62 research outputs found

    A Classification Framework for Imbalanced Data

    Get PDF
    As information technology advances, the demands for developing a reliable and highly accurate predictive model from many domains are increasing. Traditional classification algorithms can be limited in their performance on highly imbalanced data sets. In this dissertation, we study two common problems when training data is imbalanced, and propose effective algorithms to solve them. Firstly, we investigate the problem in building a multi-class classification model from imbalanced class distribution. We develop an effective technique to improve the performance of the model by formulating the problem as a multi-class SVM with an objective to maximize G-mean value. A ramp loss function is used to simplify and solve the problem. Experimental results on multiple real-world datasets confirm that our new method can effectively solve the multi-class classification problem when the datasets are highly imbalanced. Secondly, we explore the problem in learning a global classification model from distributed data sources with privacy constraints. In this problem, not only data sources have different class distributions but combining data into one central data is also prohibited. We propose a privacy-preserving framework for building a global SVM from distributed data sources. Our new framework avoid constructing a global kernel matrix by mapping non-linear inputs to a linear feature space and then solve a distributed linear SVM from these virtual points. Our method can solve both imbalance and privacy problems while achieving the same level of accuracy as regular SVM. Finally, we extend our framework to handle high-dimensional data by utilizing Generalized Multiple Kernel Learning to select a sparse combination of features and kernels. This new model produces a smaller set of features, but yields much higher accuracy

    Click Fraud Detection in Online and In-app Advertisements: A Learning Based Approach

    Get PDF
    Click Fraud is the fraudulent act of clicking on pay-per-click advertisements to increase a site’s revenue, to drain revenue from the advertiser, or to inflate the popularity of content on social media platforms. In-app advertisements on mobile platforms are among the most common targets for click fraud, which makes companies hesitant to advertise their products. Fraudulent clicks are supposed to be caught by ad providers as part of their service to advertisers, which is commonly done using machine learning methods. However: (1) there is a lack of research in current literature addressing and evaluating the different techniques of click fraud detection and prevention, (2) threat models composed of active learning systems (smart attackers) can mislead the training process of the fraud detection model by polluting the training data, (3) current deep learning models have significant computational overhead, (4) training data is often in an imbalanced state, and balancing it still results in noisy data that can train the classifier incorrectly, and (5) datasets with high dimensionality cause increased computational overhead and decreased classifier correctness -- while existing feature selection techniques address this issue, they have their own performance limitations. By extending the state-of-the-art techniques in the field of machine learning, this dissertation provides the following solutions: (i) To address (1) and (2), we propose a hybrid deep-learning-based model which consists of an artificial neural network, auto-encoder and semi-supervised generative adversarial network. (ii) As a solution for (3), we present Cascaded Forest and Extreme Gradient Boosting with less hyperparameter tuning. (iii) To overcome (4), we propose a row-wise data reduction method, KSMOTE, which filters out noisy data samples both in the raw data and the synthetically generated samples. (iv) For (5), we propose different column-reduction methods such as multi-time-scale Time Series analysis for fraud forecasting, using binary labeled imbalanced datasets and hybrid filter-wrapper feature selection approaches

    Self-Organizing Fuzzy Inference Ensemble System for Big Streaming Data Classification

    Get PDF
    An evolving intelligent system (EIS) is able to self-update its system structure and meta-parameters from streaming data. However, since the majority of EISs are implemented on a single-model architecture, their performances on large-scale, complex data streams are often limited. To address this deficiency, a novel self-organizing fuzzy inference ensemble framework is proposed in this paper. As the base learner of the proposed ensemble system, the self-organizing fuzzy inference system is capable of self-learning a highly transparent predictive model from streaming data on a chunk-by-chunk basis through a human-interpretable process. Very importantly, the base learner can continuously self-adjust its decision boundaries based on the inter-class and intra-class distances between prototypes identified from successive data chunks for higher classification precision. Thanks to its parallel distributed computing architecture, the proposed ensemble framework can achieve great classification precision while maintain high computational efficiency on large-scale problems. Numerical examples based on popular benchmark big data problems demonstrate the superior performance of the proposed approach over the state-of-the-art alternatives in terms of both classification accuracy and computational efficiency

    Elektronimikroskooppikuvien segmentointi oppivan jÀrjestelmÀn avulla

    Get PDF
    A great deal of image analysis in today’s materials research is done manually, which can be time consuming and tedious. This thesis is a case study of two image analysis problems in the ïŹeld of materials science for which automatic methods are developed to aid the analysis process. In the ïŹrst case, an automatic segmentation method is developed to segment zeolite pores. The method is based on logistic regression combined with sparsity promoting LASSO regularization. It is able to ïŹnd more pores than humans with better consistency and speed yielding average PAS score of 0.79 and F1 score of 0.89. Much of the error is caused by the fact that humans specify the pore perimeters in various ways, but the method consistently produces similar segmentations. The second case considers automatic segmentation of silver nanoparticles by combining LASSO regularized logistic regression and watershed segmentation. The method is faster than manual segmentation and produces ïŹne segments when particles have little overlap. However, if the amount of overlap is high, the segments are ïŹ‚awed. The performance of the system in terms of PAS metric and F1 score is 0.76 and 0.86, respectively. An interesting property of training based segmentation together with sparsity promoting property is that training data can be collected by anyone. This enables creating an adaptive segmentation software for anyone regardless of image processing experience

    Investigating Randomised Sphere Covers in Supervised Learning

    Get PDF
    c©This copy of the thesis has been supplied on condition that anyone who consults it is understood to recognise that its copyright rests with the author and that no quotation from the thesis, nor any information derived therefrom, may be published without the author’s prior, written consent. In this thesis, we thoroughly investigate a simple Instance Based Learning (IBL) classifier known as Sphere Cover. We propose a simple Randomized Sphere Cover Classifier (αRSC) and use several datasets in order to evaluate the classification performance of the αRSC classifier. In addition, we analyse the generalization error of the proposed classifier using bias/variance decomposition. A Sphere Cover Classifier may be described from the compression scheme which stipulates data compression as the reason for high generalization performance. We investigate the compression capacity of αRSC using a sample compression bound. The Compression Scheme prompted us to search new compressibility methods for αRSC. As such, we used a Gaussian kernel to investigate further data compression

    Big-Data Science in Porous Materials: Materials Genomics and Machine Learning

    Full text link
    By combining metal nodes with organic linkers we can potentially synthesize millions of possible metal organic frameworks (MOFs). At present, we have libraries of over ten thousand synthesized materials and millions of in-silico predicted materials. The fact that we have so many materials opens many exciting avenues to tailor make a material that is optimal for a given application. However, from an experimental and computational point of view we simply have too many materials to screen using brute-force techniques. In this review, we show that having so many materials allows us to use big-data methods as a powerful technique to study these materials and to discover complex correlations. The first part of the review gives an introduction to the principles of big-data science. We emphasize the importance of data collection, methods to augment small data sets, how to select appropriate training sets. An important part of this review are the different approaches that are used to represent these materials in feature space. The review also includes a general overview of the different ML techniques, but as most applications in porous materials use supervised ML our review is focused on the different approaches for supervised ML. In particular, we review the different method to optimize the ML process and how to quantify the performance of the different methods. In the second part, we review how the different approaches of ML have been applied to porous materials. In particular, we discuss applications in the field of gas storage and separation, the stability of these materials, their electronic properties, and their synthesis. The range of topics illustrates the large variety of topics that can be studied with big-data science. Given the increasing interest of the scientific community in ML, we expect this list to rapidly expand in the coming years.Comment: Editorial changes (typos fixed, minor adjustments to figures

    Explainable-by-Design Deep Learning

    Get PDF
    Machine learning, and more specifically, deep learning, have attracted the attention of media and the broader public in the last decade due to its potential to revolutionize industries, public services, and society. Deep learning achieved or even surpassed human experts’ performance in terms of accuracy for different challenging problems such as image recognition, speech, and language translation. However, deep learning models are often characterized as a “black box” as these models are composed of many millions of parameters, which are extremely difficult to interpret by specialists. Complex “black box” models can easily fool users unable to inspect the algorithm’s decision, which can lead to dangerous or catastrophic events. Therefore, auditable explainable AI approaches are crucial for developing safe systems, complying with regulations, and accepting this new technology within society. This thesis tries to answer the following research question: Is it possible to provide an approach that has a performance compared to a Deep Learning and the same time has a transparent structure (non-black box)? To this end, it introduces a novel framework of explainable- by-design Deep Learning architectures that offers transparency and high accuracy, helping humans understand why a particular machine decision has been reached and whether or not it is trustworthy. Moreover, the proposed prototype-based framework has a flexible structure that allows the unsupervised detection of new classes and situations. The approaches proposed in thesis have been applied to multiple use cases, including image classification, fairness, deep recursive learning interpretation, and novelty detection

    Exploiting Opponent Modeling For Learning In Multi-agent Adversarial Games

    Get PDF
    An issue with learning effective policies in multi-agent adversarial games is that the size of the search space can be prohibitively large when the actions of both teammates and opponents are considered simultaneously. Opponent modeling, predicting an opponent’s actions in advance of execution, is one approach for selecting actions in adversarial settings, but it is often performed in an ad hoc way. In this dissertation, we introduce several methods for using opponent modeling, in the form of predictions about the players’ physical movements, to learn team policies. To explore the problem of decision-making in multi-agent adversarial scenarios, we use our approach for both offline play generation and real-time team response in the Rush 2008 American football simulator. Simultaneously predicting the movement trajectories, future reward, and play strategies of multiple players in real-time is a daunting task but we illustrate how it is possible to divide and conquer this problem with an assortment of data-driven models. By leveraging spatio-temporal traces of player movements, we learn discriminative models of defensive play for opponent modeling. With the reward information from previous play matchups, we use a modified version of UCT (Upper Conference Bounds applied to Trees) to create new offensive plays and to learn play repairs to counter predicted opponent actions. iii In team games, players must coordinate effectively to accomplish tasks while foiling their opponents either in a preplanned or emergent manner. An effective team policy must generate the necessary coordination, yet considering all possibilities for creating coordinating subgroups is computationally infeasible. Automatically identifying and preserving the coordination between key subgroups of teammates can make search more productive by pruning policies that disrupt these relationships. We demonstrate that combining opponent modeling with automatic subgroup identification can be used to create team policies with a higher average yardage than either the baseline game or domain-specific heuristics
    • 

    corecore