2,734 research outputs found

    A single-machine scheduling problem with multiple unavailability constraints: A mathematical model and an enhanced variable neighborhood search approach

    Get PDF
    AbstractThis research focuses on a scheduling problem with multiple unavailability periods and distinct due dates. The objective is to minimize the sum of maximum earliness and tardiness of jobs. In order to optimize the problem exactly a mathematical model is proposed. However due to computational difficulties for large instances of the considered problem a modified variable neighborhood search (VNS) is developed. In basic VNS, the searching process to achieve to global optimum or near global optimum solution is totally random, and it is known as one of the weaknesses of this algorithm. To tackle this weakness, a VNS algorithm is combined with a knowledge module. In the proposed VNS, knowledge module extracts the knowledge of good solution and save them in memory and feed it back to the algorithm during the search process. Computational results show that the proposed algorithm is efficient and effective

    Integration of production, maintenance and quality : Modelling and solution approaches

    Get PDF
    Dans cette thèse, nous analysons le problème de l'intégration de la planification de production et de la maintenance préventive, ainsi que l'élaboration du système de contrôle de la qualité. Premièrement, on considère un système de production composé d'une machine et de plusieurs produits dans un contexte incertain, dont les prix et le coût changent d'une période à l'autre. La machine se détériore avec le temps et sa probabilité de défaillance, ainsi que le risque de passage à un état hors contrôle augmentent. Le taux de défaillance dans un état dégradé est plus élevé et donc, des coûts liés à la qualité s’imposent. Lorsque la machine tombe en panne, une maintenance corrective ou une réparation minimale seront initiées pour la remettre en marche sans influer ses conditions ou le processus de détérioration. L'augmentation du nombre de défaillances de la machine se traduit par un temps d'arrêt supérieur et un taux de disponibilité inférieur. D'autre part, la réalisation des plans de production est fortement influencée par la disponibilité et la fiabilité de la machine. Les interactions entre la planification de la maintenance et celle de la production sont incorporées dans notre modèle mathématique. Dans la première étape, l'effet de maintenance sur la qualité est pris en compte. La maintenance préventive est considérée comme imparfaite. La condition de la machine est définie par l’âge actuel, et la machine dispose de plusieurs niveaux de maintenance avec des caractéristiques différentes (coûts, délais d'exécution et impacts sur les conditions du système). La détermination des niveaux de maintenance préventive optimaux conduit à un problème d’optimisation difficile. Un modèle de maximisation du profit est développé, dans lequel la vente des produits conformes et non conformes, les coûts de la production, les stocks tenus, la rupture de stock, la configuration de la machine, la maintenance préventive et corrective, le remplacement de la machine et le coût de la qualité sont considérés dans la fonction de l’objectif. De plus, un système composé de plusieurs machines est étudié. Dans cette extension, les nombres optimaux d’inspections est également considéré. La fonction de l’objectif consiste à minimiser le coût total qui est la somme des coûts liés à la maintenance, la production et la qualité. Ensuite, en tenant compte de la complexité des modèles préposés, nous développons des méthodes de résolution efficaces qui sont fondées sur la combinaison d'algorithmes génétiques avec des méthodes de recherches locales. On présente un algorithme mimétique qui emploi l’algorithme Nelder-Mead, avec un logiciel d'optimisation pour déterminer les valeurs exactes de plusieurs variables de décisions à chaque évaluation. La méthode de résolution proposée est comparée, en termes de temps d’exécution et de qualités des solutions, avec plusieurs méthodes Métaheuristiques. Mots-clés : Planification de la production, Maintenance préventive imparfaite, Inspection, Qualité, Modèles intégrés, MétaheuristiquesIn this thesis, we study the integrated planning of production, maintenance, and quality in multi-product, multi-period imperfect systems. First, we consider a production system composed of one machine and several products in a time-varying context. The machine deteriorates with time and so, the probability of machine failure, or the risk of a shift to an out-of-control state, increases. The defective rate in the shifted state is higher and so, quality related costs will be imposed. When the machine fails, a corrective maintenance or a minimal repair will be initiated to bring the machine in operation without influencing on its conditions or on the deterioration process. Increasing the expected number of machine failures results in a higher downtime and a lower availability rate. On the other hand, realization of the production plans is significantly influenced by the machine availability and reliability. The interactions between maintenance scheduling and production planning are incorporated in the mathematical model. In the first step, the impact of maintenance on the expected quality level is addressed. The maintenance is also imperfect and the machine conditions after maintenance can be anywhere between as-good-as-new and as-bad-as-old situations. Machine conditions are stated by its effective age, and the machine has several maintenance levels with different costs, execution times, and impacts on the system conditions. High level maintenances on the one hand have greater influences on the improvement of the system state and on the other hand, they occupy more the available production time. The optimal determination of such preventive maintenance levels to be performed at each maintenance intrusion is a challenging problem. A profit maximization model is developed, where the sale of conforming and non-conforming products, costs of production, inventory holding, backorder, setup, preventive and corrective maintenance, machine replacement, and the quality cost are addressed in the objective function. Then, a system with multiple machines is taken into account. In this extension, the number of quality inspections is involved in the joint model. The objective function minimizes the total cost which is the sum of maintenance, production and quality costs. In order to reduce the gap between the theory and the application of joint models, and taking into account the complexity of the integrated problems, we have developed an efficient solution method that is based on the combination of genetic algorithms with local search and problem specific methods. The proposed memetic algorithm employs Nelder-Mead algorithm along with an optimization package for exact determination of the values of several decision variables in each chromosome evolution. The method extracts not only the positive knowledge in good solutions, but also the negative knowledge in poor individuals to determine the algorithm transitions. The method is compared in terms of the solution time and quality to several heuristic methods. Keywords : Multi-period production planning, Imperfect preventive maintenance, Inspection, Quality, Integrated model, Metaheuristic

    Scheduling Algorithms: Challenges Towards Smart Manufacturing

    Get PDF
    Collecting, processing, analyzing, and driving knowledge from large-scale real-time data is now realized with the emergence of Artificial Intelligence (AI) and Deep Learning (DL). The breakthrough of Industry 4.0 lays a foundation for intelligent manufacturing. However, implementation challenges of scheduling algorithms in the context of smart manufacturing are not yet comprehensively studied. The purpose of this study is to show the scheduling No.s that need to be considered in the smart manufacturing paradigm. To attain this objective, the literature review is conducted in five stages using publish or perish tools from different sources such as Scopus, Pubmed, Crossref, and Google Scholar. As a result, the first contribution of this study is a critical analysis of existing production scheduling algorithms\u27 characteristics and limitations from the viewpoint of smart manufacturing. The other contribution is to suggest the best strategies for selecting scheduling algorithms in a real-world scenario

    Simulation-based optimisation for stochastic maintenance routing in an offshore wind farm

    Get PDF
    Scheduling maintenance routing for an offshore wind farm is a challenging and complex task. The problem is to find the best routes for the Crew Transfer Vessels to maintain the turbines in order to minimise the total cost. This paper primarily proposes an efficient solution method to solve the deterministic maintenance routing problem in an offshore wind farm. The proposed solution method is based on the Large Neighbourhood Search metaheuristic. The efficiency of the proposed metaheuristic is validated against state of the art algorithms. The results obtained from the computational experiments validate the effectiveness of the proposed method. In addition, as the maintenance activities are affected by uncertain conditions, a simulation-based optimisation algorithm is developed to tackle these uncertainties. This algorithm benefits from the fast computational time and solution quality of the proposed metaheuristic, combined with Monte Carlo simulation. The uncertain factors considered include the travel time for a vessel to visit turbines, the required time to maintain a turbine, and the transfer time for technicians and equipment to a turbine. Moreover, the proposed simulation-based optimisation algorithm is devised to tackle unpredictable broken-down turbines. The performance of this algorithm is evaluated using a case study based on a reference wind farm scenario developed in the EU FP7 LEANWIND project

    An Optimization Model for Short-Term Routing and Scheduling of Offshore Wind Maintenance

    Get PDF
    Maintenance costs constitute a significant portion of the total costs for offshore wind investments. Consequently, a substantial amount of research aims to mitigate these costs. Studies targeting short-term decision-making primarily concentrate on finding the most cost-effective routes for the maintenance vessels while scheduling as many maintenance tasks as possible. This thesis suggests an alternative approach where all maintenance tasks are considered optional. Instead of minimizing costs, the optimization model we propose maximizes expected profit. The motivation is to establish a more dynamic relationship between short-term decision-making and long-term strategy. We formulate the problem of selecting routes for maintenance vessels as an integer linear program. Further, we use a mixed integer linear programming sub-problem to generate routes via a column generation algorithm. We have developed several instances for testing the model, which we make available for subsequent research. Our proposed model provides optimal solutions for some of the problem instances where the sub-problem can be solved with exact methods. We also present a meta-heuristic for the sub-problem, capable of finding good solutions to problem instances considering up to 60 maintenance tasks. Lastly, we find that the column generation method outperforms a more straightforward solution algorithm.Masteroppgave i energiENERGI399I5MAMN-ENE

    Optimisation of scheduling and routing for offshore wind farm maintenance

    Get PDF
    The growing increase in the size and scope of offshore wind farms motivates the need for industry to have access to mathematical tools that reduce costs by efficiently performing daily operations and maintenance activities. Key offshore activities require the transportation of technicians to and within offshore wind farms to complete corrective and preventive maintenance tasks to keep turbines operating efficiently. We provide a new deterministic mixed integer linear programming formulation for deciding the optimal vessel routes for transporting technicians around a wind farm and the scheduling of crew transfers, by minimising downtime, travel and technician costs. The model contains sufficient flexibility to account for multiple vessels, shifts and task profiles, whilst being able to prioritise and omit tasks in environments containing limited resources. Computational experiments are performed which quantify and confirm the impact of key instance characteristics such as technician availability, task profiles and weather conditions. We implement and evaluate the impact of a novel industry safety constraint. The complexity of larger instances motivates a second continuous time formulation, in which preventive maintenance again requires no minimum duration of work before it can provide benefit. We employ a specific decomposition structure to take advantage of variable preventive maintenance and utilise an adaptive large neighbourhood search procedure to solve instances. We evaluate several distinct acceptance criteria in conjunction with random and adaptive operator selection to determine the best option for our model. We produce a statistical model of offshore weather conditions to help quantify the likelihood of limited vessel accessibility to offshore wind farms. We model the joint distribution of key meteorological and oceanographic variables over time whilst accounting for seasonal trends using multivariate kernel density estimation. Our method generates alternative metocean realisations from historical data and reproduces the important long term persistence statistics of good and adverse offshore conditions

    Planning and Scheduling Optimization

    Get PDF
    Although planning and scheduling optimization have been explored in the literature for many years now, it still remains a hot topic in the current scientific research. The changing market trends, globalization, technical and technological progress, and sustainability considerations make it necessary to deal with new optimization challenges in modern manufacturing, engineering, and healthcare systems. This book provides an overview of the recent advances in different areas connected with operations research models and other applications of intelligent computing techniques used for planning and scheduling optimization. The wide range of theoretical and practical research findings reported in this book confirms that the planning and scheduling problem is a complex issue that is present in different industrial sectors and organizations and opens promising and dynamic perspectives of research and development

    Risk-Based Optimal Scheduling for the Predictive Maintenance of Railway Infrastructure

    Get PDF
    In this thesis a risk-based decision support system to schedule the predictive maintenance activities, is proposed. The model deals with the maintenance planning of a railway infrastructure in which the due-dates are defined via failure risk analysis.The novelty of the approach consists of the risk concept introduction in railway maintenance scheduling, according to ISO 55000 guidelines, thus implying that the maintenance priorities are based on asset criticality, determined taking into account the relevant failure probability, related to asset degradation conditions, and the consequent damages
    • …
    corecore