25 research outputs found

    Using High-Level Processing of Low-Level Signals to Actively Assist Surgeons with Intelligent Surgical Robots

    Get PDF
    Robotic surgical systems are increasingly used for minimally-invasive surgeries. As such, there is opportunity for these systems to fundamentally change the way surgeries are performed by becoming intelligent assistants rather than simply acting as the extension of surgeons' arms. As a step towards intelligent assistance, this thesis looks at ways to represent different aspects of robot-assisted surgery (RAS). We identify three main components: the robot, the surgeon actions, and the patient scene dynamics. Traditional learning algorithms in these domains are predominantly supervised methods. This has several drawbacks. First many of these domains are non-categorical, like how soft-tissue deforms. This makes labeling difficult. Second, surgeries vary greatly. Estimation of the robot state may be affected by how the robot is docked and cable tensions in the instruments. Estimation of the patient anatomy and its dynamics are often inaccurate, and in any case, may change throughout a surgery. To obtain the most accurate information, these aspects must be learned during the procedure. This limits the amount of labeling that could be done. On the surgeon side, different surgeons may perform the same procedure differently and the algorithm should provide personalized estimations for surgeons. All of these considerations motivated the use of self-supervised learning throughout this thesis. We first build a representation of the robot system. In particular, we looked at learning the dynamics model of the robot. We evaluate the model by using it to estimate forces. Once we can estimate forces in free space, we extend the algorithm to take into account patient-specific interactions, namely with the trocar and the cannula seal. Accounting for surgery-specific interactions is possible because our method does not require additional sensors and can be trained in less than five minutes, including time for data collection. Next, we use cross-modal training to understand surgeon actions by looking at the bottleneck layer when mapping video to kinematics. This should contain information about the latent space of surgeon-actions, while discarding some medium-specific information about either the video or the kinematics. Lastly, to understand the patient scene, we start with modeling interactions between a robot instrument and a soft-tissue phantom. Models are often inaccurate due to imprecise material parameters and boundary conditions, particularly in clinical scenarios. Therefore, we add a depth camera to observe deformations to correct the results of simulations. We also introduce a network that learns to simulate soft-tissue deformation from physics simulators in order to speed up the estimation. We demonstrate that self-supervised learning can be used for understanding each part of RAS. The representations it learns contain information about signals that are not directly measurable. The self-supervised nature of the methods presented in this thesis lends itself well to learning throughout a surgery. With such frameworks, we can overcome some of the main barriers to adopting learning methods in the operating room: the variety in surgery and the difficulty in labeling enough training data for each case

    Image-Based Scene Analysis for Computer-Assisted Laparoscopic Surgery

    Get PDF
    This thesis is concerned on image-based scene analysis for computer-assisted laparoscopic surgery. The focus lies on how to extract different types of information from laparoscopic video data. Methods for semantic analysis can be used to determine what instruments and organs are currently visible and where they are located. Quantitative analysis provides numerical information on the size and distances of structures. Workflow analysis uses information from previously seen images to estimate the progression of surgery. To demonstrate that the proposed methods function in real-world scenarios, multiple evaluations on actual laparoscopic image data recorded from surgeries were performed. The proposed methods for semantic and quantitative analysis were successfully evaluated in live phantom and animal studies and also used during a live gastric bypass on a human patient

    Mastering Endo-Laparoscopic and Thoracoscopic Surgery

    Get PDF
    This is an open access book. The book focuses mainly on the surgical technique, OR setup, equipments and devices necessary in minimally invasive surgery (MIS). It serves as a compendium of endolaparoscopic surgical procedures. It is an official publication of the Endoscopic and Laparoscopic Surgeons of Asia (ELSA). The book includes various sections covering basic skills set, devices, equipments, OR setup, procedures by area. Each chapter cover introduction, indications and contraindications, pre-operative patient’s assessment and preparation, OT setup (instrumentation required, patient’s position, etc.), step by step description of surgical procedures, management of complications, post-operative care. It includes original illustrations for better understanding and visualization of specific procedures. The book serves as a practical guide for surgical residents, surgical trainees, surgical fellows, junior surgeons, surgical consultants and anyone interested in MIS. It covers most of the basic and advanced laparoscopic and thoracoscopic surgery procedures meeting the curriculum and examination requirements of the residents

    Mastering Endo-Laparoscopic and Thoracoscopic Surgery

    Get PDF
    This is an open access book. The book focuses mainly on the surgical technique, OR setup, equipments and devices necessary in minimally invasive surgery (MIS). It serves as a compendium of endolaparoscopic surgical procedures. It is an official publication of the Endoscopic and Laparoscopic Surgeons of Asia (ELSA). The book includes various sections covering basic skills set, devices, equipments, OR setup, procedures by area. Each chapter cover introduction, indications and contraindications, pre-operative patient’s assessment and preparation, OT setup (instrumentation required, patient’s position, etc.), step by step description of surgical procedures, management of complications, post-operative care. It includes original illustrations for better understanding and visualization of specific procedures. The book serves as a practical guide for surgical residents, surgical trainees, surgical fellows, junior surgeons, surgical consultants and anyone interested in MIS. It covers most of the basic and advanced laparoscopic and thoracoscopic surgery procedures meeting the curriculum and examination requirements of the residents

    Efficient design of precision medical robotics

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mechanical Engineering, 2012.This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.Cataloged from student-submitted PDF version of thesis.Includes bibliographical references (p. 106-114).Medical robotics is increasingly demonstrating the potential to improve patient care through more precise interventions. However, taking inspiration from industrial robotics has often resulted in large, sometimes cumbersome designs, which represent high capital and per procedure expenditures, as well as increased procedure times. This thesis proposes and demonstrates an alternative model and method for developing economical, appropriately scaled medical robots that improve care and efficiency, while moderating costs. Key to this approach is a structured design process that actively reduces complexity. A selected medical procedure is decomposed into discrete tasks which are then separated into those that are conducted satisfactorily and those where the clinician encounters limitations, often where robots' strengths would be complimentary. Then by following deterministic principles and with continual user participation, prototyping and testing, a system can be designed that integrates into and assists with current procedures, rather than requiring a completely new protocol. This model is expected to lay the groundwork for increasing the use of hands-on technology in interventional medicine.by Nevan Clancy Hanumara.Ph.D

    Endoscopic and magnetic actuation for miniature lifesaving devices

    Get PDF

    Endoscopy

    Get PDF
    Endoscopy is a fast moving field, and new techniques are continuously emerging. In recent decades, endoscopy has evolved and branched out from a diagnostic modality to enhanced video and computer assisting imaging with impressive interventional capabilities. The modern endoscopy has seen advances not only in types of endoscopes available, but also in types of interventions amenable to the endoscopic approach. To date, there are a lot more developments that are being trialed. Modern endoscopic equipment provides physicians with the benefit of many technical advances. Endoscopy is an effective and safe procedure even in special populations including pediatric patients and renal transplant patients. It serves as the tool for diagnosis and therapeutic interventions of many organs including gastrointestinal tract, head and neck, urinary tract and others

    Injury and Skeletal Biomechanics

    Get PDF
    This book covers many aspects of Injury and Skeletal Biomechanics. As the title represents, the aspects of force, motion, kinetics, kinematics, deformation, stress and strain are examined in a range of topics such as human muscles and skeleton, gait, injury and risk assessment under given situations. Topics range from image processing to articular cartilage biomechanical behavior, gait behavior under different scenarios, and training, to musculoskeletal and injury biomechanics modeling and risk assessment to motion preservation. This book, together with "Human Musculoskeletal Biomechanics", is available for free download to students and instructors who may find it suitable to develop new graduate level courses and undergraduate teaching in biomechanics
    corecore