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VALKONEN, MASI: Elektronimikroskooppikuvien segmentointi oppivan jär-
jestelmän avulla
Diplomityö, 64 sivua
Toukokuu 2015
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Tarkastajat: Heikki Huttunen
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Nykypäivänä materiaalitukimuksen kuva-analyysi toteutetaan vielä suurelta osin
manuaalisesti, mikä on usein työlästä ja aikaa vievää. Tässä työssä tutkitaan kahta
materiaalitieteen yleistä kuva-analyysiongelmaa, joita varten kehitetään automaat-
tiset menetelmät helpottamaan analyysiä.

Ensimmäinen tapaus käsittelee zeoliittirakenteen huokosten segmentointia logis-
tisen regression ja LASSO regularisoinnin avulla. Menetelmä toimii johdonmukaisem-
min ja nopeammin kuin ihminen ja löytää lisäksi enemmän huokosia. Suorituskyvyksi
saatiin PAS metriikalla mitattuna 0.79 ja F1 metriikalla 0.89. Tuloksissa iso osa
virheestä johtuu siitä, että ihminen voi löytää huokosia monella eri tavalla mutta
menetelmä vain yhdellä.

Toisessa tapauksessa hopananopartikkeleita segmentoidaan elektronimikroskoop-
pikuvista käyttäen LASSO regularisoitua logistista regressiota ja watershed menetel-
mää. Menetelmä on nopeampi kuin ihminen ja tuottaa hyviä tuloksia kun partikkelit
eivät ole paljon limittäin. Päällekkäiset hiukkaset ovat kuitenkin vaikeita erotella,
minkä vuoksi tulokset eivät ole yhtä hyviä. Suorituskyky PAS metriikalla mitattuna
on 0.76 ja F1 metriikalla 0.86.

Oppiva järjestelmä yhdistettynä automaattiseen piirteen valintaan on siitä mie-
lenkiintoinen, että opetusdatan voi kerätä kuka tahansa eikä pohjatietämystä ku-
vankäsittelystä tarvita. Tämä mahdollistaa yleiskäyttöisen segmentoinitohjelman
kehittämisen, joka osaa mukautua ongelmaan kerätyn datan perusteella.
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A great deal of image analysis in today’s materials research is done manually, which
can be time consuming and tedious. This thesis is a case study of two image analysis
problems in the field of materials science for which automatic methods are developed
to aid the analysis process.

In the first case, an automatic segmentation method is developed to segment
zeolite pores. The method is based on logistic regression combined with sparsity
promoting LASSO regularization. It is able to find more pores than humans with
better consistency and speed yielding average PAS score of 0.79 and F1 score of 0.89.
Much of the error is caused by the fact that humans specify the pore perimeters in
various ways, but the method consistently produces similar segmentations.

The second case considers automatic segmentation of silver nanoparticles by com-
bining LASSO regularized logistic regression and watershed segmentation. The
method is faster than manual segmentation and produces fine segments when parti-
cles have little overlap. However, if the amount of overlap is high, the segments are
flawed. The performance of the system in terms of PAS metric and F1 score is 0.76
and 0.86, respectively.

An interesting property of training based segmentation together with sparsity
promoting property is that training data can be collected by anyone. This enables
creating an adaptive segmentation software for anyone regardless of image processing
experience.
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1. INTRODUCTION

Nanomaterials have received a lot of research focus over the last few years due to their
unique properties present only at nanoscale. Because the scale is extremely small,
analysis of such materials is often supported by microscopic imaging. Specifically
electron microscopy allows imaging at higher magnifications since the limitations of
traditional light microscopy do not apply when using an electron beam [1].

To better understand commonalities and differences in the materials, researchers
need objective measures of phenomena in the images. For example, one might want
to know the average particle size or obtain the probability distribution of orientation
of pores in the image. A typical way to achieve this would be extracting each object
in the image from the background, which makes these problems fall into the category
of image segmentation.

Although software and processing power of modern computers have advanced
rapidly, much of the measuring is still accomplished by manually indicating where
the object boundaries are. Manually processing a set of images can be tedious and
time consuming. Moreover, the quality of work depends heavily on the person, which
makes it subjective and inconsistent. This process can be aided with automatic
tools developed in signal processing that provide faster and more consistent quality
of work.

In this work, two example cases are introduced and automatic segmentation
procedures are developed using training based methods. The first case considers
segmentation of material structures made of zeolite, and the second case studies
segmentation of silver nanoparticles. In a training based method, a computer is
shown examples of interesting objects in the images from which an algorithm learns
their general appearance. With the aid of the algorithm, new images are segmented
automatically. This work focuses mainly on image segmentation since calculating
parameters of the objects in an image becomes a straightforward task once segmen-
tation has been performed.

The first case studies segmentation of microscope images of zeolite, which has
been researched for gas separation processes such as carbon dioxide capturing [2].
One manufacturing method comprises freeze-casting and sintering zeolite 13X pow-
der, bentonite, and polyethylene glycol resulting in brittle structure that is not
convenient for industrial use. There is ongoing research on which factors contribute
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the most to tensile and compression strengths of the material. It has been found
that the tensile strength peaks using certain manufacturing process in which the
aspect ratio of pores has been found to hold significance. In this work, an automatic
procedure is developed to separate individual pores from the rest of the image.

The second case studies segmentation of silver nanoparticles, which is an active
field of research in materials science. Nanosilver has been examined for its ability to
kill bacteria more efficiently than microsilver using notably less amount of matter [3].
For this reason, it has been applied as a coating for medical devices to reduce the
risk of device based infections. The potency of nanoparticles is explained by higher
surface-area-to-volume ratio because surface atoms are less stabilized and thus react
more easily [4]. Since approximation of the surface area is a tedious and repeating
task, an automatic segmentation procedure is developed to determine the area of
each individual silver nanoparticle in a TEM image.

Related topics have been researched before. Ruusuvuori et al. [5] used LASSO
regularized logistic regression classifier along with Markov random field spatial prior
to segment microscope images of subcellular objects. Liu et al. [6] applied watershed
merge tree method to segment electron microscope images of neural tissue. In the
work, a random forest classifier was trained to predict the merging probability of
two regions after which the final segmentation result is given by the highest region
potential. Wong et al. [7] applied a variety of thresholding methods on electron
microscope images of cement-based material to segment pores from the material.

The structure of this work is as follows. In Chapter 2 the basic idea of image
segmentation is introduced. Chapter 3 explains the theory behind each method that
is used in the procedures in Chapters 4 and 5. Conclusions of this work are presented
in Chapter 6.
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2. IMAGE SEGMENTATION

Image segmentation is an important and one of the most difficult problems in image
analysis [8]. Because it is one of the first steps in an automatic image analysis
system, and subsequent steps depend on it, it has a major effect on the overall
analysis performance. One definition of segmentation is to divide an image into
homogeneous regions that are inhomogeneous with any adjacent region. This means,
in principle, partitioning the image into meaningful regions where the content has
similar attributes. An example image of segmentation is shown in Figure 2.1, where
the image has been divided into two distinct regions, foreground and background.
Pixels that belong to the foreground are denoted by value 1 (white) and pixels in
the background are denoted by value 0 (black).

Original Segmentation

Figure 2.1: A visualization of image segmentation. Here the object of interest, the pho-
tographer, has been separated from the background

One interpretation of image segmentation is that these homogeneous regions de-
scribe objects of higher meaning in the image. As digital images are represented
only using very low level elements, pixels, image segmentation can be viewed as a
transition from pixel level to object level. [9]

Segmentation Pipeline

This work focuses on studying and solving two real-world segmentation problems
with training based segmentation methods. The methods presented in this work
follow the steps shown in Figure 2.2, where blocks drawn in solid line are within
the scope of this thesis. The framework comprises two phases, training phase and
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Training

Training phase

Test image
Segmentation

Segmented 
image

Segmentation phase

Preprocessing

Preprocessing

Parameter 
calculation

Parameters

Image 
acquisition

Annotation

Problem

ClassifierTraining images

Ground truth images

Figure 2.2: A block diagram illustrating the general structure of the developed segmenta-
tion procedures. The blocks drawn in solid lines are discussed in this thesis. The blocks
drawn in red dash-dot line are part of a functional image analysis system but are not
considered in this work.

segmentation phase, denoted by dashed gray line. In training phase, an algorithm,
also known as a classifier, is trained to distinguish objects of interest in the images.
Training phase is followed by segmentation phase, where new images are segmented
with the aid of the trained classifier. Because a trained classifier is needed in seg-
mentation phase, it is required to complete the training phase first. Once training
phase is completed, segmentation phase may be executed as many times necessary.

The process of creating a complete image segmentation system begins with a
problem that needs to be solved automatically. The problems in this thesis concern
extraction of different parameters of objects in material samples, e.g., calculating
the average particle size of a silver nanoparticle or measuring the aspect ratio of a
pore in a zeolite sample.

The first block in the diagram is image acquisition in which material samples, also
known as specimens, are imaged using an electron microscope. This stage outputs
images that hold necessary information to solve the problem. Two distinct sets
of images are collected during this stage. One set contains images the classifier is
trained with, i.e., training images, and the other set holds the test images for which
the actual segmentation is performed.

In supervised learning, a classifier learns the appearance of interesting objects in
the images. The locations of such objects and their corresponding categories need to
be specified in the images. In many cases, this information is not readily available
but needs to be added manually to the data. The process of manually adding labels
to the data is called annotation, which is shown as a separate block in the diagram.
The resulting ground truth images are then used together with the training image
data to train a classifier. Supervised learning is further considered in Chapter 3.4.

Image acquisition step rarely produces images that are usable as such in training
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phase or segmentation phase. Therefore a preparation step called preprocessing is
needed [10]. Preprocessing is an important step in automatic image analysis system
where essential information is distilled. It sometimes means discarding irrelevant
information to make segmentation task easier [11]. Preprocessing can modify the
data in such way that the outcome is not easily readable by humans, but in bet-
ter form for the following segmentation method. Examples of preprocessing steps
include contrast enhancement and noise removal.

The last block in segmentation phase is the actual segmentation step, where test
images are partitioned into meaningful regions with the aid of trained classifier. In
practice, the produced regions are objects in the images, from which desired object
parameters are computed. For example, the area of an object is calculated simply
by counting the number of pixels in a region and converting the value to physical
world units such as square nanometers.
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3. METHODS

Automatic image analysis systems are typically built by combining multiple differ-
ent methods rather than applying one single method to solve a problem. There is
no guaranteed order in which these methods appear in the final system and some of
them may be used more than once in different parts of the processing pipeline [12].
Therefore, to avoid redundancy in the following chapters, the most important meth-
ods are explained here in detail.

3.1 Histogram Equalization

Microscope imaging is a challenging task where many parameters and prior treat-
ment of specimens have an effect on the produced image. It is not unusual for the
images to have imperfections that have harmful effects on automatic segmentation
methods. Examples of such imperfections are lack of contrast and its variation across
an image. [13]

Histogram Equalization (HE) is a method to enhance contrast in an image by ap-
plying a transform T (·) for each pixel in the image. In theory, the method produces
uniformly distributed histogram, but in practice, only close to flat histograms are
achieved [14]. Forcing uniformly distributed histogram renders some pixels black
and some white, which often increases contrast.

The transform is based on histogram, which is a representation of an image
expressing the distribution of gray levels in the image. It is defined as

H(rk) = nk, (3.1)

where rk is kth gray level and nk is the number of pixels having gray level rk in the
image. The number of possible gray levels is L and therefore k ∈ {1, . . . , L}. For
example, if images are represented using 8-bit integers, possible number of different
gray levels is L = 28 = 256.

The actual transform uses cumulative histogram

C(rk) =
k∑

j=0

H(rj), (3.2)

which is the sum of histogram values up to a certain gray level. Now each pixel in
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the image may be transformed by

J(i, j) = T (I(i, j)) = (L− 1)
C(I(i, j))

MN
, (3.3)

where M and N are the dimensions of the input image. Dividing the histogram by
MN scales the cumulative histogram to have range [0, 1], and multiplying by L− 1

scales the output value to the desired range. In this case, the transform function is
monotonically increasing, which means that the order of gray levels is preserved in
the transform. In other words, the darkest gray levels in the image are mapped to
the darkest values also in the result image. [14]

The amount of contrast enhancement applied to a certain gray level depends
on the slope of the transform function. This is because slope determines the ratio
between a range of intensities in the input image and a range of intensities in the
output image. Slopes above 1 denotes mapping a smaller range of intensities from
the input image to a larger range of intensities in the output image, leading to
increased contrast for that specific range of intensities. Following the same logic,
slopes below 1 compresses the intensity range and decrease contrast in the output
image. This method is implemented In MATLAB as the function histeq that is
part of the image processing toolbox. [14]

A visualization of it is shown in Figure 3.1, where the bottom left image is the
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Figure 3.1: An example of histogram equalization. In the top-left corner is the original
unprocessed image. In the top-right corner is the histogram equalized image. Below these
images are the corresponding histograms.



3. Methods 8

histogram of the original image (top left). The histogram shows that the numeric
range is not entirely used as the darkest value is around 80. The bottom right image
shows the equalized histogram, where the envelope of the graph is more even, and
the full range of possible intensities is now in use.

3.2 Contrast Limited Adaptive Histogram Equalization

Histogram equalization processes the image globally, i.e., it uses the same trans-
form function throughout the image that sometimes results in locally poor contrast.
Adaptive histogram equalization (AHE) tries to overcome this by using different
transform functions in different portions of the image. There are various ways to
accomplish this, and in this section one such approach is introduced.

The algorithm operates by dividing the input image into equally sized blocks and
for each block histogram equalization is performed. The separately processed blocks
are then combined back together to produce the final image. However, this method
has two major shortcomings. Processing each block as if they were individual images
may lead to visible transition lines at block boundaries since each block is processed
independently of the neighboring blocks. Additionally, if one block contains only
values from a homogeneous region, where variation of intensities is low, contrast
enhancement for such region becomes excessive [15]. These problems are depicted
in Figure 3.2, where the top row contains patches from the original image and the

Original

AHE without interpolation

Original

AHE without contrast limit

Block boundary

Figure 3.2: Problems related to processing images with AHE. In the top row are the original
image patches and below them are the results of block-wise histogram equalization.
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problematic results of AHE processing are shown below them. The bottom left image
shows the block boundary lines that are clearly visible and disturbing. The bottom
right image shows that AHE processing a homogeneous region leads to unnaturally
pronounced texture pattern.

3.2.1 Interpolation

One way to remove visible transition lines in AHE processed images is to apply
interpolation at block boundaries. As each block is transformed using different
transform functions, similar input gray levels may be transformed into more dissim-
ilar output gray levels in adjacent blocks. If the transformed pixels are close to a
block boundary, the difference is visible in the result image as unnatural transition
lines.

These aberrations can be removed effectively using interpolation where the pixels
near block boundaries obtain their new values based on the distance to the neigh-
boring blocks. The method has the same principle as bilinear interpolation, where
the weights are inversely proportional to the distance from the interpolated pixel.

First a region RM×N is selected containing all the pixels that need interpolation,
and the new interpolated values are denoted by SM×N . The position of R is chosen
to have its corners in the centers of the surrounding blocks. An illustration of this
is shown in the Figure 3.3, where R is visualized by a dashed line and the block

T
1
(r) T

2
(r)

T
3
(r)T

4
(r)

Figure 3.3: Interpolation of adaptive histogram equalized images. The region of interpola-
tion R is visualized with dashed cyan line. The solid lines indicate blocks which have been
independently processed with histogram equalization using transform function Tk(r).

boundaries are drawn in continuous lines. In the figure, Tk(r) is the transform
function of the underlying block. Once region R is selected, it is transformed using
the four different transform functions from the surrounding blocks resulting in four
histogram equalized images Sk where k ∈ {1, 2, 3, 4}. The interpolated region S is
then acquired by weighted averaging of Sk where the weights are proportional to the
distance from the result image pixel S(i, j) to the centers of the surrounding blocks.
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In equation form, region S is written as

S(i, j) =
i(N − j)
MN

S1(i, j) +
ij

MN
S2(i, j)

+
(M − i)j
MN

S3(i, j) +
(M − i)(N − j)

MN
S4(i, j)

(3.4)

where i ∈ {1, 2, . . . ,M} and j ∈ {1, 2, . . . , N}. For example, the upper left corner
of S, i.e., S(1, 1) is the closest position to the center of upper left block. Therefore,
S4(1, 1) is given weight close to 1 and the other transformed pixels S1(1, 1), S2(1, 1)

and S3(1, 1) are given weights close to 0. Each pixel within R is then processed using
the described method. This interpolation method completely removes visible lines
at the block boundaries as shown in Figure 3.4. The process is repeated for each

Figure 3.4: A comparison between AHE processed images with and without interpolation.
The right image has been interpolated at block boundaries and shows that the boundaries
are completely removed.

block boundary in the image producing smooth block transitions. This interpolation
method is implemented in MATLAB as the function adapthisteq.

3.2.2 Contrast Limiting

Sometimes AHE produces images that have excessive amount of contrast enhance-
ment due to homogeneous regions in the input image. As homogeneous regions
induce high peaks in the histogram, and high peaks cause high slopes in the trans-
form function, contrast enhancement for such regions becomes unnecessarily high.

The problem is solved by limiting the maximum amount of contrast enhance-
ment a transform function can apply. This method is known as Contrast limited
histogram equalization (CLAHE). It operates by setting a constraint for the slope
of the transform function that is equivalent to setting a limit for the height of the
histogram. The height is limited by defining a clipping level above which values in
the histogram are clipped.

Merely clipping and discarding values above the clipping level causes the trans-
form function to lack mapping for some gray levels [15]. It can be avoided by



3. Methods 11

redistributing the clipped area evenly to the bottom of the histogram as depicted in
Figure 3.5. The clipping level is denoted by a dashed red line and the redistributed
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Figure 3.5: Contrast limited adaptive histogram equalization. The top row shows the
original histogram and the clipped histogram where the clipping level is drawn in red
dashed line. The bottom row shows the corresponding transform functions. In the left
histogram, the orange area above the clipping level is evenly distributed among all gray
levels in the right image. The effect of clipping is seen from the transform functions where
the maximum slope of the graph is smaller in the right transform function.

area by orange color. Below the histogram graphs are the corresponding transform
functions that show the effect of clipping. The images visualize that clipping and
redistributing causes the histogram to rise above the original clipping limit, which
might not be desired. If the true clipping limit is needed, an algorithm for computing
it is provided in [15].

A slightly different variation of redistribution is to distribute excess pixels only
to bins below the clipping level, which ensures that the modified histogram will not
rise above the original clipping level. The MATLAB implementation adapthisteq
uses this method. A comparison between images processed by AHE and CLAHE is
presented in Figure 3.6, where the right image shows the effect of clipping histogram
at level 0.01. The level is specified in normalized values such that the sum of
histogram bins equals 1. In the left image, contrast enhancement is unrestricted.

One way to explain the outcome of redistribution of pixels is that the clipping level
determines how close to the average of the histogram each bin will become, i.e., how
uniform the histogram will become. Selecting a clipping level high enough results
in no clipping and unrestricted contrast enhancement whereas choosing a clipping
level low enough, so that every histogram bin is clipped, leads to identity transform
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Figure 3.6: A comparison between AHE and CLAHE processed images. Both of the images
have been interpolated at block boundaries. The left image shows the result of unrestricted
contrast enhancement and the right shows the result of using clipping level of 0.01. The
value is specified in normalized values where the sum of the histogram bins equals one.

function and the transformed image stays identical to the original one. An example
image of CLAHE processed image using MATLAB’s inbuilt function adapthisteq
is presented in Figure 3.7. Both histograms below the processed images are flat but
in the right CLAHE processed image also the histograms of each block are flat. This
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Figure 3.7: A comparison between HE and CLAHE. In the top-left corner is histogram
equalized image. In the top-right corner is CLAHE processed image. Below these images
are the corresponding histograms.

is seen as improved local contrast. For example, by comparing the top right corners
of the images where there is a bright material region, more detail is visible in the
CLAHE processed image.
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3.3 Morphological Operations

Mathematical morphology is a branch in digital image processing that is traditionally
used to analyze and process objects in images based on their shape rather than
numerical values. It has the ability to simplify image data while preserving the
most important characteristics [16]. Mathematical morphology is applicable to a
wide range of image processing problems such as shape detection, noise filtering,
image enhancement, segmentation and simplification. Moreover, it can be used
for binary images, grayscale images and color images, which makes it even more
versatile. [17]

Morphological operations operate via structuring element that probes the image
for a specific condition. In the simplest case, the condition is tested with pixel-
wise operations between the image and the structuring element. Depending on the
outcome of the test, a value is written to the output image at the position indicated
by the origin of the structuring element. Two examples of structuring elements are
visualized in Figure 3.8 where the origin is marked in boldface text.

0 0 1
0 1 0
1 0 0



0 0 1 0 0
0 1 1 1 0
1 1 1 1 1
0 1 1 1 0
0 0 1 0 0


Figure 3.8: Examples of structuring elements. The origin, where the output value is written
in the result image, is visualized in boldface text.

Mathematical morphology includes several operations that all are divisible into
smaller set operations where one of the most primitive ones is translation. It is
expressed as

Az = {a+ z | a ∈ A} (3.5)

where A ⊂ Z2 is a set representing binary image and a subset of two dimensional
integer space. Each element in the set is a vector holding the x and y coordinates
of a white pixel in the image. Here z ∈ Z2 is also a two dimensional vector for
translating the elements in A. Translation simply moves every pixel of A by amount
determined by z.

Another basic operation, which forms the basis of more complex operations, is
reflection. It is defined as

Â = {−a | a ∈ A} . (3.6)

Reflecting an image equals to taking the opposite of each element in the image. In
effect, Â is a reflection of A about origin. [14]
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3.3.1 Dilation

Dilation is a basic morphological operation which is mathematically expressed as

A⊕B =
{
z | (B̂)z ∩ A 6= ∅

}
, (3.7)

where A is the binary image and B is the structuring element. Here B is also a set
of x and y coordinates specifying white pixels in the structuring element. Dilation
of image A by structuring element B is the set of all translations of B̂ that have
nonempty intersection with A. In practice, this means expanding regions in the
image according to the shape and size of the structuring element. One way of
visualizing the operation is to consider a field of seeds where each white pixel in A
grows its own structuring element. The union of these structuring elements is then
equivalent to the dilated image.

For calculation of dilated image, the structuring element is moved through every
possible position in the image and the following condition is tested at each position.
If the intersection between the image and the structuring element is not empty, 1 is
written to the position of origin in the result image.

Grayscale morphology is similar to binary morphology, but the output value
may vary within the same range as the image. In grayscale morphology, it is also
possible for the structuring element to have varying intensities, in which case the
structuring element is nonflat. However, in this work, only flat structuring elements
are considered, i.e., each member of the structuring element has equal weight. For
example, the previously introduced structuring elements are flat.

Dilation of grayscale image f by a flat structuring element B is written as

[f ⊕B](x, y) = max
(s,t)∈B

{f(x+ s, y + t)}. (3.8)

It operates by moving the structuring element through each possible location in the
image. The output value at each location is the maximum value among the values
indicated by the structuring element, and it is written to the position of origin in the
output image. Grayscale dilation expands bright features in the image and removes
dark features that are smaller than the structuring element. [14]

Two examples of this operation are depicted in Figure 3.9 where the image in
the top row is a binary image and the image below it is a grayscale image. The
used structuring element has been drawn in red color over the original images in the
upper left corner. As the image shows, the borders of the letter ’a’ have expanded
according to the geometry of the structuring element. For example, the amount of
expansion in upward direction is determined by the distance from the origin of the
structuring element to the uppermost coordinate of the structuring element. In the
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Original Dilation Erosion Opening Closing

Figure 3.9: Morphological operations. The top row shows binary morphological operations
and the bottom row shows the corresponding grayscale operations. The used structuring
elements have been visualized in the upper-left corners of the original images.

case of square shaped structuring element, the directions which receive the most
expansion are upper-right, upper-left, lower-right and lower-left since the distance
to the origin is the longest.

Various different structuring elements exist and some of the most commonly used
are diamond, line, square, ball and disk. Because the outcome of each morphological
operation depends heavily on the shape and size of the structuring element, it is
chosen according to the task.

3.3.2 Erosion

Erosion is another basic operation in mathematical morphology. It is the dual
operation of dilation as it shrinks regions in an image. Mathematically it is written
as

A	B = {z | Bz ⊆ A} , (3.9)

where A is the image and B is the structuring element. Binary erosion is the set of
all translation vectors that translate structuring element B so that it is a subset of
A.

Where dilation expands regions in a binary image, erosion shrinks them. To
compute erosion for a binary image structuring element is moved through every
possible position in the image and the following condition is tested at each position.
If all the ones in the structuring element are in a position where there is one also in
the image, an output of 1 is written to the position of origin in the output image.
In other words, if the structuring element is completely within white regions of the
binary image, an output of 1 is written to the position of origin. In any other case,
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an output of 0 is written .
Grayscale erosion is otherwise the same as grayscale dilation but instead of se-

lecting the maximum value, minimum is taken. For a flat structuring element B, it
is defined as

[f 	B](x, y) = min
(s,t)∈B

{f(x+ s, y + t)}. (3.10)

Erosion is minimum filtering where the size of the window is determined by the
structuring element. Computing the erosion of an image is done in same manner as
in grayscale dilation. Images processed by grayscale erosion have their dark features
expanded and the smallest light features removed. Examples of both binary and
grayscale erosion are displayed in Figure 3.9.

3.3.3 Opening

Opening of a binary image A with structuring element B is defined by

A ◦B = (A	B)⊕B (3.11)

where⊕ and	 denotes dilation and erosion respectively. This means simply process-
ing the image consecutively with erosion and dilation. Binary opening removes cer-
tain image details smaller than the structuring element without distorting features
that remain unsuppressed. For example, using a disk shaped structuring element
removes ridges and islands smaller than the structuring element while smoothing
uneven contours. Therefore, it may be used to remove noise in binary images.

Grayscale opening is almost the same binary opening and is expressed as

f ◦B = (f 	B)⊕B (3.12)

where the image f is now a grayscale image. It removes light features and preserves
dark features that are smaller than the structuring element without distorting the
most prominent features in the image. Figure 3.9 shows how opening simplifies the
image by shifting the values of small light features towards darkest values in the
local neighborhood. [16; 17]

3.3.4 Closing

Closing is the counterpart of opening, in which the only difference is the order of
operations. Closing of image A with structuring element B is defined by

A •B = (A⊕B)	B (3.13)
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where ⊕ is dilation and 	 is erosion. Binary closing fills gaps, removes small
holes and inward bumps on contours without distorting features that remain un-
suppressed, which is the opposite of opening.

Similar to the binary counterpart, the definition of grayscale closing is

f •B = (f ⊕B)	B, (3.14)

which preserves light features and removes dark features that are smaller than the
structuring element. Figure 3.9 demonstrates how closing simplifies the image by
shifting the values of small dark features towards brightest values according to the
structuring element. [16; 17]

3.3.5 Top Hat Transform

Top-hat transform, also known as white top-hat transform, is used to extract bright
objects from their background. The definition of top-hat transform is

THB(f) = f − (f ◦B) (3.15)

where f is a grayscale image and B is a structuring element. In other words, top-hat
transform is the opening of an image that is then subtracted from the original image.
It preserves features from a grayscale image that are removed in morphological
opening. As opening removes bright objects that cannot contain the structuring
element, they become present in the top-hat transformed image.

A basic example of its use is to remove non-uniformly illuminated background
from an image. In such case, the structuring element is chosen to be larger than the
foreground objects, which causes them to be removed in the opening while leaving
background intact. In the next step, subtracting original image from the opened
one restores foreground objects but flattens the background. [14]

An example of top-hat transform is shown in Figure 3.10. The structuring element
used in the transforms is visualized in the top-left corner of the original image. As
it is seen from the image, top-hat transform highlights bright areas that fit within
the structuring element. For example, the photographers ear is highlighted because
erosion completely removes it, which is why it is not expanded in dilation. Lastly,
subtracting the dilated image from the original one highlights it.
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Top-hat transform Bot-hat transformOriginal

Figure 3.10: Morphological operations. The structuring element that was used in the
transforms is shown in red color in the upper-left corner of the original image.

3.3.6 Bottom Hat Transform

Bottom-hat transform, also known as black top-hat transform, is the opposite of
top-hat transform. It is written as

BHB(f) = (f •B)− f. (3.16)

Bottom-hat transform is closing of an image from which the original image is sub-
tracted. It is very similar to top-hat transform, but instead of finding bright features,
it finds dark features.

Bottom-hat transform is useful for finding gaps and holes that are smaller than
the structuring element. An example of bottom-hat transformed image is depicted
in Figure 3.10 where the eye of the photographer is highlighted. This is because the
brighter intensities of the surrounding skin replaces the eye area during grayscale
dilation. And since the eye is removed, it was not recovered in erosion. This leads
to high difference between the original image and the closed image.

Mathematical morphology extends much further than the basics described in
this chapter. Even some of the operations used in this work, such as connected
component labeling and morphological reconstruction, were omitted due to the vast
number existing methods. For further reading on the topic, see for example [18; 19].

3.4 Supervised Learning

Supervised learning is an approach where labeled samples are shown to an algorithm
which tries to learn the relationship between the samples and the labels. It is
typically applied to classification problems where the label of a previously unseen
sample is predicted. [20]

Classification is simply explained with the following example. Suppose images of
fish where each image contains either a salmon or a sea bass. The goal of classifi-
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cation is to automatically divide these images into groups, also known as categories
or classes, where one group contains only images of salmon and the other contains
only images of sea bass. For humans it is simple task to divide the images into these
groups because after seeing images of salmon and sea bass we notice differences in
the features, e.g., length and brightness of the fish that we use in the discrimination.

Similarly in automatic classification, we can first extract features from images of
salmons and sea bass, for example, measure the average brightness and length of
the fish and pass this information to a classifier. The classifier then tries to learn
the general pattern of these features for each class. The image set of N images used
in training the classifier is called training data where the images are denoted by Xi,
i ∈ {1, . . . , N} and the corresponding class labels by ci ∈ {0, 1}. For simplicity,
salmon and sea bass classes have been replaced with values 0 and 1 respectively.
Now, for a previously unseen image X to be classified, features are extracted and
shown to the classifier which then compares the features to the learned patterns of
both classes. The class having the best correspondence is chosen as the classification
result. [11; 21]

A desired property of a classifier is generalization, i.e., the ability to classify
correctly new images that were not used in training. Generalization is important
because the training data usually contains only a tiny fraction of all possible samples.
A classifier’s ability to generalize can be objectively measured using test data, which
is a distinct set of images Xi i ∈ {N + 1, . . . , N +M} that has not been shown to
the classifier. For the test images Xi, the corresponding labels ci are also known.
A common measure to evaluate classification performance is accuracy, which is the
proportion of correctly classified samples in the test set. Evaluating classifier’s ability
to generalize with the training images leads to optimistic results. This is because the
classifier has been trained using a small portion of all the possible samples and might
have learned patters that characterize the training data rather than the classes in
general. A classifier that classifies well training images but not as well new images
is said to overfit. [20; 11]

Many classifiers exist where the differences between them lie in linearity, inter-
pretability and speed. Simplicity and interpretability are the main advantages of
linear classifiers, of which common examples are logistic regression, linear support
vector machine, and naive Bayes. They can outperform nonlinear methods in cases
when the amount of training data is small, the signal-to-noise-ratio is low or the data
is sparse. On the other hand, nonlinear classifiers are capable of finding more com-
plex structures from the data but are generally more difficult to interpret. Examples
of nonlinear classifiers are multilayer neural networks and nonlinear support vector
machine. From now on, the focus will be on linear classification due to simplicity
and interpretability. [22; 23]
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For the classification problems in this thesis, logistic regression is chosen due to
simplicity, probabilistic output and sparsity promoting properties via regularization.
It is a statistical classification method for predicting the class of a feature vector. The
model was created for the purpose of using means of linear regression for categorical
data. Therefore, it is regarded as a tool for classification rather than regression.
Logistic regression can be applied to multiclass problems, but in this thesis only
binary cases are discussed.

3.4.1 Logistic Regression Model

Suppose the feature vector x ∈ Rp belongs to class c ∈ {0, 1}. Logistic regression
models the posterior probability p(C = c | x) of the feature vector x to belong to
the class c. The model is defined as

logit (p(C = c | x)) = log

(
p(C = c | x)

1− p(C = c | x)

)
= β0 + βTx (3.17)

where β0 and β = [β1, β2, . . . , βp]
T are the model parameters jointly denoted by

θ = [β0,β
T ]T . Instead of modeling the conditional probabilities directly using a

linear function of x, logit transform is applied first. The transform is needed because
probabilities vary within range p(C = c | x) ∈ [0, 1] where the linear predictor
β0 + βTx is not restricted and may take any real value. Thus logit transform may
be seen as a mapping from the range [0, 1] to the entire real axis after which linear
modeling becomes more reasonable. Additionally, it is assumed that the probabilities
become linear after the transform. A graph of the logit function is presented in
Figure 3.11.
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Figure 3.11: Logit function

By solving the equation (3.17) for p(C = c | x), the expression

p(C = c | x) =
exp

(
β0 + βTx

)
1 + exp

(
β0 + βTx

) =
1

1 + exp
(
−(β0 + βTx)

) (3.18)
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is obtained, which gives the posterior probability of class c given feature vector x
and the model parameters β0 and β. The output of the linear predictor β0 + βTx
is given to sigmoid function that is the inverse of logit function. In the case of two
classes, only one set of coefficients β0 and β are needed since we may define that
p(C = 0 | x) = 1− p(C = 1 | x), which means that only one linear function is used
to predict the class probabilities for both classes.

Logistic regression is a linear classifier even though a nonlinear transform is ap-
plied to the linear predictor because it produces linear decision boundaries. This is
observed by thresholding the predicted probabilities by t after which the decision
boundary becomes the set of feature vectors {x | β0 + βTx = logit(t)}. A typical
choice for the threshold level is t = 0.5 since it specifies a point where both classes
are equally probable. This choice means that when the linear predictor produces a
positive value, one of the classes is more probable whereas a negative value suggests
higher probability for the other class. [22]

3.4.2 Learning the Model Parameters

The model parameters for logistic regression are learned by maximum likelihood
estimation, which is a common parameter estimation method in statistics. It is
often simpler than alternative methods and has desired convergence properties as
the number of samples increase [11].

Suppose we have feature vectors xi, i ∈ {1, . . . , N} and the corresponding true
class labels ci ∈ {0, 1} as training data. For fixed model parameters θ, the proba-
bility of observing the training samples xi is

L(θ,x1, . . . ,xN) = p(x1, . . . ,xN | θ) =
N∏
i=1

P (C = ci | xi), (3.19)

which gives the likelihood of the training data. In maximum likelihood estimation,
the above is considered as a function of the model parameters θ while training
samples are kept fixed. Solving it for the function maximizing model parameters
yields the maximum likelihood estimate θ̂.

Maximizing the logarithm of likelihood function (log-likelihood) gives the same so-
lution as maximizing the likelihood function itself because logarithm is a monotonic
function. Working with log-likelihood is considered more convenient for analytical
purposes and the risk of arithmetic underflow is smaller. [11; 20]

For simplicity, let P (C = 1 | xi,θ) = p(xi) and P (C = 0 | xi,θ) = 1 − p(xi).
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Now the objective function is written, for two classes, as

l(θ) = log (L(θ,x1, . . . ,xN)) =
N∑
i=1

[ci log(p(xi)) + (1− ci) log(1− p(xi))] (3.20)

where N is the number of samples and p is the length of the parameter vector β. The
problem with this parameter estimation method is in the case of linearly separable
classes in the feature space. In such case, there exist multiple plausible parameter
vectors because any solution separating the classes minimizes the objective function
resulting in a parameter vector of infinite magnitude [20]. It is clear that this
saturation problem greatly reduces the classifiers ability to generalize.

One way to prevent this problem is to introduce regularization term in the ob-
jective function. Regularized log-likelihood is expressed as

l(θ) =
N∑
i=1

[ci log(p(xi)) + (1− ci) log(1− p(xi))]

subject to ‖β‖1 < t

(3.21)

or equivalently

l(θ) =
N∑
i=1

[ci log(p(xi)) + (1− ci) log(1− p(xi))]− λ
p∑

j=1

|βj| (3.22)

where λ (or t) is a parameter that constrains the magnitude of L1-norm of the
parameter vector β. For every value of λ, there exists one corresponding value for
t. Regularization has the effect of favoring some parameters over others based on
how the penalty is formulated.

Constraining the L1-norm of the parameter vector is called the LASSO (Least
Absolute Shrinkage and Selection Operator), which has an interesting property of
providing sparse solutions where some coefficients in the parameter vector β are
zero. Varying the parameter λ determines the sparsity of the solution. Having
some of the coefficients zero means that not all features are used in predicting the
class probabilities and thus can be left out from feature extraction giving faster
computation times. [24]

Studies have shown that estimates obtained using LASSO regularization are in-
sensitive to high correlation in the features [24; 25]. This is a useful property in
many real world applications when it is difficult to choose features that have no
mutual correlation. A typical method to remove correlation between features in-
volves Principal component analysis (PCA), which is used to transform features
into a coordinate system where no such correlations are present. Since LASSO is
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able to manage correlating features, there is no need for PCA in this regard leading
to simpler and faster classification procedure.

One problem in LASSO regularization arises when p > N , i.e., the number of
features is higher than the number of samples. Under these circumstances, LASSO
regularized estimates may have at most N non-zero coefficients, regardless of the
lambda value, resulting in heavy feature selectivity. Other regularization methods
have been developed to overcome some of the shortcomings of LASSO. One such
method is the elastic net penalty, which is a mixture of L1 (LASSO) and L2 (Ridge)
penalties. It can produce parameter estimates with more than N nonzero coefficients
in the case when there are more features than samples. By varying the mixture
parameter, one can control the amount of sparsity at different values of lambda. [22]

The parameters that maximize the objective function 3.22 for various different
lambda values, also known as the regularization path, may be solved programmat-
ically. One efficient implementation to do this is the Glmnet package available for
MATLAB [26]. It uses cyclical coordinate descent algorithm where the optimiza-
tion problem is reduced into multiple univariate problems where only one parameter
is allowed to vary and others are kept fixed. Cycling through each coefficient one
at a time until convergence provides the LASSO regularized estimate θ̂ for one λ.
Computation of the whole regularization path is fast since coefficients from previous
iteration may be used as an initial guess for the successive iterations [22]. Geometri-
cally cyclical coordinate descent algorithm moves in parameter space towards local
minimum of the objective function by moving only along one coordinate dimension
at a time.

3.4.3 LASSO Regularization Geometry

Some insight on the LASSO regularization can be obtained from geometrical inter-
pretation. Figure 3.12 shows the contours of equivalent likelihood in the parameter
space denoted by colors ranging from red to yellow, i.e., the positions where the
likelihood function gives the same value with various different parameters β. Red
contours correspond to higher likelihood while yellow denotes lower likelihood.

In the middle of the contours is the point β̂ where the unregularized log-likelihood
function gives the maximum value (ML-estimate). The diamond shape around origin
visualizes a region {β | ‖β‖1 ≤ t} corresponding to t (or λ). Parameters within
this region are plausible solutions for the LASSO regularized objective function.
The point β̂LASSO is the solution that maximizes the LASSO regularized objective
function having lambda set to λ.

In this simplified example, the contours of the objective function are round, mak-
ing the regularized solution equal to the Euclidean projection of β̂ into the diamond
shaped set {β | ‖β‖1 ≤ t}. Euclidean projection means finding a member of the set
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Figure 3.12: An illustration of LASSO regularization in the case of circular contours of
equivalent likelihood. The unregularized parameter estimate is denoted by β̂ and the cor-
responding LASSO regularized estimate is β̂LASSO. In parameter space, LASSO estimate
is the Euclidean projection of the unregularized estimate to the diamond shaped set. The
dashed line visualizes the projection.

that is closest to the point being projected on the set. The projection is visualized
by a dashed line in the figure.

Gray areas in the image show regions where the Euclidean projection hits a
corner of the diamond, thus resulting in a sparse solution. Now consider increasing
the λ value, which is equivalent to decreasing t value. As t decreases, the size
of the diamond reduces and the proportion of gray areas to white areas increases,
increasing also the probability of sparse solution. Moreover, adding dimensions to
the feature space further increases the ratio of gray areas to white areas, or more
accurately the ratio of volumes, that leads more probably to a sparse solution.

A visualization of a case when the contours of equivalent likelihood are not round
is shown in Figure 3.13. The effect of increasing the penalty is depicted for three
different λ values corresponding to three diamond shapes centered at origin. The
edge of the largest diamond intersects with one of the contours in a position where
both of the parameters are non-zero. Same is true for the second largest diamond.
The smallest diamond is small enough to have its intersection point at a corner
resulting in a sparse solution.

3.5 Watershed Segmentation

Various types of approaches have been developed for image segmentation problems
over the years. Examples of these include thresholding methods [27; 7], feature
detection based methods such as edge detection together with edge linking [28; 29],
region based methods [30; 31], clustering [32; 33], deformable model fitting [34] and
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Figure 3.13: The effect of increasing regularization parameter λ. As the value of λ increases,
the probability of a sparse solution grows. In this example, the highest λ gives a sparse
solution as the contour of equivalent likelihood intersects with a corner of the diamond.

graph cuts [35]. In this work, a method called watershed segmentation is studied. It
shares some concepts with the listed methods, e.g., region growing, and is sometimes
regarded as its own category of segmentation algorithms [14; 36] and sometimes
not [37].

Watershed segmentation considers an image as a topographical relief where the
intensity value of a pixel is viewed as height for that particular location. This relief
is flooded by raising water level and allowing water into the relief only from positions
of local minima in the image. As the water level rises, catchment basins begin to
emerge and grow. When two of these catchment basins would merge into a bigger
basin, a dam is built in between to prevent the merging. The water level keeps
rising and dams are built until the relief is completely under water. At this point,
only dams are above the water level and execution of the algorithm is stopped. The
dams indicate the final segmentation result. Each catchment basin represents one
segmented region separated from other regions by dams that are also the region
boundaries.

Another description of the method is to imagine rain falling on the relief. The set
of points from which water drops fall into the same local minimum, is a catchment
basin. And the set of points from which the water drops would equally likely fall
into two or more minima indicate the divide lines or watershed lines. [14]

It is common for object boundaries in images to have rapid intensity transitions.
For this reason, watershed transform is regularly applied to gradient magnitude
image, rather than the original image, to have the watershed boundaries form at
the object boundaries [37]. This also causes low values in regions of homogeneous
intensities where region boundary formation is less desired.
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Traditional version of the method uses every local minima in the image as a water
source. Due to the fact that natural images have many local minima, watershed
algorithm has the tendency to produce highly oversegmented results [36; 14]. An
example of this problem is visualized in Figure 3.14 where the upper left image is
the original one, upper right is the gradient magnitude image obtained by 3 × 3

Sobel filtering and the bottom left image is the watershed segmentation result. The
oversegmentation problem is clearly visible in the figure where each distinct region
has been presented in random color. White lines between these regions denote the
dams, i.e., the watershed lines.

Original Sobel gradient

Watershed Seeded watershed

Figure 3.14: Watershed segmentation examples. Top left image is the original image and its
convolution with Sobel operator is in the top right image. The bottom left image depicts
unseeded watershed segmentation on the gradient image where every local minimum is
used as a water source resulting in oversegmentation. The bottom right image shows
seeded watershed segmentation on the same image, in which the manually selected seed
points are indicated by crosses. The 3 × 3 Sobel operator is defined for x-direction as

Sx =

 -1 0 1
-2 0 2
-1 0 1

 and Sy = ST
x for the y-direction. The gradient image, as in the

top right plot, is acquired by Ig(i, j) =
√
Gx(i, j)2 +Gy(i, j)2, where Gx and Gy denote

convolution of the original (upper left) image with the Sobel operator corresponding to the
subscript direction.

In order to prevent the oversegmentation problem, a modified version has been
developed to explicitly define the used water sources [38]. Water sources specified
in such manner are called seed points or markers. The ability to select seed points
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gives complete control over the number of regions in the end result, which fixes the
oversegmentation problem. An example segmentation of seeded watershed method
is presented in the bottom right image of Figure 3.14, where the same image is seg-
mented using only manually selected seed points denoted by black crosses. It shows
that the segmentation result is extremely dependent on the seed point selection be-
cause the number of used seed points is directly the number of segments in the end
result.

The use of watershed segmentation embodies various benefits. It is able to pro-
duce continuous divide lines and contiguous regions since, by construction, the aim
of the algorithm is to extract objects from the image. This property is particularly
helpful when not all region boundaries are visible in the image. In addition, the wa-
tershed algorithm produces divide lines that correspond to natural characteristics in
the image, and it is generally applicable to various types of images. Lastly, the user
may affect the output of the method by specifying seed points. This is useful when
it is desired to manually control the segmentation outcome or use some advanced
automatic method to find the seed points. [36]

In this work, seeded watershed segmentation is applied for nanoparticle segmen-
tation in case 2, where the seed points are found automatically from a distance
transformed initial segmentation. This transform is next discussed in more detail.

3.6 Distance Transform

A method of wide application in image processing is distance transform, also known
as distance map. It produces a grayscale output image containing distances from
every pixel location to the nearest white pixel. Some examples of its use are com-
putation of shape-descriptive features and object skeletons. [17]

For computation of the distance transform, various metrics can be used, e.g.,
Euclidean distance, city-block distance or chessboard distance. An example of the
transform is presented in the rightmost image of Figure 3.15 that has been computed
in MATLAB using function bwdist and Euclidean distance. As the image shows,
the distance to the nearest background pixel at the center of the particles is the
highest, which is seen as the brightest values in the transformed image.

3.7 Receiver Operating Characteristic

Receiver operating characteristic (ROC) is a graph for visualizing and evaluating
the performance of a classifier. In particular, the use of ROC graphs is beneficial
when classes have imbalanced number of samples and when misclassification costs
are uneven [21].
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Original Binary image Distance transform

Figure 3.15: Distance transform. The images form left to right: Original image patch,
thresholded binary image, distance transformed binary image. Each value in the distance
transform describes a distance between two pixels in the binary image. The intensity of a
pixel is the distance from its position to the nearest white pixel.

3.7.1 Confusion Matrix

In binary classification, the true class y ∈ {0, 1} of a feature vector x is predicted
where the prediction is denoted by ŷ ∈ {0, 1}. The outcome of the classification
may be categorized into four different groups:

• True positive: Predicted class ŷ = 1 and true class y = 1

• True negative: Predicted class ŷ = 0 and true class y = 0

• False positive: Predicted class ŷ = 1 and true class y = 0

• False negative: Predicted class ŷ = 0 and true class y = 1.

Suppose some feature vectors are classified whose true classes are known. The
instances in each group may be counted and presented in a table called confusion
matrix. An example of it is presented in Table 3.1.

Table 3.1: Confusion matrix is a table of different classification outcomes. Suppose binary
classification of a sample having true class y and the predicted class ŷ. The classification
result may be categorized into one of the four classes. Confusion matrix is the basis of
many performance metrics.

True class y

1 0

Predicted class ŷ
1 True Positives False Positives

0 False Negatives True Negatives

Column totals P N

Many different classification performance metrics are computed from the confu-
sion matrix. Two such metrics are True positive rate (TPR) and False positive rate
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(FPR). Since obtaining the true TPR and FPR of a classifier would require classifi-
cation of every possible instance, these metrics are typically approximated from the
test samples as

TPR = p(ŷ = 1 | y = 1) ≈ TP

P
(3.23)

and
FPR = p(ŷ = 1 | y = 0) ≈ FP

N
. (3.24)

Here the total number of positive samples P is the sum along the first column in
confusion matrix, and total number of negative samples N is the sum along the
second column. TPR, also known as hit rate and recall, is the ratio of successfully
classified positive samples to all positive samples. Similarly, FPR is the ratio of
incorrectly classified negative samples to all negative samples. [21]

3.7.2 ROC Graph

Once classification has been performed producing binary labels for some test data,
the confusion matrix can be constructed. Based on the confusion matrix, TPR and
FPR are plotted in two dimensional space where y-axis represents TPR and x-axis
represents FPR. This is called receiver operating characteristic (ROC) space and
graphs plotted in this space are called ROC graphs.

A discrete classifier is denoted by a single point in ROC space such as point A
in Figure 3.16. Generally, the performance of a classifier is the better the closer to
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Figure 3.16: An ROC graph. A point in the graph denotes a classifier. A classifier is
considered the better the closer it is to the upper left corner. Here, the dashed line cor-
responds to randomly guessing the classes for instances and no serious classifier should go
below it because inverting every prediction would then lead to more accurate classification
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the upper left corner it is in the figure. Such position indicates that all positive and
negative samples were classified correctly. The dashed line corresponds to randomly
guessing the class of a sample. For example, randomly guessing 50% of the test data
to be positive samples yields the point (0.5, 0.5) in ROC space because 50% of the
positive and negative samples are classified correctly. By varying the ratio at which
classes are randomly guessed, the dashed line is formed.

Classifiers such as naive Bayes, neural networks and logistic regression produce
class scores or probabilities instead of actual class labels to indicate class member-
ship. For these classifiers, the actual class labels are determined by thresholding.
As an example, if the probability p(y = 1 | X = x) > 0.5, it is reasonable to assume
that the class is actually 1. However, depending on the problem domain, other than
fixed threshold of 0.5 can lead to better results.

For these situations, ROC graph is a handy tool for evaluating the effect of
different threshold levels. Having the threshold level vary t ∈ [−∞,∞], and for
every value calculate the corresponding TPR and FPR, a continuous line can be
drawn in ROC space. An example image of a ROC graph is shown in Figure 3.16.
Having a threshold level low enough assigns label ŷ = 1 to every sample, which
corresponds to point (1, 1) in ROC space because TPR = FPR = 1. Following the
same logic, a high enough threshold results in point (0, 0) in ROC space.

A common performance metric to evaluate classifiers is the Area under curve
(AUC), which is drawn in gray in the figure. Statistically, it is the probability
of a classifier to give a higher score or probability to a randomly chosen positive
sample than to a randomly chosen negative sample. AUC is an interesting evaluation
metric because it does not depend on the threshold level and it is invariant to class
imbalance. Classes are imbalanced if the prior probabilities p(y = 0) 6= p(y = 1). In
practice, it means that a randomly chosen feature vector has higher probability to
belong to one class than the other. [21]
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4. CASE 1: PORE SEGMENTATION OF SEM

IMAGES

Electron microscopy is an approach that allows precise analysis of materials and is
considered a valuable tool in materials science. The images obtained in such way
contain information about the imaged material that is relevant to researchers. In
this chapter, the relevant information is the shape and size characteristics of pores
in manufactured zeolite samples.

Calculating pore shape characteristics from zeolite images can be done manually
from the images but is often time consuming. Additionally, automation allows pro-
cessing of higher number of images within the same time window giving also more
accurate measures of the pore shape characteristics. For these reasons, an automatic
procedure for segmenting zeolite images is developed, tested and analyzed.

4.1 Data

The images in this case were acquired by scanning electron microscope (SEM), which
is a valuable imaging method in analysis of nanoscale materials. It operates by
emitting a focused beam of electrons at the surface of a specimen. The interaction
between the specimen and the electron beam generate different types of signals,
which are then measured and ordered to form the final image. [39]

Majority of the analyzed images in this case were provided by the Department
of Materials and Environmental Chemistry from Stockholm University and the rest
were from the Department of Materials Science of Tampere University of Technology.
In total there are 18 SEM-images, each of which has the same magnification of ×200
and dimensions 1280× 1024.

The SEM images by itself do not contain any label information needed in training
based methods. Therefore, it needs to be collected. The images were annotated
using a script that was programmed specifically for this purpose in MATLAB. The
annotation script produces binary image for each SEM image indicating locations
of pores. The annotated images were then divided into two distinct sets, namely
training set and test set. Out of 18 images, 10 was put in the training set and 8 in
test set.
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4.2 Objective

Image segmentation is a process where an image is divided into meaningful regions
that typically hold image data of objects in the image. The aim is to create a method
that analyzes an SEM image and creates a binary image of equal size that indicates
the locations of pores in the SEM image. In this binary image, each pixel is assigned
value 1 if there is a pore present in the corresponding position of the SEM image.
Otherwise pixels take value 0. Since it is not possible for two pores to overlap, a
simple binary image is sufficient to contain all the segmentation information.

The left image in Figure 4.1 shows an example SEM image of a zeolite sample.
There are two types of porosity visible in the image: Big porosity and microporosity.

Figure 4.1: Scanning electron microscope image of zeolite. The left image is an unprocessed
image directly from the microscope and the right image shows the perimeter of a pore.

All the holes visible in the left image are big pores. In the right image, a green line
has been drawn to indicate the perimeter of a big pore. Microporosity is only visible
in the right image, and it is recognized by grainy pattern constituting the walls.
The dark holes between these grains are micropores. Because the shape of big pores
has large impact on the overall strength of the structure, it is the main focus in this
case. From this point forward, the term pore is used only to refer to big porosity.

The right image in Figure 4.1 illustrates also the general idea of how each pore
should be segmented. However, there is no ground truth, making evaluation of
the segmentation result somewhat problematic and subjective as each person would
specify boundaries of pores into slightly different positions.

4.3 Implementation

A method based on the framework presented in Chapter 2 is studied for solving the
pore segmentation problem. The main idea is to train a classifier that predicts the
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class labels of each pixel. The classifier was chosen to be logistic regression mainly
mainly due to speed, interpretability and sparsity promoting properties.

Figure 4.2 shows the block diagram of the proposed method. The upper part
of the figure, separated by dashed gray line, shows the steps in the training phase.
The lower part shows the actual segmentation phase. Blocks that are on the lighter
colored background belong to preprocessing and blocks on the darker background
are part of segmentation. The partitioning of the segmentation phase has the same
structure as shown in the general block diagram in Figure 2.2. The arrow from
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Figure 4.2: A block diagram of the case 1 segmentation pipeline. The areas on the lighter
green background denote preprocessing and the darker blue-green color denotes the actual
segmentation phase.

trained classifier to the feature extraction of segmentation phase denotes informa-
tion of the sparsity of the classifier. As some of the model parameters are zero, the
corresponding features need not to be computed. The other arrow between normal-
ization steps denotes passing the normalization parameters used in training phase
to the segmentation phase. In fact, this framework is implemented along the lines
of [5], but instead of graph cutting, the probability image is thresholded. In addition,
more advanced preprocessing is used here (CLAHE) than in the other framework.

Both the training phase and the segmentation phase begin with the same pre-
processing steps as shown in the diagram. Next the preprocessing steps and their
purpose in the framework is explained in more detail.

4.3.1 Preprocessing

The dimensions of the images are 1280× 1024, which provides more than sufficient
resolution for the task. Therefore, dimensions of the images are reduced 50% in
order to decrease the time required for training without impacting significantly on
the core information, e.g., the shape and size of the pores.
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By looking at the example SEM image in Figure 4.1, one can observe the lack of
contrast in the lower parts of the image and higher intensity in the upper parts of
the image. These problems could impair segmentation results if the chosen features
are not invariant against them. Table 4.1 shows the pool of features used in the
training phase. All of these features are affected by contrast variation meaning that

Table 4.1: The complete pool of features used in the training phase, from which the most
important features are selected automatically.

Feature Parameter Values

local variance window size 3,5,9,15,30,50,70

Sobel gradient kernel size 3,5,9,15,30,50,70

morphological edges disk radius 3,5,9,15,30,50,70

Gaussian low-pass window size 3,5,9,15,30,50,70

morphological top-hat disk radius 3,5,9,15,30,50,70

morphological bottom-hat disk radius 3,5,9,15,30,50,70

the output of the feature is different between a region of high contrast and a region
of poor contrast. This would have a negative impact on the classification result
because class scores are linear combinations of features that have been monotoni-
cally transformed. This score is affected by contrast variation and therefore simple
thresholding might prove problematic in determining the class labels.

The variation of contrast across the image is effectively normalized by processing
the image using CLAHE. The parameter for CLAHE clipping level was chosen ex-
perimentally and the default (0.01) produced satisfactory results. This value is used
to clip a histogram that has been normalized to sum up to 1. Therefore, every gray
level containing more than 1% of the pixels in the image is clipped. The window
size was chosen to be one sixth of the image dimensions, which allows some pore
regions and some material regions to fit within the window. As a result, pore regions
take lower values and non-pores higher values depending on the distribution of gray
values withing the processing window, thus normalizing the contrast variation. A
typical gain in classification accuracy given by CLAHE is 2 percentage points.

Next step in the preprocessing phase is feature extraction. Commonly, feature
extraction is used to reduce the amount of data by preserving the most valuable
information and discarding the rest to simplify the classification problem. However,
in this case, the dimensionality of the data is drastically increased using redundant
and correlated features. This approach is viable because LASSO regularization is
robust against correlations in the features. Due to the feature selectivity, the best
features are selected in the sense of maximum likelihood for logistic regression model.
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The complete pool of features, for which the automatic selection is performed, is
shown in Figure 4.1. The feature set was chosen to include various types of features
using multiple window sizes in order to have the LASSO regularization choose the
best features for the problem. In total, 42 feature images are extracted from one
SEM image and are then vectorized and concatenated horizontally. All the feature
matrices from the processed images are then concatenated vertically, resulting in
one big feature matrix X, in which one row contains the feature data from one pixel
position in one of the processed images, and one column corresponds to feature data
of a single feature extracted from all the processed images. Preprocessing the 10

training images yields the feature matrix X of size 3 235 840× 42.
Once the feature matrix is complete, each feature, i.e., column is normalized to

have zero mean and unit standard deviation because otherwise the feature selec-
tivity of LASSO becomes biased. This is explained through the following example.
Suppose a high valued feature and a low valued feature that are equally good for
a classification task but are scaled differently. Now a LASSO regularized classifier
is trained with the two features and the corresponding coefficients are found. As
the scaling is different for the two features, the lower valued feature needs a higher
coefficient to have the same impact in prediction as the higher valued feature. For
this reason, features that require smaller coefficient are selected more easily in the
feature selection of the LASSO regularization, which penalizes L1-norm of the coef-
ficient vector.

This biased selection is prevented by normalizing each feature to vary in the same
numerical range. Mathematically feature normalization is expressed as

Xnormalized
ik =

Xik − µk

σk
, (4.1)

where µk and σk are the mean and standard deviation for feature k ∈ {1, ..., 42} over
all feature vectors i. The mean and standard deviation values used to normalize the
training data are stored to be used later in the segmentation phase. This is important
because the features are needed to stay consistent during training and testing phases
and across multiple images.

4.3.2 Training

This section will study two logistic regression classifiers along the regularization
path: A classifier that has the highest performance and a more sparse classifier that
has a higher degree of sparsity but slightly worse performance.

If a lot of data is available, one can simply divide it into three data sets, namely
training data, validation data and test data. First various classifiers corresponding
to different λ values can be trained using the training set. Then the performance of
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each classifier is assessed by testing them against the validation set. Based on the
obtained results, a classifier having a desired λ value and performance is selected.
Finally, the test set is used to measure the classification performance of the chosen
classifier.

However, as in this case, the amount of available data is scarce so the selection
of λ is done using cross-validation (CV). CV is an iterative method that allows to
reduce the size of validation set without producing noisy estimates of the desired λ
value [20]. Now only two data sets are needed: Training set and test set. In the
beginning of CV, the training data is divided into non-overlapping subsets. During
one iteration, also known as fold, one of these subsets is used for validation and
the rest for training after which classification performance is evaluated using some
performance measure. The iterations are continued as long as each subset has been
used once for validation. The results from the iterations are recorded and averaged
on which the selection of λ is based.

Implementation of the training phase is conducted in two steps: Cross-validation
and final training. In the cross-validation step, leave-one-image-out cross-validation
is performed, where the feature data from one image is considered a subset. During
each iteration, a logistic regression classifier is trained in MATLAB using lassoglm
function. In fact, the whole regularization path is computed where a distinct clas-
sifier is trained for each provided lambda value. A set of 100 predefined lambda
values were chosen to give enough resolution for selecting the desired degree of spar-
sity. Each of these classifiers are then validated against the fold’s test image and
AUC as a function of lambda is recorded. Once the iterations are finished, the AUC
measurements are averaged so that a graph is obtained where an average of 10 AUC
values corresponds to one λ value. In the final training step, regularization path is
trained using all the 10 training images resulting in 100 classifiers each having differ-
ent degree of sparsity depending on the lambda value. Now two of these classifiers
are selected for the segmentation phase.

Selection is based on average of AUC computed during cross-validation. The
lambda value that corresponds to the highest AUC value in the average graph is
selected as the maximum AUC classifier βmax. If there are multiple such classifiers,
the most sparse one is selected. The second classifier is the sparse classifier βsparse,
which is chosen according to one-standard-error rule [22]. The rule specifies that
the mean of AUC measurements for the classifier may be at most one standard
deviation lower than that of the maximum AUC classifier. The standard deviation
is calculated from the AUC measurements of the maximum AUC classifier over the
10 CV iterations.

The obtained classifiers have the following properties:

• The maximum AUC classifier: 31/42 nonzero coefficients, ‖βmax‖1 = 11.8029
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• The sparse classifier: 6/42 nonzero coefficients,
∥∥βsparse

∥∥
1
= 1.4527.

Both of these classifiers along with the regularization path from the final training
are shown in Figure 4.3. The classifiers have been visualized by dashed red lines in
the figure.
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Figure 4.3: The regularization path of the final training. Every λ corresponds to a classifier.
One graph corresponds to a feature and visualizes its importance in prediction at varying
regularization levels. Feature names are shown in the right side of the figure. The left side
of the figure shows coefficient values when the amount of regularization is high and only
small number of features are allowed to participate in prediction. In the right side, the
coefficient vector β is less constrained and more features are allowed to participate. The
two selected classifiers are presented in dashed vertical red lines.

Each graph corresponds to one feature and the name of the feature has been
printed on the right side of the figure. This type of presentation allows easy inter-
pretation of the trained classifiers. Features that have high absolute coefficient value
βj(λ) are the most important in classification because the coefficient is a multiplier
for the actual feature value. In practice, features that have high positive coefficient
value are used directly in the classification whereas high negative coefficients invert
the feature values after which they are added to produce the linear predictor output.

Suppose training of a classifier where the regularization parameter λ is set to a
high value and gradually decreased while more and more features are allowed in
prediction. The left side of the figure shows the features that are picked first for
the prediction task. These are Gaussian low-pass filters of window sizes 3,5 and 9.
Window size 3 has the highest coefficient magnitude and is seen as the blue graph
that first declines from the horizontal axis. If only one feature was allowed, this
would be the best among the feature pool for logistic regression. This is because
microporosity is represented in higher frequencies than big porosity and is discarded
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during the filtering. The resulting blurry image is a good approximator of the pore
locations since pores have low intensities and everything else has high intensity
values. This is inverse of what is desired which is why the feature coefficient is
negative.

Decreasing λ slightly, includes top-hat filtering and bot-hat filtering of disk radius
50 in the prediction. Top-hat filter is the yellow line that crosses the sparse classifier
at −0.5 and bot-hat filter is the other yellow line having positive coefficient at the
same λ position. Top-hat filtering of disk radius 50 is large enough to detect the
walls (gives high values to walls) between the pores whereas bot-hat filtering of same
size directly detects pores (gives high values to pores). For this reason, bot-hat filters
have positive and top-hat filters negative coefficients.

To better understand why certain features are chosen in the automatic selection
process, sample images of features are shown in Figure 4.4. Above every image
patch is the name of the feature along with the coefficient value used in the max-
imum AUC classifier. The figure displays the 20 most influential features that are
ordered according to descending coefficient magnitude. The same coefficient values
are shown also in the previous regularization path image. The image patches in
the bottom row are: original image, linear combination of the features in the figure,
sigmoid transform of the linear combination, i.e., the probability image, thresholded
probability image and the ground truth.

The highest coefficient magnitude is given to Gaussian low-pass filtering having
window size of 5. This is reasonable as it discards microporosity. The second largest
in magnitude is Top-hat filtering having disk radius of 15. Top-hat filtering detects
small hills in the image. In this case, it detects the granularity of the walls giving
high values when such grains are present and low values when not, e.g., at pore
locations. For this reason, it has a negative coefficient in order to gain high values
at pore locations. The same reasoning applies also for the next top-hat filter. In
general, features that have negative coefficient detect undesired phenomena whereas
positively valued features detect desired phenomena.

The linear combination of the presented feature images is depicted in the bottom
row. It shows that summing and multiplying all the feature images gives high values
at the pore locations and resembles the ground truth image after sigmoid transform.

4.3.3 Segmentation Procedure

This section describes the method to segment new, previously unseen SEM images
of zeolite. The class label of each pixel in a new image is predicted using one of the
previously trained classifiers. A block diagram illustrating the steps is depicted in
the bottom part of Figure 4.2.

The segmentation phase begins with the same exact preprocessing procedure that
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Figure 4.4: Image patches visualizing the 20 most influential features in the maximum
AUC classifier. Above a patch is the name of the feature and its coefficient value. The
features have been ordered according to descending absolute coefficient value, i.e., the
highest coefficient is in the top left corner. The bottom row contains images: Original,
linear combination of the features in the image, sigmoid transformed linear combination
(probability image), thresholded probability image and the ground truth. Notice that not
every feature is shown here but the 20 most influential. Features hat have an asterisk *
before the name are also present in the sparse classifier.
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was used in the training phase in order to have the data in the same form as in train-
ing phase. This includes CLAHE processing, feature extraction and normalization
providing feature matrix X.

After preprocessing, probabilities for new pixels are obtained using equation 3.18.
In practice, dot product between parameter vector β and a row from feature matrix
X is computed and added to the intercept term β0 giving the linear predictor output
for one pixel. Applying sigmoid function to the output of the linear predictor gives
the class label probability of the corresponding pixel. Predicting every pixel in the
same manner yields the probability image.

Examples of probability images are shown in Figure 4.5 where maximum AUC
prediction image and sparse prediction image are probability images given by the
maximum AUC classifier and the sparse classifier respectively. Bright areas indicate

Original Ground truth Maximum AUC prediction Sparse prediction Probability difference

Figure 4.5: Comparison of the probability images given by the maximum AUC classifier
and the sparse classifier. The rightmost image is the difference between the two predictions.

positions where the probability of a pore is high whereas dark regions are more
likely to be regions of material. This probability image is thresholded by 0.5 because
any higher value means that a pore is more probable than the background. This
operation provides a binary image which indicates the locations of pores.

The main difference between the two classifiers is certainty of predictions, which is
seen in the difference image. The probabilities given by the maximum AUC classifier
are much higher than those of the sparse classifier. Moreover, the sparse classifier
is less certain about microporosity and yields higher probabilities for it more easily
which is seen as noise like speckles and more grayish background in comparison with
the maximum AUC prediction.

4.4 Results

The performance of the designed method was evaluated from two different aspects,
namely classification performance and segmentation performance. The first consid-
ers the classifiers ability to predict pore locations separately from the rest of the
framework, and the second analyzes the system’s segmentation ability as a whole.
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Classification Results

The two trained classifiers were tested against a distinct test set of 8 images. Clas-
sification results were collected and ROC graphs based on all classifications were
constructed for both classifiers. These ROC graphs are presented in Figure 4.6 along
with the respective AUC values. As the figure shows, the problem is described well
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Figure 4.6: ROC graphs of the two trained classifiers. Also the AUC values are shown in
the legend.

with only six features and the performance of the sparse classifier is close to that of
the maximum AUC classifier. This indicates that the classification problem is fairly
uncomplicated with the given feature set since almost as good solution is found using
only a small subset of the features.

Additionally, the total number of correctly classified samples, i.e., accuracies of
both classifiers were calculated to give more intuitive presentation of the classifica-
tion performance. For accuracy computation, the probability images are thresholded
by 0.5 and the acquired results are presented in Table 4.2.

Some amount of error is present in the results due to subjectivity of the annotation
process. Sometimes human annotator might consider a phenomenon in the image as
a pore and sometimes not. This leads to inconsistencies in the training and test data
which could impair classification ability of a classifier. However, such inconsistencies
become less meaningful in reality if the classifier generalizes well and is not learning
peculiarities of the training data.
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Table 4.2: Classification accuracies of the maximum AUC classifier and the sparse classifier

Image Max AUC classifier Sparse classifier

Image 1 0.968 0.915

Image 2 0.968 0.914

Image 3 0.960 0.925

Image 4 0.955 0.903

Image 5 0.939 0.859

Image 6 0.902 0.939

Image 7 0.933 0.875

Image 8 0.901 0.875

Average 0.941 0.901

Segmentation Results

Two empirical discrepancy methods were chosen to evaluate the segmentation per-
formance. In such method, the segmentation result is compared against a human
segmented ground truth image. It is important to notice that even though a compar-
ison between ground truth and segmentation result is carried out without human
interaction, empirical discrepancy method is still subjective since a ground truth
image is the result of a subjective evaluation by one or several annotators. [40]

Pore segmentations in this case were evaluated individually by separating each
segment from the background and comparing it to the corresponding ground truth
object. It would have been possible to compare the results with the ground truth
image by simply comparing two binary images containing all the segments, but
in order to stay consistent with case 2, individual approach was chosen to have a
consistent and simple evaluation procedure.

The quality of the segmentation results was evaluated using two metrics which
give no importance to true negative classifications. This is crucial because the
number of true negative instances dominates the binary image in which a pore
has been extracted from the background. The first metric is PAS metric [41] that
measures how well two regions overlap. In this case, how well a ground truth object
overlaps with a segment given by the algorithm. It is written as

PAS =
TP

TP + FP + FN
(4.2)

where TP denotes the number of true positives, FP false positives and FN false
negative pixels. In effect, this means dividing the overlapping area of both regions
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by the total area covered by both regions. In other words, it is the area of the
intersection divided by the area of the union.

The other metric is F1-score which has the form

F1 =
2TP

2TP + FP + FN
. (4.3)

From the definitions it is seen that F1-score is very similar to PAS metric but gives
true positives twice the weight.

Comparison between segmentation result and the ground truth was done by it-
erating through every object in the ground truth image and comparing it to every
segment in the segmentation result. The segment which gave the highest PAS score
was chosen as the corresponding particle in the segmentation results. The obtained
scores using the maximum AUC classifier are shown in Table 4.3. Some ground truth

Table 4.3: Case 1 segmentation results. Every row contains the obtained results from one
test image. PAS and F1 columns show the average scores of comparing each segment in
an image to the corresponding ground truth segment.

Image number PAS average F1-score average Not found Found True number

Image 1 0.690 0.814 21 492 338

Image 2 0.713 0.827 32 665 667

Image 3 0.803 0.896 10 506 433

Image 4 0.707 0.845 63 2122 1618

Image 5 0.837 0.910 2 219 135

Image 6 0.839 0.921 1 324 185

Image 7 0.805 0.894 5 373 107

Image 8 0.796 0.894 3 674 265

Average 0.774 0.875

objects did not have a corresponding region in the segmentation results. These ob-
jects were counted and provided in "Not found" column of the table. In addition,
the total number of objects found by the method is presented in "Found" column
and "True number" is for the number of objects in the ground truth image.

The results show that the algorithm finds more objects than human annotators
are able since the difference between found and true number is high in comparison
with not found objects. A visual examination of the segmentation results confirmed
this as the pores found by the algorithm are plausible choices for pores.

An example of a segmentation result is displayed in Figure 4.7 where the orig-
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inal image patch is in the top left corner. Top middle and top right images are

Original Segmentation result Ground truth

True positives False positives False negatives

Figure 4.7: Segmentation result comparison with ground truth. From left to right and top
to bottom: Original, segmentation result, ground truth, true positive segmentations, false
positives in red and false negatives in red color. The white areas in the bottom row images
denote ground truth.

the segmentation result and ground truth images respectively. Bottom row images
visualize true positive, false positive and false negative pixels superimposed in red
color on the ground truth image.

Many false segmentations are due to subjectivity of drawing boundaries for pores
which are seen as red contours on the white ground truth objects. In these cases,
human annotator marks the pores more or less differently every time causing incon-
sistency in the ground truth segmentations whereas the method is able to segment
pores in a consistent manner. The problem is present mostly in locations where a
smooth transition of intensities make it difficult to determine one annotation that
is better than all the other choices.

As stated, no absolute truth exists in segmentation of zeolite pores due to subjec-
tive nature of defining a pore. For this reason, the numbers presented in Table 4.3
may be rather seen as a general indicator of the segmentation performance than the
absolute truth. In fact, the numbers represent the ability of the method to arrive
at one subjective predefined goal among many other possible goals that are equally
correct as this one. Therefore, it is reasonable to say that the method works better
than the numeric results indicate.
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The average time to segment one image with the maximum AUC classifier is 3.8
seconds and 1.7 seconds with the sparse classifier. The computation times were
measured in Windows 8.1 running on Intel i7-3517U processor.
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5. CASE 2: PARTICLE SEGMENTATION OF

TEM IMAGES

Traditional electron microscopy analysis of nanomaterials include many stages from
sample preparation to manually measuring the desired characteristics from produced
microscope images. One example of such analysis task is measuring the average
particle size in a nanosilver sample.

Manual calculation of average particle size is a repetitive and tedious operation
which can be aided by automatic image analysis. Automation allows acquisition of
more consistent information of materials at a faster pace than manual segmentation.
Sometimes, even previously unavailable information is acquired, e.g., in situations
where the work has been left undone due to excessive amount of work needed to
complete it. Therefore, this chapter considers segmentation of nanosilver particles
of electron microscope images for which an automatic image segmentation method
is developed, implemented and tested.

5.1 Data

The images in this case were taken with Transmission electron microscope (TEM)
which is another common imaging method in the field of materials science. In
Transmission electron microscopy, an electron beam of uniform current density is
emitted through a very thin specimen. The interaction between the specimen and
the beam alters the current density of the beam according to the properties of the
specimen. The altered beam is then captured and stored as an image. [42]

In total there are 9 TEM images of silver nanoparticles which were provided by
the Department of Materials Science of Tampere University of Technology. All the
images have dimensions 2688× 2672.

Annotation of the images was done using open source image editing program
GIMP 2.8.14 [43] in which every particle was manually extracted from the back-
ground. In effect, this process is manual segmentation resulting in a set of binary
images that hold the label information of the particles. The annotated images were
divided into two distinct sets: Training data and test data. The training data
comprise 7 images and the test set 2 images.
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5.2 Objective

Segmentation of silver nanoparticles has much in common with segmentation of
zeolite pores. The aim is to automatically extract each particle in a TEM image
from the background and store the location information into a binary image. The
main difference with the previous case is that the particles may overlap in the images
which makes segmentation task more challenging.

An example TEM image of nanosilver is presented in the left image of Figure 5.1
where each dark and round object in the image is a silver nanoparticle. The right

Figure 5.1: A transmission electron microscope image of silver nanoparticles is in the left
image. The right image shows an ideal segmentation of one particle.

image shows the general idea of how each particle should be segmented where one
particle has been separated from the rest of the image in orange color. Overlapping
sections of the neighboring particles can be seen through the transparent color.
The task is challenging as overlapping particles eliminate the use of the simplest
segmentation methods such as various types of intensity thresholding. Additionally,
some edges of the particles are not visible for human viewer which makes automatic
segmentation even more challenging.

5.3 Implementation

The developed methods in case 1 and 2 are similar in many aspects. To avoid repeti-
tion, the focus is on the differences of these methods and only a brief recapitulation
is given of the similar steps.

The method developed for particle segmentation is also training based. Unlike
in the previous case, a classifier is trained to discriminate between edge pixels and
non-edge pixels rather than directly predicting the class labels. The edge probability
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image given by logistic regression is then used as an input for seeded watershed
segmentation. Again, the choice of classifier is logistic regression for it is fast and
produces models that are easy to interpret.

The block diagram of the method is depicted in Figure 5.2 where the upper part
shows the steps of the training phase and the lower part shows the steps of the
segmentation phase. The regions of lighter color correspond to preprocessing and

Find seed 
points

Test image

Watershed 
segmentation

Segmented 
image

Logistic 
regression 

probabilities

Feature 
extraction Normalization

TrainingFeature 
extraction Normalization

Training 
images

Ground truth images

Trained 
classifier

Training phase

Segmentation phase

Preprocessing

Training

Segmentation

Annotation

Figure 5.2: A block diagram of the case 2 segmentation pipeline. The areas on the lighter
green background denote preprocessing and the darker color denotes the actual segmenta-
tion phase.

the regions of darker color denotes the actual segmentation. The partitioning of the
segmentation phase has the same structure as shown in Figure 2.2.

The arrows between training and segmentation phases are exactly the same as in
case 1. The arrow from the trained classifier block to the feature extraction block
denotes classifier’s sparsity information and the arrow between two normalization
blocks denotes the use of same normalization parameters in both phases.

5.3.1 Preprocessing

The first step in preprocessing is resizing in which image dimensions are reduced by
50%. The dimensions are reduced in order to keep the amount of data reasonable
without having significant effect on the meaningful information. Here, the impor-
tant information is the boundaries of the particles which should be sharp and well
distinguishable after the reduction.

The second step is feature extraction. In total 44 features, which is two more than
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in the previous case, are extracted and shown in Table 5.1. Since CLAHE is not used

Table 5.1: The complete pool of features used in the training phase. From these features,
the best are chosen automatically during training. Unlike in case 1, CLAHE is now used
as a feature.

Feature Parameter Values

Local Variance window size 3,5,9,15,30,50,70

Sobel gradient kernel size 3,5,9,15,30,50,70

Morphological edges disk radius 3,5,9,15,30,50,70

Gaussian low-pass window size 3,5,9,15,30,50,70

Top-hat filtering disk radius 3,5,9,15,30,50,70

Bot-hat filtering disk radius 3,5,9,15,30,50,70

CLAHE number of blocks 5 × 5, 15 × 15

in the preprocessing step, it is included to the pool of features to improve generality
of the feature set. CLAHE is not needed in the preprocessing phase because the
TEM images have fairly even illumination and the amount of contrast variation is
minimal. As a feature, it functions the same way as the others. The input image
is processed with CLAHE resulting in an image in which each pixel contains the
feature value of the corresponding original pixel. The parameters were chosen to be
0.01 for the clipping level and the window size presented in the table is the number
of blocks each image is divided into.

Now all the features are extracted by image domain filtering. The resulting
images are vectorized and concatenated horizontally yielding the feature matrix for
one image. This is repeated for all the images and the obtained feature matrices are
concatenated vertically giving the big feature matrix X of size 15 064 896 × 44. It
is good to notice that the amount of data is approximately 5 times higher than in
case 1.

The final step in preprocessing phase is feature normalization is identical to the
one performed in case 1 (4.3.1). This operation normalizes the features to have zero
mean and unit standard deviation.

5.3.2 Training

Training a classifier for silver nanoparticle edge prediction has the same goal as
previously obtaining two classifiers with different degree of sparsity. The first one
is a classifier that has the best performance and the second one is a less complex
sparse classifier having slightly worse performance.
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At first, classifiers were trained while the class imbalance was considerably high.
In fact, the average percentage of edge pixels in the training images is 5.39% which
has the effect of ML to find a solution that predicts every sample to the non-edge
class. Regarding this, it has been studied that training with imbalanced classes has
similar effect on classification as setting imbalance to the classification error costs [44;
45]. For example, reducing samples from one class reduces also its misclassification
error cost. The found solution implies that the misclassification error cost for edge
class is so low that the best solution is to ignore the class altogether.

This behavior can be avoided by balancing the amount of samples in the classes,
i.e, under-sampling. As the amount of edge samples is scarce, the number of non-
edge samples is reduced for training. The manner in which the samples are selected
is based on randomization. For each image in the training set, the number of edge
samples are counted and an equal amount of non-edge samples are randomly picked
from the image and the rest are discarded. This operation results in 1:1 edges-
to-non-edges ratio which solves the initial problem, and a better ML estimate is
found. Under-sampling the non-edge class reduces the amount of training data
giving feature matrix X of dimensions 1 267 127× 44.

However, using this classifier in practice can be problematic as the found ML so-
lution assumes both classes to be equally probable. As a consequence, thresholding
the probabilities of new samples by 0.5 will result in many false positive classifica-
tions as the operating conditions of the classifier are different. This might not be a
big issue in practice since the segmentation method does not threshold the proba-
bility image but uses it directly, and the highest probabilities should be induced by
the true edge pixels. ROC graph together with AUC value is a useful performance
measure in this case since it does not operate on a single threshold level but rather
all of them. This is why it is the choice of performance measure for cross-validation.

Training of the classifiers is conducted in two steps: Cross-validation and final
training. Both of these steps were computed in MATLAB using the Glmnet pack-
age [26] due to fast algorithm [46]. This package would have been used in the
previous case as well, but some bugs prevented its efficient use and lassoglm was
selected instead.

The CV step is otherwise the same as previously, but now the number of subsets
in the training data is 7 where one subset corresponds to one image. During each
iteration, AUC of every classifier is recorded as a function of λ. Once the iterations
are finished, the measurements are averaged so that a graph is obtained where an
average of 7 AUC measurements corresponds to one λ value.

In the final training step, a regularization path is trained using all 7 images. As
previously, two classifiers are selected: The maximum AUC classifier βmax and the
sparse classifier βsparse. The first one is selected based on the maximum value in the
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averaged AUC graph, and the second is chosen according to the one-standard-error
rule.

The obtained classifiers have the following properties:

• The maximum AUC classifier: 41/44 nonzero coefficients, ‖βmax‖1 = 18.1606

• The sparse classifier: 16/44 nonzero coefficients,
∥∥βsparse

∥∥
1
= 1.9039

These classifiers have been plotted together with the regularization path from final
training in Figure 5.3. where each coefficient has been visualized as a function of
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Figure 5.3: The regularization path of final training. The classifiers are denoted by dashed
red lines. The graphs visualize coefficient values of features at various levels of regulariza-
tion. Feature names are shown in the right side of the figure.

lambda and the name of the feature is printed on the right side of the figure. The
left side of the figure shows model coefficients when the amount of regularization is
high, i.e., the L1-norm of the model coefficient vector is small.

Suppose training of a classifier where the λ parameter is set at a high value and
begins to decrease gradually. The first feature allowed in prediction is morphological
edge filter with disk radius of 5. It is the green graph that rises first from the
horizontal axis. As λ decreases more, both morphological edge filters and top-hat
filters of small radii begin to get nonzero coefficients. At the λ value of the sparse
classifier, local variance with window size of 9 has become the feature that has the
highest influence in the prediction. It is the topmost red graph at the position of
sparse classifier.

A visualization of the most important features is depicted in Figure 5.4, where
each feature has been presented along with its name and coefficient value. The im-
ages are sorted according to coefficient magnitude so that the upper left feature has
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Figure 5.4: Image patches visualizing the 20 most influential features in the maximum
AUC classifier. The name of the feature and its coefficient value is presented above the
patches. Ordering of the features is based on descending absolute coefficient value, i.e.,
the highest coefficient is in the top left corner. The bottom row contains images: Original,
linear combination of the features in the image, sigmoid transformed linear combination
(probability image), thresholded probability image and the ground truth. Features hat
have an asterisk * before the name are also present in the sparse classifier.
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the highest magnitude. The coefficients in the image are the same as in maximum
AUC classifier, which can be seen as well from the previous regularization path im-
age 5.3. The image patches in the bottom row are: Original image, linear combina-
tion of the coefficients and features, probability image (sigmoid transformed linear
combination), thresholded probability image using threshold 0.5 and the ground
truth.

Perhaps counterintuitively, the first feature is a Sobel edge detector of window
size 50 having a negative coefficient value. Closer examination reveals that linear
combination of all the positively valued edge detection features generate blurry edges
which become sharper as negatively valued edge detectors are added.

The third feature is a Gaussian low-pass filter with window size of 30. Since the
coefficient is negative, adding this feature to the linear predictor output increases
the probabilities of edges when the gray level is low, i.e., at particle locations. The
reason being that it is more common for the annotations to be on top of a dark
particle than the background due to overlapping particles. This phenomenon is
learned by the classifier giving higher edge probability at the position of a dark
gray level. The effect is also seen from the linear combination image where particle
interiors are generally lighter.

In the bottom row of the figure, sigmoid transforming the linear combination
gives the probability image which is similar to the ground truth. The expected false
positive classifications, due to under-sampling, are seen as noise near the particle
edges as well as in the thickness of the edges.

5.3.3 Segmentation Procedure

The most prominent differences between case 1 and case 2 lie in the segmentation
phase that is also seen from the block diagram in Figure 5.2. The general idea
of the method is to segment previously unseen TEM images of nanosilver by ap-
plying seeded watershed segmentation. The watershed method is performed on an
edge probability image given by logistic regression classifier and the seed points
are searched using a combination of distance transform, morphological filtering and
watershed transform.

Edge Probability Image

Edge probabilities in a TEM image are predicted using the previously trained clas-
sifiers. Before edges may be predicted, the new image needs to be preprocessed.
Preprocessing is done in the same manner as in the training phase in section 5.3.1
where features are extracted and normalized yielding feature matrix Xnew. Every
feature needs not to be extracted because some coefficients in the parameter vector
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β are zero, which reduces the computational demand.
Once features have been extracted, the probabilities of edges are predicted by

calculating dot product between each row in Xnew and the model parameters β.
The product is then added to the intercept term β0 and sigmoid transformed to
determine the probability of an edge for the corresponding pixel. The same operation
is performed for each row in the feature matrix and the resulting probabilities are
reordered to form an image.

Examples of the probability images are presented in Figure 5.5 where the edges
in the leftmost image are predicted using the two previously trained classifiers. The
second image from the left is an edge probability image given by the maximum AUC
classifier and the third one is predicted using the sparse classifier. The rightmost
image is a difference image obtained by subtracting the third image from the second
one. The difference image reveals that the maximum AUC prediction tends to give

Original Maximum AUC prediction Sparse prediction Difference of probabilities

Figure 5.5: A comparison between the probability images obtained by the two classifiers.
The images are: Original, probability image given by the maximum AUC classifier, prob-
ability image given by the sparse classifier and the difference between the two probability
images.

higher probabilities for the particle textures which are seen as the white regions.
The classifier also exhibits more precise and narrow edges which is seen as the dark
rims around strong edges. Perhaps the most important difference is the certainty of
predictions on overlapping particles. Having higher edge probabilities lowers the risk
of segmenting two particles under a single segment. For this reason, the maximum
AUC classifier is selected as the classifier for the following steps since it predicts
overlapping edges more accurately.

Experiments showed that low-pass filtering the probability image yields smooth
edges in the produced segments. The operation made the filtered edge correspond
better with the actual border of the particle. However, this was not confirmed by
any quantitative measure. The choice of filter is Gaussian low-pass filter σ = 2.5

and window size 20 × 20. This operation provides the final edge probability image
that is given as an input to the watershed algorithm.
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Finding Seed Points for Particles

The general idea behind seed point searching is to find one seed point for each particle
in the image because watershed segmentation creates exactly as many segments as
there are seed points. Since every pixel must belong to either the watershed lines or
one of the catchment basins, a separate seed region is generated for the background
as well to prevent including background in the particle segments.

Seed point searching for particles begins with thresholding the original image
using Otsu’s method [27]. It is a histogram based segmentation method that finds a
threshold level that minimizes the within class variance of the two created histogram
partitions. It has been shown that this is equivalent to maximizing the between
class variance. Thresholding produces an initial segmentation S where foreground
particles (denoted by 1) are extracted from the background (denoted by 0). An
example image of Otsu’s thresholding method is shown in the middle of Figure 3.15,
where the original image patch is in the left.

Particles in the TEM images are often connected to each other, which has the
effect of forming connected regions in the initial segmentation. Some of these con-
nections can be removed by morphological opening which also reduces noise from the
binary image induced by global thresholding. The structuring element was chosen
not to remove the smallest particles in the image, therefore a disk with radius of 10
was found suitable for the task. The binary image resulting from this operation is
denoted by Sc.

Next, the inverse of Sc is distance transformed. The output is a grayscale image
D where the background regions have value 0 and object regions have varying gray
levels depending on the distance to the nearest background pixel. The transform
produces highest values near the centers of the objects and can be effectively used
to determine points within objects even if the object border is not entirely visible.

The seed points for watershed segmentation are simply chosen to be local maxima
in the distance transform D. For finding the local maxima, grayscale morphological
dilation proves useful. The operation to find maxima is expressed mathematically
as

M = D − (D ⊕B), (5.1)

where B is the structuring element. Here the dilated distance transform image is
subtracted from itself, which sets local maxima to value 0. This is because grayscale
dilation does not alter their values as it is effectively maximum filtering. The result-
ing image M may be then thresholded to obtain a binary image Mb containing the
seed points. A good initial value for the size of the structuring element is approx-
imately the average particle size even though overlapping might cause situations
where two pinnacles of the distance transform fit within the structuring element.
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This can be controlled by reducing the size of the structuring element. In this case,
a disk shaped structuring element of size 50 was used.

It is important to notice that choosing a large structuring element for search-
ing maxima does not restrict multiple maxima to be found within the structuring
element since the distance transform itself may have the same maximum value at
various locations within a small area. This is the case for many objects in the images.

Because distance transform calculates the distance to the nearest white pixel, all
background pixels get value zero. As an undesired consequence, these positions are
regarded as local maxima as well if they form a large enough continuous area that
fits the structuring element. A visualization of the undesired local maxima in Mb

is seen in the left image of Figure 5.6 as the large red regions. A straightforward

Figure 5.6: Local maxima in a distance transform denoted by red crosses. The left image is
the result Mb after morphological local maxima search. The right image shows the filtered
result which is based on initial segmentation.

approach to remove these regions is to allow only maxima that belong to foreground
based on the initial segmentation S. This operation yields the final seed image and
it is depicted in the right image.

Finding Seed Points for the Background

Another seed image is constructed for the background in order to have one contin-
uous region for the background after watershed segmentation. For this, a Voronoi
diagram is computed. Voronoi diagram is a partitioning of an image according to
a set of points. A partition contains all the pixels of the image that are closer to
one point than any other point. An important property of the diagram is that the
divide lines are connected if the points are not lying on a straight line. [47]

Meyer showed that watershed transform of a distance image is equal to the
Voronoi diagram [48]. Therefore, the Voronoi diagram of the initial segmentation
Sc is obtained by distance transforming the inverse of it and applying watershed
transform. Instead of using single points in the partitioning, each distinct object in
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the initial segmentation is paired with a region. The divide lines of the watershed
transform are the Voronoi diagram for Sc.

An example of the Voronoi diagram of an initial segmentation is presented in
Figure 5.7 in red color. The diagram is chosen as the seed region for the background.

Figure 5.7: Background seed region obtained by computing Voronoi diagram of an initial
segmentation. The divide lines are shown in red color.

Now that the seed points for background and particles are selected, they are given
to the watershed method, which separates nanoparticles from the background.

Watershed Segmentation

The actual segmentation of particles is performed using seeded watershed segmen-
tation on a blurred edge probability image. The two seed images obtained in the
previous sections are combined together by logical OR operation to conveniently
hold all the needed points in one image.

In MATLAB, seeded watershed segmentation is achieved by modifying the input
image rather than giving the seed points as parameters for the watershed function.
To do this, MATLAB provides the function imimposemin, which modifies the input
image to have local minima only in specified locations. It takes two images as
parameters: The image to be modified and a binary image indicating the locations
the seed points. The algorithm is based on morphological reconstruction, which is
not considered in this work.

An example of an image modified by imimposemin is presented in Figure 5.8,
where the left image shows the found seed points superimposed on the blurred edge
probability image. The locations of the seed points are now the only local minima
in the right image, and the traditional unseeded watershed segmentation is executed
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Figure 5.8: The left image shows the continuous background seed points (red line) and
particle seed points (crosses) superimposed on the blurred edge probability image. For
visualization purposes the background seed points have been dilated. The right image is
the modified probability image where the only local minima are in the positions of particle
seed points and background seed region.

on it. This is effectively seeded watershed segmentation and it partitions the image
into particle and background regions according to the specified local minima.

5.4 Results

This chapter is divided into two sections where the performance of the developed
method is evaluated from two different aspects. In the first section, classification
performance is evaluated independently from the rest of the framework, and the
second section considers segmentation ability of the whole procedure.

Classification Results

Both of the trained classifiers were tested against the test set of 2 images. The
classification results were collected from the two images for both classifiers, and
ROC graphs were constructed based on the acquired results. These are shown
in Figure 5.9, where the corresponding AUC values are also provided. The figures
suggest that the classification problem, with the given feature set, is more challenging
than in case 1. This is seen from the relative decrease in the AUC score between the
maximum AUC classifier and the sparse classifier. The reason behind is that efficient
discrimination of new samples simply requires more information which indicates that
the problem is more complex.

The accuracies of the classifiers were not considered in this case because true
negative samples dominate the class prior probabilities. Consequently, classifying
every sample to non-edge class, i.e., misclassifying every edge pixel would yield
accuracy of approximately 94%. This percentage is also known as the chance level.
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Figure 5.9: ROC graphs of the two trained classifiers together with AUC values.

Segmentation Results

The method in assessing segmentation performance is otherwise the same as in
previous case, but here some preparation is needed. The preparation step removes
two types of segments from the segmentations to gain more informative results.

The first type of segments originate from partitioning of the background. Even
though the method aims to create one uniform segment for the background, some-
times more than one is produced. This occurs when separate objects in the initial
segmentation are located approximately on a line, and are not surrounded by other
particles, such as the three topmost particles in Figure 5.1. In a case like this,
the Voronoi diagram produces a partition that spans across the image. For such
partition, the divide line is cut by the image borders resulting in a non-continuous
background seed region. This leads to creation of two distinct regions for the back-
ground as watershed creates a separate segment for each disconnected seed region.
Therefore, to avoid ground truth objects from having background as the correspond-
ing segmentation, all the background regions were manually selected and removed.
This is because measuring the overlap between a background segment and a ground
truth object is not meaningful in this work.

The second type of removed segments are regions of area less than 50 pixels. These
segments are due to the Meyer flooding algorithm, used by MATLAB’s watershed
function. The algorithm has tendency to create tiny undesired segments [37]. In
reality, such tiny regions are not plausible choices for a nanoparticle segments and
are thus not considered in the results.

After the preparation, the segmentation performance is evaluated in the exact
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same way as in the previous case, where the ground truth objects are compared to
the corresponding region in the segmentations. The correspondence is determined by
the highest PAS score between a ground truth object and a segment. The obtained
PAS scores and F1 scores are presented in Table 5.2, where each row holds the
average score from one test image. The bottom row shows the average of all the
test images. The table contains also counts of objects that have no corresponding

Table 5.2: Case 2 segmentation results. Every row contains the obtained results from one
test image. PAS and F1 columns show the average scores of comparing each segment in
an image to the corresponding ground truth segment.

Image number PAS average F1-score average Not found Found True number

Image 1 0.698 0.832 3 68 81

Image 2 0.820 0.896 6 24 32

Average 0.759 0.864

particle in the segmentations. This is shown in the "Not found" column. The
"Found" column displays the number of distinct segments and the "True number"
is the actual number of particles in the images.

Particles are considered not found when the PAS score is below 0.05 because
some particles overlap with segments that successfully segment another particle in
the image. In this case it is obvious that the particle is not found even though it
is overlapping with a segment. A common attribute for these situations is a small
nonzero PAS score and simple thresholding solves the problem.

The sum of the "Not found" and "Found" columns is not equal to "True number"
because some particles have the same corresponding segment. Another cause for
the difference between the two numbers is oversegmentation of particles. These
two errors are among the five most noticeable errors present in the segmentations.
Examples of these are shown in Figure 5.10, where the erroneous segments are
superimposed in red color on the original TEM image.

The leftmost image in the figure is an example of two nanoparticles sharing a
segment. This occurs when local maxima are searched from the distance transform
and only one maxima is found for the two overlapping particles.

The second image from the left shows a segment that has some additional back-
ground included. This error occurs because overlap of the particles has the effect
of forming enclosed background areas in the initial segmentation. This prevents
the background seed region from reaching these enclosed areas, thus including the
enclosed area to some of the surrounding particle segments.

The third image is an error due to pronounced texture patterns in the particle.
Sometimes strong textures split objects during initial segmentation, which leads to
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Figure 5.10: Examples of the five most common segmentation errors.

finding two seed points within one particle. Some other time, the textures resulted in
high edge probabilities causing partial segmentation during watershed segmentation.

The fourth image is an error where the background seed region overlaps with a
particle. In the image, true borders of the particle are denoted by a white line and
the background seed is denoted by a black line. In this case, the particle region is not
able to expand over the background seed which is why the segmentation completes
erroneously.

The fifth type of error originates from rod shaped particles. If the shape of the
particle is elliptic, more than one local maximum is found within the particle. The
rightmost image shows the three seed points within an elliptic particle.

An example segmentation is presented in Figure 5.11 , where a faint line is drawn
in the image to assess the quality of segmentations in two different scenarios. The
upper part of the test image shows segmentation performance when the particles
are not overlapping. Within this part, the average PAS score of the segmentation is
0.83815. The bottom part of the image contain particles having much more overlap
where the average PAS score is 0.56392. Together with visual examination, it is
evident that the method performs well if the particles have low amount of overlap
and not as well when the amount of overlap is high.

It is observed that the segments created in high overlap conditions tend to be
larger than the average particle size. Conversely, in the case of little overlap, the
produced segments are slightly smaller than the corresponding ground truth objects.
This is explained by the fact that error types of 1 and 2 are more common in
clustered regions whereas types 3, 4 and 5 are more common in non-clustered regions.
However, it is good to notice that these results are derived from a small amount of
test data, and to gain more definitive results, more tests should be performed.

As opposed to case 1, the annotation process is less subjective and the errors
caused by it are rather small. This is because the images are of good quality, and
there are not many options on how to draw the boundaries for a particle. On
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Figure 5.11: Segmentation result for test image 1. For visualization purposes, each segment
has been given a random color. The dashed line is drawn to divide the image into two
partitions based on the amount of overlap. PAS score for the upper segmentation is 0.83815
and for the lower part 0.56392

the other hand, in clustered regions, particle boundaries are hidden behind other
particles which required some guessing to be done during the annotation process.
Moreover, it was sometimes difficult to determine which borders belong to which
particle in a cluster and some mistakes might have been made.

On average, segmentation of one image took 23.8 seconds when using the max-
imum AUC classifier and 14.2 seconds with the sparse classifier. The computation
times were measured in Windows 8.1 running on Intel i7-3517U processor. It is
clear that the method, using either of the classifiers, is much faster than manual
segmentation.
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6. CONCLUSION

This thesis is a case study of two image segmentation problems in the field of ma-
terials science. In both cases, automatic segmentation methods were developed and
tested. Based on the obtained results, the methods can successfully segment electron
microscope images of zeolite pores and silver nanoparticles.

The method from case 1 exhibits solid performance and is able to find more
pores faster and with better consistency than humans. A comparison between the
produced segments and human annotated ground truth segments yields average
PAS score of 0.79 and F1 score of 0.89. Much of the error is due to ambiguity of
the annotation process which is why it is reasonable to assume that the method
performs even better than what the results imply.

The segmentation results given by the case 2 method are satisfactory for particles
which have small amount of overlap. However, in heavily clustered regions, the
segmentations are flawed. The measured average scores are 0.76 for PAS metric and
0.86 for F1 score. A notable drawback of the method is its inability to properly
segment overlapping particles, though, by avoiding clustered particle samples, the
method is able to produce fine segments much faster than manual segmentation.

Some improvement ideas were considered for the second case during the final
stages of the work. It could be beneficial to study further the amount of under-
sampling of the training data to have it correspond better to the true operating
conditions of the classifier. It is likely that it would have positive effect on the
probabilities within particles that have strong texture patterns. Another idea to de-
crease probabilities within particles is to experiment with sampling methods other
than randomly selecting the negative samples. As an example, selecting more dif-
ficult samples from particle interiors where there are strong texture patterns could
reduce the edge probabilities in similar cases. Furthermore, the linearity of the clas-
sifier is probably causing some errors in the classification phase. Some nonlinearity
could be introduced to the system by augmenting features. In fact, a simple exper-
iment revealed that the classification performance is improved 2 percentage points
by augmenting a subset of the features to the second power.

Generally speaking, the task of image segmentation is ambiguous if it is not known
beforehand what needs to be extracted. For instance, silver nanoparticles may be
segmented in two different ways: Extracting each particle individually or all of them
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as a group. This is the reason why information of the desired outcome needs to be
somehow inserted into the segmentation method. Conventionally, the information
is introduced already in the selection of the algorithm, in the parameter choices
and general assumptions of the problem which requires expertise in the field of
image analysis. Training based segmentation methods are different in the sense that
anyone who knows what is to be extracted, can collect the training data containing
information of the segmentation target. In other words, the designing phase is not
solely in the hands of the expert but the person who gathers the data as well.

What makes it interesting is combining it with sparsity promoting regularization.
As explained in the work, sparsity promotion allows the use of general purpose pool
of features from which the best features are drawn according to the problem. In
simpler terms, this means that the method is able to adapt to the segmentation
task without requiring any additional user interaction, thus making its operation
suitable for anyone regardless of background.

This evoked an idea of creating a semi-automatic image segmentation software.
The software would allow users to collect training data from images of interest by
clicking or painting over the chosen pixels. Choosing LASSO regularized logistic
regression classifier as the core functionality of the software would have two major
benefits. The first one is feature selectivity making the classifier more adaptive and
suitable for various tasks. The second one is the probabilistic output of logistic
regression. In order to produce class labels, simple thresholding is applied where
the threshold level can be controlled by the user. And because the threshold level
is not known in advance, the validation process could be based on AUC, which
evaluates classifiers over all threshold levels. Similar software already exist, such
as Ilastik [49], where the feature selection is left for the end user. This however,
requires knowledge of the task as well as the features to be used efficiently.

The algorithms developed during this thesis had a central role in calculating pore
parameters of zeolite structures in the referred publication [50]. The work put into
this thesis produced also an interactive segmentation software TUT Nanoparticle
Annotator for the Department of Materials Science of Tampere University of Tech-
nology.
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