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Abstract

This paper introduces the Two-Echelon Vehicle Routing Problem with Pickups, Deliveries, and Deadlines

(2E-VRP-PDD), a new and emerging routing variant addressing the operations of logistics companies

connecting consumers and suppliers in megacities. Logistics companies typically organize their logistics

in such megacities via multiple geographically dispersed two-echelon distribution systems. The 2E-

VRP-PDD is the practical problem that needs to be solved within each of such a single two-echelon

distribution setting, thereby merging first and last-mile logistics operations. Specifically, it integrates

forward flow, reverse flow, and vehicle time-synchronization aspects such as parcel time windows, satellite

synchronization, and customer-dependent deadlines on the arrival of parcels at the hub. We solve the 2E-

VRP-PDD with a tailored matheuristic that combines a newly developed Adaptive Large Neighborhood

Search (ALNS) with a set-partitioning model. We show that our ALNS provides high-quality solutions

on established benchmark instances from the literature. On a new benchmark set for the 2E-VRP-PDD,

we show that loosening or tightening time restrictions, such as parcel delivery deadlines at the city hub,

can lead to an 8.5% cost increase; showcasing the overhead associated with same-day delivery compared

to next-day delivery operations. Finally, we showcase the performance of our matheuristic based on

real-life instances which we obtained from our industry collaborator in Jakarta, Indonesia. On these

instances, which we share publicly and consists of 1500 - 2150 customers, we show that using our ALNS

can significantly improve current operations, leading to a 17% reduction in costs.

Keywords: Routing, City Logistics, Two-echelon Vehicle Routing, Pickup-and-Delivery, Adaptive

Large Neighborhood Search

1. Introduction

In recent years, logistics platforms have emerged in megacities to connect customers directly with

suppliers of (local) products. Examples of such platforms from Indonesia include GoSend Intercity,

SiCepat, and J&T, which coordinate the shipping from (mostly) online merchants’ locations to their

customers. Within megacities, such platforms facilitate end-to-end logistics; transport is fully arranged

between suppliers and customers. To efficiently consolidate logistics streams, such platforms adopt inner-

city distribution and collection systems within a series of geographically dispersed two-echelon network
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Figure 1: Organization of end-to-end logistics in megacities, inspired upon practices at our industry partner

structures(Crainic et al., 2009; Savelsbergh and Van Woensel, 2016). An example of such a logistics

system design can be seen in Figure 1. It consists of multiple urban distribution centers (or hubs), each

with several associated intermediary transfer locations (or satellites) through which parcels are collected

from suppliers and distributed to customers. Between the hubs, pre-determined line-haul transport takes

place to connect the suppliers and customers between different geographical areas.

This paper introduces the Two-Echelon Vehicle Routing Problem with Pickups, Deliveries, and Dead-

lines (2E-VRP-PDD). It describes the structural logistics operations that arise within a single two-echelon

network structure, i.e., the grey area in Figure 1. Motivated by our industry partner operating in megac-

ities in Indonesia, we solely consider customer orders between different geographical areas. This results

in a forward flow of parcels, from the hub towards customers, and a reverse flow of parcels, from the

customers towards the hub. In other words, two types of operations happen simultaneously. First, the

first-mile collection of parcels from suppliers to fulfill customer orders in different two-echelon structures.

Second, the last-mile distribution of parcels to customers originating from suppliers in different two-

echelon structures. To ensure logistics operations are done cost-efficiently, the 2E-VRP-PDD considers

the joint optimization of first-mile collection and last-mile distribution.

The joint optimization of first-mile collection and last-mile distribution is complex. Firstly, the flow

of parcels must adhere to operation and load synchronization constraints (Drexl, 2012), ensuring the

timely availability of parcels at satellites for further transport to either the customer or the city hub.

This requires coordinating the departure and arrival times of the vehicles used in both echelons. Secondly,

relatively large first-echelon vehicles operate between the hubs and the satellites, while relatively small

second-echelon vehicles (e.g., cargo bikes or scooters) operate between the satellites and customers. As

is common in practice, second-echelon vehicles can only take the load from a single first-echelon vehicle

to not unnecessarily complicate coordination at satellites. Thirdly, the parcels associated with the first-

mile collection from suppliers have varying deadlines before they must be delivered at the city hub. This

is because the parcels are further transported via line hauls to other geographical areas (outside the

2E-VRP-PDD scope) within the megacity.
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While there is a rich literature stream on routing within two-echelon network structures (see, e.g.,

Sluijk et al. (2023)), and routing with simultaneous pickup and delivery (see, e.g., Koç et al. (2020)), the

combination of the above-mentioned complicating factors is not researched before in the extant literature.

Several studies have incorporated timing aspects for the 2E-VRP context, such as time windows (Dellaert

et al., 2019) and satellite synchronization (Grangier et al. (2016); Li et al. (2021); Li et al. (2022)), as well

as first-mile collection (Belgin et al. (2018); Liu and Jiang (2022); Li et al. (2022); Dumez et al. (2023)).

However, considering simultaneous pickups and deliveries of parcels while the first-mile collection is

subject to parcel-dependent deadlines has not been studied yet. At the same time, this is crucial for

designing logistics networks for megacities because it is a current challenge from our industry partner,

as sketched in Figure 1.

The 2E-VRP-PDD aims to find a cost-minimizing set of first-echelon (FE) and second-echelon (SE)

routes to simultaneously pick up and deliver parcels from and to all the customer locations via inter-

mediate satellites. We provide a route-based set-partitioning formulation and a tailored Adaptive Large

Neighborhood Search (ALNS). The resulting matheuristic comprises two stages. First, we use the ALNS

to find high-quality solutions. During the search process, we store all the encountered first and second-

echelon routes, that, with some minor modifications, are input for the route-based set-partitioning for-

mulation. We evaluate our matheuristics, and within that, the quality of the ALNS, on well-established

benchmark sets on the two-echelon capacitated vehicle routing problem benchmark from Breunig et al.

(2016) and Marques et al. (2020). The results show that the ALNS within our matheuristics provides

high-quality solutions and is competitive with other approaches from the literature. By modifying in-

stances from Dumez et al. (2023), we create a new and publicly available 2E-VRP-PDD benchmark

set to study in a structured way the performance of our matheuristic on the 2E-VRP-PDD. Moreover,

structurally evaluate the benefit of combining first and last-mile logistics within such a megacity logistics

network using these instances. It is shown that a relatively large share of same-day deliveries compared

to next-day deliveries, as expressed via the customer-specific deadlines at the city hub, can lead to cost

increases of 8.5%.

We furthermore present a real-life case study with data from our industry collaborator. It comprises

large-scale real-life 2E-VRP-PDD instances that range from 1650 to 2100 customers. The datasets are

publicly available 1. We use our matheuristic to solve these real-life instances, which results in several

interesting managerial findings. First, total transportation costs can be reduced by 17 % by combining

pickup and deliveries within the FE and SE vehicle routes. Part of its success is that combining pickup

and deliveries allows for a better loading plan so that, on average, the average fill rate of a vehicle is

higher than with other heuristic strategies, such as separating the pickup and delivery of parcels.

Summarizing, this paper contributes to the literature as follows:

• We introduce a new and emerging two-echelon vehicle routing variant, the 2E-VRP-PDD, based

on a real-life application at our industry partner. Specifically, within the context of pickups and

deliveries within two-echelon network structures, we introduce customer-dependent deadlines for

1Data and instances can be found on our public GitHub repository https://github.com/aryazamal/2e-vrp-pdd
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parcels arriving at the city hub. This relates to the practical challenge at our partner, as picked-up

parcels are scheduled for further transport outside the two-echelon system on line-haul transport,

as is common within logistics systems in megacities.

• We develop an efficient matheuristic that produces high-quality solutions on established benchmark

sets, and for the 2E-VRP-PDD.

• We provide a case study based on the operations of our industry partner in Indonesia. Besides

showing the importance of combining pickup and deliveries in first and second-echelon vehicle

routes, we also provide the datasets publicly. By doing so, we hope to foster future research on

designing (meta)heuristics for practically relevant two-echelon vehicle routing problems.

The remainder of the paper is organized as follows. Section 2 presents the relevant literature. Section 3

discusses the 2E-VRP-PDD setting inspired by our industry partner in Indonesia and introduces a route-

based formulation. Section 4 describes the matheuristic approach. Section 5 presents the computational

results based on benchmark instances and new 2E-VRP-PDD instances. Section 6 discusses a case study

and managerial insights from the logistics operations referring to our industry partner. Finally, Section

7 concludes the paper and outlines potential avenues for future research.

2. Related Literature

Our 2E-VRP-PDD shares several characteristics with existing work on the Two Echelon Vehicle

Routing Problem (2E-VRP). We, therefore, review that literature, focusing on incorporating pickups

and deliveries within the operations. We focus on how preceding studies have modeled time and load

synchronization between the first and second-echelon vehicles at the satellites. An essential element of

the 2E-VRP-PDD is the inclusion of customer-specific deadlines on when pickups should arrive back at

the hub. We, therefore, discuss other studies in which such deadlines are present afterward.

2.1. The two-echelon vehicle routing problem with pickup and delivery

The two-echelon vehicle routing problem with pickup and delivery extends the fundamental Two-

Echelon Vehicle Routing Problem (2E-VRP) by integrating pickup and delivery operations. Note that

this variant does not include customer-specific deadlines at which pickups must be delivered at the hub.

Within the 2E-VRP framework, two distinct pickup and delivery settings are considered. The first setting

considers customers simultaneously requiring delivery and pickup, representing a dual flow system: the

forward flow from the hub, via the satellites, to the customer for delivery, and the reverse flow from the

customer location, via the satellites, back to the hub for pickup (Belgin et al., 2018). This has been

adopted in subsequent studies (Liu and Jiang (2022); Zhou et al. (2022); Li et al. (2022); Dumez et al.

(2023)). Secondly, Li et al. (2021) and Ghilas et al. (2016) conceptualize the pickup and delivery problem

as a singular request, implying that the pickup demand originates from a specific customer location and

is delivered to its customer destination via an intermediate facility. In our 2E-VRP-PDD, we consider

the former dual flow system.
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Synchronization is essential in understanding the elementary 2E-VRP and its variants. Synchroniza-

tion primarily relates to coordinating operations between the first-echelon (FE) and second-echelon (SE)

routes at the satellite, encompassing tasks, operations, and load distribution (Drexl, 2012). Previous

research (see, e.g., Belgin et al. (2018), Li et al. (2022), and Liu and Jiang (2022)) has considered load

synchronization, implying that the load dispatched by the first-echelon vehicle at the satellite should

correspond with the load transported by all second-echelon vehicles originating from that particular

satellite. Additionally, the aggregated load retrieved from all second-echelon vehicles must equate to the

load that the first-echelon vehicle departs from the same satellite. However, in the papers mentioned

above, no time windows and customer-specific deadlines when pickups should arrive back at the depot

were considered. In the 2E-VRP-PDD, we do consider this, which complicates load synchronization.

Time synchronization is a critical component of the 2E-VRP with Pickups and Deliveries if the

problem incorporates time windows, as examined by Li et al. (2021), Zhou et al. (2022), and Dumez

et al. (2023). Given the time window constraints imposed by customers, establishing a precise time

synchronization model at the satellite is fundamental in ensuring the feasibility and quality of the solution.

Despite not providing explicit instructions for synchronization, Zhou et al. (2022) incorporate three stages

of routing into their model for the time synchronization: initial delivery of parcels to satellites by first-

echelon vehicles, subsequent delivery to and pickup from customers by the second-echelon vehicles, and

finally the pickup at satellites for transportation back to the hub by first-echelon vehicles again.

Dumez et al. (2023) represents the time synchronization by keeping track of the parcel load at the

satellite at each point in time. So, the second and first-echelon vehicles can start the operation when

the stored capacity is positive for each forward or reverse flow demand to ensure the availability of

given parcels. However, compared to Dumez et al. (2023), our 2E-VRP-PDD considers customer-specific

deadlines motivated by the practical application of our model at our industry partner. In practice, the

2E-VRP with Pickups and Deliveries is only a small part of the total logistics flow, and pick-up parcels

need to be transported further into the logistics network on scheduled line haul, which we represent by

the given customer-specific deadlines for when pickups should arrive at the hub.

First-echelon route strategies are essential, and various heuristic strategies have been employed in the

literature to establish the FE routes. These strategies can be classified into three categories according to

Berbeglia et al. (2007) as shown in Figure 2. The first strategy involves the FE route allowing delivery

or pickup, but not both operations simultaneously (see, i.e., Zhou et al. (2022); Liu and Jiang (2022); Li

et al. (2022)). In this tripartite operation, the first-echelon vehicle initially delivers all parcels, returns

to the hub, allows the second-echelon vehicle to perform pickup and delivery operations, and finally

collects all pickup parcels to return to the hub. As described by Belgin et al. (2018), the second strategy

involves the first-echelon vehicle visiting a satellite node once to perform a combined delivery and pickup

operation without accounting for time synchronization. This implies that the first-echelon vehicle waits

at the satellite and departs only after the SE vehicle completes its operation. The last strategy, as

outlined by Dumez et al. (2023), permits the first-echelon vehicle to visit the satellite node multiple

times if necessary, possibly performing both operations together or separately. In the 2E-VRP-PDD, we

adhere to the strategy by Dumez et al. (2023).
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Figure 2: First Echelon Routing Strategy

Solution method. A range of exact and heuristic methods have been developed to address the 2E-

VRP with Pickups and Deliveries. Li et al. (2022) constructed a path-based model and a branch-and-

cut-and-price algorithm. The approach is not applicable in the 2E-VRP-PDD context because time

synchronization is not explicitly discussed.

Various heuristics methods have been developed to solve the 2E-VRP with Pickups and Deliveries

Belgin et al. (2018) combined Variable Neighborhood Descend (VND) and Local Search (LS). The VND

is implemented in the SE routes, and a solution for the FE route is derived using the Nearest Neighbor

heuristic. By construction, the satellite delivery and pickup demands are thus based on the SE routes

solution. Liu and Jiang (2022) proposed a penalty-based Variable Neighborhood Search (VNS) method

for a Two-Echelon Vehicle Routing Problem with Pickup and Delivery, which functions in feasible and

infeasible spaces and applies a range of neighborhood structures to enhance the solution quality. Fur-

thermore, Zhou et al. (2022) built a heuristics incorporating Tabu Search and VNS elements. However,

all the mentioned heuristics do not allow carrying pickup and delivery parcels simultaneously in the FE

route.

Dumez et al. (2023) proposes an Iterative Two-Stage Heuristics (ITSH) for the 2E-VRP with Ca-

pacitated Satellite and Reverse Flow, utilizing a Large Neighborhood Search (LNS) metaheuristics and

Mixed Integer Programming (MIP) solver. This technique divides the problem into two subproblems,

optimizing each echelon separately with dedicated LNS algorithms. Upon LNS failure, the MIP solver

fine-tunes the solution. Unlike our study, their approach does not account for the deadlines related to

the first-mile collection to the hub, which increases the complexity of synchronization when connecting

the FE and SE routes in the solution.

2.2. Deadlines in Urban Logistics

In the two-echelon city distribution literature, temporal aspects typically relate to customer location

(time windows) and satellites or transfer points, which are closely tied to synchronization processes.

This paper introduces the notion of a ’customer-specific deadline’ as the latest time by which parcels

for pickup must reach the hub. The concept of deadlines at logistic facilities is typically explored within

models that consider the use of public or scheduled transportation.

Ghilas et al. (2016) examined the pickup and delivery problem with time windows and scheduled lines.
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In their model, parcels travel from station to station using scheduled transportation. At the same time,

couriers handle the first and last mile of the journey, but they do not consider two-echelon structures. In

contrast, Azcuy et al. (2021) and Masson et al. (2017) investigated scenarios where parcels are delivered

to customers using scheduled lines (such as buses or trams) for the FE route, with last-mile delivery

fulfilling the final leg of the journey. Specifically, in Azcuy et al. (2021), the ’deadline’ at the satellites is

defined as the time between the latest time window at the customer location and the travel time from

the satellite to the customer location.

A real-life instance of deadlines at hubs for pickup parcels can be found in the operational challenges

faced by our industry partner based in Indonesia. Since pickup parcels correspond to different service

types (same-day, next-day, or regular) and have different destinations, hubs have distinct cutoff times

for further transport into the company’s logistics network using service-specific multimodal transport.

3. The two-echelon vehicle routing with pickups, deliveries, and deadlines

The two-echelon vehicle routing problem with pickups, deliveries, and deadlines (2E-VRP-PDD) is

defined on a complete directed graph G = (V,A). The vertices are further defined as V = {0} ∪ S ∪ Z,

where 0 is the city hub, S is the set of satellites, and Z is the set of pickup and delivery customers.

We further partition the customers Z = Z1 ∪ Z2, where Z1 is the set of delivery customers while Z2

is the set of pickup customers. For modeling purposes, we copy all elements of S into two sets S1 and

S2, where S1 is a set of distribution satellites, and S2 is a set of collection satellites so that each actual

satellite is represented by both a distribution satellite and a collection satellite. The arcs are defined

as A = A1 ∪ A2, where A1 represents all arcs on the first echelon (between hub and satellites) and A2

represents all arcs on the second echelon. That is, A1 := {(i, j) ∈ O ∪ S | i ̸= j}, and A2 := {(i, j) ∈

S1 ∪ S2 ∪ Z | i ̸= j, (i, j) /∈ (S1 × S2)}. For each arc (i, j) ∈ A, the cost of traveling it equals cij .

With each delivery customer z1 ∈ Z1, we associate a parcel of weight qz1 < 0 that originates at the

city hub and has to be delivered to the delivery customer. Similarly, with each pickup customer z2 ∈ Z2,

we associate a parcel of weight qz2 > 0 that has to be collected at the pickup customer and delivered to

the city hub. Note that parcels of both the delivery and pickup customers can only traverse between the

city hub and customer locations via satellite locations. The distribution satellites of S1 handle only the

parcels associated with the delivery customers, i.e., it distributes parcels from the first echelon towards

the second echelon. The collection satellites of S2 handle only the parcels associated with the pickup

customers.

Each satellite s ∈ S and customer node z ∈ Z have a service time δs and δz for the satellite and

the customer, respectively. Each customer z ∈ Z has time windows (Ez, Lz), and each pickup customer

z2 ∈ Z2 has a deadline Dz2 at which its associated parcel has to be delivered back to the city hub.

LetK1 andK2 be the sets of first- and second-echelon vehicles, respectively, each with given capacities

Q̄k1 and Q̄k2
. Each first-echelon vehicle, k1 ∈ K1, is stationed at the hub and undertakes a single tour

collecting and distributing parcels between the hub and satellites. Each second-echelon vehicle, k2 ∈ K2,

is assigned a particular distribution satellite s1 ∈ S1 at which it starts its route and a collection satellite

s2 ∈ S2 at which it ends its route, belonging to the same physical satellite location.
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We consider sets of feasible FE routes r ∈ R and the SE routes p ∈ P s, for all s ∈ S. We let

P := ∪s∈SP
s. For each SE route p ∈ P , let γp

z ∈ {0, 1} be a binary parameter that equals one if

customer z ∈ Z is visited, and 0 otherwise. Let parameter aps,z2 represent the time at which the parcels

associated with pickup customer z2 ∈ Z2 arrive at the satellite s ∈ S, and let parameter dps,z1 ∈ R reflects

the time at which the delivery parcel z1 ∈ Z1 departs from satellite s ∈ S. For a FE route r ∈ R, we let

βr
s,z ∈ {0, 1} be a binary parameter that equals one if customer z ∈ Z is assigned to a satellite s ∈ S and

it is transported using that route r. Let parameter ωr
s,z ∈ R represent the time at which delivery (pickup)

parcel z ∈ Z arrives at (departs from) the satellite s ∈ S for route r. Each of these routes respects the

vehicle’s maximum load, the time windows for the customers, and the deadlines of the pickup customers

at the city hub.

We present a route-based formulation as follows. Let xr ∈ {0, 1} be equal to 1 if the FE route r ∈ R is

selected, and 0 otherwise. The associated cost of using the FE route r ∈ R is given by cr. Let yp ∈ {0, 1}

be equal to 1 if SE route p ∈ P is selected, and 0 otherwise. The cost of using SE route p ∈ P is denoted

by cp. We set the costs equal to the total distance of a route. The 2E-VRP-PDD is then formulated as:

min
∑
r∈R

crxr +
∑
p∈P

cpyp (1)

s.t.
∑
p∈P

γp
zy

p = 1 ∀z ∈ Z, (2)

∑
p∈P s

γp
zy

p −
∑
r∈R

βr
s,zx

r ≤ 0 ∀z ∈ Z,∀s ∈ S, (3)

∑
p∈P s

γp
z1d

p
s,z1y

p −
∑
r∈R

βr
s,z1(ω

r
s,z1 + δs)x

r ≥ 0 ∀z1 ∈ Z1,∀s ∈ S, (4)

∑
r∈R

βr
s,z2ω

r
s,z2x

r −
∑
p∈P s

γp
z2(a

p
s,z2 + δs)y

p ≥ 0 ∀z2 ∈ Z2,∀s ∈ S, (5)

xr ∈ {0, 1} ∀r ∈ R, (6)

yp ∈ {0, 1} ∀p ∈ P. (7)

The Objective (1) minimizes the cost of all selected FE and SE routes. Constraints (2) ensures that

each customer is visited in a selected SE route. Constraint (3) verifies that for every customer z, the

SE Route p carrying the parcel associated with z must align with a corresponding FE route, denoted

as r, at a given satellite, s. This only ensures that first and second-echelon vehicles meet at the same

satellite, but does not model yet that time synchronization is respected. That is handled by Constraints

(4) and (5). Specifically, Constraint (4) ensures the departure of a delivery customer in an SE Route,

originating from satellite s, occurs after the arrival and service time of the corresponding FE vehicle at

the satellite. Conversely, Constraint (5) stipulates that a pickup customer must reach and complete the

service time at the satellite s before the FE vehicle departs to continue the FE route’s journey.

For given FE and SE route sets, the above 2E-VRP-PDD formulation will ensure that at least

(potentially more than 1) FE route delivers or picks up a particular customer. This is not a problem,

as we can remove the additional unnecessary customers from the FE routes and obtain a solution with
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the same objective value. In addition, the formulation allows a second echelon route to visit customers

that are part of multiple first-echelon routes. In the next section, we introduce our solution approach,

detailing how we populate the FE and SE route sets in a heuristic manner.

4. Solution methodology for the 2E-VRP-PDD

This section introduces our matheuristic for solving the 2E-VRP-PDD. An overview is given in

Algorithm 1. Our matheuristic considers three stages: initial solution construction (lines 1-6), application

of a newly developed Adaptive Large Neighborhood Search (ALNS) heuristic (lines 8-10), and MIP

optimization (lines 11-12).

Algorithm 1: Matheuristics for 2E-VRP-PDD

1 S̄initial ← ∅, S̄ ← ∅
2 sinitial, sALNS, sMIP, sbest ← null
3 n← 0
4 while n < ωinitial do
5 sn← build initial solution
6 S̄initial ← S̄initial ∪ LNS(sn, ωLNS)
7 n← n+ 1

8 t0 ← calculate initial temperature (S̄initial)
9 sinitial ← argmins{S̄initial}

10 sALNS ← ALNS(sinitial, t0, S̄)
11 sMIP ← MIP (S̄)
12 sbest ← argmins{sALNS, sMIP}
13 return sbest

4.1. Initial Solution

The initialization phase (lines 1-9 in Algorithm 1) aims to generate a batch of initial solutions

(S̄initial). For this problem, we produce five initial solutions. For each initial solution, we apply a re-

stricted version of our Adaptive Large Neighborhood Search (ALNS), called Large Neighborhood Search

(LNS). We pick the solution of the lowest cost for the subsequent phase. The LNS is similar to the

ALNS (discussed later) but we exclude the adaptive layers so that all operators are selected with equal

probability, and we do not accept solutions that worsen the cost in our search process. The total number

of iterations of the LNS is given by the parameter ωLNS.

The process of building an initial solution (line 5 in Algorithm 1) begins by constructing the second-

echelon (SE) routes. A constructive heuristic is employed, inserting unassigned customers in a random-

ized order into an existing SE route. If the SE route capacity is full or the time window constraint is

violated, the customer remains not inserted, and the algorithm chooses another random customer. If no

customers can be inserted, a new SE route is considered for all remaining unassigned customers.

After creating the SE routes, the first echelon (FE) routes are built, adhering to the SE routes

previously established. In this process, a single SE route might comprise either pickup parcels, delivery

parcels, or both. In the LNS and subsequent ALNS heuristics phase, we enforce that each pickup or

delivery bundle is serviced exclusively by a single FE route.

9
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4.2. ALNS for the 2E-VRP-PDD

The ALNS is outlined in Algorithm 2. The high-level procedure is as follows. It commences with an

initial solution, initializes operator probabilities, iteration variables, and a solution pool (lines 1-4). It

should be noted that the initial solution (sinitial), initial temperature (t0), and the solution pool (S̄) are

the input of the ALNS, see line 10 in Algorithm 1.

The algorithm proceeds iteratively, repeatedly improving a “current solution” (s′), which is based

on the previously “accepted solution” (s). A restart period counter, denoted as irestart, is incorporated

for cases when the algorithm fails to discover an improved solution. When irestart equals the parameter

ωrestart, the procedure re-initializes from the “best solution” (sbest) discovered thus far (lines 7-9).

The algorithm selects a destroy size based on a conditional check of ilarge < ωlarge (lines 10-15).

If true, it chooses a small destroy size. Otherwise, a large destroy size is chosen, and the algorithm

builds a current solution, s′, based on the best solution thus far, sbest (line 13). Subsequent operations

involve applying the destroy and repair operators adaptively on the current solution (s′), and the current

solution is stored in the solution pool for the subsequent MIP execution.

The evaluation process involves comparing the objective f(s′) of the current solution s′ (after destroy

and repair) with the objective of the previously accepted solution s and best solutions sbest. The

algorithm accepts the current solution as the accepted solution if it offers an improvement compared

to s. If the current solution outperforms the best solution, it becomes the new best solution. The

algorithm increments a restart counter if the current solution does not provide a new best solution (lines

19-24).

The algorithm also incorporates checks for situations where the current solution’s objective f(s′)

does not surpass the previously accepted solution’s cost f(s). If ilarge = ωlarge, then the current solution

becomes the accepted solution automatically (lines 26-27), meaning that we always accept the solution

from the large destroy mechanism. In other cases, we implement simulated annealing criteria, and the

algorithm might accept the current solution as the accepted solution, thereby ensuring diversity in the

search process (lines 28-30). The operator probabilities are updated every 100 iterations, fostering an

adaptive behavior (lines 32-34). Every related parameter for the adaptiveness of operator probabilities

is tuned in Appendix A. Finally, the algorithm is stopped when the iteration reaches the ωiteration. The

best solution and the solution pools for the MIP process are identified at the end of the search process.

4.3. Destroy Methods

Our proposed destroy methods selectively remove customers from the solution. They are characterized

by two distinct levels of disruption - small and large scale. By ‘removing’ customers, we imply that the SE

route no longer visits the customers’ locations, and the FE route does not serve the removed customers

anymore. Unless indicated otherwise, a small-scale destroy method eliminates a certain member of

customers within a predefined range of [4, NUB
small]. Here, NUB

small = min(100, ζUB
small · |Z|), where |Z|

represents the total number of customers. Conversely, the large-scale destroy method removes a greater

quantity of customers within the range [NLB
large, N

UB
large] where N

LB
large = ζLB

large ·|Z| and NU
large = ζUB

large ·|Z|.

The values of the parameters ζUB
small, ζ

LB
large, and ζUB

large are tuned in Appendix A.
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Algorithm 2: ALNS Algorithm for 2E-VRP-PDD

1 input : sinitial, t0, S̄
2 sbest, s← sinitial

3 t← t0, π ← initialize operator probabilities
4 i, irestart, ilarge ← 0
5 while i < ωiteration do
6 s′ ← s
7 if irestart = ωrestart then
8 s′ ← sbest
9 irestart = 0

10 if ilarge < ωlarge then
11 select small number of customers randomly, Nsmall ∈ [4, NUB

small]

12 else
13 s′ ← sbest
14 select large number of customers randomly, Nlarge ∈ [NLB

large, N
UB
large]

15 ilarge = 0

16 s′ ← Destroy(Θ−, N, π, s′)

17 s′ ← Repair(Θ+, N, π, s′)
18 store solution s′ to solution pool S̄
19 if f(s′) < f(s) then
20 s← s′

21 if f(s) < f(sbest) then
22 sbest ← s

23 else
24 irestart ← irestart + 1

25 else
26 if ilarge = ωlarge then
27 s← s′

28 else
29 if Acceptance Criteria (s′, s, t) then
30 s← s′

31 irestart ← irestart + 1

32 if ibatch = 100 then
33 π ← update operator probabilites (π)
34 ibatch = 0

35 i← i+ 1, ilarge ← ilarge + i, ibatch = ibatch + 1

36 return sbest

The small-scale destroy is employed in most iterations, facilitating improvement and exploiting the

solution space. In contrast, large-scale destroy is utilized less frequently to explore and diversify the

solution space. The dual-scale destroy strategy has demonstrated efficacy in 2E-VRP settings (see

example in Hemmelmayr et al. (2012); Enthoven et al. (2020); Yu et al. (2021, 2023)). In our study,

the same destroy operators are employed for both small and large-scale destruction, differing in removal

sizes. These operators are classified based on the indicator used to guide the selection of customers for

removal. It includes random, distance-related, time-related, and routing-related criteria, which altogether

give seven distinct destroy operators, of which six were adopted from previous studies. We introduce one

new operator.

The random-removal operator arbitrarily picks customers and removes them from the solutions. The

next two operators focus on distance. The worst-distance removal operator calculates an approximate

’removal gain’ for each customer i if it is excluded from the solution. Let ci,j denote the cost of a

customer from location i to location j in the SE route. The approximate removal gain is obtained from

ci,i−1+ ci,i+1− ci−1,i+1, where i−1, i, i+1 indicate subsequent location visits. We then adopt a roulette

wheel selection, where the customer to be removed is chosen proportionally to their associated removal
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gain. The related-distance removal operator selects a random customer and computes the distance of all

other customers from this random customer. The roulette wheel probabilities are inversely related to

the distance to the customer, i.e., relatively close customers get selected with higher probabilities.

We introduce a new operator associated with the time components of the 2E-VRP-PDD. The worst-

slack removal works as follows. When a second-echelon vehicle visits a customer i in the SE route, we

maintain information of ’Earliest Arrival Time’ (ei) and a ’Latest Arrival Time’ (li). The earliest arrival

time ei denotes the earliest feasible time a delivery or pickup can be conducted at a customer’s location i.

In contrast, the latest arrival time signifies the latest feasible time for similar operations. The slack time

for a customer i is defined as li − ei. Our strategy is to remove customers with a larger slack time with

a higher probability in a roulette wheel fashion, as they provide greater flexibility for potential insertion

points during the repair phase.

Lastly, we apply three distinct operators based on the similarity of the routing. The satellite re-

moval operator begins by randomly choosing a satellite that serves customers. In small-scale destroy

scenarios, this operator randomly picks a set of customers between [NLB
small, N

UB
small], who are served

by routes originating from the selected satellite and removes them from the solution. In situations of

large-scale destroy, however, this operator removes all routes, including the customers served by these

routes originating from the satellite, effectively causing the satellite to remain non-operational until the

subsequent large removal period commences. The route removal operator randomly removes routes from

the solution within a defined range. The range is between [1, ⌈ζUB
small · |P |⌉] for the small destroy and

[1, ⌈[ζLB
large, ζ

UB
large] · |P |⌉] for the large destroy, where |P | is the number of active SE routes and parameter

ζLB
large, ζ

UB
large and ζUB

small will be tuned. The least-utilized route removal operator selects ζUB
small of routes

with the fewest customer visits from the total active SE routes. Then, the operator randomly chooses

the number of routes with uniform probability from that set within the range similar to route removal

operator to be removed from the solution.

4.4. Repair Methods

To repair a partially complete solution, we employ a rapid improvement technique when inserting a

customer to a feasible location, in line with the work Christiaens and Vanden Berghe (2020). It means,

we only insert a customer in the best location. The repair methods focus on inserting a selected customer

into a feasible and cost-minimizing location in a SE route. If needed, we allow new satellite visits of an FE

route after inserting a customer in the second-echelon route. Detailed feasibility checks and associated

solution structure are presented in Subsections 4.5 and 4.6.

We calculate the insertion cost estimates in the SE route, and in the FE route if satellite insertion

follows the customer insertion. Adhering to the concept proposed by Mühlbauer and Fontaine (2021), we

approximate the insertion cost in the FE route as cs,s−1 + cs,s+1 − cs−1,s+1, where s− 1, s, s+1 indicate

subsequent first-echelon node visits (i.e. satellite or hub). In situations with no feasible insertion location

in the SE route, we add a second-echelon vehicle route for the inserted customer. If the solution is still

not feasible, an additional first-echelon vehicle is dedicated to serving the customer in a new single FE

route.
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We use eight repair operators that differ in how they insert customers in their ‘best’ insertion location.

The first repair operator is a random-order insertion. This operator inserts customers into the solution

in a randomized order, placing each customer in a position that minimizes the extra transportation cost.

The next two operators focus on distance. In descending order, the farthest-first insertion operator selects

the customer that is farthest from the assigned satellite and subsequently from the assigned satellite to

the hub. Then, it inserts the customer at the location with the lowest insertion cost. Conversely,

the closest-first insertion operator works in a similar premise, albeit in ascending order. It inserts the

customer with the shortest total distance to the allocated satellite (and from the satellite to the depot)

The fourth repair operator is the largest-first insertion. As the name suggests, this operator inserts

customers based on the magnitude of their demand, with higher-demand customers given precedence.

The remaining four operators focus on time features. The earliest time-window-first insertion operator

sorts and inserts customers based on the earliest time windows in ascending order. Meanwhile, the

latest time-window-first insertion operator selects and inserts customers based on the largest latest

time windows in descending order. Additionally, we introduce the earliest-deadline-first insertion and

latest-deadline-first insertion operators, which choose customers based on their respective deadlines. For

the earliest-deadline-first insertion operator, it inserts customers based on the smallest deadline in an

ascending manner. In contrast, the latest-deadline-first insertion operator inserts customers based on

the largest deadline in a descending manner.

4.5. Insertion Mechanism

We now discuss some details of our implementation essential for obtaining a computationally efficient

ALNS implementation. We preserve five information elements for each customer visit within each SE

route: the Earliest Arrival Time (EAT), Latest Arrival Time (LAT), arrival time, departure time, and the

prevailing load. Recall that EAT denotes the earliest feasible time a delivery or pickup can be conducted

at a customer’s location i, while LAT indicates the latest feasible time for similar operations. Given a

customer j located between customers i − 1 and i, the EAT for a delivery or pickup at customer j is

derived as ej = max(Ej , ei−1 + ci−1,j + δi−1), where ci−1,j denotes the travel time between i− 1 and j.

Similarly, the LAT for such operation at j can be expressed as lj = min(Lj , li − cj,i − δj)

The SE route p first visit’s EAT (e0) is defined as ωr
s1 +δs1 , where ω

r
s1 is the time when the parcels are

available at the distribution satellite s1, transported by FE route r, and δs1 denotes the corresponding

service time. Let m be the index of node visited in the SE route or FE route, the SE route last visit LAT,

lm+1, is determined as ls+1 − cs+1,s − δs, where ls+1 represents LAT of the next satellite and cs+1,s is

the travel time between the next satellite and the current satellite location in the FE route. To minimize

waiting times at customer locations, the second-echelon vehicle is set to depart from the distribution

satellite at its LAT. Meanwhile, the second-echelon vehicle leaves after the respective customer EAT and

the service time for the subsequent pickup and delivery operations.

At the FE route level, every satellite visit preserves four pieces of data: the arrival and departure

time of the first-echelon vehicle at the satellite, the Latest Arrival Time at the satellite, and the current

load.
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Figure 3: First Echelon Solution Diagram

Figure 3 illustrates a diagrammatic representation of a single FE route within our proposed solution,

highlighting the maintained information. The design ensures that the first-echelon vehicle arrives at the

satellite as early as possible, while its departure depends on the type of satellite. For a distribution

satellite, the vehicle departs immediately after completing the service time. However, in the case of

a collection satellite, the departure time is defined by the arrival of the latest pickup parcels assigned

to the first-echelon vehicle and the service time at the satellite. For example, refer to Figure 3, where

the departure time from the collection satellite -3 is later than the first-echelon vehicle’s arrival at

distribution satellite 3. This scenario indicates that the first-echelon vehicle waits at satellite 3 until all

assigned pickup parcels have arrived.

The Latest Arrival Time (LAT) at a satellite in the FE route represents the latest feasible time

for distribution or collection at the satellite s can be conducted. This value is computed reversely

(backtracking), based on the earliest deadline of a pickup parcel at the hub assigned to the FE route,

as depicted in Figure 3. The LAT for the distribution satellite is influenced by both the deadline at the

hub and the first EAT of the SE routes from that satellite. Specifically, the first EAT of the SE routes

may impact the FE route satellite LAT due to the time windows assigned to the customers served by

the SE route (e.g., the LAT of distribution satellite 5 in Figure 3 is earlier than the subsequent LAT and

the travel time).

Customer insertion in FE and SE routes. The solution representation of 2E-VRP-PDD is portrayed

in Figure 4. Alterations in a single SE route may trigger changes in the overall solution configuration,

particularly affecting vehicle arrival and departure times. For instance, inserting a customer between

customers 7 and 11 would shift the second-echelon vehicle arrival time at satellite -3, leading to cascading

shifts to the subsequent satellites -4, 5, and -5. Consequently, a single customer insertion impacts the
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FE vehicle arrival at the hub for both FE routes.
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Figure 4: Solution Diagram

Generally, a customer can be inserted into an existing SE route or a new SE route. Both ways have

different prerequisites before the insertion is implemented, but share a similar type of insertion. The

insertion type is characterized by a specific adjustment of the solution after the customer inclusion. A

summary of the process of inserting a customer to an existing SE route can be found in Table 1, while

Table 2 presents the process for inserting a customer to a new route SE route. For each combination of

the route and customer type, we distinguish a particular ‘insertion process’.

Type 1: inserting a delivery parcel into a dedicated distribution route. Consider the insertion of

delivery customer 22 into SE route 2 - 6 - 9 - -2, as depicted by the blue arrow in Appendix B.9. If

the most cost-effective insertion point lies within this distribution SE route, the insertion will not affect

subsequent satellite visits. However, it may shift the LAT at the initial SE route visit due to the time

window constraint of the inserted customer. Consequently, in this insertion type, we only need to verify

the feasibility of the customer within the SE route, without requiring a satellite insertion.

Type 2: inserting a delivery parcel into a dedicated collection route. Consider delivery customer 22

being inserted into SE route 4 - 13 - 14 - -4 as seen in Appendix B.10. In such an instance, the insertion

Table 1: Insert a customer in an existing second-echelon route

Customer to Insert SE Route Operation Insertion Process

Delivery
Distribution Type 1
Collection Type 2
Distribution and Collection Type 3-d

Pickup
Distribution Type 4
Collection Type 3-p
Distribution and Collection Type 3-p
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Table 2: Insert a customer in a new second-echelon route

Customer to
Insert

Availability Related Satellite
in the FE Route

Type of Related Satellite Insertion Process

Delivery
Yes Distribution Satellite Type 1
Yes Collection Satellite Type 2
No - Type 2

Pickup
Yes Distribution Satellite Type 4
Yes Collection Satellite Type 3-p
No - Type 4

of the customer requires a subsequent insertion of the corresponding distribution satellite. Establishing

this connection for the distribution satellite ensures that the delivery parcel is transported by the first

echelon vehicle from the hub before moving it by the second echelon vehicle.

There are three alternatives for incorporating distribution satellite 4 into the solution diagram: (1)

Insert the distribution satellite into the current FE Route (FE Route-1), (2) Insert the distribution

satellite into a different FE Route (i.e., FE Route-2), or (3) creating a new FE route if neither option

(1) nor (2) proves feasible. In the search process, for alternative (1), we restrict the search location

to areas before the related collection satellite (red arrow in the FE route-1, Appendix B.10). In this

case, the insertion shifts the second-echelon vehicle’s arrival time at the collection satellite. This shift

subsequently propagates to the arrival times at the following satellites and influences the originating SE

routes from the affected satellites.

Type 3-d: inserting a delivery parcel into a distribution-and-collection route. Consider the insertion

of delivery customer 22 into SE route 3 - 7 - 11 - -3 as illustrated in Appendix B.11. In this particular

instance, satellite insertion is unnecessary since the distribution and the collection satellite are already

connected in the FE route. Suppose this configuration provides the most cost-effective insertion in this

neighborhood. In that case, the customer’s insertion into the SE route causes a shift in the second-

echelon vehicle’s arrival time at the assigned satellite. This shift consequently influences the first-echelon

vehicle’s subsequent arrival time at the next FE route visit, the initial time of the SE route starting from

the next satellite, and the arrival time at the hub, as indicated by the dotted line.

Type 3-p: inserting a pickup parcel into a route conducting collection operation. Consider the insertion

of pickup customer 23 into SE route 5 - 9 - 10 - -5, as depicted in Appendix B.12. This situation is

similar to the Type 3-d insertion case, except that the deadline for FE route-2 is updated. Throughout

the search process, each insertion of a pickup parcel necessitates taking into account the shift in the

deadline at the end of the FE Route that services the pickup parcel. In the provided example, the

deadline at the hub for FE route-2 is reduced (dashed blue arrow) because pickup customer-23 has an

earlier deadline than all currently served pickup parcels in FE route-2.

Type 4: Inserting a pickup parcel into a dedicated distribution route. Consider pickup customer 23

being inserted into the SE route 2 - 6 - 8 - -2 as portrayed in Appendix B.13. The pickup customer

insertion in this neighborhood necessitates a subsequent collection satellite insertion. The alternatives

for the insertion of the collection satellite are: (1) in the same FE route as the distribution satellite

(FE route-1), (2) in a different FE route (FE route-2), or (3) in a new FE route. During the search
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Figure 5: Feasibility Check Framework

process, the location of the collection satellite insertion in alternative (1) is limited only to the area after

the corresponding distribution satellite. The pickup customer insertion in this neighborhood results in

a shift of the first-echelon vehicle’s arrival at the subsequent satellite and a shift in the deadline if the

pickup customer has an earlier deadline than the existing pickup parcels transported by the selected FE

route.

4.6. Feasibility Check

This section presents an efficient evaluation procedure to check the feasibility of insertion location in

the SE and FE routes. We design a high-level feasibility check (FC) framework as depicted in Figure 5.

The framework flow differs based on the customer insertion, whether an insertion into an existing or a new

SE route. The difference between feasibility check 1 (FC1) and 2 (FC2) is based on the implementation

of the evaluation procedure. The FC1 consists of four evaluations: SE load, time windows, FE load, and

synchronization, while FC2 only evaluates the FE load and the synchronization constraint.

Feasibility check 1 (FC1) operates under the pre-condition that we insert a customer into an existing

SE route. As such, the FC1 procedure applies across all types of insertions. This feasibility check

exclusively evaluates when the related satellites are incorporated into the SE current route. Under this

circumstance, if we need to insert a distribution (collection) satellite into the FE route, the satellite will

be inserted right after (before) the collection (distribution) satellite. For instance, as shown in Appendix

B.13, if we aim to insert pickup customer 23 into an SE route starting from satellite 2, the FC1 would

assess the insertion in SE route 2 - 6 - 8 - -2 and FE route-1 at satellite 2. The collection satellite -2

would be inserted in FE route-1 right after the distribution satellite 2.

The evaluation process for (FC1) is structured in a sequence beginning with evaluating the SE load,

progressing to the FE load, then to the SE route time windows, and concluding with synchronization.

This sequencing strategy facilitates early detection of infeasibility, considerably reducing computational

time. After the evaluation, the insertion is classified as feasible, and the corresponding insertion cost

is computed. Conversely, the insertion is deemed infeasible if the FC1 evaluation for insertion types 1

and 3 encounters failure, or if insertion types 2 and 4 fail during the SE/FE load or the time windows

evaluation. However, if insertion types 2 and 4 fail at the synchronization evaluation, the procedure
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transitions to applying Feasibility Check-2 (FC2).

Feasibility Check-2 (FC2) applies in two cases. First, insertion types 2 and 4 fail at the synchro-

nization evaluation under FC1. Second, all insertion types when inserting a customer into a new SE

route.

In the first case, when insertion types 2 and 4 do not pass the synchronization evaluation in FC1, a

feasible insertion may still be possible if the satellite is inserted in a different location. This is because

the SE route remains feasible in terms of load and possibly the time windows. For instance, in Appendix

B.13, if the insertion of collection satellite -2 after satellite 2 proves unsuccessful, FC2 evaluates other

potential locations. This implies that the first-echelon vehicle in FE route-1 could make a detour,

provided it proves advantageous, or the SE route could be served by a first-echelon vehicle from an

alternative FE route, such as FE route-2.

In the second case, the insertion of a customer into a new SE route precludes the need to verify

the load and time windows at the SE route. Nonetheless, it is still necessary to examine the available

capacity in the first-echelon vehicle (FE load) and to assess the synchronization of the new SE route

within the FE route solution. Consequently, the procedures within FC2 begin with evaluating the FE

load, followed by synchronization examination.

In the following, we provide the essential information of the above-outlined evaluations. For time-

windows evaluation, we adopt the forward-time slack (FTS) methods from Savelsbergh (1985), and the

calculation is based on Campbell and Savelsbergh (2004). The feasibility of inserting the customer

j between i − 1 and i evaluated by computing the ej = max(Ej , ei−1 + ci−1,j + δi−1) and the lj =

min(Lj , li − cj,i − δj). Given the result, checking the time window feasibility is by verifying whether

ej ≤ lj .

For synchronization evaluation, The evaluation examines the feasibility of the timing at the satellite,

ascertaining whether an insertion can be successfully implemented concerning time windows, deadlines,

and synchronization. In this evaluation, we look into (1) the timing at the beginning of the SE route

with the distribution satellite and (2) the timing at the end of the SE route with the collection satellite.

However, there is a different approach to evaluating the synchronization between delivery and pickup

customers.

For a delivery customer insertion, we check the distribution satellite visit at the beginning of the SE

route. Specifically, we update each node LAT information in the SE route from the insertion location j

until the beginning of the SE route (i.e., distribution satellite). Then, after we obtain the updated SE

route LAT information at the distribution satellite, we compare it with the first-echelon vehicle arrival

at that distribution satellite. Suppose the insertion is type 2 (i.e., a delivery customer is inserted in

a dedicated collection SE route). In that case, we need to update the new timing of the first-echelon

vehicle ready at the distribution satellite, that is, after the departure from the preceding satellite and

the travel time between the preceding satellite and the current satellite. However, suppose the insertion

is type 1 (i.e., a delivery customer is inserted in a dedicated distribution SE route) or 3-d (i.e., a delivery

customer is inserted in a collection-and-distribution SE route). In that case, the timing when the first-

echelon vehicle is ready at the distribution satellite does not need to be updated. Then, the feasibility
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check evaluates whether the first-echelon vehicle is ready at the distribution satellite before the updated

SE route LAT at that satellite.

If feasible, we check the collection satellite visit at the end of the SE route. Specifically, except for

insertion type 1 (i.e., a delivery customer is inserted in a dedicated distribution SE route), we update

each node EAT information in the SE route from the insertion location j to the end (i.e., collection

satellite). After the updated SE route EAT at the collection satellite is obtained, we compare it with

the current FE route LAT at that collection satellite. The synchronization is feasible if the updated SE

route EAT at the collection satellite is smaller than the FE route LAT. Otherwise, it is infeasible.

For a pickup customer insertion, we need to evaluate the pickup parcel deadline. If the deadline is

earlier than the current pickup parcels deadline served by the FE route, we update the associated FE

routes LAT until the collection satellite location. Also, we update the SE route LAT from where the

pickup parcel is inserted to the beginning SE route (i.e., distribution satellite). Then, the subsequent

procedure is the same as delivery parcel insertion. We check the distribution satellite visit at the begin-

ning of the SE route, particularly the arrival of the FE vehicle at that distribution satellite. If the arrival

time of the FE vehicle is greater than the updated SE route LAT at the distribution satellite, then it is

infeasible.

If feasible, we check the collection visit at the end of the SE route. Each node EAT in the SE route is

updated forward from the insertion location j to the end of the SE Route. After obtaining the SE route

EAT at the collection satellite, we compare the maximum EAT from all SE routes ending at the collection

satellite to the updated FE route LAT at the collection satellite. The synchronization is infeasible if that

maximum EAT exceeds the updated FE route LAT. Otherwise, it is feasible.

The synchronization procedure is also applied to all SE routes affected by the shifts of satellite visits

at the FE route.

4.7. Acceptance Criterion

The acceptance of a new solution is evaluated after each destroy and repair procedure. Each current

solution, denoted as s′, is accepted with a probability e−(f(s′)−f(s))/t, wherein t > 0 represents the

temperature at the given iteration and f(·) the objective value. As the ALNS algorithm initiates, the

temperature begins at t = t0 and gradually declines at each iteration following the formula t = t · crate
where crate is the cooling rate. In line with the work of Ropke and Pisinger (2006), we set an initial

temperature control parameter equal to 5% for determining t0. This parameter is configured such that

a solution that performs 5% worse than the average initial solution in a batch is accepted with an initial

acceptance probability parameter denoted as η.

4.8. Mixed Integer Programming (MIP)

Upon the completion of the ALNS, the MIP is called. The initial step entails decoding the solution

derived from the ALNS phase to extract all FE and SE routes from the solution pools (S̄). Subsequently,

we eliminate duplication within the FE and SE routes to reduce the input size. All the parameters

required for MIP execution are then stored, consistent with the discussion in Section 3, and are based

on the information collated from the FE and SE route pools.
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The FE and SE routes generated by the ALNS algorithm are all feasible routes, meaning that the SE

route adheres to the load and time window constraints, and the FE route fulfills the load and deadline

constraints for all serviced parcels. As a result, the MIP has a task to ascertain the operation and

time synchronization between the selected SE and FE routes, a factor articulated in the route-based

formulation constraint.

During the MIP process, the bundling constraint from the ALNS algorithm is relaxed and allows

split pickup and delivery operations. This implies that, as long as the parcel satisfies the operation and

the time synchronization at the satellite, the second-echelon vehicle can receive the parcel from any first-

echelon vehicle. The MIP is solved using a commercial solver, subject to a specified time limit (in this

study, we set 5400 s). Upon reaching the minimum relative gap or the time limit, the minimum solution

from the ALNS is compared with the solution derived from the MIP. The cost-minimizing solution is

then chosen to represent the outcome of the matheuristic.

5. Computational Results

This section presents the computational experiments to analyze the performance of our matheuristic

for solving the 2E-VRP-PDD. We first discuss the benchmark instances used from the literature and

provide an overview of the performance of our matheuristic on solving 2E-VRP benchmark instances

from the literature in Section 5.1. We present how we create our 2E-VRP-PDD instances and then

solve the new 2E-VRP-PDD instances and derive valuable insights regarding the impact of varying

parcel deadlines on transportation costs in Section 5.2. Section 5.3 discusses the impact of the individual

operators on the ALNS, and Section 5.4 discusses the impact on the solution for varying customer pickup

deadlines at the hub. Details on tuning the parameters of our matheuristic can be found in Appendix

A.

We coded the matheuristic in Java and compiled it using JDK-17.0.1 and CPLEX 22.1.1.0 is used as

a MIP solver. The computational experiments were conducted on the Snellius Cluster High-Performance

Computer, specifically, an AMD Rome 7H12 that comprises CPUs at 2.6 GHz with 32GB of RAM unless

specified otherwise. All experiments are conducted single-threaded.

5.1. Performance of our ALNS on 2E-VRP benchmark instances

Because the 2E-VRP-PDD is a new problem, benchmark instances do not exist in the extant liter-

ature. We therefore evaluate our matheuristic, and specifically the ALNS within, on well-established

2E-VRP instances that are publically available. We do so on the instances provided by Breunig et al.

(2016), along with the new set of instances (called Set 7) proposed by Marques et al. (2020). Notice

that benchmark sets 4a and 6b from Breunig et al. (2016) do not apply to our setting. To provide a fair

comparison, we incorporated some minor modifications to the ALNS to not spend unnecessary time on

computations that are irrelevant for 2E-VRP instances:

• We skip checking the feasibility of the time constraints (such as time windows, synchronization,

and deadlines).
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• We allow SE vehicles to carry loads from multiple FE vehicles.

• We exclude all time-related operators, leaving us with six destroy and four repair operators.

• We impose penalties on any additional routes for the SE or the FE if the total exceeds the maximum

fleet size stipulated by the instances.

Table 3: Performance of 2E-VRP-PDD compared to 2E-VRP benchmark result from Voigt et al. (2022) and Mühlbauer
and Fontaine (2021)

Instance set #Inst. #Customers #Satellites ∆ best (%) ∆ avg (%) t(s) t*(s)

2a 6 21 2 0.00 0.00 36 1
6 32 2 0.00 0.04 56 4

2b 9 50 2,4 0.00 0.22 95 26
2c 9 50 2,4 0.00 0.09 99 21
3a 6 21 2 0.00 0.00 36 1

6 32 2 0.00 0.00 54 8
3b 12 50 2 0.17 0.38 157 27
4b 54 50 2,3,4 0.02 0.13 111 23
5 6 100 5 0.04 0.95 305 171

6 100 10 0.64 1.27 350 181
6 200 10 1.09 1.78 1169 791

6a 9 50 4,5,6 0.00 0.17 93 18
9 75 4,5,6 0.00 0.27 147 63
9 100 4,5,6 0.24 0.48 249 114

7∗ 10 100 5,10 1.27 1.51 327 129
17 200 10,15 1.92 2.73 1420 1071
24 300 10,15 1.92 2.90 3166 2708

Table 3 shows the performance of the ALNS on the benchmark instance sets compared to the results

from Voigt et al. (2022) (Sets 2a - 6) and Mühlbauer and Fontaine (2021) (Set 7). We solve each instance

within each benchmark set five times with our ALNS. The initial four columns depict the instance set

name, the number of instances, the number of customers in the instances comprising that set, and the

number of satellites. The ”∆ best” column denotes the average best solution (of the five ALNS runs)

over all instances within the benchmark set relative to the best-known solution. The column ”∆ avg”

corresponds to the average of five ALNS runs for all instances within each set. Finally, ”t(s)” indicates the

average runtime for 1 million iterations, whereas ”t*(s)” indicates the average time until the best-found

solution. The detailed results on each instance are provided in Appendix C.9 to C.16.

The findings show that our algorithm effectively finds the best-known solution in nearly all instance

sets derived from Breunig et al. (2016). The gap between the BKS and the average of 5 runs for all

instances remains below 2%. Upon examining the new large and complex instance set from Marques

et al. (2020), our ALNS demonstrates competitive results both compared to the heuristic from Mühlbauer

and Fontaine (2021) and the exact result from Marques et al. (2020). Furthermore, our algorithm

showed competitive run-time performance and results compared to previous studies utilizing the same

benchmark, according to the overview by Sluijk et al. (2023).

5.2. Evaluation of 2E-VRP-PDD

This subsection presents the computational results of our matheuristic on the 2E-VRP-PDD. We

start by introducing the specific instances deployed in our computational experiments. Following this,

we evaluate our matheuristic, focusing on the MIP and ALNS components. We conclude this section by

providing a performance review of the ALNS operators.
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Table 4: Matheuristic Performance on the 2E-VRP-PDD instances

ALNS 30K MIP ALNS 100K

#C #S Avg. 5 Best 5 t(s) t*(s) Avg. 5 Best 5 t(s) % Gap Avg 5 Best 5 t(s) t*(s)

50 2 1482.47 1470.39 67 36 1471.98 1467.65 894 0.08 1473.88 1467.99 178 85
4 1410.04 1397.87 100 60 1401.22 1392.39 1631 0.65 1401.04 1388.4 276 140
8 1322.50 1301.68 204 113 1314.56 1296.39 2535 0.85 1321.67 1300.62 584 281

100 2 2465.05 2430.01 234 188 2528.75 2399.55 5164 6.97 2439.63 2412.83 628 460
4 2251.88 2212.96 366 297 2394.16 2220.59 5402 9.65 2231.40 2203.28 933 650
8 2072.26 2038.49 681 531 2099.96 2018.16 5329 6.44 2057.56 2026.29 1834 1346

We generate new 2E-VRP-PDD instances based on the instances provided by Dumez et al. (2023).

To make the instances fit our problem setting, we removed the restrictions on the fleet size in both the

first- and second-echelon. Furthermore, we disregard the capacity limit at the satellite which Dumez

et al. (2023) considers. Then, we separated customers comprising both pickup and delivery demand into

separate customers. One of the key elements of the 2E-VRP-PDD is the presence of customer-specific

deadlines on the arrival of the pickup parcels at the city hub. To do so, we differentiate between same-day

and next-day services. For the same-day service, we set the time window cut-off time at 300 time units.

Accordingly, the pickup parcels with a time window that extends beyond 300 time units are assumed

to be a next-day service. We consider for both services either an early or a late deadline. Same-day

service’s early and late deadlines are set at 420 and 480 units, respectively. For next-day service, these

deadlines are set to 720 and 840 units. We assigned parcel deadlines uniformly at random.

In the formulation of the 2E-VRP-PDD instances, travel time is denoted in minutes, and distances,

representing routing costs, are calculated using Euclidean metrics. For other details for the instance

generation, we follow the description from Dumez et al. (2023). Finally, the evaluation of the MIP

components hinges upon the First Echelon (FE) and Second Echelon (SE) route pools produced by the

ALNS. We consider two variants of our matheuristic. A version in which we run the ALNS for 30K

iterations and afterward run the MIP with a time limit of 5400 seconds for CPLEX, and a version that

runs only the ALNS for 100K iterations without using the MIP afterward.

The results of our matheuristic are summarized in Table 4. Detailed results are provided in Appendix

D.17. The table is categorized based on the number of customers (50 and 100) and the number of satellites

(2, 4, and 8). Each of these combinations of customers and satellites consists of 10 instances, that we

each solve 5 times with our matheuristic. The first column group delineates the cost and time metrics for

the ALNS algorithm executed over 30K iterations. The cost metrics incorporate the average cost from

five runs (Avg. 5) and the best cost from these five runs (Best 5). Time metrics include the duration

of the algorithm’s execution (t) and the time taken to identify the optimal cost (t∗) in the second unit.

Both time and cost metrics are averages derived from all instances within each customer and satellite

group. The second column group features metrics associated with MIP implementation, with the added

consideration of the % gap, which shows the average relative gap to the lower bound considering the

routes encountered by the ALNS 30 K

In general, an increased number of satellites corresponds to a reduction in cost, as can be expected,

suggesting that expanding the satellite number can help mitigate routing costs. However, when focusing

on the ALNS runtimes, we see a clear increase in more satellites as the search space is expanded in such
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cases.

Comparing the scenario wherein only the ALNS is applied (executed over 30K iterations) with the

scenario in case the computation is extended via the MIP, highlights the benefits of allowing second-

echelon vehicles to use demand from multiple first-echelon vehicles. Although in our practical setting,

this is not feasible, we observe a marginal reduction (approximately 0.64%) in the average cost across

five runs for the MIP compared to the ALNS for the 50 customers instances. On the contrary, a larger

customer base (100 customers) results in a higher average cost (around 3.34%). In these cases, on

average, the MIP is terminated before achieving the minimum relative gap, as indicated by the % gap

column, which still exhibits a gap exceeding 5%. Furthermore, considering the best result of the five

runs, applying the MIP after the ALNS appears beneficial in almost all instances (reducing the objective

on average by 0.65%). This finding suggests that employing a split operation in the FE route can yield

a more cost-effective solution, and might be considered in practice.

We also solved the 2E-VRP-PDD instances using 100K iterations of the ALNS (called ALNS 100K in

Table 4), aimed at quantifying the potential advantages of increasing the number of iterations. Naturally,

runtimes increase, but specifically, the difference between the best and average performance of the ALNS

reduces, giving an indication that the ALNS provides stable performance in the case of 100K iterations.

The differences in best solutions are, however small, making the 30K version of our ALNS suitable for

analyzing the problem structure in detail.

5.3. Impact of operators

Next, we investigate our ALNS operators’ performance based on three key metrics: the average

number of new optimal solutions identified by each operator, the average cost-saving achieved per use

for each operator, and the average solution deviation resulting from the absence of a particular operator.

These metrics are summarized in Table 5. The first two columns are derived from the ALNS 30K results,

while the solution deviation is calculated through an additional series of experiments, each of which

omits one group of operators.

The worst-distance removal operator consistently outperforms its counterparts in identifying new op-

timal solutions. Conversely, both route and least-utilized route removal operators, despite demonstrating

a relatively lower propensity to discover new best solutions, are associated with significant cost savings

when implemented. Regarding the insertion method, the farthest-first insertion operator shows superior

effectiveness in finding a new best solution. The average cost-saving associated with each repair operator

is comparable, with no significant disparities. A sensitivity analysis conducted for each group of opera-

tors indicates that the average deviation in the absence of a particular operator group is negligible, with

values ranging from -0.001 to 0.005. This suggests the overall system’s performance remains relatively

robust even when specific operator groups are excluded.

Furthermore, we underscore the distinctive advantage of the worst-slack removal operator, as illus-

trated in Figure 6. Though the worst removal operator exhibited superior performance initially, it was

overtaken by worst-slack removal during the later iterations (surpassing worst removal after 12,000 iter-

ations, yet remaining subpar to random removal). This suggests that removing customers with higher
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Table 5: Operator Performance Measures

Indicator Operator Avg. number of
new best
solutions each
operator finds

Avg. cost saving
per usage for each
operator

Avg. solution
deviation without
the operator

Destroy(Removal)
Random Random 11.09 13.58 0.000
Distance-related Worst-distance 12.54 32.51 0.005

Related-distance 4.77 18.80
Time-related Worst-slack 9.41 15.53 -0.001
Routing-related Route 0.29 34.37 0.008

Least-utilized route 1.36 29.54
Satellite 4.99 18.87

Repair(Insertion)
Random Random-order 5.03 21.10 0.002
Distance-related Farther-first 10.67 21.09 0.002

Closest-first 3.11 20.99
Demand-related Largest-first 6.26 20.36 0.001
Time-related Earliest Time

Widows-first
4.57 20.73 -0.001

Latest Time
Widows-first

5.12 20.96

Earliest
Deadline-first

4.61 21.46

Latest Deadline-first 5.08 20.70

slack time can improve the advanced stages of the destroy and repair process. This is attributable to the

reduced prohibited insertion area caused by the time-related feasibility check. Additionally, the customer

with a tight customer slack indicates that it is already inserted in a relatively cost-minimized location.

5.4. Impact of the Deadline

In this section, we report on the influence of deadlines on 2E-VRP-PDD. Three distinct instance sets

are generated for comparison from the base scenario (which we will call ”Deadline”), distinguished solely

by the imposed deadline constraints. The generation of these sets aligns with the instance explanation

delineated in Section 5.2. The newly generated sets differ as follows:

• Without Deadline (WD): Deadlines are eliminated by setting all pickups to the maximum possible

number. This results in the problem becoming a Two-Echelon Vehicle Routing Problem with

Pickup, Delivery, and Time Windows.

• Loose Deadline (LD): Each pickup customer has a 75% probability of being assigned a late deadline,

applicable to both same-day and next-day services.

• Tight Deadline (TD): In this set, each pickup customer has a 75% probability of receiving an early

deadline for either same-day or next-day service.

The deadline’s impact is quantified in Table 6, presenting averages over all the instances in our

benchmark sets. The detailed results are provided in Appendix D.19 and D.20. Evaluation criteria

include the cost (as the minimum over 5 runs), the ”# FE vehicles” and ”# SE vehicles” show the

average number of first- and second-echelon vehicles deployed, the ”FE Max Load” and ”SE Max Load”

denote the average of the maximum parcel load carried by first- and second-echelon vehicles, and ”FE

parcels” and ”SE parcels” represents the average number of parcels transported by each first- and second-

echelon vehicle.
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Figure 6: Operator Performance over Iterations Time in Instance C-100-4-D

Table 6: Sensitivity of customer deadlines on the total transport cost

Without Deadline Loose Deadline Deadline Tight Deadline

Cost 1692.34 1777.06 1808.57 1836.74
# FE Vehicles 2.72 3.14 3.13 3.30
# SE Vehicles 16.95 16.97 16.99 16.88
FE Max Load 0.69 0.61 0.61 0.58
SE Max Load 0.92 0.91 0.91 0.91
FE Parcels 34.19 30.09 30.11 28.59
SE Parcels 5.52 5.52 5.51 5.55

Comparing the Without Deadline (WD) case with the Tight Deadline(TD), we observe a cost increase

of 8.5% on average. This increase is largely driven by the need for additional first-echelon vehicles to

meet tighter deadlines, while the number of second-echelon vehicles remains relatively stable. In practical

scenarios, such a small increase in cost might make the difference between operating a profitable business

or not.

The maximum load carried by the first-echelon vehicles decreases by around 5.3% as deadlines tighten,

suggesting a spread of load distribution across the larger first-echelon vehicle fleets. Similarly, the

average number of parcels transported by the first-echelon vehicles reduces by approximately 5.7%, due

to the increased number of vehicles sharing the load. However, second-echelon vehicles’ maximum load

and parcel number remain stable, indicating minimal impact on SE operations regardless of deadline

conditions. This stability suggests a possible redistribution of parcels from FE to SE routes as the

deadline becomes stricter.

6. Case Study

This section applies our matheuristic approach to a case study replicating operations of our industry

collaborator based in the Jakarta Metropolitan Area, Indonesia. We propose a comparative study of three

distinct heuristic routing strategies. One is the 2E-VRP-PDD proposed in this paper. The two other
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strategies are based upon the existing literature and the current operational strategies of our industry

collaborator. These strategies are as follows:

• Strategy 1 (S1): This strategy, proposed in the present paper as the 2E-VRP-PDD, advocates for

integrating pickup and delivery operations within both the FE and SE routes.

• Strategy 2 (S2): This alternative strategy segregates pickup and delivery operations into distinct

operational sequences in both the FE and SE routes.

• Strategy 3 (S3): The third strategy, mirroring the current practices of our industry partner, seg-

regates the pickup and delivery operations at the FE level, yet integrates these operations at the

SE level. This approach is also in line with strategies proposed in the literature, including Li et al.

(2021), Liu and Jiang (2022), Zhou et al. (2022), and Li et al. (2022).

6.1. Case study Description and Setup

We mimic one typical day of operation in five hubs of our industry collaborator. We adopt the

logistics facilities’ location and customer spread to make the instance realistic by converting the original

data to the Universal Transverse Mercator (UTM) coordinates in a planar graph using ‘pyproj’ package

from Python. We round the point to the nearest integer. In this case, the hub also plays a role

as a satellite. So, from the operational perspective, we put a similar location for the hub with one

satellite location. We label the new instances as CS-1-D to CS-5-D. The instances have 6 to 9 satellites

with 1500 to 2150 customers. The instances are publicly available at our GitHub repository: https:

//github.com/aryazamal/2e-vrp-pdd.

We consider the customer demand as the parcel’s weight. The time windows are based on the original

time stamp data and then converted to minutes. We consider the initial planning horizon to start at

minutes 0 or 7:00 in the morning. The cut-off time for the same-day service is 13:00. We set the same-day

delivery deadline as equal to 420 (14:00) and 540 (16:00) for the early and late deadlines at the hub,

respectively. We also consider another deadline at 19:00 for the same-day delivery, but the latest time

windows are started later than the cut-off time. We set the next-day delivery deadline as equal to 780

(20:00) and 900 (22:00) for the early and late deadlines at the hub, respectively.

The company utilizes a minivan from their partners for the first-echelon vehicle and a motorbike for

the second-echelon vehicle. The capacity is set for 750 and 160 for the first- and second-echelon vehicles,

respectively. No maximum fleet size is considered. Finally, we set travel time based on the average speed

in the Jakarta Metropolitan area, slightly below the average morning rush and the evening rush reported

by TomTom (2023), which is 350 (meters per minute).

To solve the problem, we implement our matheuristics approach for 2E-VRP-PDD to this large-

scale problem instance limited to 30K iterations in one run for each instance. We set ζUB
small = 0.1,

ζLB
large = 0.45 and ζUB

large = 0.55 to better deal with the large number of customers to be inserted in each

iteration. Finally, since this case considers the vehicle’s average speed, the objective is to minimize the

cost, represented by the total travel times.
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6.2. Case Study Results and Analyses

This section presents and discusses the key findings from our case study of a 2E-VRP-PDD. Figure 7

presents the solution representation for the CS-1-D while Figure 8 summarizes the solution characteristic

of each strategy for every case. Detailed results can be found in Appendix E.21.

We first summarize each strategy’s main findings and afterward, draw three insights important for

practitioners.

Strategy 1 : The results show that this strategy has the lowest average cost due to integrating pickup

and delivery operations within both FE and SE routes. This integration allows for more flexible and

efficient use of each vehicle’s capacity (particularly first-echelon vehicles) over time, reducing the number

of vehicles needed and, thus, the overall cost. The maximum load at any time might not be as high

because of the continual loading and unloading. This strategy also requires the highest number of

second-echelon vehicles due to the increased complexity caused by the synchronization of routes when

combined with pickup and delivery operations. This strategy utilizes the least number of satellites from
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CS-1-D: Strategy 1

(a) Result: 8 FE vehicles, 56 SE vehicles, and 5 satellites
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CS-1-D: Strategy 2

(b) Result: 14 FE vehicles, 52 SE vehicles, and 6 satellites
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CS-1-D: Strategy 3

(c) Result: 16 FE vehicles, 51 SE vehicles, and 7 satellites

Figure 7: Result of CS-1-D instances using Strategy 1 (a), Strategy 2 (b), and Strategy 3 (c) with 7 satellites available,
1331 delivery customers, and 815 pickup customers
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Figure 8: Characteristics of strategy results in five hubs

the currently available satellites in each case, indicating the potential of satellite efficiency after employing

the strategy while respecting the time constraints.

Strategy 2 : This strategy separates pickup and delivery operations in both FE and SE routes, leading

to the highest average cost and usage of first-echelon vehicles. Separating the operations means more

vehicles are needed to perform each operation individually. This separation allows for a more focused

loading plan for each operation, resulting in a higher maximum load and more parcels carried per vehicle.

However, a higher load planning at the FE level is contributed by the delivery (last-mile distribution)

operation. In contrast, due to the deadlines, the pickup (first-mile collection) operation has less than

half of the vehicle capacity.

Strategy 3 : This strategy, which mixes pickup and delivery operations in SE routes and separates

them in FE routes, has a relatively similar average cost to Strategy 2 but uses fewer first- and second-

echelon vehicles. This suggests that mixing operations in SE routes can increase operation flexibility.

Still, organizing the synchronization between echelons is much more challenging, resulting in difficulties

in saving costs. The solution suggests relatively longer FE routes than Strategy 1, especially in the

delivery operation, and it uses more satellites compared to the other strategies.

Based on the solution characteristics and results, we draw insights to offer a clearer picture of each

strategy’s potential benefits and trade-offs, especially the value of integrating pickup and delivery oper-

ations in both FE and SE routes.

Insight 1 - Efficiency of Integrated Operations: Strategy 1, integrating pickup and delivery operations,

reduces the average cost by approximately 17% compared to Strategy 2 and Strategy 3. Moreover, on

average, the company has the option to use fewer satellites when integrating the pickup and delivery

operations.

Insight 2 - Vehicle Usage Optimization: Strategy 1 uses fewer first-echelon vehicles on average,

specifically around 20% less than other strategies. This efficient utilization could result in significant
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cost savings, especially for larger operations. In contrast, integrating pickup and delivery operations at

the SE level has no real impact on the efficiency of the operations.

Insight 3- Load Efficiency: Strategy 1 has the lowest average FE max load because of the continual

loading and unloading of the parcels, but it carries around 28% more parcels on average in FE routes

than Strategy 2 and Strategy 3. Also, the load for pickup and delivery of parcels is evenly distributed in

Strategy 1. At the same time, Strategy 2 and Strategy 3 have almost full load for the delivery operation

but less than half load for the pickup operation because of the deadline at the hub.

7. Conclusion

Inspired by current operational challenges at our industry partner, we introduce a new two-echelon

vehicle routing problem variant that integrates first and last-mile operations within megacities. Specif-

ically, we introduce the Two Echeon Vehicle Routing Problem with Pickups, Deliveries, and Deadlines.

The deadlines are the result of pickup up customer parcels that need further transportation within the

megacity logistics’ network via prescheduled linehaul transport.

We propose matheuristics to solve our new optimization problem. The approach consists of three

main parts; generating a batch of initial solutions using Large Neighborhood Search (LNS), solving

and generating a pool of routes using Adaptive Large Neighborhood Search (ALNS), and employing a

set-partitioning formulation that is filled with routes encountered during the ALNS. The computational

experiments show the quality of the developed approach. The ALNS is competitive with state-of-the-art

approaches for solving established benchmark instances from the literature on the two-echelon vehicle

routing problem. We also introduce new benchmark instances tailored to our problem setting. We show

that the considering relatively tight deadlines increases cost by on average 8.52%. The cost increase is

caused by the need for more first echelon routes.

Furthermore, we introduce five new publicly available datasets based on the actual operations of

our industry partner. This case study compares the proposed strategy in this paper with the current

industry-standard. We show that we can save 17% of the total routing cost compared to the current

strategy by efficiently deploying and utilizing the first-echelon vehicles by full integration of first and

last-mile delivery processes.

Potential avenues for further research lie in adopting machine learning techniques to foster the per-

formance of our matheuristic approach. In addition, it is interesting to extend the scope towards fully

integrated megacity logistics operations, by considering the scheduling of linehauls between the different

neighborhoods as well.
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Appendix A. Parameter Tuning

This appendix shows how to obtain parameter values for our Adaptive Large Neighborhood Search

(ALNS). This was achieved through a sequence of computational experiments that used the 2E-VRP-

PDD instances. The execution of these campaigns proceeded as follows.

We initiated the process by randomly selecting two samples from each customer and satellite instance

set, culminating in 10 instance sets. The preliminary parameter values were derived from initial cam-

paigns, supplemented by prior studies’ insights that applied the ALNS methodology from Ropke and

Pisinger (2006) to the Two-Echelon Vehicle Routing Problem (2E-VRP). In particular, we sourced from

research efforts that incorporated both small and large destroy operations within their algorithms, as

exhibited in Hemmelmayr et al. (2012), Enthoven et al. (2020), and Yu et al. (2021). As shown in Table

A.7, initial values are indicated in bold.

Modifying parameter values was done sequentially, within the range detailed in Table A.7. For the

adaptive parameter, particularly the score (σ), adjustments were made as a bundle based on previous

literature, except for bundles (18,10,4) and (9,5,2). Five runs of 100K iterations were conducted for each

parameter, with a total of 10 rounds of parameter tuning.

Finally, we selected the setting that exhibited the most efficient average performance-determined by

the average deviation from the best-known solutions—and reasonable computational time. The final

value is displayed in Table A.8. The final values for parameters ωrestart and ωlarge were re-scaled when

the ALNS was executed with 30K iterations.

It should be noted, that the ALNS algorithm is executed for 1 million iterations in Section 5.1,

applying the parameters specified for 100K iterations. Notably, for four instances in Set 7 (instances

with 300 customers and 15 satellites: 3a, 3c, 4a, and 4c), we set ζUB
small = 0.15.

Table A.7: Parameter Tuning Value

Parameters Tuning Value

ωrestart Restart Period 100, 500, 1000, 10000
ωlarge Large Removal Occurrence 100, 250, 500, 750, 1000, 1500
ωLNS LNS Iteration 250,500,750,1000,1250

ζUB
small Upper Bound Small Removal 0.1, 0.15, 0.2, 0.25, 0.3

ζLB
large Lower Bound Large Removal 0.5, 0.55, 0.6, 0.65, 0.7

ζUB
large Upper Bound Large Removal 0.7, 0.75, 0.8, 0.85, 0.9

υ Decay/reaction rate 0.1, 0.2, 0.3, 0.4, 0.5
σ1 Score 1 (Best solution) (33,9,13), (60,30,20), (30,30,0),

(18,10,4), (9,5,2)
σ2 Score 2 (Better solution)
σ3 Score 3 (Accepted Solution)
crate Cooling rate 0.99975, 0.99990, 0.99995, 0.99999,

0.99950
η Initial Acceptance Probability 50%, 45%, 30%, 25%, 20%

Bold values represent initial values of the tuning process.
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Table A.8: Parameters Final Value

Parameters Value 100K (30K)

ωrestart 10000 (3000)
ωlarge 1500 (750)
ωLNS 250
ζUB
small 0.25
ζLB
large 0.6

ζUB
large 0.7

υ 0.1
σ1 9
σ2 5
σ3 2

crate 0.99975
w 0.05
η 50%
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Appendix B. Insertion Types
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Time

2

3

-3

-4

5

Deadline(2)

-1

Distribution Satellite

Collection Satellite

7

11

6

8

-2

14

13

4

9

10

-5

-1

Departure / Arrival FE Route

Departure / Arrival Se Route

5

12

15

Delivery Customer

Pickup Customer

16

-5

Deadline(1)
1 1

23

Customer Insertion

Arrival Shift after Insertion

Deadline Shift after Insertion
-5

-1

FE Route-1 FE Route-2

Figure B.12: Type 3-p Customer Insertion

36

Electronic copy available at: https://ssrn.com/abstract=4565559



Time

2

3

-3

-4

5

Deadline(2)

-1

Distribution Satellite

Collection Satellite

7

11

6

8

-2

14

13

4

9

10

-5

-1

Departure / Arrival FE Route

Departure / Arrival Se Route

5

12

15

Delivery Customer

Pickup Customer

16

-5

Deadline(1)
1 1

23

Customer Insertion

Satellite Insertion

Arrival Shift after Insertion

Deadline Shift after Insertion

FE Route-1 FE Route-2

Figure B.13: Type 4 Customer Insertion

37

Electronic copy available at: https://ssrn.com/abstract=4565559



Appendix C. Benchmark Detailed Results

Table C.9: Detailed result for 2E-VRP benchmark: Set 2a

Instance BKS Best 5 Avg. 5 ∆ best (%) ∆ avg (%) t(s) t*(s)

E-n22-k4-s10-14 371.50 371.50 371.50 0.0 0.00 37 0
E-n22-k4-s11-12 427.22 427.22 427.22 0.0 0.00 38 4
E-n22-k4-s12-16 392.78 392.78 392.78 0.0 0.00 36 1
E-n22-k4-s6-17 417.07 417.07 417.07 0.0 0.00 36 0
E-n22-k4-s8-14 384.96 384.96 384.96 0.0 0.00 37 1
E-n22-k4-s9-19 470.60 470.60 470.60 0.0 0.00 35 1
E-n33-k4-s1-9 730.16 730.16 730.16 0.0 0.00 53 2
E-n33-k4-s14-22 779.05 779.05 779.05 0.0 0.00 61 0
E-n33-k4-s2-13 714.63 714.63 714.63 0.0 0.00 53 11
E-n33-k4-s3-17 707.48 707.48 709.17 0.0 0.24 57 2
E-n33-k4-s4-5 778.74 778.74 778.74 0.0 0.00 59 9
E-n33-k4-s7-25 756.85 756.85 756.85 0.0 0.00 54 0

Table C.10: Detailed result for 2E-VRP benchmark: Set 2b

Instance BKS Best 5 Avg. 5 ∆ best (%) ∆ avg (%) t(s) t*(s)

E-n51-k5-s11-19-27-47 527.63 527.63 527.63 0.0 0.00 91 7
E-n51-k5-s11-19 581.64 581.64 581.64 0.0 0.00 88 17
E-n51-k5-s2-17 597.49 597.49 599.66 0.0 0.36 93 12
E-n51-k5-s2-4-17-46 530.76 530.76 530.76 0.0 0.00 101 7
E-n51-k5-s27-47 538.22 538.22 538.36 0.0 0.03 98 50
E-n51-k5-s32-37 552.28 552.28 552.28 0.0 0.00 94 53
E-n51-k5-s4-46 530.76 530.76 530.76 0.0 0.00 92 21
E-n51-k5-s6-12-32-37 531.92 531.92 537.07 0.0 0.97 103 42
E-n51-k5-s6-12 554.81 554.81 558.41 0.0 0.65 91 27

Table C.11: Detailed result for 2E-VRP benchmark: Set 2c

Instance BKS Best 5 Avg. 5 ∆ best (%) ∆ avg (%) t(s) t*(s)

E-n51-k5-s11-19-27-47 530.76 530.76 530.76 0.0 0.00 106 53
E-n51-k5-s11-19 617.42 617.42 617.42 0.0 0.00 93 5
E-n51-k5-s2-17 601.39 601.39 601.39 0.0 0.00 97 9
E-n51-k5-s2-4-17-46 601.39 601.39 601.39 0.0 0.00 102 23
E-n51-k5-s27-47 530.76 530.76 530.76 0.0 0.00 106 15
E-n51-k5-s32-37 752.59 752.59 753.16 0.0 0.08 99 8
E-n51-k5-s4-46 702.33 702.33 702.33 0.0 0.00 94 13
E-n51-k5-s6-12-32-37 567.42 567.42 569.03 0.0 0.28 100 32
E-n51-k5-s6-12 567.42 567.42 569.96 0.0 0.45 95 34

Table C.12: Detailed result for 2E-VRP benchmark: Set 3

Instance BKS Best 5 Avg. 5 ∆ best (%) ∆ avg (%) t(s) t*(s)

E-n22-k4-s13-14 526.15 526.15 526.15 0.00 0.00 35 1
E-n22-k4-s13-16 521.09 521.09 521.09 0.00 0.00 36 0
E-n22-k4-s13-17 496.38 496.38 496.38 0.00 0.00 35 0
E-n22-k4-s14-19 498.80 498.80 498.80 0.00 0.00 36 1
E-n22-k4-s17-19 512.81 512.80 512.80 0.00 0.00 36 1
E-n22-k4-s19-21 520.42 520.42 520.42 0.00 0.00 36 2
E-n33-k4-s16-22 672.17 672.17 672.17 0.00 0.00 51 4
E-n33-k4-s16-24 666.02 666.02 666.02 0.00 0.00 50 3
E-n33-k4-s19-26 680.36 680.36 680.36 0.00 0.00 61 14
E-n33-k4-s22-26 680.37 680.36 680.36 0.00 0.00 58 16
E-n33-k4-s24-28 670.43 670.43 670.43 0.00 0.00 51 5
E-n33-k4-s25-28 650.58 650.58 650.58 0.00 0.00 51 5
E-n51-k5-s12-18 690.59 692.56 695.20 0.29 0.67 128 14
E-n51-k5-s12-41 683.05 697.59 697.59 2.13 2.13 189 58
E-n51-k5-s12-43 710.41 710.41 710.41 0.00 0.00 261 48
E-n51-k5-s13-19 560.73 564.45 564.86 0.66 0.74 131 17
E-n51-k5-s13-42 564.45 564.45 564.45 0.00 0.00 166 6
E-n51-k5-s13-44 564.45 564.45 564.45 0.00 0.00 246 4
E-n51-k5-s39-41 728.54 728.54 729.10 0.00 0.08 103 14
E-n51-k5-s40-41 723.75 723.75 726.75 0.00 0.41 152 45
E-n51-k5-s40-42 746.31 746.31 748.28 0.00 0.26 102 25
E-n51-k5-s40-43 752.15 752.15 754.73 0.00 0.34 118 46
E-n51-k5-s41-42 771.56 771.56 771.84 0.00 0.04 162 11
E-n51-k5-s41-44 802.91 802.91 820.04 0.00 2.13 124 30
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Table C.13: Detailed result for 2E-VRP benchmark: Set 4b

Instance BKS Best 5 Avg. 5 ∆ best (%) ∆ avg (%) t(s) t*(s)

Instance50-1 1569.42 1569.42 1571.85 0.00 0.15 154 18
Instance50-2 1438.33 1438.32 1444.39 0.00 0.42 157 9
Instance50-3 1570.34 1570.43 1572.17 0.01 0.12 107 48
Instance50-4 1424.04 1424.04 1424.04 0.00 0.00 140 11
Instance50-5 2193.52 2193.52 2193.52 0.00 0.00 110 20
Instance50-6 1279.87 1279.89 1279.89 0.00 0.00 136 35
Instance50-7 1408.57 1408.58 1408.58 0.00 0.00 159 94
Instance50-8 1360.32 1360.32 1360.32 0.00 0.00 128 19
Instance50-9 1403.53 1403.53 1403.53 0.00 0.00 151 13
Instance50-10 1360.56 1360.54 1360.54 0.00 0.00 144 4
Instance50-11 2047.46 2053.64 2058.23 0.30 0.53 100 14
Instance50-12 1209.42 1209.46 1210.33 0.00 0.08 113 14
Instance50-13 1450.93 1450.94 1450.94 0.00 0.00 134 11
Instance50-14 1393.61 1393.64 1395.50 0.00 0.14 114 18
Instance50-15 1466.83 1466.84 1466.84 0.00 0.00 119 10
Instance50-16 1387.83 1387.85 1387.85 0.00 0.00 217 30
Instance50-17 2088.49 2088.48 2089.30 0.00 0.04 96 42
Instance50-18 1227.61 1227.68 1227.68 0.01 0.01 84 15
Instance50-19 1546.28 1546.28 1546.28 0.00 0.00 102 36
Instance50-20 1272.97 1272.98 1272.98 0.00 0.00 90 13
Instance50-21 1577.82 1577.82 1578.92 0.00 0.07 94 35
Instance50-22 1281.83 1281.83 1281.83 0.00 0.00 114 6
Instance50-23 1652.98 1652.98 1652.98 0.00 0.00 88 13
Instance50-24 1282.68 1282.69 1282.69 0.00 0.00 102 4
Instance50-25 1408.57 1408.58 1409.12 0.00 0.04 134 54
Instance50-26 1167.46 1167.47 1167.47 0.00 0.00 96 1
Instance50-27 1444.50 1444.49 1450.66 0.00 0.43 100 47
Instance50-28 1210.44 1210.46 1214.34 0.00 0.32 111 25
Instance50-29 1552.66 1552.66 1553.26 0.00 0.04 120 27
Instance50-30 1211.49 1212.68 1212.68 0.10 0.10 130 11
Instance50-31 1440.86 1440.85 1442.87 0.00 0.14 113 47
Instance50-32 1199.00 1199.05 1199.05 0.00 0.00 91 8
Instance50-33 1478.86 1478.87 1478.87 0.00 0.00 85 12
Instance50-34 1233.92 1233.96 1233.96 0.00 0.00 82 1
Instance50-35 1570.72 1570.73 1570.73 0.00 0.00 91 19
Instance50-36 1228.89 1228.95 1228.95 0.00 0.00 101 34
Instance50-37 1528.73 1528.73 1528.73 0.00 0.00 96 36
Instance50-38 1163.07 1163.07 1163.07 0.00 0.00 89 15
Instance50-39 1520.92 1520.92 1520.92 0.00 0.00 90 13
Instance50-40 1163.04 1163.04 1177.59 0.00 1.25 91 3
Instance50-41 1652.98 1652.98 1655.98 0.00 0.18 109 8
Instance50-42 1190.17 1190.17 1191.19 0.00 0.09 90 32
Instance50-43 1406.11 1408.58 1409.67 0.18 0.25 134 45
Instance50-44 1035.03 1035.05 1035.05 0.00 0.00 85 7
Instance50-45 1401.87 1401.87 1404.38 0.00 0.18 99 45
Instance50-46 1058.11 1058.10 1064.68 0.00 0.62 91 14
Instance50-47 1552.66 1552.66 1554.38 0.00 0.11 152 44
Instance50-48 1074.50 1074.51 1074.51 0.00 0.00 91 0
Instance50-49 1434.88 1440.85 1441.52 0.42 0.46 106 31
Instance50-50 1065.25 1065.30 1065.30 0.00 0.00 83 4
Instance50-51 1387.51 1387.51 1395.93 0.00 0.61 86 11
Instance50-52 1103.42 1103.47 1108.11 0.00 0.43 89 39
Instance50-53 1545.73 1545.76 1545.76 0.00 0.00 101 33
Instance50-54 1113.62 1113.66 1113.66 0.00 0.00 85 13

Table C.14: Detailed result for 2E-VRP benchmark: Set 5

Instance BKS Best 5 Avg. 5 ∆ best (%) ∆ avg (%) t(s) t*(s)

100-5-1 1564.46 1564.46 1590.20 0.00 1.65 345 206
100-5-1b 1099.35 1099.35 1104.64 0.00 0.48 235 138
100-5-2 1016.32 1016.45 1023.51 0.01 0.71 424 232
100-5-2b 782.25 782.78 791.88 0.07 1.23 248 100
100-5-3 1045.29 1047.01 1060.71 0.16 1.48 312 209
100-5-3b 828.54 828.54 830.03 0.00 0.18 264 139
100-10-1 1124.93 1124.93 1134.23 0.00 0.83 387 188
100-10-1b 911.80 911.95 920.38 0.02 0.94 341 103
100-10-2 985.40 1001.03 1004.09 1.59 1.90 393 198
100-10-2b 766.28 769.85 774.78 0.47 1.11 312 223
100-10-3 1042.63 1054.24 1062.27 1.11 1.88 347 226
100-10-3b 848.16 853.65 856.55 0.65 0.99 317 149
200-10-1 1537.52 1552.56 1572.09 0.98 2.25 1094 804
200-10-1b 1173.07 1183.71 1191.24 0.91 1.55 940 632
200-10-2 1352.87 1371.02 1378.06 1.34 1.86 1588 992
200-10-2b 985.99 993.16 1002.54 0.73 1.68 908 575
200-10-3 1777.49 1800.79 1810.97 1.31 1.88 1530 1082
200-10-3b 1192.35 1207.20 1209.80 1.25 1.46 954 663
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Table C.15: Detailed result for 2E-VRP benchmark: Set 6

Instance BKS Best 5 Avg. 5 ∆ best (%) ∆ avg (%) t(s) t*(s)

A-n101-4 1194.17 1194.17 1196.76 0.00 0.22 247 149
A-n101-5 1211.38 1213.49 1215.95 0.17 0.38 262 156
A-n101-6 1155.89 1155.96 1161.78 0.01 0.51 236 93
A-n51-4 652.00 652.00 652.00 0.00 0.00 85 6
A-n51-5 663.41 663.41 663.41 0.00 0.00 94 6
A-n51-6 662.51 662.51 662.51 0.00 0.00 105 22
A-n76-4 985.95 985.95 985.99 0.00 0.00 131 27
A-n76-5 979.15 979.15 982.17 0.00 0.31 149 82
A-n76-6 970.20 970.20 972.73 0.00 0.26 157 82
B-n101-4 939.21 939.21 940.77 0.00 0.17 228 101
B-n101-5 967.82 969.07 971.07 0.13 0.34 229 73
B-n101-6 960.29 963.09 964.94 0.29 0.48 243 30
B-n51-4 563.98 563.98 564.15 0.00 0.03 88 16
B-n51-5 549.23 549.23 551.09 0.00 0.34 92 9
B-n51-6 556.32 556.32 562.44 0.00 1.10 104 46
B-n76-4 792.73 792.73 795.65 0.00 0.37 136 45
B-n76-5 783.93 783.93 784.08 0.00 0.02 141 64
B-n76-6 774.17 774.17 777.62 0.00 0.45 160 80
C-n101-4 1292.04 1299.86 1302.8 0.61 0.83 266 140
C-n101-5 1304.86 1305.82 1307.18 0.07 0.18 264 147
C-n101-6 1284.48 1296.03 1299.92 0.90 1.20 264 139
C-n51-4 689.18 689.18 689.18 0.00 0.00 87 11
C-n51-5 723.12 723.12 723.12 0.00 0.00 86 14
C-n51-6 697.00 697.00 697.00 0.00 0.00 100 31
C-n76-4 1054.89 1054.89 1055.61 0.00 0.07 143 65
C-n76-5 1115.32 1115.32 1122.5 0.00 0.64 152 60
C-n76-6 1060.52 1060.52 1063.56 0.00 0.29 150 61
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Table C.16: Detailed result for 2E-VRP benchmark: Set 7

Instance BKS Best 5 Avg. 5 ∆ best (%) ∆ avg (%) t(s) t*(s)

2e-100-5-1c 1284.59 1321.66 1325.0 2.89 3.15 352 170
2e-100-5-2c 821.42 830.67 834.04 1.13 1.54 413 83
2e-100-5-3c 841.17 850.56 850.57 1.12 1.12 346 206
2e-100-5-4a 895.37 908.5 909.84 1.47 1.62 278 141
2e-100-5-4b 560.25 562.77 563.16 0.45 0.52 219 71
2e-100-10-1c 961.61 975.82 983.14 1.48 2.24 337 87
2e-100-10-2c 860.66 865.49 869.50 0.56 1.03 316 140
2e-100-10-3c 815.32 837.63 838.21 2.74 2.81 341 176
2e-100-10-4a 886.61 893.12 894.19 0.73 0.85 346 107
2e-100-10-4b 594.70 595.81 595.81 0.19 0.19 322 110
2e-200-10-1c 1513.95 1569.14 1579.93 3.65 4.36 1571 1191
2e-200-10-2c 1370.65 1395.05 1398.93 1.78 2.06 1488 1255
2e-200-10-3c 1793.82 1857.28 1866.04 3.54 4.03 1527 1325
2e-200-10-4a 1411.80 1441.85 1471.23 2.13 4.21 1428 1112
2e-200-10-4b 906.28 913.70 922.27 0.82 1.76 864 384
2e-200-15-1a 1535.11 1570.10 1580.56 2.28 2.96 1483 1337
2e-200-15-1b 1000.53 1015.89 1021.86 1.54 2.13 1106 691
2e-200-15-1c 1461.80 1481.53 1506.89 1.35 3.08 1521 940
2e-200-15-2a 1493.41 1541.03 1548.87 3.19 3.71 1790 1335
2e-200-15-2b 916.78 924.41 929.15 0.83 1.35 914 406
2e-200-15-2c 1275.75 1305.73 1313.33 2.35 2.95 1821 1474
2e-200-15-3a 1569.77 1603.67 1611.77 2.16 2.68 1432 1023
2e-200-15-3b 972.28 976.57 981.04 0.44 0.90 1091 893
2e-200-15-3c 1330.52 1342.48 1358.45 0.90 2.10 1643 1381
2e-200-15-4a 1352.70 1374.71 1387.82 1.63 2.60 1671 1099
2e-200-15-4b 879.66 887.35 896.80 0.87 1.95 1065 747
2e-200-15-4c 1403.50 1449.10 1452.83 3.25 3.51 1732 1614
2e-300-10-1a 4223.34 4328.79 4395.39 2.50 4.07 3573 3013
2e-300-10-1b 2592.16 2612.69 2651.93 0.79 2.31 1840 1502
2e-300-10-1c 4862.91 4973.68 5002.91 2.28 2.88 5306 4830
2e-300-10-2a 4060.08 4165.71 4181.63 2.60 2.99 5373 4484
2e-300-10-2b 2329.41 2355.47 2368.14 1.12 1.66 2010 1597
2e-300-10-2c 3613.03 3734.34 3757.71 3.36 4.00 3339 2976
2e-300-10-3a 4008.59 4122.31 4142.18 2.84 3.33 4812 4337
2e-300-10-3b 2378.62 2390.98 2413.05 0.52 1.45 1740 1243
2e-300-10-3c 4688.70 4814.88 4856.54 2.69 3.58 3811 3187
2e-300-10-4a 4094.94 4186.74 4210.68 2.24 2.83 4474 3622
2e-300-10-4b 2390.00 2434.02 2459.76 1.84 2.92 1898 1645
2e-300-10-4c 3938.17 4038.78 4053.37 2.55 2.93 3261 3028
2e-300-15-1a 4021.42 4066.83 4149.51 1.13 3.19 3565 2920
2e-300-15-1b 2523.98 2572.09 2603.16 1.91 3.14 2255 1891
2e-300-15-1c 4219.51 4331.90 4369.89 2.66 3.56 3155 2525
2e-300-15-2a 3671.50 3732.00 3795.18 1.65 3.37 5566 5188
2e-300-15-2b 2196.96 2216.30 2235.79 0.88 1.77 2393 2028
2e-300-15-2c 3563.77 3664.26 3681.84 2.82 3.31 3591 3178
2e-300-15-3a 3491.35 3548.44 3585.75 1.64 2.70 3247 2595
2e-300-15-3b 2162.50 2186.15 2206.37 1.09 2.03 1783 1367
2e-300-15-3c 3911.00 3983.01 4038.87 1.84 3.27 2762 2215
2e-300-15-4a 3813.33 3913.47 3958.68 2.63 3.81 2331 2247
2e-300-15-4b 2229.98 2253.13 2278.38 1.04 2.17 1808 1529
2e-300-15-4c 3600.79 3654.34 3688.81 1.49 2.44 2103 1839
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Appendix D. Instances Detailed Results

Table D.17: Detailed results for the 2E-VRP-PDD instances: 50 Customers

ALNS 30K MIP ALNS 100K

Instance Avg 5 Best 5 t t* Avg 5 Best 5 t Avg 5 Best 5 t t* BKS

A-50-1-D 1345.46 1341.17 54 25 1338.80 1329.32 122 1337.18 1329.78 138 89 1329.32
A-50-2-D 1357.10 1333.95 72 50 1335.00 1333.95 66 1335.25 1333.95 193 67 1333.95
A-50-3-D 1436.83 1430.99 60 45 1430.68 1429.61 29 1431.77 1429.61 147 99 1429.61
A-50-4-D 1564.50 1555.50 67 40 1550.03 1549.43 1077 1560.24 1552.83 197 138 1549.43
A-50-5-D 1584.97 1574.37 57 29 1574.02 1569.89 2926 1580.52 1574.37 176 106 1569.89
A-50-6-D 1702.72 1676.89 41 27 1688.71 1674.71 2779 1690.47 1674.71 139 51 1674.71
A-50-7-D 1410.55 1395.09 93 41 1396.67 1395.09 50 1407.79 1403.03 208 95 1395.09
A-50-8-D 1373.59 1370.59 54 24 1370.59 1370.59 97 1370.73 1369.31 138 38 1369.31
A-50-9-D 1668.69 1660.43 99 40 1660.43 1660.43 135 1660.43 1660.43 268 103 1660.43
A-50-10-D 1380.30 1364.97 75 37 1374.86 1363.50 1654 1364.37 1351.90 175 65 1351.90

B-50-1-D 1601.19 1580.92 130 89 1587.82 1574.74 3646 1593.93 1573.50 287 244 1573.50
B-50-2-D 1555.82 1533.76 91 57 1555.18 1533.76 3104 1571.30 1554.64 215 122 1533.76
B-50-3-D 1413.95 1402.47 75 52 1410.03 1401.93 5234 1388.98 1375.29 247 138 1375.29
B-50-4-D 1248.03 1245.38 104 75 1244.28 1243.31 41 1244.86 1243.31 295 111 1243.31
B-50-5-D 1374.10 1354.00 98 46 1354.18 1337.90 648 1337.68 1307.99 248 175 1307.99
B-50-6-D 1414.89 1399.51 92 56 1398.85 1393.18 219 1410.32 1399.51 243 95 1393.18
B-50-7-D 1235.20 1235.20 109 69 1235.20 1235.20 80 1235.20 1235.20 327 60 1235.20
B-50-8-D 1432.84 1421.18 78 57 1416.04 1414.75 568 1424.92 1414.75 237 168 1414.75
B-50-9-D 1479.64 1472.37 107 49 1469.96 1460.88 942 1473.86 1464.08 356 225 1460.88
B-50-10-D 1344.73 1333.88 116 49 1340.67 1328.23 1828 1329.30 1315.75 300 62 1315.75

C-50-1-D 1353.78 1337.15 157 79 1349.31 1337.15 4522 1358.29 1337.15 441 236 1337.15
C-50-2-D 1380.70 1364.64 233 170 1374.98 1364.64 3277 1380.13 1364.64 572 271 1364.64
C-50-3-D 1279.42 1267.03 196 62 1277.37 1267.03 4047 1286.92 1277.99 596 221 1267.03
C-50-4-D 1312.30 1287.45 136 78 1291.79 1281.56 2149 1282.26 1270.90 497 185 1270.90
C-50-5-D 1351.56 1339.40 205 80 1348.69 1336.76 241 1365.58 1339.40 651 357 1336.76
C-50-6-D 1404.52 1378.21 215 125 1393.54 1367.43 3511 1395.52 1366.57 623 204 1366.57
C-50-7-D 1225.27 1215.09 268 223 1211.66 1195.97 2348 1223.46 1205.60 619 264 1195.97
C-50-8-D 1300.62 1292.41 235 130 1300.62 1292.41 1966 1308.90 1294.30 657 309 1292.41
C-50-9-D 1339.91 1309.66 168 80 1331.25 1309.66 814 1332.41 1309.66 512 319 1309.66
C-50-10-D 1276.88 1225.75 231 105 1266.39 1211.29 2473 1283.24 1239.98 671 449 1211.29

Table D.18: Detailed results for the 2E-VRP-PDD instances: 100 Customers

ALNS 30K MIP ALNS 100K

Instance Avg 5 Best 5 t t* Avg 5 Best 5 t Avg 5 Best 5 t t* BKS

A-100-1-D 2381.11 2303.78 256 217 2493.21 2274.73 5401 2365.13 2340.46 661 551 2274.73
A-100-2-D 2801.43 2760.72 270 248 2881.19 2753.21 5401 2735.40 2705.26 764 615 2705.26
A-100-3-D 2287.27 2271.03 215 176 2252.77 2227.66 5401 2248.21 2223.79 566 324 2223.79
A-100-4-D 2589.62 2554.37 230 186 2830.45 2514.38 5401 2595.96 2544.45 611 524 2514.38
A-100-5-D 2402.71 2364.60 202 181 2414.49 2324.92 5402 2374.19 2341.45 711 482 2324.92
A-100-6-D 2607.32 2578.36 264 201 2585.93 2547.38 5402 2581.83 2566.54 616 486 2547.38
A-100-7-D 2400.87 2367.46 231 170 2501.47 2378.93 5401 2382.47 2360.01 616 368 2360.01
A-100-8-D 2596.04 2572.90 235 159 2827.19 2532.40 5402 2544.80 2509.01 601 486 2509.01
A-100-9-D 2358.12 2316.84 199 170 2308.16 2299.17 3021 2341.50 2316.70 508 337 2299.17
A-100-10-D 2226.06 2210.01 234 176 2192.60 2142.78 5402 2226.83 2220.60 628 422 2142.78

B-100-1-D 2213.74 2199.16 447 373 2300.75 2175.57 5401 2209.16 2197.93 1172 813 2175.57
B-100-2-D 2376.11 2327.54 347 295 2330.68 2309.96 5403 2361.18 2326.23 877 592 2309.96
B-100-3-D 2293.5 2282.47 359 307 2328.73 2267.99 5402 2286.36 2271.55 970 630 2267.99
B-100-4-D 2160.00 2141.01 369 298 2184.58 2134.67 5402 2180.87 2164.36 1086 850 2134.67
B-100-5-D 2371.08 2329.50 380 325 2498.35 2293.09 5402 2342.58 2315.74 1106 756 2293.09
B-100-6-D 2191.71 2136.44 290 245 2568.34 2141.41 5402 2163.90 2134.79 758 443 2134.79
B-100-7-D 2399.37 2364.00 357 264 2440.88 2347.11 5402 2377.74 2333.61 904 637 2333.61
B-100-8-D 2026.76 1963.02 270 229 2059.90 1954.02 5402 1978.01 1958.13 804 560 1954.02
B-100-9-D 2338.23 2284.76 444 348 3035.22 2486.62 5401 2288.27 2232.30 941 656 2232.30
B-100-10-D 2148.27 2101.74 399 285 2194.17 2095.52 5401 2125.94 2098.17 711 558 2095.52

C-100-1-D 2110.20 2030.68 588 515 2140.38 2026.77 4674 2078.01 2035.06 1488 1206 2026.77
C-100-2-D 2030.08 1998.57 836 546 2025.52 1982.33 5402 2004.19 1991.05 2111 1364 1982.33
C-100-3-D 2014.91 2009.72 516 451 1996.76 1986.23 5401 2010.19 1993.00 1424 1093 1986.23
C-100-4-D 2146.17 2098.71 623 506 2196.51 2086.99 5402 2146.43 2101.08 1543 1309 2086.99
C-100-5-D 1994.14 1968.82 866 626 2020.12 1962.72 5402 1956.90 1892.19 1912 1253 1892.19
C-100-6-D 2074.07 2042.19 792 507 2078.42 1994.15 5402 2073.49 2044.33 2398 2035 1994.15
C-100-7-D 1907.07 1876.82 562 475 1901.24 1867.25 5402 1910.95 1894.31 1671 1286 1867.25
C-100-8-D 2212.98 2176.80 703 630 2308.27 2143.39 5402 2170.99 2164.88 2020 1263 2143.39
C-100-9-D 2080.83 2060.88 688 526 2215.19 2039.16 5401 2069.59 2039.59 2021 1395 2039.16
C-100-10-D 2152.17 2121.70 640 524 2117.14 2092.58 5403 2154.83 2107.43 1747 1256 2092.58
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Table D.19: Detailed results for the deadline impact in 2E-VRP-PDD : 50 Customers (ALNS 30K)

Without Deadline Loose Deadline Deadline Tight Deadline

Instance Avg 5 Best 5 Avg 5 Best 5 Avg 5 Best 5 Avg 5 Best 5

A-50-1-D 1245.17 1228.34 1294.49 1275.79 1345.46 1341.17 1376.41 1359.90
A-50-2-D 1294.51 1288.36 1354.64 1351.17 1357.10 1333.95 1472.67 1464.47
A-50-3-D 1404.94 1404.22 1503.52 1489.55 1436.83 1430.99 1514.61 1500.60
A-50-4-D 1469.73 1456.49 1577.46 1557.55 1564.50 1555.50 1563.75 1554.33
A-50-5-D 1509.18 1500.39 1556.03 1521.75 1584.97 1574.37 1599.19 1595.48
A-50-6-D 1574.53 1568.99 1575.21 1568.99 1702.72 1676.89 1730.58 1722.57
A-50-7-D 1376.49 1361.32 1387.67 1376.67 1410.55 1395.09 1421.23 1415.66
A-50-8-D 1255.62 1246.73 1375.42 1372.66 1373.59 1370.59 1458.82 1445.67
A-50-9-D 1537.64 1527.05 1595.53 1565.33 1668.69 1660.43 1667.02 1657.74
A-50-10-D 1295.18 1275.46 1350.24 1335.23 1380.30 1364.97 1384.82 1366.58

B-50-1-D 1395.23 1357.49 1511.44 1507.11 1601.19 1580.92 1552.91 1536.31
B-50-2-D 1401.64 1375.46 1537.58 1536.75 1555.82 1533.76 1570.97 1534.73
B-50-3-D 1231.27 1231.27 1374.24 1359.78 1413.95 1402.47 1421.59 1418.82
B-50-4-D 1232.15 1229.81 1312.49 1310.64 1248.03 1245.38 1371.84 1316.40
B-50-5-D 1274.76 1274.76 1371.25 1354.22 1374.10 1354.00 1498.59 1494.18
B-50-6-D 1300.48 1284.74 1374.93 1370.34 1414.89 1399.51 1434.29 1420.99
B-50-7-D 1196.75 1196.54 1248.20 1245.65 1235.20 1235.20 1264.06 1255.19
B-50-8-D 1345.98 1293.30 1401.29 1394.10 1432.84 1421.18 1442.15 1424.48
B-50-9-D 1376.66 1361.30 1426.97 1411.60 1479.64 1472.37 1503.10 1481.48
B-50-10-D 1197.29 1188.18 1355.33 1335.33 1344.73 1333.88 1351.35 1333.74

C-50-1-D 1236.93 1222.06 1292.12 1283.59 1353.78 1337.15 1343.99 1325.06
C-50-2-D 1211.72 1208.22 1391.91 1343.39 1380.70 1364.64 1395.07 1354.44
C-50-3-D 1138.78 1111.23 1222.73 1207.23 1279.42 1267.03 1328.67 1310.96
C-50-4-D 1167.10 1145.34 1212.25 1197.79 1312.30 1287.45 1364.75 1361.76
C-50-5-D 1305.97 1293.70 1337.04 1331.51 1351.56 1339.40 1444.15 1441.97
C-50-6-D 1216.47 1211.70 1330.96 1322.65 1404.52 1378.21 1365.80 1338.29
C-50-7-D 1159.30 1140.05 1156.15 1136.58 1225.27 1215.09 1252.93 1241.08
C-50-8-D 1272.19 1249.03 1345.32 1334.89 1300.62 1292.41 1356.99 1330.91
C-50-9-D 1266.78 1237.50 1272.47 1248.15 1339.91 1309.66 1368.73 1346.80
C-50-10-D 1200.81 1168.19 1246.70 1232.95 1276.88 1225.75 1257.39 1248.19

Table D.20: Detailed results for the deadline impact in 2E-VRP-PDD : 100 Customers (ALNS 30K)

Without Deadline Loose Deadline Deadline Tight Deadline

Instance Avg 5 Best 5 Avg 5 Best 5 Avg 5 Best 5 Avg 5 Best 5

A-100-1-D 2283.24 2254.59 2377.09 2317.98 2381.11 2303.78 2375.64 2343.31
A-100-2-D 2657.34 2640.01 2721.68 2694.28 2801.43 2760.72 2751.61 2722.17
A-100-3-D 2170.27 2140.60 2267.86 2242.49 2287.27 2271.03 2250.50 2214.68
A-100-4-D 2491.01 2462.44 2569.89 2490.16 2589.62 2554.37 2615.09 2594.88
A-100-5-D 2313.59 2296.60 2354.25 2317.67 2402.71 2364.60 2425.32 2377.23
A-100-6-D 2575.17 2537.58 2579.09 2527.43 2607.32 2578.36 2637.30 2562.07
A-100-7-D 2299.44 2283.27 2390.77 2366.32 2400.87 2367.46 2413.22 2387.54
A-100-8-D 2425.21 2411.71 2526.30 2480.61 2596.04 2572.90 2572.70 2515.11
A-100-9-D 2313.32 2284.94 2357.56 2310.65 2358.12 2316.84 2424.47 2336.74
A-100-10-D 2130.94 2114.63 2196.58 2179.16 2226.06 2210.01 2240.45 2220.50

B-100-1-D 2078.91 2037.70 2195.94 2125.45 2213.74 2199.16 2223.66 2210.00
B-100-2-D 2071.45 2066.08 2357.24 2340.54 2376.11 2327.54 2400.66 2361.37
B-100-3-D 2234.97 2205.35 2297.62 2252.17 2293.50 2282.47 2334.84 2319.44
B-100-4-D 1977.03 1970.16 2092.39 2070.04 2160.00 2141.01 2183.39 2156.78
B-100-5-D 2247.02 2212.59 2259.79 2230.76 2371.08 2329.50 2372.15 2357.44
B-100-6-D 2057.25 2013.79 2194.34 2154.87 2191.71 2136.44 2220.87 2194.78
B-100-7-D 2132.89 2094.68 2383.04 2318.08 2399.37 2364.00 2424.81 2397.40
B-100-8-D 1882.82 1868.78 1991.92 1969.54 2026.76 1963.02 2009.95 1987.26
B-100-9-D 2159.78 2139.42 2267.36 2217.62 2338.23 2284.76 2282.52 2265.76
B-100-10-D 1994.13 1944.99 2145.80 2083.51 2148.27 2101.74 2187.22 2130.01

C-100-1-D 1990.49 1977.28 1999.16 1971.73 2110.20 2030.68 2173.45 2144.38
C-100-2-D 1822.46 1796.17 2024.77 1996.42 2030.08 1998.57 2112.44 2082.98
C-100-3-D 1918.31 1872.28 2030.73 2012.58 2014.91 2009.72 2054.01 2041.51
C-100-4-D 1935.16 1897.26 2133.76 2093.22 2146.17 2098.71 2223.69 2172.31
C-100-5-D 1824.91 1804.89 1960.10 1953.16 1994.14 1968.82 2011.58 1993.49
C-100-6-D 1901.63 1890.41 2072.30 2034.37 2074.07 2042.19 2168.19 2136.34
C-100-7-D 1814.91 1787.56 1926.80 1901.68 1907.07 1876.82 1994.46 1937.01
C-100-8-D 2056.68 2038.29 2088.58 2040.32 2212.98 2176.80 2269.43 2235.14
C-100-9-D 1926.94 1900.26 2004.56 1969.50 2080.83 2060.88 2099.32 2061.23
C-100-10-D 1976.28 1959.10 2137.55 2082.06 2152.17 2121.70 2184.97 2146.52
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Appendix E. Case Study Detailed Results

Table E.21: Detailed results for Case Study: (ALNS 30K)

Strategy 1 Strategy 2 Strategy 3

Instance Cost #FEVs # SEVs Cost #FEVs # SEVs Cost #FEVs # SEVs

CS-1-D 2913.35 8 56 3510.46 14 52 3614.78 16 51
CS-2-D 1836.71 9 40 2214.20 10 35 2212.75 10 35
CS-3-D 3428.93 13 58 4179.98 14 53 4296.04 13 48
CS-4-D 2290.53 10 36 2672.65 10 38 2559.42 9 38
CS-5-D 2696.73 9 52 3317.06 13 50 3359.40 12 46
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