1,507 research outputs found

    Fuzzy Logic Control for Multiresolutive Adaptive PN Acquisition Scheme in Time-Varying Multipath Ionospheric Channel

    Get PDF
    Communication with remote places is a challenge often solved using satellites. However, when trying to reach Antarctic stations, this solution suffers from poor visibility range and high operational costs. In such scenarios, skywave ionospheric communication systems represent a good alternative to satellite communications. The Research Group in Electromagnetism and Communications (GRECO) is designing an HF system for long haul digital communication between the Antarctic Spanish Base in Livingston Island (62.6S, 60.4W) and Observatori de l’Ebre in Spain (40.8N,0.5E) (Vilella et al., 2008). The main interest of Observatori de l’Ebre is the transmission of the data collected from the sensors located at the base, including a geomagnetic sensor, a vertical incidence ionosonde, an oblique incidence ionosonde and a GNSS receiver. The geomagnetic sensor, the vertical incidence ionosonde and the GNSS receiver are commercial solutions from third parties. The oblique incidence ionosonde, used to sound the ionospheric channel between Antarctica and Spain, was developed by the GRECO in the framework of this project. During the last Antarctic campaign, exhaustive measurements of the HF channel characteristics were performed, which allowed us to determine parameters such as availability, SNR, delay and Doppler spread, etc. In addition to the scientific interest of this sounding, a further objective of the project is the establishment of a backup link for data transmission from the remote sensors in the Antarctica. In this scenario, ionospheric communications appear to be an interesting complementary alternative to geostationary satellite communications since the latter are expensive and not always available from high-latitudes. Research work in the field of fuzzy logics applied to the estimation of the above mentioned channel was first applied in (Alsina et al., 2005a) for serial search acquisition systems in AWGN channels, afterwards applied to the same channel but in the multiresolutive structure (Alsina et al., 2009a; Morán et al., 2001) in papers (Alsina et al., 2007b; 2009b) achieving good results. In this chapter the application of fuzzy logic control trained for Rayleigh fading channels (Proakis, 1995) with Direct-Sequence Spread-Spectrum (DS-SS) is presented, specifically suited for the ionospheric channel Antarctica-Spain. Stability and reliability of the reception, which are currently being designed, are key factors for the reception. It is important to note that the fuzzy control design presented in this chapter not only resolves the issue of improving the multiresolutive structure performance presented by (Morán et al., 2001), but also introduces a new option for the control design of many LMS adaptive structures used for PN code acquisition found in the literature. (El-Tarhuni & Sheikh, 1996) presented an LMS-based system to acquire a DS-SS system in Rayleigh channels; years after, (Han et al., 2006) improved the performance of the acquisition system designed by (El-Tarhuni & Sheikh, 1996). And also in other type of channels, LMS filters are used as an acquisition system, even in oceanic transmissions (Stojanovic & Freitag, 2003). Although the fuzzy control system presented in this chapter is compared to the stability control used in (Morán et al., 2001) it also can be used to improve all previous designs performance in terms of stability and robustness. Despite this generalization, the design of every control system should be done according to the requirements of the acquisition system and the specific channel characteristics

    Microprocessor based signal processing techniques for system identification and adaptive control of DC-DC converters

    Get PDF
    PhD ThesisMany industrial and consumer devices rely on switch mode power converters (SMPCs) to provide a reliable, well regulated, DC power supply. A poorly performing power supply can potentially compromise the characteristic behaviour, efficiency, and operating range of the device. To ensure accurate regulation of the SMPC, optimal control of the power converter output is required. However, SMPC uncertainties such as component variations and load changes will affect the performance of the controller. To compensate for these time varying problems, there is increasing interest in employing real-time adaptive control techniques in SMPC applications. It is important to note that many adaptive controllers constantly tune and adjust their parameters based upon on-line system identification. In the area of system identification and adaptive control, Recursive Least Square (RLS) method provide promising results in terms of fast convergence rate, small prediction error, accurate parametric estimation, and simple adaptive structure. Despite being popular, RLS methods often have limited application in low cost systems, such as SMPCs, due to the computationally heavy calculations demanding significant hardware resources which, in turn, may require a high specification microprocessor to successfully implement. For this reason, this thesis presents research into lower complexity adaptive signal processing and filtering techniques for on-line system identification and control of SMPCs systems. The thesis presents the novel application of a Dichotomous Coordinate Descent (DCD) algorithm for the system identification of a dc-dc buck converter. Two unique applications of the DCD algorithm are proposed; system identification and self-compensation of a dc-dc SMPC. Firstly, specific attention is given to the parameter estimation of dc-dc buck SMPC. It is computationally efficient, and uses an infinite impulse response (IIR) adaptive filter as a plant model. Importantly, the proposed method is able to identify the parameters quickly and accurately; thus offering an efficient hardware solution which is well suited to real-time applications. Secondly, new alternative adaptive schemes that do not depend entirely on estimating the plant parameters is embedded with DCD algorithm. The proposed technique is based on a simple adaptive filter method and uses a one-tap finite impulse response (FIR) prediction error filter (PEF). Experimental and simulation results clearly show the DCD technique can be optimised to achieve comparable performance to classic RLS algorithms. However, it is computationally superior; thus making it an ideal candidate technique for low cost microprocessor based applications.Iraq Ministry of Higher Educatio

    Nonlinear Adaptive Signal Processing Improves the Diagnostic Quality of Transabdominal Fetal Electrocardiography

    Get PDF
    The abdominal fetal electrocardiogram (fECG) conveys valuable information that can aid clinicians with the diagnosis and monitoring of a potentially at risk fetus during pregnancy and in childbirth. This chapter primarily focuses on noninvasive (external and indirect) transabdominal fECG monitoring. Even though it is the preferred monitoring method, unlike its classical invasive (internal and direct) counterpart (transvaginal monitoring), it may be contaminated by a variety of undesirable signals that deteriorate its quality and reduce its value in reliable detection of hypoxic conditions in the fetus. A stronger maternal electrocardiogram (the mECG signal) along with technical and biological artifacts constitutes the main interfering signal components that diminish the diagnostic quality of the transabdominal fECG recordings. Currently, transabdominal fECG monitoring relies solely on the determination of the fetus’ pulse or heart rate (FHR) by detecting RR intervals and does not take into account the morphology and duration of the fECG waves (P, QRS, T), intervals, and segments, which collectively convey very useful diagnostic information in adult cardiology. The main reason for the exclusion of these valuable pieces of information in the determination of the fetus’ status from clinical practice is the fact that there are no sufficiently reliable and well-proven techniques for accurate extraction of fECG signals and robust derivation of these informative features. To address this shortcoming in fetal cardiology, we focus on adaptive signal processing methods and pay particular attention to nonlinear approaches that carry great promise in improving the quality of transabdominal fECG monitoring and consequently impacting fetal cardiology in clinical practice. Our investigation and experimental results by using clinical-quality synthetic data generated by our novel fECG signal generator suggest that adaptive neuro-fuzzy inference systems could produce a significant advancement in fetal monitoring during pregnancy and childbirth. The possibility of using a single device to leverage two advanced methods of fetal monitoring, namely noninvasive cardiotocography (CTG) and ST segment analysis (STAN) simultaneously, to detect fetal hypoxic conditions is very promising

    Performance Analysis of Adaptive Noise Canceller Employing NLMS Algorithm

    Full text link

    Fuzzy PD control of an optically guided long reach robot

    Get PDF
    This thesis describes the investigation and development of a fuzzy controller for a manipulator with a single flexible link. The novelty of this research is due to the fact that the controller devised is suitable for flexible link manipulators with a round cross section. Previous research has concentrated on control of flexible slender structures that are relatively easier to model as the vibration effects of torsion can be ignored. Further novelty arises due to the fact that this is the first instance of the application of fuzzy control in the optical Tip Feedback Sensor (TFS) based configuration. A design methodology has been investigated to develop a fuzzy controller suitable for application in a safety critical environment such as the nuclear industry. This methodology provides justification for all the parameters of the fuzzy controller including membership fUllctions, inference and defuzzification techniques and the operators used in the algorithm. Using the novel modified phase plane method investigated in this thesis, it is shown that the derivation of complete, consistent and non-interactive rules can be achieved. This methodology was successfully applied to the derivation of fuzzy rules even when the arm was subjected to different payloads. The design approach, that targeted real-time embedded control applicat.ions from the outset, results in a controller implementation that is suitable for cheaper CPU constrained and memory challenged embedded processors. The controller comprises of a fuzzy supervisor that is used to alter the derivative term of a linear classical Proportional + Derivative (PD) controller. The derivative term is updated in relation to the measured tip error and its derivative obtained through the TFS based configuration. It is shown that by adding 'intelligence' to the control loop in this way, the performance envelope of the classical controller can be enhanced. A 128% increase in payload, 73.5% faster settling time and a reduction of steady state of over 50% is achieved using fuzzy control over its classical counterpart

    A study on different linear and non-linear filtering techniques of speech and speech recognition

    Get PDF
    In any signal noise is an undesired quantity, however most of thetime every signal get mixed with noise at different levels of theirprocessing and application, due to which the information containedby the signal gets distorted and makes the whole signal redundant.A speech signal is very prominent with acoustical noises like bubblenoise, car noise, street noise etc. So for removing the noises researchershave developed various techniques which are called filtering. Basicallyall the filtering techniques are not suitable for every application,hence based on the type of application some techniques are betterthan the others. Broadly, the filtering techniques can be classifiedinto two categories i.e. linear filtering and non-linear filtering.In this paper a study is presented on some of the filtering techniqueswhich are based on linear and nonlinear approaches. These techniquesincludes different adaptive filtering based on algorithm like LMS,NLMS and RLS etc., Kalman filter, ARMA and NARMA time series applicationfor filtering, neural networks combine with fuzzy i.e. ANFIS. Thispaper also includes the application of various features i.e. MFCC,LPC, PLP and gamma for filtering and recognition

    Applications of fuzzy counterpropagation neural networks to non-linear function approximation and background noise elimination

    Get PDF
    An adaptive filter which can operate in an unknown environment by performing a learning mechanism that is suitable for the speech enhancement process. This research develops a novel ANN model which incorporates the fuzzy set approach and which can perform a non-linear function approximation. The model is used as the basic structure of an adaptive filter. The learning capability of ANN is expected to be able to reduce the development time and cost of the designing adaptive filters based on fuzzy set approach. A combination of both techniques may result in a learnable system that can tackle the vagueness problem of a changing environment where the adaptive filter operates. This proposed model is called Fuzzy Counterpropagation Network (Fuzzy CPN). It has fast learning capability and self-growing structure. This model is applied to non-linear function approximation, chaotic time series prediction and background noise elimination

    A robust approach for acoustic noise suppression in speech using ANFIS

    Get PDF
    The authors of this article deals with the implementation of a combination of techniques of the fuzzy system and artificial intelligence in the application area of non-linear noise and interference suppression. This structure used is called an Adaptive Neuro Fuzzy Inference System (ANFIS). This system finds practical use mainly in audio telephone (mobile) communication in a noisy environment (transport, production halls, sports matches, etc). Experimental methods based on the two-input adaptive noise cancellation concept was clearly outlined. Within the experiments carried out, the authors created, based on the ANFIS structure, a comprehensive system for adaptive suppression of unwanted background interference that occurs in audio communication and degrades the audio signal. The system designed has been tested on real voice signals. This article presents the investigation and comparison amongst three distinct approaches to noise cancellation in speech; they are LMS (least mean squares) and RLS (recursive least squares) adaptive filtering and ANFIS. A careful review of literatures indicated the importance of non-linear adaptive algorithms over linear ones in noise cancellation. It was concluded that the ANFIS approach had the overall best performance as it efficiently cancelled noise even in highly noise-degraded speech. Results were drawn from the successful experimentation, subjective-based tests were used to analyse their comparative performance while objective tests were used to validate them. Implementation of algorithms was experimentally carried out in Matlab to justify the claims and determine their relative performances.Web of Science66631030
    • …
    corecore