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Abstract

The abdominal fetal electrocardiogram (fECG) conveys valuable information that can aid
clinicians with the diagnosis and monitoring of a potentially at risk fetus during pregnancy
and in childbirth. This chapter primarily focuses on noninvasive (external and indirect)
transabdominal fECG monitoring. Even though it is the preferred monitoring method,
unlike its classical invasive (internal and direct) counterpart (transvaginal monitoring),
it may be contaminated by a variety of undesirable signals that deteriorate its quality and
reduce its value in reliable detection of hypoxic conditions in the fetus. A stronger maternal
electrocardiogram (the  mECG signal)  along  with  technical  and  biological  artifacts
constitutes the main interfering signal components that diminish the diagnostic quality
of the transabdominal fECG recordings. Currently, transabdominal fECG monitoring
relies solely on the determination of the fetus’ pulse or heart rate (FHR) by detecting RR
intervals and does not take into account the morphology and duration of the fECG waves
(P, QRS, T), intervals, and segments, which collectively convey very useful diagnostic
information in adult cardiology. The main reason for the exclusion of these valuable pieces
of information in the determination of the fetus’ status from clinical practice is the fact
that there are no sufficiently reliable and well-proven techniques for accurate extraction
of fECG signals and robust derivation of these informative features. To address this
shortcoming in fetal cardiology, we focus on adaptive signal processing methods and pay
particular attention to nonlinear approaches that carry great promise in improving the
quality of transabdominal fECG monitoring and consequently impacting fetal cardiolo‐
gy in clinical practice. Our investigation and experimental results by using clinical-
quality synthetic data generated by our novel fECG signal generator suggest that adaptive
neuro-fuzzy  inference  systems  could  produce  a  significant  advancement  in  fetal
monitoring during pregnancy and childbirth. The possibility of using a single device to
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leverage two advanced methods of fetal monitoring, namely noninvasive cardiotocog‐
raphy (CTG) and ST segment analysis (STAN) simultaneously, to detect fetal hypoxic
conditions is very promising.

Keywords: adaptive signal processing, adaptive neuro-fuzzy inference system, fetal
electrocardiogram, transabdominal monitoring, noninvasive cardiotocography, non‐
invasive ST segment analysis (STAN)

1. Introduction

The fetal electrocardiogram (fECG) is a recoding of the electrical activity of the fetal heart and
provides clinically significant information about the physiological state of a fetus during
pregnancy and labor. Early detection of hypoxic states (hypoxemia, hypoxia, and asphyxia)
achieved by fECG signal monitoring can ensure the fetus’ well-being during these stages. For
greater detail please see [1–3].

Figure 1. Real recordings of ECG signals by using the invasive and noninvasive techniques (f—fetal QRS, m—maternal
QRS).

In clinical practice two methods are used to record fECG signals: invasive and noninvasive.
The first one is direct and is performed transvaginally by using an Invasive Scalp Electrode
(ISE). This approach is considered to be accurate as the fECG signals are recorded directly from
the fetal’s scalp without interference from the maternal heart (see Figure 1, the upper trace).
However, it poses problems and risks to both the mother and the child (such as infections). In
the noninvasive technique, multichannel skin bioelectrodes are placed on the mother’s
abdomen, and the simultaneous maternal (mECG) and fetal (fECG) signals, called the
transabdominal or abdominal ECG (aECG), is acquired (See Figure 1, the lower 4 traces). This
approach is convenient, noninvasive, and can be used during pregnancy and labor. However,
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there is a significant amount of overlap between fECG and mECG signals in addition to other
undesirable signals such as bioelectric potentials (maternal muscle activity-mEMG, fetal
movement activity, potentials generated by respiration and gastric activity, as well as power
line interference [4,5], that deteriorate the quality of the afECG signals. Figure 1 shows
examples of fECG signals acquired by the invasive (VDIR) and noninvasive (VABD1–VABD4)
approaches.

We observe that the strong mECG and the weak fECG signals overlap in both time-domain
(Figure 1) and frequency-domain (Figure 2). Therefore, filtering the mECG component from
the composite aECG signal to produce diagnostic quality fECG is a very challenging signal
processing task. Currently only a fraction of the vast amount of diagnostic information in the
aECG is available to be used in clinical practice. Therefore, maximizing information extraction
from aECG (in addition to cardiotocography—CTG) signals for the timely and reliable
detection of fetal hypoxia is of tremendous clinical interest and could significantly impact the
advancements in obstetrics.

Figure 2. Abdominally recorded fECG and mECG in the frequency domain.

To address this signal processing challenge, many different approaches have been proposed
to reliably detect fECG signals, but with varying degrees of success [4]. The holy grail of
research in fetal electrocardiography is to fully recover the fECG signal and analyze its
morphology, which produces valuable information on the fetus’ status and health. The majority
of recent techniques are mainly focused on the detection of the fetal heart rate (the intervals
between R waves) with only a small portion being able to fully isolate the clinically useful ST
interval and consequently perform accurate ST segment analysis (STAN) along with CTG. The
only commercially available unit that has a built-in ability to perform STAN is Neoventa
Medical’s STAN S31. For a detailed description of this device, please see Ref. [6]. Figure 3
shows an example of a real-time STAN. Fetal heart rate (fHR) and T/QRS are continuously
displayed on the screen. These parameters are important in diagnosing hypoxic states. An
increase in the ST segment and T wave as quantified by the ratio of the T wave to the QRS
complex amplitude (T/QRS) has been associated with the different forms of the physiological
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responses expected in hypoxia (metabolic acidosis, myocardial glycogenolysis, etc.). For a
more detailed explanation please see Reference [1].

Figure 3. Real-time ST Analysis (Fetal Heart Rate, T wave and QRS complex ratio) using Matlab application.

A critical review of the current signal processing literature reveals that adaptive signal
processing and soft computing methods are rapidly growing research areas and offer great
promise to address some of the most challenging signal separation, pattern recognition, and
classification problems in different areas of medicine including Obstetrics.

Driven by these advancements and promises, in the methods section we will first present a
theoretical overview of the advanced signal processing (both nonadaptive and adaptive)
techniques that have been applied to the extraction (separation) of fECG from aECG signals,
and will choose a subset based upon their advantages. We will mainly focus on the Least Mean
Squares (LMS) and Recursive Least Squares (RLS) algorithms [62]. Secondly, we will look at
soft computing methods and describe how they have the ability to enhance the performance
of adaptive signal processing algorithms in achieving better outcomes when processing
biomedical signals. Then we will pay special attention to adaptive neuro-fuzzy inference
systems (ANIFS) [60,63], which are considered to be the most significant in fetal electrocar‐
diography research.

To provide a comparative analysis of the performance of our selected adaptive algorithms and
their enhanced realizations using soft computing approaches, in the results section, we will
report the outcomes of a number of experiments that we devised by using aECG (identical to
clinical) signals generated by our novel LabVIEW-Based Multi-Channel Noninvasive Ab‐
dominal Maternal-Fetal Electrocardiogram Signal Generator [7,8]. This abdominal fECG signal
generator allows us to realistically simulate all types of signal contaminations (both biological
and nonbiological) affecting the quality of aECG signals.

Our experimental results were evaluated using both subjective and objective criteria. For the
objective evaluation, we used the SNR values before and after processing, the RMSE value,
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and the required processing time for the selected data samples. These performance metrics
(parameters) are defined in separate subsections of the methods section.

In conclusion, our experimental results using synthetically-generated (identical to clinical)
data produced by our novel system revealed that it was possible to effectively extract fECG
signals and significantly refine their diagnostic quality to enable reliable ST segment and CTG
signal analysis. Refined aECG monitoring systems with built-in STAN and CTG analysis
capabilities will pave the way for the timely and reliable detection of fetal hypoxia during
pregnancy and labor, which is of tremendous clinical interest. These enhanced fECG moni‐
toring systems will significantly impact the future advancements in Obstetrics.

2. Methods

2.1. fECG signal elicitation or extraction

Interference elimination can be implemented using a single-or a multi-channel source signal.
These signals are then processed by various methods, which are used for fECG signal extrac‐
tion, as shown in Figure 4. These methods are divided into two categories: nonadaptive and
adaptive, depending on the system’s inability or ability to accommodate unexpected changes.

Figure 4. Summary of methods for fECG elicitation.

2.2. Nonadaptive methodologies

The Nonadaptive methodologies used for fECG signal extraction include Wavelet Transform-
Based Techniques [9–11], Correlation Methods [12], Subtraction Methodologies [13], Single
Value Decomposition (SVD) [14], Independent Component Analysis (ICA) and Blind Subspace
Separation (BSS) [15–17], as well as Averaging Techniques [18].

The drawback of the nonadaptive techniques is that they are time-invariant in nature. Their
time-invariance limitation has been overcome by the adaptive methods, which are more
effective in reducing the overlapping noise (such as mECG) in time and frequency domains.
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Nonadaptive methods are useful for data pre-processing or for noise elimination in case of
classic ECGs [4].

2.3. Adaptive methodologies

Different variants of adaptive filters have been used for mECG signal cancellation and fECG
signal extraction. These methods consist of training an adaptive or a matched filter for either
removing the mECG signal using one or several maternal reference channels [19] or directly
training the filter for extracting the fetal QRS complexes [20].

The existing adaptive filtering methods for maternal component elimination require a
reference mECG channel that is morphologically similar to the contaminating waveform, or
require several linearly independent channels to reconstruct any morphologic shape from the
Ref. [21].

Figure 5. A theoretical multichannel adaptive noise (mECG and interferences) cancelation system.

Several approaches for mECG signal cancellation and fECG signal extraction have been used.
The adaptive filters can be trained to extract the fetal QRS complexes directly or to estimate
and remove the mECG component using reference maternal channels. The reference mECG
signal can be recorded from the electrodes placed on the mother’s thorax, or reconstructed
from several abdominal channels that are linearly independent. The limitation of these
approaches, which influences their performance, is that the morphology of the mECG signals
highly depends on the electrode locations. Thus, the reconstruction of the complete ECG
morphology from a linear combination of the reference electrodes is not always possible.

There are many different methodologies to extract fECG signals using adaptive filters based
on one or several maternal reference channels (as shown in Figure 5). These methodologies
include the LMS and RLS Algorithms, Artificial Intelligence (AI) Techniques, Fuzzy Inference
Systems (FISs) [22,23], Genetic Algorithms (GA), and Bayesian Adaptive Filtering Frameworks
which comprise Kalman Filters.
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2.3.1. Linear adaptive methods

As mentioned before, adaptive methods can be linear or nonlinear. The linear methods for
fECG signal extraction include algorithms such as LMS [24,25] RLS [24,26], Comb Filter [27],
Adaptive Voltera Filter [28], Kalman Filter [29,30] or Adaptive Linear Networks (ADALINE)
[31].

An adaptive filter is one that is characterized by the ability to self-adjust its coefficients
according to an optimized training algorithm which is driven by a back-propagated error
signal. Adaptive filters are used in noise cancellation applications to remove the noise
adaptively from a signal and to improve the Signal to Noise Ratio (SNR) [4].

Simply said, it is a technique for the adaptive elimination of undesired signals (such as the
maternal component) from the abdominal signal to obtain the fECG signal. The system can
self-adjust to the existing circumstances and optimize its results.

2.3.2. An example: an adaptive noise cancellation system for fECG signal extraction

A theoretical multichannel adaptive noise cancellation system, shown in Figure 5, illustrates
an adaptive elicitation technique of the fECG as an example. It consists of two kinds of input
signals recorded from multiple leads: the abdominal ECG signals (AB1–ABn) and the thoracic
ECG signals (TH1–THn). Each abdominal signal consists of both maternal and fetal signals and
serves as the primary input. The thoracic signal is considered to be completely maternal and
is used as the reference input. Finite Impulse Response (FIR) Filter weights of the adaptive
systems are updated by training algorithms based on the back-propagated error signal, which
is the desired fECG signal (fECG1–fECGn). The maternal component is considered as noise to
be eliminated. Each of the adaptive systems produces a signal, which is an approximation of
the noise. This signal is subtracted from the abdominal ECG (aECG) signal so that the error
signal that is back-propagated to the training algorithm is the fetal ECG signal with some noise.

Linear methods have limited performance in processing nonlinear or degenerate mixtures of
signal and noise. In fact, fECG signals are not always linearly separable from undesirable
signals contaminating them [32]. That is also a reason why linear algorithms yield better results
when tested with synthetic data compared to those tested with real data. As the underlying
physiological processes in the human body exhibit nonlinear behavior it seems more reason‐
able to use nonlinear methods for the construction of accurate and functional adaptive filters
[22,32] to achieve better outcomes.

This chapter primarily focuses on the LMS- and RLS-based FIR Adaptive Filtering Methods.
In the sections below we present mathematical descriptions for the most important methods
such as LMS, Normalized LMS (NLMS), RLS, and Fast Transversal Filter (FTF).

2.4. Theoretical background

The Least Mean Squares (LMS) Algorithms are classified as adaptive filters that can change
their coefficients to become a system that produces the least mean squares of the error (the
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difference between the desired and the actual) signal. It is a stochastic gradient descent method
in that the filter is only adapted based on the error at the current time [33].

2.4.1. Standard LMS

The Standard LMS Algorithm performs the following operations to update the coefficients of
an adaptive filter:

• Calculates the corresponding output signal from the adaptive filter by using the following
equation:

( ) ( ) ( ) ( ) ( )1 T
0

.N

i
y k w k x k i k k-

=
= - =å w x (1)

• Calculates the error signal e(k) that denotes the difference between additional input signal
d(k) and y(k) by using the following equation:

( ) ( ) ( ).e k d k y k= - (2)

• Updates the filter coefficients by using the following equation:

( 1) ( ) 2 ( ) ( ),k k e k km+ = +w w x (3)

where μ is the step size of the adaptive filter, is the filter coefficients vector, and w(k) is the
input signal to a linear filter at time. Step size is a crucial parameter that can improve the
convergence speed of the adaptive filter. It determines both how quickly and how closely the
adaptive filter converges to the filter solution [34].

2.4.2. Normalized LMS (NLMS) algorithm

The NLMS Algorithm is a modified form of the standard LMS Algorithm. The NLMS Algo‐
rithm updates the coefficients of an adaptive filter by using the following equation:

2

( )( 1) ( ) ( ) .
( )
kk k e k
k

m+ = +
xw w
x� �

(4)

It is obvious that the NLMS Algorithm is almost identical to the Standard LMS Algorithm
except that the NLMS Algorithm has a time-varying step size μ(k), [34].

2.4.3. The recursive least square (RLS) algorithm

Unlike the LMS Algorithm, which reduces the mean square error, the principle of the RLS
Algorithm is that it recursively finds the coefficients that minimize a weighted linear least
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squares cost function relating to the input signals. In the case of the RLS Algorithm, the input
signals are considered deterministic, while for the LMS Algorithm, they are considered
stochastic. Compared to most of its competitors, the RLS Algorithm exhibits extremely fast
convergence. However, this benefit comes at the cost of high computational complexity.

The standard RLS Algorithm performs the following operations to update the coefficients of
an adaptive filter:

• Calculates the output signal of the adaptive filter:

T( ) ( 1) ( ).y k k k= -w x (5)

• Calculates estimation error e(k) by using the following equation:

( ) ( ) ( ).e k d k y k= - (6)

• Updates the filter coefficients by using the following equation:

T ( )( 1) ( ) ( ),w k k e k k+ = +w K (7)

where w(k) is the filter coefficients vector and K(k) is the gain vector and is defined by the
following equation:

T

( ) ( )( ) .
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P k kk
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P(k) is the inverse correlation matrix of the input signal. P(k) has the following initial value:
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where δ is the regularization factor. The standard RLS Algorithm uses the following
equation to update this inverse correlation matrix.

( ) ( ) ( )1 1 T1 ( ) ( ).nP k P k k k P kl l- -+ = - K u (10)

• Repeats all the steps for the next iteration (k + 1).

The selection of the forgetting factor λ depends on the number of the samples k as follows:
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If the analyzed signal is stationary, λ should be chosen as unity. Otherwise, λ should be smaller
than the unity to track the nonstationary portion of the signals. The performance index takes
into account the most recent errors as calculated by the most recent kth iteration [35].

2.4.4. Fast transversal filter (FTF)

The complexity of the classical RLS Algorithm (related to the speed of convergence) was the
main reason for the inclusion of the FTF (Fast Transversal Filter) Algorithm. A detailed
description of the algorithm is very extensive, complicated, and beyond the scope of this
chapter. Its detailed formula derivation can be found in Ref. [36].

2.5. Soft computing methods

Biological systems including the human body and most of the real-world physical systems are
highly involved nonlinear dynamical systems with a large degree of variability, imprecision,
and uncertainty. As such, it is impossible for humans to find tractable solutions to problems
associated with these systems without using powerful computing technologies. This is mainly
attributable to the extensive amount of required data and processing time. In general, a
nonlinear system is capable of generating quantitative or qualitative information. Quantitative
information is represented by accurate numerical values, which are acquired by conventional
modeling and mathematics. These conventional methods of data acquisition are rigorous and
their results have to be precise, certain or categorically true or false. Precision and certainty of
calculations are attainable at a higher computational cost. On the contrary, qualitative
information contains knowledge or experience that can be expressed in natural language (e.g.,
big, medium, small). Qualitative information is processed by “soft” approaches called soft
computing or artificial intelligence. Soft computing is a collection of methodologies that are
able to tolerate imprecision and uncertainty and exploit these attributes to achieve robust and
low-cost solutions. These methods aim to imitate the way the human brain processes infor‐
mation.

It is very difficult to describe real-world systems by classical mathematics, and it has been
established that processing purely quantitative information is not efficient and represents a
huge computational burden. New research has shown that nonlinear systems are substantially
better modeled by artificial intelligence. These facts have led to the development of new
intelligent soft computing methods. In current practice, these methods find various applica‐
tions in software engineering, signal processing, and optimization. Soft computing methods
comprised of fuzzy logic, artificial neural networks, evolutionary algorithms, and hybrid
algorithms, are distinguishable from other computational techniques by exhibiting a tolerance
for imprecision and uncertainty. Another advantage of soft computing methods is in their
ability to adapt and learn, which makes them very suitable for adaptive filtering applications
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where their training algorithms allow them to adapt the system’s parameters to existing
conditions.

The application of soft computing methods in the processing of fECG signals is still in its
infancy. However, the rapid development of computing processor technology and computa‐
tional intelligent algorithms in the last three decades has provided new impetus for advancing
fetal cardiology. To date, a number of soft computing-based approaches have been introduced
to tackle fECG signal extraction. These include Adaptive Linear Neural Network (ADALINE),
[8,37], Genetic Algorithms (GA), [20,21], ANFIS [32,34,38], and ANFIS trained with Particle
Swarm Optimization (PSO) [1,2]. In [37] authors used an ADALINE trained with the LMS
Algorithm for suppression of mECG signals. The ADALINE was trained to eliminate the
maternal component from the aECG. This was carried out by subtraction of the mECG from
the aECG. The resultant error signal was equal to the fECG. Neural networks were also used
in [8], in combination with FIR filters. Taking advantage of the combined capabilities of soft
computing methods and digital FIR or IIR (Infinite Impulse Response) filters is now common.
For example, in [20] authors proposed to apply low pass FIR filtering optimized by a Genetic
Algorithm (GA). The GA-modified coefficients of the FIR filter produced the best possible
results for fECG signal extraction. A comparison of the results yielded by this method with
those produced by methods using the LMS and NLMS Algorithms showed that the quality of
filtering using the GA with eight bits and ten iterations was equal to those of the other methods.
Better results were achieved by using IIR instead of FIR filters [21]. An ANFIS tuned by PSO
was considered to be an efficient tool for the extraction of not only the QRS complexes, but
also all the components of the fECG signal. This level of performance has not been achieved
by leveraging any other two leading methods to date. With this overview in mind, in the section
below we describe the extraction of fECG signals by using ANFIS.

2.5.1. ANFIS theoretical background

An Adaptive Neuro-fuzzy System (ANFIS) is a hybrid adaptive network based on a Sugeno-
type fuzzy interference system (FIS) implemented into a feed-forward artificial neural network
framework [39–44]. It uses a neuro-adaptive learning algorithm to determine the relationship
between the input and output data sets. This learning algorithm can be hybrid or use back
propagation. The advantage of an ANFIS lies in its ability to combine the “cleverness” of the
Artificial Neural Networks (ANNs) and Fuzzy Inference Systems (FISs) in learning nonlinear‐
ities, which complement each other. A FIS incorporates human knowledge into the system in
contrast to an ANN, which is capable of optimizing the ANFIS’ parameters in implementing
the learning process. To ensure correct and smooth running of the ANFIS, a number of
fundamental considerations has to be made:

• The ANFIS should be single output.

• The FIS has to be the Sugeno model of zero or first order.

• The number of rules should correspond to the number of membership functions.

• The output membership function should be constant or linear.
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2.5.2. ANFIS architecture

The original Jang’s ANFIS architecture consists of five feed-forward interconnected layers,
namely: a fuzzy layer, a product layer, a normalized layer, a de-fuzzification layer, and a total
output layer [45]. In each layer several nodes are included and described by the node function.
The nodes in these layers have an adaptive or a fixed nature and the difference between them
is shown graphically in Figure 6, in which circles indicate the fixed nodes whereas squares
represent the adaptive ones. The elementary ANFIS architecture has two initial inputs and one
total single-value output. The rule base of the Sugeno FIS model is constituted by two IF-THEN
rules in the following form [45]:

( ) ( ) ( )1 1 1 1 1 1IF is and THEN .x A y is B f p x q y r= + + (12)

( ) ( ) ( )2 2 2 2 2 2IF is and THEN .x A y is B f p x q y r= + + (13)

Figure 6. Fundamental scheme of ANFIS architecture.

where x and y are initial inputs; Ai and Bi are the nonlinear fuzzy sets also called a remise
section; fi is the output of the system; and pi, qi, and ri are linear design parameters, which are
determined during the training process.

Layer 1: The first layer of this architecture is an adaptive layer used for fuzzification of input
variables. Each node represents the input value of a linguistic variable. The node function
associated with the output of each node is

1, ;for 1,( ,) 2.
ii AO x im= = (14)

1, 2 ;for 3, ,( 4)
ii BO y im -= = (15)
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where x (or y) are inputs of the node i, Ai (or Bi−1) are linguistic labels and μAi(x), respectively;
μBi−2 (y) can accept any fuzzy membership function. In conclusion, 01,i is an expression of the
membership function, in other words a membership grade, which indicates how much given
x (or y) satisfies quantifier Ai (or Bi). The membership function can acquire several shapes
including bell-shaped, triangular, and trapezoidal or Gaussian. For illustration we will use a
bell-shaped Membership Function (MF) (Eq. 16).

2 2

1 1. .
( ) ( )1 1

( ) ( )
i ii iA Ab b

i i

i i

x x
x c x c
a a

m m= =
- -

+ + (16)

Parameters ai, bi, and ci in Eq. (16) change the shape of the MF degree. Its value ranges from 0
to 1, where 0 is equal to the minimum value and 1 is equal to the maximum value.

Layer 2: The nodes in the second layer multiply the output signals from the previous layer.
The output of this layer denotes O2,i and is described as:

2, ; for 1( .( ) ,2)i i Ai BiO w x y im m= = = (17)

Layer 3: The normalized layer labeled N contains a function to calculate the normalized firing
strength. The output is labeled O3,i.

3,
1 2

; for 1,2.i
i i

wO i
w w

w= = =
+ (18)

Layer 4: All nodes in this layer are adaptive. The node function has the form given below:

( )4, ,for 1,2,i i i i i i iO w f w p x q y r i= = + + = (19)

where output O4,i defines a de-fuzzified (crisp) relationship between the input and output of
this layer, is a firing strength desired in the normalized layer pi, qi, and ri are linear adaptive
parameters also called consequent parameters.

Layer 5: The last and fixed layer calculates the total output of the system.

5, .i ii
i i i

i ii

w f
O w f

w
= =åå å (20)

The output O5,i is derived from the summation of incoming signals from Layer 4.
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2.5.3. Hybrid learning algorithm

The hybrid learning algorithm in the ANFIS tunes the parameters of the Sugeno type FIS. It is
a combination of the LMS and the Back-propagation Gradient Descent Algorithm (BPG). Each
part of the hybrid algorithm is focused on a different part of the rule base in the ANFIS
architecture. The premise (antecedent) parameters are adjusted by the BPG Algorithm and the
consequent parameters are tuned by the LMS Algorithm. With respect to this distribution, the
hybrid learning algorithm is divided into two passes, which are regularly repeated with every
epoch. These passes are called “forward” and “backward” passes. Figure 7 depicts the scheme
of the hybrid learning algorithm. This hybrid algorithm converges much faster than the
original pure back-propagation algorithm, as the latter reduces the search space dimensions
[46,47].

Figure 7. Block diagram for the hybrid-learning algorithm.

2.6. Definition of the parameters

The measurement of the quality of the fECG extraction procedures is based on the absence of
noise and the degree of similarity between the recovered fECG signals and the ideal fECG
signals, where the main parameters can be helpful to control the effectiveness of the fECG
extraction and Signal to noise ratio (SNR).

2.6.1. Signal to noise ratio (SNR)

The relation between signal and noise is described by the SNR. To evaluate the filtering quality
by the SNR, it is essential to calculate this ratio before and after filtering. The SNR before
filtering is labeled SNRIN and the SNR after filtrating is labeled SNROUT. Based on SNRIN and
SNROUT, it is possible to track the improvement of the SNR after filtering. Their expressions
are as follows:

21
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(21)
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where sigorg is the desired signal equal to an ideal fECG and signoise is a disturbing noise. This
signal corresponds to a simulated mECG after passing through the unknown environment of
the human body. Please clarify this sentence. Since the disturbance noise is a sum of the ideal
fECG and mECG after they pass through the human body, it is necessary to subtract these two
signals from each other in the denominator, SNROUT defines:

21
org1

OUT 10 21
rec org1
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where sigorg denotes the original signal (ideal fECG) and sigrec (i) the signal recovered by the
algorithm.

It is possible to evaluate the effectiveness of the proposed adaptive method by finding the
difference between SNRIN and SNROUT .

The SNR quantifies the relation between the fetal ECG signal and the rest of the undesired
components (mECG). In the general fECG inverse problem, this is not an operative definition
of the SNR, since it requires knowing the contribution of the fetal ECG signal and the noise.
Since our signals are synthetic, this information is available.

2.6.2. Mean square error (MSE) and root mean square error (RMSE)

The primary statistical measure used is a mean or a squared prediction error function. This
evolved into widespread use of the mean squared prediction error as a performance measure,
often shortened to simply the mean square error (MSE). It is a useful tool used for an evaluation
of prediction, which reflects the degree of inaccuracy between an estimated and an original
output described by:

( )2rec org1

1 sig ( ) sig ( ) ,n

i
MSE i i

n =
= -å (23)

where sigorg denotes the original signal (ideal fECG) and sigrec the signal recovered by the
algorithm.

MSE is often replaced by RMSE defined by:

( )2rec org1

1 sig ( ) sig ( ) .n

i
RMSE i i

n =
= -å (24)

where sigorg denotes the original signal (ideal fECG) and sigrec the signal recovered by the
algorithm.
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RMSE is a measure of the differences between values predicted by a model or an estimator
and the values observed. The closer this value is to zero the more accurate is the system.

2.7. Generation of test data form experiments

To objectively assess the results of fECG signal extraction approaches by using the quality
metrics defined above (SNR, RMSE, and others), knowledge of the reference signals (mECG
and ideal fECG) is essential. That is not possible in case of the clinical (real) data (as the
reference fECG signal is missing). On the other hand, most commonly used synthetic data are
often too idealized and do not include the influence of the nonlinear environment of the human
body. That is the reason why most fECG signal extraction methods, which are considered
successful when tested with idealized synthetic data do not produce useful results when tested
with clinical (real) data.

Acknowledging the limitations associated with idealized synthetic data used in testing fECG
signal processing algorithms, we took advantage of our novel fECG signal generator [7,8] to
generate clinically realistic data [42] for our experiments. Our fECG signal generator is unique
in many respects. It is designed to simulate the fetal heart activity while special attention is
given to the fetal heart development in relation to the fetus’ anatomy, physiology, and
pathology. The noninvasive signal generator enables many parameters to be set, including
Fetal Heart Rate (fHR), Maternal Heart Rate (mHR), Gestational Age, fECG interferences
(biological and technical artifacts), as well as other fECG signal characteristics. Furthermore,
based on the change in the fHR and in the T wave-to-QRS complex ratio (T/QRS), the generator
enables manifestations of hypoxic states (hypoxemia, hypoxia, and asphyxia) to be monitored
while complying with clinical recommendations for classifications in cardiotocography (CTG)
and fECG ST segment analysis (STAN).

As described in detail elsewhere [7,8], the generator can produce realistic synthetic signals
(identical to those acquired in clinical practice) with pre-defined properties for as many input
as desired (n), see Figure 5. Such signals are well suited to the testing of existing and new
methods of fECG processing [22,23,42].

The experiments were realized with six inputs, i.e., four channel combinations (TE2 ↔ BA1;
TE2 ↔ BA2; TE2 ↔ BA3; TE1 ↔ BA4), which were processed collaterally by four independent
adaptive systems.

For all the analyzed methods, the same starting parameters were selected according to clinical
recommendations for CTG and STAN evaluations [42] as follows:

• record duration t = 03:00 (mm:ss), sample rate fs = 1 kHz, quantization step 0.1 mV,

• ideal mECG from thoracic electrodes TH1 and TH2 with variable MHR in the 65–85 bpm
range,

• ideal fECG from abdominal electrodes AB1, AB2, AB3 and AB4 with the FHR in the 110–150
bpm range and the T/QRS complex in the 0.05–0.15 mV range,

• unwanted interference created in the human body modeled by empirical nonlinear trans‐
formation,
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• SNR in for individual lead combinations and TH1–AB1 = −16.00 dB; TH2–AB3 = −27.70 dB;
TH1–AB2 = −33.01 dB; TH2–AB4 = −23.35 dB,

• gestational age of fetus = 40 weeks (this parameter influences the length of each element of
the fECG),

• for all of the adaptive algorithms used in the experiments the filter length was N = 32.

Figure 8. (a) Ideal fECG signal modelled by generator, (b) noisy fECG recordings modelled by generator.

To implement the required computational complexity, all experiments were performed by
using a Personal Computer (PC) with a 3 GHz quad-core processor and 4 GB of RAM, please
see Ref. [6]. Figure 8a shows the waveforms of the ideal and (Figure 8b) noisy fECG signals
for the channel combination TE1 ↔ BA1, which were generated using the software-controlled
generator.

3. Results and discussions

3.1. Experimental results: testing linear adaptive algorithms

The test signals generated by our generator were first processed by the LMS, NLMS, RLS and
FTF Algorithms. The ideal combination of the selected settings for these functions was based
on the input and output Signal to Noise Ratios (SNRs) as well as Root Mean Square Error
(RMSE).

Figures 9 and 10 show the outputs of the adaptive systems for each one of the algorithms tested
for the signals recorded by channels TE1 ↔ AE1. Figure 9a shows results of filtering aECG
signals using the LMS algorithm and Figure 9b using NLMS algorithm. The LMS algorithm
provides better results than NLMS algorithm; however, NLMS algorithm is more computa‐
tional (processing time) expensive (see Table 1).
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Figure 9. Output waveforms—results of filtering aECG signals (a) using the LMS and (b) using NLMS algorithms.

Name of adaptive
filter used

Electrode
combination

SNRin

(dB)
SNRout

(dB)
SNRimp

(dB)
RMSE
(-)

Processing time
(min:s)

LMS-based filters LMS TE1 ↔ AE1 −16.0036 −11.1935 4.8101 0.1388 00:57

TE2 ↔ AE2 −33.0132 −32.1204 0.8928 0.4273

TE2 ↔ AE3 −27.7029 −21.1847 6.5182 0.1997

TE1 ↔ AE4 −23.3521 −22.2700 1.0821 0.3125

NLMS TE1 ↔ AE1 −16.0036 −9.3647 6.6389 0.0996 01:15

TE2 ↔ AE2 −33.0132 −28.0695 4.9437 0.2283

TE2 ↔ AE3 −27.7029 −20.3672 7.3357 0.1823

TE1 ↔ AE4 −23.3521 −19.5769 3.7792 0.2340

RLS-based filters RLS TE1 ↔ AE1 −16.0036 −5.5187 10.4849 0.0843 01:49

TE2 ↔ AE2 −33.0132 −25.5992 7.4140 0.1379

TE2 ↔ AE3 −27.7029 −17.6624 10.0405 0.1196

TE1 ↔ AE4 −23.3521 −15.8197 7.5324 0.1078

FTF TE1 ↔ AE1 −16.0036 −6.2045 9.7991 0.0889 01:28

TE2 ↔ AE2 −33.0132 −25.5174 7.4985 0.2146

TE2 ↔ AE3 −27.7029 −18.2309 9.4720 0.1794

TE1 ↔ AE4 −23.3521 −16.2830 7.0691 0.1617

Table 1. Experimental results for LMS, NLMS, RLS, and FTF adaptive algorithms using synthetic fECG and mECG
signals generated by our novel simulator.

Figure 10a shows results of filtering aECG signals using the RLS algorithm and Figure 10b
using FTF algorithm. The RLS algorithm provides a bit better than FTF algorithm, nevertheless
RLS algorithm is more computational expensive than RLS algorithm (see Table 1).
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Figure 10. Output waveforms—results of filtering aECG signals (a) using the RLS and (b) using FTF algorithms.

Figure 11. Amplitude spectrum—results of filtering aECG signals (a) using the LMS and (b) using NLMS Algorithms.

Figures 11 and 12 show the amplitude spectrums of the ideal fECG and the spectrum of the
adaptive system output. Figure 11a shows amplitude spectrum of filtering aECG signals using
the LMS algorithm and Figure 11b using the NLMS algorithm.

Figure 12a shows amplitude spectrum of filtering aECG signals using the RLS algorithm and
Figure 12b using the FTF algorithm.

Table 1 shows the experimental results for the adaptive algorithms. The results presented in
Table 1 and Figures 9–12 show some improvements in the frequency and time domains as
measured by the quality parameters SNR and RMSE. The experimental results revealed that
the RLS-based filters (RLS—Figures 10a and 12a and FTF—Figures 10b and 12b, Algorithms)
produced the best outcomes. The computational times (1:49 and 1:28 s, respectively) for these
algorithms were longer due to their complexity.
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Figure 12. Amplitude spectrum—results of filtering aECG signals (a) using the RLS and (b) using FTF Algorithms.

Our experimental results described above indicate that the morphological differences between
the original (ideal) and the recovered fECG signals are so significant that such processed
signals cannot be satisfactorily used to detect fetal hypoxic conditions. These differences are
mainly attributable to nonlinearities in the human body model. Therefore, to reduce these
differences and consider the impact of the human body, nonlinear (Soft-computing) adaptive
methods were used as described in the following section.

3.2. Experimental results: testing adaptive neuro-fuzzy inference systems

To evaluate the effectiveness of the ANFIS-based fECG filtering approach, we devised
experiments using ANFISs with hybrid learning algorithms. These systems were tested with
uniquely synthesized data, which comport well with real data acquired from clinical practice.
Different ANFIS architectures were implemented. These structures were labeled as ANFIS1
to ANFIS5 and their parameters are summarized in Table 2.

ANFIS structure

ANFIS 1 ANFIS 2 ANFIS 3 ANFIS 4 ANFIS 5

TNN 21 53 101 165 245

NLP 12 48 108 192 300

NNP 12 24 36 48 60

TNP 24 72 144 240 360

NFR 4 16 36 64 100

TNN—Total Number of Nodes, NLP—Number of Linear Parameters, NNP—Number of Nonlinear Parameters, TNP
—Total Number of Parameters, NFR—Number of Fuzzy Rules.

Table 2. Details of ANFIS structures used in our experiments.
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Figure 13. Output waveforms—results of filtering aECG signals (a) using ANFIS1 and (b) using ANFIS2.

Figure 14. Output waveforms—results of filtering aECG signals (a) using ANFIS3 and (b) using ANFIS4.

Figures 13 and 14, display the output waveforms (filtering results) for each ANFIS structure
used in the experiments. Figure 13a shows results of filtering aECG signals using ANFIS1,
(Figure 13b) ANFIS2.

Figure 14a shows results of filtering aECG signals using ANFIS3, (Figure 14b) ANFIS4. The
ANFIS systems provide better results than conventional adaptive algorithms (LMS, NLMS,
RLS, FTF) in time and frequency (Figures 15 and 16) domain.

Tables 2, 3 shows that different ANFIS structures produced different filtering results as
measured by the performance metrics. The results of more complex ANFIS structures were
almost identical and are not presented here. We observe that by increasing the complexity of
the ANFIS structure, its computing power grows disproportionately but the improvement in
filtering quality is not that significant. This fact helps us decide not to consider more complex
ANFIS structures for online filtering. With this in mind, ANFIS3 seems to be the most appro‐
priate structure for online filtering and produces acceptable results.
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Figure 15. Amplitude spectrum—results of filtering aECG signals (a) using ANFIS1 and (b) using ANFIS2.

Figure 16. Amplitude spectrum—results of filtering aECG signals (a) using ANFIS3 and (b) using ANFIS4.

Figures 15 and 16 show the amplitude spectrums illustrating the filtering results achieved by
ANFISs. Figure 15a shows the results for ANFIS1 and Figure 15b for ANFIS2. Each graphs
illustrates the ideal fECG amplitude spectrum (Ideal AE1) together with the amplitude
spectrum of the output signal from adaptive system used for each ANFIS structure.

Figure 16a shows the results for ANFIS3 and Figure 16b for ANFIS4. The results are summar‐
ized in Table 3.

Figure 17 shows the relationship between SNRin and SNRout for ANFIS1-ANFIS5. Over 100
independent experiments were performed to obtain the results reported here. We observe that
these systems achieve very similar results but the processing time increases significantly with
the growing complexity of their architectures.

The main advantage of the results reported here, which distinguishes them from many
findings reported in the literature, is that these are achieved and tested by using clinical-quality
synthetic data (identical to the real data generated by the underlying nonlinear physiological
systems in the human body), thanks to the in-built capabilities of our unique signal generator.
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This ensures objective assessment of the fECG signal separation quality based on quantitative
performance measures (SNR, RMSE, SNRin and SNRout).

Name of adaptive
filter used

Electrodes
combination

SNRin

(dB)
SNRout

(dB)
SNRimp

(dB)
RMSE
(–)

Processing time
(min:s)

Adaptive neuro-fuzzy
inference system

ANFIS 1 TE1 ↔ AE1 −16.0036 −7.5799 8.4237 0.1380 01:53

TE2 ↔ AE2 −33.0132 −16.1208 16.8924 0.2723

TE2 ↔ AE3 −27.7029 −13.7670 13.9359 0.2190

TE1 ↔ AE4 −23.3521 −12.6453 10.7068 0.1526

ANFIS 2 TE1 ↔ AE1 −16.0036 −3.0966 12.9070 0.0595 03:33

TE2 ↔ AE2 −33.0132 −7.9803 25.0329 0.1479

TE2 ↔ AE3 −27.7029 −8.5094 19.1935 0.1361

TE1 ↔ AE4 −23.3521 −6.1662 17.1859 0.0989

ANFIS 3 TE1 ↔ AE1 −16.0036 −1.0318 14.9718 0.0046 06:31

TE2 ↔ AE2 −33.0132 −3.7510 29.2622 0.0562

TE2 ↔ AE3 −27.7029 −2.4146 25.2883 0.0533

TE1 ↔ AE4 −23.3521 −1.1298 22.2223 0.0384

ANFIS 4 TE1 ↔ AE1 −16.0036 −0.3004 15.7032 0.0043 12:48

TE2 ↔ AE2 −33.0132 −3.6457 29.3675 0.0554

TE2 ↔ AE3 −27.7029 −2.3999 25.3030 0.0582

TE1 ↔ AE4 −23.3521 −1.1056 22.2465 0.0381

ANFIS 5 TE1 ↔ AE1 −16.0036 −0.3009 15.7027 0.0043 18:52

TE2 ↔ AE2 −33.0132 −3.5974 29.4158 0.0590

TE2 ↔ AE3 −27.7029 −2.4017 25.3012 0.0453

TE1 ↔ AE4 −23.3521 −1.0327 22.3194 0.0373

Table 3. Experimental results for ANFIS 1—ANFIS 5 using synthetic fECG and mECG signals generated by our novel
simulator.

We should emphasis that as the ECG signals in their path from the thorax to the abdominal
electrodes experience nonlinearities, the linear adaptive algorithms that are only suitable for
the fHR estimation are insufficient to capture their necessary morphological details to facilitate
accurate ST segment analysis (STAN). We observed that the morphological differences
between the original (ideal) and recovered fECG signals by using these linear algorithms are
so significant that the recovered signals cannot be used to reliably detect fetal hypoxic
conditions. In other words, when clinical-quality synthetic data such as those produced by our
software-controlled generator were used, adaptive algorithms were unable to adequately
suppress the undesirable signals, particularly the mECG signals. For this reason, besides the
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classical adaptive approaches, soft computing techniques had to be used in our experiments
to produce acceptable outcomes.

Comparing the results of ANFIS (Table 1) and adaptive algorithms (Table 3) for fECG
extraction, it is demonstrated that ANFIS produces better results based upon SNR and RMSE
improvements. A general disadvantage of using ANFISs is their longer processing time during
network training, especially in the more sophisticated networks, which are necessary for more
complex systems. From our experimental results in (Table 1), it is evident that the final values
of SNRouts are closely related to SNRins.

4. Conclusion

In this chapter we focused on the use of advanced adaptive signal processing methods and
highlighted the advantage of nonlinear methods such as adaptive neuro-fuzzy inference
systems in enabling researchers to develop more reliable and accurate approaches in extracting
diagnostic quality fECG signals and consequently facilitate the accurate detection of hypoxic
conditions during pregnancy and labor. We included recent research findings from the most
relevant engineering and medical literature and added our own contributions to the field. It
is important to emphasize that currently only a fraction of the vast amount of diagnostic
information in the abdominal ECG is used in clinical practice. Therefore, maximizing infor‐
mation extraction from fECG and CTG signals for the timely and reliable detection of fetal
hypoxia is of tremendous clinical interest. This is a major challenge in signal processing and
modern obstetrics as accurate determination of the fetus’ status during pregnancy and labor
is highly dependent on the quality of abdominal ECG monitoring, fECG signal filtering, and
the consequent analysis of CTG and ST segments. In this chapter we also used a novel
multichannel adaptive system that was designed, implemented, and validated by the authors
to generate clinical-quality data and test and compare a variety of relevant signal processing
algorithms. The primary component of this system is its adaptive block and the associated

Figure 17. The Relationship between SNRin and SNRout for ANFIS31-ANFIS5.
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back-propagated mechanism that requires two inputs for each channel: the desired and the
actual.

Our experimental results using clinical-quality synthetic data generated by our novel signal
generator revealed that it offers the potential to significantly refine the diagnostic quality of
the noninvasive aECG signals. We could safely conclude that following the approach present‐
ed in this chapter researchers and clinicians could acquire high quality fetal heartbeat and
uterine contraction data and extract clinically significant features for reliable and accurate
detection of hypoxic conditions in the fetus. As such, we are hopeful that our contribution here
facilitates the development and advancement of new diagnostic methods based on transab‐
dominal CTG + STAN. We envision that the future of fetal monitoring will greatly benefit from
sophisticated diagnostic instrumentation equipped with state-of-the-art transabdominal CTG
and STAN capabilities.
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