA or WT.

We calculated the averaged PSNRs and standard deviations of images obtained using 
the NLM and PAD methods, with and without patch compression, for window sizes 

1, 3, 5, 7, 15{ }=W  and patches of length N 3, 7{ }= . We retained a total of N N /4⌈( ) ⌉= ×�  
wavelet coefficients for the NLM(PAD)-WT method. For the NLM(PAD)-PCA method, we 
kept 1/2 of the principal components.

Table 2 shows the denoising results for Test 1 obtained using equation  (8) with N 1=  
and 1=W  (local filtering), NLM, NLM-PCA and NLM-WT methods. Table  3 shows the 
results obtained using AD, PAD-PCA, PAD-WT, and the respective elapsed time for one itera-
tion. Results show that NLM-based methods perform better than local filtering. This test also 
shows that the PAD method performs better than the conventional NLM or AD. Similarly, 
the PAD-WT shows superior performance compared to the NLM-WT method. Better results 
were obtained using PAD(NLM)-WT compared to PAD(NLM)-PCA. The PAD-WT method 
provides results close to those of PAD without patch compression for lower levels of noise and 
gives better results for higher noise levels (>30%), with the advantage of being faster.

These results show that the size of the search window affects the performance of the 
PAD(NLM) method. This test suggest that for the PAD-WT method the optimal window and 
patch sizes are 7=W  and N 3= , respectively. The results obtained using 5=W  are almost 

Figure 2. Images used in Test 1 (left) and Test 2 ( from left to right: Barbara, cameraman, 
CT and MRI).

T Correia and S Arridge Phys. Med. Biol. 61 (2016) 1439
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as good, with the advantage of being approximately two times faster to compute. For a win-
dow of size 10=W  and patch N 7= , as used by Buades et al (2005b), the method is slower 
and the PSNR values are not higher.

In this study, we did not intend to perform an extensive study on the optimal number of 
wavelet coefficients that results in the highest PSNR value. Nevertheless, we tested other � 
values and there were no notable changes in the results (not shown).

Tasdizen (2008) found that, for a patch of size N 7= , choosing d  =  6 yields the high-
est PSNR. The performance of the NLM(PAD)-PCA for d  =  6 and d tN N⌈( ) ⌉= × , where 
t  =  {3/8 , 1/4}, was also evaluated. The PSNRs values (not shown) do not vary significantly, 
and hence, the conclusions regarding the performance of the denoising methods remain the 
same. Nevertheless, for consistency, d was kept fixed since � was also kept constant.

Figure 3 shows the test image (Test 1) contaminated with different levels of noise and 
the best denoising results obtained using the PAD, PAD-PCA and PAD-WT methods. The 
proposed PAD-WT method is qualitatively very similar to the PAD and performs much better 
than the PAD-PCA method. However, note that the image background can be recovered using 
PAD-PCA if different T and h parameters are used, but at the expense of decreased PSNR 
values. Both PAD and PAD-WT demonstrate high denoising performance for noise levels up 
to 20%. For higher noise levels, low contrast features cannot be recovered. However, for noise 
levels up 40% the quality of the denoised images is still quite high. Iteration times are faster 
when wavelet patch compression is used compared to other PAD-based methods (table 3).

Test 2 was used to further evaluate the performance of the PAD-WT method. Denoising 
results for standard test images using PAD, PAD-PCA and PAD-WT are shown in table  4 
and figure 4. For each method we used the window and patch sizes that gave the best Test 1 
results for a noise level of 20%. The PAD-WT method returns slightly lower PSRNs than the 
PAD method for the Barbara and cameraman images, but higher values for the CT and MRI 
images. This denoising study suggests that the proposed method is suitable for medical imag-
ing applications.

One of the advantages of using the AD method is the computational speed. However, 
NLM-based methods can easily be parallelised and implemented to exploit GPU (graphics 
processing units) acceleration (Cuomo et al 2014) to greatly reduce the execution times. 
Alternatively, to reduce the computational times, a semi-implicit scheme can be used, instead 
of the explicit discretisation used here, so that τ can be relatively large without causing 

Table 1. Denoising PSNR results for a test image with various noise levels obtained 
using PAD-WT with different wavelet types.

10% 20% 30% 40% 50%

Haar ±36.01 0.11 ±31.39 0.12 ±28.95 0.11 ±26.93 0.14 ±25.19 0.16
Vaidyanathan ±35.99 0.10 ±31.59 0.12 ±28.81 0.13 ±26.60 0.16 ±24.82 0.13
Daubechies 2 ±36.07 0.09 ±31.61 0.12 ±28.78 0.13 ±26.96 0.18 ±25.21 0.16
Daubechies 4 ±36.22 0.15 ±31.82 0.15 ±29.22 0.14 ±27.34 0.16 ±25.53 0.19
Daubechies 6 ±36.17 0.12 ±31.69 0.11 ±29.07 0.17 ±26.93 0.18 ±25.18 0.23

Battle–Lemarié 1 ±35.51 0.08 ±31.47 0.07 ±28.99 0.18 ±26.95 0.22 ±25.33 0.19
Battle-Lemarié 3 ±34.95 0.08 ±30.25 0.09 ±27.52 0.12 ±25.25 0.19 ±23.69 0.11
Battle–Lemarié 5 ±36.16 0.09 ±31.67 0.14 ±29.02 0.14 ±26.93 0.21 ±25.12 0.17
Coiflet 1 ±34.85 0.13 ±30.40 0.10 ±27.76 0.10 ±25.64 0.12 ±24.14 0.10
Coiflet 3 ±30.58 0.07 ±26.20 0.08 ±23.89 0.08 ±22.36 0.09 ±21.25 0.06
Coiflet5 ±31.60 0.06 ±26.85 0.07 ±23.89 0.08 ±22.43 0.09 ±21.07 0.10

Note: The largest PSNR values are marked.

T Correia and S Arridge Phys. Med. Biol. 61 (2016) 1439
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numerical instability, which is particularly advantageous to reduce the number of iterations 
(Correia et al 2011).

5. Conclusion

In this study, we proposed a modification to the AD method, motivated by the effectiveness 
and simplicity of the NLM method for image denoising. The proposed PAD method uses a 
patch-based approach instead of a local neighbourhood strategy. Additionally, patches are 
wavelet compressed to speed up the method.

We used a denoising problem to compare our PAD method with the AD method, itera-
tive NLM and its corresponding local model. The results obtained show that combining AD 

Table 2. Denoising PSNR results for a test image with various noise levels (Test 1) 
obtained using local filtering, NLM, NLM-PCA and NLM-WT.

W 10% 20% 30% 40% 50% P

Local 1 ±29.18 0.05 ±26.13 0.06 ±23.87 0.07 ±21.98 0.05 ±20.65 0.06 ×1 1

N
o 

co
m

pr
es

si
on

1 ±30.92 0.06 ±26.98 0.07 ±24.62 0.07 ±22.69 0.08 ±21.04 0.08

×3 3
3 ±35.14 0.06 ±30.97 0.13 ±28.11 0.11 ±25.76 0.15 ±23.96 0.15
5 ±36.04 0.13 ±31.91 0.14 ±29.05 0.19 ±26.55 0.19 ±24.77 0.13
7 ±36.36 0.16 ±32.53 0.18 ±29.43 0.22 ±26.77 0.15 ±24.78 0.15

15 ±36.08 0.13 ±32.54 0.16 ±29.19 0.18 ±26.64 0.16 ±24.51 0.15
1 ±29.97 0.05 ±26.17 0.08 ±23.96 0.07 ±22.18 0.09 ±20.82 0.06

×7 7

3 ±32.96 0.08 ±29.43 0.08 ±26.81 0.10 ±24.68 0.12 ±23.05 0.10
5 ±34.11 0.09 ±30.48 0.11 ±27.80 0.12 ±25.57 0.08 ±23.87 0.14
7 ±34.62 0.08 ±30.81 0.16 ±28.30 0.15 ±26.18 0.14 ±24.42 0.14

15 ±35.23 0.09 ±31.11 0.10 ±28.59 0.13 ±26.30 0.18 ±24.32 0.20

N
on

 L
oc

al
PC

A
 c

om
pr

es
si

on

1 ±31.10 0.11 ±24.85 0.08 ±22.35 0.05 ±20.85 0.07 ±19.78 0.06

×3 3

3 ±29.07 0.14 ±23.64 0.11 ±21.04 0.08 ±19.88 0.09 ±18.73 0.10
5 ±23.58 0.06 ±20.46 0.02 ±18.28 0.04 ±17.51 0.06 ±17.15 0.06
7 ±20.10 0.04 ±18.20 0.03 ±17.09 0.04 ±15.76 0.11 ±15.52 0.03

15 ±14.36 0.02 ±13.74 0.02 ±13.29 0.02 ±12.81 0.04 ±12.76 0.01
1 ±32.29 0.08 ±27.34 0.08 ±24.43 0.11 ±22.26 0.16 ±20.77 0.14

×7 7

3 ±33.80 0.12 ±28.92 0.11 ±25.57 0.16 ±22.85 0.18 ±20.83 0.17
5 ±34.05 0.10 ±28.98 0.12 ±25.46 0.22 ±22.47 0.18 ±20.33 0.22
7 ±32.36 0.12 ±27.24 0.14 ±23.92 0.13 ±20.97 0.15 ±18.94 0.14

15 ±25.92 0.06 ±20.51 0.09 ±17.38 0.11 ±15.27 0.07 ±8.95 1.83

W
av

el
et

 c
om

pr
es

si
on

1 ±33.81 0.08 ±29.10 0.10 ±26.34 0.08 ±24.48 0.14 ±22.89 0.10

×3 3

3 ±35.47 0.11 ±31.47 0.16 ±29.05 0.15 ±27.16 0.15 ±25.40 0.17
5 ±35.33 0.09 ±31.52 0.14 ±29.07 0.16 ±27.16 0.16 ±25.55 0.18
7 ±35.51 0.10 ±31.73 0.10 ±29.04 0.14 ±27.27 0.21 ±24.25 0.00

15 ±34.60 0.08 ±30.42 0.09 ±28.81 0.15 ±26.90 0.18 ±25.59 0.13
1 ±32.86 0.06 ±28.30 0.07 ±25.31 0.10 ±23.03 0.11 ±21.42 0.07

×7 7

3 ±34.79 0.10 ±30.16 0.11 ±27.36 0.10 ±25.18 0.11 ±23.48 0.12
5 ±35.31 0.07 ±30.86 0.11 ±28.07 0.14 ±25.90 0.14 ±24.26 0.17
7 ±35.68 0.10 ±31.17 0.15 ±28.49 0.10 ±26.35 0.18 ±24.55 0.14

15 ±35.99 0.11 ±31.64 0.11 ±28.53 0.14 ±26.37 0.21 ±24.78 0.16

Note: The largest PSNR values are marked for each method.
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with NLM, i.e. the PAD method, provides better denoising results than these methods alone. 
Moreover, results show that the proposed PAD-WT method has superior denoising perfor-
mance compared to the analogue method with PCA patch compression. In addition, this 
method is faster and achieves comparable results or, for high noise levels, even better results 
than those obtained when patch compression is not used.

Medical images are often corrupted by noise and artifacts intrinsic to the image acquisi-
tion process. Our study suggests that the proposed method is particularly suitable for medical 
imaging applications.

In the second part of this paper, we use the PAD-WT as a regularisation method in fDOT 
image reconstruction. A split operator method is used for solving the fDOT inverse problem, 

Table 3. Denoising PSNR results for a test image with various noise levels (Test 1) 
obtained using AD, PAD, PAD-PCA and PAD-WT.

W 10% 20% 30% 40% 50% P Time (s)

Local AD 1 ±29.65 0.04 ±26.35 0.05 ±24.06 0.06 ±22.41 0.09 ±21.11 0.08 ×1 1 0.11

N
o 

co
m

pr
es

si
on

1 ±32.01 0.06 ±28.21 0.09 ±25.78 0.08 ±23.80 0.12 ±21.94 0.12

×3 3

0.31
3 ±35.66 0.06 ±31.35 0.12 ±28.39 0.15 ±26.03 0.22 ±24.28 0.18 0.97
5 ±36.64 0.10 ±32.30 0.18 ±29.27 0.20 ±26.68 0.20 ±24.75 0.19 2.19
7 ±36.84 0.13 ±32.61 0.09 ±29.47 0.19 ±26.79 0.19 ±24.83 0.17 3.87

15 ±36.84 0.13 ±32.59 0.14 ±29.53 0.14 ±26.34 0.14 ±24.26 0.21 15.80

1 ±30.77 0.04 ±27.22 0.06 ±24.95 0.07 ±22.97 0.09 ±21.46 0.11

×7 7

1.13
3 ±33.88 0.09 ±30.02 0.09 ±27.37 0.08 ±25.33 0.10 ±23.65 0.12 2.60
5 ±34.42 0.09 ±31.03 0.11 ±28.30 0.10 ±26.22 0.18 ±24.36 0.11 5.18
7 ±34.62 0.07 ±31.35 0.16 ±28.65 0.14 ±26.58 0.20 ±24.53 0.18 9.21

15 ±35.03 0.07 ±31.51 0.11 ±28.88 0.12 ±26.22 0.21 ±24.79 0.17 37.78

PA
D

PC
A

 c
om

pr
es

si
on

1 ±31.30 0.11 ±25.53 0.11 ±22.84 0.07 ±21.27 0.06 ±20.06 0.07

×3 3

0.28
3 ±32.06 0.10 ±25.73 0.09 ±22.87 0.08 ±20.83 0.09 ±19.80 0.07 0.85
5 ±28.81 0.05 ±24.08 0.06 ±20.83 0.05 ±19.42 0.08 ±18.38 0.06 1.94
7 ±28.35 0.06 ±22.39 0.06 ±18.82 0.05 ±17.79 0.06 ±16.92 0.06 3.44

15 ±26.31 0.04 ±19.05 0.02 ±16.76 0.05 ±14.87 0.04 ±14.24 0.06 13.98

1 ±32.41 0.10 ±27.62 0.10 ±24.64 0.09 ±21.68 0.29 ±17.97 0.58

×7 7

0.78
3 ±33.95 0.11 ±28.96 0.12 ±25.54 0.15 ±22.71 0.17 ±20.32 0.31 1.72
5 ±33.65 0.10 ±29.08 0.15 ±25.41 0.21 ±22.54 0.19 ±20.37 0.19 3.47
7 ±33.57 0.12 ±28.22 0.17 ±24.49 0.13 ±21.63 0.22 ±19.32 0.16 5.98

15 ±26.36 0.10 ±20.89 0.09 ±18.43 0.09 ±16.46 0.10 ±15.13 0.11 23.51

W
av

el
et

 c
om

pr
es

si
on

1 ±33.81 0.07 ±29.07 0.09 ±26.38 0.08 ±24.38 0.09 ±22.63 0.10

×3 3

0.20
3 ±35.88 0.08 ±31.63 0.12 ±29.17 0.19 ±27.10 0.21 ±25.40 0.22 0.57
5 ±36.22 0.15 ±31.82 0.15 ±29.22 0.14 ±27.34 0.16 ±25.53 0.19 1.21
7 ±36.44 0.10 ±32.05 0.16 ±29.31 0.16 ±27.31 0.16 ±25.62 0.20 2.22

15 ±35.47 0.08 ±31.20 0.14 ±28.84 0.11 ±27.15 0.19 ±25.25 0.18 9.37

1 ±32.91 0.06 ±28.39 0.08 ±25.49 0.09 ±23.23 0.10 ±21.50 0.08

×7 7

0.63
3 ±34.90 0.09 ±30.34 0.10 ±27.50 0.13 ±25.32 0.18 ±23.71 0.15 1.24
5 ±35.54 0.12 ±31.01 0.12 ±28.24 0.12 ±26.11 0.15 ±24.36 0.17 2.39
7 ±35.82 0.08 ±31.44 0.13 ±28.62 0.16 ±26.29 0.17 ±24.55 0.20 4.01

15 ±35.96 0.12 ±31.72 0.18 ±28.77 0.13 ±26.39 0.23 ±24.35 0.14 15.29

Note: The largest PSNR values are marked for each method.
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which is a two-step method, where a reconstruction step alternates with the regularisation 
step, i.e. the PAT-WT method.

Figure 3. Denoising results of Test 1. (1st column) Test image corrupted with (top to 
bottom ) 10%, 20%, 30%, 40% and 50% Gaussian noise and images denoised using 
(2nd column) PAD (3rd column) PAD-PCA and (4th column) PAD-WT.

Table 4. Denoising PSNR results for Test 2 images with 20% Gaussian noise obtained 
using PAD, PAD-PCA and PAD-WT.

20% noise

Barbara Cameraman CT MRI
PAD ±26.65 0.03 ±29.82 0.05 ±29.17 0.02 ±31.82 0.05
PAD-PCA ±25.99 0.05 ±29.15 0.06 ±29.03 0.03 ±30.92 0.06
PAD-WT ±26.43 0.03 ±29.53 0.03 ±29.74 0.02 ±32.11 0.04

T Correia and S Arridge Phys. Med. Biol. 61 (2016) 1439
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