1,964 research outputs found

    CMOS-3D smart imager architectures for feature detection

    Get PDF
    This paper reports a multi-layered smart image sensor architecture for feature extraction based on detection of interest points. The architecture is conceived for 3-D integrated circuit technologies consisting of two layers (tiers) plus memory. The top tier includes sensing and processing circuitry aimed to perform Gaussian filtering and generate Gaussian pyramids in fully concurrent way. The circuitry in this tier operates in mixed-signal domain. It embeds in-pixel correlated double sampling, a switched-capacitor network for Gaussian pyramid generation, analog memories and a comparator for in-pixel analog-to-digital conversion. This tier can be further split into two for improved resolution; one containing the sensors and another containing a capacitor per sensor plus the mixed-signal processing circuitry. Regarding the bottom tier, it embeds digital circuitry entitled for the calculation of Harris, Hessian, and difference-of-Gaussian detectors. The overall system can hence be configured by the user to detect interest points by using the algorithm out of these three better suited to practical applications. The paper describes the different kind of algorithms featured and the circuitry employed at top and bottom tiers. The Gaussian pyramid is implemented with a switched-capacitor network in less than 50 μs, outperforming more conventional solutions.Xunta de Galicia 10PXIB206037PRMinisterio de Ciencia e Innovación TEC2009-12686, IPT-2011-1625-430000Office of Naval Research N00014111031

    Single-chip CMOS tracking image sensor for a complex target

    Get PDF

    Integrated 2-D Optical Flow Sensor

    Get PDF
    I present a new focal-plane analog VLSI sensor that estimates optical flow in two visual dimensions. The chip significantly improves previous approaches both with respect to the applied model of optical flow estimation as well as the actual hardware implementation. Its distributed computational architecture consists of an array of locally connected motion units that collectively solve for the unique optimal optical flow estimate. The novel gradient-based motion model assumes visual motion to be translational, smooth and biased. The model guarantees that the estimation problem is computationally well-posed regardless of the visual input. Model parameters can be globally adjusted, leading to a rich output behavior. Varying the smoothness strength, for example, can provide a continuous spectrum of motion estimates, ranging from normal to global optical flow. Unlike approaches that rely on the explicit matching of brightness edges in space or time, the applied gradient-based model assures spatiotemporal continuity on visual information. The non-linear coupling of the individual motion units improves the resulting optical flow estimate because it reduces spatial smoothing across large velocity differences. Extended measurements of a 30x30 array prototype sensor under real-world conditions demonstrate the validity of the model and the robustness and functionality of the implementation

    Robust Circuit Design for Low-Voltage VLSI.

    Full text link
    Voltage scaling is an effective way to reduce the overall power consumption, but the major challenges in low voltage operations include performance degradation and reliability issues due to PVT variations. This dissertation discusses three key circuit components that are critical in low-voltage VLSI. Level converters must be a reliable interface between two voltage domains, but the reduced on/off-current ratio makes it extremely difficult to achieve robust conversions at low voltages. Two static designs are proposed: LC2 adopts a novel pulsed-operation and modulates its pull-up strength depending on its state. A 3-sigma robustness is guaranteed using a current margin plot; SLC inherently reduces the contention by diode-insertion. Improvements in performance, power, and robustness are measured from 130nm CMOS test chips. SRAM is a major bottleneck in voltage-scaling due to its inherent ratioed-bitcell design. The proposed 7T SRAM alleviates the area overhead incurred by 8T bitcells and provides robust operation down to 0.32V in 180nm CMOS test chips with 3.35fW/bit leakage. Auto-Shut-Off provides a 6.8x READ energy reduction, and its innate Quasi-Static READ has been demonstrated which shows a much improved READ error rate. A use of PMOS Pass-Gate improves the half-select robustness by directly modulating the device strength through bitline voltage. Clocked sequential elements, flip-flops in short, are ubiquitous in today’s digital systems. The proposed S2CFF is static, single-phase, contention-free, and has the same number of devices as in TGFF. It shows a 40% power reduction as well as robust low-voltage operations in fabricated 45nm SOI test chips. Its simple hold-time path and the 3.4x improvement in 3-sigma hold-time is presented. A new on-chip flip-flop testing harness is also proposed, and measured hold-time variations of flip-flops are presented.PhDElectrical EngineeringUniversity of Michigan, Horace H. Rackham School of Graduate Studieshttp://deepblue.lib.umich.edu/bitstream/2027.42/111525/1/yejoong_1.pd

    20-ps resolution Clock Distribution Network for a fast-timing single photon detector

    Get PDF
    The time resolution of active pixel sensors whose timestamp mechanism is based on Time-to-Digital Converters is critically linked to the accuracy in the distribution of the master clock signal that latches the timestamp values across the detector. The Clock Distribution Network that delivers the master clock signal must compensate process-voltage-temperature variations to reduce static time errors (skew), and minimize the power supply bounce to prevent dynamic time errors (jitter). To achieve sub-100ps time resolution within pixel detectors and thus enable a step forward in multiple imaging applications, the network latencies must be adjusted in steps well below that value. Power consumption must be kept as low as possible. In this work, a self-regulated Clock Distribution Network that fulfills these requirements is presented for the FastICpix single photon detector ¿ aiming at a 65nm process. A 40 MHz master clock is distributed to 64x64 pixels over an area of 2.4x2.4 cm2 using digital Delay-Locked Loops, achieving clock leaf skew below 20 ps with a power consumption of 26 mW. Guidelines are provided to adapt the system to arbitrary chip area and pixel pitch values, yielding a versatile design with very fine time resolution

    On-chip signaling techniques for high-speed Serdes transceivers

    Get PDF
    The general goal of the VLSI technology is to produce very fast chips with very low power consumption. The technology scaling along with increasing the working frequency had been the perfect solution, which enabled the evolution of electronic devices in the 20th century. However, in deep sub-micron technologies, the on-chip power density limited the continuous increment in frequency, which led to another trend for designing higher performance chips without increasing the working speed. Parallelism was the optimum solution, and the VLSI manufacturers began the era of multi-core chips. These multi-core chips require a full inter-core network for the required communication. These on-chip links were conventionally parallel. However, due to reverse scaling in modern technologies, parallel signaling is becoming a burden due to the very large area of needed interconnects. Also, due to the very high power due to the tremendous number of repeaters, in addition to cross talk issues. As a solution, on-chip serial communication was suggested. It will solve all the previous issues, but it will require very high speed circuits to achieve the same data rates. This thesis presents two full SerDes transceiver designs for on-chip high speed serial communication. Both designs use long lossy on-chip differential interconnects with capacitive termination. The first design uses a 3-level self-timed signaling technique. This signaling technique is totally jitter-insensitive, since both of the data and clock are extracted at the receiver from the same signal. A new encoding and driving technique is designed to enable the transmitter to work at a frequency equal to the data rate, which is half of the frequency of the previous designs, along with achieving the same data rate. Also, this design generates the third voltage level without the need of an external supply. This design is very tolerant to any possible variations, such as PVT variations or the input clock\u27s duty cycle variations. This transceiver is prepared for tape-out in UMC 0.13μm CMOS technology in June 2014. The second design uses a new 3-level signaling technique; the proposed technique uses a frequency of only half the data rate, which totally relaxes the full transceiver design. The new technique is also self-timed enabling the extraction of both the data, and the clock from the same signal. New encoders and decoders are designed, and a new architecture for a 3-level inverter is presented. This transceiver achieves very high data rates. This new design is expected to be taped-out using the GF 65nm CMOS technology in August 2014

    Advanced CMOS Integrated Circuit Design and Application

    Get PDF
    The recent development of various application systems and platforms, such as 5G, B5G, 6G, and IoT, is based on the advancement of CMOS integrated circuit (IC) technology that enables them to implement high-performance chipsets. In addition to development in the traditional fields of analog and digital integrated circuits, the development of CMOS IC design and application in high-power and high-frequency operations, which was previously thought to be possible only with compound semiconductor technology, is a core technology that drives rapid industrial development. This book aims to highlight advances in all aspects of CMOS integrated circuit design and applications without discriminating between different operating frequencies, output powers, and the analog/digital domains. Specific topics in the book include: Next-generation CMOS circuit design and application; CMOS RF/microwave/millimeter-wave/terahertz-wave integrated circuits and systems; CMOS integrated circuits specially used for wireless or wired systems and applications such as converters, sensors, interfaces, frequency synthesizers/generators/rectifiers, and so on; Algorithm and signal-processing methods to improve the performance of CMOS circuits and systems

    A Future for Integrated Diagnostic Helping

    Get PDF
    International audienceMedical systems used for exploration or diagnostic helping impose high applicative constraints such as real time image acquisition and displaying. A large part of computing requirement of these systems is devoted to image processing. This chapter provides clues to transfer consumers computing architecture approaches to the benefit of medical applications. The goal is to obtain fully integrated devices from diagnostic helping to autonomous lab on chip while taking into account medical domain specific constraints.This expertise is structured as follows: the first part analyzes vision based medical applications in order to extract essentials processing blocks and to show the similarities between consumer’s and medical vision based applications. The second part is devoted to the determination of elementary operators which are mostly needed in both domains. Computing capacities that are required by these operators and applications are compared to the state-of-the-art architectures in order to define an efficient algorithm-architecture adequation. Finally this part demonstrates that it's possible to use highly constrained computing architectures designed for consumers handled devices in application to medical domain. This is based on the example of a high definition (HD) video processing architecture designed to be integrated into smart phone or highly embedded components. This expertise paves the way for the industrialisation of intergraded autonomous diagnostichelping devices, by showing the feasibility of such systems. Their future use would also free the medical staff from many logistical constraints due the deployment of today’s cumbersome systems
    corecore