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Highlights

• The ’grey zone’ improves the solution above all for clustered instances

• City layouts with the city center in the middle of the city profit most

• The population-based disturbance measure performs well

• The heuristic cuboid splitting can estimate the Pareto surface for 3 objec-
tives

• The metaheuristic embeds large neighborhood search into heuristic cuboid
splitting
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Abstract

We present a multi-objective two-echelon vehicle routing problem with vehicle
synchronization and ’grey zone’ customers arising in the context of urban freight
deliveries. Inner-city center deliveries are performed by small vehicles due to
access restrictions, while deliveries outside this area are carried out by conven-
tional vehicles for economic reasons. Goods are transferred from the first to
the second echelon by synchronized meetings between vehicles of the respective
echelons. We investigate the assignment of customers to vehicles, i.e., to the
first or second echelon, within a so-called ’grey zone’ on the border of the inner
city and the area around it. While doing this, the economic objective as well as
negative external effects of transport, such as emissions and disturbance (nega-
tive impact on citizens due to noise and congestion), are taken into account to
include objectives of companies as well as of citizens and municipal authorities.
Our metaheuristic – a large neighborhood search embedded in a heuristic rect-
angle/cuboid splitting – addresses this problem efficiently. We investigate the
impact of the free assignment of part of the customers (’grey zone’) to echelons
and of three different city layouts on the solution. Computational results show
that the impact of a ’grey zone’ and thus the assignment of these customers to
echelons depend significantly on the layout of a city. Potentially pareto-optimal
solutions for two and three objectives are illustrated to efficiently support deci-
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sion makers in sustainable city logistics planning processes.

Keywords: Multiple objective programming, Two-echelon VRP, Vehicle
synchronization, City layout, ’Grey zone’
2010 MSC: 90C29, 90C59

1. Introduction

Increasing urbanization combined with growing transport volumes currently
constitute two major challenges in the field of city logistics. In the European
Union (EU), already 75% (2017) of all inhabitants live in urban areas and this
number is going to increase by 0.5% annually (World Bank, 2018). Road freight
transport is still increasing in the EU, with an average growth rate of 0.9% since
the year 2000, leading to a total of 1,722 billion ton kilometers in 2015, which is of
importance because total road transport (passenger and freight) causes 72.9% of
all transport-related greenhouse gas (GHG) emissions (European Commission,
2017). In addition, road freight transport contributes to noise and congestion,
which can be summarized as disturbance, that negatively affects people living
and working near heavily used streets.
The volume of European road freight transport is further boosted by the in-
creasing number of e-commerce users, which rose from 28% in 2009 up to 45%
in 2016 and causes smaller and smaller order volumes as well as an increasing
number of home deliveries with short delivery times (Statista, 2017). These de-
velopments make it difficult to supply citizens with all required goods without,
at the same time, deteriorating the quality of life due to increasing traffic and
growing amounts of GHG emissions, noise and congestion.
One way of dealing with these negative effects of urban freight transport is the
use of small emission-free vehicles for the required goods’ deliveries. Especially
vehicles like cargo bikes, cargo tricycles or small electric vehicles can be used
to deliver goods in densely populated city areas without contributing much to
GHG emissions and noise. Even congestion can be reduced, because for exam-
ple, cargo bikes, can use different parts of the road infrastructure (e.g., bike
lanes or one-way streets in both directions). They have the additional bene-
fit of more easily supplying city zones where traffic is severely limited, like for
example centers of historical cities. Nevertheless, two drawbacks of these vehi-
cles have to be considered. First, they have a limited load capacity. Second,
the operational distance is restricted (Gruber et al., 2013; FGM-AMOR et al.,
2014). Therefore, vehicles like cargo bikes cannot efficiently be used for the
total amount of urban freight but must be combined with conventional types
of vehicles, like vans or city freighters, which can transport a higher amount of
goods over a longer distance.
A two-echelon vehicle routing problem (2eVRP) addresses the planning of a
system with two vehicle fleets on two echelons. When vehicles of both echelons
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are allowed to deliver goods to customers, it has to be decided which customers
are visited by vehicles of which echelon. One way of dealing with this issue
is preassigning all customers to either the first echelon, which consists of the
area outside of the inner-city center to the outskirts of the city, or the second
echelon, which consists of the inner-city center. This can lead to solutions in
which customers located near the borderline, which separates second-echelon
from first-echelon customers, are serviced by a second-echelon vehicle (SEV)
although a first-echelon vehicle (FEV) passes already close by or vice versa. In
contrast to this idea dealt with by Anderluh et al. (2017), we address a more
general problem by deciding about the assignment of these customers near the
borderline (we call them ’grey zone’ customers) in the solution procedure. Mod-
eling this problem, which allows us to explore the impact of establishing such a
’grey zone’ on the solution, is the first contribution of this paper.
We focus on optimizing the two-echelon system, that is, building routes, assign-
ing customers to echelons and inserting required synchronized meetings between
vehicles of different echelons, to achieve the goals of economic efficiency and so-
cial and environmental benefits. The economic objective expressed in costs is
taken into account as a first objective in the model. To consider also objec-
tives of citizens and municipal authorities, external effects (GHG emissions and
disturbance of citizens caused by noise and congestion) of freight transport are
included. Hence, factors of all three aspects of sustainability are included in
the respective multi-objective optimization model. Because of the problematic
process of assigning appropriate cost factors to GHG emissions and disturbance
(Musso & Rothengatter, 2013), we include up to three objective functions in our
optimization problem. We express GHG emissions in kg CO2e (carbon dioxide
equivalent) emitted and disturbance as a factor based on the number of citizens
affected by road traffic. The metaheuristic solution procedure for the multi-
objective problem is based on a large neighborhood search (LNS) procedure
in combination with an ε-constraint method to approximate the set of efficient
(Pareto-optimal) solutions for up to three objectives. Combining LNS with the
heuristic rectangle splitting method introduced by Matl et al. (2019), which we
extended to three objectives, is the second contribution of the paper.
The impact of the city layout (different location of the city center with respect to
the total city area and the location of the first-echelon depot) on the two-echelon
city distribution scheme is tested by evaluating three different city structures
reflected by 18 newly generated artificial test instances. To our knowledge such
an investigation has not been done before and is the third contribution of this
paper.
The remainder of the paper gives an overview of related literature in Section
2. Section 3 describes the problem in detail, while in Section 4 the problem is
formulated as a mixed integer linear program. Section 5 explains the heuristic
solution method and Section 6 deals with the computational results obtained
by testing artificial test instances and a realistic test instance based on Vienna.
Finally, Section 7 concludes the paper.
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2. Literature review

Considering multiple objectives in routing problems is not a new field of re-
search. Already in the 1980s, a standard vehicle routing problem (VRP) with
the overall aim to minimize total distance, maximize fulfillment and minimize
the deterioration of goods was solved by a goal programming approach (Park
& Koelling, 1986). In the following 20 years, numerous papers tackled related
problems, which are summarized by Jozefowiez et al. (2008) in an extensive
literature review on multi-objective VRPs.
Since then, the number of papers dealing with multiple objectives has increased
continuously. Braekers et al. (2016) give an extensive review on different kinds
of VRP by building on the review by Eksioglu et al. (2009). Vehicle routing
literature from 2009 to mid 2015 is classified based on numerous criteria includ-
ing the considered objectives. 161 out of 327 surveyed articles tackle more than
one objective; nevertheless, no detailed information on how the problem is dealt
with is included.
In recent years numerous papers have focused on environmental criteria as an
additional objective in routing problems. These papers consider either emissions
or fuel consumption (Demir et al., 2014; Ramos et al., 2014; Alexiou & Kat-
savounis, 2015; Kumar et al., 2016; Androutsopoulos & Zografos, 2017; Gupta
et al., 2017; Sawik et al., 2017; Toro et al., 2017; Tricoire & Parragh, 2017; Abad
et al., 2018; Poonthalir & Nadarajan, 2018; Soleimani et al., 2018; Wang et al.,
2018; Eskandarpour et al., 2019; Ghannadpour & Zarrabi, 2019).
Besides, external social criteria (noise, congestion, disturbance) are added as
a further objective by Nolz et al. (2014), Sawik et al. (2017) and Govindan
et al. (2018). The fact that there may exist a trade-off between emissions as
an environmental objective and disturbance as a social objective is especially
investigated by Grabenschweiger et al. (2018).
Despite this vast number of papers considering multiple objectives in routing
problems, the multi-objective 2eVRP has gained little attention yet. The two-
echelon routing problem deals in general with the distribution of goods in two
steps: from a city distribution center (depot) to intermediate facilities (satel-
lites), which represents the first echelon of the problem, and from the satellites
to the customers, which represents the second echelon. A comprehensive survey
on 2eVRP-literature is conducted by Cuda et al. (2015), and Cattaruzza et al.
(2017) provide an overview of multi-level distribution systems in city logistics,
but neither review focuses on multi-objective problems.
Although some recently published papers focus on electric vehicles in 2eVRP
(Breunig et al., 2019; Jie et al., 2019), multi- objective 2eVRPs have not been
considered much. Soysal et al. (2015) consider a time-dependent 2eVRP and
combine different objectives like distance traveled, travel time, vehicles and
emissions in one weighted objective function. Li et al. (2016) deal with a time-
constrained 2eVRP occurring in linehaul-delivery systems and consider an ob-
jective function consisting of different parts, but no Pareto front is provided.
Wang et al. (2017) focus on a 2eVRP with environmental aspects by formulat-
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ing the objective function as the sum of drivers’ wage, fuel cost, and handling
cost. A matheuristic based on variable neighborhood search is used to solve this
problem. Marinelli et al. (2018) take into account environmental effects beside
economic cost in a 2eVRP. They solve the problem by means of a dynamic pro-
gramming approach considering either the one or the other objective.
In contrast to these papers, in which all objectives considered are aggregated in
one objective function or are dealt with separately, Esmaili & Sahraeian (2017)
minimize total customer waiting time and total travel cost in a 2eVRP. GHG
emissions are included as a constraint in the problem, which is solved by an
additive weighing method. This is one method to find efficient – Pareto-optimal
– solutions to a problem with multiple objectives. For a detailed description
of multi-objective optimization we refer to Ehrgott (2005). Wang et al. (2018)
deal with a bi-objective two-echelon waste collection problem in which total
cost and the number of vehicles are minimized, and a Non-dominated Sorting
Genetic Algorithm-II (NSGA-II) is combined with a Clarke and Wright savings
algorithm to find efficient solutions. A collaborative multiple centers 2eVRP
is investigated by Wang et al. (2018), in which aggregated operating cost and
carbon dioxide emissions are simultaneously minimized by using a NSGA-II. In
addition to that, they deal with the distribution of cost savings between coop-
erating companies.
Another method to find efficient solutions to a multi-objective optimization
problem is the ε-constraint method already developed by Haimes (1971). This
method is based on the idea that only one of the objectives of the multi-objective
optimization problem is minimized (or maximized) and all other objectives are
used as additional constraints with decreasing (or increasing) ε-values as right
hand sides of the constraints. The resulting single-objective problem can rather
easily be addressed by applying exact or heuristic solution procedures, and the
set of efficient solutions to the underlying multi-objective problem can be ob-
tained. Because of the parametrization of the ε-values, this method belongs to
the pool of scalarization techniques (we refer to Ehrgott (2005) and Antunes
et al. (2016) for further details).
Beside the difficulty of the ε-constraint method to determine appropriate ε-
values, other challenges when used with a heuristic solution method have to
be considered: (i) a potentially Pareto-optimal solution can become dominated
by a solution later found in the procedure, (ii) when terminated prematurely,
entire regions can be left without testing for Pareto-optimal solutions and (iii)
the appropriate setting of ε-values is challenging and instance-dependent.
Matl et al. (2019) try to master these challenges by introducing a different
method to split the solution space of a bi-objective optimization problem. The
heuristic rectangle splitting (HRS) starts with determining minimum and max-
imum values for both objectives, which forms a rectangle. This rectangle can
then be split temporarily into a feasible and an infeasible half. The solution
to the corresponding sub-problem allows to discard areas which cannot contain
Pareto-optimal solutions. In each iteration the largest remaining rectangle is
chosen to be split and the feasible half is tested for a Pareto-optimal solution.
To our knowledge no paper currently deals with a multi-objective 2eVRP with
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vehicle synchronization and customer deliveries on both echelons considering a
’grey zone’. In addition, the ε-constraint method has not been used for solv-
ing such a problem yet and to our knowledge HRS has been tested only for
bi-objective problems. Therefore, in this paper, we focus on a multi-objective
2eVRP with vehicle synchronization between echelons and customer deliveries
on both echelons including a ’grey zone’. We consider the economic objective
together with the environmental objective in this problem and address it by
means of a metaheuristic, which embeds a large neighborhood search into a
heuristic cuboid splitting. The latter is our extension of the heuristic rectangle
splitting suggested by Matl et al. (2019) to handle three objectives. Hence,
we are able to consider the social objective beside the formerly mentioned two
objectives.

3. Problem description

The basic problem considered deals with the combined and synchronized usage
of two types of vehicles on two echelons in a city distribution scheme (2eVRP-
Syn). In our 2eVRPSyn it is assumed that all vehicles start and end their routes
at their respective depots. FEVs (e.g., vans or light duty vehicles) deliver goods
from the depot of the first echelon (the place where all goods are stored) to
customers outside of the city center and/or to transshipment points without
storage facilities (called satellites). SEVs (e.g., cargo bikes or small electric ve-
hicles) start at the depot of the second echelon without any goods loaded and
must meet immediately after leaving the second-echelon depot with FEVs at
satellites to get goods, before they can start serving customers.
As only a limited amount of waiting time is allowed at a satellite for both types
of vehicles due to economical considerations, a FEV and a SEV must meet at a
certain satellite at approximately the same point in time to perform the loading.
So, for any synchronized meeting at a satellite either a FEV or a SEV may wait
for a limited amount of time, if necessary. This waiting time is minimized in
the objective function as part of the time-related cost (see objective (1) in the
mathematical model in Section 4).
From a satellite, SEVs deliver goods to customers in the city center. Whenever
a SEV has delivered all goods loaded, it can meet again with a FEV at a satellite
for loading purposes and continue its multi-trip route as long as the maximum
route duration, reflecting a working day, is not exceeded.
Summarizing the synchronization aspect, it can be stated that whenever a SEV
has no (more) goods loaded to serve customers, the maximum route duration
is not exceeded and there are still unserved customers, it has to meet with a
FEV at any appropriate satellite to reload goods (see Figure 1). A satellite can
be used more than once for such a synchronized meeting and in such a meeting
it is also possible that one FEV meets with more than one SEV at the same
time. Each second-echelon route includes at least one synchronized meeting
with a FEV right after leaving the second-echelon depot. For such a meeting
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the starting time of the SEV is chosen in such a way that the waiting time for
both vehicles is zero. Whenever an additional synchronized meeting is required
for a SEV, then waiting times may occur.

Figure 1: Synchronization along the routes of two first-echelon vehicles (FEV_1 and
FEV_2) and a second-echelon vehicle (SEV_1).

In Anderluh et al. (2017), the 2eVRPSyn is solved with all customers preas-
signed to echelons. Customers located inside the city center (see green dashed
circle in Figure 2) are preassigned to the second echelon, whereas all other
customers are preassigned to the first echelon. This fixed preassignment of cus-
tomers may result in solutions where some customers (see customer A on the
left of Figure 2) are part of a first-echelon route although they may better fit
into a second-echelon route and vice versa (see customer B on the left of Figure
2). To overcome these drawbacks, we assume a so-called ’grey zone’ (see grey-
shaded zone on the right of Figure 2) – an area between the inner-city center
and the area outside of it – where customer deliveries can be made by vehicles
of both echelons. So, the assignment of these ’grey zone’ customers is part of
the solution procedure and should contribute to improve the solution quality
compared to the one obtained by a complete preassignment of customers.
This assumption stems from discussions with experts as well as considerations
about the usability of the assumed SEVs. Especially in European cities with a
historic city center, we face numerous narrow one-way streets, pedestrian zones
and the absence of parking space for conventional delivery vehicles in the inner-
city center. Therefore, this area seems appropriate for deliveries by SEVs only.
In contrast, the area near the outskirts of a city is too far away to be supplied
by SEVs assuming an action radius of 3-5 km around the second-echelon depot
for SEVs like cargo bikes (Gruber et al., 2013; FGM-AMOR et al., 2014).
Hence, all customers located outside this radius are preassigned to FEVs. All
remaining customers located inside the ’grey zone’ can be served either by FEVs
or SEVs (see customers A and B on the right of Figure 2, which are now served
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Figure 2: Two-echelon city distribution scheme. On the left: all customers are
preassigned to echelons. On the right: customers within the ’grey zone’ have no
preassignment to an echelon.

in a better way than on the left of Figure 2).
In this paper, we focus not only on costs as the objective of the optimization
problem at hand. We also take external effects into account as additional objec-
tives. Such modeling provides the means to analyze the various cost elements
and decide on the strategy to adopt for both individual companies and the sys-
tem regulator (e.g., municipal authorities).
Costs are assumed as the sum of time-related and distance-related variable cost
for each route plus fixed cost for each vehicle used. The time-related cost in-
clude travel time, service time and waiting time occurring at satellites.
In addition, we consider GHG emissions as a climate-relevant externality and
disturbance (noise and congestion as negative impacts on inhabitants) as health-
relevant and therefore a social externality based on ideas described in Musso &
Rothengatter (2013).
The environmental effect is assumed to be distance-based. More detailed emis-
sion models can be found in the literature (we refer the interested reader to
Demir et al., 2011)) but as the focus of this paper is not on the detailed calcu-
lation of GHG emissions, this simplification seems appropriate.
Yeh (2013) evaluates disturbance (or externalities, as it is called in this paper)
for specific territories and modes of transport in Greater Paris. This is done
by a gravity indicator related to traffic intensity and population density. Our
method how disturbance along traversed paths can be calculated for a city like
Vienna is described in Subsection 5.5.
Thus, the ’grey zone’ makes sense also with respect to the multiple objective
functions, especially because we do not only consider economic cost, but also
environmental and social objectives. Specifically, when schools and hospitals
are located in the ’grey zone’, the use of eco-friendly vehicles seems more ap-
propriate.
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The resulting problem is a multi-objective two-echelon vehicle routing problem
with vehicle synchronization and ’grey zone’ customers (MO2eVRPSynGZ).

4. Mathematical model

The problem is defined on a graph G = (V,A). The vertex set V consists of
the set of depot nodes Vd, the set of customer nodes Vc and the set of satellite
nodes Vs (the notation used is summarized in Table 1).
The set Vd contains one depot node vmd for each echelon m ∈ {1, 2}. For the
first echelon a depot is assumed as storage facility and starting point of all first-
echelon vehicles, and for the second echelon a depot is assumed as starting point
for second-echelon vehicles. As this depot is located in the inner-city center and
prices per m2 are high, only one location is assumed here too. For each depot
a start and end node is created (vmd , vm′d ). The extended set of depot nodes is
denoted by V ′d .
The set Vc consists of three subsets of customer nodes V mc with m ∈ {0, 1, 2},
with m = 1, meaning that only first-echelon vehicles can go there. The same
holds for m = 2 and the second echelon. If m = 0, vehicles of both echelons
may go to these nodes, which we denote as ’grey zone’ customers.
The set Vs is extended to Ṽs by duplicating every physical satellite node vs as
many times as there are customer nodes in V 0

c ∪ V 2
c which can be served by

second-echelon vehicles, yielding | V 0
c | + | V 2

c | cloned satellite nodes vsc . This
is due to the fact that every physical satellite node may be used more than once
during the execution time of the routes and also by more than one vehicle of the
same echelon at the same time. So, the extended set of vertices can be denoted
by VE = V ′d∪Vc∪Ṽs, with all nodes in the set Ṽs reachable by vehicles of both ech-
elons. On the other hand we can define the sets V m = vmd ∪vm′d ∪V 0

c ∪V mc ∪ Ṽs,
with m ∈ {1, 2}, that is, the set of all vertices reachable by a first-echelon
(m = 1) or a second-echelon (m = 2) vehicle. The arc set A consists of all
feasible arcs in the problem. So, following the above vertex set definition, we
define two mode-specific sets of arcs Am = {(i, j) | i, j ∈ V m} with m ∈ {1, 2}.
Each node i ∈ VE has its specific loading or service time λi ≥ 0 and each node
i ∈ Vc has its specific demand di > 0.
The set of vehicles F consists of a set of first-echelon vehicles F 1 and a set of
second-echelon vehicles F 2. Customers in the ’grey zone’ can be visited by any
vehicle, i.e., F 0 = F 1 ∪ F 2 = F . Each vehicle k has a certain capacity Qk as
well as a certain distance δkij and travel time τkij for each feasible arc (i, j). For
the calculation of costs each vehicle k has a specific vehicle cost ckD per unit
of distance traveled, driver cost ckT per unit of time used and fixed cost ckF per
vehicle used. The total cost of vehicle k ∈ F for traversing a feasible arc (i, j)
is represented by ckij . Eventually, for each vehicle k, distance-based GHG emis-
sions ekij and disturbance θkij for traversing a feasible arc (i, j) are known. As
we assume homogeneous sets of vehicles, all these parameters are the same for
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Table 1: Notation

Parameters
Vd/V

′
d set/extended set of depot nodes

vmd /v
m
d ′ depot nodes of echelon m

Vc set of customer nodes
Vm
c subsets of first echelon (m = 1), second echelon (m = 2)

or ’grey zone’ (m = 0) customers
Vs set of physical satellite nodes
Ṽs set of cloned satellite nodes
VE extended set of all nodes
Vm subsets of nodes which can be visited by vehicles of the

mth echelon
Fm Fleet of vehicles of the mth echelon
F fleet of all vehicles
ckT driver costs of vehicle k per unit of time traveled/served/waited
ckD vehicle costs of vehicle k per unit of distance traveled
ckF fixed costs of vehicle k
di demand of node i
λi service/loading time at node i
δkij distance from node i to node j for vehicle k
τk
ij travel time of vehicle k from node i to node j
Qk capacity of vehicle k
tmax maximum route duration
wmax maximum waiting time at each satellite node for any vehicle
Mu total demand of all customers
ckij total cost of vehicle k for traversing arc (i, j)

ekij GHG emissions of vehicle k for traversing arc (i, j)

θkij disturbance of vehicle k for traversing arc (i, j)

Variables
xk
ij is 1 if vehicle k travels from node i to node j, 0 otherwise
tki arrival time of vehicle k at node i
wk

s waiting time of vehicle k at satellite s
uk
i load of vehicle k after serving node i

vehicles of the same echelon. The maximum route duration is given by tmax and
the maximum permitted waiting time at any satellite s ∈ Ṽs for each vehicle k
is defined by wmax.
Furthermore, we define as decision variables the binary variable xkij = 1, iff vehi-
cle k travels from node i to node j, and continuous variables wks ≥ 0, specifying
the waiting time occurring for vehicle k at satellite s, tki ≥ 0, specifying the
arrival time of vehicle k at node i, and uki ≥ 0, specifying the load of vehicle k
after serving node i. In addition, we use the constant Mu, which represents the
total demand of all customers.
The optimization problem at hand can be formulated as a mixed integer linear
problem with the objectives:

min
∑

k∈F


∑

i∈VE

∑

j∈VE

((τkij + λj)c
k
T + δkijc

k
D)x

k
ij +

∑

s∈Ṽs

wks c
k
T +

∑

d∈Vd

∑

j∈VE

ckFx
k
dj




(1)

min
∑

k∈F

∑

i∈VE

∑

j∈VE

ekijx
k
ij (2)
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min
∑

k∈F

∑

i∈VE

∑

j∈VE

θkijx
k
ij (3)

Subject to:
∑

j∈VE

xkvmd j =
∑

j∈VE

xkjvm′d
, ∀ k ∈ F , ∀ m ∈ {1, 2} (4)

∑

j∈VE

xkvmd j ≤ 1, ∀ k ∈ F , ∀ m ∈ {1, 2} (5)

∑

h∈VE

xkhi =
∑

j∈VE

xkij , ∀ i ∈ Vc, , ∀ k ∈ F (6)

∑

k∈Fm

∑

h∈VE

xkhi = 1, ∀ m ∈ {0, 1, 2}, ∀ i ∈ V mc (7)

∑

i∈VE

xkis =
∑

j∈VE

xksj , ∀ s ∈ Ṽs, ∀ k ∈ F (8)

∑

k∈Fm

∑

i∈Vm

xkis ≤ 1, ∀ s ∈ Ṽs, ∀ m ∈ {1, 2} (9)

∑

k∈F 2

∑

i∈V 2

xkis =
∑

l∈F 1

∑

j∈V 1

xljs, ∀ s ∈ Ṽs (10)

ukj + dj ≤ uki +Mu(1− xkij), ∀ k ∈ F , ∀ i ∈ VE , ∀ j ∈ Vc (11)

0 ≤ uki ≤ Qk, ∀ k ∈ F , ∀ i ∈ VE (12)

uki ≤Mu(1− xkis), ∀ k ∈ F , ∀ i ∈ VE , ∀ s ∈ v1′d ∪ v2′d (13)

uki ≤Mu(1− xkis), ∀ k ∈ F 2, ∀ i ∈ VE , ∀ s ∈ Ṽs (14)

uls + uks ≤ uki +Mu(1− xkis), ∀ k ∈ F 1, ∀ l ∈ F 2, ∀ i ∈ V 1, ∀ s ∈ Ṽs (15)

tki ≤
∑

j∈VE

xkijtmax, ∀ i ∈ VE , ∀ k ∈ F (16)

tkv1d
= 0, ∀ k ∈ F 1 (17)
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tki + τkij + λi − tkj ≤ (1− xkij)tmax, ∀ i ∈ VE \ Ṽs, ∀ j ∈ VE , ∀ k ∈ F (18)

tks + τksj + λs + wks − tkj ≤ (1− xksj)tmax, ∀ s ∈ Ṽs, ∀ j ∈ VE , ∀ k ∈ F (19)

wls ≥
∑

k∈F 2

tks −
∑

k∈F 1

tks , ∀ l ∈ F 1, ∀ s ∈ Ṽs (20)

wls ≥
∑

k∈F 1

tks −
∑

k∈F 2

tks , ∀ l ∈ F 2, ∀ s ∈ Ṽs (21)

wks ≤
∑

j∈VE

xksjwmax, ∀ s ∈ Ṽs, ∀ k ∈ F (22)

xkij ∈ {0, 1}, ∀ i, j ∈ VE , ∀ k ∈ F (23)

tki , u
k
i , w

k
s ≥ 0, ∀ i ∈ VE , ∀ s ∈ Ṽs, ∀ k ∈ F (24)

Objective function (1) minimizes total transportation cost consisting of time-

related and distance-related variable cost and vehicle-related fixed cost. Total
GHG emissions caused by all arcs used are minimized in objective function (2),
while objective function (3) minimizes the total disturbance caused by all arcs
traversed.
Constraints (4) and (5) ensure that each vehicle leaving its depot also returns to
this depot and that each vehicle is used at most once. Constraints (6) and (7)
guarantee that each customer is visited exactly once by a vehicle. Constraints
(8), (9) ensure that each cloned satellite is used at most once by vehicles of
the same type and constraint (10) guarantees that, if it is used as supply point
by a second-echelon vehicle, it has to be visited by a first-echelon vehicle too.
Constraint (11) ensures for each vehicle that the load after visiting a node is
equal to the load before minus the demand of the respective node. Constraint
(12) ensures that the load of a vehicle at each visited node does not exceed
the vehicle’s capacity. Constraint (13) guarantees that each vehicle is empty
when reaching the depot at the end of its route, whereas (14) ensures that every
second-echelon vehicle is empty when visiting a satellite. Constraint (15) ensures
that the load of the second-echelon vehicle at a satellite is added as demand for
the first-echelon vehicle which visits this satellite. Constraint (16) restricts the
maximum route duration of a vehicle, while constraint (17) enforces the start
time of each first-echelon vehicle at the depot to be zero. Constraint (18) en-
sures the scheduling of nodes for all vehicles except satellites. The scheduling
for satellites is enforced by constraint (19). Constraints (20) and (21) deter-
mine the waiting time of a first-echelon/second-echelon vehicle at a node as
the difference between the arrival time of the respective vehicle at this node

13



minus the arrival time of the corresponding vehicle of the other echelon visit-
ing this node. Constraint (22) limits the synchronization of first-echelon and
second-echelon vehicles at cloned satellites within a maximum permitted time
span. Eventually, constraint (23) imposes binary values on the main decision
variable, while constraint (24) ensures non-negative values for all other decision
variables.

5. Solution method

The solution procedure is a metaheuristic to find good solutions to the problem
with respect to one objective in an affordable amount of time. This is done by
using a LNS concept, which has already proven to be very effective for address-
ing routing and scheduling problems in general (Pisinger & Ropke, 2010). Our
metaheuristic integrates a LNS into a multi-objective method to find solutions
along the Pareto front. The multi-objective method used in our metaheuristic is
based on the heuristic rectangle splitting suggested by Matl et al. (2019), which
is applicable for bi-objective problems and which we extend in this paper to a
heuristic cuboid splitting applicable to problems with three objectives.
An overview of all parts of our metaheuristic, which are described in the follow-
ing subsections, is provided in Figure 3.

5.1. Construction of initial solutions

The metaheuristic solution procedure starts with finding a feasible initial solu-
tion s for the economic objective of the problem defined in objective function
(1). The main idea of building an initial solution to the problem is based on An-
derluh et al. (2017), where a sequential construction procedure is used. We start
with the construction of second-echelon routes for all preassigned second-echelon
customers vehicle by vehicle. This is done by a GRASP. The next customer for
a route is chosen randomly out of a restricted candidate list, in which promising
second-echelon customers, which are not yet assigned to a route, are included.
Whenever a meeting of a SEV with a FEV is required, i.e., just after leaving the
second-echelon depot or when a SEV runs out of load and has time and remain-
ing customers to continue its route, the cheapest available satellite is inserted
into the route as a dummy satellite. This is done to have an approximation of
the detours required for the synchronized meetings with FEVs. As soon as all
second-echelon customers are routed, we can calculate the demand required as
well as the arrival time of the respective SEVs at these satellites.
This information is then used for the construction of the first-echelon routes
in an analogous way as for the second echelon. After assigning all preassigned
first-echelon customers to FEVs, the remaining ’grey zone’ customers have to
be dealt with. ’Grey zone’ customers are inserted one by one randomly in the
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Figure 3: Overview of the metaheuristic

already built first-echelon or second-echelon routes at the best insertion posi-
tion. If no feasible insertion position can be found in existing routes, a new
first-echelon or second-echelon route is built depending on the insertion cost.
As soon as all ’grey zone’ customers are routed, all dummy satellites are re-
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moved and the routes are improved by a local search. Within each route a
2-opt operator is applied. The swap operator exchanges two nodes within the
same route (intra-route) as well as between different routes of the same echelon
(inter-route). As additional inter-route operator, a relocate operator is used,
which moves one node to another route of the same echelon.
Then satellites are inserted into the second-echelon routes by a dynamic pro-
gramming approach. After the satellite insertion route segments between satel-
lites are improved by a 2optseg-operator applicable segment-wise. Based on the
demand and arrival time at each satellite inserted in a second-echelon route,
the respective satellites are then inserted into first-echelon routes by a simple
best-fit approach starting with the satellite with the earliest arrival time of a
SEV at its cheapest position.
Whenever a FEV and a SEV, which are required to meet at a satellite, do not
arrive there at exactly the same point in time, the vehicle which arrives first has
to wait until the other arrives. If this waiting time exceeds a given limit (maxi-
mum waiting time) the respective insertion position for the satellite is infeasible
and the next insertion position is checked. In case, no feasible insertion posi-
tion can be found, an additional first-echelon route is created, which includes
only the satellite. After each insertion of a satellite in a first-echelon route,
the 2optseg-operator is applied to this route. In addition, all routes have to be
updated with respect to demand, arrival time at satellites and total duration of
the route, before the next satellite can be inserted. If the solution is feasible, it
is used as initial solution for the metaheuristic; otherwise it is discarded and a
new solution is built.
For further details on the local search operators as well as on the satellite inser-
tion procedures we refer the interested reader to Anderluh et al. (2017).

5.2. Large neighborhood search

The initial solution s is improved by a LNS heuristic based on the work by
Pisinger & Ropke (2010) and Hemmelmayr et al. (2012). The main principle
of LNS is to remove part of the solution by different destroy-operators and put
the respective nodes in a pool of nodes which needs to be reinserted into the
remaining part of the solution. For this reinsertion, different repair-operators
are used. We use 4 destroy-operators and 3 repair-operators, which are selected
in each iteration of the LNS by a roulette wheel mechanism.
The destroy-operators are:
Random node removal : q customer nodes from both echelons are removed at
random
Worst node removal : The q customer nodes with the highest removal savings
are removed regardless the echelon they belong to
Random route removal : One route from any echelon is removed at random
Max waiting removal : The route with the longest waiting time at satellites is
removed regardless the echelon it belongs to
The parameter q is assumed as a random number with q = U [|Vc|/8; |Vc|/4].
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These values are based on considerations that too few nodes removed at a sin-
gle LNS step do not diversify the solution enough to escape local optima. On
the other hand, too many nodes removed at a single LNS step cause a lot of ad-
ditional computational time without contributing much to the solution quality.
The repair-operators are:
Greedy insertion: One node after the other is inserted at its current best posi-
tion; the order of insertion is chosen at random
Best insertion: The best insertion position for each node is determined and the
node with the lowest insertion cost is inserted at its best position
2-regret insertion: The 3 best insertion positions are determined for each node
and then the regret values between the best and the third best insertion position
are calculated. The node with the highest regret value is inserted at its best
insertion position
When using the repair operators, first-echelon and second-echelon customers
can only be inserted in the respective echelon, whereas for ’grey zone’ cus-
tomers insertion positions in routes of both echelons are checked. After apply-
ing one destroy-operator and one repair-operator, the positions of the satellites
are checked and adapted as necessary trying to get a feasible solution s′ with
respect to the synchronization requirement. For this step a two-stage procedure
as described in Section 5.1 is used. If s′ is a feasible solution the local search
operators are applied to further improve s′, otherwise s′ is discarded.
If s′ is feasible and the objective function value f(s′) is better than the current
best one f(s∗), s′ is accepted in any case. If the objective function value of the
new solution is worse, it is accepted based on the Metropolis criterion often used
in simulated annealing, with an acceptance probability p = e−

f(s∗)−f(s′)
T (Aarts

et al., 2014). T represents the temperature which cools down by Ti = αTi−1
and 0 < α < 1 whenever a solution s′ is accepted. Whenever a solution s′ is
accepted, it is used as a new starting solution s = s′ and the next iteration of
LNS starts. This is repeated till the maximum number of LNS iterations itmax
is reached.

5.3. Heuristic rectangle/cuboid splitting

The HRS by Matl et al. (2019), which has already been mentioned in Section 2,
has the advantage that it can be used with any heuristic, which is appropriate
to address the problem at hand for one objective. In addition, this method
allows to update the Pareto front with respect to intermediate solutions which
are later dominated by new-found ones. HRS is based on the Box algorithm
by Hamacher et al. (2007). It starts with solving the minimization problem at
hand for objective f1 without any constraint on f2, which yields the upper left
black square shown in Step 1 of Figure 4. Then the other extreme value to the
problem is determined by (fmax1 , fmin2 ), which denotes the maximum value of
f1 and the minimum value of f2. Now a rectangle is formed out of these two
extreme values, represented by the grey rectangle in Step 1 of Figure 4.
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Figure 4: Visualization of the rectangle splitting and updating procedure provided
by Matl et al. (2019, p. 5). Black squares represent solutions and grey areas represent
their associated rectangles. Horizontal lines indicate the ε-values and red diamonds
mark solutions to the respective sub-problems.

This rectangle can then be split by choosing the ε-value as the value which
halves the rectangle into a temporarily feasible half (the lower half in Step 1 of
Figure 4) and a temporarily infeasible half (the upper half in Step 1 of Figure
4). The solution to the corresponding sub-problem with the additional con-
straint on the maximum value on f2 represented by the chosen ε-value (see red
diamond in Step 1 of Figure 4) allows to discard areas which are dominated by
the solutions found or should not contain Pareto-optimal solutions anymore (see
remaining grey rectangles in Step 2 of Figure 4, which represent areas where
Pareto-optimal solutions may still be found).
In each iteration the largest remaining rectangle is chosen to be split and the
temporarily feasible (lower) half is tested for a Pareto-optimal solution and if
one is found the rectangles are updated as described before (see Steps 3 + 4
of Figure 4). This procedure is repeated till a termination criterion (e.g., the
maximum number of sub-problems solved) is reached.
If no solution can be found to a sub-problem, the respective area is completely
discarded (see Steps 5 + 6 of Figure 4). If a solution is found which dominates
a previous solution (this may happen if a heuristic is used to find solutions to
the problem), the dominated one is removed from the set of Pareto- optimal
solutions (see Steps 7 + 8 of Figure 4). The light-grey rectangles in Step 8 of
Figure 4, which would have been added to the remaining rectangles by the orig-
inal Box algorithm, are not included in the HRS, because such an enlargement
could cause a kind of sub-cycling and so increase the run-time significantly.
For further details we refer the interested reader to Matl et al. (2019).
An advantage of HRS is that the algorithm quickly converges to a representative
approximation of the complete set of Pareto-optimal solutions. Additionally, the
difficulty of determining the value of the ε-parameter is eliminated, because it
is simply set to the value that halves the largest remaining rectangle.
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Figure 5: On the left: visualization of the starting point ((fmin
1 , fmax

2 , fmax
3 ) (black

dot) and the diagonally opposite extreme point (M, 0, 0)) which span the initial cuboid
r∗ for the cuboid splitting procedure.
On the right: splitting the cuboid r∗ into 4 parts by halving it in both directions.

Figure 6: On the left: intermediately feasible (dark grey shaded) cuboid r′′ and
infeasible (light grey shaded) cuboids are shown, obtained by splitting the initial cuboid
into halves in two directions.
On the right: best feasible solution s′′ (red dot) to the problem (with respect to the
constraints to objectives 2 and 3 defined by the feasible cuboid) determines which
parts of all remaining cuboids in R cannot contain non-dominated solutions anymore,
because the cuboid is dominated by s′′. These parts are removed from the set of
cuboids and cuboids which together form a regular cuboid, are combined in one cuboid
(update of R).

In this paper, we extend the principle of HRS to be able to find a set of Pareto-
optimal solutions P (si) to a problem with three objectives. This yields a heuris-
tic cuboid splitting (HCS).
The start is similar to the HRS. The solution s′ of the single-objective problem
without any constraints for the other two objectives yields the upper, front,
right point (fmin1 , fmax2 , fmax3 ) in the left part of Figure 5. The lower, back,
left point can be set to trivial values: It is assumed simply as (M, 0, 0) (see
Algorithm 1 lines 4-6). This means the maximum value for the main objective
is assumed as a big enough constant, whereas the minimum values for the other
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Figure 7: On the left: HCS procedure continues with splitting the largest remaining
cuboid r′ and defining the intermediately feasible cuboid r′′ (dark grey shaded cuboid).
On the right: a cuboid r′′ is removed completely from R if no feasible solution can be
found inside this cuboid.

two objectives are assumed to be 0. The such defined initial cuboid r∗ is halved
in two directions (see right part of Figure 5).
This splitting yields one feasible cuboid r′′ (the dark grey shaded cuboid in the
left part of Figure 6) and three infeasible ones (the light grey shaded cuboids in
the left part of Figure 6). Then the temporarily feasible cuboid r′′ is checked for
a feasible solution (see Algorithm 1 lines 7-11). If a feasible solution s′′ is found,
this solution is added to the Pareto front P and the cuboids in R are updated,
i.e., cuboids which are dominated by the solution found are removed as well as
the cuboid which would dominate this solution, as it is assumed that it is an
efficient solution. Remaining parts are merged if they form a regular cuboid
again (as shown in the right part of Figure 6 and in lines 15-23 of Algorithm 1).
The procedure continues with the largest remaining cuboid r′ (see left part of
Figure 7 and Algorithm 1 line 9)). If no feasible solution s′′ can be found (see
Algorithm 1 lines 12-14), the respective cuboid r′′ is removed from the set of
feasible cuboids R (see right part of Figure 7).
If a solution s′′, which is later found in the solution procedure, dominates a
previous potentially Pareto-optimal solution si, this solution is removed from
the set and the set of cuboids is updated accordingly (see Algorithm 1 lines
17-21). The algorithm stops when the stopping condition is met (see Algorithm
1 line 24).
This can be assumed as a maximum number of iterations, a computational time
limit or also a requirement on the minimum size of the largest remaining feasible
region which has not been searched yet.
To conclude, the HCS works quite similarly to the above described HRS. Only
the updating procedure of the remaining cuboids is a bit more demanding.
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Algorithm 1 Heuristic cuboid splitting
1: P (si)← {} /* empty set of non-dominated solutions */
2: R(pj/qj)← {} /* empty set of cuboids spanned by opposite edge points */
3: it← 0
4: s′ ← LNS /* initial best solution by LNS for first objective without con-

straints on other objectives */
5: Add s′ to P
6: r∗ = (fi(s

′)/(M, 0, 0))
7: Add r∗ to R
8: repeat
9: r′ ← max(R) /* select largest cuboid in R */

10: r′′ ← feasible half /* determine intermediate feasible part of cuboid */
11: s′′ ← LNS in r′′ /* find best non-dominated solution in selected cuboid

by LNS */
12: if s′′ = ∅ then /* no appropriate solution is found */
13: Remove r′′ from R
14: end if
15: if s′′ is feasible then
16: Add s′′ to P
17: for each si ∈ P do
18: if s′′ dominates si then
19: Remove si from P
20: end if
21: end for
22: Update R based on s′′

23: end if
24: it = it+ 1
25: until it > maxit /* stopping condition is met */
26: return P

5.4. Calculation of GHG emissions

GHG emissions are assumed to be distance-based and have a direct component
caused by burning fossil fuel and an indirect one caused by providing the required
fuel or energy. Hence, also second-echelon vehicles cause a small amount of in-
direct GHG emissions, as they are assumed to be electrically assisted emission-
free vehicles. For the calculation of GHG emissions of first-echelon vehicles, the
average fuel consumption is multiplied with the CO2-factor of the fuel used.
Similarly, for the second-echelon vehicles the average electric power consump-
tion is multiplied with the CO2-factor of the overall fuel mix. Data used for the
calculations in this paper, are listed in Table 2. To reflect the increase in emis-
sions caused by very low speeds (e.g., searching for a parking space, continuing
the route after serving a customer) for every visit of a first-echelon customer, the
amount of GHG emissions of a first-echelon vehicle is increased by an average
amount of emissions of 0.5 (Barth & Boriboonsomsin, 2009).
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Table 2: Data for the calculation of GHG emissions

First echelon (Light duty vehicle [3.5t]) Second echelon (eBullitt)
Average fuel 0.085 l/km 10.45 Wh/km

(diesel)/ power Umweltbundesamt (2017) Larry vs. Harry (2017)
consumption
CO2-factor 0.52 (status 2017)

Umweltbundesamt (n. d.)∗
CO2-equivalent 279.4 g/km (status 2017) 5 g/km

Umweltbundesamt (n. d.)∗ based on above numbers
∗ Provided numbers are subject to regular updates, previous data is available on request

5.5. Calculation of disturbance

In this paper, disturbance is assumed to be related to the number of affected
people along a traversed path. Therefore, this objective can only be considered
if appropriate data is available (in our case this holds only for the realistic test
instance of Vienna, named vienna (see Subsection 6.1 for further details of this
instance)). The calculation of disturbance along a path, which we suggest in this
paper, can be seen as distance-based but weighted by the respective population
density of each city district the respective path crosses (see different population
density in different districts of Vienna in Figure 8). In addition, selected points

Figure 8: Population density of city districts provided by the municipality of Vienna
and the location of considered POIs (schools and hospitals) in Vienna as well as the
nodes of the instance vienna.

of interest (POIs) – in this paper, we consider schools and hospitals as such
points – increase the number of people affected because delivery operations are
mainly done during the daytime when large numbers of people are present at
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the above-mentioned POIs (see the locations of schools and hospitals in Vienna
displayed in Figure 8).
For each single shortest path (based on the minimum distance for each echelon)
between two nodes the number of people affected is calculated by multiplying
the distance of each part of the path in a certain city district with the respec-
tive population density of this area. For each POI along this path an additional
number of people affected is added (see Figure 9). Finally, the total number of

Figure 9: Basis for the calculation of the disturbance of a certain path of instance
vienna. The path is divided into segments based on the city districts.

people affected along this path is multiplied by a certain impact factor for each
echelon. This is due to the fact that the main disturbance factor – noise – is
above all caused by FEVs, whereas SEVs hardly cause disturbance. Therefore,
the impact factor of FEVs is assumed to be significantly higher (in our tests we
assume a 30 times higher impact factor for FEVs) than that of SEVs. This as-
sumption is based on the maximum noise level of light duty vehicles of currently
74 dB(A) (European Parliament, 2014) and considerations that e-cargo bikes,
for which no detailed information could be found, cause noise comparable to a
talk in low voice of about 30 dB(A). As an increase of 10dB(A) is equivalent to a
doubling of loudness and we want to clearly express the difference in disturbance
for the two echelons, we assume for our calculations that first-echelon vehicles
have a 30 times higher negative impact than second-echelon vehicles.
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6. Computational results

The algorithm was implemented in C/C++ and tested under Linux Ubuntu 16.04
LTS running on a virtual machine (using two processors and 2GB memory) on
a host Intel(R) Core(TM) i5-3320 M CPU @ 2.60GHz 4GB RAM.

6.1. Test instances

For our tests we consider three types of instances. First, we use a set of adapted
Solomon instances (C101, C201, R101, R201, RC101, RC201) introduced in An-
derluh et al. (2017). In these instances the original Solomon-depot is used as a
second-echelon depot which is surrounded by a rectangle of 8 satellites. At the
border of the area considered a first-echelon depot is added. This set is used for
testing the quality of LNS (see Subsection 6.3) compared to the GRASP+PR
method introduced in Anderluh et al. (2017).
Second, we consider the test instance vienna based on realistic data of Vienna
and already used in Anderluh et al. (2017). Customer locations are based on
the location of 100 randomly selected pharmacies. 18 satellites are chosen at
appropriate places around the city center. The first-echelon depot represents
the depot of one of the pharmacy wholesalers in Vienna and the second-echelon
depot is assumed at an appropriate place in the first district of Vienna. Dis-
tances are based on the real street network, which in some cases yields different
distances for FEVs and SEVs as they may use different types of streets. Travel
times for FEVs (which are assumed to be vans) are based on floating car data
provided by Taxi 31300 in cooperation with the Austrian Institute of Technol-
ogy, whereas travel times for SEVs (which are assumed to be cargo bikes) are
derived based on the distance and an average speed factor.
Third, we generate a set of test instances where the relative location of the city
center surrounded by potential satellites within the city and its location with
respect to the depot of the first echelon vary. In our tests we focus on three
different settings (S). Setting A (see left part of Figure 10) represents a city
with the city center in the middle of the city area and the first-echelon depot
on the outskirts of the city. Settings B and C represent cities each with the city
center at one border of the city (for example a seaside city) and the first-echelon
depot either opposite on the other side of the city (setting B shown in the middle
of Figure 10) or diagonally opposite (setting C represented in the right part of
Figure 10).
Customers are located (l) based on the principle used in the Solomon instances.
Thus, we have either randomly located customers (r), clustered ones (c) or a
combination of the former two (rc). The number of customers (n) is set to 100
and we generate 2 instances (z) of each type with z = 2 having a 50% increased
second-echelon vehicle’s capacity. This yields a total of 18 artificial test in-
stances with the above-explained naming convention Snlz with S = {A,B,C},
n = 100, l = {r, c, rc} and z = {1, 2}.
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Figure 10: Settings for test instances. In setting A on the left the city center is in
the middle of the city area and the first-echelon depot on the outskirts of the city.
In setting B in the middle the city center is located at the border of the city and
the first-echelon depot is opposite, on the other side of the city. In setting C on the
right the city center is located at the border of the city and the first-echelon depot is
diagonally opposite.

The demand of each customer is obtained by sampling a uniform distribution
(di = U [1, 8] ∀ i ∈ Vc) and the service time of each customer is obtained simi-
larly as λi = U [1, 20] ∀ i ∈ Vc. The service time of satellites is set to λi = 10 ∀
i ∈ Vs, whereas the service times of the first-echelon and second-echelon depots
are assumed to be λi = 20 and λi = 0, respectively.
The capacity of a first-echelon vehicle is set to Q1 = 100 and the capacity of
a SEV is assumed as Q2 = 16 in all instances with setting z = 1 and instance
vienna. In all instances with setting z = 2, the SEV’s capacity is set to Q2 = 24.
Details of all Snlz-instances generated and instance vienna with respect to the
number of first-echelon customers, second-echelon customers and ’grey zone’
customers as well as the respective demand can be found in Table 3.

Table 3: Instance characteristics

Instance | V 0
c |

∑
i di∀i ∈ V 0

c | V 1
c |

∑
i di∀i ∈ V 1

c | V 2
c |

∑
i di∀i ∈ V 2

c

A100c1 31 150 65 270 4 21
A100c2 39 190 56 264 5 31
A100r1 14 61 81 388 5 23
A100r2 22 97 73 359 5 13
A100rc1 24 111 73 311 3 13
A100rc2 17 71 74 340 9 46
B100c1 31 126 60 260 9 31
B100c2 37 178 55 248 8 42
B100r1 18 82 78 339 4 17
B100r2 18 79 80 367 2 14
B100rc1 21 101 71 317 8 32
B100rc2 18 95 76 325 6 28
C100c1 27 115 63 291 10 37
C100c2 28 141 64 302 8 47
C100r1 16 85 80 347 4 18
C100r2 14 60 83 406 3 13
C100rc1 23 90 69 334 8 37
C100rc2 27 129 68 331 5 28
vienna 54 222 41 190 5 10
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6.2. Parameter setting

The parameters for LNS are determined based on pretests with the adapted
Solomon instances described in Section 6.1 on the single-objective problem with
cost as objective. The parameter values tested are based on all combinations
with parameter α = {0.99, 0.95, 0.90}, parameter β = {20, 30, 40} and param-
eter γ = {20, 30, 40}. Figure 11 shows average total cost versus average com-

Figure 11: Parameter tests for LNS; total cost vs. cpu time as normalized values.

putational time for all parameter combinations. The very left combination of
parameters shown in Figure 11 yields minimum total cost at a rather short
computational time. Therefore, we use these parameter values for our compu-
tational tests. For the starting temperature T0 = β|Vc|, the parameter β is set
to β = 20. The parameter α is set to α = 0.90 and for the maximum number
of iterations itmax we assume itmax = γ|Vc| with γ = 30.

6.3. Quality of LNS

Pretests with the six adapted Solomon instances and five runs for each instance
regarding the performance of the LNS-operators summarized in Table 4 show
that the two random removal operators are significantly more often involved in
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finding a new best solution, with the random node removal being clearly the
one most often involved in finding a new best solution. In contrast to that, the
three repair-operators behave rather similarly in this respect.
Considering computational time, our pretests show that the node-based destroy-
operators require approximately twice the computational time than the route-
based ones. Regarding the repair-operators it becomes obvious that the greedy
one is the fastest and the other two need approximately three times the compu-
tational time than the former one. The quality of our LNS method is then tested

Table 4: Performance of LNS operators

Operator New best Average computational
solution found time for execution

random node removal 54.79% 0.00091s
worst node removal 8.68% 0.00099s
random route removal 27.68% 0.00046s
max waiting removal 8.85% 0.00052s
greedy insertion 36.13% 0.037s
best insertion 30.25% 0.099s
2-regret insertion 33.62% 0.106s

in comparison with the GRASP+PR method used in Anderluh et al. (2017).
We compare results of the single-objective problem without a ’grey zone’. The
GRASP method, which has already been described in Section 5.1, is used to
build a starting pool of solutions. Then in the PR-step, two solutions out of
this pool are chosen and the first (initial) solution is transformed step by step
into the second (guiding) solution. After each step the intermediate solution
is checked if it is fit to be included into the pool of solutions. The interested
reader is referred to Anderluh et al. (2017) for further details.
Computational results for the Solomon instances show that LNS can improve
the solution quality compared to the one by GRASP+PR by 3.15% on aver-
age. Detailed results are represented in Table 5, with the far right column
showing the relative improvement in mean objective values of LNS compared
to GRASP+PR. Also the variation on obtained results expressed by standard
deviation can be reduced by our LNS (see respective columns in Table 5 for
detailed results).

Table 5: Objective values for Solomon instances and test instance vienna calculated
by GRASP+PR and LNS. Mean gives the mean objective value of 5 runs, st. dev.
states the standard deviation of the objective values in total numbers and as percentage
value compared to the mean.

GRASP+PR LNS
instance mean st. dev. st. dev. mean st. dev. st. dev. imp. LNS

in % in % in %
C101 2289.41 33.93 1.48% 2278.40 12.94 0.57% -0.48%
C201 1675.33 5.96 0.36% 1608.60 3.46 0.22% -3.98%
R101 1016.42 3.50 0.34% 971.75 7.27 0.75% -4.39%
R201 712.77 1.57 0.22% 686.04 1.25 0.18% -3.75%
RC101 958.79 2.30 0.24% 924.54 3.96 0.43% -3.57%
RC201 730.95 3.61 0.49% 711.13 1.76 0.25% -2.71%
average 0.52% 0.40% -3.15%
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6.4. Impact of the ’grey zone’

The impact of the ’grey zone’ in comparison to fully preassigned customers is
tested on the adapted Solomon instances for a single objective. Results in Table
6 point out an improvement in total cost for all instances considered. The av-
erage improvement is 5.44%. The results in Table 6 underline the improvement

Table 6: Comparison of average total cost for solutions with preassigned customers
compared to solutions with a ’grey zone’

instance preassigned ’grey zone’ improvement
C101 2278.40 2126.58 -6.66%
C201 1608.60 1602.61 -0.37%
R101 971.75 859.49 -11.55%
R201 686.04 672.75 -1.94%
RC101 924.54 839.79 -9.17%
RC201 711.13 690.06 -2.96%
vienna 890.70 830.68 -6.74%
average -5.44%

in the solution quality by the usage of a ’grey zone’ when considering total cost
as a single objective.
Figures 12, 13, 14 and 15, described in detail in Subsection 6.5, show the impact
of a ’grey zone’ instead of preassigned customers also for two objectives. If this
solution is along the Pareto front, it is represented by a green triangle, otherwise
it is represented by a red diamond.
Our tests show that only for 6 out of the 20 calculated Pareto fronts the solution
found when all customers are preassigned to either the first or the second echelon
(as shown in Figure 2) is non-dominated (instances A100c1, A100r1 and A100rc2
in Figure 12; instances B100r2 and B100rc2 in Figure 13; instance C100r2 in
Figure 14). Thus, especially for instances in which customers are not or only
partly clustered, the complete preassignment yields rather non-dominated solu-
tions. The more clustered the customers are, the worse is the solution obtained
by complete preassignment of customers. For instance vienna, this solution is
rather far away from the Pareto front (see Figure 15).
To conclude, especially for instances with clustered customers (see Figures 12
- 15), using a ’grey zone’ can improve the solution quality compared to so-
lutions found for the same instances with complete preassignment of all cus-
tomers.

6.5. Impact of the city layout

For testing the impact of the city layout in a multi-objective setting we focus
on total cost as the first objective of the optimization problem and GHG emis-
sions or disturbance as the second objective (details on the calculation of GHG
emissions and disturbance factors can be found in Subsections 5.4 and 5.5 re-
spectively).
As the social objective can only be realistically assessed if data for population
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Figure 12: Instances setting A. Pareto front of economic and environmental objec-
tives. Data labels give the number of customers served by a second-echelon vehicle
and the number of required transshipment meetings for the respective solution.
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Figure 13: Instances setting B. Pareto front of economic and environmental objec-
tives. Data labels give the number of customers served by a second-echelon vehicle
and the number of required transshipment meetings for the respective solution.
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Figure 14: Instances setting C. Pareto front of economic and environmental objec-
tives. Data labels give the number of customers served by a second-echelon vehicle
and the number of required transshipment meetings for the respective solution.
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Figure 15: Instance vienna. Pareto front of economic and environmental objectives
on the left and of economic and social objectives on the right. Data labels give the
number of customers served by a second-echelon vehicle and the number of required
transshipment meetings for the respective solution.

density per district as well as points of interest are available, this objective is
only considered for instance vienna (conducted tests with randomly generated
disturbance values for the artificial test instances provided no meaningful in-
sights).
The Pareto fronts of all test instances are shown in Figures 12, 13, 14 and Fig-
ure 15. Data labels in the figures give the number of customers served by a
second-echelon vehicle and the number of synchronized transshipment meetings
required for the respective solution. For better comparability of the results all
objective values are normalized.
In general, for instances ∗100∗2, non-dominated solutions with more customers
served by second-echelon vehicles can be found. This is due to the fact that
for these instances the capacity of the second-echelon vehicles is assumed to be
50% increased compared to the second-echelon vehicles’ capacity in instances of
type ∗100 ∗ 1.
A special case is instance B100r1 (see middle left part of Figure 13), for which
no Pareto front could be found in our tests. This could be due to the fact that
the reduction in GHG emissions for serving more customers by second-echelon
vehicles is compensated for by additional necessary synchronized transshipment
meetings with first-echelon vehicles. Thus, for this instance there seems to be
no trade-off between the economic and the environmental objectives.
Regarding the city layout, it can be seen from Figures 12, 13 and 14 that in
general settings A and B are more appropriate for testing a ’grey zone’ and a
multi-objective setup than setting C. This effect is increased when customers
are clustered.
A comparison of the Pareto front of the economic and the environmental objec-
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tives (see left part of Figure 15) with the Pareto front of the economic and the
social objectives of instance vienna (see right part of Figure 15) shows signifi-
cantly fewer non-dominated solutions for the latter one. So, not every Pareto-
optimal solution with respect to the economic and the environmental objectives
is also efficient when considering the social objective.
The interested reader is referred to the tables available as ’Supplementary Ma-
terials’ for detailed results of all Pareto-optimal solutions.

6.6. Pareto surface for three objectives

When focusing on all three objectives – the economic, the environmental and
the social one – the resulting set of non-dominated solutions forms a Pareto
surface. The approximated Pareto-set of solutions for instance vienna obtained
by LNS embedded in the heuristic cuboid splitting described in Subsection 5.3 is
shown in Figure 16. When considering all three objectives, the non-dominated

Figure 16: Pareto surface of instance vienna with economic, environmental and social
objectives.

solutions found for instance vienna (see Figure 16) underline the impact of
considering all three objectives at once. The Pareto-set forms a kind of a ’bowl’,
such that solutions which are very cost-efficient cause a rather high amount of
emissions but are nevertheless good regarding disturbance. On the other side
of the ’bowl’ (upper right point in Figure 16), the solution found is very good
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with respect to emissions, but costly and causing a high amount of disturbance.
Solutions with lowest disturbance show an average performance regarding cost
and emissions. Hence, this Pareto surface provides decision support in all three
aspects of sustainability.

7. Conclusion

In this paper, we deal with the MO2eVRPSynGZ. The assignment to echelons
of customers located in the ’grey zone’, which is the zone between the inner-city
center and the area around it, is part of the model and is done in the solution
procedure of the optimization problem.
In the model we focus on the economic objective expressed in costs as first ob-
jective. Additional objectives of citizens and municipal authorities are included
by considering negative external effects of freight transport such as GHG emis-
sions as environmental objective and disturbance of citizens, caused by noise
and congestion, as social objective.
Solutions for the formulated multi-objective optimization problem are found by
LNS embedded in an ε- constraint method – the heuristic rectangle splitting.
The latter method is extended in this paper to a heuristic cuboid splitting which
is able to deal with three objectives.
Computational results for artificial test instances and a realistic instance of
Vienna show that the quality of the provided LNS can improve results signif-
icantly compared to GRASP+PR, the application of the ’grey zone’ concept
can improve the solution quality of the single-objective problem and also of
the approximated Pareto-set of solutions in the multi-objective case, especially
if customers are clustered. Furthermore, our results emphasize that the city
layout has to be considered in the decision process if the provided freight dis-
tribution scheme should be established, because especially for cities in which
the city center is located in the middle of the city this scheme turned out to
be advantageous. Finally, the economic, the environmental and the social ob-
jectives can be considered at the same time by the provided heuristic cuboid
splitting, which yields a Pareto surface and underlines the trade-off between all
three objectives.
Because of lacking data, disturbance as additional objective to economic costs
and GHG emissions was considered only for the realistic instance of Vienna.
Therefore, future work has to focus on additional tests with all three objectives
and, hence, realistic test instances for other cities with data about population
density as well as points of interest are required to further confirm the findings
of this paper.
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