940 research outputs found

    A large neighbourhood based heuristic for two-echelon routing problems

    Full text link
    In this paper, we address two optimisation problems arising in the context of city logistics and two-level transportation systems. The two-echelon vehicle routing problem and the two-echelon location routing problem seek to produce vehicle itineraries to deliver goods to customers, with transits through intermediate facilities. To efficiently solve these problems, we propose a hybrid metaheuristic which combines enumerative local searches with destroy-and-repair principles, as well as some tailored operators to optimise the selections of intermediate facilities. We conduct extensive computational experiments to investigate the contribution of these operators to the search performance, and measure the performance of the method on both problem classes. The proposed algorithm finds the current best known solutions, or better ones, for 95% of the two-echelon vehicle routing problem benchmark instances. Overall, for both problems, it achieves high-quality solutions within short computing times. Finally, for future reference, we resolve inconsistencies between different versions of benchmark instances, document their differences, and provide them all online in a unified format

    Multi-echelon distribution systems in city logistics

    Get PDF
    In the last decades , the increasing quality of services requested by the cust omer, yields to the necessity of optimizing the whole distribution process. This goal may be achieved through a smart exploitation of existing resources other than a clever planning of the whole distribution process. For doing that, it is necessary to enha nce goods consolidation. One of the most efficient way to implement it is to adopt Multi - Echelon distribution systems which are very common in City Logistic context, in which they allow to keep large trucks from the city center, with strong environmental a dvantages . The aim of the paper is to review routing problems arising in City Logistics , in which multi - e chelon distribution systems are involved: the Two Echelon Location Routing Problem ( 2E - LRP) , the Two Echelon Vehicle Routing Problem (2E - VRP) and Truck and Trailer Routing Problem (TTRP), and to discuss literature on optimization methods, both exact and heuristic, developed to address these problems

    Urban Logistics in Amsterdam: A Modal Shift from Roadways to Waterway

    Full text link
    The efficiency of urban logistics is vital for economic prosperity and quality of life in cities. However, rapid urbanization poses significant challenges, such as congestion, emissions, and strained infrastructure. This paper addresses these challenges by proposing an optimal urban logistic network that integrates urban waterways and last-mile delivery in Amsterdam. The study highlights the untapped potential of inland waterways in addressing logistical challenges in the city center. The problem is formulated as a two-echelon location routing problem with time windows, and a hybrid solution approach is developed to solve it effectively. The proposed algorithm consistently outperforms existing approaches, demonstrating its effectiveness in solving existing benchmarks and newly developed instances. Through a comprehensive case study, the advantages of implementing a waterway-based distribution chain are assessed, revealing substantial cost savings (approximately 28%) and reductions in vehicle weight (about 43%) and travel distances (roughly 80%) within the city center. The incorporation of electric vehicles further contributes to environmental sustainability. Sensitivity analysis underscores the importance of managing transshipment location establishment costs as a key strategy for cost efficiencies and reducing reliance on delivery vehicles and road traffic congestion. This study provides valuable insights and practical guidance for managers seeking to enhance operational efficiency, reduce costs, and promote sustainable transportation practices. Further analysis is warranted to fully evaluate the feasibility and potential benefits, considering infrastructural limitations and canal characteristics

    Current Trends in Simheuristics: from smart transportation to agent-based simheuristics

    Get PDF
    Simheuristics extend metaheuristics by adding a simulation layer that allows the optimization component to deal efficiently with scenarios under uncertainty. This presentation reviews both initial as well as recent applications of simheuristics, mainly in the area of logistics and transportation. We also discuss a novel agent-based simheuristic (ABSH) approach that combines simheuristic and multi-agent systems to efficiently solve stochastic combinatorial optimization problems. The presentation is based on papers [1], [2], and [3], which have been already accepted in the prestigious Winter Simulation Conference.Peer ReviewedPostprint (published version

    The Two-Echelon Vehicle Routing Problem with Pickups, Deliveries, and Deadlines

    Get PDF
    This paper introduces the Two-Echelon Vehicle Routing Problem with Pickups, Deliveries, and Deadlines (2E-VRP-PDD), a new and emerging routing variant addressing the operations of logistics companies connecting consumers and suppliers in megacities. Logistics companies typically organize their logistics in such megacities via multiple geographically dispersed two-echelon distribution systems. The 2E-VRP-PDD is the practical problem that needs to be solved within each of such a single two-echelon distribution setting, thereby merging first and last-mile logistics operations. Specifically, it integrates forward flow, reverse flow, and vehicle time-synchronization aspects such as parcel time windows, satellite synchronization, and customer-dependent deadlines on the arrival of parcels at the hub. We solve the 2E-VRP-PDD with a tailored matheuristic that combines a newly developed Adaptive Large Neighborhood Search (ALNS) with a set-partitioning model. We show that our ALNS provides high-quality solutions on established benchmark instances from the literature. On a new benchmark set for the 2E-VRP-PDD, we show that loosening or tightening time restrictions, such as parcel delivery deadlines at the city hub, can lead to an 8.5% cost increase; showcasing the overhead associated with same-day delivery compared to next-day delivery operations. Finally, we showcase the performance of our matheuristic based on real-life instances which we obtained from our industry collaborator in Jakarta, Indonesia. On these instances, which we share publicly and consists of 1500 - 2150 customers, we show that using our ALNS can significantly improve current operations, leading to a 17% reduction in costs

    Sustainable distribution system design: a two-phase DoE-guided meta-heuristic solution approach for a three-echelon bi-objective AHP-integrated location-routing model

    Get PDF
    This article introduces a sustainable integrated bi-objective location-routing model, its two-phase solution approach and an analysis procedure for the distribution side of three-echelon logistics networks. The mixed-integer programming model captures several real-world factors by introducing an additional objective function and a set of new constraints in the model that outbound logistics channels find difficult to reconcile. The sustainable model minimises CO2 emissions from transportation and total costs incurred in facilities and the transportation channels. Design of Experiment (DoE) is integrated to the meta-heuristic based optimiser to solve the model in two phases. The DoE-guided solution approach enables the optimiser to offer the best stable solution space by taking out solutions with poor design features from the space and refining the feasible solutions using a convergence algorithm thereby selecting the realistic results. Several alternative solution scenarios are obtained by prioritising and ranking the realistic solution sets through a multi-attribute decision analysis tool, Technique for Order Preference by Similarity to Ideal Solution (TOPSIS). The robust model provides the decision maker the ability to take decisions on sustainable open alternative optimal routes. The outcomes of this research provide theoretical and methodological contributions, in terms of integrated bi-objective location-routing model and its two-phase DoE-guided meta-heuristic solution approach, for the distribution side of three-echelon logistics networks

    The two-echelon capacitated vehicle routing problem: models and math-based heuristics

    Get PDF
    Multiechelon distribution systems are quite common in supply-chain and logistics. They are used by public administrations in their transportation and traffic planning strategies, as well as by companies, to model own distribution systems. In the literature, most of the studies address issues relating to the movement of flows throughout the system from their origins to their final destinations. Another recent trend is to focus on the management of the vehicle fleets required to provide transportation among different echelons. The aim of this paper is twofold. First, it introduces the family of two-echelon vehicle routing problems (VRPs), a term that broadly covers such settings, where the delivery from one or more depots to customers is managed by routing and consolidating freight through intermediate depots. Second, it considers in detail the basic version of two-echelon VRPs, the two-echelon capacitated VRP, which is an extension of the classical VRP in which the delivery is compulsorily delivered through intermediate depots, named satellites. A mathematical model for two-echelon capacitated VRP, some valid inequalities, and two math-heuristics based on the model are presented. Computational results of up to 50 customers and four satellites show the effectiveness of the methods developed

    Multi-objective optimization of a two-echelon vehicle routing problem with vehicle synchronization and "grey Zone" customers arising in urban logistics

    Get PDF
    We present a multi-objective two-echelon vehicle routing problem with vehicle synchronization and "grey zone" customers arising in the context of urban freight deliveries. Inner-city center deliveries are performed by small vehicles due to access restrictions, while deliveries outside this area are carried out by conventional vehicles for economic reasons. Goods are transferred from the first to the second echelon by synchronized meetings between vehicles of the respective echelons. We investigate the assignment of customers to vehicles, i.e., to the first or second echelon, within a so-called "grey Zone" on the border of the inner city and the area around it. While doing this, the economic objective as well as negative external effects of transport, such as emissions and disturbance (negative impact on citizens due to noise and congestion), are taken into account to include objectives of companies as well as of citizens and municipal authorities. Our metaheuristic - a large neighborhood search embedded in a heuristic rectangle/cuboid splitting - addresses this problem efficiently. We investigate the impact of the free assignment of part of the customers ("grey Zone") to echelons and of three different city layouts on the solution. Computational results show that the impact of a "grey Zone" and thus the assignment of these customers to echelons depend significantly on the layout of a city. Potentially pareto-optimal solutions for two and three objectives are illustrated to efficiently support decision makers in sustainable city logistics planning processes

    Integrated production-distribution systems : Trends and perspectives

    Get PDF
    During the last two decades, integrated production-distribution problems have attracted a great deal of attention in the operations research literature. Within a short period, a large number of papers have been published and the field has expanded dramatically. The purpose of this paper is to provide a comprehensive review of the existing literature by classifying the existing models into several different categories based on multiple characteristics. The paper also discusses some trends and list promising avenues for future research

    A Neighborhood Search and Set Cover Hybrid Heuristic for the Two-Echelon Vehicle Routing Problem

    Get PDF
    The Two-Echelon Vehicle Routing Problem (2E-VRP) is a variant of the classical vehicle routing problem arising in the context of city logistics. In the 2E-VRP, freight from a main depot is delivered to final customers using intermediate facilities, called satellites. In this paper, we propose a new hybrid heuristic method for solving the 2E-VRP that relies on two components. The first component effectively explores the search space in order to discover a set of interesting routes. The second recombines the discovered routes into high-quality solutions. Experimentations on benchmark instances show the performance of our approach: our algorithm achieves high-quality solutions in short computational times and improves the current best known solutions for several large scale instances
    corecore