1,206 research outputs found

    An integrated search-based approach for automatic testing from extended finite state machine (EFSM) models

    Get PDF
    This is the post-print version of the Article - Copyright @ 2011 ElsevierThe extended finite state machine (EFSM) is a modelling approach that has been used to represent a wide range of systems. When testing from an EFSM, it is normal to use a test criterion such as transition coverage. Such test criteria are often expressed in terms of transition paths (TPs) through an EFSM. Despite the popularity of EFSMs, testing from an EFSM is difficult for two main reasons: path feasibility and path input sequence generation. The path feasibility problem concerns generating paths that are feasible whereas the path input sequence generation problem is to find an input sequence that can traverse a feasible path. While search-based approaches have been used in test automation, there has been relatively little work that uses them when testing from an EFSM. In this paper, we propose an integrated search-based approach to automate testing from an EFSM. The approach has two phases, the aim of the first phase being to produce a feasible TP (FTP) while the second phase searches for an input sequence to trigger this TP. The first phase uses a Genetic Algorithm whose fitness function is a TP feasibility metric based on dataflow dependence. The second phase uses a Genetic Algorithm whose fitness function is based on a combination of a branch distance function and approach level. Experimental results using five EFSMs found the first phase to be effective in generating FTPs with a success rate of approximately 96.6%. Furthermore, the proposed input sequence generator could trigger all the generated feasible TPs (success rate = 100%). The results derived from the experiment demonstrate that the proposed approach is effective in automating testing from an EFSM

    A transformation-based approach to testing concurrent programs using UML activity diagrams

    Get PDF
    UML activity diagrams are widely used to model concurrent interaction among multiple objects. In this paper, we propose a transformation-based approach to generating scenario-oriented test cases for applications modeled by UML activity diagrams. Using a set of transformation rules, the proposed approach first transforms a UML activity diagram specification into an intermediate representation, from which it then constructs test scenarios with respect to the given concurrency coverage criteria. The approach then finally derives a set of test cases for the constructed test scenarios. The approach resolves the difficulties associated with fork and join concurrency in the UML activity diagram, and enables control over the number of the resulting test cases. We further implemented a tool to automate the proposed approach, and studied its feasibility and effectiveness using a case study. Experimental results show that the approach can generate test cases on demand to satisfy a given concurrency coverage criterion, and can detect up to 76.5% of seeded faults when a weak coverage criterion is used. With the approach, testers can not only schedule the software test process earlier, but can also better allocate the testing resources for testing concurrent applications

    A Survey on Software Testing Techniques using Genetic Algorithm

    Full text link
    The overall aim of the software industry is to ensure delivery of high quality software to the end user. To ensure high quality software, it is required to test software. Testing ensures that software meets user specifications and requirements. However, the field of software testing has a number of underlying issues like effective generation of test cases, prioritisation of test cases etc which need to be tackled. These issues demand on effort, time and cost of the testing. Different techniques and methodologies have been proposed for taking care of these issues. Use of evolutionary algorithms for automatic test generation has been an area of interest for many researchers. Genetic Algorithm (GA) is one such form of evolutionary algorithms. In this research paper, we present a survey of GA approach for addressing the various issues encountered during software testing.Comment: 13 Page

    Automated Generation of Unit Tests from UML Activity Diagrams using the AMPL Interface for Constraint Solvers

    Get PDF
    I, Felix Kurth, declare that I have authored this thesis independently, that I have not used other than the declared sources / resources, and that I have explicitly marked all material which has been quoted either literally or by content from the used sources. Neither this thesis nor any other similar work has been previously submitted to any examination board

    Coverage Criteria for Testing DMM Specifications

    Get PDF
    Behavioral modeling languages are most useful if their behavior is specified formally such that it can e.g. be analyzed and executed automatically. Obviously, the quality of such behavior specifications is crucial. The rule-based semantics specification technique Dynamic Meta Modeling (DMM) honors this by using the approach of Test-driven Semantics Specification (TDSS), which makes sure that the specification at hand at least describes the correct behavior for a suite of test models. However, in its current state TDSS does not provide any means to measure the quality of such a test suite.In this paper, we describe how we have applied the idea of test coverage to TDSS. Similar to common approaches of defining test coverage criteria, we describe a data structure called invocation graph containing possible orders of applications of DMM rules. Then we define different coverage  criteria based on that data structure, taking the rule applications caused by the test suite’s models into account. Our implementation of the described approach gives the language engineer using DMM a means to reason about the quality of the language’s test suite, and also provides hints on how to improve that quality by adding dedicated test models to the test suite

    Automated Software Test Data Generation: Direction of Research

    Full text link

    A Fault-Tolerant Emergency-Aware Access Control Scheme for Cyber-Physical Systems

    Full text link
    Access control is an issue of paramount importance in cyber-physical systems (CPS). In this paper, an access control scheme, namely FEAC, is presented for CPS. FEAC can not only provide the ability to control access to data in normal situations, but also adaptively assign emergency-role and permissions to specific subjects and inform subjects without explicit access requests to handle emergency situations in a proactive manner. In FEAC, emergency-group and emergency-dependency are introduced. Emergencies are processed in sequence within the group and in parallel among groups. A priority and dependency model called PD-AGM is used to select optimal response-action execution path aiming to eliminate all emergencies that occurred within the system. Fault-tolerant access control polices are used to address failure in emergency management. A case study of the hospital medical care application shows the effectiveness of FEAC
    • …
    corecore