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ABSTRACT OF THE DISSERTATION

CLICK FRAUD DETECTION IN ONLINE AND IN-APP ADVERTISEMENTS:

A LEARNING BASED APPROACH

by

Thejas Gubbi Sadashiva

Florida International University, 2019

Miami, Florida

Professor S.S. Iyengar, Major Professor

Click Fraud is the fraudulent act of clicking on pay-per-click advertisements to

increase a site’s revenue, to drain revenue from the advertiser, or to inflate the

popularity of content on social media platforms. In-app advertisements on mobile

platforms are among the most common targets for click fraud, which makes compa-

nies hesitant to advertise their products. Fraudulent clicks are supposed to be caught

by ad providers as part of their service to advertisers, which is commonly done us-

ing machine learning methods. However: (1) there is a lack of research in current

literature addressing and evaluating the different techniques of click fraud detection

and prevention, (2) threat models composed of active learning systems (smart at-

tackers) can mislead the training process of the fraud detection model by polluting

the training data, (3) current deep learning models have significant computational

overhead, (4) training data is often in an imbalanced state, and balancing it still

results in noisy data that can train the classifier incorrectly, and (5) datasets with

high dimensionality cause increased computational overhead and decreased classifier

correctness – while existing feature selection techniques address this issue, they have

their own performance limitations. By extending the state-of-the-art techniques in

the field of machine learning, this dissertation provides the following solutions: (i)

To address (1) and (2), we propose a hybrid deep-learning-based model which con-

vi



sists of an artificial neural network, auto-encoder and semi-supervised generative

adversarial network. (ii) As a solution for (3), we present Cascaded Forest and Ex-

treme Gradient Boosting with less hyperparameter tuning. (iii) To overcome (4),

we propose a row-wise data reduction method, KSMOTE, which filters out noisy

data samples both in the raw data and the synthetically generated samples. (iv) For

(5), we propose different column-reduction methods such as multi-time-scale Time

Series analysis for fraud forecasting, using binary labeled imbalanced datasets and

hybrid filter-wrapper feature selection approaches.
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CHAPTER 1

INTRODUCTION

Due to the growth in web technologies and media, advertising companies have

shifted focus from conventional newspaper and television advertisements to browser

and in-app advertisements. Internet giants such as Google, Yahoo, and Facebook

are fundamentally advertising networks that act as brokers between advertisers and

content publishers, with ad services constituting the largest portion of their yearly

revenues. These ad networks are provided with advertisements and agree on a

fee for every user action, such as each click. According to [RSF17], the number of

smartphone users worldwide will reach an estimated 2.87 billion by 2020 – a jump of

1.3 billion users in a span of 6 years. These developments have caused the advertising

industry to shift its focus to digitally active platforms like the Android and iOS app

domains, prompting them to create a business model that leverages the high footfall

of users to promote advertisements [NW16]. This business model includes various

parameters to expand the opportunities of success for the advertising party and to

the payment for the advertisement publisher. One such parameter is “click and

impression”, which is used to calculate the number of times the ad is displayed to

the user, and the number of times doing so resulted in the user clicking the ad

[HIRR18]; this is regarded as a direct measure of the advertisement’s success, which

correlates the ad publisher’s efforts and positively contributes to the advertising

party’s intentions.

There are many vulnerabilities related to how “click and impression” is calcu-

lated, and click fraud is one of the most challenging ones to address. Click Fraud

refers to the practice of generating random clicks in order to extract illegitimate

revenue from the advertising party. In the case of a pay-per-click advertisement,

the expectation is that each click is from a genuine user; but in 2017 about 1 in 5
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clicks were fraudulent – on smartphones this number doubled over the course of 4

months [ppc19]. A simple scenario: a publisher receives a link from the advertiser in

order to host it on their web pages, and a pay-per-click contract is agreed upon by

each party. In order to inflate the number of clicks for the ad receives, a script that

generates automated random clicks is created, resulting in a misleading report to

be presented to the advertising party. Some of the other important parameters that

decide the remuneration to the publishers include conversion rate, cost-per-click,

cost per mile, average ads position, and click through rate.

One might assume that the beneficiaries of click fraud are the publishers who

are taking the money from the advertiser for each pay-per-click transaction, but

it could also be the third party websites that host these ads, and who can in turn

demand extra money from the publishers to account for the same. It is imperative to

distinguish between clicks produced by genuine users and fraudulent clicks produced

by parties that illicitly benefit from it [TKC+19]. In this work, we look at the three

most common offenders: Competitors, Webmasters and Fraud rings:

• Competitors are responsible for the vast majority of click fraud. Click fraud

rewards them with a competitive advantage by wasting the competitor’s pay-

per-click budget.

• Malicious webmasters gain unjustified income from displaying ads on their

website when they commit click fraud. Instead of building and developing

their website to entice traffic, they may click on these ads to increase revenue.

• Fraud rings are groups of criminals that specifically target ad networks to

exploit the maximum amount of money possible in a short duration. A Russian

criminal fraud group dubbed ‘The Methbot Operation’ unlawfully earned $3

- $5 million per day from fraudulent activity [cli19].
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There are many ways click fraud can be committed, some of which we describe

below [fru19]:

• Crowdsourcing is a method used by publishers to increase clicks on the ads.

They use the visitors on the website to click on their ads intentionally or

unintentionally, such as by putting up fake icons (like a play button for a

video) or links that specify a discount on prices or in-game items that redirect

the visitors to the advertiser’s site.

• Click Farm is a method to commit click fraud by persuading people to click

on ads all day in exchange for money. In comparison with automated scripts,

using actual human beings proves to be more advantageous since the per-

suaders can instruct the ones who perform the clicks on how to click on the

advertisements more naturally.

• Hit Inflation Attack is another method of click fraud wherein legitimate users

are redirected to a website by going to the advertisement first and then to the

page they intended to browse. The visitor does not see the advertisement but

notices a slightly longer load time than usual.

• Botnets are malware that infects a large number of computers. The malware

controls the computers as a group, instructing them to visit different sites

and click on advertisements without the knowledge of the owners of those

computers. They generate many seemingly unrelated clicks from multiple IP

addresses.

A more advanced form of click fraud attacks is Adversarial Machine Learning

which involves smartly subduing the intelligence of machine learning algorithms.

These attacks involve modifying the data by including malicious input to cause a

malfunction in the standard machine learning model [BFR14]. The two main types
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of Machine Learning attacks are Evasion attacks and Poisoning attacks. In an Eva-

sion attack, the attackers modify inputs at the testing time, in order to avoid getting

detected, and thus classifying illegitimate data as acceptable in the later stages. In a

Poisoning Attack, the training data is corrupted by injecting malicious data in order

to put the whole learning process at stake [BFR14, BCN+14, BNJT10, NRH+10,

BNL11]. In addition to ad networks, Online Social Network (OSN) platforms such

as Instagram, Facebook, Twitter, etc. can also be subject to the Click fraud problem

primarily based on fake like clicks on posts with the intention of achieving popu-

larity [JL08, ins18]. There are numerous means of creating such fake likes such as

(a) influencing friends and relatives to make the fake likes, (b) utilizing botnets to

artificially enhance popularity, (c) having paid services to purchase fake likes, (d)

having click spammers provide free fake likes or (e) entering and becoming a part

of the collusion network.

1.1 Challenges

Although the fraud clicks are supposed to be caught by the ad providers as part of

their service to the advertisers, there are some challenges as follows:

1. There is a lack of research in the current literature for addressing and evaluat-

ing different techniques of click fraud detection and prevention. Additionally,

the attack model can itself be an active learning system (smart attacker) to

actively mislead the training process of fraud detection model via polluting

the training data.

2. Currently, deep learning models are employed for click fraud detection. How-

ever, due to certain obstacles, significant computational overhead is incurred

in search for the best model.
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The deep learning models [TKC+19, HAH+18] employed in the existing click

fraud approaches need extensive hyper-parameter tuning if they are to pro-

vide appreciable results. However, the real-time advertisement datasets are

usually huge which in-turn, result in an increase in the feature space dimen-

sion. Hyper-parameter tuning is a tedious repetitive process whenever the

model has to be retrained periodically. Since the number of parameters to be

tuned are many in the case of neural networks, a large amount of time and

resources is essential. As an existing example, Google AdWords [fru19], an

advertising network, has a three-tier system to detect click fraud. This three-

tier system is composed of automated filters to detect suspicious clicks in real

time followed by an offline analysis and finally an in-depth investigation. From

this example, it is evident that the click fraud detection process is not entirely

automated.

3. Often, the training data could be in an imbalanced state (row-wise). However,

even after balancing the dataset, noisy data may exist in both the states which

may train the classifier incorrectly.

Most of the real-time datasets associated with medicine [TDK10], text clas-

sification [LLS09], intrusion detection [KTPA12], and click fraud detection

[FP97] are imbalanced. A binary dataset having 95% positive samples may

obtain an extremely high classification accuracy. However, this accuracy may

be incorrect due to over-fitting. In the recent past, several studies have pro-

posed various solutions to address this issue [HG08]. Among them, there are

several re-sampling techniques available [BSL11, CBHK02, KM+97, SW08]

to balance the imbalanced dataset such as Synthetic Minority Over-sampling

Technique (SMOTE) [CBHK02] which is one of the popular re-sampling tech-

niques. 85 variants of SMOTE have been proposed in the recent past with the
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intention of improving the quality of the training data which in-turn enhances

the performance of the classifiers. Additionally, studies show that noise and

borderline samples could also affect the performance of the classifier which

are generated by applying the re-sampling techniques (SMOTE) and may also

exist in the original data [GSM07, Jap03, NSW10]. Applying SMOTE on

imbalanced datasets gives better results, but it generates synthetic samples,

resulting in a notable increase in the size of the data. Presently, the data

collected in real-time is extremely large (BIG DATA) [ZE+11]. SMOTE can

be considerably improved by performing certain modifications (Borderline-

SMOTE V1,V2 [HWM05], Safe-level SMOTE [BSL09]) or by adding some

extensions (SMOTE-IPF [SLSH15], ENN or TL [BPM04]).

4. Also, datasets with high dimensionality cause an increase in the computational

overhead and a decrease in the classifier correctness. Although existing Feature

Selection techniques address this issue to provide an optimal set of features,

they have their own performance limitations.

Determining the important classifier features is a key phase in the classifica-

tion process and as the number of features in the ever increasing number of

data samples is proving to be a significant problem. Therefore a reduction

in dimensionality by having a small set of features is necessary to achieve

higher accuracy, shorter computation time and to reduce overfitting. There

are 2 ways in which dimensionality can be reduced i.e., Feature Extraction

(FE) and Feature Selection (FS). In FE, a liner or non-linear combination of

features is employed to achieve lesser dimensionality where the actual data is

transformed and thereby, there is scope for distortion. In FS, a certain criteria

is taken into account for the selection of the feature’s subset since the dataset

could contain a number of irrelevant attributes with respect to the class which
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could result in a fall in accuracy of the induced classifier [JKP94]. Identifying

and removing such attributes reduces dimensionality which in-turn results in

a drop in computation time while improving accuracy. In [Kus99], they state

that the overabundance of features rendered the nearest neighbor approach

on Internet Advertisement dataset. FS has many applications in various fields

like image processing, natural language processing, bioinformatics, data min-

ing, and machine learning (ML) [HBK14]. The selection method is divided

into two standard categories based on their working modules, classifier inde-

pendent ‘filter‘ technique, and classifier dependent ‘wrapper‘ and ‘embedded‘

technique. The filter method carries out feature selection on the basis of cer-

tain metrics such as distance, correlation, consistency measure, and mutual

information (MI) while being independent of the classifier. This method in-

creases the computational efficiency and reduces data dimensionality [SIL07].

A key weakness however, is the uncertainty that exists regarding the relation-

ship between the feature attributes and target class. The classifier dependent

systems rely upon the classifier for the selection process, the output of which is

used to obtain the subset of features in the Wrapper method, making it biased

to a classifier. Additionally, the wrapper method is vulnerable to overfitting,

usually when the dataset is of a smaller size less [BPZL12]. The embedded

method makes use of the classifier in the training phase and selects the opti-

mal features like a learning procedure. The embedded method in comparison

with the wrapper method, proves to be less vulnerable to overfitting and the

computation is much faster [LPd+12]. These existent FS algorithms are useful

but do not always prove to be extremely helpful when we use certain machine

learning algorithms like Random Forests.
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1.2 Objective of this Dissertation

To address the above said challenges, in this dissertation, we propose ML based

solutions to improve the performance of the existing click fraud detection methods.

Following serve as the objectives of this dissertation:

• Application of learning based approach as a hybrid solution for click fraud

detection.

• Proposing an alternative to Multi-layered Neural network by enhancing the

hybrid cascaded forest model with lesser hyper-parameter tuning.

• To improve the existing state-of-the-art row and column based data reduction

techniques.

1.3 Contributions

This dissertation presents solutions to the click fraud problem by extending the

state-of-the-art techniques in the area of supervised ML.

1.3.1 Deep Learning-based Model to Fight Against Ad

Click Fraud

To address challenge (1), we propose a way to handle the imbalanced dataset [Kag18]

based on our pre-analysis on attributes like ip and app id. We simulated learning

models like logistic regression, random forest, naive bayes, and support vector ma-

chine from which it concludes that logistic regression and random forest compet-

itively perform well. We developed a hybrid model consisting of Semi-supervised

Generative Adversarial Network (GAN), Auto Encoder and Neural Network to solve

8



the problem of fake clicks in adversarial environment. We used the semi-supervised

GAN to create adversarial attacks in order to improve the accuracy of the Neural

Network. To the best of our knowledge, we are the first to use Cos(θ), as a super-

vised loss in a semi-supervised GAN and the hybrid model performs better than

other models.

1.3.2 CFXGB: An Optimized and Effective Learning Ap-

proach for Click Fraud Detection

As a solution for challenge (2), we extend the work done by [ZF17] Zhou et al.

by proposing a two-phase model consisting of feature transformation by Cascaded

Forests and classification by Extreme Gradient Boosting. Our approach requires

only minimal hyper-parameter tuning i.e., the number of parameters that vary are

few. Use of forests in the form of layers is more intuitive in understanding the model’s

learning method as compared to the use of neural nets. Accuracy, Area-Under-

Curve (AUC), Recall, F1-score and Precision are used to evaluate the superiority

of the proposed model against recent works. We have evaluated our model on five

benchmark datasets. Three of them are click fraud datasets and two of them are

intrusion detection datasets.

1.3.3 KSMOTE: An Extension of Synthetic Minority Over-

sampling Technique for Imbalanced Datasets

With respect to challenge (3), prior works show that filters have not been commonly

used in combination with SMOTE. Hence, we propose an extension called KSMOTE

which employs the Kalman Filter[BW+01] to remove noisy data samples. The use
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of the Kalman filter as a data-reduction method improves the efficacy of the clas-

sifier and reduces the processing overhead. We use three Click-Fraud datasets, an

Intrusion Detection dataset and a few UCI[BM98] datasets that are considered by

previous researchers, to evaluate our work. Furthermore, we make comparisons with

several, existing variants of SMOTE. Metrics such as Recall, Accuracy, F1-Score and

Precision have been used to provide comparisons. AUC is another very good metric

to verify overfitting caused by SMOTE.[Bra97].

1.3.4 A Multi-time-scale Time Series Analysis for Click

Fraud Forecasting using Binary Labeled Imbalanced

Dataset

To address challenge (4), We present a generalized model for modeling temporal

click fraud data. The proposed model consists of four stages: Pre-analysis and pre-

processing, Probabilistic or learning-based data smoothing, fraudulent pattern iden-

tification, and time-series model fitting. The objectives of the proposed work are:

firstly, model multi-time-scale time series data on Auto-Regression (AR)/Moving

Average (MA) by relying only on time and the label, without the need of too many

attributes. Secondly, to model different time scales separately on AR and MA

models. Then, we Evaluate the models by tuning forecasting errors and also with

minimizing Akaike information criterion (AIC) and Bayesian information criterion

(BIC) to obtain a best fit model for all time scale data. Choosing AIC or BIC as

a criterion mainly depends on our requirement where AIC is chosen to select more

efficient models in terms of accuracy and small forecasting errors whereas on other

hand, BIC is chosen if we want to select a model that fits for different training data
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without becoming progressively worse in terms of forecasting performance. We ex-

tend Box-Jenkins [NB13, BJRL15] and Boroojeni et al. methodology [BAB+17] for

modelling of ad clicking activity forecasting to show the future possible fraudulent

behavior. In our proposed approach, we model multi-time-scale seasonality to fore-

cast the fraudulent behavior in terms of minutes and hours interval. Our proposed

approach can be considered as an extension of Seasonal Auto-regressive Integrated

Moving (SARIMA) model [Tay10]. AIC, BIC, and residual errors are used to fine

tune the model.

1.3.5 Learning-Based Model to Fight against Fake Like

Clicks on Instagram Posts

To address (1), we carried out a series of steps: Collection of data based on different

parameters and attacks, identification of important features to train and test the

models, pre-analysis to show the relationship between the follower and following

participation in valid and invalid like clicks, we then developed an automated learn-

ing model to detect fake liking behavior on the Instagram post, and finally, we also

examined autoencoder loss function to differentiate bots and human clicks.

1.3.6 MRFI and ARFI: Hybrids of Filter and Wrapper

Feature Selection Approaches

With respect to challenge (4), we gathered that the existent FS algorithms are

useful but do not always prove to be extremely helpful when we use certain machine

learning algorithms like Random Forests. Therefore, in our work, we propose two

new FS techniques, Metric Ranked Feature Inclusion (MRFI) and Accuracy Ranked
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Feature Inclusion (ARFI), which can be used effectively across a variety of learning

models. Our proposed algorithms are hybrids of the filter and wrapper methods

and follow a two phase process. The first phase takes inspiration from the filter

technique, and we assign scores for the features to rank them. For the first proposed

algorithm, the score is assigned to each feature after clustering the data with the

help of that feature alone. We use K-Means to cluster the data and then apply a

clustering metric by the name of V-Measure. ARFI involves scoring each feature

based on the accuracy of a classifier (Random Forest), which is evaluated with only

that particular feature. Ranking the features using these techniques truly brings out

their importance to the label. The next stage of the algorithm, i.e., the feature subset

selection phase, avoids redundancy. Here, the variables are iteratively added to the

optimal subset one by one, and each time, the learning model is evaluated. The

recently added feature is retained or dropped depending on the calculated accuracy.

The second stage behaves as the wrapper part. Both MRFI and ARFI share the

same feature subset selection technique. We validated our models with the various

datasets and compared our results with another standard FS technique, Recursive

Feature Elimination (RFE). Our models outperformed RFE with every dataset and

gave us positive results.

1.3.7 Mini-Batch Normalized Mutual Information: A Hy-

brid Feature Selection Method

As a solution to challenge (4), we propose a combination of the filter and wrapper

methods, which has the advantage of both the techniques. It is fast and general like

the filter method. At the same time, it accounts to learning algorithm obtaining

the best set of features without the need for the user to input the feature number

12



unlike most of other established algorithms such as RFE. We also take advantage

of mini-batch Kmeans which perform better as compared to K-Means in terms of

computation time for lager datasets. Here, we cluster the data using mini-batch

Kmeans clustering and rank them using normalized mutual information (NMI), a

measure to calculate the relevance and the redundancy between the candidates’

attribute and the class. We apply a greedy search method by using Random Forest

to get the optimal set of features. However, our method is flexible in terms of the

learning algorithm that can be incorporated.
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CHAPTER 2

DEEP LEARNING-BASED MODEL TO FIGHT AGAINST AD

CLICK FRAUD

Click fraud is a fast-growing cyber-criminal activity with the aim of deceptively

clicking on the advertisements to make the profit to the publisher or cause loss

to the advertiser. Due to the popularity of smartphones since the last decade,

most of the modern-day advertisement businesses have been shifting their focus

toward mobile platforms. Nowadays, in-app advertisement on mobile platforms is

the most targeted victim of click fraud. Malicious entities launch attacks by clicking

ads to artificially increase the click rates of specific ads without the intention of

using them for legitimate purposes. The fraud clicks are supposed to be caught

by the ad providers as part of their service to the advertisers; however, there is

a lack of research in the current literature for addressing and evaluating different

techniques of click fraud detection and prevention. Another challenge toward click

fraud detection is that the attack model can itself be an active learning system

(smart attacker) with the aim of actively misleading the training process of fraud

detection model via polluting the training data.

In this chapter, we propose a deep-learning based model to address the challenges

as mentioned above. The model is a hybrid of artificial neural network (ANN),

auto-encoder and semi-supervised GAN. Our proposed approach triumphs excellent

accuracy than other models.

© 2019. Reprinted, with permission, from G. S. Thejas, et al., Deep learning-
based model to fight against ad click fraud. In Proceedings of the 2019 ACM
Southeast Conference (ACM SE ’19). ACM, New York, NY, USA, 176-181. DOI:
https://doi.org/10.1145/3299815.3314453 [TKC+19]

14



2.1 Introduction

With the invent of smart-phones, people have started using it addictively in their

daily life. On the other hands, as the digital advertising industry business model

rely on the people usage of computing devices, even they have shifted their concen-

tration on the mobile platform with the transformation of promoting ads through

in-app advertisement [NW16]. In their business model, “click and impression“ plays

a significant role as it is one of the parameters to calculate the payment for the pub-

lisher by the ad network. Whenever a person clicks an ad, then it will be recorded by

the ad network as a count that the number of times the ad was clicked. In the same

manner, whenever the ad loaded in the user devices, then it will be recorded by the

ad network as a count that the number of times the ad was loaded [HIRR18]. Most

common parameters that are considered by the ad network to calculate the payment

for the publisher are: pay per click, cost per click, click through rate, average ads

position, cost per mile, conversion rate and cost per conversion.

However, in the business revenue model there exists a security problem, i.e.,

click fraud. Of course, the typical way of interacting with the computing device is

through clicks. For example, we click an app to open it, we click a hyperlink to

redirect to the destination page, or we click on like icon on social network posts or

YouTube videos to express our emotion, we click on exciting ads to explore them,

etc. [TSC+19]. In all the above-said example the click operation plays a vital role

in the expectation of genuine purpose. Because too many clicks on a social network

post say that the post is becoming prevalent and too many clicks on the ad, show the

demand on the product that is promoted through ads. It is not apparent to believe

that all clicks are valid (legitimate) or fraudulent clicks. There is no protocol defined

to authenticate these clicks based on trust [TPIS18]. Click fraud is nothing but the
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Normal Users
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with different interest

Smart Attacker

Misleading the detection/prevention 

model learning process

Directing

Relay on the results of 

Provide ads
Receive payments 

from advertiser

Receives Payments 

for clicks

Provide ads for publishing on 

website or in-app developed 

Figure 2.1: Architecture of Proposed System with Ad Network, Advertiser, Pub-
lisher, Clickers

action that happens by fraudulent clicks where the click made on an ad without the

intention of using them for legitimate purposes.

Problem Figure 2.1 depicts the proposed architecture of click fraud. Here, an

advertiser is the one who wants to make a profit from his/her business or product

by mean of promoting it to the world. These promotions are done in the form of

advertisement on websites or in-app platforms. Hence, advertisers pay ad networks

to promote their ads on the websites or in-app. The publisher is the one who

develops the website or mobile application and deploys ads on them. Ad Network

provides a platform for advertiser and publisher. They are responsible for receiving

an advertisement request and required payment form the advertiser for promotion.

They are also responsible for approving the ad publishing request from the publisher,

allowing them to deploy ads on their website or in-app. With these, the ad network

is also responsible for evaluating the clicks made on ads and making payment to all

16



valid clicks. Detection/Prevention models or the learning-based models or manual

analysis are used by ad networks to evaluate the clicks as either valid or invalid.

Here clicks are made by Clickers who can be the regular users, i.e., clicks with

genuine interest, or fraud motive users like click farms, botnets or smart attacker.

The smart attacker is the one who misleads the learning models to perform wrongly

via polluting the training model and directing the other real-time attacks [BFR14,

BCN+14, BNJT10, NRH+10, BNL11].

2.1.1 Summary of Contribution

We propose a way to handle the imbalanced dataset based on our pre-analysis on

attributes like ip and app id. We simulated learning models like logistic regression,

random forest, naive bayes, and support vector machine from which it concludes

that logistic regression and random forest competitively performs well. We devel-

oped a hybrid model consisting of Semi-supervised GAN, Auto Encoder and Neural

Network to solve the problem of fake clicks in adversarial environment. We used the

semi-supervised GAN to create adversarial attacks in order to improve the accuracy

of the Neural Network. To the best of our knowledge, we are the first to use Cos(θ),

as a supervised loss in a semi-supervised GAN and the hybrid model performs better

than other models.

2.1.2 Organization of the Chapter

in Section 2.2 we review the related work on click fraud in ad networks, in Sect.

2.3 we describe the dataset characteristics, challenges and experimental setup, in

Section 2.4 we discuss and present the preliminary results obtained on Logistic

Regression, Support Vector Machine, Random Forest, and Naive Bayes, in Section
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2.5 we propose our deep learning approach and provide details about the hybrid

model, building blocks of the hybrid model, attacker model GAN and discussions

on the presented results, and in Section 8.6 we conclude our discussion.

2.2 Related Work

Research shows that the more asymmetric in quality the ad networks are, the more

asymmetric their equilibrium prices will be[DM14]. A study showed that one of

the largest click fraud botnets, called ZeroAccess, induces advertising losses on the

order of $100,000 per day [LNGL14].

Non-statistical Models: In [Had10], they take the average clicks on bluff ads

as a way of discrimination; In [CdQC12], they use CAPTCHAs to make sure that

the user is real. In [FLDH+16a], they used Social Network Analysis to find top three

ad networks that were being used to spread the fraud click malware. In [APS+11],

they use Splay trees to store the IPs via which fraud clicks occur based on a burst.

In [LLCX15], they first find the eigenvalues of displayed ad images, if the ad is shown

it is attested, based on if the eigenvalues of the image match those stored in their

server, the user is certified as honest, if not then it is analysed. Researchers build on

several published theoretical results to devise the Similarity-Seeker algorithm that

discovers coalitions made by pairs of fraudsters [MAA07].

Statistical Models: These use sophisticated statistical models to find out

which IP addresses are behind fraud attacks [KKL+14] or analyse periodic activity

of DNS to find out nefarious activities. In [CSC14], they take certain features of

the Android app and use machine learning to flag fake ads and in [DGZ12], they

find gold standard users to find probability of fraud. In [KNB08], they use reverse

ad algorithm which checks whether a system is a robot or not. In [?], the research
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deals in the earlier stages of working with click fraud, it deals with the selection of

appropriate features for best results. In [QZL18], deals with the usage of ensemble

model cascading gradient boosting model. By comparing all the related works and

to the best of our knowledge, our work is the very first attempt done with deep

learning hybrid model.

By comparing all the related works and to the best of our knowledge, our work

is the very first attempt done with deep learning hybrid model consisting of ANN,

auto-encoder, and semi-supervised GAN.

2.3 Dataset Characteristics, Challenges and Experimental

Setup

Dataset Characteristics: For our experiment, we have used real-time dataset

provided by kaggle [Kag18]. The data were collected for four days (2017/11/06

to 2017/11/09). The dataset contains 184903890 number of real-time ad clicks

observations collected on a mobile platform. It contains eight attributes in which

seven are features (independent attributes), and one is a label (dependent attribute).

The overall size of the dataset is around 7 GB. Table 2.1 describes the characteristics

of the dataset. The dataset consists of 277396 unique ip’s, 706 unique app id’s, 202

unique channel id’s, 3475 unique device id’s, and 800 unique os version id’s. All

these are encoded due to the privacy factor. The Figure 2.2 shows the histogram

plots on unique ip’s and app id’s. The plot in Figure 2.2a shows fake clicks ratio per

app id where 90 percent of the clicks generated are suspicious, the plot in Figure

2.2b shows the number of observation per famous app id’s where there are 5 app

id’s which has 5.1 (+ or -) 1.7 millions of observations and the plot in Figure 2.2c

shows ip’s participation in fake and valid clicks. Figure 2.2d shows the heat map
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Table 2.1: Characteristics of the Ad Click Dataset

Attributes Description Attributes Description

ip Ip address of click app App id for market-
ing

device Device type id of
user mobile phone
(example: iPhone 6,
iPhone 6 plus, Sam-
sung Galaxy 8, etc.)

attributed time If user download the
app for after click-
ing an ad, this is
the time of the app
download

channel Channel id of mo-
bile ad publisher

os Os version id of user
mobile phone

Is attributed The target that is to
be predicted, indi-
cating the app was
downloaded

click time The time stamp of
click (UTC)

generated for each attribute compiling the null values in the dataset. We see areas

with lighter blank spaces which consist of null values. Hence, we drop attributes

with maximum null values to have a clean dataset. We see that attributed time has

maximum null values. Hence we drop the column and achieve a clean dataset.

Dataset Challenges: The vast dataset is not a problem, actually very benefi-

cial, so long as it is evenly distributed. However, our dataset was overwhelmingly

slanted towards negative or fake clicks, which created a problem in determining

accuracy, i.e. even if we do not predict a single positive or real click, it will still

give approximately 100% accuracy. However, we did not get 100% accuracy in the

case of deep learning model implementation when we took an evenly distributed

dataset. For this kind of distribution, we were able to achieve an accuracy of 94-

95%. Based on ip address of click and app id for marketing we divide the dataset

into six classes as as follows: Class 1: Hypo-active users of non-suspicious apps:

Combination of observations with unique ip participation count less than 20 times
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(a)

(b)

Figure 2.2: Pre-Analysis on the Dataset with Respect to Ip’s and App Id’s. (a)
Histogram for Fake Clicks Ratio Per App, and (b) No. of Observations Per Famous
App’s [TKC+19]

and app id frequency of participation less than 70% with 25974 rows. Class 2:

Active users of non-suspicious apps: Combination of observations with unique ip

participation count in the range ( greater than or equal to 20 times and less than

1000 times) and app id frequency of participation less than 70% with 27174 rows.

Class 3: Hyperactive users of non-suspicious apps: Combination of observations
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(c)

(d)

Figure 2.2: (continued) Pre-Analysis on the Dataset with Respect to Ip’s and App
Id’s. (c) Histogram on Ip’s Participation in Fake and Valid Clicks, and (d) Heat
Map Portraying Null Values [TKC+19]

22



with unique ip participation count greater than or equal to 1000 times and app id

frequency of participation less than 70% with 112790 rows. Class 4: Hypo-active

users of suspicious apps: Combination of observations with unique ip participation

count less than 20 times and app id frequency of participation greater than or equal

to 70% with 784964 rows. Class 5: Active users of suspicious apps: Combination of

observations with unique ip participation count in the range ( greater than or equal

to 20 times and less than 1000 times) and app id frequency of participation greater

than or equal to 70% with 19914810 rows. Class 6: Hyperactive users of suspicious

apps: Combination of observations with unique ip participation count greater than

or equal to 1000 times and app id frequency of participation greater than or equal

to 70% with 164038178 rows.

Experimental Setup: All methods and models are experimented on Intel Xeon

8 cores CPU with 32 GB RAM, 100 GB SSD and Tesla K80 GPU with 12 GB

memory. Implementation is done in python where train to test data ratio is 3:2 by

randomly selecting the rows in the dataset.

2.4 Preliminary Experiments

In order to analyze the relation between the dependent and independent attributes

we train and test the following prediction models: Logistic Regression (LR), Sup-

port Vector Machine (SVM), Random Forest (RF ) and Multinomial Naive Bayes

(NBM). Performance matrices: To evaluate the performance of each model we have

considered Precision, Recall Accuracy as shown in equation 2.1-2.3 where tposi: True

Positive, tnegi: True Negative, fposi: False Positive and fnegi: False Negative .

Precision(P ) =
tposi

tposi + fposi
(2.1)
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Table 2.2: Preliminary Results

Models LR SVM RF NBM

Performance
Metric

P R A P R A P R A P R A

Hypo-active
users of non-
suspicious apps

0.18 0.70 71.33 0.13 0.75 70.870.46 0.61 73.430.22 0.57 69.74

Active users of
non-suspicious
apps

0.42 0.57 64.23 0.13 0.87 64.600.64 0.69 74.260.25 0.61 64.00

Hyperactive
users of non-
suspicious apps

0.65 0.78 74.19 0.06 0.90 54.570.84 0.81 82.830.33 0.60 57.36

Hypo-active
users of suspi-
cious apps

0.99 0.82 81.45 0.91 0.81 80.220.91 0.94 87.280.54 0.87 56.23

Active users of
suspicious apps

0.99 1.00 99.59 0.99 1.00 99.600.99 0.99 99.590.66 1.00 66.44

Hyperactive
users of suspi-
cious apps

0.99 0.99 99.91 0.99 1.00 99.700.99 1.00 99.710.93 1.00 92.60

Note: P: Precision, R: Recall, A: Accuracy (%), LR: Logistic Regression, SVM: Support
Vector Machine, RF: Random Forest, NBm: Multinomial Naive Bayes

Recall(R) =
tposi

tposi + fnegi
(2.2)

Accuracy(A) =
tposi + tnegi

tposi + tnegi + fposi + fnegi
(2.3)

Observations: From Table 2.2 and Figure 2.3, 2.4, and 2.5 we can state that RF

performs better with minimal error rate and gives us the highest accuracy rate.

2.5 Deep Learning Approach

After having some degree of success in the above approaches, we wanted to develop

an algorithm to detect and discard fake clicks in real time. For that, we used Deep
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Figure 2.3: Precision Comparison

Figure 2.4: Recall Comparison.

Figure 2.5: Accuracy Comparison.
Note: C1: Hypo-active users of non-suspicious apps, C2: Active users of non-suspicious
apps, C3: Hyperactive users of non-suspicious apps, C4: Hypo-active users of suspicious

apps, C5: Active users of suspicious apps, C6: Hyperactive users of suspicious apps
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Learning methods, which also substantially improved our accuracy. We built a

multi-layered Neural Network with an attached autoencoder using Keras backend

Tensorflow [Cho15, RHW86]. We developed an approach based on Replicator Neural

Network [VAK+16] for detecting bots. Due to a heavily imbalanced dataset, we used

a semi-supervised GAN to generate fake data in order to act as an attack and also

increase the accuracy of our Neural Network. Figure 2.6 depicts our hybrid deep

learning model.

Work Flow: (1) User clicks on the link; the info is saved and sent to an au-

toencoder, (2) A trained Autoencoder regenerates the data after adding some noise

to it, (3) If regeneration loss is more than the threshold, the user is discarded as a

bot, (4) If not, the user is considered human and his/her info is passed to a neural

network, and (5) The Neural Network predicts whether the user has an intention of

downloading the app or not.

Below the concepts behind our scheme are explained. We use the dataset to

train both the supervised Neural Network and Unsupervised Autoencoder. Since

the data used is based on human clicks, it is easy to train the autoencoder to recog-

nize human behavior and discard the bots. Our model follows the pattern of Batch

Normalization after every Dense layer. To stop the model from overfitting, we put

a dropout after every layer with the probability of 0.2 [SHK+14]. We initialize the

parameters of the hidden layers using Xavier[GB10a] and and trained the network

using adam[KB14]. Table 3 shows the results. In Receiver Operating Characteris-

tic (ROC) graph, the True Positive rate is plotted in a function of False positive

Rate. Each (x, y) pair represents a sensitivity/specificity pair corresponding to a

particular decision threshold. The area under this curve perfectly summarizes the

Specificity (False positive rate) and Recall (True Positive rate). We use ROC curves

to understand how well the network is working. Table 2.3 shows the results and Fig.
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2.7-2.13 shows the plots of ROC for all class of datasets.

Table 2.3: Results from Neural Network

Dataset P R A(%) AUC
class 0 0.95 0.94 94.00 0.979
class 1 0.71 0.73 73.53 0.899
class 2 0.74 0.75 74.86 0.877
class 3 0.81 0.81 81.40 0.897
class 4 0.89 0.88 90.01 0.802
class 5 0.98 0.97 99.50 0.947
class 6 0.99 0.99 99.80 0.713

Note: Class 0: Equal distribution of valid and fake, P: Precision, R: Recall, A: Accuracy,
AUC: Area under the ROC Curve

2.5.1 Auto Encoder

In an autoencoder, there are two parts [VLBM08].

Encoder Here noise is added to the real data and is passed through a neural

network. Let xdata = OriginalData, we add noise using a random neural network

which is not trained as

xnoise = neural net(xdata) (2.4)

Now we use the encoder’s neural network to compress the data

xcompressed = encoder(xnoise) (2.5)

Decoder Here the output of encoder travels through another Neural network.

ypred = decoder(xcompressed) (2.6)

The Decoder output ypred = decoder(xcompressed) is compared with real input using

root mean squared and based on the error RegenerationLoss = E = Error =
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Figure 2.7: Equal Distribution of Valid and Fake.

Figure 2.8: Hypo-active Users of Non-suspicious Apps.

Figure 2.9: Active Users of Non-suspicious Apps.
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Figure 2.10: Hyperactive Users of Non-suspicious Apps.

Figure 2.11: Hypo-active Users of Suspicious Apps.

Figure 2.12: Active Users of Suspicious Apps.
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Figure 2.13: Hyperactive Users of Suspicious Apps.

sqrt(xdata − ypred)2, the auto encoder is then trained using Adam [KB14].

RegenerationLoss = E = Error = sqrt(xdata − ypred)2 (2.7)

We trained the autoencoder [VLBM08] on a dataset of 3 million humans. Since

the autoencoder is unsupervised, it cannot predict whether the user is real or fake.

However, the autoencoder was trained to regenerate the data. It learned the distri-

bution of data for which it was trained. For example, if an autoencoder that has

only been trained on the human dataset and the Regeneration loss for click is higher

than a decided threshold, then we can discard that as a bot. Since we did not have

the data classified as bots and humans, therefore we could not show how well this

method will work. However, a similar technique was used by Veeramachaneni et al.

[VAK+16] with their Replicator Neural Network. They got some great results for

detecting frauds based on regeneration error.
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2.5.2 Semi-supervised GAN

We develop a semi-supervised GAN [GPAM+14, KMRW14] to generate fake samples

as a smart attacker for the Neural Network.

Generator

In Figure 2.14, we show how we take care of generating different attributes.

xnoise = uniform distribution(−1, 1) (2.8)

xgenerated, xgenerated logits = generator(xnoise) (2.9)

After the softmax function is applied to each attribute vector, maxonehotencode to

take the highest value of vector and make it 1, while others are converted to zero.

We also concatenate the vectors with softmax activation: xgenerated logits.

Discriminator

It gives two outputs, discriminator 1 value denotes whether the given data is real or

generated, discriminator 2 value denotes whether the given data indicates a valid

click or not.

xg out = discriminator(xgenerated) (2.10)

xr out1 = discriminator 1(xreal data) (2.11)

xr out2 = discriminator 2(xreal data) (2.12)

xclassified 1 =
1

1 + e−xg out
(2.13)

xclassified 2 =
1

1 + e−xr out1
(2.14)

xclassified 3 =
1

1 + e−xr out2
(2.15)
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xclassified 1: Probability that the generated data is real. xclassified 2: Probability that

the real data is real. xclassified 3: Probability that the click in real data is valid.

Loss

Discriminator and Generator loss are as follows.

Discriminator Loss let supervised be sp and unsupervised be usp

Dusp gloss = − log (1− xclassified 1) (2.16)

Dusp dloss = − log (xclassified 2) (2.17)

Dsp loss = −y ∗ logxclassified 3 + (−(1− y)) ∗ log(1− xclassified 3) (2.18)

Dloss = Dusp gloss +Dusp dloss +Dsp loss (2.19)

Generator Loss

Gusp loss = − log (xclassified 1) (2.20)

Gsp loss = −(log(Cos(θ))) = −log

(
Cos

(
(xreal data ∗ xgenerated logits)

(|xreal data| ∗ |xgenerated logits|)

))
(2.21)

Gloss = Gusp loss +Gsp loss (2.22)

Both these losses are used to train the Generator and discriminator separately.

Results

We trained our GAN on a dataset with equally valid and fake clicks; the discrimina-

tor got an accuracy of 89.7%. Based on discriminator’s classification, the generator

created 63000 valid clicks, given 100000 randomized inputs. To make sure that we

were getting the correct results, we did a dot product of randomly selected real

valid clicks and the ones generated by the GAN, we got an average result of 0.65,

while the average results for the dot products of the same real valid clicks with each
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other was 0.85, showing that there is a great variance even within the real valid

clicks. On the other hand, the dot product of the generated valid clicks and real

fake clicks was 0.24. We even added this data to the equally distributed training

dataset to train the Neural Network, and saw an increase of 0.6-1%, from 94% to

94.6-95% on the same test cases as used in Table 3, depending on the structure of

the Neural Network. The increase may be a minute for the given dataset since the

neural network was already performing well, but this technique can be used in other

one-sided sparse data sets too. To the best of our knowledge, this is the first work

to use Cos(θ), as a supervised loss function in a semi-supervised GAN.

2.6 Conclusion

As shown by the above results, we have achieved good high accuracy even on small

datasets, showing the capability of the neural network to understand the probability

distribution of fake and real users. The reason for the success of the neural network

in this form of fraud detection is because of multiple layers, with each layer learning

the distribution to a certain extent and passing that knowledge to the next layers.

The Auto-Encoder can understand the distribution of human clicks since the data

available belongs to human beings. This allows it to encode and then decode the

data; it is a type of decryption and encryption. Since it has only been trained to

encrypt and decrypt human data, it can be said that the loss error will be high

for bots. However due to lack of bot clicks available, the auto-encoder in current

form will not be able to detect bot with a distribution similar to humans, but when

put in practice it will be able to learn botnet distribution too. It is different from a

standard neural network since the loss generated is ambiguous, which means, we will

have to change the loss threshold from time to time depending on the success and
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failure of auto-encoder. Neural Network will fail to detect bots if they maliciously

download, but the autoencoder will discard them.
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CHAPTER 3

CFXGB: AN OPTIMIZED AND EFFECTIVE LEARNING

APPROACH FOR CLICK FRAUD DETECTION

Click Fraud is a fraudulent act of clicking on pay-per-click advertisements to increase

the site’s revenue or to drain revenue from the advertiser. This illegal act has been

putting commercial industries in a dilemma for quite some time. These industries

think twice before advertising their products on websites, as many parties try to

exploit them. To safely promote their products, there must be an efficient system

to detect click fraud. Currently, deep learning models are employed for click fraud

detection. However, due to certain obstacles, a significant computational overhead

is incurred in search for the best model.

To address this problem, we propose a model called CFXGB (Cascaded Forest

and eXtreme Gradient Boosting). The proposed model, classified under supervised

machine learning, is a combination of two learning models used for feature trans-

formation and classification. We showcase its superior performance compared to

other related models. We make the comparison with multiple click fraud datasets

with varying sizes. Several intrusion detection datasets were also used to validate

its efficacy against deep learning models.

3.1 Introduction

The recent approaches to detect click fraud use deep learning models [TKC+19,

HAH+18]. These models require intense hyperparameter tuning for excellent per-

formance. The data is enormous since there are multiple features and the number

of clicks is growing by the minute. In real-time systems and business applications,

advertisement data is usually of gigantic volumes resulting in the feature space di-
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mension to drastically increase. This data is then used to re-train these real-time

models which includes hyperparameter tuning on the new dataset. This re-training

must be done periodically. As we all know, neural networks are black-box models

and the number of parameters to be tuned are many. This tuning would require

time and a powerful machine to process the data.

Google AdWords [fru19] is an advertising network that has a system in place

to detect click fraud. This system is a three-tier system in which they first use

automated filters that detect suspicious clicks in real-time. Then, offline analysis by

automated algorithms and human analysts occurs. Finally, Google performs an in-

depth investigation of the complaints from advertisers. As seen by these steps, the

whole process of detecting click fraud is not entirely automated. Also, the current

literature indicates that the existing detection models are less effective and require

more human intervention.

3.1.1 Summary of Contribution

To address these problems :

• We extend the work done by [ZF17] Zhou et al. by proposing a two-phase

model consisting of feature transformation by Cascaded Forests and classifi-

cation by eXtreme Gradient Boosting (CFXGB).

• Our approach requires only minimal hyperparameter tuning i.e., The number

of parameters that vary are few.

• Use of forests in the form of layers is more intuitive in understanding the

model’s learning method as compared to the use of neural nets.

• Accuracy, Area-Under-Curve (AUC), Recall, F1-score and Precision are used

to evaluate the superiority of the proposed model against recent works.
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• We have evaluated our model on five benchmark datasets. Three of them are

click fraud datasets and two of them are intrusion detection datasets.

3.1.2 Organization of the Chapter

In section 8.2, we discuss the related work regarding Click Fraud, Cascaded Forest

and eXtreme Gradient Boosting (XGBoost). In section 3.3, we present our proposed

approach i.e., CFXGB. We analyze the total pipeline of the proposed approach

and then we list all the parameters given to the model. In section 7.4, we initially

present the pre-processing performed on each dataset in detail followed by the results

obtained by running these processed datasets on the model and finally provide a

comparison with prior works. In section 7.5, we discuss the evaluation metrics,

results and justify the model parameters.

3.2 Related Work

3.2.1 Click Fraud

Various methods have been designed to predict click fraud. A statistical model

has been created to identify the IPs responsible for the fraud attacks [KKL+14]

and based on this information, classification is done. In [APS+11], Splay trees are

used for the storage of IP addresses through which burst of fraud clicks occur. In

[Had10], average clicks on bluff ads are taken as a way of discrimination. In another

model [CdQC12], CAPTCHAs are used to ensure that the click is legitimate. In

[FLDH+16b], Social Network Analysis is used to find three top ranked ad networks

used to inject the click-fraud malware. In [TKC+19], a hybrid deep learning model

consisting of an Auto Encoder, a Neural Network and a Semi-supervised Generative
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Adversarial Network (GAN) was devised to predict click fraud. In [LLCX15], if the

ad is shown to be attested, they first find the eigenvalues of the displayed ad images.

Then, if the eigenvalues of the image match those stored in their server, the click is

certified as legitimate. Coalition made by fraudsters can be discovered by similarity-

seeker algorithm [MAEA07]. A reverse ad algorithm has been devised [KNB08] that

checks whether a system is a robot or not. Another method has been devised to

find the probability of fraud by finding gold standard users [DGZ12]. The idea

of appropriate feature selection [KJ97] for optimum results in the earlier stages of

working with click fraud is another approach. Due to the immense data associated

with advertisements, to reduce feature dimensions, embedding techniques [LH15,

COL17] and neural networks have been used. Hence, essential information was

extracted. Another method used to extract meaningful information was devised by

Google researchers [WFFW17]. Structures of deep learning models differ depending

on the problem as discussed in [ASKR12, SMKR13]. Their structures depend on

the size of the dataset and these models usually require numerous parameters to

be tuned. A model called RTILKE [XJWX19] obtains the embedding of data by

learning a robust similarity function.

3.2.2 Cascaded Forest

Cascaded Forests is a part of the gcForest model proposed in [ZF17]. GcForest is

one of the ensemble based models as they use multiple learners to obtain a combined

result. Ensemble models facilitated with deep neural network features yield superior

results as compared to using only deep neural networks [KFCRB15].

As stated in [ZF17], the deep forest model tries to mimic the functionality of

deep learning models without the intense hyperparameter tuning through certain
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features which are listed below:

1. Cascade-by-Cascade Processing

2. In-model feature transformation

3. Dataset Flexibility

The cascade forest in the gcForest works based on Boosting [FS97]. It decides the

number of cascades based on the dataset. Cascade structures have had outstanding

performances in object detection tasks [VJ+01]. Each grade of the cascade is an

ensemble of an ensemble. In [Web00], Bagging is used as a base learner for boosting.

To achieve feature transformation, GcForest uses ensemble approach in the same

grade. After processing the data in one grade of learners, the processed output

is used as the input for the next grade [Bre96, TW99]. Cross-validation is used

between grades based on other studies [Zho12, TW99]. For a good ensemble to

overcome overfitting, the constituent learners in each grade must exhibit a high level

of accuracy and diversity. In our case, we have enhanced diversity by adding another

type of forest. Other models that use gcForest are Ensemble Trees and Cascaded

Model (ETCF) [QZL18] which is a model for Click-through Rate prediction. It uses

Gradient Boosting for feature transformation and then gcForest for classification.

3.2.3 XGBoost

XGBoost or Extreme Gradient Boosting is a classifier developed by Chen et al.

[CG16]. This model is used for supervised learning. Due to its high algorithmic

efficiency, the execution speed and model performance are very high.

Boosting is a technique where models are added sequentially, improving the

previous models by correction of errors. Gradient boosting is an approach where
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models are created that predict the residuals of preexisting models and then a final

prediction is made.

XGBoost is vital to our approach as it is used in the Cascaded Forest for feature

transformation and acts as our primary classifier.

Some of the features of XGBoost are listed below :

1. Parallelization

2. Out of core computation

3. Cache optimization

4. Distributed computing

3.3 Proposed Approach

3.3.1 Pipeline

Figure 3.1 depicts the pipeline of our approach. It consists of three stages i.e.,

Pre-processing, Feature transformation based on Cascaded Forest and XGBoost

classification with minimal hyperparameter tuning. Let Rn×d be the set of all real-

valued matrices with n rows and d columns. We consider the dataset A ε Rn×d that

represents any of the datasets considered for experimentation. Let Aij represent

the i’th row and j’th column, Ai∗ represent the i’th row and A∗j represent the j’th

column of A. Let the dataset A be read using pandas and be considered a data

frame.

Pre-processing

For A, if any Null or Nan values exist in any row Ai∗, that row is dropped. The

model accepts only int and float datatypes. Dataset A might have a column that
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represents the timestamp of click (for click fraud datasets). Let this column be A∗j.

If A∗j datatype is not in the datetime64 format, then it will have to be converted

to it. The converted column is then split into separate columns A∗j+1, A∗j+2, ...,

A∗j+n based on their time distribution, for example, day, hour, minute and second.

Upon the completion of column splitting, the original column A∗j is dropped from

A. Now the Dataset A is split into four datasets W, X, Y, Z for training and testing

the data. Testing data has 20% of the data.

W = Aa×d−1 (3.1)

X = Aa×−1 (3.2)

Y = An−a×d−1 (3.3)

Z = An−a×−1 (3.4)

where a represents 80% of n i.e., Number of rows

W and X are the training datasets (train x(3.1) and train y(3.2)), and Y and Z

are the testing datasets (test x (3.3)and test y(3.4)). If there is no application of

any sampling method, then W, X, Y and Z need to be converted from pandas data

frame format to array format. Finally, we feed W and X into the Cascaded Forest

for feature transformation.

Cascaded Forest Feature Transformation

The Cascaded Forest is made up of three ensemble models which are Random Forests

[Bre01], Extremely Randomized trees (Extra Trees) [GEW06] and XGBoost[CG16].

Each of these ensemble models helps boost the model’s performance. The flowchart

of this transformer is given in fig 4.1. The cascade forest structure proposed by Zhou
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et al.[ZF17] is used as the feature transformer. Cascaded Forests work in the form

of layers. The output data of a cascade is given to the next cascade for processing.

In addition to the Extremely Random Forest and the Random Forest in Zhou’s

[ZF17] model, the XGBoost Classifier was added to the Cascaded Forests to enhance

diversity (Based on equation (3.5) obtained from error ambiguity decomposition

[ZF17, KV95])

Eensemble = E(Classifieri)− A(Classifieri) (3.5)

where error of the ensemble is indicated by Eensemble, the average error of individual

classifiers in the ensemble is indicated by E(Classifieri) and the diversity among the

individual classifiers is denoted by A(Classifieri) where i = 1, 2, 3, ...., nthclassifier

The training sets W and X are used to obtain transformed features. Let us

consider a binary classification. Each forest outputs the likelihood of data belonging

to a class for all the classes. Hence, there will be two classes outputted by each forest

for each data observation. All the class vectors from each forest are concatenated

together and then re-concatenated to the original data, as shown in figure 1.

K-fold validation is applied to prevent overfitting for each class vector from a forest.

The number of cascades formed depends on the number of early stopping rounds

given. Early stopping rounds is a parameter used in the Cascaded Forest which is

used to limit the number of layers to be added. We assume three early stopping

rounds. Once it detects there is no increase in accuracy in 3 layers, it will stop

cascading additional layers. Finally, the last layer would output a new encoded

array after re-concatenation. Let us consider datasets W and X again which have

data sizes a × (d − 1) and a × 1 respectively. Upon feeding them to the Cascaded

Forest, considering five forests in total, we get 10 class vectors as output (Two class

vectors from each forest). These class vectors are compared with the training label
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to obtain accuracy for that cascade. We concatenate all these class vectors with W

and get a new data array with size a×(d+9) for W. This array is then fed to the next

cascade with the same forests. We again obtain 10 class vectors from this encoded

array and calculate accuracy in the same fashion. Once again, we concatenate them

with the original array W. This cycle will continue until the number of cascaded

layers exceeds a specified threshold parameter called max layers or until there is no

improvement in accuracy over the number of early stopping layers. Max layers is

a parameter that limits the number of layers. It stops the cycle of the addition of

layers even if there is a possibility of improving accuracy. But, if this parameter is

set to zero, only the early stopping rounds parameter will stop the cycle. Finally, the

last layer will again output 10 class vectors. These vectors can be used to calculate

the accuracy of the Cascaded Forest (as a classifier). However, the approach we

have used is to re-concatenate the class vectors obtained from the final layer to the

original data array W and perform classification by XGBoost. Let this concatenated

array be E.

Similarly, we transform the testing array in the same fashion. Let this array be

E’. The XGBoost classifier uses array E’ for testing.

XGBoost Classification with Mini Hyperparameter Tuner and Prediction

The XGBoost classifier or Extreme Gradient Boosting [CG16] then trains itself on

the encoded array E. The parameters are mildly tuned based on just two parameters

i.e., maximum depth and learning rate. The list of parameters given for tuning is

indicated in section 3.3.2. Once the training is complete, XGBoost classifier predicts

whether a click is fraudulent or not on all observations in array E’. Finally, we

compare these results with the actual values and output the corresponding results.
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Figure 3.2: Flowchart Depicting Feature Transformation by Cascaded Forest
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This model proposes the use of Cascaded Forests as a feature transformer by

concatenating new features that can help the Xgboost classifier understand the

dataset better. It also excludes the Multigrain Scanning feature of deep forests and

still works well with fewer parameters that are to be tuned.

3.3.2 Parameters Considered

Cascaded Forest

• Random Forest Classifier: 2

• Extra Trees Classifier: 2

• XGBoost Classifier: 1

• Early Stopping Rounds: 3

• For all Classifiers :

1. Number of Folds: 5

2. Number of Estimators: 100

• Other parameters for XGBoost

1. Learning Rate: 0.3

2. Max Depth: 4

XGBoost Classifier

• Number of Estimators : 100

• Mini Hyperparameter Tuner

1. Learning rate : [0.05,0.1,0.2,0.3]

2. Max Depth : [2,3,4]
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3.4 Experiment

3.4.1 Datasets

We conducted experiments on five datasets in which three datasets were click fraud

prediction datasets and two were intrusion detection datasets. We also consider

intrusion detection datasets to validate our claims of our model performing better

than deep learning models in section 3.4.2.

Click Fraud Prediction Datasets

• TalkingData dataset [Kag18]

• Avazu dataset [Kag15]

• Kad dataset[Kag17]

Intrusion detection Datasets

• UNSW-NB15 dataset [uns15]

• CICIDS2017 dataset [unb17]

3.4.2 Works Compared

We compare our proposed approach to the following models:

• Click Fraud Prediction:

ETCF [QZL18], Hybrid Deep Learning [TKC+19], RTILKE [XJWX19] models

• Intrusion Detection:

DNN [FD19] and other comparisons [MS15b, GH16, MS16, PT17, Fri02, HHLD,

RD18].
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The Kad dataset is used to prove the flexibility of our proposed model in com-

parison with deep learning models that cannot adapt to some datasets and are

sometimes overly complicated.

3.4.3 Experimental setup

All the experiments were conducted on an Intel I7 4 core CPU with 16GB RAM

and the Flounder server provided by FIU. (AMD Opteron Processor 6380 with 64

cores and 504GB RAM). Implementation is done in Python.

3.4.4 Data Pre-processing

In this section, we discuss the data processing performed for each dataset before

feeding the data into the Cascaded Forests. We have attempted to do the same

pre-processing for a fair comparison with previous works.

TalkingData Dataset

TalkingData dataset is an AdTracking Fraud Dataset which has records of 200 mil-

lion clicks with eight features over four days. In the data pre-processing stage,

attributed time was dropped. Click time was separated into separate columns i.e.,

day, hour, minute and second. Two additional columns were added based on repe-

tition of unique IPs in one hour and ten hours.

Case 1: Pruning of certain features was done through the removal of categorical

data that have occurrences less than 5. 40,000 rows of data are considered in which

there is 1:1 ratio of both classes (click and no click). No sampling here as the dataset

is balanced.
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Case 2: 1 million rows of data in which the ratio of classes match the ratio at 200

million rows are considered. Under-sampling was used to balance the imbalanced

dataset.

Case 3: Same data preprocessing was performed as in [TKC+19] by considering

about 900,000 rows of data with a 1:1 ratio of classes.

Avazu Dataset

This dataset is a Click fraud dataset consisting of clicks recorded over ten days.

There are about 40 million rows of data with 24 features. We carried out the same

pre-processing as with TalkingData dataset i.e., Separation of the ’hour of click’

column into separate columns i.e., month, day and hour. The columns from index

4 to 13 were converted from ’object’ datatype to ’int’ datatype. We also add one

column based on click frequency from the device ip in 10 hours.

Case 1: Pruning of certain features was done through the removal of categorical

data that have occurrences less than 5. 20,000 rows of data in which there is 1:1

ratio of both classes (click and no click) is considered. No sampling here as the

dataset is balanced.

Case 2: A random sample of 1 million rows of data was considered and under-

sampling was applied to balance the imbalanced dataset.

Kad Dataset

This is an Advertising dataset which has 1000 rows and ten features. We divide

the ’timestamp’ feature as stated for the above datasets into month, day, hour and

second columns. We converted the columns ’Country’ and ’City’ into unique integer

values. We also dropped the ’Ad Topic Line’ feature.
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UNSW-NB15 Dataset

This dataset is an intrusion detection dataset created by a research group in Aus-

tralia. There are two million records with 44 features in this dataset. Four datasets

form the UNSW-NB15 dataset and they were concatenated row-wise. The columns

were then renamed based on the information given in [uns15]. We have attempted

to do the same pre-processing as said in [FD19] to compare the models. Some other

necessary cleaning like removal of spaces in the data was also performed.

CICIDS2017 Dataset

This dataset is another intrusion detection dataset released in 2017. They have 2.8

million records of cyberattacks with 79 columns. There are a total of eight datasets

that form the CICIDS2017 [unb17]. They are concatenated row-wise and then the

target label was converted from a multi-class into a binary class i.e. either an attack

or benign. We leave the multi-class classification for future work. The features Flow

Bytes and Flow Packets had data that exceeded the range of float32 resulting in

the dropping of these features. Finally, we sampled 1 million rows for training and

testing. Due to the imbalance in the data, we applied under-sampling to balance

the dataset.

As mentioned in all these cases, all of the datasets with a column having click-

time have been separated into their respective time divisions of an hour, minute and

second. This separation is done since the model does not take datetime64 datatype.

3.5 Results and Discussion

In this section, we list and explain the several metrics used to measure the perfor-

mance of the model. Then we present experimental results on the different datasets
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listed in 3.4.1 and compare them with other existing models. We then justify the

parameters taken for the model and portray the importance of XGBoost as a clas-

sifier.

3.5.1 Evaluation Parameters

As given by the equations 3.6 - 3.10, we use AUC, Accuracy, Precision, Recall and

F1-score as the evaluation metrics to compare the performance between models.

The formulae for each are given below.

AUC =
1

2
× (

tposi
tposi + fnegi

+
tnegi

tnegi + fposi
) (3.6)

Accuracy =
tposi + tnegi

tposi + tnegi + fposi + fnegi
(3.7)

Precision =
tposi

tposi + fposi
(3.8)

Recall =
tposi

tposi + fnegi
(3.9)

F1score =
2× Precision×Recall
Precision+Recall

(3.10)

3.5.2 Experimental Results and Comparison

In comparison with the ETCF model [QZL18], we have compared results with Talk-

ingData dataset and Avazu Dataset. The results are in Table 3.1.

In Table 3.2, we compare the Hybrid deep learning model [TKC+19] with our

proposed approach on the TalkingData dataset. (Case 3)

In Table 3.3, results compare CFXGB with RTILKE and RILKE model from

[XJWX19]. The metric used is AUC.

Table 3.4 highlights the results based on 1 million rows of data for TalkingData

and Avazu datasets. (Case 2)

53



Table 3.1: Comparison with ETCF and other Models [QZL18]

DATASET MODEL AUC P R F1

TALKINGDATA (CASE 1)

ETCF[QZL18] 96.0 91.0 90.4 90.4
SVM[QZL18] 93.2 89.6 87.7 87.6

Naive Bayes[QZL18] 94.6 90.8 89.7 89.6
GBDT[QZL18] 94.2 90.6 89.1 89.0

Random Forest[QZL18] 90.4 87.7 84.6 84.2
CFXGB 98.97 99.0 99.0 99.0

AVAZU (CASE 1)

ETCF[QZL18] 75.5 69.8 69.7 69.6
SVM[QZL18] 70.3 65.3 65.2 65.2

Naive Bayes[QZL18] 72.9 67.3 67.1 67.0
GBDT[QZL18] 74.1 68.0 67.9 67.9

Random Forest[QZL18] 68.7 64.7 63.3 62.5
CFXGB 98.96 99.0 99.0 99.0

Note: P: Precision, R: Recall

Table 3.2: Comparison of TalkingData Dataset (Case 3)

MODEL AUC PRECISION RECALL F1
HYBRID DL[TKC+19] 97.90 95.0 94.0 94.0

CFXGB 99.97 99.0 99.0 99.97

In Table 3.5 and 3.6-3.7, different models are compared based on the UNSW-

NB15 and CICIDS2017 datasets respectively.

Based on the results shown in these tables, CFXGB has surpassed all the latest

models in terms of performance.

3.5.3 Discussions

Parameter Sensitivity

Based on several experiments conducted, we have fixed several parameters in the

proposed model. These parameters were initialised and used for all datasets con-

sidered. For comparative analysis, different values for these parameters were tested

for best performance. AUC was used to evaluate the performance of the parameter.
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Table 3.3: Comparison of Datasets with [XJWX19]

DATASET RILKE[XJWX19] RTILKE[XJWX19] CFXGB
TALKINGDATA
(CASE 2)

82.0 83.0 97.78

AVAZU (CASE 2) 85.0 87.0 92.62
KAD 88.0 89.0 96.81

Table 3.4: Results Based on 1 Million Rows of Data

DATASET AUC PRECISION RECALL F1 ACCURACY
TALKINGDATA
(CASE 2)

97.04 98.0 98.0 98.0 97.77

AVAZU (CASE 2) 87.24 93.0 93.0 93.0 92.62

All the AUC values were scaled for better visualization in Figure 3.3. The values

considered for each parameter is given below.

1. Early Stopping Rounds: In the case of early stopping rounds, we have

considered the Avazu dataset (Case 2). The values for early stopping rounds

tested on are [1,2,3,4,5]. The plot is shown in Figure 3.3(a). The peak is found

at value 3.

2. Number of Estimators: In the case of Number of Estimators, we have

considered the CICIDS2017 dataset. The values of the number of estimators

tested on are [50,100,200,400]. The plot is shown in Figure 3.3(b). The peak

is found at value 100.

3. Number of Folds: In the case of the number of folds, we have considered

the Kad dataset. The values of the number of folds tested on are [2,3,5,7,10].

The plot is shown in Figure 3.3(c). The peak is found at value 5.

4. Maximum Depth in XGBClassifier: In the case of Maximum Depth in

XGBClassifier, we have considered the Kad dataset. The values of depth
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Table 3.5: Comparison of Models with UNSW-NB15 Datasets [FD19]

AUTHOR CLASSIFIER ACCURACY(%)
Primartha and Tama [PT17] Random Forest 95.5

Multilayer Perception 83.5
N. Moustafa, et al. [MS17] Naive Bayes 79.5

Expectation-Maximization 77.20
Linear Regression 83.0

Belouch, et al. [BEI17] RepTree 87.8
Naive Bayes 80.04

Random Tree 86.59
Decision Tree 86.13

Artificial Neural Network 86.31
Zewairi, et al. [AZAA17] Deep Learning 98.99

Faker, et al.[FD19] Deep Neural Network 99.19
Our Work CFXGB 99.65

Table 3.6: Comparison of models with CICIDS2017 datasets [FD19]

AUTHOR CLASSIFIER ACCURACY(%)
Resende and
Drummond
[RD18]

Genetic + Profiling 92.85

J. Han, et al.
[HHLD]

SVM + Genetic 99.85

Faker, et
al.[FD19]

Deep neural network 97.73

Our Work CFXGB 99.91

tested on are [2,3,4,5]. The plot is shown in Figure 3.3(d). The peak is found

at value 4.

5. Learning Rate in XGBClassifier: In the case of Learning Rate in XGB-

Classifier, we have considered the CICIDS2017 dataset. The values of Learning

Rate tested on are [0.01,0.1,0.3,0.5]. The plot is shown in Figure 3.3(e). The

peak is found at value 0.3.
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Table 3.7: Comparison of models with CICIDS2017 datasets [FD19]

AUTHOR CLASSIFIER F1
Sharafaldin
[SLG18]

K-Nearest Neighbour 96.0

Random Forest 98.0
ID 98.0

Adaboost 77.0
Multilayer Perception 77.0

Naive Bayes 88.0
Quadratic Discriminant Analysis 97.0

Our Work CFXGB 98.99

Table 3.8: Deep Learning Models vs CFXGB in Terms of Unknown Parameters

Deep Learning Models [ZF17] CFXGB

Activation Functions : Cascaded Forest :
Sigmoid, ReLU, linear etc. No. of Forests : 5
Construction of Neural Network : Early Stopping Rounds: 3
No. Hidden layers : ? No. of folds : 5
No. Nodes in Hidden layers : ? No. of Trees in forest : 100
Kernel Size : ? Tree Growth: Till pure leaf
For Optimization : XGBoost :
Learning Rate : ? No. of trees : 100
Momentum : ? Learning Rate : {0.05, 0.1, 0.2, 0.3}
L1/L2 weight regularization penalty : ? Maximum Depth: {2, 3, 4}

Deep Learning Vs. CFXGB

As seen in table 3.8, the number of parameters to be tuned is very less compared to

CFXGB. Most of the parameters in this model are fixed and do not require tuning

to obtain excellent performance. The greater the number of parameters to be tuned,

the higher the computational power and time required to achieve excellent results.

The XGBoost classifier has mild tuning for Learning rate and maximum depth to

obtain best results for all datasets considered.
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XGBoost Importance

The Cascaded Forest transformer can also be used as a classifier. The final layer

could output the class associated with each data observation.

However, our performance results show that XGBoost performs better as a clas-

sifier with feature transformation by Cascaded Forest. Plots that compare both

methods are given in Figure 3.4. We have done comparative analysis by checking

performance of the model for different parameter values. The parameters consid-

ered for comparison are Early stopping rounds, Number of estimators, Max Depth

in XGboost and Learning Rate in XGBoost. For the parameters we have chosen for

the model, there is considerable difference in performance between CFXGB and Cas-

caded Forest classifier. AUC was used to evaluate the performance of the parameter.

All the AUC values were scaled for better visualization.

3.6 Future Work

If high computational resources are available, a larger number of trees and different

kinds of forests can also be added to improve results. Feature selection could be

applied to datasets as a pre-processing step to improve results. The final stage of

XGBoost classifier’s parameters can be tuned further using deep grid search hyper-

parameter tuning to get even higher performance.

3.7 Conclusion

With the evergrowing market of online advertising, companies are now shifting their

focus towards selling their products on websites and mobile applications. As a re-

sult of this, the issue of click fraud has grown exponentially in the recent past.
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Click fraud is the illegal clicking of advertisements that leads to the wasted funds

of the advertisers. To counter this issue, several methods to detect click fraud have

been devised. Click fraud detection is used to protect the advertiser by classifying

clicks into valid and fraudulent clicks. It is mainly implemented using deep learning

models. However, deep learning models require many parameters to be tuned and

hence require considerable amounts of time to give good results. To combat this, we

propose a machine learning model, CFXGB, a hybrid of the Cascaded Forest and

XGBoost which accurately identifies faulty clicks. It uses the Cascaded Forest to

transform the features by concatenating the original dataset’s predicted class vectors

to it, and re-predicting the class vectors iteratively. In the last layer, the original

dataset is concatenated to the final class vectors and fed into the XGBoost classifier

for click fraud prediction. Apart from click fraud datasets, we have also considered

intrusion detection datasets to validate the claims of CFXGB performing better

than deep learning models. The use of the Cascaded Forest as a feature transformer

and then XGBoost as a classifier, has shown a considerable advantage over merely

using the Cascaded Forest as a classifier. Several experiments were conducted on

different datasets to find the best parameter values. They were initialized based

on the experimental results and were the same for all the datasets. On perform-

ing comparative analysis, using various click fraud detection models, we infer that

CFXGB performs outstandingly well.
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Figure 3.3: Peak Values of Parameters in the Model. a) Early Stopping Rounds
has Peak Performance at Value 3. b) No. of Estimators has Peak Performance at
Value 100.
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Figure 3.3: (Continued) Peak Values of Parameters in the Model. c) No. of Folds
has Peak Performance at Value 5. d) Maximum Depth has Peak Performance at
Value 4.
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Figure 3.3: (Continued) Peak Values of Parameters in the Model. e) Learning Rate
has Peak Performance at Value 0.3.
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Figure 3.4: Comparison of CFXGB vs. Cascade Forest Classifier a) Early Stopping
Rounds Against AUC b) No. of Estimators Against AUC.
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Figure 3.4: (Continued) Comparison of CFXGB vs. Cascade Forest Classifier c)
Maximum Depth in XGBoost Classifier Against AUC d) Learning Rate in XGBoost
Classifier Against AUC.
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CHAPTER 4

KSMOTE: AN EXTENSION OF SYNTHETIC MINORITY

OVERSAMPLING TECHNIQUE FOR IMBALANCED DATASETS

More often than not, data collected in real-time tends to be imbalanced i.e., the

samples belonging to a particular class are significantly more than the others. This

degrades the performance of the predictor. One of the most notable algorithms

to handle such an imbalance in the dataset by fabricating synthetic data, is the

“Synthetic Minority Oversampling Technique (SMOTE)”. However, data imbalance

is not solely responsible for the poor performance of the classifier. Certain research

works have demonstrated that noisy samples can have a significant role in miss-

classifying the dataset. Also, handling large data is computationally expensive.

Hence, data reduction is imperative. In this work, we put forth a novel extension of

SMOTE by integrating it with the Kalman filter. The proposed method, KSMOTE,

filters out the noisy samples both, in the raw data and the synthetically generated

samples, thereby reducing the size of the dataset. Our model is validated with a

wide range of datasets. An experimental analysis of the results shows that our model

outperforms the presently available techniques.

4.1 Introduction

Data is categorized into different classes, where a few of them might have an ex-

cessive number of samples, leading to an imbalance. Since the data has a minority

class, the result of the predictor tends to be biased. This becomes a detriment to

the performance of the learning model. Most of the real-time datasets associated

with medicine [TDK10], text classification [LLS09], intrusion detection [KTPA12],

and click fraud detection [FP97] are not balanced. A binary dataset having 95%
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positive samples may obtain an extremely high classification accuracy. However,

this accuracy may be incorrect due to over-fitting.

Extensive research has been performed in the recent past to formulate a solution

for the issue of handling imbalanced data, and several solutions have also been

suggested[HG08]. Several re-sampling techniques [BSL11, CBHK02, KM+97, SW08]

are available to balance the dataset, among which SMOTE[CBHK02] is a widely

recognized technique. In the previous years, 85 versions of SMOTE have been

proposed. We provide a thorough review of all the variants in Section 8.2.

Past research shows that an imbalance in the class samples is not the only con-

cern, as other factors such as noise and borderline samples may hinder the perfor-

mance of the learning algorithm [GSM07, Jap03, NSW10]. Applying SMOTE on

imbalanced datasets gives better results, but it generates synthetic samples, result-

ing in a notable increase in the size of the data. Presently, the data collected in

real-time is extremely large (BIG DATA) [ZE+11]. SMOTE can be considerably

improved by performing certain modifications (Borderline-SMOTE 1,2 [HWM05],

Safe-level SMOTE [BSL09]) or by adding some extensions (SMOTE-IPF [SLSH15],

ENN or TL[BPM04]).

Filters have not been commonly used in combination with SMOTE until now.

Hence, we propose an extension called KSMOTE which employs the Kalman Filter

[BW+01] to remove noisy data samples. The use of the Kalman filter as a data-

reduction method improves the efficacy of the classifier and reduces the processing

overhead.

We use three Click-Fraud datasets, an Intrusion Detection dataset and a few

UCI[BM98] datasets that are considered by previous researchers, to evaluate our

work. Furthermore, we make comparisons with several, existing variants of SMOTE.

Metrics such as Recall (Rcl), Accuracy (Acry), F1-Score (F1scr) and Precision (Pres)
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have been used to provide comparisons. Area Under the Curve (AUC) is another

very good metric to verify overfitting caused by SMOTE.[Bra97].

4.1.1 Organization of the Chapter

In Section 8.2, we discuss the related works in terms of the research we have carried

out on SMOTE. In Section 4.3, we demonstrate the preliminary concepts behind

this work, and our novel, proposed approach followed by an in-depth explanation of

our concept. In the 4.4th Section, we discuss the experimental setup and the details

of the datasets we have used. We also present the evaluation metrics used in our

work, analysis methodology and discuss our results that improve the state-of-art

methods concerning various metrics. In the 4.5th Section, our work is concluded.

4.2 Related Work

To overcome the imbalance, various resampling techniques have been presented[BSL11,

CBHK02, KM+97, SW08]. SMOTE was proposed by Chawla in the year 2002[CBHK02],

which makes use of KNN graphs to generate synthetic data. In[BPM04], the au-

thor proposes to extend SMOTE by integrating it with ENN and TL noise fil-

ters. In[HWM05], only the borderline samples are considered and are oversampled.

In[CHS+06], authors have used different Prototype-based resampling methods like

KNN and Support Vector Machine (SVM) to balance the dataset. In[WXWZ06],

the authors have applied the LLE algorithm to process the dataset and then over-

sampled the dataset by using SMOTE.

In[CCS06], the authors use RIPPER as an underlying rule classifier and also a

clustering-based method for oversampling is proposed. In [DLCF07], the method

proposed averages the neighbors to obtain the mean example to oversample the data,
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also the author only considers the positive dataset to locate the nearest occurrences

utilizing the weighted distance. In[HBGL08], the authors have proposed to alter

the decision boundary in the direction close to the difficult samples by using some

techniques. In[DLCFG08], the authors use a collection of classifiers to select the

samples from the dataset, and weighted distance is used to balance the dataset.

In[GA08], the authors use 4 different topologies to oversample the minority class

using a polynomial fitting function. In[TC08], the authors have proposed to readjust

the direction of the synthetic minority samples by generating data along the first

component axis.

In[SW08], the authors have applied amplification methods and selective prepro-

cessing techniques and compared SMOTE with NCR. Before generating the data

samples, positive instance is assigned to the safe level and regenerates the data

points (DP) around the line with various weights[BSL09]. In[HLMH09], the authors

classify the outnumbered samples into 3 different groups as noise, border and secu-

rity samples using the distance and then balance the data according to the groups.

In[GCZ09], the authors have used Isomap to map the training data, later SMOTE

is applied, and the data is reduced by applying NCR method. In[CCCG10], the

authors have used differential evolution clustering algorithm along with SVM and

SMOTE with SVM, and a hybrid approach is proposed. In[CGC10], the authors

generate partitions using k-means and samples are clustered. Later, a threshold is

defined and samples with cluster index lesser than the threshold are regenerated.

In[KW10], the authors decide the count of samples to be generated from every

data point, and generate samples to balance the dataset. In[CW11], the authors

obtain the distribution report and the density report of the DP and balance the data.

In[CCV11], the authors have proposed a new under-sampling and oversampling

technique to resample the data and balance the dataset so that there is no loss of
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data and addition of too many samples. In[FTW11], the authors use a margin-based

rule to sample the synthetic data; this process overcomes the over-generalization of

data samples. In[RCBH12], Rough-Set-Theory(RST) and SMOTE are used together

to handle the imbalance in the dataset. In[MS11], the method considers the more

local neighborhood of the minority sample (Considers next k+1 neighbor) and gives

better approximations.

In[BIM11], the authors have incorporated unsupervised clustering in the gener-

ation of synthetic data. This method ensures that the samples generated always lie

inside the minority region and avoid wrong samples. In[DP11], the authors have

combined SMOTE with Evolutionary Sampling Technique (EST) to over-sample or

under-sample the data. In [DW11], the method randomly generates data points

in the minority region unlike SMOTE. In[ZW11], the authors check whether the

samples are crossed or not and are grouped accordingly, then new data points are

generated based on the different groups. In[FNHMG11], the authors have proposed

a 2 stage algorithm. In 1st stage the data is balanced and in 2nd phase different

patterns are generated and the data is over sampled. In[FB12], the authors have

proposed to pre-process the data by making use of SVM and the data is balanced

with the SVM predictions.

In[PW12], the authors remove the data points from the minority region that

are not relevant, this will give a precise minority region. In[BSL12], the data is

generated along the shortest path and the newly generated samples lie near the

centroid. In[SZWQ12], the proposed method dynamically generates different data

points around the negative class data point. This will eliminate noise and make the

boundary more distinct. Also, smoothing techniques are proposed by the author.

According to[BIM13], weights for the negative class samples are found depending on

the distance from the positive class which will generate accurately balanced dataset.
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In[BS13], the authors propose a tool for selecting a variant of SMOTE, either safe

level or borderline; synthetic samples are generated in the safe region determined

by a mechanism. In[HL13], the authors propose a 3 step algorithm where at first,

positive samples in the lower decision and the negative samples around the boundary

is calculated. In the second step, SMOTE is applied on the dataset. Next, the data

is balanced and processed.

In[NKOK13], codebooks are obtained from Learning Vector Quantization (LVQ)

technique and the data is balanced based on the codebooks obtained. In[SMG13],

the authors have proposed a method SYNTHETIC OVERSAMPLING OF IN-

STANCES (SOI) to resample data inside the clusters. These clusters are from

the minority class instances, 2 methods are presented in the paper, SOI by Clus-

tering and Jittering (SOI-CJ), and SOI by Clustering (SOI-C). In[ZYGH13], the

authors have proposed a hybrid method combining quasi-linear SVM and assembled

SMOTE. In[Kot14], author has showcased 3 different variants of SMOTE; SMOTE-

OUT is a strategy to handle very close vectors by creating samples outside the area

of the dashed line. SMOTE-COSINE- Euclidian formula and the cosine similar-

ity are consolidated together to obtain the new nearest neighbor (NN). Selected

SMOTE- certain attributes are synthesized based on feature selection emphasizing

the dimension of significant attributes. In[LZWX13], the negative samples are over

sampled using Improved SMOTE (ISMOTE) and the positive samples are under

sampled using distance-based under-sampling (DUS) technique. Both the methods

are combined to obtain a balanced dataset. In[BIYM14], the proposed method as-

signs different weights to the samples depending on the Euclidean distance from

positive class sample. This weight is then used for balancing the dataset.

In[GHC+14], the authors use kernel density to over sample the dataset and

balance it. According to[LTC+14], the method proposed additively generates new
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data until an appropriate dataset is obtained. In[ZL14], the raw data will have

a probability distribution which is unknown. The newly generated data should

also have the same probability distribution, then the data will be accurate and

precise. In[AK15], the authors propose a filter approach using the Game Theory

(GT). In[LZLF14], to handle the imbalance in the dataset, the boundary samples

are selected and resampled. The author says that this will improve the quality of the

dataset. In[MMAM14], the authors have proposed DST method that improves the

accuracy. Anomalous samples are removed from the negative class. The top three

samples are then considered based on a criteria and synthetic data is generated

based on these samples.

In[JQL15], the minority class data samples are resampled by finding the similar-

ity between the samples using Minority Cloning Technique (MCT). In[XLLT14], the

authors have proposed to combine triangular area sampling and NN with SMOTE

and the dataset is balanced. In[RGN14], Gaussian distribution in Q-union is used

to resample the data and balance it. In[HHY+14], a supervised method is used to

balance the dataset by generating new samples. Also, TargetSOS, a new predictor is

proposed by the authors. In[BJD15], modeling efficiency of denoising autoencoders

are used to propose a new approach. This will balance the dataset and is an alterna-

tive to SMOTE. In[GHE15], Principal Component Analysis (PCA) and multiclass

SVM are combined together and a hybrid approach is proposed to sample the data.

In[SLSH15], the authors have presented a filtering method using IPF noise filter

to manage the samples at the borderline and the samples that are noisy . In[TH15],

kernal density is estimated and the difficulty level is found, based on which the sam-

ples are adaptively generated to balance the dataset. In[XJYL15], the authors pro-

posed MOT2LD, that creates clusters by mapping the samples. Weights are assigned

based on the importance and the dataset is balanced accordingly. In[YNWC15],
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Voronoi diagram is generated and the data points that lie on the border of the 2

classes are found and based on these data points, the dataset is balanced. In[LKL15],

the authors generate the samples and then decide whether to keep the sample or

not based on the location of the sample. This method will take care of the noisy

data and the issue of over fitting. In[DTHS15], the authors change the label of the

data samples and then uses SPY method to balance the data.

In[LFZ15], two metaheuristics are combined together to obtain the best value

for the parameter. The value of the accuracy depends on the value of the kappa

specified by the user. In[RX16], the authors propose to use OUPS that performs

oversampling based on the requirement. The probability of group membership is

found and the data points are resampled based on propensity rate. In[TCOMT16],

the method handles the imbalance by generating data corresponding to every data

point. In[BS16], the authors have proposed to balance the dataset by using SMOTE

and to handle the overlsampled data by using Rough Set Theory(RST). In[YHL16],

the authors have proposed a method to restrict the neighborhood size. The method

will determine the value for every minority instance and assures safety for gen-

erating synthetic data. In[JLX16], the authors have proposed genetic-algorithm-

based-SMOTE (GAST). Optimal sampling rates are estimated and their optimal

combination is found. The dataset is then balanced by generating new samples.

In[NLY16], clustering technique is used and each cluster is oversampled based

on the Euclidean distance. In[RGL+16], fuzzy rough set theory [DP90] is used as a

pre-processing tool. A threshold is then defined and if a sample does not cross it,

it will be deleted. In[CGLR+17], the authors use support vector to generate new

samples. PSO is used to handle the noise in the dataset.

In[MF17], the authors have proposed to cluster the samples using CURE and

then get rid of noise and outliers from the dataset. The dataset is then balanced by
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resampling. In[Riv17], the authors propose a method to eliminate the noise prior to

the resampling of the dataset.

In[LK17], authors have showcased a method where Gaussian Probability Distri-

bution in the feature space is combined and new data is sampled, diverged from

the line. In[KW17], the method is proposed in 2 phases. Firstly, the neighbor-

hoods are cleaned. Secondly, synthetic samples are generated selectively. In[SS17],

Adaptive Neighbor Synthetic Minority Oversampling Technique (ANS) is proposed

which dynamically adjusts the number of neighbors needed to oversample the minor-

ity regions. In[DBL18], k-means has been combined with SMOTE which generates

samples in the deficient minority area and the class label is not considered while

generating the synthetic data.

4.3 Proposed Approach

4.3.1 Preliminary Concept

SMOTE

If the classes are not proportionally distributed, then the data is said to be im-

balanced. Most of the real-time datasets suffer from data imbalance, where normal

samples have many more occurances when compared to abnormal samples. The clas-

sifiers running on these datasets are generally overfitted or underfitted. There are

numerous resampling techniques that have been proposed to handle this. SMOTE

is one such algorithm to handle imbalanced data effictively. SMOTE over-samples

the data to achieve better results. Negative class samples are resampled to handle

the imbalance. Depending on the degree of oversampling that needs to be per-

formed, neighboring data points using the kNN algorithm are chosen. Typically, k
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is assigned with 5 to oversample the data. Initially, the distance between a sample

and its nearest neighbour is calculated. In the next step, the distance is multiplied

with an arbitrary number ranging between 0 and 1 following which, it is added to

the sample. An arbitrary point is selected along the line segment between the two

specified samples.

Kalman Filter

The Kalman filter[Kal60] was proposed to solve the Wiener problem. Fundamen-

tally, this filter is a union of numerical conditions that gives a proficient solution of

the least-squares technique. It is an efficient algorithm that can support the past,

future, and the present estimations. It is basically a two stage algorithm. In the

first step, estimates of the current state variables are calculated. In the next stage,

weighted averages are used to update the estimates. We use the covariance grids T

and P to determine noisy data. Consider g ∈ P x as the measurements and a ∈ P i

as the state of the discrete controlled linear system. At time n, the process and

measurement equations are shown in Equations 7.1 and 7.2 respectively.

an = Bnan−1 + cnfn + dn (4.1)

gn = ynan + en (4.2)

Where fn ∈ P j is the control-input model at time n, an is the state at n, gn is

the measurement at n. Bn is i × i matrix relating state at n − 1 & state at n. cn

is i× j matrix relating control input at n & state at n. yn is x× i matrix relating

state and measurement at n. en and dn are measurement noise and process noise

respectively with covariance matrix Pn and Tn and with a mean of 0.
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Our Approach

Algorithm 1 Kalman filter Application and Obtaining Mean and Covariance for
each Row of the Data
Input: Data C
Output: Train data appended with mean and covariance column KalD
1: Split the data C into Train D and Test T randomly with 8:2 ratio.
2: D res = SMOTE(D) // apply SMOTE algorithm on train data D
3: Apply Kalman filter using pykalman package
4: Obtain the number of columns (NC) (Label (or) output column need not be

considered)
5: kf = KalmanFilter(ISM, NDO)
6: msr = D res
7: kf = kf.em(msr, niter = 5)
8: mean, covar = kf.filter(msr)
9: KalD = Append mean and covar to D res.

10: return KalD

Algorithm 2 Calculating Number of Samples(nos) to Remove in each Iteration
from each Class

Input: D, D res, Number of Iterations Q
Output: rem, the nos to be removed in each iteration.
1: B = nos in D
2: A = nos in D res
3: N = percentage of data increased after SMOTE.

4: M =
⌊
N
Q

⌋
5: Y = M

100
× A

6: Y = Y
number of classes

7: return rem

Our proposed model extends SMOTE by incorporating the Kalman filter. Noisy

samples may cause the classifier to miss classify the data, hence such samples should

be removed. Kalman filter is used to sift through the data and eliminate such noisy

samples.
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Algorithm 3 Removing Data Samples and Classifying the Result

Input: KalD, rem, Q
Output: Classifier result on the datasets for each iteration
1: if (most of the rows have the same covariance value.) then
2: for j = 1 to Q do
3:

4: for i = 1 to numberofclasses do
5: datai+1 = datai[max value covar] AND datai[label]
6: datai+1 = datai+1[remove rem random rows]
7: dataj = dataj.append(datai+1)
8: end for
9: datanumber of classes+1 = datai+1[covar! = maxcovar]

10: dataj = dataj.append(datanumber of classes+1)
11: datatrail = dropmeanandcovarcolumns
12: SeparateX trainhavingdataattributesandy trainhavingoutput label from

datatrail
13: Apply Random Forest Classifier
14: end for
15: else
16: for j = 1 to Q do
17:

18: for i = 1 to numberofclasses do
19: datai+1 = datai[label]
20: datai+1 = datai+1 [remove rem samples starting from highest covariance

value]
21: dataj = dataj.append(datai+1)
22: end for
23: datatrail = dropmeanandcovarcolumns
24: SeparateX trainhavingdataattributesandy trainhavingoutput label from

datatrail
25: Apply Random Forest Classifier
26: end for
27: end if
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Our proposed approach follows a three stage procedure. Stages 1, 2 and 3 are

depicted by Algorithms 1, 2 and 3 respectively. We take dataset ‘C’ as an input

and Q iterations are to be performed to remove the data samples. The noisy sam-

ples can be removed in a varying percentage based on the iterations specified by

the user. SMOTE is applied on the training dataset, after which, the Kalman fil-

ter object is created with initial state mean(ISM) as 0 and n dim obs(NDO) as

NC and applied on the oversampled data. A part of ’pykalman’ package[Duc19] is

modified and used for the same purpose. In the Kalman Filter object, we call the

Expectation-Maximization (EM) algorithm[Moo96]. The training data is considered

as measurements (msr) and given as an input to the filter. In our experiments, we

have considered the niter to be 5 for the EM algorithm because it avoids overfit-

ting as explained in [Duc19]. This algorithm calculates the maximum likelihood of

parameters iteratively. On applying the filter, the mean and covariance values are

obtained corresponding to each row of the dataset.

We employ some notations to describe the second stage of the method. B indicates

the number of rows before applying SMOTE and A denotes the number of rows af-

ter applying SMOTE. N portrays the percentage of increase in the data (synthetic

samples generated). The percentage of data to be removed is calculated as shown

in Equation 7.3.

M =

⌊
N

Q

⌋
(4.3)

Y =
M

100
× A (4.4)

Equation 7.4 gives the count of data samples to be removed in each iteration.

Y =
Y

nos
(4.5)
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To maintain data balance, Y samples are discarded proportionally from all classes

as shown in Equation 7.5. In Stage 3, we obtain a count of all unique values of

covariances that were calculated. If a considerably large number of rows have the

same covariance, then, depending on the nos calculated, the data samples with the

highest covariance are dropped from each class equally. The Random Forest [Bre99]

classifier is run on the new dataframe. If the covariance is different for most of the

rows, then, the data is sorted according to the covariance values. The data samples

with the highest covariances are dropped iteratively from every class proportionally.

The values in the covariance matrix is the amount of noise present, hence we filter

the noise according to the covariance values. After this process, the Random Forest

is applied. Results are computed for each iteration and the finest result is considered.

The dataset corresponding to that result gives the best performance when used with

the classifier. Figure 4.1 depicts the working of KSMOTE.

4.4 Experimental Results and Discussions

4.4.1 Experimental Setup

Here, we describe the datasets, the analysis methodology and the evaluation met-

rics used in our experiments. Furthermore, an in-depth comparison of the classifier’s

results is provided. We have validated the experimental outcomes with other con-

temporary techniques viz., SMOTE, ADASYN, BorderlineSMOTE, SMOTEENN

and SMOTETomek. The NN parameter’s value is initialised as 5. In each iteration,

our model removes data proportionally from all the classes thereby maintaining the

class balance. The random forest classifier is employed after which, multiple metrics
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Figure 4.1: The Flowchart Representing our Approach KSMOTE

are computed. The experiments were conducted on a Windows platform with the

Intel i7 8 core Processor and a 16GB RAM.

4.4.2 Datasets

Several real-time datasets regarding click-fraud, six UCI benchmark datasets and

the UNSW-NB15 Intrusion Detection dataset [uns15] are used. All of these datasets

have unproportional class distributions. Under the domain of click fraud, the Talk-
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ing Data[Kag18] [TBC+19], the Avazu Click-Through Rate (CTR) [Kag15] and

the Criteo datasets [Kag14] have been considered. The Talking Data dataset con-

tains 9 attributes. Data preprocessing was performed by separating the attribute

’click time’ into different four attributes, ’day’, ’hour’, ’min’ and ’sec’. A mil-

lion random samples were considered from the entire dataset which originally had

184,903,890 entries. The Criteo dataset was randomly sampled prior to usage and

all the rows with NaN values were dropped. The attribute ’hour of click’ in the

Avazu dataset was split into different columns. The data was collected over a pe-

riod of ten days and is chronologically ordered. We made use of a million random

samples for the experiment. Although the Glass dataset is defined by 7 classes, one

of the classes has no samples assigned to it. This particular class was dropped be-

fore the experiment was taken forward. The New Thyroid dataset has 3 class labels.

The dataset was clean and did not require any preprocessing. There are 8 classes

in the Ecoli dataset. SMOTE requires a minimum number of samples to execute,

however, three out of the eight classes did not cross the minimum threshold. They

were dropped in our experiment. The UNSW-NB15 dataset had 2540047 rows be-

fore the NaN values were dropped. Four columns denoting the ip adresses and port

numbers were dropped to increase the efficiency of the classifier. The string values

were converted to numbers with the help of label encoding. Six datasets from the

UCI Archive are used. These six datasets are commonly used in multiple papers

and are now treated as benchmark datasets. Table 6.2 provides a brief outline of

the datasets used in our experiments. It specifies the number of samples and the

type of class distribution.
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Table 4.1: Dataset Description

Dataset No. of Samples Class

Pima 768 Binary
Ecoli 336 Multi-class

Haberman 306 Binary
New Thyroid 215 Multi-class

Hepatitis 115 Binary
Glass 214 Multi-class

Talking Data 1,000,000 Binary
Avazu 1,000,000 Binary

Display Ad. Challenge- Criteo Labs 756,554 Binary
UNSW NB15 2,540,047 Binary

4.4.3 Analysis Methodology

To test the proposed model, we considered the contemporary techniques, namely,

SMOTE, SMOTEENN, SMOTETomek, ADASYN and BorderlineSMOTE. To com-

pare the different models, parameters such as Acry, AUC, Pres, Rcl and F1scr were

made use of. A mathematical definition of these metrics is presented in the following

subsection.

4.4.4 Evaluation Metrics

One of the most popular and commonly used metrics, accuracy, is computed for all

the datasets. The positive samples are denoted by pspl whereas the negitive samples

are abbreviated to nspl. Also, we make use of the following notations: True Positive

as Trupstv, True Negative as Trnt, False Positive as Fspst and False Negative as

Fsnt. The accuracy of the predictor is defined in Equation 7.6.

Acry =
Trupstv + Trnt

pspl + nspl
(4.6)

81



The biggest drawback of using accuracy as a metric is that it might be incorrect

due to overfitting of the learning model. Overfitting is an undesirable trait that

occurs when the algorithm predicts values based on erroneous data. Hence, we have

also made use of other metrics to evaluate our work. The AUC is one such parameter

which is not greatly affected by overfitting.

We have also used Pres, Rcl and F1scr which are calculated as given in Equations

7.9,7.10 and 7.11.

Pres =
Trupstv

Trupstv + Fspst
(4.7)

Rcl =
Trupstv

Trupstv + Fsnt
(4.8)

F1scr = 2× Pres×Rcl
Pres+Rcl

(4.9)

4.4.5 Results

Table 4.2 portrays the outcome of running the classifier on the raw binary datasets.

#0’s indicates the negative samples and # 1’s denotes the number of positive sam-

ples. Table 4.3 depicts the results of classification on the raw multiclass datasets.

We can observe that there is a significant imbalance in the data as the AUC values

indicate that the model is overfitted. For the same reason, we balance the datasets

before using them.

We conducted the experiments by applying the current SMOTE algorithms on

all the datasets, and the results are tabulated in Table 4.4.

Table 4.4 demonstrates a comparison of KSMOTE with the existent methods

using Binary datasets. Table 4.5 demonstrates a comparison of KSMOTE with
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Table 4.2: Results on Raw Data- Binary classification

Datasets #1’s #0’s Acry AUC Rcl F1scr Pres
Talking 197411 602589 0.85609 0.72235 0.45765 0.61141 0.92075
Pima 221 399 0.76624 0.7293 0.6 0.64706 0.70213

Haberman 118 56 0.69355 0.55430 0.88637 0.80413 0.73585
Hepatitis 26 94 0.83871 0.6875 0.375 0.54546 1

Avazu 136122 663878 0.83265 0.51087 0.0249 0.04785 0.61522
Criteo 190488 414755 0.71167 0.56449 0.1663 0.26664 0.67224
UNSW 256982 1775055 0.97554 0.934 0.87843 0.90068 0.92409

Table 4.3: Results on Raw Data- Multi class classification

Datasets Acry Rcl F1scr Pres

New Thyroid 0.99 0.98 0.97 0.98
Ecoli 0.90164 0.9 0.89 0.89
Glass 0.74419 0.74 0.75 0.79

existent methods using multiclass datasets. The following observations are made

based on the outcomes.

• In 4 datasets, our model has considerably outperformed the other models.

• We make use of AUC as the comparative metric as it is a standard measure

and is not affected by overitting.

• The AUC of our model is lesser than ADASYN for the Avazu Dataset, but the

difference between accuracy and AUC scores is less significant in our model.

Hence, we infer that our model is less overfitted.

• The performance of our model is better for the click fraud datasets and most

of the benchmark datasets.

• To summarize, the proposed model shows good results when tested with six

datasets. Although the accuracy might decrease, the AUC scores obtained are

higher, denoting a better model.
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Table 4.4: Results of Re-sampled Data and Comparison of our Model- Binary Class

Datasets Method Acry AUC Rcl F1scr Pres
SMOTE 0.9094 0.88079 0.82404 0.81852 0.81307

ADASYN 0.9049 0.88118 0.83414 0.81306 0.79303
TalkingData blSMOTE 0.90387 0.87781 0.82612 0.80995 0.7944

SMOTEENN 0.88013 0.86797 0.84384 0.77732 0.72053
SMOTETOMEK 0.9103 0.88152 0.82442 0.82006 0.81575

KSMOTE 0.91049 0.88359 0.83023 0.82141 0.81277
SMOTE 0.79221 0.79082 0.78724 0.69812 0.62712
ADASYN 0.77273 0.78873 0.82979 0.69027 0.59091

Pima blSMOTE 0.78572 0.78018 0.76596 0.68572 0.62069
SMOTEENN 0.74676 0.76407 0.80852 0.66087 0.55883

SMOTETOMEK 0.77273 0.77083 0.76596 0.6729 0.6
KSMOTE 0.78572 0.78615 0.78724 0.69159 0.61667
SMOTE 0.59678 0.55838 0.75676 0.69136 0.63637

ADASYN 0.61291 0.58487 0.72973 0.69231 0.65854
Haberman blSMOTE 0.99 0.61244 0.86487 0.75295 0.66667

SMOTEENN 0.64517 0.62487 0.72973 0.71053 0.69231
SMOTETOMEK 0.62904 0.59838 0.75676 0.70887 0.66667

KSMOTE 0.6613 0.65136 0.70271 0.71233 0.72223
SMOTE 0.90323 0.83797 0.75 0.66667 0.6

ADASYN 0.90323 0.83797 0.75 0.66667 0.6
Hepatitis blSMOTE 0.83871 0.69445 0.5 0.44445 0.4

SMOTEENN 0.87097 0.81945 0.75 0.6 0.5
SMOTETOMEK 0.83871 0.80093 0.75 0.44445 0.42858

KSMOTE 0.87097 0.87097 0.75 0.6 0.5
SMOTE 0.7853 0.56224 0.22478 0.26195 0.31384

ADASYN 0.78313 0.56551 0.23629 0.26972 0.31418
Avazu blSMOTE 0.78739 0.56005 0.21611 0.25627 0.31476

SMOTEENN 0.78987 0.55746 0.20585 0.24929 0.31599
SMOTETOMEK 0.7859 0.56288 0.22546 0.26308 0.31575

KSMOTE 0.77993 0.56483 0.23983 0.26926 0.30693
SMOTE 0.64626 0.62729 0.57605 0.50636 0.45171

ADASYN 0.63509 0.62353 0.59229 0.50554 0.44096
Criteo blSMOTE 0.63968 0.62313 0.57842 0.50278 0.44464

SMOTEENN 0.54036 0.60692 0.78675 0.51881 0.38701
SMOTETOMEK 0.64509 0.62737 0.57949 0.50703 0.45067

KSMOTE 0.64634 0.62797 0.57834 0.50741 0.45197
SMOTE 0.98768 0.99293 0.99994 0.95359 0.91135

UNSW NB15 ADASYN 0.98786 0.99301 0.9999 0.95423 0.91256
blSMOTE 0.98781 0.993 0.99994 0.95403 0.91215

SMOTEENN 0.98036 0.99042 0.99675 0.95195 0.91101
SMOTETOMEK 0.98144 0.99342 0.99975 0.95336 0.91110

KSMOTE 0.98764 0.99293 0.99994 0.95335 0.91086
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Table 4.5: Results on Re-sampled Data and Comparison of our Model- Multi Class

Datasets Method Acry Rcl F1scr Pres
SMOTE 0.97675 0.98 0.98 0.98

ADASYN 0.97675 0.98 0.98 0.98
New Thyroid blSMOTE 0.97675 0.98 0.98 0.98

SMOTEENN 0.99 0.99 0.99 0.99
SMOTETOMEK 0.97675 0.98 0.98 0.98

KSMOTE 0.97675 0.98 0.98 0.98
SMOTE 0.90164 0.9 0.98 0.98

Ecoli ADASYN 0.90164 0.93 0.98 0.98
blSMOTE 0.90164 0.9 0.98 0.98

SMOTEENN 0.90210 0.94 0.94 0.94
SMOTETOMEK 0.91375 0.95 0.96 0.98

KSMOTE 0.95082 0.95 0.95 0.95
SMOTE 0.60466 0.6 0.62 0.68

ADASYN 0.62675 0.62 0.65 0.69
blSMOTE 0.62791 0.63 0.64 0.68

Glass SMOTEENN 0.62791 0.63 0.63 0.66
SMOTETOMEK 0.62791 0.63 0.64 0.7

KSMOTE 0.60466 0.6 0.62 0.68

A plot of the various DPs is presented in Figure 4.2a. The DPs are scattered

and a plot of the decision boundary is also portrayed. In Figure 4.2b, we show the

plot for SMOTETomek. The DPs are filtered and few of the DP are removed. The

plot of the decision boundary seems to have changed significantly. In Figure 4.2c,

we have plotted the points after applying KSMOTE and we can infer that the DPs

are filtered. The model performs better on removal of these points, thereby proving

these points to be noisy. In this plot, the decision boundary has changed, but only

by a small margin.

We can observe the plot of the DPs as shown in Figure 4.3a. The DP are plotted

for the SMOTE algorithm. We can also observe the plot of the decision boundary.

Figure 4.3b portrays the plot for SMOTEENN, where the DPs are filtered. A

significant reduction in the number of datapoints is also observed along with the
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drastic change in the decision boundary. Figure 4.3c represents our results where

the data is filtered but not reduced as much when compared to SMOTEENN. The

datapoints that were discarded were noisy. In this plot, a change in the decision

boundary is observed, which is quite similar to that of SMOTE and SMOTEENN.

4.5 Conclusion

The removal of noisy samples is the main focus of our research. This reduces the

computational overhead by reducing the size of the data and increases the efficacy of

the classifier. We have proposed an extension of SMOTE by integrating it with the

Kalman filter. By incorporating the Kalman filter, KSMOTE can filter the noisy

data effectively by dropping the erroneous samples in the original and fabricated

data. The Kalman Filter made use of EM algorithm, to which we set niter value

to 5 as it prevents overfitting. Based on the number of iterations specified by the

user, we calculated the number of samples to be removed from each of the class

dynamically, which will maintain the balance in the dataset. The data samples are

removed depending on the covariance values. If the number of iterations are very

small, then a large number of samples will be deleted at the same time, which may

result in the removal of the required data. We may not be able to get an optimized

dataset. Conversely, if the number of iterations are very large, the classifier is run

many times and it is an unwanted time overhead. We considered 5 iterations as

optimal as we can obtain better results and there is no time overhead.

A wide range of real-time binary and multiclass datasets associated with different

fields are considered. Multiple evaluation techniques have been employed to compare

our models with various oversampling techniques like SMOTE, ADASYN, Bordeli-

neSMOTE, SMOTETOMEK and SMOTEENN. We have achieved notable results
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compared to the other models. The AUC score is primarily given importance to, for

the comparison of the models. For the future work, Kalman Filter from pykalman

can be researched to improvise the running time as the time complexity is in terms

of cubes.
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CHAPTER 5

A MULTI-TIME-SCALE TIME SERIES ANALYSIS FOR CLICK

FRAUD FORECASTING USING BINARY LABELED

IMBALANCED DATASET

Click fraud refers to the practice of generating random clicks on a link in order

to extract illegitimate revenue from the advertisers. We present a novel generalized

model for modeling temporal click fraud data in the form of probability or learning

based anomaly detection and time series modeling with time scales like minutes

and hours. The proposed approach consists of seven stages: Pre-processing, data

smoothing, fraudulent pattern identification, homogenizing variance, normalizing

auto-correlation, developing the Auto-regression (AR) and Moving Average (MA)

models and fine tuning along with evaluation of the models. The objective of the

proposed work is to first, model multi-time-scale time series data on AR/MA by

relying only on time and the label without the need of too many attributes and

secondly, to model different time scales separately on AR and MA models. Then,

we evaluate the models by tuning forecasting errors and also by minimizing Akaike

Information Criteria (AIC) and Bayesian Information Criteria (BIC) to obtain a best

fit model for all time scale data. Through our experiments we also demonstrated

that the Probability based model approach is better as compared to the Learning

based probabilistic estimator model.

© 2019 IEEE. Reprinted, with permission, from G. S. Thejas, et al., A multi-time-scale
time series analysis for click fraud forecasting using binary labeled imbalanced dataset.
In Proceedings of IEEE 4th International Conference on Computational Systems and
Information Technology for Sustainable Solutions (CSITSS-19), Karnataka, India, 2019.
IEEE [TSB+19]

94



5.1 Introduction

Fraudulent behavior forecasting becomes significant in the modern era, just because

of the tremendous amount of data available in order to find out the odd observation.

In our case, the goal is to find out the probability of a click being fraudulent. This

can be done by checking the pattern in which these ads are clicked, so as to validate

the legitimacy of the taps/clicks and an informative block of data can be provided

to the organizations. These organizations can then manage complex scenarios by

having better insights through which they can tweak their existing algorithms to

prepare their system better to tackle new and modern attacks in this domain. This

forecasting of fraudulent behavior can help the ad network and the advertisers in

optimizing their businesses and efficiently managing their resources. For an ad

network, knowing the number of valid clicks on the ads in advance would help

them manage their resources efficiently. On the other hand, crucial knowledge on

forecasted demand would help the advertisers to understand the market sentiment

on the basis of their product demand and to alter production to meet hiked demand

or to avoid extra cost when it dips.

The challenges in fraud behavior forecasting are based on the basic premise of

detecting fraudulent clicks effectively. The two significant challenges are detailed as

follows : (1) Due to the presence of a broad base of the user group, and approx. 1.8

billion records in the dataset [Kag18, TKC+19], it was a computationally intensive

task in terms of scalability to go through a massive chunk of data, and processing

it to achieve experimental results. (2) Since the heuristics available to distinguish a

fraud click from a valid click are limited, and a botnet could easily impersonate an

actual user and click an ad, effectively classifying clicks as genuine or fake is logically

complex.
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5.1.1 Contribution Summary

We present a generalized model for modeling temporal click fraud data. The pro-

posed model consists of four stages: Pre-analysis and pre-processing, Probabilistic/learning-

based data smoothing, fraudulent pattern identification, and time-series model fit-

ting. The objective of proposed work are: firstly, model multi-time-scale time series

data on AR/MA with only relying on time and the label without the need of too

many attributes. Secondly, to model different time scales separately on AR and MA

models. Then, we evaluate the models by tuning forecasting errors and also with

minimizing AIC and BIC to obtain a best fit model for all time scale data. Choosing

AIC or BIC as a criterion mainly depends on our requirement where AIC is chosen

to select more efficient model in terms of accuracy and small forecasting errors and

on other hand is BIC, if we want to select a model that fits for different training

data without becoming progressively worse in terms of forecasting performance. The

summary of our contributions in this work are as follows:

1. Extension of Box-Jenkins [NB13, BJRL15] and Boroojeni et al. methodology

[BAB+17] for modelling of ad clicking activity forecasting to show the future

possible fraudulent behavior.

2. In our proposed approach, we model multi-time-scale seasonality to forecast

the fraudulent behavior in terms of minutes and hours interval.

3. Our proposed approach can be considered as an extension of Seasonal Auto-

regressive Integrated Moving (SARIMA) model [Tay10].

4. AIC, BIC, and residual errors are used to fine tune the model.
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5.1.2 Organization of the Chapter

Section 5.2 discusses the related works and reviews the literature of cybersecurity

countermeasures for fraud clicks. In section 5.3, we discuss the preliminary concepts

behind this work. In section 5.4 we propose our approach and explain each and every

component of the approach in detail along with a discussion on experimental results,

and finally in Section 5.5 we conclude our work.

5.2 Related Work

It has been observed that the advent of competition in the costs set by ad-network

is directly proportional to the increase in revenues. This also suggests that the

stability of prices at the equilibrium level depends on the quality of the stability of ad

networks [DM14]. There has been a constant increase in the frauds that are targeted

against mobile ads over the past decade, hitting the Mobile ad industry by huge

costs, which are of the order of billions of dollars, as per a 2013 report [LNGL14].

In [MP11], various statistical models were evaluated to identify Internet Protocol

(IP) addresses involved in fraudulent clicks. In [KKL+14], statistical models were

used to identify and flag an activity on a Domain Network Server based on recurring

patterns in an interval. In [CSC14], Feature extraction is done for an app on Android

platform to perform Machine Learning to identify suspicious ads. In [DGZ12], the

probability of click fraud is determined based on Bayesian calculations which are

used to set a baseline to identify genuine users. In [KNB08], reverse ad technique

is applied to separate bot clicks from human clicks. In [PDG+14], the research

addresses the problem of zero-access malware by training a learning model which

distinguishes suspicious and non-suspicious IPs. In [CMP10], non-dynamic wavelets

of data were analyzed using Time domain Analysis to gauge the pattern of click

97



frauds. In [KJ97], wrapper approach has been suggested to identify best features

for a significant improvement in accuracy of the click fraud detection model. In

[KZRM13], a simulation of 8 botnets was done to distinguish between bot and

human clicks using machine-induced decision tree.

In [TZX+15], focus was given on revealing crowd frauds in internet advertising

using crowd fraud features. [LZL+14, VVERA+16] incorporated the concept of bi-

partite graph propagation to automate the process of identifying search engine based

click frauds, while [HLD17] incorporated the same technique in mobile ad fraud. A

graph-based automated mechanism that reflects fraudulent telephone numbers was

proposed by the author with the aid of HITS principle in [TYH+15]. In [AB79],

Gaussian distributions was selected as a parameter to detect click frauds. In [Bye98],

Poisson mixture model is used to detect the abnormalities.

By evaluating a plethora of related works we arrive at the conclusion that our

work is the very first attempt of a multi-time-scale time series analysis for click fraud

forecasting using binary labeled imbalanced dataset.

5.3 Preliminaries

5.3.1 Time Series

Time series are the temporal measurements of a series of activities where a sequence

of values are collected on the same variable over time. Here the values in the series

are successive data points where each value is paired with a time stamp. Time series

data analysis is more popular in fields like signal processing, finance data, stock

market data, weather forecasting and power grids where temporal measurements

are involved. Time series analysis is one of the statistical techniques for analyzing
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time series data to extract statistical observations and other characteristics of data.

It is also famous for forecasting future values based on specific previous time-based

observations. Forecasting is based on time series-based data modeling with the help

of prediction models. Equation 5.6 and 5.7 represents a time series Xt where Xt is a

time series were t is time interval at an indexed time T , data point is a value paired

with time stamp t in Xt over a time T .

X = {Xt|t ∈ T} (5.1)

where t is time interval at an indexed time T

Xt = {t, data point} (5.2)

where data point is a value paired with time stamp t in Xt over a time T .

5.3.2 ARMA model

AR model is one of the statistical techniques where it represents a type of ran-

dom process describing stationary behavior like Wide Sense Stationary (WSS). AR

model is used to predict the future value where it considers the output variable as

a linear function of previously observed values and an error component which is a

stochastic non-deterministic term. To predict the output variable, the model makes

use of regression analysis where the output variable is represented as a function

of previously observed actions. Hence the model equation is shown in the form of

Stochastic Difference Equation (equation 5.8) below :

Xt = (

p∑
i=0

φiL
i)Xtεt (5.3)

where Xt is a random process in a given time series. A series Xt is said to be

WSS when it has a non-varying mean over the time, i.e. E(Xt) = µx, φi is is the
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coefficient of ith AR term, εt is the error term, and Li specifies lag value for Xt such

that Xt− > Xt − 1.

MA is another component with AR in ARIMA or ARMA model of time series.

It has a more complicated stochastic structure, since it consists of more than one

interlocking stochastic difference equation in a random process. The MA model is

also used to predict the future values, in which it considers the output variable as a

linear function of the current and previously observed values and various stochastic

non-deterministic terms. Equation 5.9 represents the MA model where θi is the

co-efficient of ith MA term, θi is the co-efficient of ith MA term

Xt =

(
1 +

q∑
i=0

θiL
i

)
εt (5.4)

AR and MA are special cases of the generic modelARMA(p, q) orARIMA(p, d, q)

where p specifies the order of AR, q specifies the order of MA, and d is the differ-

encing or integrated part used to smoothen the non-stationary time series data as

Xt = (1 − L)dXt . In a nutshell, ARMA(p, q) is as shown in equation 5.10. This

equation will also be used by ARIMA after smoothening the non-stationary time

series data.

ARMA(p, q) = Xt =

(
p∑
i=0

φiL
i

)
Xt +

(
1 +

q∑
i=0

θiL
i

)
εt (5.5)

ARIMA model is more flexible than a prediction model since ARIMA(0, 0, 0) is

interpreted as a zero parameter model which has no dependency between the terms.

ARIMA(1, 0, 0) is interpreted as AR(1) process, ARIMA(0, 1, 0) is an integrated

one and ARIMA(0, 0, 1) is a MA(1) model.
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5.3.3 Imbalanced Dataset with Binary Classification

One of the challenging tasks is to model both the time series model and the su-

pervised learning model with an imbalanced dataset. This incorporates the case

when the dataset is highly slanted towards one value. For example, if the output

value in the dataset has a binary classification, and if it is highly skewed towards

either positive value ‘1’ or a negative value ‘0’, then it is called as an imbalanced

dataset. In this case, there is a possibility that the time series or learning models

do not perform well. In order to tackle this situation, we propose an approach in

pre-processing and data-smoothing section of the actual chapter.

5.4 Proposed Approach

In an ad network, the click dataset is a collection of temporal data on a mobile

platform. Here temporal data is a continuous log of click actions performed on

certain ads over a duration. In order to plot this kind of time series data as a

function of its past values, we assume that there exists a pattern which is recurrent

in nature. We assume a pattern, which we model in order to generate a function, to

identify the fraudulent behavior of clicks using multi-time-scaled based prediction.

In this section, we propose a methodology to identify a best time series-based model

that statistically understands the click pattern behavior promptly. The quality of

the ad click time series data is judged based on the model’s accuracy used to estimate

and forecast future fraudulent click behavior in Ad networks. This kind of modeling

will help the ad networks to take future security measures against possible click fraud

activities in their network. In the proposed approach, we utilize the AIC/BIC as one

of the metric to figure out a model that represents the close estimation time series

of the observed Ad click data, to evaluate the process of identifying the best model.
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Including AIC/BIC, the proposed approach also takes into account certain residual

time series errors, called forecasting errors. These errors are used to measure the

quality of the best model whose residual time series is non-deterministic and checks

whether the model accurately fits the observed data.

In the proposed approach as shown in Figure 5.1, Where Xt is a Time series were

t is time interval at an indexed time T , D
(1)
t(fl) is a Time series dataset with features

f like ip, app, os, device, channel and a label l = {fraudulent or not}, D(2)
t(fl) is a

Time series dataset with a feature f = click time and a label l = LR P val, X
(1)
tl

is a Time series Xt obtained from Learning based probabilistic estimator, where

t = {minuteor hour} and l = LR P val , D
(2)
P (fl) is a Time series dataset with a fea-

ture f = click time and a label l = {P (ip), P (app), P (device), P (channel), P (all)},

where P stands for probability of being fraudulent and P (all) is the combined im-

pact of all features to calculate probability of being fraudulent, ACF stands for Auto

Co-relation Function, PACF stands for Partial Auto Co-relation Function, X
(1)
tl

is a Time series Xt obtained from Learning based probabilistic estimator, where

t = {minute or hour} and l = LR P val , ati where at is any of the attributes

probability of being fraudulent of ith occurrence, X
(1)
tp is a Time series Xt obtained

from Probabilistic-based modeling, where t = {minute or hour} and p = min P

i.e. minP is minimum among the ipP , appP , osP , deviceP , channelP , and allP , and

X
(i)
tk is a Time series Xt obtained after applying some form of transformation in

homogeneity property check and/or in sationarity check, where k = {l or p} and

number of transformation applied i = 1, 2, 3, 4:

1. We perform pre-analysis on the data and then based on pre-analysis, we cat-

egorize the data into 6 datasets, each indexed with click time.

2. Then, we prepare the time series data representing ads clicks into two variants:

time series data based on (i) learning approach and (ii) probabilistic modeling.
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Figure 5.1: The Flowchart Representing the Proposed Approach for Creating a
Forecast Model for Forecasting Fraudulent Behavior of Ads Clicks on Multi-time-
scale Time Series Data.
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In the proposed approach, further steps are performed on these two variants

of time series ads click data.

3. Assuming a high probability of positive click behavior (too many download

clicks observed with respect to each attribute) we perform fraudulent pattern

detection to set a prediction threshold value.

4. To model the time series, we check the homogeneity property of the data to

verify the normality and homogeneity of variance. If it does not hold true,

then we transform the time series to make its variance homogeneous and to

balance the normality.

5. Data Stationary Criteria: (i) We plot the ACF and PACF plots on different

time scales to check the stationarity property. Here minutes and hours are the

time scales and this step is followed to identify a non-stationary pattern of the

time series data. Generally, time scales are just like seasonal cycles, calculated

weekly, daily, and annually. Here, we considered minutes and hours as our sea-

sonal cycles, because the time span considered for data collection was set for

four days, which is of a shorter order than days or weeks. (ii) In order to cross

verify the observations drawn from the ACF and PACF plots, we apply Aug-

mented Dickey-Fuller (ADF) [Ful09] and Kwiatkowski–Phillips–Schmidt–Shin

(KPSS) [KPSS92] tests or Rolling Mean (RM) plots and Rolling Standard

Deviation (RSTD) plots. These statistical tests are performed to cross val-

idate the stationarity property of time series data. (iii) In order to remove

non-stationary data in time series, we apply dereferencing and logarithmic

transformation on the data. This step is performed repeatedly until the time

series satisfies the tests mentioned above.
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6. Next, we model the AR and MA model using the transformed time series data

based on ACF, PACF, ADF, KPSS, RM, and RSTD behavior.

7. Finally, the model is selected and evaluated for the forecasting of fraudulent

and non-fraudulent click behavior by trying different values of AIC/BIC and

minimizing the residual errors.

5.4.1 Pre-processing

Before using the dataset for time series analysis, we need to pre-process the data.

The main challenges in the dataset were to tackle imbalanced data and to handle

the existence of binary labels. In our experiment, the time series data should consist

of a time-indexed label where the label should have certain frequency in the values

indexed by time. The accuracy of time series model forecasting also gets affected

by the above considerations. For our experiment, we have used real-time dataset

provided by Kaggle [Kag18]. The dataset contains 184,903,890 real-time ad click

observations collected on a mobile platform. Though, having an extensive and a

large dataset acts as an excellent source for information analysis, it’s skewed nature

towards a particular label would hamper the accuracy. Hence, based on the IP

address of click and app id, the dataset is divided into six classes as described in

[TKC+19]. Among these 6 classes, we chose one of them for our experiment which

consists of 25,974 rows of click observations. For our experiment, we used an Intel

i7- 8750H CPU at 2.2 GHz, 6 cores with 32 GB RAM, Jupyter NoteBook Python

3.7. Model train-test-validation ratio was 80:20. (Detailed information about the

dataset and pre-analysis results are reported in the previous chapter 2)
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5.4.2 Data Smoothing

In this section, we describe further steps taken for the pre-processing of data using

smoothing based on the learning and probabilistic models [IR83] to satisfy homo-

geneity and stationarity properties. Due to the binary nature of output column, we

merge various attributes to give us a probability value, which is considered along

with the timestamp in order to form a time-probability pair using the 2 methods

defined in the subsection. Attributes are eliminated by taking into account their

impact value on the label. In remaining sections, we examine time series with

learning-based output values and probabilistic-based output values.

Learning Based Probabilistic Estimator (LBPE) Modeling

In this approach, in order to have a time series data in the form of time-indexed label,

we apply logistic regression on the actual ads click dataset. We do this to calculate

the predicted probability i.e. LR P val of binary events occurring based on certain

independent variables i.e. D
(1)
t(f=ip,app,os,device,channel,l=binary) using equation 5.6. To

train and test the logistic regression model we select the training and testing data

randomly using K-fold cross validation method. The predicted probability values

of each row is considered as our label to model time series indexed by click time.

The model accuracy was found to be 96%. In order to model the AR/MA model in

two time scales, the click time was considered in minutes and seconds, and the two

time series data are represented by equation 5.7 and 5.8 below:

D
(2)
t(f=click time,l=LR P val) = LR

(
D

(1)
t(f={ip,app,os,device,channel},l={fraudulent|not})

)
(5.6)

X
(1)
t=min,l=l = D

(2)
t(f=click time,l=LR P val) (5.7)

X
(1)
t=hr,l=l = D

(2)
t(f=click time,l=LR P val) (5.8)
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Probabilistic-based (PB) Modeling

Using equation 5.9 and 5.10, we calculate the individual probabilities of each at-

tribute with respect to the probability of being fraudulent.

D
(2)
P (f=click time,l={P (ip),P (app),P (os),P (device),P (channel),P (all)})

= P

(
D

(1)
t(f={ip,app,os,device,channel},l={fraudulent|not})

) (5.9)

P (unique ip(i) is fraudulent) =
total fraudulent count of unique ip(i)

total (fraudulent and not) count of unique ip(i)

(5.10)

The probability of being fraudulent, which includes the combined impact of all

attributes against the output label is calculated, i.e. P (all) as shown in equation

5.11.

P (all) = P (is attributed|ip, app, device, os, channel)

=
P (ip, app, device, os, channel, is attributed)

P (ip, app, device, os, channel)

(5.11)

We chose the final label to be indexed by time using equation 5.12 and 5.13, where

we calculate the shortest distance with LR P val and ati where at is any of the at-

tributes probability of being fraudulent of ith occurrence and at = P (ip), P (app), P (os),

P (device), P (channel), P (all) and multi-time-scaled series data is obtained from

equation 5.14 and 5.15.

ip P, app P, os P, device P, channel P, all P

=

∣∣∣∣∑totalobservations
i=0 ati

totalobservations
−
∑totalobservations

i=0 LR P vali
totalobservations

∣∣∣∣ (5.12)

D
(2)
p(f=click time,l=min P ) = min

{
ip P, app P, os P, device P, channel P, all P

}
(5.13)

X
(1)
t=min,p=l = D

(2)
t(f=click time,l=min P ) (5.14)

X
(1)
t=hr,p=l = D

(2)
t(f=click time,l=min P ) (5.15)
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Figure 5.2: Probability of being Fraudulent of Top 20 Ranked all Attribute and
Threshold.

5.4.3 Fraudulent Pattern

Figure 5.2 shows the probability of a particular observation being fraudulent on the

basis of attributes like channel, os, ip, app, and device. For plotting the graph, top

20 observations were taken into account, ranked on the basis of their click counts.

In Figure 5.2, for the top first observation, each color-coded vertical line represents

a unique attribute’s probability of being fraudulent. Likewise, the remaining 19

observations are represented in the same fashion. Based on the graph, we notice

that for most of the top 20 observations, the average probability of being fraudulent

is 0.8. Therefore, in our work, we take 0.8 as the standard threshold value above

which any given observation is considered as fraud. There is no industry standard

to set the threshold, but we are hypothesizing the value based on our dataset and

results.
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Table 5.1: Homogeneity Property Validation

Box-Cox transformation Before After
Time series NT VT NT VT

D
(2)
t(f−click time,l=LR P val) 5.0416*10−8 0.192*10−5 0.0872 0.0631

D
(2)
p(f−click time,l=min P ) 2.7*10−10 0.0132*10−7 0.0567 0.0598

Note: NT: Normality Test, VT: Variance Test

5.4.4 Homogeneity Property

Before initiating work on the AR/MA model, it is important to check whether our

data is ready i.e. whether the homogeneity property holds true. If the property

is not satisfied, then we need to apply logarithmic transformations on data using

Box-Cox transformation method [BC64]. In order to check the homogeneity, we use

statistical hypothesis test i.e. T-Test [Man00, Box87, Stu08, Dod08]. The T-Test

adds to the table, criteria like normality and variance. To satisfy the T-Test, time

series data should have a normal distribution and a non-varying mean. If not, we

need to apply the transformation until T-Test criteria are satisfied. To check the

normality we use the Shapiro-walk [SW65] and to check the variance we use Levene

variance test [BF74], where the results hold the normality and non-varying variance

property if the resulting values after the test are greater than the preset probability

threshold of 0.05. By looking at table 5.1, we can say homogeneity property holds

along with the time series after applying box-cox transformations.

5.4.5 Time Scales and Stationarity Check

We have considered two-time scales: minutes and hours, for LBPE and PB model

time series. In order to check the stationarity property, we use ACF and PACF

plots on seasonal data, as it is mandatory for the time series to satisfy the Wide

Sense Stationary (WSS) property. We do this to verify stationarity of data. In
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ACF, if in the first few lags, the spikes fall off or decline suddenly exactly at or near

non-seasonal or seasonal cycles, then it means that the data is stationary. If not,

transformation is mandatory to satisfy the stationarity of the time series. Figure

5.3a-5.3h and Table 5.5 shows the ACF and PACF plots and lag values.

An obvious way to cross-validate our drawn observation is to plot RM and RSTD

on time series data. If the RM and RSTD remains constant over time, it indicates

stationary data. Another approach (which we followed) is to perform the ADF

[Ful09] and KPSS [KPSS92] tests together on the time series. These tests are the

statistical methods used to check whether the time series data is stationary or not.

ADF test makes a null hypothesis on the data as it is non-stationary prior to per-

forming the test where as KPSS test is opposite of ADF. In ADF test results into

ADF statistics value, P-value, and critical values. If ADS statistics value is more

negative than the significant level values given in table 5.4 and the P-value is less

than the α = 0.05, then it indicates that the time series is stationary. Otherwise,

transformation is mandatory. In KPSS test results into KPSS statistics value, P-

value, and critical values. If KPSS statistics value is less than the critical values

and the P-value is greater than α = 0.05, then the series is stationary. Otherwise,

transformation is mandatory. There are 4 possible conclusions that can be derived

depending upon different permutations of ADF and KPSS test results being sta-

tionary or non-stationary. Table 5.2 shows four possible conclusions. Table 5.3 and

5.4 shows the results of stationary property check before and after transformation.
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(a)

(b)

Figure 5.3: Time Series with Minute-scale and LBPE Modeling. (a) ACF ,(b)
PACF .
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(c)

(d)

Figure 5.3: (Continued) Time Series with Hour-scale and LBPE Modeling. (c)ACF,
(d)PACF.
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(e)

(f)

Figure 5.3: (Continued) Time Series with Minute-scale and PB Modeling. (e) ACF,
(f) PACF.
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(g)

(h)

Figure 5.3: (Continued) Time Series with Hour-scale and PB Modeling. (g) ACF,
and (h) PACF.
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Table 5.2: ADF and KPSS Conclusion about Stationarity of Time Series

if ADF says if KPSS says Conclusion

Stationary Not stationary Series is difference stationary and we have
to perform differencing or differencing with a
shifts or differencing with a seasonal shift or
log transformation along with differencing with
a shift repeatedly to make it stationary

Not stationary Stationary Series is trend stationary and we have remove
the trend by performing any of the transforma-
tion to make it stationary

Stationary Stationary Series is stationary
Not stationary Not stationary Series is not stationary and we have to perform

any of the transformation repeatedly to make
it stationary

5.4.6 AR/MA Model’s Construction, Fine-Tuning and Eval-

uation

Finally, using the transformed time series from the previous step and by observing

the ACF and PACF values, we can estimate the order parameters for AR/MA

model. Table 5.5 of ACF and PACF illustrates that ACF exhibits a sine wave and

PACF exhibits an exponentially declining wave at lags. In order to select the best

fit models from the set of evaluation parameters, we use AIC, BIC and forecasting

errors. AIC measures the relative quality of model for a given set of data, BIC helps

to select a model from a finite set of models, forecasting errors are the differences

between the observed and expected value which is the value of unpredictability.

Like forecasting errors, we have used scale-dependent errors like Mean Square Error

(MSE), Root Mean Square Error (RMSE), Mean Absolute Error (MAE), and others

like Mean Error (ME). Table 5.6 shows the set of models that are chosen based on the

measures mentioned above, after fine-tuning the model. We presented 2 approaches
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Table 5.3: Stationarity Check using ADF and KPSS Tests before Transformation

Test Time
se-
ries

StatisticsP-
value

Criteria
Values

Conclusion

1% 5% 10%

ADF X
(2)
t=min,l=l -27.298 0.0 -3.430 -2.861 -2.566 Stationary

KPSS X
(2)
t=min,l=l 1.284 0.010 0.790 0.463 0.347 Not

Station-
ary

ADF X
(2)
t=hr,l=l -6.140 7.98x10−08 -3.526 -2.903 -2.588 Stationary

KPSS X
(2)
t=hr,l=l 0.206 0.100 0.739 0.463 0.347 Stationary

ADF X
(2)
t=min,p=l -16.525 2.044x 10−29 -3.430 -2.861 -2.566 Stationary

KPSS X
(2)
t=min,p=l 1.206 0.010 0.739 0.463 0.347 Not

Station-
ary

ADF X
(2)
t=hr,p=l -3.754 0.003 -3.530 -2.905 -2.590 Stationary

KPSS X
(2)
t=hr,p=l 0.183 0.100 0.739 0.463 0.347 Stationary

in the data smoothing stage: LBPE, and PB modelling. The results obtained in

table 5.6 clearly suggest that on comparing both approaches in terms of hours and

minutes separately, the PB modelling approach gives better results than the LBPE

approach. This is evident from the fact that the error values along with the AIC

and BIC obtained by applying the PB model are much smaller than those obtained

by applying the LBPE, which concludes that the PB model has an edge over the

LBPE model.

5.5 Conclusion

In this chapter, we presented a generalized multi-time-scale time series model to

forecast click fraud behavior in terms of minutes and hours. Our proposed approach

also allows us to forecast the behavior in terms of seconds, and even a smaller
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Table 5.4: Stationarity Check using ADF and KPSS Tests after Transformation

Test Time
se-
ries

StatisticsP-
value

Criteria
Values

Conclusion

1% 5% 10%

ADF X
(4)
t=min,l=l -38.323 0.0 -3.430 -2.861 -2.566 Stationary

KPSS X
(4)
t=min,l=l 0.0010 0.100 0.739 0.463 0.347 Stationary:

log and one
diferrencing
with a shift

ADF X
(4)
t=hr,l=l -6.140 7.98x10−08-3.526 -2.903 -2.588 Stationary

KPSS X
(4)
t=hr,l=l 0.206 0.100 0.739 0.463 0.347 Stationary

ADF X
(4)
t=min,p=l -50.285 0.0 -3.430 -2.861 -2.566 Stationary

KPSS X
(4)
t=min,p=l 0.0009 0.100 0.739 0.463 0.347 Stationary:

one differ-
encing with
a shift

ADF X
(4)
t=hr,p=l -3.754 0.003 -3.530 -2.905 -2.590 Stationary

KPSS X
(4)
t=hr,p=l 0.183 0.100 0.739 0.463 0.347 Stationary

timescale could be examined. This is the very first attempt that has been made

in this regard, which deals with forecasting click fraud behavior using AR and MA

time series modelling. In the proposed approach, a raw dataset with multiple at-

tributes is taken, through which the probability of being fraud was calculated by

applying LBPE and PB modelling. Using this information, the fraudulent pattern

is identified, and a threshold value is set in order to classify the data as fraudulent

or not. Next, homogeneity property of the data is evaluated. If this property is not

satisfied, the variance is homogenized, and the normality is balanced by applying the

box-cox transformation to the data. The data is tailored to account for 2 different

timescales – minutes and hours, and then stationarity of the data is verified using

ACF, PACF and statistical models. If the stationarity property is not satisfied,

some transformation techniques are applied. Then by using ACF and PACF plots,

for each time series, we identify the AR and MA terms, and then we validate our
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identified models by checking the least forecasting errors, AIC and BIC. The error

data turns out to be very minimal, suggesting some white noise. In the end, our

approach produced various models, by minimizing forecasting errors, AIC and BIC,

which we have considered as a metric to choose the best models, and also showed

that the PB model approach is better as compared to the LBPE model.
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Table 5.6: Fine Tuning: Model Order Selection Based on Different Criteria for
Multi-time-scale

Selection
Criteria

Time-Series:
AR(term)
|MA(term) Model

ME
(%)

MSE
(%)

MAE
(%)

RMSE
(%)

AIC
(thou-
sands)

BIC
(thou-
sands)

Minimizing
errors

X
(4)
t=min,l=l:

AR(0)|MA(2)
-1.52 10.31 53.0 32.10 187.4 187.4

X
(4)
t=hr,l=l:

AR(2)|MA(1)
1.65 0.41 4.79 6.44 -0.180 -0.168

X
(4)
t=hr,l=l:

AR(0)|MA(3)
1.56 0.45 4.77 6.77 -0.183 -0.171

X
(4)
t=hr,l=l:

AR(0)|MA(6)
0.81 0.51 5.31 7.19 -0.179 -0.161

X
(4)
t=min,p=l:

AR(0)|MA(1)
-0.02 0.41 5.39 6.40 -66.5 -66.4

X
(4)
t=min,p=l:

AR(5)|MA(0)
0.001 0.46 5.31 6.80 -63.0 -62.9

X
(4)
t=min,p=l:

AR(0)|MA(0)
0.0001 0.78 5.82 8.84 -49.5 -49.4

X
(4)
t=hr,p=l:

AR(0)|MA(1)
0.08 0.00770.68 0.87 -0.470 -0.463

X
(4)
t=hr,p=l:

AR(2)|MA(0)
0.064 0.0091 0.669 0.957 -0.465 -0.456

X
(4)
t=hr,p=l:

AR(6)|MA(0)
0.04 0.0092 0.72 0.95 -0.465 -0.447

Minimizing
AIC

X
(4)
t=min,l=l:

AR(0)|MA(2)
-1.52 10.31 53.0 32.10 187.4 187.4

X
(4)
t=hr,l=l:

AR(0)|MA(3)
1.56 0.45 4.77 6.77 -0.183 -0.171

X
(4)
t=min,p=l:

AR(0)|MA(1)
-0.02 0.41 5.39 6.40 -66.5 -66.4

X
(4)
t=hr,p=l:

AR(0)|MA(1)
0.08 0.0077 0.68 0.87 -0.470 -0.463

Minimizing
BIC

X
(4)
t=min,l=l:

AR(0)|MA(2)
-1.52 10.31 53.0 32.10 187.4 187.4

X
(4)
t=hr,l=l:

AR(1)|MA(0)
1.84 0.41 4.78 6.46 -0.182 -0.175

X
(4)
t=min,p=l:

AR(0)|MA(1)
-0.02 0.41 5.39 6.40 -66.5 -66.4

X
(4)
t=hr,p=l:

AR(0)|MA(1)
0.08 0.0077 0.68 0.87 -0.470 -0.463
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CHAPTER 6

LEARNING-BASED MODEL TO FIGHT AGAINST FAKE LIKE

CLICKS ON INSTAGRAM POSTS

Online social networks (OSN) are one of the favorite places where people share

posts like their photos, videos, and text to gain popularity. On the other hand, the

marketing industry tries to gain the popularity of their advertisement using such

OSN’s. Popularity of a particular post depends on the number of likes received

by that post. To increase one’s social worth, people try to use this market by

artificially increasing the likes on their posts. There is a lack of research in the

current literature on Instagram which is one of the growing OSNs. Our work focuses

on detecting valid and fake like of posts with the application of learning model taking

into consideration several popular factors. We developed an automated learning

model to detect fake liking behavior on the Instagram post. The learned model

can accurately differentiate between the legitimate and fake liker with an accuracy

of 97% with ensemble-based learning model and also autoencoder is used to detect

bots activity.

6.1 Introduction

Click fraud could happen anywhere, like in OSN, for example Facebook, Twitter,

Instagram, and LinkedIn, etc. or in an online/in-app advertisement network, for

example Google, Bling, AdMob, Facebook, and Instagram, etc. Advertisement net-

work is a place to drive revenue and OSN is a place to drive popularity. Here, click

plays a vital role in both the networks, for example; firstly, like clicks on an image

© 2019 IEEE. Reprinted, with permission, from G. S. Thejas, et al., Learning-based
model to fight against fake like clicks on Instagram posts. In IEEE SoutheastCon 2019,
Huntsville, Alabama, USA, April 2019. [TSC+19]
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post or video post constitutes popularity level of the poster and the impact based

on the content of the post. Secondly, clicks on ads constitute to impact on earning

of a publisher and advertiser. However, it is challenging to detect whether the clicks

are legitimate or not. Figure 6.1 depicts clicks impact in OSN as popularity index

and in ad networks as revenue index. As the popularity of the post increases, the

OSN recommender system starts displaying ads to the relevant audience based on

location, demographics, interests, behaviors, custom audiences, lookalike audience,

and automated targeting [JL08, ins18]. However, the recommender system fails to

suggest relevant ads to the audience if there are large number of fake likes. On

the other hand, these fake like clicks also contribute to the popularity of the fake

news on OSN. Likewise, it is difficult to avoid spreading fake news among the peo-

ple in the OSN. As the popularity of the fake news increases then it remains as an

active post in the post feeds that in turn keeps on appearing in all the accounts

[dLSB17, FVD+16]. Following are the possible ways that get fake likes clicks: one

of the straightforward ways is to influence friends to provide fake likes, artificially

increase the popularity with the help of botnets, buying fake likes from the paid

services, getting fake likes for free from click spammers, to become a member of

collusion network.

6.1.1 Summary of contribution

Collection of data based on different parameters and attacks, identification of impor-

tant features, performed pr-analysis to show the relationship between the follower

and following participation in valid and invalid like clicks, we developed an auto-

mated learning model to detect fake liking behavior on the Instagram post, and we

also examined autoencoder loss function to differentiate bots and human clicks.
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Ads for RevenueLikes for Popularity

Clicks and 

Figure 6.1: Clicks impact in Online Social Network as Popularity Index and in Ad
Networks as Revenue Index.

6.1.2 Organization of the Chapter

In Section 6.2 we review the related works, in Section 6.3 we define and explain

the problem formulation, in Section 6.4 we provide details about data collection,

description of dataset, pre-analysis and experimental setup, in Section 6.5 we provide

information about the algorithms used in the experiment, in Section ?? we discuss

the presented results, and in Section 8.6 & 6.8 we conclude our discuss and future

work.

6.2 Related Work

When it comes to the influence of OSN, we are mostly interested in how the different

elements of a particular social network can impact the significant aspects of the same
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platform. Some studies details these impacts. For instance, [LES07] explains the

variety of influence of profile-centric parameters on the friends count on Facebook.

Their results shows that the friends was impacted by common interests, such as

college, place of stay, common department, and the same university, even with the

updated time. Similarly, In [GBCT13] author researched on pinterest, where they

found that female with less followers can use highly specific words (for instance:

want, look, need, and use) and this can leads to having higher re-pins on pinterest.

Finally studies from [SHPC10], suggested that tags and URLs have higher impact

on retweeting business.

Most of the OSN are being effected by various malicious activities. Studies

regarding these malicious activities like fake collaboration have been done widely

on Twitter [BMRA10, VB17, GCS+15], Facebook [GHW+10, LCW10, BSLL+16,

BXG+13, DCFJ+14], YouTube [LMC+16], but on a very lesser extent, on Instagram

[CYYP14]. Beutel et al. uses the ’lock-step’ behaviour for detecting fake likers on

Facebook by considering temporal aspects [BXG+13]. In [GCS+15], the author

focused on malicious behavior of retweeting the tweets on Twitter by examining

some trends in networks and temporal patterns. Network and temporal features are

difficult to obtain even though they are effective in study. To overcome this, we can

use content-based analysis which yields better results. In [BSLL+16], the author try

to detect the fake page liking behavior on Facebook using significant features such

as ‘profile’ and ‘post’ features of likers.

Our work adds more features to the content based method in two different ways:

First, by taking into consideration the relationship between a liker and a poster.

Second, by also collecting the relationships of the follower and following of the both

legitimate and fake post’s liker upto three level in breadth first search manner.
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6.3 Problem Formulation

Since there is a lack of research in the current literature on Instagram which is one

of the growing OSNs. Our work focuses on detecting valid and fake like of posts

with the application of learning model. Figure 6.2 depicts the architecture of valid

and fake like clicks participation on Instagram posts.
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Figure 6.2: Architecture of Fake Clicks through Different Participants and Valid
Clicks through Genuine User

Post: Content that is sharable in the Instagram like image, video etc.
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Poster: One who posts an image or video on his/her account.

posteri{postj} = {image, video} (6.1)

In equation 6.1 a poster i could have j number of posts where i, j = 0, 1, 2....n

Follower: An account becomes a follower when he/she legally gets approved by

the account to which it was requested. Once approved, from there onwards followers

get updates on all the content shared by the approved account and also have rights

to participate in expressing emotions in the form of like or comment.

Following: It is the reverse of the follower, where an approver account is legally

accepted by another account to follow his/her posts.

Public 

account

Private 

account

Not follower and 

Not following

Follower and 

not following

Not follower 

and following

Instagram 

Account

Follower and 

following

Figure 6.3: Accounts to Followers and Followings Accessibility Relationship (Up-
ward Arrows means Accessible)

Account type: poster or liker account type can be public or private mode in their

account privacy settings. Here, if an account type is private, then his/her posts

can be accessible by only his/her follower’s account, but followings accounts can

have access only if they exist again in followers list. In case of public account type,

his/her posts can be accessible by his/her followers, followings, followers-followers,

followers-following, followings-followers, followings-following i.e. a public account
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content can be accessible by anyone having a profile on Instagram. In figure 6.3

followers and followings belongs to an account that has approved followers request

to follow and is following either followers or other accounts.

FW: Follower, FG: Following, FWS: Followers, FGS: Followings

account type = {public, private} (6.2)

posteri{account type} = {postj, FWp, FGq,

FWSp FWr, FWSp FGs,

FGSq FWt, FGSq FGu,

rest of allv}

(6.3)

In equation 6.3 and 6.4 where i, j, p, q, r, s, t, u, v = 0, 1, 2...n. If the account type is

public, then the account posts are accessible by anyone as follows:

Follower could be same as following i.e.

accessibility = {liker|liker ∈ (follower == following)}

Following could be same as follower i.e.

accessibility = {liker|liker ∈ (following == follower)}

Follower and following could be distinct i.e.

accessibility = {liker|liker ∈ {following, follower}}

Any one i.e.

accessibility = {liker|liker 6∈ {follower, following}}.

posteri{public} = {postj, FWp, FGq,

FWSp FWr, FWSp FGs,

FGSq FWt, FGSq FGu,

rest of allv}

(6.4)
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posteri{private} = {postj, FWp, FGq} (6.5)

In equation 6.5 i, j, p, q = 0, 1, 2...n. If the account type is private, then the account

posts are accessible as follows:

Only follower i.e.

accessibility = {liker|liker ∈ follower}

only following who is also a follower of the account i.e.

accessibility = {liker|liker ∈ (following == follower)}

As shown in figure 6.2 violation means participating in fake like clicks on the

posts. This could happen because of botnet attacks, paid service or click spammer

service. There is no barrier defined as a trust based access to authenticate these

clicks [TPIS18]. A special case is when a genuine user participates in fraudulent

clicks activity without having a legitimate interest and also could be a part of the

collusion network. With these, we also assume that a like click on a partially viewed

video post as fake like click as in [SAM+18].

Hence to solve aforementioned problem we propose a learning based model which

is intelligent and automated in nature to detect fake and valid like clicks in Insta-

gram.

6.4 Dataset Description, and Pre-analysis

Dataset Description: We collected real-time data from different account and

posts for a period of one month using selenium web driver tool and manual data

collection was done for legitimate private accounts. We also deployed honeypots

by creating fake profiles with private and public mode. We uploaded the posts by

mentioning “For testing purpose only. Please don’t like it”. From all genuine and

fake account posts, we collected the like click observations generated by genuine

128



users, programmed botnets and fake spammers. Here only genuine users like clicks

on public and private accounts posts are considered as valid emotions and others

as fake. In case of honeypots, i.e. fake profile with fake posts the like clicks are

considered as fake. The dataset contains 10,346 observations among which 5,988

observation are valid, and 4,368 observations are fake like clicks observations. The

dataset consists of 38 attributes among them 37 are features, and one is a label.

Table 6.1 describes the attributes of the dataset.

Feature Extraction: It serves to construct a feature vector for our machine

learning model. It takes two types of features: numeric and text.

1. For numeric based features, we performed normal standardization by scaling

each feature. This allow us to mitigate feature scaling issues that arise during

classification methods which heavily rely on some distance metric.

2. For text based features, we parsed the test data and allocated it a unique

integer number which is acceptable by the machine learning model.

Feature Engineering: In Instagram, we can set-up the accounts either as

private or public. Each account type has their own pros. Inorder to build an effec-

tive machine learning model we divided dataset into 4 different groups with varied

{Public, Private} & {Legitimate, Fake} accounts. Based on principal component

analysis technique four features which had the lowest variance were dropped.

Pre-analysis: We have done analysis based on followings and followers of the

likers who likes the particular post for both legitimate and fake Instagram account.

From figure 6.4, we observe that the frequency of the fake liker’s #post is mostly

near zero as compared to the frequency of the legitimate liker’s #post.

For further analysis, we divided the total number of the followers and following

into four range of groups viz. (0-500), (500-10k), (10k-1m), and (>1m).
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Table 6.1: Characteristics of Dataset

Attributes Description
Acc Type Account type of posters. It can be public or private
Acc id The id of the poster account
acc no of post Poster number of posts count
acc no fws Poster number of followers count
acc no fgs Poster number of followings count
Postid Post id
post time Posted time in UTC
Liker id Account id of the post liker
is liker fw Is post liker is in follower list of the poster account
is liker fg Is post liker is in the following list of the poster

account
liker no of post Post liker number of posts count
liker no fws Post liker number of followers count
liker no fgs Post liker number of followings count
liker fgs id d1, d2, ..., dn In post liker account following list first following

id d1 to nth following id dn
liker fgs no of post
d1, d2, ...., dn

Post liker each followings number of post count

liker fgs no fws
d1, d2, ...., dn

Post liker each followings number of followers
count

liker fgs no fg
d1, d2, ..., dn

Post liker each followings number of followings
count

liker fws id
d1, d2, ..., dn

In post liker account follower list first follower id d1
to nth follower id dn

liker fws no of post
d1, d2, ..., dn

Post liker each follower number of post count

liker fws no fws
d1, d2, .., dn

Post liker each follower number of followers count

liker fws no fg
d1, d2, ..., dn

Post liker each follower number of followings count

is like Is the like is valid or fake
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Figure 6.4: Legitimate Vs Fake Liker on Posts.

Since our main focus is on the number of followers and followings for both le-

gitimate and fake accounts, we analyzed the histogram plots of their multiple com-

binations and found some interesting trends. From the plots we can notice that

legitimate followers and followings have higher rank as compared to fake followers

and followings in the range of (0-500) whereas it’s vice-versa in all the remaining

ranges.

Case 1. Following Followers: Figure 6.5-6.7 shows #(Following Follower)

in range (0-500), (500-10k), and (>1m) for case 1. For each likers post, Follow-

ing Followers means the frequency of #followers of the followings for both legitimate

and fake account post upto breadth level of 3. D1,D2 and D3 represents the breadth

level of following and follower. L: Legitimate, F: Fake

Case 2. Following Followings: Figure 6.8 and 6.9 shows #(Following Followings)

in range (0-500), and (500-10k) for case 2. For each likers post, Following Followings

means the frequency of #followings of the followings for both legitimate and fake
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Figure 6.5: Frequency of Number of Followers of the Followings for both Legitimate
and Fake Account Post upto Breadth Level of 3 in range (0-500).

Figure 6.6: Frequency of Number of Followers of the Followings for both Legitimate
and Fake Account Post upto Breadth Level of 3 in range (500-10k).
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Figure 6.7: Frequency of Number of Followers of the Followings for both Legitimate
and Fake Account Post upto Breadth Level of 3 in range (>1m).

Figure 6.8: Frequency of Number of Followings of the Followings for both Legitimate
and Fake Account Post upto Breadth Level of 3 in Range (0-500).
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Figure 6.9: Frequency of Number of Followings of the Followings for both Legitimate
and Fake Account Post upto Breadth Level of 3 in Range (500-10k).

account post upto breadth level of 3.

Case 3. Follower Followings: Figure 6.10 and 6.11 shows #(Follower Followings)

in range (0-500), and (500-10k) for case 3. For each likers post, Follower Followings

means the frequency of #followings of the followers for both legitimate and fake ac-

count post upto breadth level of 3.

Case 4. Follower Follower: Figure 6.12-6.14 shows #(Follower Follower) in

range (0-500), (500-10k), and (10k-1m) for case 4. For each likers post, Fol-

lower Follower means the frequency of #follower of the followers for both legitimate

and fake account post upto breadth level of 3.

6.5 Classification Algorithms

We have considered various classification methods in terms of single and ensemble

based classifiers to detect fake and genuine like clicks as follows: Logistic Regression

(LR), Support Vector Machine (SVM) in two versions like radial basis function

and sigmoid kernels, K Nearest Neighbors (KNN) with two versions like Uniform
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Figure 6.10: Frequency of Number of Followings of the Followers for both Legitimate
and Fake Account Post upto Breadth Level of 3 in Range (0-500).

Figure 6.11: Frequency of Number of Followings of the Followers for both Legitimate
and Fake Account Post upto Breadth Level of 3 in Range (500-10k).
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Figure 6.12: Frequency of Number of Follower of the Followers for both Legitimate
and Fake Account Post upto Breadth Level of 3 in Range (0-500).

Figure 6.13: Frequency of Number of Follower of the Followers for both Legitimate
and Fake Account Post upto Breadth Level of 3 in Range (500-10k).
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Figure 6.14: Frequency of Number of Follower of the Followers for both Legitimate
and Fake Account Post upto Breadth Level of 3 in Range (10k-1m).

and Distance based kernels, Naive Bayes (NB) with two versions like Gaussian and

Multinomial based kernels, Artificial Neural Network (ANN), and ensemble based

like Random Forest (RF) with Gini and Entropy kernels, and Extra Tree (ERT)

classifiers with Gini. With these, we also experimented bot detection approach

proposed and suggested by [VAK+16, TKC+19] using autoencoder method.

6.6 Results and discussions

In this section, we discuss the evaluation metrics used to measure the performance

of each model, model parameters and model validation used. Including these, we

discuss the presented results in three parts namely: Single vs. ensemble based

model, Autoencoder bot detection method, and ANN.
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6.6.1 Evaluation Metrics

Metrics like precision, recall, accuracy are used to measure the performance of the

classifiers. We have reported individual as well as all feature datasets result using

the following equations.

di ∈ {Gprivate Fprivate,Gprivate Fpublic,

Gpublic Fprivate,Gpublic Fpublic}
(6.6)

where i = 1, 2, 3, 4.

Precision(di) =
TP (di)

TP (di) + FP (di)
(6.7)

Recall(di) =
TP (di)

TP (di) + FN(di)
(6.8)

Accuracy(di) =
(TP (di) + TN(di))

(TP (di) + FP (di) + TN(di) + FN(di))
(6.9)

where TP: True Positive, TN: True Negative, FP: False Positive, and FN: False Neg-

ative. We have also reported macro-averaged results using the following equations.

Precision =
1

4

4∑
i=0

Precision(di) (6.10)

Recall =
1

4

4∑
i=0

Recall(di) (6.11)

Accuracy =
1

4

4∑
i=0

Accuracy(di) (6.12)

6.6.2 Model Parameters

We configure our classifier algorithms with a different range of parameters as follows:

For the Support Vector Machine (SVM), we use kernel as rbf, and sigmoid. For

Random Forest and extra tree classifier, we use criterion values as entropy and gini

and estimators between 1 to 10. For Logistic Regression, we set the range of the
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cost function from 0.1 to 10. For the KNN, we set the weight options as uniform

or distance and the nearest neighbor to be searched for in between 1 to 10. We

set alpha to 1.0 for all the variants of the näıve bayes like Gaussian, Bernoulli, and

Multinomial.

6.6.3 Model Evaluation

We use k-Fold cross-validation to evaluate our machine learning model. By using

such evaluation method we divide the training dataset into k number of sub-datasets.

The primary purpose of using k-fold cross validation is to use all of the training

dataset for training the model and also to get the unbiased estimate of the model.

Table 7.5 shows the results of single and ensemble-based methods trained and

tested using K-fold cross-validation on five different class of datasets including

dataset with all features. Based on the result among single based learning model

LR performs better with an accuracy of 92%. However, as overall, random forest

(in particular “gini” as a criterion ) and extra tree classifier performs best among

single and ensemble based learning model with an accuracy of 97%.

6.6.4 Auto Encoder

In an auto encoder, there are two parts [VLBM08].

Encoder

Here the noise is added to the real data and is passed through a similar neural

network as used in training, only now it gives an eight float32 output instead of one.

x data = OriginalData (6.13)

139



T
ab

le
6.

2:
R

es
u
lt

s
of

S
in

gl
e

an
d

E
n
se

m
b
le

-b
as

ed
M

et
h
o
d
s

M
D

a
ta

se
ts

M
a
cr

o
A

v
e
ra

g
e

G
p
ri

F
p
ri

G
p
ri

F
p
u

G
p
u

F
p
ri

G
p
u

F
p
u

A
ll

fe
a
tu

re
s

P
R

A
P

R
A

P
R

A
P

R
A

P
R

A
P

R
A

L
R

0.
89

0.
92

0.
90

0.
95

0.
95

0.
95

0.
90

0.
92

0.
91

0.
92

0.
92

0.
92

0.
93

0.
93

0
.9

3
0.

91
0.

93
0
.9

2
S
V

M
(r

b
f)

0.
97

0.
97

0.
85

0.
97

0.
97

0.
85

0.
76

0.
58

0.
79

0.
76

0.
62

0.
78

0.
97

0.
97

0.
86

0.
97

0.
97

0.
85

S
V

M
(s

ig
)

0.
49

0.
97

0.
49

0.
50

0.
97

0.
50

0.
50

0.
97

0.
51

0.
52

0.
92

0.
50

0.
55

0.
97

0.
57

0.
49

0.
97

0.
49

K
N

N
(U

n
i)

0.
72

0.
87

0.
76

0.
71

0.
86

0.
74

0.
66

0.
75

0.
71

0.
67

0.
78

0.
72

0.
72

0.
84

0.
76

0.
69

0.
82

0.
73

K
N

N
(D

is
)

0.
75

0.
91

0.
80

0.
72

0.
91

0.
77

0.
70

0.
83

0.
76

0.
68

0.
84

0.
74

0.
76

0.
89

0.
80

0.
71

0.
87

0.
77

N
B

(G
au

)
0.

67
0.

90
0.

72
0.

72
0.

88
0.

76
0.

54
0.

83
0.

62
0.

58
0.

84
0.

65
0.

61
0.

88
0.

67
0.

63
0.

86
0.

69

N
B

(M
u
l)

0.
55

0.
74

0.
53

0.
61

0.
76

0.
62

0.
57

0.
26

0.
57

0.
48

0.
16

0.
52

0.
67

0.
48

0.
62

0.
55

0.
48

0.
56

R
F

(G
in

)
0.

96
0.

96
0.

97
0.

96
0.

96
0.

95
0.

95
0.

93
0.

96
0.

96
0.

94
0.

97
0.

94
0.

95
0
.9

6
0.

96
0.

95
0
.9

7

R
F

(E
n
t)

0.
96

0.
96

0.
95

0.
96

0.
96

0.
97

0.
96

0.
97

0.
95

0.
96

0.
93

0.
95

0.
95

0.
94

0.
94

0.
96

0.
95

0.
96

E
R

T
(G

in
)

0.
97

0.
97

0.
96

0.
97

0.
96

0.
96

0.
96

0.
96

0.
96

0.
96

0.
95

0.
96

0.
95

0.
95

0
.9

6
0.

96
0.

96
0
.9

7

N
o
te
:

M
:

M
et

h
o
d

,
P

:
P

re
ci

si
on

,
R

:
R

ec
al

l,
A

:
A

cc
u

ra
cy

,
G

p
ri

va
te

F
p

ri
va

te
:

G
p

ri
F

p
ri

,
G

p
ri

va
te

F
p

u
b

li
c:

G
p

ri
F

p
u

,
G

p
u

b
-

li
c

F
p

ri
va

te
:

G
p

u
F

p
ri

,
G

p
u

b
li

c
F

p
u

b
li

c:
G

p
u

F
p

u

140



Now we use the encoder’s neural network to compress the noisy data, we just created

x compressed = encoder(x data) (6.14)

Decoder

Here the output of encoder travels through another Neural network, and it finally

gives an eight float32 output.

y pred = decoder(x compressed) (6.15)

The Decoder output is compared with real input using root mean squared and based

on the error, the auto encoder is then trained using Adam backprop as shown before.

E = Error =
√

((xdata − ypred)2) (6.16)

Then we take the Log of the Error as our Loss for deciding if the given like is a bot

or human.

Loss = log(E) (6.17)

Now since we trained our data on Users, this helps us detect bots when the Encoder

is not able to regenerate the data.

We use the above autoencoder to discard the bots.

Discussion on Autoencoder Results

Due to the scarcity of data, we divided the dataset representing real likes in the

ratio of 4:1 for training and testing.

We trained the autoencoder only on the real likes, as it will help us in setting

the loss threshold. We got a Loss of 28.597 for real likes and a Loss of 29.391 for

bot likes. The significant difference between Losses of the bot and real likes shows

that auto encoder can distinguish between them.
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6.6.5 Neural Network

We also ran our dataset on an ANN [GB10b, RHW86] and divided the train and

test data in the 4:1 ratio. On neural network using batch normalization [IS15] and

dropout [SHK+14] of 0.5 at each layer, except the output layer, we got precision

of 0.91and accuracy of about 0.905. We trained the ANN using Adam Gradient

Descent [KB14].

Figure 6.15: ROC curve of ANN

Discussion on ANN Results

Due to lack of sample, ANN results are down as compared to other models. However,

with significant amount of data ANN may perform better than others.

6.7 Conclusion

With this work, we have shown that popularity index of posts on Instagram could

be increased by fake like clicks through several attacks. We deployed honeypots

and programmed botnets to create attacks and captured the data from all type of
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accounts with valid and fake like clicks on several posts. We have explored all the

unique parameters of the post such as to #(likers, followers, followings) by scrapping

the data with several breadth/levels. We also analyzed the data where we found

some pattern on valid and fake like clicks based on a number of posts, follower-

following relationship, following-follower relationship, follower-follower relationship,

and following-following relationship. Based on the experimental results, LR is an

accurate predictor among the pool of single based methods, and Random forest is

the best among single and ensemble-based methods. We also achieved better results

with autoencoder to detect bots in our dataset with the help of loss function.

6.8 Future Work

We restricted ourselves to detect fake and valid like click but no views in case of

the video posts. Firstly, with the number of views, we can also consider even more

features to validate whether a view is legitimate or fake based on chosen criteria.

One of the possible directions is to collect data based on several criteria’s like depth

and breadth levels exploration of the post , like click path and so on . Secondly,

we can investigate further to propose a hybrid learning model in combination with

ANN.

143



CHAPTER 7

MRFI AND ARFI: HYBRIDS OF FILTER AND WRAPPER

FEATURE SELECTION APPROACHES

Feature selection has emerged as a craft, using which, we boost the performance

of our learning model. Feature or Attribute Selection is a data preprocessing tech-

nique, where only the most informative features are considered and given to the

predictor. This reduces the computational overhead and improves the efficiency

and correctness of the classifier. Attribute Selection is commonly carried out by

applying some filter or by using the performance of the learning model to gauge

the quality of the attribute subset. Metric Ranked Feature Inclusion and Accuracy

Ranked Feature Inclusion are the two novel hybrid feature selection methods we

introduce in this chapter. These algorithms follow a two-stage procedure, the first

of which is feature ranking, followed by feature subset selection. Our methods differ

in the way they rank the features but follow the same subset selection technique.

Multiple experiments have been conducted to assess our models. We compare our

results with numerous works of the past and validate our models using 12 datasets.

From the results, we infer that our algorithms perform better than many existent

models.

7.1 Introduction

In Machine Learning, computer algorithms study statistical models to distill cer-

tain information from the data. This information is used to perform various tasks

without constant human intervention by relying solely on inferences and patterns.

Unfortunately, the nature and quality of the data fed to the learning algorithm

determine it’s performance. Many times, the data might be inadequate, noisy, or
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erroneous, which leads to a loss in the regularity and accuracy of the predictions

made by the machine. To avoid this, we have to rectify and remodel the data

that the algorithm operates on. Either row correction or column correction are the

possible solutions. The rows signify the input data, while the columns signify the

features. A measurable property of the process under consideration is known as a

feature. Each row is characterized by a vector of features and the target. The target

or the class signifies the category to which that sample belongs.

Dimensionality Reduction is considered to be the best approach for column

correction. Feature Selection (FS) and Feature Extraction are the two primary

techniques of reducing the number of dimensions. Variable Extraction or Feature

Extraction is the act of converting the given feature subset into a subset of lower di-

mensionality, where new features are fabricated by the combination of the available

features. The number of dimensions can be minimized on applying FS as it picks a

set of features from the initial set. FS can be carried out by mainly three methods:

Wrapper, Embedded and Filter.

FS algorithms using the filter technique, pick features based on some score or

statistical measure that is allocated to each feature. The predictor is not considered

while choosing the best subset of variables in the filter approach These algorithms are

computationally less expensive and fast, but may not always give the best feature

subset. FS algorithms that are classified as wrapper methods can be considered

as search algorithms, where many combinations of features are created, evaluated,

and then compared with each other. The evaluation of each subset is performed

with the help of the predictive model. The model runs on each subset, following

which the subsets are assigned scores based on their performances. These scores are

then used to pick the optimal feature subset. Many wrapper methods give better

results, but cause a large overhead and may take extremely long periods of time if
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the feature set is extensive. Nowadays, many methods which are a combination of

filters and wrappers, called Hybrids, are being devised. These Hybrid algorithms

exploit the advantages of both methods while overcoming many of the disadvantages.

FS algorithms employing the embedded method, choose attributes which contribute

heavily to the correctness of the learning model during it’s creation.

7.1.1 Summary of Contribution

The existent FS algorithms are useful but do not always prove to be extremely

helpful when we use certain machine learning algorithms like Random Forests. In

this chapter, we propose two new FS techniques, Metric Ranked Feature Inclusion

(MRFI) and Accuracy Ranked Feature Inclusion (ARFI), which can be used effec-

tively across a variety of learning models. Our proposed algorithms are hybrids of

the wrapper and wrapper methods and follow a two phase process. The first phase

takes inspiration from the filter technique, and we assign scores for the features to

rank them. For the first proposed algorithm, the score is assigned to each feature

after clustering the data with the help of that feature alone. We use K-Means to

cluster the data and then apply a clustering metric by the name of V-Measure.

ARFI involves scoring each feature based on the accuracy of a classifier (Random

Forest), which is evaluated with only that particular feature. Ranking the features

using these techniques truly brings out their importance to the label. The next stage

of the algorithm, i.e., the feature subset selection phase, avoids redundancy. Here,

the variables are iteratively added to the optimal subset one by one, and each time,

the learning model is evaluated. The recently added feature is retained or dropped

depending on the calculated accuracy. The second stage behaves as the wrapper

part. Both MRFI and ARFI share the same feature subset selection technique.
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We validated our models with the various datasets and compared our results

with another standard FS technique, Recursive Feature Elimination (RFE). Our

models outperformed RFE with every dataset and gave us positive results.

7.1.2 Organization of the Chapter

The chapter provides a thorough review of the extensive research conducted in the

past, regarding attribute selection, in Section 7.2. A detailed explanation about our

algorithms and their preliminaries is given in Section 7.3. In Section 7.4, the hard-

ware requirements and the various datasets used have been described. Section 7.5

contains discussions about our experimental outcomes. Lastly, Section 7.6 provides

an outline of the work we have carried out.

7.2 Related Work

The efficacy of any predictor can be considerably improved by applying FS. It lessens

the number of columns and thereby reduces noise. Lots of research has been done

in this field and many survey and review papers describe various FS algorithms

[MG03, BCSMAB+14, CS14]. Several kinds of FS algorithms can be implemented,

but we focus on the wrapper, filter and some hybrid methods of variable selection.

7.2.1 Filter Approach

In [PK17], an FS technique based on correlation is proposed, in which the features

are ranked based on the extent of redundancy between the attributes and their

predictive capability. In [DCSL02], the entropy measure of a cluster is used to

determine whether the data has distinct clusters or not. Kira and Rendell created
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the FS technique called Relief [KR+92]. In this algorithm, weights are allocated to

every variable, and KNN is used to modify the weights. Almuallim and Dietterich

developed another extremely famous algorithm by the name of FOCUS [AD92]. This

algorithm conducts a comprehensive check of all feature subsets and then finds the

minimal subset that can provide accurate labeling of the training data. Symmetrical

Uncertainty is adopted as the goodness measure in [YL03].

Koller and Sahami [KS96] proposed a method which involves the elimination

of a predecided number of features using backward elimination coupled with cross

entropy. In [LS+96], Liu and Setiono have implemented a method which uses random

sampling to search for all feature subsets. Minimum Description Length of a feature

subset, as the evaluation metric, was proposed by Pfahringer [Pfa95]. He makes use

of Simple Decision Tables to add or remove features. In [QSZT15], a new method

of FS based on Synonym Merge, Part Of Speech and Contribution Value is used

to classify Chinese text. The FS model in [LMJY17] works on the principle of

multi-objective mutual information. It considers both redundancy and relevance to

the class. It makes use of NSGA, which is a multi-objective search algorithm. In

[Bat94], the author proposes an algorithm based on the union of mutual information

and pruning.

Fleuret [Fle04] had proposed another method to choose attributes based on

mutual information. This method uses the conditional mutual information max-

imization criterion. In [CS03], the author presents a unique method of reusing the

discarded features after applying FS. The multitask method of learning is used to

provide extra information to the classifier through the model’s output. In [PLD05],

the author proposes a two-stage method based on maximum dependency, maxi-

mum relevance but minimum redundancy. Franklin and Vasudevan [VV16] propose

a method by the name of Highly Correlated FS (HCFS). HCFS initially sets the
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pertinence threshold, then finds associations among feature pairs and also among

features and classes. The algorithm excludes uncorrelated features by building a

tree. The feature tree is partitioned based on the relevance threshold. From this

partitioning, the best feature cluster is then selected.

An FS approach, namely GClust, using interquartile range and clustering [KNK+19],

has been proposed. Initially, the genes that correctly predict the classes for the in-

puts are chosen. The remaining genes are then clustered based on their similarity,

and genes with the highest ranks are picked with the help of the Lasso method. On

combining this with the initial subset, the final optimal feature subset is obtained.

Kononenko [Kon94] proposed an extension of the RELIEF model and called it Re-

liefF. The extension is handy as it can deal with noisy, incomplete data. Moreover,

it can handle multi-class datasets effectively. A unique model for FS for multiple

label classification has been proposed in [SCML13]. In their model, the goodness

of the attributes is evaluated on the basis of Information gain and ReliefF. The

standard multi-label FS approach is then applied to convert the multiple labels into

a single one. For this purpose, Binary Relevance and Label Powerset methods are

used. In [WWK+13], the author proposes a method based on maximum weight

but minimum redundancy. The weight of a feature denotes its importance, and by

using this method, we can find the subset which is most beneficial and also least

correlated. Hall and Smith propose a new FS method hinged on another correlation

based heuristic that can be used for the selection of a proper subset [HS98].

A method named INTERACT is proposed in [ZL09] where the feature interaction

is taken into consideration. Certain features may not be very relevant to the target

when considered separately but might be extremely important when considered

with other features. This dependency on other features is the concept of feature

interactions. Irreducibility is an intrinsic character of feature interactions, which
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is not considered by most FS algorithms. A FS algorithm to improve the efficacy

of microarray classification is proposed in [LV11]. The proposed approach uses the

Kruskal Wallis test on auxiliary data and then goes on to rank the features on the

basis of their aggregated p-values. In [NHCD10], an FS technique based on norm

minimization using l2,1 is proposed. The joint norm minimization is applied to both

loss function and regularization. Multiclass microarray data is a domain where FS

is being used very widely. For the same purpose, in [SF12] the author proposes a

model which makes use of Partial Least Squares and a decomposition technique.

This model is applied to sets of two class subproblems, one versus one and one

versus rest.

Song et al. presented a new model [SSG+12], using the Hilbert Schmidt Inde-

pendence criterion, which is a nonparametric dependence measure, just like mutual

information. In [NM09], the author proposes a new method for subset selection in

microarray data with the help of entropic filtering algorithm. This method can be

used to find attribute subsets that increase the normalized multivariate conditional

entropy when considered together for problems related to classification. Meyer et

al. [MSB08] proposed a model for FS associated with microarray data specifically

for a huge number of attributes and only a few samples. The method makes use

of Double Input Symmetrical Relevance, an information-theoretic selection which is

based on variable complementarity. A greedy FS technique is proposed in [HBK14],

where mutual information is used to evaluate feature-feature and feature-label in-

formation. NSGA is used to choose the optimal feature subset.

A comprehensive study of various statistical methods like Pearson’s Coefficient and

Correlation Criteria that are used to filter data, and their mathematical implemen-

tations are described in [GE03, TAL14, Nov16].
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7.2.2 Wrapper Based Approach

We discuss several wrapper techniques that have been presented. In [MG71], the au-

thor proposes seven techniques to pick an optimal set of features. The first method

uses expected probability of error. The second method chooses more features with

minimum correlation using the initially picked features. The third approach is to

check which feature can accurately distinguish two classes, pick the feature and

repeat. The fourth is to perform Principal Component Analysis. The fifth is a

small modification of the fourth, omitting those with smaller contributions. The

sixth method chooses the features that make the most significant contributions to

the eigenvectors. The seventh method is a mixture of the first two. In [Cha73],

a dynamic approach to feature subset selection is proposed. A branch and bound

solution is proposed for the same FS problem in [NF77]. The Particle Swarm Op-

timisation (PSO) technique is proposed for the same problem by Kennedy et al.

in [SE99]. The method of Sequential Forward Selection, was proposed by Whit-

ney [Whi71]. The algorithm begins with an unfilled subset and adds one feature

at a time after gauging them. In [PNK94], the author proposes a method to per-

form Sequential Floating Forward Selection in which backtracking is used to exclude

variables. An improvement to this method is proposed in [NC09]. An extra step is

added to replace the weakest feature in the currently selected subset and then check

whether removing that feature and adding another proves to be beneficial.

In [APST05], the author proposes a two-stage method, the first of which in-

volves reducing the prediction error over a monitoring dataset. The second stage is

comprised of a simulated annealing technique to lessen the number of explanatory

attributes. The use of a Genetic Algorithm (GA) to conduct feature subset selection

was initially proposed by many, but notably by [YH98, PIGP+93]. FS, by extending

the GA, has been done by [Esh91] and [CDS06]. In [ISBL02], the author proposes a
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method to conduct Sequential Forward Selection (SFS) for microarray cancer class

prediction. The author proposes a wrapper method [RRAR06] to rank the features

and then select them. Incremental Ranked Usefulness is used for the ranking pro-

cess. Sharma et al. propose a new method to select features that may perform

weakly when considered individually but work well with other genes [SIM11]. The

genes are divided into a small subset of size h, and then further divided into smaller

informative subsets of size r. These smaller subsets are iteratively merged into a

bigger, more informative subset of features. The author presents a method based on

Kernel Density Estimation [WGNdPB13], a nonparametric estimator, used to select

the feature subset. Non-parametric estimators work well for sparse and scarce data,

especially in the field of Bioinformatics.

In [CS96], the author proposes a method called SET-Gen, to create multiple

feature subsets, with the help of a GA, along with a wrapper evaluation function.

They are then evaluated using 10 fold cross validation. Caruana and Freitag [CF94]

and John, Kohavi and Pfleger [JKP94] evaluate several wrapper methods, which

make use of hill climbing, like SLASH, Backward Stepwise Elimination, Forward

Selection, Backward Elimination and Forward Stepwise Selection. The author pro-

poses two methods based on the the random mutation hill climbing algorithm and

the Monte Carlo sampling algorithm [Ska94]. In [RPN+14], a novel method of FS is

proposed, which makes use of the Bat Algorithm and the Optimum-Path forest. In

[EZH16a], the author proposes two novel algorithms. The first is based on the ant

lion optimization operators, and the second is based on using the continuous steps

of the same, as thresholds, after squashing them. In [SP13], an algorithm employing

the Artificial Bee Colony and a perturbation parameter is presented. Mafarja et

al. propose two methods based on Whale Optimisation Algorithm (WOA) [MM18].

The Tournament and Roulette Wheel selection mechanisms are used in the first
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approach, and Crossover and Mutation algorithms are used to improve the Whale

Algorithm in the second technique.

In [MAH+18], a Binary Dragonfly optimization is proposed for FS with the help

of time-varying transfer functions. In [EZH16b], the author proposes a new binary

version of the Grey Wolf Optimisation technique, which is implemented for FS. Yang

et al. propose an ensemble based wrapper method for FS [YLZ+13], specifically for

imbalanced class distribution. Chaouki and Saoussen [KK17] propose a method of

FS for intrusion detection systems, using the wrapper method, enforced with the GA

method. Gang and Jin Chen [CC15] propose a method of using wrapper methods

with Support Vector Machines (SVM), namely Cosine Similarity Measure SVM to

remove the unnecessary features. In [LLWS14], another SVM based technique is

proposed, in which a statistics based wrapper is used in unison with the SVM for

Financial Distress Identification. Lei et al. propose a method of FS for object based

image classification [MLG+17]. Their model uses a novel wrapper technique with

the help of polygon based cross validation.

7.2.3 Hybrid Approaches

A hybrid method of classification, which uses Modified Information FS and Mod-

ified Binary Cuckoo Search is proposed in [JLYX17]. In [JBS10], a new method,

namely class dependent density based feature elimination is proposed. It uses a

measure called diff-criterion to rank the features and then perform a feature subset

selection on the ranked features. In [LT13], the author proposes a new method of

FS using a combination of SVM, Recursive feature elimination and normalized mu-

tual information. In [SMQ+14], the author proposes a method to perform FS with a

combination of SVMs and Minimum redundancy maximum relevance (mrMR). Zhu,
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Ong and Dash propose another method, which integrates a feature ranking system

in the traditional GA [ZOD07]. In [YMZ17], the author proposes a method of FS,

on the basis of ranking them initially, and then selecting a subset of attributes. The

feature ranking is done on the basis of the AUC of their decision tree model. The

features are then selected based on a new logical algorithm.

In [MM17], the authors give us another method for FS using WOA; this time,

a hybrid model. The model is based on WOA combined with simulated annealing.

In [HBXC15], Hu et al. propose a method to select features for short term load

forecasting. They implement a filter method, Partial Mutual Information followed

by the firefly algorithm, which is the wrapper portion. Basant and Namita pro-

pose a method of FS [AM13], on the basis of Rough Set Theory and Information

Gain, which is then applied for Sentimental Analysis. A hybrid PSO is proposed in

[MG16] by developing a new local search technique and has been named HPSO-LS.

The authors of [ZYL14] propose a new technique to extract features by building a

hybrid of SVM and K-Means algorithms. A new FS algorithm called TRSFFQR is

developed and proposed in [J+16]. TRSFFQR, which stands for Tolerance Rough

Set FireFly based Quick Reduct, is used for FS in MRI Brain Images classification.

The techniques that have been applied are evident from the name.

Two new algorithms, PSO Relative Reduct and PSO Quick Reduct, have been

proposed as FS algorithms for medical datasets in [IAJ14]. A thorough method of

FS is proposed in [TA15], where Weighted Least Squares Twin SVM is used as a

classification technique. SFS is used as the search strategy, and finally, correlation

FS is used to gauge the weight of every attribute. In [FD19], Faker and Dodgu

propose a hybrid method of ranking the features by applying a clustering algorithm

followed by validating the clusters using homogeneity and then selecting a subset

from the ranked features. A new approach, which makes use of the ReliefF algorithm
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followed by optimal feature subset selection with the help of SVM, is presented in

[ZZC+18]. Wang and Feng [WF18] proposed a method in which two feature subsets

are created using two optimal filters. A union operation based on feature weights

is developed to consolidate the two subsets. High quality clusters can be produced

with a hierarchical agglomerative clustering algorithm without requiring the cluster

number.

7.3 Proposed Approach

Here, we explain the necessary background to understand our proposed algorithms

and then explain them in detail.

7.3.1 Preliminaries

Here, we describe the various algorithms and metrics that we make use of in the

proposed algorithms. In the feature ranking step of MRFI, we make use of K-Means

and V-Measure. We make use of Random Forests for the feature ranking stage of

ARFI and the entire feature subset selection stage.

K-Means

K-Means falls under the category of unsupervised machine learning and is a cluster-

ing algorithm. It is used to segregate samples into the best suited group on the basis

of the information already available to the algorithm. K unique clusters or groups

are created such that they are sufficiently far apart from each other spatially. The

distance is measured in Euclidean Distance so that clear and valid results are ren-

dered when information is mined from them. Centroids are the centers of clusters,
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and data is iteratively categorized into clusters based on a data point’s distance

from the centroids. The most optimal solution for all the points is found iteratively

as:

1. K data points are randomly chosen as centroids.

2. The distance between every point in the data set and the K randomly chosen

centroids are calculated.

3. Each point is allocated to the closest cluster, on the basis of the distances

calculated.

4. Centroids are reassigned by finding the average of all data points in a cluster.

5. If the centroid changes, then the process is redone from the step where the

centroids are calculated until all the centroids remain the same. The clustering

is complete when the centroids do not change their positions.

Mathematically, K Means seeks to reduce the squared error (objective) function. It

is described below:

J =
m∑
a=1

n∑
b=1

(||xa − vb||)2 (7.1)

Where, ||xa− vb|| is the Euclidean Distance between a centroid, vb, and a point, xa,

iterated over m points in the ath cluster, for all the n clusters [Mac67].

V-Measure

It is used to evaluate external clusters based on conditional entropy. It measures the

goodness of the completeness and homogeneity of a cluster. Their harmonic mean is
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the V-Measure score of a cluster. Homogeneity of a cluster is satisfied when all the

samples of a cluster are in the same, unique class. Completeness is satisfied when

all the data points belonging to a single class are a part of the same cluster.

For a mathematical definition, let us consider a dataset comprising of N data points.

Let these data points be partitioned into some classes, P = {px|x = 1, . . . ,m} and

some clusters, Q = {qy|i = 1, . . . ,m}. The contingency table is denoted as T . This

table represents the clustering solution, such that T = {txy}. Here, txy symbolizes

the number of samples that are elements of the cluster qy and members of class px.

Let homogeneity and completeness be represented as H and C respectively [RH07].

Then V-Measure is given by:

Vβ =
(1 + β)×H × C

(β ×H) + C
(7.2)

Homogeneity, H, can be defined as:


1 ifF (P,Q) = 0

1− F (P,Q)
F (P )

else

(7.3)

where,

F (P,Q) = −
|Q|∑
q=1

|P |∑
p=1

tpq
N
log

tpq∑|P |
p=1 tpq

(7.4)

F (P ) = −
|P |∑
p=1

∑|Q|
q=1 tpq

m
log

∑|Q|
q=1 tpq

m
(7.5)
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Completeness, C, can be defined as:


1 ifF (Q,P ) = 0

1− F (Q,P )
F (Q)

else

(7.6)

where,

F (Q,P ) = −
|P |∑
p=1

|Q|∑
q=1

tpq
N
log

tpq∑|Q|
q=1 tpq

(7.7)

F (Q) = −
|Q|∑
q=1

∑|P |
p=1 tpq

m
log

∑|P |
p=1 tpq

m
(7.8)

Random Forests (RF)

Random Forests can be classified under supervised learning. They are ML algo-

rithms which use ensemble learning. In ensemble learning, we combine the same

or different types of algorithms several times, to create a more robust prediction

model. Random forests use multiple decision trees and are called forests for the

same reason. They can be used for Classification and Regression.

The Random Forest Classifier randomly picks a certain number of features from

the entire database. A decision tree is then built using these features. A large
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number of trees are constructed in the same way, each selecting a random attribute

subset of equal size. Once the forest has been created, each tree predicts the category

to which the record belongs. The record is allocated to the class with most number

of votes.

7.3.2 Metric Ranked Feature Inclusion (MRFI)

MRFI is a two stage process, the first of which is ranking the features, and the

next stage is choosing the best attribute subset from the ranking. The ranking

stage is carried out by employing K-Means and V-Measure. We split the entire

dataset into testing and training datasets in the ratio of 4:1 with the standard scikit

learn libraries [PVG+11]. Another dataframe to store the features in their ranked

order is declared, with two columns, Name and Importance. The model selects

a feature from the entire feature set, and K-Means clustering is performed, using

only that feature and the target. The number of classes determine the value of K.

After clustering the training data, we find the V-Measure Score of the clustering.

V-Measure, being the harmonic mean of completeness and homogeneity, gives us a

good understanding of the quality of the clustering. The obtained score is assigned

as the importance of each feature. The entire process is carried out for each feature

individually. The features, along with their importance, are then stored in the

dataframe. That dataframe is then sorted to obtain a feature ranking, from most

importance to least importance.

The feature subset selection stage is performed using the ranking of the features.

We devise a novel algorithm for this process. The first feature in the ranking is

taken, and then the accuracy of the random forest classifier is calculated. The

next feature is combined with the other features in the optimal feature subset from
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the feature ranking, and the accuracy of the same classifier is recomputed. If the

accuracy increases, we retain the feature in the optimal subset. On the other hand, if

the accuracy decreases, we drop the attribute from the optimal feature subset. This

process is carried out iteratively for all the attributes, to obtain the final, optimal

feature subset.

7.3.3 Accuracy Ranked Feature Inclusion (ARFI)

Just like MRFI, ARFI also involves ranking the features and then choosing the best

attribute subset from those ranked features. To rank the features, a feature is taken,

and the accuracy of the random forest classifier is computed. The importance of

the feature is assigned with the obtained accuracy. We carry out this process for

each feature, one at a time and then add each feature with its importance to a new

dataframe called Features. This dataframe has two columns, Name and Importance.

The dataframe is then sorted as per the importance of the attributes, in descending

order.

The next phase is the same as the one used in MRFI.

This two stage process is followed to obtain the most optimal attribute sub-

set. The relevance of every feature is computed by ranking them and this helps in

picking the most important features. Our feature subset selection method is also a

novel algorithm to choose attributes from the feature ranking. This subset selection

method helps us to pick features with lesser redundancy, as it evaluates the subset

with the classifier to check the performance. Often, some features may not be highly

relevant when considered individually but may perform really well when considered

in unison with other features. Our approaches take these factors into account and
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give us the subset where the features perform extremely well together and are not

very redundant. We present the diagrammatic flow of our proposed approach in

Fig. 7.1.

7.4 Experiment

In this section, we give the hardware description for our experiment. We also give

details about the datasets used and how we cleaned them.

7.4.1 Experimental Setup

All the experiments have been implemented in Python. We made use of an Intel

i7 8 Core CPU which has a 16GB RAM and the Flounder Server (AMD Opteron

Processor 6380 with 64 cores and 504GB RAM).

Dataset Feature Count Class

UNSW - NB15 47 Binary, Multiclass (9)
Abalone 8 Multiclass (28)
Avazu 16 Binary

Breast Cancer 10 Binary
Criteo 39 Binary

Heart Disease 13 Multiclass (5)
Ionosphere 34 Binary

Iris 4 Multiclass (3)
Lung Cancer 56 Multiclass (3)

Lymphography 18 Multiclass (4)
Talking Data 9 Binary

Table 7.1: An Outline of the Various Datasets used in our Experiments
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7.4.2 Datasets

For our experiments, we make use of 11 datasets in total. Firstly, we use the

UNSW-NB15 Dataset [uns15], a standard dataset for Intrusion Detection Systems.

Three click fraud datasets, Avazu [Kag15], Criteo [Kag14] and Talking Data [Kag18]

have also been experimented on. The remaining datasets are standard, benchmark

datasets which are available in the UCI Machine Learning Repository [DG17]. This

repository is a storehouse of databases, created by David Aha and other graduate

students from UCIrvine. We make use of the Abalone, Breast Cancer, Heart Dis-

ease, Ionosphere, Iris, Lung Cancer and Lymphography datasets to evaluate and

validate our models. The UNSW dataset can be used as a binary dataset and a

multiclass dataset. The Abalone, Heart Disease, Iris, Lung Cancer and Lymphog-

raphy datasets fall under the category of multiclass datasets, whereas the Breast

Cancer, Ionosphere, Avazu, Talking Data and Criteo datasets fall under the cate-

gory of binary datasets. A few details about the number of features, and the various

types of datasets considered, are shown in Table 7.1.

7.4.3 Data Preprocessing

UNSW - NB15

The UNSW dataset initially has 2540047 rows. We use 43 out of the 47 features

for classification. There are two label columns, ’attack cat’ for multiple classifica-

tion and ’Label’ for binary classification. There are 9 types of attacks which are

considered for multiclass classification. We use the entire UNSW dataset, for which

we append the four datasets given in [85]. Then, we manually assign the column

names mentioned in the information file of UNSW dataset. We drop the first four

columns, ’scrip’, ’sport’, ’dstip’ and ’dsport’, as they are just identification numbers
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and are not significant. The column ’attack cat’ is used to perform multiclass clas-

sification. All the NaN values in the ’attack cat’ column are dropped to retain only

the attack types. The remaining NaN values in the dataset are filled with zeroes as

they are all numerical values which represent some count. The same classes occur

multiple times in the ’attack cat’ column, with different names and white spaces.

These white spaces are stripped, and the names are standardized. The ’ct ftp cmd’

column has string representations of numbers. We convert them back to numbers

and encode the ’service’, ’proto’ and ’service’ columns. We normalize the dataset

using the Standard Scaler. For the binary classification using the same dataset,

we do not consider the ’attack cat’ column and all the remaining NaN values are

dropped. The remaining preprocessing of this dataset is carried out in the same way

as that of the multiclass classification version.

Abalone

The Abalone dataset has a total of 4177 entries, categorized into 28 classes. All 8

features are used. We perform encoding to convert the column with genders into

numbers.

Avazu

The Avazu dataset is a click fraud dataset recorded over 10 days. We split the

column called ’hour of click’ into three separate columns. The class ratio of the

200 million rows of the original dataset is maintained when the rows are reduced

to 1 million rows. The original dataset consisted of 16 features and one label column.

Breast Cancer Wisconsin (Original)

This consisted of 699 rows before the empty values were dropped. There are 10
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features that we make use of, along with one target column. We replace the string

representation of numbers with the actual numbers in some columns.

Criteo

The Criteo dataset is another click fraud dataset which we use to validate our mod-

els. It has 756554 rows and 39 features. We dropped all the rows which had NaN

values.

Cleveland Heart Disease

The dataset providing information about Heart Diseases in Cleveland has 303 rows.

It consists of 13 features and one target column with 5 classes. We dropped all the

rows which contained undetermined values and replaced the string representations

of all the numbers with the actual numbers.

Ionosphere

The Ionosphere dataset has 351 rows and 34 features that we use. We perform label

encoding on the target column and then conduct our experiment.

Iris

The famous Iris dataset consists of only 4 features and only 150 rows. The rows

are classified into three labels. We perform label encoding on this dataset. We also

shuffle the entire dataset to get a good mix of all the classes.

Lung Cancer

Another famous dataset called the Lung Cancer dataset has been used. It is com-

posed of only 32 rows of data but has 56 features. The number of rows is further
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reduced after dropping the missing values. It has 3 classes into which the rows can

be categorized. We run the classification algorithms after the data is shuffled to get

a good mix of all three classes.

Lymphography

The Lymphography dataset is composed of 148 rows and has 18 features. The label

column has 4 classes. We perform random shuffling to get a uniform distribution of

classes to help the machine learn effectively.

Talking Data

Talking Data has a million rows, and they are denoted with 9 features. The column

called ’attributed time’ is dropped because it consisted of a large number of NaN

values. The attribute ’click time’ composed of the time-stamps, is split into four

new attributes: ’day’, ’hour’, ’minute’, and ’second’. We randomly select 1 million

observations from around 200 million, but the class ratio is kept constant [TKC+19].

7.5 Results and Discussions

We present our results and make comparisons with previous work after giving details

about the classifier, the various metrics used, and our method of analysis.

7.5.1 Base Classifier

We use Random Forests as our base classifier to carry out multiclass and binary

classification. A thorough working of the random forest classifier has been described

in Section 7.3.

166



7.5.2 Evaluation Metrics

To gauge the efficacy of our classifier, we employ specific metrics, namely, Recall

(Rec), Accuracy (Acc), Precision (Prec) and F1 Score. Furthermore, we evaluate

the AUC score for binary classification. These evaluation metrics make use of: TPosi,

which represents the correctly predicted positives values, TNegi, which describes the

correctly obtained negative values, FPosi, representing the wrongly obtained posi-

tive values and FNegi describing the wrongly predicted negative values [exs16]. The

metrics, as mentioned above, are computed with the formulae given below:

Acc =
TPosi + TNegi

TPosi + FPosi + FNegi + TNegi
(7.9)

Prec =
TPosi

TPosi + FPosi
(7.10)

Rec =
TPosi

TPosi + FNegi
(7.11)

F1 Score = 2× Rec× Prec
Rec+ Prec

(7.12)

The Receiving Operator Characteristic (ROC) curve is a plot of the TPosi rate

against the FPosi rate. These values are plotted for all possible cut-off values. A

popular metric used to cross check the above metrics and avoid overfitting and

underfitting, is the Area Under the Receiving Operator Characteristic Curve (AUC).

It can also be interpreted as the average TPosi rate for all FPosi rate.

167



7.5.3 Method of Analysis

To compare the above metrics and validate our models, we follow a standard or-

der. After cleaning the dataset, we run the base classifier, i.e., the random forest

classifier without any FS and record the results. Then, we run MRFI to obtain an

optimal feature subset. We rerun the random forest classifier with this new feature

subset and record the results. We conduct the same experiment with ARFI. Once

our algorithms have been evaluated, we perform RFE on the original dataset and

compute the above metrics. The RFE FS model ranks the features based on fea-

ture importances, and then recursively eliminates the worst feature according to the

ranking. The feature elimination takes place after it evaluates the entire subset with

the classifier. RFE is a wrapper method and has proven to be extremely efficient

in the past. RFE requires an external parameter which tells it how many features

are to be considered. The parameter is given based on the number of features con-

sidered by our models. Next, we examine the results of the original dataset, our

algorithms and RFE. Our models have performed exceedingly well, as can be seen

from the results. We have presented them in the form of tables and plots below.

7.5.4 Discussions

Unlike RFE, our models do not need to know the number of features beforehand.

Our FS algorithms iteratively add features and do not need a fixed, minimum or

maximum number of features. Figure 7.3 depicts the same. Only feature subsets

with a minimum accuracy of 83 percent have been shown in the figure. Each point

denotes a feature subset that is being evaluated. As can be seen, subsets are evalu-

ated immediately after their creation. Only if the performance of the learning model

does not decrease, the most recently included feature is considered in the final sub-
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Dataset FSA #features A P R F1

UNSW - NB15

None 43 89.260 89.620 89.260 88.890
RFE 10 89.473 89.670 89.470 88.010
ARFI 10 90.108 90.890 90.110 88.860
MRFI 14 90.068 91.030 90.070 88.820

Abalone

None 8 24.521 23.050 24.520 22.890
RFE 1 17.584 17.830 17.580 17.420
ARFI 1 25.120 22.520 25.120 21.970
MRFI 1 25.120 22.520 25.120 21.970

Heart Disease

None 13 46.667 34.350 46.670 39.310
RFE 6 40.000 29.540 40.000 33.510
ARFI 5 51.667 48.720 51.670 48.760
MRFI 6 48.333 41.370 48.330 43.890

Iris

None 4 93.333 93.330 93.330 93.330
RFE 2 93.333 93.330 93.330 93.330
ARFI 2 96.667 96.920 96.670 96.580
MRFI 2 96.667 96.920 96.670 96.580

Lung Cancer

None 56 50.000 37.500 50.000 40.000
RFE 29 50.000 38.890 50.000 43.330
ARFI 10 83.333 88.890 83.330 82.220
MRFI 29 83.333 88.890 83.330 82.220

Lymphography

None 18 80.000 80.190 80.000 79.720
RFE 11 86.667 77.330 80.000 78.460
ARFI 6 93.333 94.290 93.330 93.390
MRFI 11 90.000 90.050 90.000 89.920

Table 7.2: Experimental Results of Classification on Multiclass Datasets

Note: P: Precision, R: Recall, A: Accuracy (%), F1: F1 Score, FSA: FS Algorithm

set. The occurrence of multiple points of the same FS algorithm, along one vertical

line, represents subsets that do not perform as well as their immediate predecessors.

This happens due to redundancy. Even though the attributes are ranked by their

relevance, the redundancy between them may cause the subset to underperform.

ARFI and MRFI overcome this issue in the second stage of their algorithms. For

the Avazu dataset, ARFI considers 8 features, whereas MRFI considers 9, as the

addition of any more features reduces the accuracy of the learning model. From

Table 7.2, it is clear that both MRFI and ARFI give us outstanding results for all
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six multiclass datasets. Both the proposed models outperform RFE and even tend

to improve the performance of the predictor.

When compared to each other, ARFI performs better than MRFI in three of the

datasets, namely UNSW, Heart Disease and Lymphography. In the other three

datasets, they both give similar levels of performance. From our results, it appears

that ARFI considers lesser redundant features, as it always selects lesser or equal

number of features compared to MRFI, and performs better with those features.

Dataset FSA #features A P R F1 AUC

UNSW - NB15

None 43 99.939 99.940 99.940 99.940 99.513
RFE 19 99.894 99.894 99.894 99.894 98.923
ARFI 19 99.924 99.924 99.924 99.924 99.261
MRFI 29 99.918 99.20 99.20 99.20 99.920

Breast Cancer

None 10 99.270 99.280 99.270 99.270 99.057
RFE 9 98.540 98.570 98.540 98.530 98.113
ARFI 9 99.999 99.999 99.999 99.999 99.999
MRFI 7 99.999 99.999 99.999 99.999 99.999

Ionosphere

None 34 94.366 94.370 94.370 94.370 93.238
RFE 21 92.958 92.900 92.960 92.910 90.857
ARFI 21 95.775 95.760 95.770 95.740 94.238
MRFI 16 95.774 94.238 95.760 95.770 95.740

Talking Data

None 9 95.173 95.170 95.170 95.080 91.673
RFE 6 94.788 94.780 94.790 94.680 91.068
ARFI 3 95.121 95.150 95.120 95.010 91.360
MRFI 6 94.223 94.180 94.220 94.110 90.401

Criteo

None 39 73.567 72.330 73.570 70.320 62.420
RFE 3 67.043 63.480 67.040 63.850 55.903
ARFI 3 70.270 67.670 70.270 67.210 59.381
MRFI 3 70.140 67.290 71.140 65.750 57.628

Avazu

None 16 82.896 78.210 82.900 78.190 54.388
RFE 8 82.993 78.080 82.990 77.510 53.137
ARFI 8 83.328 79.260 83.330 78.130 54.040
MRFI 10 83.295 79.170 83.290 78.280 54.322

Table 7.3: Experimental Results of Classification on Binary Datasets

Note: P: Precision, R: Recall, A: Accuracy (%), F1: F1 Score, FSA: FS Algorithm
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Research Work Classifier Accuracy(%)

Tama & Primartha[PT17]
RF 95.50

Multilayer Perceptron 83.50

Moustafa & Slay[MS15a]
Naive Bayes 79.50

Expectation Maximisation 77.20
Linear Regression 83.00

Belouch et al.[BEI17]

Naive Bayes 80.04
RepTree 87.80

Decision Tree 86.13
Random Tree 86.59

Artificial Neural Network 86.31

Salaf et al. [BHI18]

Naive Bayes 74.19
RF 97.49

Decision Tree 95.82
SVM 92.28

Al et. al [AZAA17] Deep Learning 98.99

Faker & Dogdu[FD19]
Gradient Boosted Tree 97.92

RF 98.86
Deep Neural Network 99.19

Our Work
RF 99.94

RF + MRFI 99.92
RF + ARFI 99.92

Table 7.4: Comparison of Binary Classification with Previous Works using UNSW-
NB15 Dataset

For the binary datasets (Table 7.3), ARFI gives good results when used with the

Breast Cancer, Ionosphere and Avazu datasets. The accuracy and the AUC of the

classifier after applying ARFI fall for the UNSW, Talking Data and Criteo datasets.

The reason for this can be explained after understanding the results proposed in

[CHC+12]. When there is no additional informational being extracted with the

help of FS, the evaluation metrics might not increase and may even get negatively

affected. Furthermore, when the sample size is big enough, the classifier can get

trained well enough to predict values more accurately on its own. The effect of

FS also depends on the features and the degree of correlation between them. The

classifier used can also affect the improvement in performance after applying FS,
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as some datasets tend to perform better with particular classifiers. MRFI gives us

similar results, as it performs well on the same datasets as ARFI.

ARFI tends to give us superior results when compared with MRFI for four datasets,

considering the accuracy. In the Breast Cancer and Ionosphere datasets, they both

render similar levels of accuracy. MRFI gives a better AUC value for the Avazu

dataset but falls behind ARFI in all the other datasets.

Figure 7.2(a) portrays the change in accuracy after performing FS on the Heart

Disease, Lung Cancer and Lymphography datasets. The larger variations in accu-

racy are seen in this figure. On the other hand, Fig. 7.2(b) represents the smaller

changes in accuracy observed on applying FS on the Iris, UNSW and Abalone

datasets. From the plots, we infer that ARFI and MRFI perform considerably

better than RFE, as the changes in accuracy are preferable.

Table 7.5: Comparison of Multiclass Classification with Previous Works using
UNSW-NB15 Dataset

Research Work Classifier Accuracy(%)

Belouch et al. [BEI17]

Naive Bayes 73.86
RepTree 79.20

Artificial Neural Network 78.14
Random Tree 76.21

Our Work
RF 89.26

RF + MRFI 90.07
RF + ARFI 90.10

Figures 7.2(c) and 7.2(d) depict changes in accuracy on performing FS on various

datasets. It is evident that our models perform satisfactorily when compared to RFE

for most datasets.

Both our models’ results considerably outdo the results obtained after applying

RFE. Now, we compare our models and their performance with other models previ-
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(a)

(b)

Figure 7.2: Changes in Accuracy for Different Datasets using Three Feature Selec-
tion Models. (a) Depicts Larger Changes in Accuracy after Applying FS on the
Multiclass Datasets. (b) Depicts Smaller Changes in Accuracy after Performing FS
on the Multiclass Datasets.
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(c)

(d)

Figure 7.2: (Continued) Changes in Accuracy for Different Datasets using Three
Feature Selection Models. (c) Depicts Greater Changes in Accuracy after Apply-
ing FS on the Binary Datasets. (d) Depicts Minute Changes in Accuracy after
Performing FS on the Binary Datasets.
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Figure 7.3: Scatter Plot of the Accuracy of Multiple Feature Subsets, that were
Created by ARFI and MRFI, Depicting the Feature Subset Selection Procedure for
the Avazu Dataset.

ously applied on the UNSW-NB15 dataset. We also compare them with the Talking

Data and Ionosphere Datasets.

Table 7.4 compares various results for the UNSW dataset for Binary Classifica-

tion. It compares the results on the basis of accuracy. Our model obtains the highest

accuracy and gives the best performance. Another noticeable fact, is that our RF

performs much better than other RF models that have been used before. This is

traced to the method of preprocessing the UNSW dataset, including normalization,

and the parameter tuning that we have performed on the RF.

Comparisons of our work with previous work concerning the UNSW dataset for

multiclass classification have been shown in Table 7.5. Our model clearly outper-

forms the model proposed in [BEI17].
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Table 7.6: Comparison of Binary Classification on Talking Data Dataset with Pre-
vious Works

Research Work Classifier Prec Rec F1 Score

Qiu et al. [QZL18]

SVM 0.896 0.877 0.876
Naive Bayes 0.908 0.897 0.896

ETCF 0.910 0.904 0.904
GBDT 0.906 0.891 0.890

RF 0.877 0.846 0.842

Our Work
RF 0.951 0.951 0.950

RF + MRFI 0.941 0.942 0.941
RF + ARFI 0.951 0.951 0.950

When compared to the previous work of Qiu et al., our models have higher

precision, recall and F1 scores. The dataset under consideration is the Talking

Dataset. These results can be seen in Table 7.6.

Research Work Classifier Accuracy(%)

Liu & Zhang [LZ16]

KNN + LS 88.32
KNN + FS 89.18
KNN + CS 89.59

KNN + Lasso 87.46
KNN + CGS 91.32

Ghaemi et al. [GFD16]

J48 93.16
3NN 92.30
5NN 89.43

RBF-SVM 94.58
1NN 89.52
J48 95.12

Our Work
RF 94.36

RF + MRFI 95.77
RF + ARFI 95.77

Table 7.7: Comparison of Binary Classification on Ionosphere Dataset with Previous
Works

Table 7.7 portrays a comparison between the work done on the Ionosphere

dataset. It is evident that both our models outperform most of the other FS models.
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RBF-SVM and J48 give better results than our base classifier and MRFI, but ARFI

outperforms both of them too.

7.6 Conclusion

Feature Selection is an essential tool that is used to select a feature subset using

which the performance of the classifier can be improved. FS is vital as it reduces

the training time of the model under consideration, reduces overfitting, and more

importantly, avoids the curse of dimensionality. In this chapter, we present two new

FS methods, MRFI and ARFI. Both the models are hybrids of filter and wrapper

methods of FS. MRFI employs K-Means and V-Measure scores to rank the features,

whereas ARFI ranks the features based on the accuracy of the predictor (Random

Forests). Both our methods follow the same feature subset selection technique. We

compare our models with Recursive Feature Elimination, a state-of-the-art FS tech-

nique, using 12 datasets. Furthermore, we gauge their performance with the help

of previous work done on the same datasets. We observe that our models have

performed well and have given superior results. The evaluation metrics improve

drastically, and the accuracy of the random forest classifier also increases consider-

ably, thereby overcoming the drawbacks of the current FS algorithms.
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CHAPTER 8

MINI-BATCH NORMALIZED MUTUAL INFORMATION: A

HYBRID FEATURE SELECTION METHOD

Feature Selection has been a significant preprocessing procedure for classification in

the area of Supervised Machine Learning. It is mostly applied when the attribute set

is very large. The large set of attributes often tend to misguide the classifier. Exten-

sive research has been performed to increase the efficacy of the predictor by finding

the optimal set of features. The feature subset should be such that it enhances the

classification accuracy by the removal of redundant features. We propose a new fea-

ture selection mechanism, an amalgamation of the filter and the wrapper techniques

by taking into consideration the benefits of both the methods. Our hybrid model

is based on a two phase process where we rank the features and then choose the

best subset of features based on the ranking. We validated our model with various

datasets, using multiple evaluation metrics. Furthermore, we have also compared

and analyzed our results with previous works. The proposed model outperformed

many existent algorithms and has given us good results.

8.1 Introduction

One of the essential phases in classification is to determine the useful set of features

for the classifier. In supervised as well as in unsupervised learning, the large volume

of data has become a significant problem and is becoming more prominent with

the increase in data samples and the number of features in each sample. The main

© 2019. Reprinted, with permission, from G. S. Thejas, et al., Mini-Batch Normalized
Mutual Information: A Hybrid Feature Selection Method, in IEEE Access, vol. 7, pp.
116875-116885, 2019. doi: 10.1109/ACCESS.2019.2936346 [TJI+19]
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intention of reducing the dimension by keeping a minimum number of features is to

decrease the computation time, obtain greater accuracy, and reduce overfitting.

Dimensionality reduction is divided into 2 categories: Feature Extraction (FE)

and Feature Selection (FS). In FE, we transform the existing features into new

features with lesser dimensionality employing a linear or a nonlinear combination

of features. In this method, the actual data is manipulated and hence not immune

from distortion under transformation. In the FS process, we select the feature’s

subset based on some criteria. Many of the attributes in the dataset may be utterly

irrelevant to the class or redundant when considered along with other features.

The accuracy of the induced classifier is decreased by the presence of irrelevant or

redundant features [JKP94]. Identifying such features and removing them reduces

the dimensionality which inturn reduces the computation time while improving the

accuracy. In [Kus99], they state that the overabundance of features rendered the

nearest neighbor approach on Internet Advertisement dataset.

FS has many applications in various fields like image processing, natural language

processing, bioinformatics, data mining, and machine learning(ML) [HBK14]. The

selection method is divided into two standard categories based on their working

modules, classifier independent ’filter’ technique, and classifier dependent ’wrapper’

and ’embedded’ technique.

The filter technique, a classifier independent process, performs the selection of

the features based on statistical metrics like distance, correlation, consistency mea-

sure, and mutual information (MI). It either ranks the features or provides a relevant

subset of features associated with the class label. It improves the computational effi-

ciency and scales down the data dimensionality by entirely being independent of the

classifier [SIL07]. The drawback of this process is the lack of knowledge regarding

the relationship between feature attributes and target class.
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The classifier dependent systems rely upon the classifier for the selection process.

The wrapper method uses the outcome of the classifier to obtain the subset of

features, making it biased to a classifier. Also, it is vulnerable to overfitting, mostly

when the quantity of data is very less[BPZL12]. The embedded method makes use

of the classifier in the training phase and selects the optimal features like a learning

procedure. When compared to the wrapper method, they are less vulnerable to

overfitting and computation is much faster[LPd+12].

8.1.1 Summary of Contribution

We propose a combination of filter and wrapper method, which has the advantage

of both the techniques. It is fast and general like the filter method. At the same

time, it accounts to learning algorithm obtaining the best set of features without

the need for the user to input the feature number unlike most of other established

algorithms like RFE.

In this work, we cluster the data using mini-batch Kmeans clustering and rank

them using normalized mutual information(NMI), a measure to calculate the rele-

vance and the redundancy between the candidate attribute and the class. We apply

a greedy search method by using Random Forest to get the optimal set of features.

However, our method is flexible in terms of the learning algorithm that can be used

in our process.

8.1.2 Organization of the Chapter

Section 8.2 discusses the related works regarding various standard techniques as well

as different hybrid approaches. In section 8.3, we discuss the preliminary concepts
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behind this work, propose our techniques and we elaborate each component of our

work in detail. In section 8.4 and 8.5, we show experimental results and compare

them with the previous works, and in Section 8.6, we conclude our work and give

light to the future works.

8.1.3 Abbreviations and Acronyms

All Features(AF), Feature Selection (FS), Feature Extraction (FE), Mini Batch

K-Means Normalized Mutual Information Feature Inclusion(KNFI), Mini batch K-

Means Normalized Mutual Information Feature Elimination (KNFE), Normalized

Mutual Information (NMI), Random Forest(RF),

8.2 Related Work

Filter Method

In [GE03], Guyon et al. give information about all the developments to improve

the performance of the model using statistical analysis. They have come up with

a simple approach where less computation is required. It does not consider the de-

pendency between the features but considers each feature as an independent one. In

[SIL07], Saeys et al. show that the various FS methods have shown impressive results

in the field of bioinformatics. Using Weka tool, Pushpalatha et al. [PK17] perform

CFS based filter approach to rank with five search techniques. In [DCSL02], Dash

et al. choose the best feature subset for clustering by evaluating the various subsets

of features. It considers the effect of the underlying clusters with no unanimous

agreement in evaluating the clusters.

Wrapper Method

In [GCJ18], they have a variant of particle swarm optimization (PSO) to determine
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the least number of features which results in finer classification. It is a wrapper

based technique named as competitive swarm optimizer (CSO). Also, they have

proposed an archive technique to reduce computational cost. In [JKL19], they op-

timized the multi objective function of a pre-existing wrapper method to a single

objective function to reduce the computation cost by adding a new evaluation func-

tion. In [MM18], they introduce a new wrapper method which is mainly based upon

Whale Optimization Algorithm (WOA), with slight changes to make the model work

even for binary datasets. In [XYW18], they performed feature selection with ge-

netic algorithm and extreme machine learning, which is computationally efficient in

comparison with other wrapper methods.

Hybrid Method

In [VA19], Venkatesh et al. came up with a hybrid approach of filter and wrapper

method by considering MI and RFE. In [SSA+19], Sharmin uses MI as a metric

for creating a framework for selecting features and discretization at the same time

based on x2 test. In [HBK14], they consider the information between the attributes

and the classes. They have considered the MI of the candidate attribute with all

the attributes in the selected set of feature attributes. Genetic algorithm is used to

select attributes that increase the MI with the label class and decrease the MI with

other feature attributes. In [Bat94], they introduce Mutual Information Feature

Selection (MIFS), an incremental greedy search method to select the most likely ’k’

features among n features. Instead of calculating MI between the attributes and

the classes, they calculated MI between the attributes i.e., the previously selected

attributes and the set of candidate attributes. The performance tends to degrade if

there are significant errors in estimating MI. In [KC02], they proposed an improvised

method of MIFS to improve the estimations of MI between the class labels and the

input attributes called MIFS-U. In [PLD05], they proposed a method mRMR which
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avoids expansion of subset where the redundancy divides over the cardinality ‖C‖

of the selected subset. In [BPZL12], they have justified that this alteration allows

mRMR to outperform the established MIFS & MIFS-U techniques. In [ETPZ09],

they normalized the value of MI to curb down the value between zero and unity,

which removed the bias towards multivalued features. The proposed approach of

normalizing the value of mutual information in the FS process, namely NIMFS,

which is as an upgraded model of mRMR, MIFS-U, and MIFS to find the irrele-

vant and redundant features. They also proposed genetic algorithm based feature

selection process. In [HGV11], Haury et al. give the comparative analysis of FS

method based upon stability and interpretability of the classes. It suggests that a

simple filter method outperforms more complex embedded and wrapper method. In

[FD19], they have considered homogeneity metric as a measure to rank and remove

the least ranked features. In [ZXM19], they proposed a hybrid filter and wrapper

method where they created a subset of features with bootstrapping strategy. For

each subset, classification accuracy is calculated to find the optimized subset.

8.3 Proposed Approach

8.3.1 Preliminaries

Mini Batch K-means Method

K-means is one of the popular clustering algorithms. With the increase in dataset

size, the computation time increases as the entire data needs to be present in the

main memory[AV06]. Because of this, we prefer Mini Batch K-means for large

datasets. We intend to apply a fixed size of small random batches of data for easy
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storage in the memory. In every iteration, the cluster is updated taking new random

samples from the dataset. For a given dataset D = x1, x2, x3, ....., xp, xi ∈ Rm∗n, xi

represents the records in an n-dimensional real vector. The number of records in

dataset D is ’m’. We obtain a set S of cluster center s ∈ Rm∗n to decrease over the

dataset D of records s ∈ Rm∗n as shown in the following function.

Min
∑
x∈T

‖f(S, x)− x‖2 (8.1)

Where, f(S,x) yields the nearest cluster center s ∈ S to record x. If K is the

number of clusters, it is given by k =|S|. We randomly select K records by using

Kmeans++ to initialize the centers and we set the cluster centers S to be equal to

the values of these. In our case, we have considered the number of clusters equal

to the number of class. When the data is huge, the convergence rate of the original

Kmeans significantly drops. In this case, an improved K-means called Mini Batch

Kmeans is introduced [Scu10].

Figure 8.1: Runtime Analysis of K-Means and MiniBatch K-Means.[gee19]

Normalized Mutual Information (NMI)

NMI is one of the ways for measuring the criteria of cluster quality, which is

information-theoretic interpretation. This measure calculates the cluster quality
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with cluster number. Mathematically :

NMI(Ω, S) =
MI(Ω;S)

[G(Ω) +G(S))]/2
(8.2)

where Ω is the set of clusters and S is the set of classes. Here MI is given by the

formula:

MI(Ω;S) =
∑
k

∑
j

P (dk ∩ sj)log
P (dk ∩ sj)
P (dk)P (sj)

(8.3)

where P (dk) =probability of document in cluster dk ,

P (sj)= probability of document in cluster sj,

P (dk ∩ sj)=probability of document being in the convergence of dk and sj.

NMI increases the knowledge of the class by evaluating the amount of information

obtained from the clusters. The value is 0 when the clustering is random concerning

the class and gives no knowledge about the class. MI reaches maximum value if it

perfectly recreates the classes. G is the entropy. Mathematically :

G(Ω) = −
∑
k

P (dk)logP (dk) (8.4)

This gives the entropy of cluster levels. The normalization in Eqn. 8.2 by the denom-

inator solves the problem of purity. It also formalizes that fewer clusters are better

since the entropy usually increases with the increase in cluster number.[CDM08]

The value of NMI is always between 0 and 1.

8.3.2 Our Approach

Here, we present our proposed hybrid filter-wrapper approach for the FS. There

are two objective functions in our FS. First, the feature ranking function based on

the filter approach and second, the selection of optimal features based upon the

rankings. This optimal selection is a wrapper based method that depends upon the
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outcome of the learning algorithm. Our approach is independent of any number of

a class labels and is suitable to use with any classifier. In our experiments, we have

considered Random Forest as the classifier. However, we can use any classifier. Our

approach has 2 phases;

Feature Ranking

In the first phase, the main idea is to separately cluster the features one by one based

upon the total classes in the dataset. Our objective is to have a selection algorithm

which takes less computation time in comparison to the existing algorithms. Since

the data are large these days, we have considered mini-batch K-means, which takes

into account a batch of data and performs clustering. The computation time, in

this case, is much lesser than the normal K-means clustering. The cluster’s quality

is the metric to find the relation of that feature with the class. As the cluster

quality increases, the feature tends to be more relevant and is considered to be more

important. The use of NMI gives a cluster score between 0 to 1. The high ranking

score indicates better classification using the candidate feature. The cluster score

for all the features is evaluated separately. Comparing the score of each feature,

we obtain the ranking list. This ranking obtained is based upon the individual

relationship between the candidate attribute and the class label.

Feature Selection

In the FS problem, a feature variable may have a dependency on other variables.

The dependent features tend to produce imbalanced results when acted upon to-

gether and hence, is considered a redundant feature. The redundant feature tends

to deteriorate the classification process, and we remove those in our process. We

considered the ranking obtained from the first phase as the base for the selection
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of features. We consider this to have a linear approach of selecting the features to

get the optimal features in minimum time. When the feature size in the dataset

increases, comparison with all the possible subsets is an impractical approach and

seems to be computationally very expensive. We present two approaches for the

selection of features. They are:

1. Feature Inclusion: This is almost a linear selection approach where the ranked

features from phase one are added one by one into the subset. If the addition of

the features enhances the classification accuracy, we consider the feature or else

we discard the feature. Here, the highest ranked feature is initially included in

the list as shown in step one of Algorithm 4. We add the next ranked feature

and obtain its performance. If the performance increases, we add the feature

into the list or else discard the feature. The feature is removed if it does not

perform well with the selected subset, considering that it is redundant as it

degrades the classification model. This process loops for all the features, as

shown in Algorithm 4. This process is named MiniBatch K-Means Normalized

Mutual Information Feature Inclusion (KNFI)

2. Least Ranked Feature Exclusion: This is a linear elimination approach where

the least ranked features are eliminated one by one from the entire set of

features. Initially, the list consists of all the features and the classification

accuracy is calculated for the entire list. Then, in every loop, one least ranked

feature is removed from the list. This process is carried out until the list

becomes empty. The highest performance among all the iterations is consid-

ered as the outcome of our approach, as shown in algorithm 5. This process

is named Mini-Batch K-Means Normalized Mutual Information least ranked

Feature Exclusion (KNFE)
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Algorithm 4 Ranking Based Feature Inclusion for Optimal Feature Subset (KNFI)

Input: Set of ranked features S = {f0, f1, f2, .......fm}, where m = total number
of features, obtained from the feature ranking phase, f0 is the highest ranked
feature and fm is the least ranked feature.

Output: prints the selected set of features
Initialisation :

1: Lst = S[0] prev=0
LOOP Process

2: for k = 0 to m-1 do
3: x tst = x tst [ Lst ]
4: x tr =x tr [ Lst ]
5: train the model based on any classifier and store the accuracy on acc
6: if acc > prev then
7: if (k 6= m− 1) then
8: Add S[ k + 1 ] into the Lst
9: prev=acc

10: else
11: Print Lst
12: end if
13: else
14: Remove S [ k ] object from the Lst
15: if (k 6= m− 1) then
16: Add S[ k + 1 ] to the Lst
17: else
18: Print Lst
19: end if
20: end if
21: end for
22: return Lst
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Algorithm 5 Ranking based Feature elimination(KNFE)

Input: Set of ranked features S = {f0, f1, f2, .......fm}, where m = total number of
features,.f0 is the least ranked feature and fm is the highest ranked feature.

Output: prints the result for every eliminated feature from the feature list
Initialization :

1: Lst = S prev=0
LOOP Process

2: for k = 0 to m-1 do
3: x tst = x tst [ Lst ]
4: x tr =x tr [ Lst ]
5: //train the model based on any classifier and store the accuracy on acc
6: //print the result along with the evaluation metrics
7: if acc > prev then
8: prev=acc // to store the greatest accuracy
9: fet=i // to store the no. of feature eliminated

10: end if
11: delete Lst[0] //deleting the least ranked feature
12: end for
13: return

8.4 Experiment

8.4.1 Experimental Setup

The conduction of all the experiments is performed in Python Language using the

python libraries. Florida International University provided us the required hard-

ware. We used an Intel i7 4 core CPU with 16GB RAM. Also for large datasets, we

used the Flounder Server (AMD Opteron Processor 6380 with 64 cores and 504GB

RAM.

8.4.2 Datasets

Here we have considered nine datasets from the ML Repository of UCI [Fra10], three-

click fraud datasets, one Intrusion Detection dataset, and Sonar dataset. We have

tested upon two versons of TalkingData datset. The information of these datasets
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is given below. We selected fifteen datasets haivng different number of features,

instances, and classes. Also, we have considered both binary as well as multiclass

datasets, which are shown in Table 8.1 and Table 8.2 respectively.

Table 8.1: Binary Datasets used in Experiment

Dataset Features Instances

UNSW NB15[uns15] 47 2,540,047
TalkingData(version 1)[TKC+19] 9 1,000,000
TalkingData(version 2)[TKC+19] 9 913,692

Criteo[Kag14] 39 756,554
Avazu[Kag15] 16 1,000,000

Ionosphere 34 351
Breast Cancer[Fra10] 10 699

Spambase[Fra10] 57 4,601
Sonar[D.18] 60 208

Table 8.2: MultiClass Datasets used in Experiment

Dataset Features # Classes Instances

UNSW NB15[uns15] 47 9 2,540,047
Lung Cancer[Fra10] 56 3 32

Lymphographic[Fra10] 18 4 148
Iris[Fra10] 4 3 150

Heart Disease [Fra10] 13 5 303
Abalone [Fra10] 8 28 4,177

8.4.3 PreProcessing

UNSW NB15 Dataset

It is an intrusion detection dataset that takes into consideration the instances of

both the normal activities and the attack activities. To avoid overfitting due to a

large number of normal activities, we have removed the normal activity instances.

Initially, the data was in 4 different CSV files. We merged all the CSV files into a sin-

gle dataset and performed the experiments. We removed the socket information(i.e.,
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source ip address, source port number, destination ip address and destination port

number) such that model becomes independent of them. We removed the white

spaces present in some of the multiclass labels. All the categorical values were con-

verted to the numerical values as the classifier can only learn numerical values. The

different ranges of numerical data in the features become a challenge for the classifier

to train the model[FD19]. To compensate this, we performed normalization on the

entire data.

TalkingData Dataset

It is an AdTracking Fraud Dataset[Kag18] which has records of 200 million clicks

over four days. It has features like app ID, os, IP address, click time, device type,

channel, attributed time, and target label as is attributed. In the preprocessing

stage, we dropped the attributed time. We separated Click time into separate

columns, i.e., day, hour, minute, and second. Two variants of the above mentioned

dataset were used. In the first version, we considered one million rows of data in

which the ratio of classes match the ratio at 200 million rows (Talkingdata Version

1) is taken. 913692 data samples were used for the second variant, where the rows

were equally categorized into two classes (Talkingdata Version 2)[TKC+19].

Avazu

This dataset is a Click fraud dataset consisting of clicks recorded over ten days and

has features like id, click (Target Label), device id, device ip, an hour of click, and

so on. We do the preprocessing i.e., separation of the ’hour of click’ column into

separate columns. We consider 1 million rows of data in which the ratio of classes

match the ratio at 200 million rows to reduce the data size

Criteo

It is a Click fraud dataset that consists of 40 features. To clean the data, we have

removed instances with ’NaN’ values.
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Ionosphere Dataset

In the Ionosphere dataset provided UCI repository, we converted the class labels

(‘good, ”bad′) into numerical values.

Breast Cancer, Lung Cance, Heart Disease datasets

In this dataset, there are some missing values represented by a question mark(‘?′).

We removed the instances containing ? as a cleaning process.

Lymphography Dataset, Iris Dataset

These datasets were clean, and no preprocessing step had to be applied. However,

we performed resampling as the instances with the same classes were together in

the actual dataset.

Abalone Dataset

In this dataset, the first feature consists of categorical string values that we con-

verted into numerical values.

Spambase Dataset, Sonar Dataset

These datasets are considered to compare our model with other research approaches.

The spambase dataset is taken from UCI repository, and Sonar dataset is taken from

Kaggle dataset. The datasets were clean with no NaN values, and no preprocessing

was needed.

We normalized the entire data by using MinMaxScalar function for all the datasets.

8.5 Results and Discussion

8.5.1 Base Classifier : Random Forest

RF is a prevalent supervised ML technique that is flexible and very easy to use[Bre01].

As the name implies, RF has a large number of individual decision trees. Each de-
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cision tree acts as an individual classifier. We get a class prediction from each tree

in the RF, and the class that gets the most votes becomes the model prediction of

RF. With the increase in the number of trees, the classifier has a greater ability to

resist noise and obtain greater accuracy. The RF, being a simple classifier built on

decision trees, can easily adapt to large changes in the data size, having the benefit

of scalability[Liu14].

8.5.2 Evaluation Metrics

The accuracy of the algorithm needs to be evaluated by certain standard metrics.

For binary classification, we have considered the standard metric, Area Under Curve

(AUC) and also the F1 Score, which is computed based upon the Precision and

Recall score. For the multiclass dataset, we have considered the F1 Score as the

evaluation criteria. The F1 Score can also be obtained from the confusion matrix.

This metric can only be used for the test data whose true values are already known

such that we get a confusion matrix.

We can obtain the following information from the confusion matrix:

• True Positive (TrPos): model correctly predicting Positive cases as Positive.

• False Positive (FlPos): model incorrectly predicting the Negative cases as

Positive.

• False Negative (FlNeg): model incorrectly predicting positive cases as Nega-

tive.

• True Negative (TrNeg): model correctly predicting negative cases as positive.

Precision score(Pr): It measures accuracy based upon correctly predicted cases.

Pr =
TrPos

TrPos+ FlPos
(8.5)
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Recall score(RC) : It is the TrPos rate to predict the ofteness of predicting positive.

RC =
TrPos

TrPos+ FlNeg
(8.6)

F1 Score(F1) : F1 is the weighted average of recall and precision of each class.

F1 = 2

(
Pr ∗RC
Pr +RC

)
(8.7)

ROC-AUC curve is a standard metric to measure the performance of the classi-

fication model. The probability curve between the true positive rates against false

positive rates is referred to as ROC. AUC represents the degree of separability. The

higher the AUC, the more the efficiency of the model.

8.5.3 Analysis Method

To empirically test the advantages and disadvantages of our method, we performed

several experiments on real-world datasets with four different approaches. They are:

1. Considering all the features present in the dataset for classification and calcu-

lation of its accuracy, AUC (for binary datasets), precision, recall, F-1 Score.

We represent this as AF.

2. Our approach (KNFI), where we perform classification based on the ranked

features and determine its evaluation metrics. Without the need of the user to

specify the number of optimal features, our approach automatically calculates

it. This number has been considered as the base number for performing RFE,

where we explicitly have to provide the required number of optimal features.

3. Using RFE ( Recursive Feature Elimination), a standard process, provided

by Scikit learn [PVG+11], selects features by recursively considering the small

set of features. The user explicitly has to give the desired subset number (k),
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and then it returns the best accuracy from the best subset with k features.

In our experiment, we have considered the value of K, referring to our KNFI

approach.

4. Our second approach KNFE, where we remove the least ranked features one

after another, performing the classification and calculating its evaluation met-

rics. The best accuracy obtained after removing ’k’ features is considered as

the comparing value with other methods.

A comparative analysis is performed for the results obtained from the four methods

in terms of various evaluation metrics, as mentioned above. We can observe that

our approach takes less computation time compared to the existing methods, and

in many datasets, it produced better results.

8.5.4 Discussions

For Binary Datasets

In the UNSW NB15 dataset, both our KNFI and KNFE methods improvised the

learning algorithm to obtain greater accuracy, AUC, and F1-Score, as shown in Table

8.3. KNFI selected 17 features and stood superior in terms of all the evaluation

metrics. Also, the evaluation metrics greatly increased in the Ionosphere dataset as

in Table 8.4 for our 6 selected features among the 34 features. Most of the redundant

features were removed, giving us better results.

Table 8.3: Experimental Results of UNSW NB15 Binary Datasets

Method Ftr Acc AUC F1

AF 43 99.93 99.46 99.93
KNFI 17 99.963 99.614 99.96
RFE 17 99.960 99.612 99.96

KNFE -6 99.944 99.96 99.94
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Table 8.4: Experimental Results of Ionosphere Datasets

Method Ftr Acc AUC F1

AF 34 92.96 90.91 92.84
KNFI 6 97.18 95.23 97.14
RFE 6 91.54 7.92 91.55

KNFE -7 95.77 94.238 95.74

We have a slight increase in accuracy for the Avazu dataset as in Table 8.5 for

both of our approaches. However, the AUC is slightly decreased in both the methods.

The decrease in AUC could be due to the presence of imbalanced data. The F1-Score

is a much better metric of measurement[unk70]. The F1-Score remained constant

with an increase in accuracy, giving us a better-trained model with the selected

features. This is showed in Table 8.5. Also, in the TalkingData dataset (version

2), the accuracy increased slightly for KNFI. However, for KNFE, it showed zero

elimination of features for the best classification accuracy meaning all the features

are independent and contributing for the classification model.

Table 8.5: Experimental Results of Avazu Dataset

Method Ftr. Acc AUC F1

AF 25 83.029 54.235 77.89
KNFI 7 83.4375 53.283 77.89
RFE 7 83.075 53.013 77.63

KNFE -17 83.381 52.456 77.36

Table 8.6: Experimental Results of Talking Dataset Version 2

Method Ftr. Acc AUC F1

AF 9 99.9179 99.9179 99.92
KNFI 4 99.919 99.919 99.92
RFE 4 99.919 99.919 99.92

KNFE 0 99.9179 99.917 99.92

In the Spambase dataset, our KNFE approach enhanced the classification ac-

curacy along with all the evaluation metrics by removing three redundant features.
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From KNFI approach, the accuracy slightly reduced, taking least prediction time

and performed well in comparision to RFE. This is shown in Table 8.7. Also, in the

Sonar dataset, KNFE method outperformed all other approaches by removing nine

redundant features. Our KNFI approach also gave better results compared to the

AF and the RFE methods, as shown in Table 8.8. The relevance of the features in

Sonar Dataset is shown in fig. 8.2. Some features tend to have very high importance

in accordance to the class label and some features tend to have no importance or

very low importance in accordance to the class label. We obtain the ranking of the

features and then preform KNFI and KNFE. In fig. 8.3, we show the change in the

accuracy as we eliminate the least ranked features one at a time. There is a drastic

decrease in accuracy as we eliminate large number of features. For a particular

number of features eliminated, we observed the highest accuracy.

Figure 8.2: Feature Ranking for the Sonar Dataset

197



Figure 8.3: Change in Accuracy in the KNFE Method

Table 8.7: Experimental Results of Spambase Dataset

Method Ftr. Acc AUC F1

AF 57 98.04 97.69 98.04
KNFI 15 97.82 97.52 97.82
RFE 15 97.285 96.69 97.27

KNFE -3 98.58 98.301 98.93

Table 8.8: Experimental Results of Sonar Dataset

Method Ftr. Acc AUC F1

AF 60 92.86 93.05 92.88
KNFI 3 95.24 95.138 95.24
RFE 3 88.09 88.88 88.16

KNFE -9 97.62 97.91 97.63

However, in the TalkingData (Version 1), Criteo and Breast Cancer datasets

shown in Table 8.9, 8.10 and 8.11 respectively, the performance seems to drop when

performing KNFI process. However, KNFE gave either better results or the same

results. This case appears when all the features tend to contribute to fitting the
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model. In such a scenario, either few features are removed or zero features are

removed as in case the of TalkingData dataset (Table 8.9). The difference in predic-

tion for AF contribution and zero feature elimination in KNFE is due to the change

in the pattern of features provided during the training of data. The performance

decreased in KNFI model. Whenever proper information is not extracted from the

FS process, the classification accuracy may be negatively affected. The corealtion

of the features also affect the FS process. Furthermore, when the sample size is big,

the classifier predicts values well with the entire attributes. Also some datasets tend

to perform well with other classifers [JBB15].

Table 8.9: Experimental Results of Talking dataset Version 1

Method Ftr. Acc AUC F1

AF 8 95.127 91.672 95.08
KNFI 6 94.252 90.434 94.14
RFE 6 94.784 91.059 94.67

KNFE 0 95.20 91.72 95.11

Table 8.10: Experimental Results of Criteo Dataset

Method Ftr. Acc AUC F1

AF 39 73.545 62.386 70.29
KNFI 3 70.205 57.725 65.85
RFE 3 70.268 55.902 63.85

KNFE -5 73.545 62.45 70.33

Table 8.11: Experimental Results of Breast Cancer Dataset

Method Ftr. Acc AUC F1

AF 10 98.540 98.113 98.53
KNFI 4 97.810 97.517 97.81
RFE 4 94.890 93.744 94.84

KNFE -3 98.540 98.113 98.53
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Multiclass Datasets

In most of the MultiClass datasets, we can observe the positive impact of our KNFI

as well as KNFE techniques. In UNSW NB15 dataset (Table 8.12), the accuracy

increased by 0.781 percent along with the increase in F1 Score. Our model selected

16 out of 43 features to get the most efficient results. Our KNFI method enhanced

the accuracy and outperformed all other methods giving us good results.

Table 8.12: Experimental Results of UNSW NB15 Dataset

Method Ftr. Acc F1

AF 43 89.326 88.87
KNFI 16 90.107 88.88
RFE 16 89.356 89.02

KNFE -18 89.591 89.02

For the Lung cancer dataset (Table 8.13), both our methods doubled the accu-

racy as well as the F1 Score and took the least prediction time. Similarly, for the

Lymphographic dataset (Table 8.14), our KNFE method gave better results when

compared to all the methods.

Table 8.13: Experimental Results of Lung Cancer Dataset

Method Ftr. Acc F1

AF 56 33.333 37.78
KNFI 3 66.666 68.25
RFE 3 50.00 52.78

KNFE -14 66.666 68.25

Table 8.14: Experimental Results of Lymphography Dataset

Method Ftr. Acc F1

AF 18 86.66 85.19
KNFI 2 90.00 89.78
RFE 2 76.66 80.00

KNFE -2 86.66 75.17
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The Iris Dataset (Table 8.15 ) performed well when selecting two of the best

features from all the four features. The heart disease dataset (Table 8.17) had a

massive fifteen percent increase in accuracy along with a considerable increase in F1

Score using KNFI. Even KNFE increased the accuracy.

Table 8.15: Experimental Results of Iris Dataset

Method Ftr. Acc F1

AF 4 96.666 96.67
KNFI 2 99.9999 99.99
RFE 2 99.999 99.999

KNFE -4 99.999 99.999

Table 8.16: Experimental Results of Heart Disease Dataset

Method Ftr. Acc F1

AF 13 41.667 34.60
KNFI 4 56.667 51.53
RFE 4 43.333 36.71

KNFE -11 51.667 40.90

For the Abalone dataset, our KNFI did not produce improved the performance.

However, our KNFE increased the preformance. The dataset contains less number

of features and many classes. This makes the prediction of classification much

tricky. Also, if additional knowlegde is not obtained form the FS method, it may

not increase the performance. [JBB15].

Table 8.17: Experimental Results of Abalone Dataset

Method Ftr. Acc F1

AF 8 24.521 22.86
KNFI 1 21.650 20.27
RFE 1 17.344 17.14

KNFE 0 25.239 23.61
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Other Compared Works

Other than RFE, we also compared our work with other previous works. In compar-

ison with the previous studies of the UNSW NB15 dataset, our approach of KNFI

produced improved results for binary as well as multiclass datasets. As a prepro-

cessing step, we remove all the instances that have ‘NaN ′ values, which decreases

the number of instances. This has enhanced the performance of the classifier. When

our model is run on this dataset, the efficacy of the predictor increased significantly.

These results can be seen in Tables (8.18 & 8.19).

Table 8.18: Comparision of Accuracy for Binary UNSW NB15 with Previous Studies

Study Method Accuracy

Zewairi, et al.[AZAA17] Deep Learning 98.99

Primartha and Tama [PT17]
Random Forest 95.5

Multilayer Perceptron 83.50

Nour, et al.[MS17]
Naive Bayes 79.50

Linear Regression 83.00
Expectation-Maximization 77.20

Belouch, et al.[BEI17]

Random Tree 86.59
Naive Bayes 80.40

RepTree 87.80
Artificial Neural Network 86.31

Decision Tree 86.13

Faker, et al.
Gradient Boosted Tree 97.92

Random Forest 98.86
Deep Neural Network 99.19

Our Work

Random Forest(AF) 99.93
KNFI 99.963
KNFE 99.944
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Table 8.19: Comparision of Accuracy for UNSW NB15 MultiClass with Previous
Studies

Study Method Accuracy

Belouch, et al.[BEI17]

Random Tree 76.21
Naive Bayes 73.86

RepTree 79.20
Artificial Neural Network 78.14

Our Work

Random Forest(AF) 89.326
KNFI 90.107
KNFE 89.591

We compared the Ionosphere dataset with the existing hybrid feature selection

methods. We can observe in Table 8.20 that both KNFI and KNFE methods pro-

duced much better results with greater classification accuracy.

Table 8.20: Comparision of Ionosphere Data with Previous Studies

Method # Ftr. F1 RC Pr Acc

Venkatesh et al.[VA19] 15 95.09 94.65 95.70 95.28
HGEFS [XYW18] n.a. n.a. n.a. n.a 91.33
FSFOA [GFD16] n.a. n.a. n.a. n.a 95.12

KNFI 6 97.14 97.18 97.29 97.18
KNFE -7 95.74 95.77 95.76 95.77

We compare the Spambase dataset and Sonar dataset with the previous works

performed in [ETPZ09], [Bat94], [KC02], [PLD05] in terms of classification accuracy

since other evaluation metrics have not been provided. They have calculated the

rate of classification for the different number of selected features. As a comparison

metric, we have taken the instances with the highest accuracy as presented in their

papers.

For comparative analysis, we have also calculated the accuracy using KNFE for

the same number of features as provided in the previous papers. Also, we have

evaluated using KNFI and KNFE. They are shown in Table 8.21 and Table 8.22.
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Our method outperformed other methods giving us good results. The KNFE(MAX)

represents our method without any constraint of number of required features.

Table 8.21: Comparision of Accuracy for Spambase Dataset with Previous Studies

Ftr. selection method # features accuracy

GAMIFS[ETPZ09] 3 83.50
NMIFS[ETPZ09] 3 75.8

MIFS[Bat94] 3 78.4
MIFS-U[KC02] 3 81.2

OFS-MI [ETPZ09, CH05] 3 78.4
KNFE 3 84.15
KNFI 15 97.82

KNFE(MAX) 54 98.59

Table 8.22: Comparision of Accuracy for Sonar Dataset with Previous Studies

Ftr. selection method # features accuracy

NMIFS[ETPZ09] 15 86.73
MIFS(β=0.5)[Bat94] 15 85.96

MIFS-U(β = 0.5 )[KC02] 15 84.04
HGEFS[XYW18] N.A. 83.00
FSFOA[GFD16] N.A 86.98

KNFE 15 92.85
KNFI 3 95.24

KNFE(MAX) 51 97.62

8.6 Conclusion

This work presented a new hybrid method taking into consideration the advantages

of both filter and wrapper method with no constraint for the user to input the

number of features required. In our approach, we used the NMI as a metric to

rank the features after clustering by Mini-Batch K Means. Once we obtained the

ranked features, we came up with two methods to select the features; the feature
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inclusion method (KNFI) and feature exclusion method (KNFE). We came up with

an algorithm for the feature inclusion method, and in the feature removal method,

we removed the least important features to get the best performance accuracy. In

most of the datasets, KNFI performed well taking least number of features whereas,

in datasets with least relationship among the features, KNFE method performed

well. For future work, optimizing the time taken to get the selected features would

help to reduce time complexity. Also, we can come up with better metrics to get

the actual relationships among the features such that the redundant features are

eliminated.
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López, José Ruiz Castilla, and Adrian Trueba. Pso-based method

211



for svm classification on skewed data sets. Neurocomputing, 228:187
– 197, 2017. Advanced Intelligent Computing: Theory and Appli-
cations.

[CH05] T. W.S. Chow and D. Huang. Estimating optimal feature subsets
using efficient estimation of high-dimensional mutual information.
Trans. Neur. Netw., 16(1):213–224, January 2005.

[Cha73] Chieng-Yi Chang. Dynamic programming as applied to feature sub-
set selection in a pattern recognition system. IEEE Transactions on
Systems, Man, and Cybernetics, (2):166–171, 1973.

[CHC+12] Carlton Chu, Ai-Ling Hsu, Kun-Hsien Chou, Peter Bandettini,
ChingPo Lin, Alzheimer’s Disease Neuroimaging Initiative, et al.
Does feature selection improve classification accuracy? impact of
sample size and feature selection on classification using anatomical
magnetic resonance images. Neuroimage, 60(1):59–70, 2012.

[Cho15] F. Chollet. Keras: Deep learning library for theano and tensorflow,
2015.
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François Labrèche, Militza Jean, Benoit Dupont, and José M Fer-
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