-

View metadata, citation and similar papers at core.ac.uk brought to you by .. CORE

provided by CiteSeerX

TUHH

Hamburg University of Technology

Master Thesis

Felix Kurth

Automated Generation of Unjt Tests from UML
Activity Diagrams using the AMPL Interface for

Constraint Solvers

January 3, 2014

supervised by:
Prof. Dr. Sibylle Schupp
Prof. Dr. Ralf God

Hamburg University of Technology (TUHH) STS
Technische Universitdt Hamburg-Harburg

Institute for Software Systems % Software
=)
=

21073 Hamburg Technology
Systems

https://core.ac.uk/display/24065413?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Statutory Declaration

I, Felix Kurth, declare that I have authored this thesis independently, that I have not used
other than the declared sources / resources, and that I have explicitly marked all material
which has been quoted either literally or by content from the used sources. Neither this
thesis nor any other similar work has been previously submitted to any examination board.

Hamburg, January 1, 2014

Felix Kurth

Abstract

Testing is one important way of validating and verifying the behaviour of software artefacts.
With the use of Model-Based Engineering comes the need to ensure that the implementa-
tion derived from models actually behaves like specified in the corresponding models.

In this thesis, we generate unit tests from UML activity diagrams modelling C components.
We use symbolic execution to transform embedded OCL constraints along a control flow
path into a rigorous mathematical program expressed in ‘A Mathematical Programming
Language’ (AMPL). We derive test data from the mathematical program by having it
solved with state—of—the—art constraint solvers. The generated tests will satisfy control
flow-based coverage criteria on the used models. Since unit tests using test data at the
bounds of path constraints do have a higher probability to detect faults, we also use
boundary value analysis for testing. A special focus is on allowing mixed integer non—
linear programming as well as logical formulas in OCL constraints because we want to put
as little restrictions as possible on the used test models.

Contents

(1__Introduction| 1
(1.1 A Real World Problem at Airbus 1
(.2 Outhine of this Thesisl oo 0 0o 2

[1.2.1 Model Transtormationsl 0oL 2
[1.2.2 Symbolic Execution| oo o oo 3
[1.2.3 State-Ot—The-Art Constraint Solver Implementations| 3
M24 Resulfsl oo 3
[1.3 Organization| 3

[2__Preliminaries| 5

2.1 ITaterature Reviewl. o 5
1.1 Test Modelsl. 5
2.1.2 Test Generationl. L L 6
2.1.3 Test Data Generation| 7

2.2 Mathematical Foundations., . 8
2.2.1 Characteristics of Problems and Solver Methods 9
2.2.2 Constraint Satisfaction Probleml 10
[2.2.3 Optimisation Problem| 11
2.2.4 Convex Optimisation Problem|. 12
2.2.5 Linear Programming| 12
[2.2.6 Boolean Satishability Problems| 13
[2.2.7 Satishability Modulo Theories|. 14
[2.2.8 Properties of the Search Space] 14

2.3 The AMPL Modelling System| 16
2.3.1 Command Language| 16
2.3.2 Modelling Language| 16
2.3.3 Entering Datal. o o 18

[3 Generating Unit Tests from a UML Activity| 19
3.1 General Overview ot the Workflow| 19
3.2 Normalisationl 21

[3.2.1 Design Rules for the Test Modell 21
3.2.2 A Meta Model dSuitable for Automated Unit Test Generation| 22
[3.2.3 Transtorming an UML Activity Diagram to an Activity Test Case |
| Graph| 25
[3.2.4 Adding Continuity Constraints 28

[3.3 Rigorous Mathematical Programming] 29
[3.3.1 Introductory Examplel00 29
[3.3.2 Transtorming a TCGActivity to an AMPL Model|. 30
[3.3.3 Transtorming TCGVariables| 30
[3.3.4 Transtorming LocalPostConditions| 32
[3.3.0 Transtorming Guards|. o 33

[3.3.6 Specitying Control Flow Paths in the AMPL Datal 33

3.4 Abstract Test Case Generationl 0000, 34
341 Path Treel 35
B42 PathSearchl. 35
[3.4.3 Early Infeasible Path Elimination|. 37

3.5 Specific Test Data Generation| 38
B.0.1 The Unmt Test Meta Modell 39
[3.5.2 Solving a Constraint Satistaction Problem with AMPL| 39
[3.5.3 Storing the Variable Values in a Unit Test Case Model| 40
3.5.4 Review of Available Solversl 41
[3.5.0 Warm Start Capabilities| 0oL 41
[3.5.6 Boundary Value Analysis| 43

3.6 Unit Test Synthesis|.o 43

[4__Evaluation| 47

4.1 Experiment Description| Lo 47
4.1.1 Runtime Measurementl 47
[4.1.2 Mutation Testing| oL 49

4.2 Academic Examples| oo oo 49
4.2.1 Triangle Classificator (LP)[. 49
4.2.2 Triangle Classificator with Logical Constraints (SMT) 51
4.2.3 Binary Counter (SAT)| 52
4.2.4 Exploding Tyres (MINLP)[. 54

M.3" Case Study PAX Model (MILP)|. 56
4.3.1 Manual Adaptation|. Lo Y
“.3.2 Runtime Measurement Results| 57

4.4 Verification of the Implementation| 61

Mo Timitations 61
M.o.1 Theoretical Limitationsl 62
[4.5.2 Limitations of the Implementation| 62
i4.5.3 Limitations of Tool Support|o 63

(5 Outlook and Summary| 65

BEI_Ouflookl o 65

6.2 Summary| e e e 66

VI

1 Introduction

Model-Based Engineering is a recent technology in the domain of electrical and software
engineering. In Model-Based Engineering, the specification of a system is developed as a
model. Graphical modelling languages can give a quick and intuitive overview of a system.
At the same time, one can model very detailed and describe a system bit by bit with formal
modelling languages. Nevertheless, creating a model of a system in practice is an effort
that needs to pay off. One way to get a benefit from Model-Based Engineering is to use
the design model to automate other tasks in software development. One important task
is testing. In this thesis, we will develop an algorithm to automatically generate relevant
test cases and even working unit test code from the model. We assume a C function as
the implementation to be tested. We will focus on UML activity diagrams modelling the
control flow and behaviour of the C function in a component-based architecture as test
model. Since it is not a trivial task to transform a UML activity diagram into C/C++
unit test code, we will split the task up into subtasks, specify the interfaces between the
different steps, and give algorithms for each step. Due to its generic architecture, our
algorithm can be adapted for different input models, output languages, coverage criteria,
and constraint specification languages by modification of only one or two of the subtasks.

1.1 A Real World Problem at Airbus

At Airbus Buxtehude, Model-Based Engineering shall soon replace the traditional Require-
ment-Driven Engineering approach. There are some benefits that we hope to be able to
realize with Model-Based Engineering. One benefit is the automatic generation of source
code from the design model. Another way to profit from Model-Based Engineering is to use
the specification as a test model from which unit test code for the software implementation
could be derived. In Figure we visualise the idea of using one activity diagram to
generate both implementation code and unit test code from it. There is a simple activity
diagram in the upper part of the figure, and we show the function implementation that
could have been generated from the activity diagram below on the left hand side. On the
right hand side, the generated test suite is shown containing two tests. Each test is testing
one control flow path.

UML activity diagrams will be used to model the behaviour and the control flow of C
functions. The company Atego® has already built a proprietary code generator for Airbus
Buxtehude, which generates a folder structure, C source code files, and C header files from
a UML model, and fills function bodies with code generated from UML activities. The
fact that the code is generated, however, does not make it fault—free. We still need to
validate the generated code by unit tests. The task in this thesis is to demonstrate how
engineers can be supported in building the unit tests for the generated code. We decided
to automate the generation of C++ unit tests from UML activity diagrams.

It is common knowledge that one should not generate both the source code and the unit
test from the same model. The design model needs to be independent from the test
model. Otherwise, one ends up testing the implementation against itself, while errors in
the model that have spread to both the source code and the unit test are overlooked.

~ ~N

simpleDecision
a: Integer
result: Boolean [a<=4] - ________ «LocalPost... Iil
return true {result=true}
a: Integer . ‘ §>9@
________ «LocalPost...
{result=false}

- J

result: Boolean

Implementation Test Suite
function bool simpleDecision(int a){ TEST_CASE_0{
if(a<=4){ bool result = simpleDecision(4);
return true; TEST_EQUAL (result,true);
} }
if(a>=5){ TEST_CASE_1{
return false; bool result = simpleDecision(5);
} TEST_EQUAL (result,false);
} }

Figure 1.1: Example of an activity diagram with a corresponding C implementation and C
unit tests

On the other hand, building a test model completely independent from the design model
imposes much additional effort. The decision was to share the structure of the activity
diagram between code generation and test generation. While the code generation uses
procedural C code snippets that are embedded in the model, the test generation only relies
on embedded declarative OCL constraints. Since we are using two different programming
paradigms as input for code generation and test data generation, we assume the generated
C implementation to be independent from the generated unit tests.

1.2 Outline of this Thesis

This thesis focuses on generating unit tests from UML activity diagrams with embedded
OCL constraints. Our approach is based on graph search algorithms to generate abstract
test scenarios. We use symbolic execution and constraint solving to make the test model
executable and automatically find useful test data to test the implementation. We put
some emphasis on mixed—integer-non-linear arithmetic constraints and will evaluate the
limits of state—of—the—art solver implementations.

1.2.1 Model Transformations

We transform a UML activity diagram into a rigorous, executable, mathematical repre-
sentation. We decided to use multiple subsequent model transformations to carry out
this transformation stepwise. In Section we will specify how the activity diagram is
transformed to an intermediate representation. During this transformation we can check
design rules and ensure properties of the intermediate representation that are necessary
in subsequent steps. From this intermediate representation we describe in Section a
model-to—text transformation to ‘A Mathematical Programming Language’ (AMPL).

1.2.2 Symbolic Execution

In order to make UML activity diagrams executable for test data generation we will trans-
form all relevant constraints embedded in the UML model into a mathematical program.
Executing a certain control flow path in the activity diagram means generating the cor-
responding mathematical program. The mathematical program will be stated in AMPL
syntax. A mathematical program in AMPL consists of an AMPL model and AMPL data.
One activity diagram will be transformed into one AMPL model and the currently exe-
cuted control flow path can be specified in the AMPL data.

When building the AMPL model from the activity diagram, we have to be careful that
the semantics of the resulting AMPL model corresponds with the semantics the modeller
originally had in mind. We support the user by automatically adding constraints that
would be cumbersome to make explicit manually.

1.2.3 State—Of-The—Art Constraint Solver Implementations

A great advantage of a commonly used mathematical programming language is that industrial—
strength solvers are available. The AMPL program corresponding to a possible control flow
path in the activity diagram will be solved with a state—of—the-art solver. Then we obtain
test data from the results of the constraint solver. The generated test data includes pos-
sible input arguments for the C function that implements the activity diagram. Also, all
expected return values as well as values for class properties before and after the execution
of the activity diagram are included.

A suitable solver needs to be selected depending on the problem formulation. Not every
solver can solve every AMPL program, and not every AMPL program is an instance of an
easy—to—solve problem. An overview of the problems that are considered throughout this
thesis can be found in Section

1.2.4 Results

A practical result of this thesis is an Eclipse plug-in that automatically generates unit tests
from activity diagrams. The plug-in comes with a set of example models. Each example
is an instance of a different mathematical problem and thus needs an appropriate solver
to be solved successfully. Moreover, we performed an industrial case study using a model
of the PAX—Call system, which is part of an Airbus product. We added the missing OCL
constraints and successfully generated test cases for the largest activity diagram within the
model. Finally, we experimentally determined the scalability of the implementation.

1.3 Organization

The rest of this thesis is organized in three chapters. In the chapter we
will refer to related work (Section , give an overview of the theory of mathematical
programming and constraint programming (Section [2.2), and explain the mathematical
programming language AMPL.

In the chapter[Generating Unit Tests from a UML Activity] we first give a short overview of
the overall algorithm we are proposing (Section , and then explain the five subsequent
steps of the algorithm (Sections[3.2]-[.6]). Each of them can be viewed as model-to—model,
model-to—text, or text—to—model transformation.

The chapter presents the example collection (Section that has been tested
with the implemented Eclipse plug-in and elaborates on the strengths of different solvers.

We measured the runtime of our algorithm with different solvers and performed mutation
tests with the generated test suits. The case study (Section can be found in this fourth
chapter as well. We experimentally determined the scalability of our implementation within
our case study. Finally, we will also sum up problems that could not be solved within this

thesis (Section [4.5]).

2 Preliminaries

Throughout this thesis we will develop a complicated algorithm. We will rely on existing
technology and knowledge throughout the third and the fourth chapter. Thus, in this
chapter we present a minimal mindset that is helpful to understand the presented algorithm
and reproduce our argumentation.

First, we will present in [Literature Review| what others did to solve problems similar to
ours. Then we will provide a little background knowledge on the computability of different
specializations of the constraint satisfaction problem and the algorithms that are applied to
the considered problems in [Mathematical Foundationsl ‘A Mathematical Programming
Language’ (AMPL) is used in the presented algorithm; thus, we will explain the basic
concepts of AMPL in [The AMPL Modelling System]|

2.1 Literature Review

Model-Based Testing emerged in the 1990s. A variety of different modelling paradigms and
languages as well as test generation methods have been proposed since then. Model-Based
Testing has also been applied in different scopes, such as, for unit testing or system testing.
Mark Utting offers in [I] a possible classification of approaches to Model-Based Testing in
seven orthogonal dimensions. In Figure[2.1] we see an overview of possible categorisations
of Model-Based Testing approaches. Any work on Model-Based Testing roughly consists
of three important steps: Specifying what the test model is, generating some abstract
representation of test cases, and refining the abstract test cases into concrete executable
test cases by determining the necessary input data and potentially also providing an oracle
value for the expected output. The rest of this section is structured according to those
three steps and in each subsection we will shortly present the propositions made in different
publications and use Mark Utting’s taxonomy to classify them and to position our own
thesis relative to them.

2.1.1 Test Models

In [2] Lackner and Schlingloff propose to build a test model independently from the im-
plementation. Their test models modelled the behaviour of the system. They present
three transition-based modelling paradigms suitable for automated test case generation:
Abstract State Machines, UML2 State Machines, and Timed Automata. Early research on
Model-Based Testing performed by A. Abdurazik and Jeff Offutt [3] also proposed using
UML state charts as test model to generate system level test cases from them. The same
authors proposed in [4] UML collaboration diagrams as test models. Stephan Weifleder
and Dehla Sokenou propose in [5] using UML state models together with UML class mod-
els, and OCL pre—- and post—conditions as test models.

It is very common to use state machines as the test model, while less research is performed
on generating unit tests from UML activity diagrams. Wang Linzhang et al. propose
in [6] using UML activity diagrams. They propose to generate test cases from an Activ-
ity modelling an operation in the design model. They also claim to have implemented a

- Environment
Subject
SuT
Shared test&dev model
Redundancy
Separate test model
[| Model] Deterministic / Non-Det.
Characteristics Timed / Untimed

Discrete / Hybrid / Continuous

Pre-Post
Transition-Based
. History-Based
Functional

Operational
_ Structural Model Coverage
- Data Coverage
Test Selection Requirements Coverage
- Test Case Specifications
Criteria Random&Stochastic
Test Fault-Based
Generation Manual
Random generation
Graph search algorithms
Technology Model-checking
Symbolic execution

Theorem proving

Test
| Execution On/Offline Online / Offline

Figure 2.1: Overview of the taxonomy of Model-Based Testing approaches [I]

proof-of-concept tool called UMLTGF, which, unfortunately, was unavailable for review.
In [7] Debasish Kundu and Debasis Samanta consider UML activity diagrams specifying
use cases of the system under test.

Achim D. Bruckner and Burkhard Wolff propose in [§] a full theorem prover and constraint
solver based approach to test generation. Thus, their input models are entered by means
of a functional programming paradigm. They consider models of the system under test as
well as additional information about how the system shall be tested as test model.

For our own work we use as test model some details from the UML class model and an
UML activity diagram modelling the inner workings of the unit under test. The unit under
test is in our case a C function. The model we use for test generation shares its control
flow structure with the model used to generate the implementation similar to [6]. The in-
formation needed to be able to derive test data is added separately to the test model, not
shared with the design model, in the form of OCL pre— and post—conditions and guards.
The use of OCL constraints is similar to the work of Stephan Weikleder and Dehla Sokenou
[5]. Furthermore, our input models are deterministic, untimed, and discrete.

2.1.2 Test Generation

In test generation, coverage criteria are a widely accepted means to measure the quality of
a test suite and steer the test generation. Aynur Abdurazik and Jeff Offutt proposed in [3]
a handfull of coverage criteria concerned with the structure of the test model. By structure
we mean the nodes and the arcs of the state chart they used as input. They present path
search algorithms to find transitions sequences fulfilling the proposed coverage criteria.
Puneet E. Patel and Nitin N. Patil compare in [9)] two different path finding algorithm
selecting control flow paths within an activity diagram as abstract test cases. Similarly,
[7] and [6] propose a kind of graph search as technology to find suitable test cases.

Stephan Weikleder and Dehla Sokenou presented in [5] a data oriented approach to select

test cases. They propose to use abstract interpretation to derive partitions of the domain
of input values. They then propose to select values at the boundaries of the computed
partitions as test data. In Stephan Weikleders Ph.D Thesis [10] we found the most detailed
and complete collection of different model-structure and data—oriented coverage criteria.
Furthermore, a formal definition of the coverage criteria is given. The source code of
ParTeG, the proof-of—concept tool associated with this thesis, is freely available and we
were able to test it. It uses graph search in combination with abstract interpretation and a
comprehensive framework allowing the user to steer which coverage criteria the generated
test cases will adhere to.

A comprehensive approach to automated test generation based on automated theorem
proving and constraint solving is presented by Achim D. Brucker and Burkhart Wolff in
[8]. They generate test cases by applying natural deduction to a test case specification
given in the input language of a theorem prover. The so called test theorem resulting from
the natural deduction is a sequence of executable statements that serves as abstract test
case. With constraint solving concrete test data is computed for each abstract test case.
In our thesis we use an easy to implement path search algorithm to generate abstract
test cases. The path search is supported by symbolic execution and constraint solving to
determine infeasible paths.

2.1.3 Test Data Generation

Chen Minsong et al. [I1] combine random test case and data generation with graph
structure oriented coverage criteria. Their approach is to generate random executable
unit tests for a Java implementation and matching the execution traces of the randomly
generated unit tests with the control flow paths found in an activity diagram. They then
select a subset from the test cases, which covers all simple paths in the test model. A
simple path is a control flow path without cycles. This is a randomised approach to test
data generation combined with a structural model coverage criterion. Jan Peleska et al.
[12] describe a combination of abstract interpretation with constraint solving using an
SMT solver in order to generate test data. They consider the execution of a test model as
consecutive execution of a state transition function, which changes the state of the system.
They have the iterated state transition function and further predicates solved by an SMT
solver and support the solver by providing it with bounds for some variables deduced via
abstract interpretation.

Using OCL as input and trying to obtain test data by solving OCL constraints there have
been several proposals on how exactly to find models making an OCL formula true. Shaukat
Ali et al. proposed in [13] using evolutionary or genetic algorithms to search for potential
solutions of OCL constraints. Matthias P. Krieger and Alexander Knapp proposed in [14]
using a SAT solver to find instantiations of variables fulfilling OCL constraints. They
suppose to transform OCL formulas into boolean formulas with bounded quantifiers and
uninterpreted functions. Consequently they use a model finder, based on a SAT solver,
capable of handling those formulas to find assignments to the variables.

In [15] Jan Malburg and Gordon Fraser propose a hybrid approach. On the top level they
use a genetic algorithm evolving a population of candidate test data internally they provide
guidance to the genetic algorithm by providing a special mutation operator performing
dynamic symbolic execution. Also the white-box unit test tool PEX [I6] from Microsoft®
research is based on dynamic symbolic execution. Both publications, [15] and [16], propose
to execute the implementation with random input values and generate new input values
by collecting all path conditions along the executed control flow. Then they negate one of
the path conditions and use a constraint solver to find a solution for the new constraint

FCSP

finite constraint
satisfaction problem

SAT

boolean satisfiability
problem

HORN-SAT

horn satisfiability

—b

CSP
constraint satisfaction
problem

SMT
satisfiability modulo
theories

MINLP
mixed integer non-
linear Programming

MILP

mixed integer linear

OoP

optimisation problem

7

COP

convex optimisation
problem

LP

linear programming

problem programming

Figure 2.2: Generalisation and specialization dependencies between different problems. De-
cidable problems for which tractable algorithms exist have a lined background;
decidable problems that are NP—complete have a squared background; unde-
cidable problems have a grey background.

system. The generated solution is new input data which is guaranteed to take another
control flow path in the program.

Our own test data generation approach is based on symbolic execution of control flow
paths in an activity diagram and constraint solving using a collection of solvers through a
common interface. We collect all the constraints along a control flow path and represent
them in a constraint satisfaction problem which is solved by a constraint solver.

2.2 Mathematical Foundations

Constraint solving is a common technique to derive answers to particular questions. De-
pending on the constraint satisfaction problem instance there might exist an algorithm and
even a software implementation that can compute the answer to our question. A major
task in this thesis is to transform a control flow path in an activity diagram into a math-
ematical program, that is, a constraint satisfaction problem, and to apply a constraint
solver.

Depending on the used test model the resulting mathematical program will be an instance
of one of the problems presented in this section. Since currently existing solvers are always
specialized on particular problems one needs to understand of which problem this math-
ematical program is an instance. Certain problems are a specialization of more general
problems. In Figure we give an overview of the problems presented in this Section
and visualise which problems are generalisations or specializations of each other. An arrow
from A to B means that B is a generalisation of A.

Some mathematical programs are harder to solve than others. Instances of more gen-
eral problems are usually harder to solve than instances of a specialized problem. More
specialized problems restrict the expressiveness of constraints that are allowed in its in-
stances. We are especially interested in problems that allow our test models to be most
expressive and are just specialized enough that we can find a useful solver for the resulting
mathematical program. Those are the user—friendly problems. When we do not need the
expressiveness of a general problem we can use specialized solvers computing solutions of

the mathematical programs very quick. Those are the easy—to—solve problems.

In [Characteristics of Problems and Solver Methods] we introduce definitions that will be
used to characterise problems and methods and explain the implications of those charac-
teristics for constraint solving. For every presented problem we will mention their char-
acteristics. In Sections we present different means to express constraints and
introduce a variety of problems. In [Properties of the Search Space] we will present proper-
ties of variables and introduce further problems.

2.2.1 Characteristics of Problems and Solver Methods

We characterise the solvers used by two orthogonal properties: the decidability of the
problem they solve, and the tractability of the method they implement.

Decidability of Problems

Not every problem presented in the following subsections will be decidable. We denoted
undecidable problems with a solid grey background in Figure [2.2]

Definition 1 (decidability) A problem is decidable if an algorithm solving that problem
erists.

When the problem is decidable we can assume that there is an exact solver available. An
exact solver will tell for a problem instance that the problem has no solution only if there
really is no solution. If it returns a solution we assume it is correct.

When a problem is undecidable, on the other hand, that means there can never be an
algorithm solving all instances of this problem. Still, there exist heuristics that try to
handle undecidable problems. A heuristic may find a solution for a given problem instance
if it is lucky, or just terminate without finding a solution although one exists, or it might
run forever, or even just return a wrong answer. For instances of undecidable problems
a heuristic telling that there is no solution just means that this particular search was not
lucky and returned answers might not be correct solutions. For example, it can return a
sub—optimal point for an optimisation. In most cases the answer of a heuristic is good
enough to be useful in practice. If a heuristic did not find a solution one could start again
with different parameters for the heuristic, for example, another starting point, or one
could use another solver. In practice one will run a heuristic until a certain time limit has
been reached.

Tractability of Algorithms and Heuristics

Algorithms and heuristics can be tractable or intractable.

Definition 2 (tractability) A method is tractable if its worst case runtime is in O(u™)
for a constant n.

For some problems like the linear programming (LP) explained in Section there exist
tractable algorithms. In Figure [2.2] problems for which a tractable algorithm exists have
a lined background. For other problems there can be instances that are NP—complete,
for example, the boolean satisfiability problem (SAT) presented in Section Any
algorithm solving an NP—complete problem will be intractable. Problems for which no
tractable algorithm exists are marked with a squared background in Figure

If the algorithm or heuristic used to solve a certain problem instance is tractable, we know

Figure 2.3: Two—dimensional search space and three different subsets forming a constraint
satisfaction problem

that we can expect an answer even for large problem instances after a moderate amount
of time. For intractable algorithms the runtime might grow exponentially and therefore
make it practically infeasible to compute an answer to a given problem instance. For
practical problems it is often the case that an intractable algorithm or heuristic has a
non—exponential average runtime. The simplex algorithm is a good example for such an
algorithm. Its worst case runtime is exponential but for problems occurring in practice its
runtime grows linear with the number of constraints.

Further Considerations

Among the decidable problems those with a tractable algorithm are especially easy—to—
solve. Whenever it is possible to state a certain problem as an instance of such an easy—to—
solve problem it is advisable to do so. If all constraints in the used test model are instances
of an easy—to—solve problem, one can be sure that there is a suitable solver solving the
problem correct in a moderate amount of time with respect to the size of the problem.
Restricting the expressiveness of constraints to decidable problems can be a strong limita-
tion for the user, and is not strictly required for constraint solving. It is not always easy
or impossible to express constraints as a problem instance of a decidable problem that
can be solved by a tractable algorithm. Consequently we will also consider using solvers
for decidable problems with intractable algorithms as well as solvers for undecidable prob-
lems implementing tractable and intractable heuristics. A solver is useful in practice if it
has a fair chance to produce a useful answer and if it reports useful answers for practical
instances in average after a moderate amount of time.

2.2.2 Constraint Satisfaction Problem

In a constraint satisfaction problem (CSP) the task is to assign values v(x;) to a set of
variables X = (x1,...,2y) from a search space S = Dy x ... x D,, such that all relations
ci,...,ct between the variables hold. We call those relations cq,...,ct constraints. D; is
called the domain of z;, n is the number of variables, and k the number of constraints. We

10

can formalise a constraint satisfaction problem as shown in equations (2.1)—(2.3)) [17].

¢ CS Viel[l...k] (2.1)
find: v(x;) € D; Vie[l...n]| (2.2)
subject to: (v(x1),...,v(x,)) € ¢j Viel.. k] (2.3)

Definition 3 (feasible solution) Any point in S fulfilling all constraints is called a fea-
sible solution.

Definition 4 (feasible set) The set of all feasible solutions is called the feasible set.

The feasible set is the intersection of all constraints. If the feasible set is the empty set we
call the problem infeasible. Solving a constraint satisfaction problem means finding one
feasible solution.

Practically, constraints are often specified as boolean terms over a subset of X. For ex-
ample 1 = 29 or 0 < x; < 1. Tt is possible to extend any relation between x; and o
to a n-ary relation between z1,...,z,. In the extended relation all possible values are
permitted for the variables not contained in the term.

In general, there are no restrictions on the domains of the variables. They could be contin-
uous, discrete, finite, and infinite. Well-known domains are integer, real, boolean but city
names or all triangles similar to an equilateral triangle could also form a domain. Similarly,
the constraints can have arbitrary properties. Even a fractal set would be acceptable as
constraint.

In Figure we can see a two-dimensional continuous search space and three sets. One
that could be assembled by a union of intersections of half-spaces, another that has an
arbitrary shape, and the last set that consists of discrete points marked by the crosses. Any
of the points within the intersection of those three sets is a solution to the corresponding
CSP.

The CSP in its general form is undecidable but there are decidable specializations with
a few restrictions on the kind of constraints and domains. For example a CSP with all
variables in B is decidable.

2.2.3 Optimisation Problem

An optimisation problem (OP) is a constraint satisfaction problem with a real-valued
objective function f : S — R where constraints are specified in terms of real-valued
functions ¢1,...,9x : S — R. We call those functions constraint functions. The search
space is R™. The task is to find a feasible point that minimises the objective function f.

minimise: f(X) (2.4)
subject to: ¢;(X) <0 Viell,... k] (2.5)

We distinguish two kinds of optima, the local optimum and the global optimum. Global
optima are in general much more difficult to find than local optima.

Definition 5 (local optimum) A local optimum is a feasible solution that minimises the
objective function within a neighbouring set of feasible solutions.

Definition 6 (global optimum) A global optimum is a feasible solution that gives the
minimal value for the objective function among all feasible solutions.

11

In practice equations are also used as constraints. In equation , > is permitted as well
as an arbitrary constant on the right—hand side.

In this thesis only linear objective functions are considered. For linear objective functions
that are not constant any optimum can be found on the boundaries of the feasible set.
That is why the word boundary value will be used as an equivalent for local optimum.
Using a constant objective function relaxes the problem, since with a constant objective
function every feasible point is a global optimum.

The OP is undecidable, but there are very successful heuristics available. One way to tackle
an OP is to add quadratic penalty terms to the objective function, which are growing
when a constraint is violated. Then one selects an arbitrary starting point and applies
a descend method such as Newton’s method to find a local minimum of the augmented
objective function. One can try this local search with a descend method multiple times
from different starting points and then select among the points found the one that gives
the lowest value for the objective function. With a high likelihood, this algorithm will
find a feasible point, and the global optimum could have been among the computed local
optima.

2.2.4 Convex Optimisation Problem

The convex optimisation problem (COP) is a decidable specialization of the optimisation
problem for which tractable algorithms exist [1§].

Definition 7 (convex set) A set C in a vector space S is said to be convex iff for all
points x and y in C and all t € [0, 1], the point (1 — t)x + ty is in C.

Definition 8 (convex function) A function fis convex iff for any two values x and y
the inequality f(0x + (1 —0)y) < O0f(z) + (1 —0)f(y) with 6 € [0,1] holds.

A convex optimisation problem is an optimisation problem with a convex objective function
and convex constraint functions. The intersection of convex sets is a convex set itself and
the set {x € R"|g;(z) <0} is a convex set if g; is a convex function. Consequently the
feasible set is also convex. For convex optimisation problems every local optimum is a
global optimum.

The convex optimisation problem is decidable and additionally there are tractable interior
point methods solving instances of that problem. Interior point methods first need a
feasible point as starting point. The objective function is augmented by logarithmic barrier
functions for each constraint with a form factor to steer the steepness of these barriers.
Now a descend method is applied to find the lowest point. Then repeatedly the barriers
are made steeper and the last point found is used as a new starting point. The repetition
ends when a stop criterion is fulfilled [I8].

2.2.5 Linear Programming

Within the class of convex optimisation problems there are many special cases. One special-
ization of the convex optimisation problem is linear programming (LP). In linear program-
ming every constraint can be represented as linear inequality and the objective function
is an affine function. The canonical form of a linear program consists of a matrix A and
two vectors ¢ and b as shown in the equations —. The relation < is evaluated
componentwise.

minimise: ¢! X7 (2.6)
subject to: AXT <b

12

By removing the objective function or setting ¢ = 0 the problem is slightly relaxed. For-
mulations containing also equations in the constraints on some components of X can be
transformed to an equivalent problem in the canonical form. Also, maximisation of the
objective function might be required instead of a minimisation. Further the relation >
might replace the < for some components of the constraint. In practice we will use all of
these formulations.

An example of a linear program is given in equations (2.8))-(2.9).

62 9-(3)-0

z3
I
(0 =1 0)x x| <0 (2.9)
z3

Linear programs can efficiently be solved with an implementation of the simplex algorithm
[19]. Although its worst case runtime is exponential the average runtime grows linearly
with the number of constraints. For a geometric interpretation of the simplex algorithm we
interpret the constraints as a set of hyper—planes in an n—dimensional space. The feasible
region is a polyeder whose faces are within the hyper—planes defined by the constraints.
The simplex algorithm starts at an arbitrary exposed point of this polyeder and then
moves along one edge to another exposed point with a better objective value. This step is
repeated until the exposed point with the minimal or maximal objective value is found.

2.2.6 Boolean Satisfiability Problems

In a classic boolean satisfiability problem (SAT) all variables are within the boolean domain
and can take the values true and false or 0 and 1 respectively. The constraint relations
are expressed by a boolean formula. The task is to find an assignment to the variables
that makes the formula true. A simple example of a boolean formula is given in equation
(2.10]).

21 A =29V —x1 A X (2.10)

Any boolean formula can be normalised to a conjunction of disjunctive clauses, the so—
called conjunctive normal form. The boolean satisfiability problem is decidable, but be-
longs to the class of NP-complete problems. Thus, algorithms solving this problem are
intractable. However, there are specializations of the SAT problem for which a solution
can be computed in polynomial time, for example the horn satisfiability problem (HORN-
SAT). In HORN-SAT the boolean formulas are restricted to horn formulas. A horn formula
consists of a conjunction of horn clauses. A horn clause is a disjunctive clause with at most
one positive literal. A literal can either be a variable (positive literal) or the negation of a
variable (negative literal).

DPLL [20] is a classic algorithm solving the boolean satisfiability problem. The DPLL al-
gorithm combines a backtracking search and local consistency checks. In the backtracking
step one literal is selected and the problem splits up in two sub—problems, one in which
the selected literal is assigned true and one, where it is set to false. All disjunctive clauses
that become true by the assignment can be removed from the formula, and from those
clauses that do not evaluate to true the assigned literal is removed. When there is a clause
consisting of only one literal this literal can only be assigned in one way to make that
clause true. In unit propagation this literal will be assigned and all clauses containing

13

that literal can be removed from the formula. From all clauses containing the opposite
literal the literal is removed. Unit propagation is repeated until there are no more clauses
containing a single literal. Next, pure literals are eliminated. A pure literal is a literal
that is only present with one polarity. When a variable is for example only occurring as
negative literal one can assign that variable to false and all clauses containing the negative
literal are evaluating to true and can be removed. If in the end there is one empty clause,
that is, a clause for which all literals are assigned and evaluated to false, then the current
sub—problem is not satisfiable and one has to backtrack. If there are no more clauses left
that means for the current assignment of literals every clause contains at least one literal
evaluating to true then a satisfying assignment for the variables has been found.

2.2.7 Satisfiability Modulo Theories

An important generalisation of the SAT is the satisfiability modulo theories (SMT) problem.
Here, instead of literals, sentences can appear that evaluate to true or false in some theory.
Common background theories used for SMT are the free theory, linear arithmetic, or the
theory of bit vectors. In the equations — we see an example formula containing
propositions in linear arithmetic, integer arithmetic, and one boolean literal.

1,220 €ER, x3€7Z, x4€B (2.11)
(wl < 5) A\ (—.%'2 < 10) vV (333 = 2) N X4 (2.12)

The decidability of SMT problem formulations depends on the background theories used. If
the SMT is restricted to a set of decidable background theories then the SMT is decidable.
If undecidable theories such as non-linear arithmetic including transcendent functions are
allowed then the SMT is undecidable. The well-known SMT solver CVC currently imple-
ments a large number of logical theories and their combinations [21].

2.2.8 Properties of the Search Space

Every specialization of the CSP is imposing constraints on the formulation of constraints
and on the selection of domains. For the problems presented so far, we focused on the way
constraints are stated. In this section we present further problems that can be obtained
by strengthening or relaxing the constraints imposed on the selection of domains.

Mixed Integer Programming

Domains can either be continuous or discrete. The optimisation problem as well as linear
programming permits only continuous domains. They can be generalised by allowing vari-
ables in the discrete integer domain.

Mized integer linear programming (MILP) is a generalisation of linear programming allow-
ing variables in the integer domain. While linear programming can be solved in polynomial
time, the introduction of variables with discrete domains makes the problem NP-complete.
A famous instance of this problem is the knapsack problem. In the knapsack problem it
is the objective to maximise the value of undividable objects in a container where each
object has a value and a weight. The sum of the weights must stay below a threshold.
Mixed integer linear programming is decidable.

Mized integer non-linear programming (MINLP) is a generalisation of the optimisation
problem allowing variables in the integer domain as well as the real domain. This problem

14

contains many instances that are known to be infeasible to solve. A well-known instance
is the factorisation of a number with two prime factors. Mixed integer non-linear pro-
gramming is just as the optimisation problem undecidable. But while to the optimisation
problem tractable heuristics similar to the algorithms for the convex optimisation problem
can be applied the introduction of discrete variables also makes intractable heuristics nec-
essary to solve mixed integer non—linear programs. An instance of mixed integer non—linear
programming is as follows:

r1, 09 €Z, x3€R (2.13)

minimise: 3 (2.14)

subject to: % + 2 —10.54 23 <0 (2.15)
subject to: x3 >0 (2.16)

One possible solution to this problem is 1 = 1 and z9 = 3 and the optimal value for z3
is 0.5. Without the integral constraint on x; and x2 the solution to this problem instance
could be computed by an interior point method in polynomial runtime; x3 would then be
0. With z1,22 € N one can estimate an upper and a lower bound for x; and x2 and then
needs to try out all combinations of possible values for those two variables.

To solve mixed integer linear programs a combination of different methods is used. One
strategy is the cutting—planes method. For cutting—planes first the optimal solution of the
continuous relaration is computed. The continuous relaxation of a mixed integer linear
program is the linear program where all discrete domains are replaced by corresponding
continuous domains. For example, the set {1,2,3} could be replaced by the interval [1, 3]
If the optimal solution is integral in all the components that are required to be an integer
we are done. If that is not the case a constraint is added such that all feasible solutions
are still within the new feasible set, but the currently optimal solution of the continuous
relaxation is excluded. Then, the solution of the continuous relaxation of the new problem
is computed. This repeats until no more additional constraint can be found or the solution
is integral in those components that are required to be integral. Mathematicians have
found a variety of strategies to generate those additional constraints for the cutting—planes
method. Another strategy is the branch—and—bound method. In branch—and-bound, the
solution of the continuous relaxation is computed first and, in case the integrality con-
straints are not satisfied, the problem is split into sub—problems excluding the current
solution of the continuous relaxation. For example the problem above might be split up
into two sub—problems, by one time adding the constraint x9 > 1 and one time adding
x2 < 0 to the original problem. This separation would exclude all solutions with zs be-
tween 0 and 1. The solution of the continuous relaxation, however, gives a lower bound
for the optimal value. An upper bound for the optimal value of a sub—problem can be
gained by a heuristic. If the lower bound of sub—problem A is above the upper bound for
sub—problem B then sub—problem A can be pruned. Thus, large portions of the search
space are excluded from the search.

The same methods can be applied to mixed integer non-linear programming analogous.
But for them it is not an algorithm but only a good working heuristic.

Finite Constraint Satisfaction Problem

When each domain is a finite set then the search space is also finite. We call a con-
straint satisfaction problem with finite search space a finite constraint satisfaction problem
(FCSP). In fact, on a computer, a real number is stored in IEEE 754 floating point format,
which is a finite discretization of the real numbers.

15

For a finite constraint satisfaction problem at least theoretically one can always find a
solution or deny the existence of a solution after exhaustive search, thus it is decidable. In
practice the search space is finite but often too large for exhaustive search.

Instances of the finite constraint satisfaction problem can be solved by reducing the do-
mains of variables by constraint propagation and checking locally for consistency and back-
tracking when an inconsistency is found [22]. Constraint propagation is a kind of logical
inference and based on rules for reasoning. For example from the two constraints z < 5
and y < x one can conclude that y < 5, thus the domain of y has been reduced. Examples
of working constraint logic programming systems are B-Prolog and SWI-Prolog [23].

2.3 The AMPL Modelling System

‘A Mathematical Programming Language’ (AMPL) from Robert Fourer [24] is a math-
ematical programming language language and also a software system interfacing different
solvers capable of finding valid assignments for variables in an AMPL program, that is,
an instance of the constraint satisfaction problem or one of its specializations presented in
Section An AMPL program consists of two parts: the AMPL model and the AMPL
data. The AMPL software system additionally provides a command language allowing the
user to interact with the solver.

In this section we will shortly explain the standard work flow with the command language
and the concepts of the AMPL model language and the AMPL data language that are
needed in this thesis.

2.3.1 Command Language

When AMPL is started in interactive mode it shows a command prompt requiring the user
to either enter commands or directly modify the AMPL model. When AMPL is started
with an AMPL script in the command line arguments it operates in batch mode. The
normal workflow using AMPL is to load an AMPL model from a file or to enter the AMPL
model directly in the console. Then one switches into the data entering mode and inputs
specific values for every parameter of the loaded AMPL model or directly loads the data
from a file. Now the AMPL program is ready to be solved by one of the solvers interfacing
with AMPL. Therefore, we need to tell AMPL which solver shall be used and possibly set
some further options. Then the solve command is issued and AMPL will return as soon as
either a solution is found, or an error has occurred, or the AMPL program has been found
to be infeasible. When AMPL returns from the solve process reporting that a solution has
been found, one will use the show command to print the satisfying variable assignments.
Furthermore, AMPL provides commands to reset the currently loaded data or data and
model. Commands for making on the fly modifications to the AMPL model and data
without a complete reset are also available. For detailed reference of the commands the
AMPL system supports, we refer to the AMPL reference manual in the appendix of [24].

2.3.2 Modelling Language

The AMPL modelling language is the means used to formalise parameterised constraint
satisfaction problems. The modelling language supports several model entities. The sup-
ported model entities relevant for our thesis are sets, parameters, variables, constraints,
and objectives. Further we are using set expressions, index expressions, and arithmetic or
logical expressions. We will start by explaining the expression types and then introduce

16

the aforementioned model entities in the given order. For detailed reference we refer to
[24].

Expressions

Set and Index Expressions A set expression specifies a collection of values. The easiest
way to specify a set is by explicitly naming each element, for example, 1 2 3 4 specifies
the set {1,2,3,4}. A set containing a range of integers can also be specified more efficiently
by stating 1..4. AMPL supports some set operations allowing one to specify the union or
intersection of two set expressions.

Another important expression using the set expressions are index expressions. An index
expression consists of an index variable and a set expression specifying the values that
are assigned to the index variable one after another. Index expressions are used to iterate
through a collection. An index expression in AMPL looks like {1 in 0. .4} where 1 is the
index variable, which takes any integer value from 0 to 4.

Arithmetic, Logic, and Relation Expressions In AMPL arithmetic and logical expres-
sions can be composed of a variety of arithmetic functions, constant values, variables,
and parameters. AMPL has built in the basic arithmetic logical operations such as
+,-,%,/.and,or,not and also the exponentiation and further additional functions like sin,
cos, if--then--else. The set of functions available in AMPL can be extended further
by loading external function libraries. The syntax of the arithmetic, logic and relation ex-
pressions in the AMPL modelling language is very intuitive. Examples of valid expressions
evaluating to true or false are: x<5; a=sin(b); (a=5) and (not (b<=sin(c))). FEx-
pressions returning a numerical value are: x; if (x<=5) then (10) else (11); cos(b);
max(a,b,10). We assume the used literals x, a, b and ¢ to be names of declared variables
or parameters.

Sets

A set is a container holding a collection of values. It is declared with the keyword set, it
has a name and attributes. A set can have several dimensions, be ordered or unordered,
and the default content can be specified. The content of the set can be required to be a
subset of some set expression. A set expression is used to specify the elements contained in
a set. The content of a set can be directly specified in the model or data section. When the
content of a certain set is specified in the data then the model only contains a declaration
of the set.

The simplest set declaration would be: set A; just declaring a one dimensional set named A
whose contents have to be specified in the data section. set A within 0..4 default 1 3;
declares the set A whose content need to be a subset of {0,1,2,3,4} and by default, when
nothing else is specified in the data, the set will hold the elements 1 and 3.

Parameters

A parameter holds a numerical value that can be accessed anywhere in the model. It is fixed
and its value is usually specified in the data section. A basic parameter declaration looks
like this: param b;. This expression specifies a parameter b that can be used anywhere in
the model. More sophisticated features of parameters will not be used in this thesis.

17

Variables

A variable in AMPL has an identifier and holds a numerical value. It can either be in a
discrete or continuous domain, and it can have an upper and a lower bound. A variable
with a continuous domain is declared by the statement: var x;. A variable with discrete
domain is declared by the statement: var x integer;. Any model entity can be declared
as an indexed collection by appending an index expression to the declaration. A variable
being declared as an indexed collection of variables will look like this: var x{i in 0..4};.
This statement essentially declares 5 different variables namely x[0], ..., x[4]. Variables
can, just like parameters, be referenced anywhere in the AMPL model. When a solver
is called the solver will try to assign the values of the variables in such a way that all
constraints in the model evaluate to true and the objective is optimised.

Constraints

A constraint in AMPL has a name and an expression evaluating to either true or false. As
already explained for variables also constraints can be declared as an indexed collection of
constraints. The index variable can also be accessed inside of an indexed constraint. The
declaration such that MyConstraint{i in 0..4}: x[i] <= ixb; declares 5 constraints
named myConstraint[0], ..., myConstraint[4]. We assume that b is the parameter and x
the indexed collection of variables we have declared in the last two paragraphs. Now each
of the 5 constraints refers to another index of x and imposes an upper bound on it, which
also depends on the index. We could also have explicitly written out all 5 constraints.

Objectives

An objective can either be the maximisation or the minimisation of an objective function.
The objective in AMPL has a name and an expression evaluating to a numerical value
and specifies whether to minimise or maximise the given expression. The declaration
minimize totalCost: a + b + c; specifies that the totalCost has to be minimised and
tells us that the totalCost composes from the values a, b and ¢ which can be either variables
or parameters.

2.3.3 Entering Data

Although it is possible to specify the values of parameters as well as the elements con-
tained in the declared sets directly in the AMPL model it is often desirable to enter them
separately as data. Data can be entered in two ways either by reading them from a file or
by switching into the data mode and entering it on the console. We assume that in the
model the parameter b and the set A have been declared. Entering param b := 5; and
set A := 0 2 5; in the data mode would set b to 5 and set the content of A to {0,2,5}.

18

3 Generating Unit Tests from a UML
Activity

In this chapter we will present an algorithm that generates unit tests for C functions from
their Unified Modeling Language' (UML) activity model. The test generation process is
divided in five steps. Each step can be seen as model-to—model, model-to—text, or text—
to—model transformation with the input and output language or model specified. The
architecture makes it particularly easy to replace any of the five steps or extend it with
additional features. We do not only specify an algorithm for generating unit tests from a
UML model but also a framework for building further algorithms that generate unit tests
from arbitrary input models. If, for instance, another input language specifying a control
flow graph will be used then only the first step would need a few changes. In some steps
we will even specify alternative transformations.

Our approach for automated generation of test data is based on mathematical programming
and the approach for finding relevant control flow paths is based on a breadth first search
with early infeasible path recognition.

3.1 General Overview of the Workflow

The transformation from an UML activity diagram to a C++ unit test code is divided
in five steps. Those five steps are: [Normalisation] [Rigorous Mathematical Programming|
[Abstract Test Case Generation] [Specific Test Data Generation] and finally
Here we want to give a brief overview of those five steps. Each of these steps as
well as the interfaces between them will be described in detail in the following sections.
In the first step, [Normalisation] we check some design rules, parse all embedded OCL con-
straints, and map the relevant parts from the UML model onto a simplified meta model
of an activity. Throughout the next step we generate a mathematical program out of our
simplified test model. We use the AMPL language for specifying a rigorous mathematical
program. The third step, [Abstract Test Case Generationl is a path search where we can
find all control flow paths, or those that are necessary to fulfil some coverage criterion
of choice. We call a control flow path from an initial node to a final node of an activity
abstract test case. In the fourth step, [Specific Test Data Generation| we have each abstract
test case encoded as input data for the AMPL model generated during the second step.
The AMPL model will be solved by a state-of-the—art solver that interfaces with AMPL.
For each abstract test case the solver was able to find valid test data we will store the data
in a test case model. This test case model serves as input for the last step. During
‘Test Synthesis| we take the generated solution of the mathematical program and put the
values in place within compilable and executable C++ unit test code. An overview of the
complete workflow of our approach is given in Figure There we see an activity diagram
showing the five steps of our algorithm and within each step the sub—tasks are visible. Each
of the depicted central buffer nodes will hold the output of one step of the algorithm. The
labelled input pins at the actions indicate which task accesses which previously generated
item.

19

Generating Testcases Overview

input: Activity
unit test: String . Rigorous Mathematical Programming Abstract Test Case Generation
Normalisation atc N atc)
Transform Variables to Depth First Search
) AMPL variables N J
input: Activity vm Check Design Rules N v / v A
J . N ;)
input v Transform Local Post-Conditions to m_m.ﬁ_x H:H.mmm_w_m Path
(h AMPL Constraints 'mination)
Parse OCL Expressions N /_\ / /_\ 9
\. J s a4 ampl
/_\ Transform Guards to Call Solver
s N .
Transform Activity into L AMPL Constraints)
Activity Test Case Graph
\ Y P y E ampl e .
/_\ Breadth First Search
e) /
- . L atc
Add Continuity Constraints < <centralBuffers > 9 E paths
\ E J ampl: AMPL model
atc . .
J Specific Test Data Generation
<<centralBuffer>> < <centralBuffer> > ﬂ mc_._q M_
atcg: Activity Test Case Graph paths: Abstract Test Case r Unit Test Model -
tests
atcg
) A
// Unit Test Svnthesi ch__Q
N nit Test Synthesis <<centralBuffer> > @r Unit Test Model \M_
. . tests tests: Unit Test Model /_\ 9 tests
unit test: String l Create C++ m paths |
j Unit Tests
- Call Solver
unit test)
ampl

Figure 3.1: Overview of the workflow for unit test generation

20

We want to outline two special features of our algorithm. Early infeasible path recognition
as described in Section enables us to recognise sub—paths for which no valid input
data exists during the path search in the third step. When early infeasible path recognition
is used the third and fourth step are interfering with each other. In this case test data is
already generated in the [Abstract Test Case Generation] Another feature of the specified
algorithm is that it generates boundary values for each abstract test case. For each control
flow path in an activity there is a set of input values that will satisfy all constraints along
this path and thus presents suitable test data for this abstract test case. In testing, bugs
often are likely to be triggered when a point at the edge of this set is selected as test data.
How we are assuring that a boundary value will be found during test data generation will
be explained in Section [3.5.6]

3.2 Normalisation

The Unified Modeling Language" (UML) specifies about 250 modelling elements each
having several references and attributes. An algorithm interpreting every element that
is defined in the UML becomes overly complex. We interpret only a subset of the UML
consisting of 16 different modelling elements. For a complete reference of the UML elements
we refer to the UML2.3 superstructure specification [25]. In industrial applications a model
will usually contain the complete specification for a product consisting of thousands of
objects and containing elements we are not interested in. Through the references of any
object within a model we can navigate to any other object within the model. In order to not
get lost in such a model when generating unit tests from it, we need to slice out the relevant
sub-model and perform a pre—processing step to ensure our algorithm does not run into
error conditions. Especially the contained OCL expressions need to be parsed and checked
for conformity with the subset of OCL our algorithm is able to handle correctly. The input
of the [Normalisation|step is an UML Activity from which we traverse all relevant attributes
and references and store each bit of information needed in consequent steps in our own
unambiguous intermediate representation. The input model can be discarded after this
step. All consequent steps we will exclusively use our own intermediate representation and
no more access the original UML model. Throughout this section and the rest of this thesis
we will print specific modelling elements and associations of the UML in a special font, for
example Activity and ownedNodes, to make it clear that the UML modelling element or
the UML association as described in the UML specification [25] is meant.

3.2.1 Design Rules for the Test Model
Structural Design Rules

For our test generation we assume the models to comply to certain design rules. The input
Activity is an ownedActivity of a Class. The Class containing the Activity itself is contained
by a Package. There is an Operation specifying the Activity. This specifying Operation is
either a sibling in the UML tree structure and has the same name as the Activity or is
explicitly specified by the specification reference of the Activity. The specifying Operation
will be needed when parsing OCL constraints in Section [3.2.3] In Figure we see a tree
view of an UML model where those requirements are met.

21

= +Productxyz
=] +Implementation
=-] +5ubsystemi———Package
= E +ControlerClass
[+ ¢ -simpleAttribute : Boolean
@ +doMagic———Activity

Attribute

=~ 9 +doMagic SpeC|fy‘|ng
Operation
€ a\
> b—————Parameters

< c
- +0therClass

Figure 3.2: Screenshot of a valid model in the model browser of Atego® Artisan Studio

| |
edges | AbstractTCGEdge | guard[AbstractTCGConstraint |
| 0..17]

AbstractTCGElement 0..%7]]
name : String 0..*|incoming 0..*|outgoing
1jtarget 1)source
A AbstractTCGNode

[AbstractTCGContainerI'—/n0 des 7 A
[o = l]
initialNode,” |_AbstractTCGRealNode| [_AbstractTCGPseudoNode |
[]]

Figure 3.3: Meta model of the abstract test case graph

OCL design rules

Further we assume that the embedded textual OCL constraints are either contained within
a LiteralString element or an OpaqueExpression with the according language value set to
‘OCL’. We support a strict subset of the OCL language. The Extended Backus—Naur
Form (EBNF) of the supported OCL subset is shown in Algorithm |1l Any parsed OCL
expression must be an instance of the <Bool> production rule.

3.2.2 A Meta Model Suitable for Automated Unit Test Generation

The developed unit test generation algorithm does not work directly on an UML model
but on an activity test case graph. The activity test case graph contains only those details
from the UML meta model that are really necessary for the unit test generation. Since it
contains only parsed OCL expressions as abstract syntax trees it is much more suitable for
the transformation into a mathematical program.

The activity test case graph is defined as an extension of a more general abstract test case
graph model. The abstract test case graph meta model was tailored to fit activity diagrams
as well as UML state machine diagrams in order to be able to apply algorithms not only to
activity diagrams but also to state machine diagrams. This common abstract meta model
is also a provision to be able to reuse existing test case generation algorithms from ParTeG
[10] for Activities. The Eclipse plug—in developed along with this thesis will be integrated
with ParTeG. ParTeG is a test generator for activity diagrams with advanced support for
different coverage criteria.

22

Algorithm 1 Extended Backus—Naur Form of supported OCL subset
<Bool> ::= <LogicalOperation> | <RelationOperation> | <BooleanLiteral> |
<BooleanVariable> ;

<LogicalOperation> ::= <Bool>, <LogicalOpSymbol>, <Bool> ;

<LogicalOpSymbol> ::= "and" | "or" ;

<RelationOperation> ::= <Number>, <RelationOpSymbol>, <Number> ;
<RelationOpSymbol> 1= "<" | ">1 | Na=t | = =t | et

<Number> ::= <ArithmeticOperation>> | <IntegerLiteral> | <RealLiteral> | <IntVari-

able> | <RealVariable> ;

<ArithmeticOperation> ::= <Number>, <ArithmeticOpSymbol>, <Number> ;

<ArithmeticOpSymbol> 1= "' | "1 | 1wk

<BooleanLiteral> ::= "true" | "false" ;

<lIntegerLiteral> := ["-" | "+" |, <Digit>, {<Digit>} ;

<ReallLiteral> ::= ["-" | "+" |, <Digit>, {<Digit>}, ".", {<Digit>} ;

<Digit> = "0" | "1 |2 | "3 |4t | s e | T | "8 | 9"

<BooleanVariable> ::= 7OCL expression evaluating to a Property or Parameter of type
boolean? ;

<IntegerVariable> ::= 7OCL expression evaluating to a Property or Parameter of type
integer? ;

<RealVariable> ::= ?0CL expression evaluating to a Property or Parameter of type real?

Y

23

TCGActivity TCGVariable TCGControlFlow TCGControlNodg TCGAction
className : String variables isParameter : boolean
packageName : String @ usage : TCGVariableUsage -
0..* <<enumeration>>
ﬁe|ds1‘1__* variable|1 TCGOCLOperationTypd <<enumeration>>
multiplication TCGBasicVariableType
1 - — 1 division integer
TCGObjectVariable TCGBasicVariable addition real
variableType : TCGBasicVariableType subtraction boolean
getAbsoluteName() size
TCGOCLExpression equals <<enumeration>>
TCGOCLVariableCallExp unequal TCGVariableUsage
solirce isPre : boolean 0..* greaterThan inParameter
0.1 S .r.g‘uments referencedBy lessThan outParameter
_ greaterEquals inoutParameter
. TCGOCL LiteralExp lessEquals returnParameter
TCGOCLOperationCallExp type : TCGBasicVariableType and field

operation : TCGOCLOperationType value : double or localVariable
not
Xor

Figure 3.4: Meta model of the activity test case graph

Abstract Test Case Graph

An abstract test case graph is a directed graph consisting of nodes (AbstractTCGNode)
and edges (AbstractTCGEdge). Each edge has a source and a target node. Each node
can have multiple outgoing and multiple incoming edges. A node can be either a pseudo
node (Abstract TCGPseudoNode) or a real node (Abstract TCGRealNode). A pseudo node
is a node that can be inserted in the middle of an edge without changing the semantics
of the test model. Edges can have a guard condition of type AbstractTCGConstraint.
Such a graph is contained by a container (AbstractTCGContainer). The container has a
singular initialNode reference to one of its nodes exposing this as the initial node. The
class diagram of the abstract test case graph meta model is shown in Figure [3.3

The semantic of the activity test case graph is like a Petri net. When executing an abstract
test case graph we have at the beginning a token in the initial node that can move along
the enabled edges. An edge is enabled when its guard condition is true. We say that a
node is being executed when a token resides in the node.

Activity Test Case Graph

An activity test case graph is an extension to the abstract test case graph especially tai-
lored for test generation from Activities. The activity test case graph models control flow
and constraints on variables. The constraints are required to hold at different points during
execution of the activity test case graph. Its meta model is shown in Figure [3.4

The TCGActivity is an extension of the Abstract TCGContainer. TCGAction, TCGControl-
Node, and TCGControlFlow refine the types Abstract TCGRealNode, Abstract TCGPseudo-
Node, and Abstract TCGEdge respectively. The main extensions to the abstract test case
graph meta model are the variables (TCGVariable), the elements of an abstract syntax
tree (TCGOCLExpression) to express constraints, and the TCGAction.

TCGAction A TCGAction can, in addition to its super—type, contain arbitrary many
localPostconditions of the type Abstract TCGConstraint. A local post—condition has the
semantics that it has to be true after the execution of the action. This implies potentially
changing some variables throughout the execution of the action.

24

Activity Action ControlNode ControlFlow

(from UML) (from UML) (from UML) (from UML)
TCGActivity $ \
ivi h =
from activity test case graph) ~ TCGAction TCGControlNode TCGControlFlow
className : String (from activity test case graph)| |(from activity test case graph)| {(from activity test case graph
packageName : String

Figure 3.5: Straightforward mapping from UML elements to activity test case graph
elements

TCGOCLExpression TCGOCLExpression is a subtype of AbstractTCGConstraint. A
TCGOCLExpression can either be a TCGOCLOperation call with a source and argu-
ments, or a TCGOCLLiteralExpression holding a literal value and its data type, or a
TCGOCLVariableCalllExp referencing a TCGVariable. The isPre attribute of TCGOCL-
VariableCallExp denotes whether the original OCL expression contained an @pre token.
TCGOCLExpression and its subtypes form a simplified OCL abstract syntax tree.

TCGVariable A TCGVariable can be one of two subtypes: either a TCGBasicVariable or
a TCGObjectVariable. An object variable is put together by one or more other variables.
A basic variable has a variableType attribute holding a TCGBasicVariableType literal.
The TCGBasicVariableType literal represents one of the types that our algorithm can
handle: integer, real, and boolean. A TCGVariable is a placeholder for a value. When the
isParameter attribute is true it can only hold one value throughout the execution of the
TCGACctivity, otherwise it can change its value during each execution of a TCGAction.

3.2.3 Transforming an UML Activity Diagram to an Activity Test Case
Graph

An instance of the activity test case graph meta model serves as a normalised input model.
We use a model-to—model transformation to transform an Activity from a UML model into
an activity test case graph. In many cases the transformation is straightforward: for one
element in the UML model the corresponding element in the activity test case graph is
produced. When one element of the UML model is mapped to one element of the activity
test case graph model we call the UML element source element and the created element
in the activity test case graph model target element. The straight forward mappings from
one source element to one target element are shown in Figure [3.))

Mapping UML Elements to Activity Test Case Graph Elements

Activity A UML Activity is transformed into a TCGActivity. For the C+-+ unit test
synthesis described in Section [3.6|the name of the containing Class of the source element as
well as the full pathname to the Package containing this Class need to be stored. The class
name and the full pathname will be stored in the property fields of the TCGActivity. For
each Activity all of its ownedNodes as well as ownedEdges are considered for transformation.

Action OwnedNodes of an Activity that are a subtype of Action are transformed into a
TCGAction. The Action’s localPostcondition reference may contain textual OCL that will
be parsed. The detailed semantics of special subtypes of an Action is neglected.

25

ControlNode OwnedNodes of the Activity that are a subtype of ControlNode are trans-
formed into TCGControlNodes. That means they are pseudo nodes. It is assumed that
there is only one UML InitialNode whose target element is referenced by the TCGActivity
as initialNode.

ControlFlow Based on the ownedEdges association of the Activity we find ControlFlows
that are transformed into TCGControlFlows. If there is a ValueSpecification contained in
the guard, the potentially contained textual OCL needs to be parsed.

Parsing OCL Constraints

Constraints can be found in the localPostcondition reference of an Action. Each Constraint
holds a ValueSpecification in its specification reference. A ControlFlow can hold a Value-
Specification in its guard reference.

Constraint, ValueSpecification, and Property as well as Parameter can not be transformed
straightforwardly. The transformation will be done in three steps. First, textual OCL ex-
pressions will be extracted from ValueSpecifications and then the textual OCL expression
will be parsed. When the OCL expression was parsed correctly the parser returns an ab-
stract syntax tree of this expression. In the third step the elements of this abstract syntax
tree will be transformed to TCGOCLExpressions and all Property and Parameter elements
referenced by the OCL abstract syntax tree will be transformed into TCGVariables.

We ensure that only those OCL expressions are in the activity test case graph that later
on can be transformed into an AMPL model as explained in in Section There might
for example be ownedAttributes of a Class that are not changed by any of the transformed
Actions and whose value do not have any influence on any of the transformed ControlFlow’s
guard. The activity test case graph will not contain any TCGVariable representing such
an irrelevant Property or Parameter.

Extracting Textual OCL LiteralString and OpaqueExpression are subtypes of ValueSpeci-
fication potentially containing textual OCL expressions. For a LiteralString we will try to
parse its value as OCL. For an OpaqueExpression we will first check whether the language
attribute contains the value ‘OCIL’ and try to parse the corresponding value of the body
attribute. If the language attribute does not contain the value ‘OCL’ then we will try to
parse the concatenation of all bodys of the OpaqueExpression.

Parsing Textual OCL For details of the Object Constraint Language (OCL) we refer
to the OCL 2.3 specification [26]. For this thesis we consider three types of constraints:
invariants, post—conditions and guard conditions. Every OCL constraint is parsed with
respect to a context. The context specifies the evaluation of the self keyword and which
other variables and parameters are accessible from the OCL expression.

Textual OCL found inside a Constraint contained by the ownedRule reference of either the
Activity, or its containing Class will be interpreted as invariant. Invariants need to be true
before the Activity is executed and after the execution of the Activity has finished. The
OCL expressions found within guards of ControlFlows are required to evaluate to true,
whenever the ControlFlow is traversed. We are parsing the invariants as well as guards
according to the OCL specification as invariants of the specifying Operation.

Actions can contain multiple Constraints within their localPostcondition reference. Every
post—conditions is required to hold after the execution of the Action containing it. Only in
post—conditions the OCL @pre is allowed. With @pre we refer to the value of a variable

26

before the execution of the Action. Any textual OCL found within a localPostcondition will
be parsed as post—condition in the context of the specifying Operation. That means for
every parsed OCL expression all attributes of the Class as well as all ownedParameters of
the specifying Operation, and all properties of the containing Packages are accessible, but
only in local post—conditions the @pre is valid.

Transforming the Abstract Syntax Tree If the OCL parser was supplied with a valid
OCL expression for the context that was assumed then it will return an abstract syntax
tree for the parsed OCL expression. We assume the parsed OCL complied with the rules
explained in Section and the OCL abstract syntax tree returned consists of those
tokens specified in Algorithm

<BooleanLiteral >, <IntegerLiteral>, and <RealLiteral> are transformed into a TCGO-
CLLiteralExp. Its value is stored in double precision floating point format. The type
attribute of the target element is set according to the type of the source element. For the
type boolean a value of 0.0 means false and 1.0 means a true.

<BooleanVariable>, <IntegerVariable>>, and <RealVariable>> tokens are transformed into
TCGOCLVariableCallExp elements. If the original OCL token was tagged with an @pre
then the isPre attribute is set to true otherwise it is false. <BooleanVariable>, <Inte-
gerVariable>, and <RealVariable> elements represent an arbitrary OCL expression that
evaluates either to a Property or a Parameter. The Property or Parameter pointed to by
the expression will be transformed into a TCGVariable and the variable reference of the
TCGOCLVariableCallExp will be set to point to this TCGVariable.

We transform a <LogicalOpSymbol>, <RelationOpSymbol>, or <ArithmeticOpSymbol>
into the enumeration literal of the TCGOCLOperationType enumeration that matches the
token represented by the source element. The token = matches for example the equals enu-
meration literal.

Each <LogicalOperation>, <ArithmeticOperation>, and <RelationalOperation> will be
transformed into a TCGOCLOperationCallExp. The value of the operation attribute
will be obtained by transforming the <RelationalOpSymbol>, <LogicalOpSymbol>, or
< ArithmeticOpSymbol> contained in the source element. The target element of the first
operand of each operation will be stored in the source reference of the TCGOCLOperation.
The target element of the second operand will be stored in the arguments reference of the
TCGOCLOperationCallExp.

The productions <Bool> and <Number> in Algorithm [I] are there to keep the EBNF
notation more readable. No TCGOCLExpression element is generated for them but the
transformation of a <Bool> or <Number> element will transform the contained abstract
syntax tree node and return the result of this transformation.

Every root TCGOCLExpression directly contained by a TCGAction, TCGControlFlow,
or TCGActivity gets its name property set. The transformation ensures that every root
TCGOCLConstraint has a globally unique name. In the original UML model it is not the
case that each Constraint or ValueSpecification has a globally unique name.

Transforming Properties and Parameters UML Property or Parameter elements refer-
enced by a <BooleanVariable>, <IntegerVariable>, or <RealVariable> element will be
transformed into a TCGVariable. All TCGVariables are contained by the variables refer-
ence of the root element of the activity graph, the TCGActivity.

For Parameter and Property elements we need to check their type reference. If the name of
the Type is one out of a list of names that can be mapped to a literal of the TCGBasic-
VariableType enumeration then a TCGBasicVariable is created for it and its variableType

27

field set accordingly to the enumeration literal that is either integer, real, or boolean. The
exact mapping of names of the Type to a TCGvariableType is implementation specific.
One could for example map from a Type named ‘uint32 t’ to integer.

If a Parameter was transformed into a TCGBasicVariable then the isParameter field is set
to true, indicating that this variable has been a Parameter. For every Property the isPa-
rameter field of the target element will be set to false.

The field usage of the TCGBasicVariable can take values from the enumeration TCG Vari-
ableUsage. This information will be needed when creating the C or C4++ unit tests as
described in Section If the TCGBasicVariable was created to represent a Parameter
then its usage can be inParameter, outParameter, inoutParameter, or returnParameter.
The value of the usage field for a transformed Parameter is determined by the value of the
direction field of the original Parameter. If the source element of a TCGBasicVariable was
a Property then its usage is field.

3.2.4 Adding Continuity Constraints

From imperative programming we are used that variables can only change their value
when this is explicitly stated in an assignment. It is especially important that x will not
take a new value during a computation if we do not explicitly state an assignment for x.
In OCL there is nothing like an assignment. In OCL we express constraints specifying
which assignment would be legal and which not. If for a specific variable x there is no
constraint referring to it that means that this variable can take any value from its domain.
Consequently the user needs to make it explicit when a variable shall not be changed during
the execution of an action. The user can state that a variable x shall stay unchanged by
adding a continuity constraint to the post—condition of each action that shall not change
the variable. The continuity constraint will have the semantic of the textual OCL x=x@pre.
That means x shall have the same value as x had before the execution of this action.

We can support the user by adding a large amount of continuity constraints automatically
to the activity test case graph. All variables that are not constrained at all within the
post—condition of an action will have the same value after execution of the action as
before. For each TCGAction within the TCGActivity we need to determine the set of all
TCGVariables in the TCGActivity that are not referenced from the local post—condition
of this TCGAction. This is the set of variables that need a continuity constraint to prevent
the constraint solver from setting them to completely arbitrary values. The algorithm for
adding continuity constraints is printed in Algorithm The isContainedBy() function
used in line [2]is true if the self element is directly or indirectly contained by the argument.
The navigated referencedBy reference is the opposite of the TCGOCLVariableCallExp’s
variable reference.

Algorithm 2 Algorithm for adding continuity constraints
Require: atcg := A TCGActivity
Ensure: All necessary continuity constraints are added for each TCGAction in atcg
1: for action : TCGAction € atcg.nodes do
2: S < atcg.variables->reject(var : TCGVariable | var.referenceBy->exists(exp :
TCGOCLVariableCallExp | exp.isPre = false and exp.isContained By(action)))

3 for var : TCGVariable € S do

4: Add continuity constraint for var to action.localPostconditions
5 end for

6: end for

28

AN

_then «LocalPostCondtion»

then_Action

——
————— «LocalPostCondtion» AN

{y=x@pre-100}

[x<=5]

®

D>=6] else

Figure 3.6: Example of a simple activity with two actions and one decision

3.3 Rigorous Mathematical Programming

In order to make the model executable we need a rigorous mathematical representation
for it. We will formulate the problem of finding appropriate test data for a certain control
flow path in the activity test case graph as instance of one of the problems presented in
Section Which problem that will be an instance of, depends on the input model.

In the previous section we have extracted all necessary information from a UML model
and stored it in an activity test case graph model. All OCL expressions have been parsed
and stored as abstract syntax tree in the activity test case graph model. In this step we
will exclusively use the activity test case graph as source model and no longer access the
original UML model. We will perform a model-to-text transformation from an activity
test case graph to an ‘A Mathematical Programming Language’ (AMPL) program. We
explained the AMPL mathematical programming language in Section The mathemat-
ical program in AMPL consists of two parts: the model and the data. When we want
to generate suitable test data for a certain control flow path within an activity test case
graph we need an AMPL model and the corresponding AMPL data. An AMPL model
encodes a complete activity test case graph including all variables and all constraints that
are contained. The control flow path within this activity test case graph is encoded in the
AMPL data.

In Section we will present a small example, where a linear program is built from a
simple activity diagram. Then we will explain in detail the generation of the AMPL model
in Section and in Section we show how the AMPL data for a control flow
path is generated.

3.3.1 Introductory Example

During the execution of an activity test case graph we have an initial state where every
variable has a specified value. A state is specified by the complete value assignment for
all variables. After each execution of an action this state might change according to the
rules given in the action’s post—conditions. Post—conditions can specify a relation between
the value assignment in the current state and a value assignment in the previous state.
The states are interconnected with each other via post—conditions. The set of all post—
conditions can be seen as a state transition function. In order to traverse a control flow
edge its guard needs to evaluate to true in the current state. Guard conditions can only
specify relations between the value assignments within a single state.

The AMPL program models the execution of an activity as a series of states. All post—
conditions and guards are contained in the model as constraints, which can be switched
on and off for each state within the series of states. Assume an activity modelling the
statement if (x<=5) then y=x else y=x-100. The corresponding activity diagram is
shown in Figure There are two possible control flow paths. Each possible control flow
path contains exactly one action. Consequently we need two states: one initial state and

29

one state after the execution of the first action. There are two variables, x and y. For each
variable we need in AMPL an array of length 2 in order to hold the value assignment for
those variables in each state. We will denote the value assignment for x in the i-th state
as ;.

Let us assume we want to generate test data for the then path in the diagram. In
this case in the initial state the constraint zg < 5 is activated and in the first state
we have the constraint y; = x(activated. Further, as explained in Section the
continuity constraint xg = x; has been introduced automatically since there is no other
rule constraining x; and we want to preserve the variable’s value from the previous state
when possible. The resulting problem is a linear program with four unknown values and
three linear equations and inequalities. The resulting linear program for this case is shown
in equations —. The linear equations do only represent those constraints that are
active for the then control flow path in the diagram. The constraints z¢o > 6 and y; =
xo — 100 are not on the then control flow path. The value of yo will stay unconstrained,
since there is no previous state before the initial state. One can recognise already from
this small example that there are quite some 0 entries in the matrices. For larger problems
the matrices tend to become sparse. Many of the solvers we present in the Section [3.5.4]
will take advantage of sparse matrices when solving the problem.

Zo
1 0 0 -1 1| =
(1 10 0)x o =0 (3.1)
Y1
To 5
I 0
1 0 0 0)x < 3.2
(I 32
Y1 0

3.3.2 Transforming a TCGActivity to an AMPL Model

Each AMPL model has one parameter called pathlength representing the number of ac-
tions on a path. For each action with post—conditions and each control flow with a guard
there is one activation set. An activation set is required to be a subset of [1..pathlength]
and specifies those states, in which a post—condition or guard condition is active. The
value of the parameter pathlength as well as the elements of each activation set will be
specified in the AMPL data. In this way there is one AMPL model per activity diagram
and any control flow path within the activity diagram can be specified in the AMPL data.
The AMPL model built will be synthesised as specified in Algorithm [8] We use the ‘MOF
Model-To-Text Transformation’ (MOFM2T) language to specify model-to-text transfor-
mation. For each variable in the source model there will be one variable declaration, for
each action there will be an activation set declared and multiple sets of constraints. For
each control flow having a guard condition there will be an activation set and one set
of constraints. The synthesis of AMPL code for variables, actions, and guards will be
explained in more detail in Section respectively.

3.3.3 Transforming TCGVariables

The ‘MOF Model-To-Text Transformation’ (MOFM2T) template to transform a TCG-
Variable into an AMPL variable declaration is printed in Algorithm {4l Every variable has
one out of three possible types: integer, real and boolean. In AMPL, by default, a variable

30

O ~1 O U = W N~

11
12

N

© 0 ~J O Ot = W

Algorithm 3 Model-to—text transformation from TCGActivity to AMPL model

[template public ActivityToAMPL (act : TCGActivity) |
param pathlength ;
[for(var : TCGVariable | act.variables)|
[VariableToOAMPL (var) /]
|/ for]
[for(action : TCGAction |
[ActionToAMPL (action) /|
|/ for
|[for(cf : TCGControlFlow | act.edges)|
[ControlFlowToAMPL (c¢f) /]
|/ for
[/ template |

act.nodes) |

Algorithm 4 Model-to—text transformation from TCGVariable to AMPL model

[template public VariableToAMPL (var : TCGVariable) |
var [var.name/| [if var.isParameter — false]| {0..pathlength} [/
if] [TypeSpecification (var.type) /] :=1;
[/ template |

[template public Type2AMPL(type : TCGBasicVariableType) |
[if type = integer| : integer >=-10000, <= 10000 [/if]
[if type = boolean| in 0..1 [/if]

[if type = real| >=-10000, <= 10000 [/if]
| / template |

31

is in the domain of real numbers. AMPL also supports variables in the domain of integers.
For integers and real numbers we always need an upper and a lower bound that will be
set to +10000 and —10000 by default. Without any bounds at all some solvers can not
to produce correct results. The boolean domain is modelled by the set expression [0..1],
where 0 corresponds to false.

Since a variable can have different values in each state of the execution, each variable will
be modelled in AMPL as a variable array of fixed size. The size of the array is defined
by the pathlength. When the isParameter attribute of the TCGVariable is true then the
variable is constant and cannot change its value from one state to another, thus we can
model those variables as a single AMPL variable.

3.3.4 Transforming LocalPostConditions

Algorithm 5 Model-to—text transformation from TCGAction to AMPL model

1 [template public ActionToAMPL(action : TCGAction) |

2 set [action.name/| within {0..pathlength} default {};

3 [for(constraint : TCGOCLExpression | action.
localPostconditions) |

4 s.t. [action.name/| post_[action.localPostconditions—>indexOf
(constraint) /] {i in action.name} :

5 [ConstraintToAMPL (constraint) /| ;

6 |/ for|

7 |/template|

8

9 |[template public ConstraintToAMPL(constraint : TCGOCLExpression) |

10 [let func : TCGOCLOperationCallExp |

11 (| ConstraintToAMPL (func.source) /| [func.operation.toOpSymbol
() /] [ConstraintToAMPL (func.arguments) /|)

12 [/let]

13 [let literal : TCGOCLLiteralExp|

14 ([literal.value/|)

15 [/let]

16 [let var : TCGOCLVariableCallExp |

17 (| var.variable .name/| [if var.variable.isParameter = false | |
i [if var.isIsPre| —1 [/if] | [/if])

18 [/let]

19 |/template |

For each TCGAction the activation set is declared as a subset of [0..pathlength] in the
AMPL model. The name of the activation set is the name of the TCGAction. The name
of each TCGAction is guaranteed to be unique within one activity test case graph model,
so name clashes in the AMPL model are prevented (see Section . Each local post—
condition of an action is transformed into an indexed collection of constraints over the
activation set.

In Algorithm [5| the transformation of a TCGAction into AMPL code is specified in the
MOFM2T language. The ActionToAMPL template first generates the declaration of the
activation set, see in line 2| If no entries are added in the data section it is by default an
empty set. In the for-loop the constraint sets are generated for each of the local post—

32

B~ W N

S Ot

conditions of the current action. In AMPL every constraint needs a name and the name
has to be unique. For this reason we are composing the name from the action’s name and
the index of the current constraint in the ordered list of local post—conditions in line
The called Constraint2AMPL template (line {4 specifies the actual re—serialisation of the
OCL constraint, which was parsed in Section in AMPL syntax. As explained in
Section variables are represented as an array containing one value for each state
during the execution. Consequently when a constraint accesses a variable we need to
specify in which state that variable is accessed. That is the point where the index from
the activation set is used. If the variable reference was marked with @pre we are accessing
the variable in the previous state and thus need to subtract one from the index; otherwise
we access the variable at the index from the activation set. This is shown in line [Tl The
serialisation of function calls and literals is straightforward as shown in line [11] and line
. The function toOpSymbol() called in line will generate the appropriate operation
symbol representing the TCGOCLOperationType literal it is called on.

3.3.5 Transforming Guards

Algorithm 6 Model-to—text transformation from TCGControlFlow to AMPL model

[template public ControlFlowToAMPL (c¢f : TCGControlFlow) |
[if cf.guard != null /]
set [cf.name/| within {0..pathlength} default {};
s.t. [cf.name/| guard {i in cf.name} : [ConstraintToAMPL(cf.
guard) /] ;
[/if]

[/ template |

The transformation of guards works analogously to the transformation of local post—
conditions. The transformation is specified in Algorithm [6] A control flow can either
have a single guard or not. Multiple guards are not possible. If there is no guard no code
needs to be produced at all for this control flow. The name of a control flow is guaranteed
to be unique within the activity test case graph model to avoid name clashes. In line
Bl the activation set for the control flow is declared and in line H] the indexed constraint
set for the guard is declared. For the actual re-serialisation of the textual OCL in AMPL
syntax the Constraint ToOAMPL template from Algorithm [5]is used. Guards cannot contain
variable references marked with @pre, thus the optional decrement of the index in line
in Algorithm [5] will never be added for a guard.

3.3.6 Specifying Control Flow Paths in the AMPL Data

To clarify how the control flow path will be symbolically executed and encoded in the
AMPL data we will refer back to the introductory example shown in Figure [3.6l The
corresponding AMPL model produced by the transformation specified in this chapter we
show in Algorithm [7] The last three lines of Algorithm [7] contain the DATA section. In
the DATA section we see that the pathlength is 1 and in the first state the constraints of
the then Action are active. In the initial state the constraint of the then control flow is
active. Since there are no cycles in the path every activation set has at most one entry.

Keep in mind that the semantics of an activity test case graph is like a Petri-net. In
cyclic activity diagrams there are paths that contain one control flow several times. The

33

Ot W N

o 3 S

11
12
13
14
15
16
17
18

Algorithm 7 Example AMPL model with corresponding data section specifying a control
flow path

param Pathlength;

var y{0..Pathlength} : integer >=-10000, <= 10000 := 1;

var x{0..Pathlength} : integer >=-10000, <= 10000 := 1;

set else_ Action within {0..Pathlength} default {};

s.t. else Action postO{i in else Action} : (y[i])=((x]i—-1])
—(100.0));

s.t. else Action postl{i in else Action} : (x[i])=(x[i-1]);

set then Action within {0..Pathlength} default {}

s.t. then Action_ postO{i in then Action} : (y[i])

s.t. then Action_ postl{i in then Action} : (x[i])

set _then within {0..Pathlength} default {};

s.t. then guard{i in then} : (x[i])<=(5.0);

set _else within {0..Pathlength} default {};

s.t. else guard{i in else} : (x[i])>=(6.0);

“(x[i-1]);
(x[i—1]);

DATA

param Pathlength = 1;
set then Action:= 1;
set then:= 0;

activation set will then contain one entry for each state in which a token moves along the
control flow from the source node to the target node. Actions can be executed several times
to move from one state to another, thus the corresponding activation set will then contain
the index of the state after execution of the action for each execution. An algorithm
for transforming a control flow path represented as ordered set of control flows into a
function mapping every instance of an AbstractTCGElement to an activation set is given
in Algorithm [8] Every non—empty activation set belonging to an action having local post—
conditions or a control flow having a guard needs to be expressed in AMPL syntax; the
MOFM2T template for this is shown in Algorithm [9

3.4 Abstract Test Case Generation

In order to generate a test suite with good model coverage we need to select a set of control
flow paths from the activity test case graph that we want to generate test data, and finally
create a unit test for. We use a depth first search or alternatively a breadth first search to
find suitable control flow paths to generate unit tests from. To ensure that the search is
terminating we introduced two parameterised termination conditions. The user can specify
the maximum amount of test cases to be found and the maximum length of control flow
paths to be tested. There are only finitely many control flow paths up to a certain length
within a test case graph. We also specify early infeasible path recognition for the breadth
first search. We solve the AMPL program for a control flow path during search and bound
the search if the AMPL program was reported to be infeasible.

The rest of this section is organized as follows: In Section we introduce basic concepts
and data structures. The algorithms presented in Section will use those concepts and
data structures. The early infeasible path recognition is explained in Section [3.4.3]

34

Algorithm 8 Transformation from a control flow path to a map of activation sets
Require: path := ordered set of TCGControlFlows forming a control flow path
Ensure: activationSet contains activation sets representing the given path
1: activationSet(element : AbstractTCGElement) : Integer Set > Mapping from an
activity test case graph element to a set of integers. Initially all sets are empty.
2.1+ 0
3: for all cf : TCGControlFlow € path do
4 if cf.guard. != null then
5 activationSet(cf).add(i)
6 end if
7: if cf.target.oclIsKindOf(TCGAction) then
8
9

1< i+1
activationSet(cf.target).add(i)
10: end if
11: end for

Algorithm 9 Text template for printing an activation set in AMPL syntax

[template public ActivationSet2AMPLData{element

AbstractTCGElement } /]

[if ActivationSet(element) != {}/]

set [element.name| :=[for integer i : ActivationSet(element)]| |
toString (i) /] [/for] ;

[/ template |

3.4.1 Path Tree

For the algorithms presented in the following section we need some definitions. A control
flow path is represented as a sequence of control flows. An abstract test case is a control
flow path starting at the initial node of the activity and ending at a final node. Any node
with no outgoing control flow is a final node. For two subsequent control flows, a and b,
in a control flow path the OCL expression a.target = b.source is true.

We will need the concept of a path tree to explain the presented algorithms. We define
the path tree node as a triple of an edge, the depth, and the predecessor. The edge is a
reference to a TCGControlFlow within the examined activity test case graph. The depth
is a natural number and predecessor is a reference to another path tree node. The depth
of a path tree node is always one more than the depth of its predecessor. A root node
does not have a predecessor and its depth is 0. In the described algorithms the target of
a currently examined TCGControlFlow is called current node. We call each outgoing edge
of the current node a consequent edge.

3.4.2 Path Search

We find all abstract test cases in the activity test case graph that have not more than
maximum path length control flows. Therefore we construct a path tree from the activity
test case graph. The search can be terminated when the maximum amount of test cases is
reached. We have two possible orders to construct the path tree: breadth first and depth
first.

35

Algorithm 10 Breadth first search algorithm to generate abstract test cases from an

activity test case graph

Require: atcg := A TCGActivity

Require: MaxDepth := maximum path length of abstract test cases found

Require: MaxNoPaths := maximum amount of test cases to be found

Ensure: abstractTestCases := set of at most MaxNoPaths abstract test cases consisting
of at most MaxDepth TCGControlFlows each

1: abstractTestCases < initially empty set of control flow paths > initialisation
2: queue < initially empty queue of path tree nodes

3: for edge : TCGControlFlow € atcg.initialNode.outgoing do

4: queu.put((edge, 0, null)) > Add root path tree nodes
5: end for > end initialisation
6: while queue is not empty and abstractTestCases->size() < MaxNoPaths do

7: ptNode + queue.get() > visit next search tree node from the queue
8: if ptNode.depth < MaxDepth then

9: for edge : TCGControlFlow € currentEdge.edge.target.outgoing do
10: queue.put((edge,ptNode.depth,ptNode)) > Add successor nodes to queue
11: end for
12: end if
13: if currentEdge.edge.target.outgoing->size()=0 then > final node found
14: path < reconstruct control flow path from the edge in the root path tree node

to ptNode.edge by traversing predecessors

15: abstractTestCases.add(path) >

16: end if
17: end while

36

Breadth First Search

In breadth first search we find all control flow paths of length n before a control flow path
of length n + 1 is examined. We use a queue to store path tree nodes and examine them
in first—in—first—out order. Algorithm [10|shows the pseudo code of the algorithm based on
breadth first search. We initially start by generating root path tree nodes for each outgoing
edge of the initial node. In each round one path tree node is retrieved from the queue.
We add a new path tree node to the queue for each consequent edge if the current depth
is smaller than the maximum path length (MaxDepth). When a final node with no more
outgoing edges has been found, we can traverse the path of predecessors back to the root
path tree node and construct an abstract test case. The algorithm will halt when either
all paths up to MaxDepth length have been found or the number of paths found exceeds
the maximum amount of test cases (MaxNoPaths).

Depth First Search

During the depth first search, we will always find the abstract test case next that has the
longest common sub—path with the last found abstract test case. It works exactly like the
breadth first search, just replace the first—in—first—out queue with a last—in—first—out stack
in Algorithm For the implementation this algorithm can be more efficient since it is not
necessary to keep the complete path tree until the search is done. As soon as all successors
of a path tree node have been found, the path tree node can be discarded.

3.4.3 Early Infeasible Path Elimination

When searching for abstract test cases as shown in the subsections before, it may happen
that the constraints along a control flow path found are unsatisfiable. That means there
is no valid input data that will cause the execution of this path. Let us, for example,
consider a control flow path containing one TCGControlFlow with the guard x < 5 and
another TCGControlFlow with the guard z > 10, and in between those two control flows
there is no TCGAction changing the value of x. Obviously, there is no possible value for
x fulfilling those two constraints. When no valid input data for a certain control flow path
can be found we call that control flow path an infeasible path.

Advantages of Early Infeasible Path Recognition

The most important advantage of infeasible path recognition is that we can bound the
search for abstract test cases. If a control flow path is infeasible then no extension of that
control flow path will be feasible. The number of control flow paths found may grow ex-
ponentially with the maximum path length. If we assume a large graph where, in average,
each node has two outgoing edges we will get 1024 paths of length 10. When one control
flow path of length 3 was already infeasible then there are 128 infeasible paths of length
10. We can avoid many fruitless searches by excluding infeasible paths as early as possible.
When the abstract test case generating algorithm is capable of infeasible path recognition
the user can also control that the set of abstract test cases found is finite by adding addi-
tional control flows before each loop in the activity diagram. The guard of the additionally
added control flow must contain a constraint on the loop variant. Thus most control flow
paths containing arbitrary many iterations of this loop will be excluded from the abstract
test case generation. For example, when we model a simple counter loop decreasing some
counter variable ¢ to 0 we can specify in the guard before the loop that the counter vari-

37

able may be between 3 and 5. In this case the path search algorithm with infeasible path
recognition will find only those paths where the loop is iterated between three and five
times.

Furthermore, it is useless to generate abstract test cases that are infeasible since infeasible
abstract test cases can not be transformed into test cases.

The Algorithm

When using the breadth first or the depth first search approach we can generate abstract
test cases and pass them on to the next step in the unit test generation algorithm, where
infeasible paths will be detected. When we want to check whether a currently examined
control flow sub path is a feasible path we will interleave the[Abstract Test Case Generation|
step with the [Specific Test Data Generation| step.

Only a slight modification of Algorithm is necessary to enable early infeasible path
elimination for our breadth first search based algorithm: the condition in line |§| needs to
be extended. It controls whether a path tree node will be added for the consequent edges
or not. We additionally need to check whether the control flow path, which is represented
by the current path tree node (ptNode), is feasible. The check for feasibility is done by
generating the AMPL data for the control flow path represented by the current path tree
node and solving the problem as explained in Section [3.5.2] The generation of the AMPL
data from a control flow path was explained in Section For infeasible path detection
we will analyse the indication returned from the solver. If the solver reports ‘solved’,
‘solved?’, or ‘unbound’ the examined control flow path is feasible. If the solver reports
‘infeasible’ or ‘failure’ we assume the examined control flow path to be infeasible.

3.5 Specific Test Data Generation

For every abstract test case found during [Abstract Test Case Generation| we want to
generate a test case. A test case contains input values for every parameter of the function
under test, initial values for fields, and the corresponding expected output values. Test
cases are stored in a unit test model. From a unit test model we can easily generate
unit tests for any programming language. In Section we will present a MOFM2T
template that generates C++ unit tests from a unit test model. The unit test meta model
is explained in Section [3.5.1]

In order to get numerical values for the parameters and fields of the unit under test we
have a constraint satisfaction problem solved for each abstract test case. The constraint
satisfaction problem to solve for each abstract test case is encoded as AMPL program
according to the specification given in Section [3.3] The AMPL program will be solved
by one of the solvers interfacing the AMPL system. An overview of the solvers we tried
out for this thesis is given in Section [3.5.4] How we interact with the AMPL system, is
explained in more detail in Section When testing, often errors are triggered by test
data that is exactly on the boundary of one or more decisions. For example, when we test
the decision if x<=5 then... the test value x = 5 will cause the test to fail when the <
has been replaced by a <; other test values will not trigger this fault. How we can ensure
to find such boundary values, is explained in Section [3.5.6]

The AMPL encoding ensures that we can use the same AMPL model for every control
flow path within one activity. Each control flow path and any sub—path within an activity
can be specified via the AMPL data, which is not part of the AMPL model and can be
modified interactively. The fact that we use the same model for several solver invocations

38

TestCase]9 TestSuite | su SUT
tests 0.* name : String
TCGVariable 4 4 packageName : String
(from activity test case graph)
isParameter : boolean Vaﬁ?asgi?rvame 0..% 0. *|initvalues function TCGActivity
usage : TCGVariableUsage T Value 0.1 . activity |(from activity test case graph)
- name : String . FunctionCall 0.1] className : String
0..x|variables oElliE & alanlil 0.. name : String packageName : String
parameters -~

Figure 3.7: The unit test meta model

in a row enables us to use the warm start capabilities of many solvers to speed up the
computation, as we will show in Section [3.5.5]

3.5.1 The Unit Test Meta Model

The unit test model serves as interface between the [Specific Test Data Generation|and the
[Unit Test Synthesisl All information needed to build a compilable unit test for the function
that is modelled by the activity is contained in a unit test model. The unit test model is
completely independent from the programming language and the unit test framework used
for testing.

In Figure we depict the meta model of the unit test model. The root element of a
unit test model is a TestSuite. A TestSuite can contain several TestCases. Each TestCase
consists of two sets of Values and a FunctionCall. The Values in the initValues reference
are meant to be used for initialisation of fields. The Values referenced by the testForValue
reference specify which value the corresponding fields need to hold after the tested function
has been executed. If any field in the system under test does not hold the specified value
the test case has failed. The FunctionCall held by the function reference has a name and
a reference to the activity test case graph specifying the behaviour of the function under
test. The FunctionCall also contains Values in the parameters reference. The Values
referenced by the FunctionCall’s parameters reference holds the input arguments to pass
to the function under test.

3.5.2 Solving a Constraint Satisfaction Problem with AMPL

For each abstract test case a constraint satisfaction problem needs to be solved in order
to obtain numerical values that can be used as test data in a unit test. The constraint
satisfaction problem is encoded in AMPL and consists of the AMPL model that is constant
for an activity test case graph and the AMPL data that is generated for each abstract test
case.

The solving of constraint satisfaction problems is done by a solver hooked to AMPL. We
start an AMPL instance in a separate process and communicate with this process through
its standard input and output streams. First, we load the AMPL model corresponding
to the activity test case graph into the AMPL console. We will also ask the user which
solver to use for all control flow paths within this model and set AMPL’s solver options
accordingly through the AMPL console. Then we produce test data for each abstract test
case.

To produce test data for one abstract test case or control flow path we reset the data
currently loaded in AMPL, encode the control flow path as AMPL data according to the
specification in Section [3.3.6] and load the new data in the AMPL console. Now we have

39

AMPL invoke the selected solver. Depending on the solver and the problem the loaded

constraint satisfaction problem is an instance of, the computation time varies and we can

get one of five possible indications from the solver:

solved The solver was able to compute a valid solution to the problem.

solved? The solver heuristically computed an answer but can not prove that it is correct
or optimal.

infeasible There is no valid input data for the given control flow path or the used heuristics
was not lucky.

unbound The given objective function has no upper bound.

failure There has been an error condition in the solver routine, for example, division by
Zero.

If the solver indicates ‘solved’ or ‘solved?’ we will use the values stored in the AMPL

variables to produce test cases (Section[3.5.3)). For all other indications we can not produce

a test case from the computed data.

3.5.3 Storing the Variable Values in a Unit Test Case Model

Algorithm 11 Algorithm transforming a solution of a CSP into a TestCase
Require: testsuite := A TestSuite element used as root element to contain the produced
test cases
Require: A solver has successfully solved a constraint satisfaction problem
Ensure: testsuite contains a TestCase for the last successfully solved abstract test case
1: testCase + a new TestCase instance
2: functionCall <— a new FunctionCall instance
3: testCase.function < functionCall
4: for tcgvar : TCGBasicVariable € tcgActivity->variables do
5 if tcgvar.isParameter = false then
6: v < createValue(tcgvar)
7: v.value <~ AMPL(tcgvar.name)|0]
8
9

testCase.initValues.add(v)
v < createValue(tcgvar)

10: v.value < AMPL(tcgvar.name)|last]
11: testCase.testForValue.add(v)

12: else

13: v < createValue(tcgvar)

14: v.value «+ AMPL(tcgvar.name)

15: if tcgvar.usage = in parameter then
16: functionCall.parameters.add(v)
17: end if

18: if tcgvar.usage = out parameter or tcgvar.usage = return parameter then
19: testCase.testForValue.add(v)

20: end if

21: end if

22: end for

When a solver successfully computed an answer for a given constraint satisfaction problem
we read the assigned values and store them in a test case model. In Algorithm [IT] we see
the pseudo code of the algorithm creating a TestCase object from the values computed by
the constraint solver. We assume that the function AMPL(‘x’) returns the content of the

40

Solver Lp MILP COP OP SAT SMT FCSP MINLP

Cplex v v

IlogCP|27] v v v v v
GeCoDE[28] v v v

JaCoP v v
Couenne[29] v v v o/ v
Gurobi v v

LPsolve[30] v v

Minos v v

Table 3.1: List of solvers and problems they can solve.

AMPL variable or variable array x as array. The function createValue(var : TCGVariable)
creates a new Value object with its name attribute set to var.name and its variable refer-
ence pointing to var.

The root element of a test case model is a TestSuite. We will create one TestSuite ele-
ment for a TCGActivity. For each abstract test case on that TCGActivity that has been
successfully solved we will create one TestCase and add it to the TestSuite. For each TCG-
Variable with its isParameter attribute set to false in the TCGActivity we will retrieve an
array of values from the AMPL process. The first value in this array is stored in a Value
element. The name of this Value element is set to the name of the TCGVariable and it
is added to the initValues reference of the TestCase. In the same way, the last element
from the array retrieved from AMPL will be stored in a Value element and stored in the
testForValue reference. A FunctionCall with the same name as the TCGActivity will be
created. For each TCGVariable with its isParameter attribute set to true a single value
will be retrieved from AMPL, and, depending on the usage property of the TCG Variable,
the produced Value element will be stored either in the FunctionCall’s parameters or the
TestCase’s testForValue reference. For out parameters and return parameters the Value
elements are stored in the testForValue set. For in parameters the Value element is stored
in the FunctionCall’s parameters.

3.5.4 Review of Available Solvers

A central point of our approach for unit test generation is the application of state—of—
the—art constraint solvers to the constraint satisfaction problem that we have generated
from a UML activity diagram. As we have explained in Section there are several
specializations of the constraint satisfaction problem for which algorithms or heuristics
exist. Every available solver implements one or more algorithms or heuristics. Thus a
solver is suitable for instances of one or more of the presented problems. Table contains
in each row the name of the solver and a check mark for each problem we have successfully
tested it for.

3.5.5 Warm Start Capabilities

To speed up the computation we use the warm start capabilities of AMPL and most of its
solvers. A warm start means that we are solving the same constraint satisfaction problem
multiple times in a row but each time with different data. In subsequent runs the solver can
reuse knowledge it has gained throughout previous runs and thus generate solutions faster.
Using the warm start capabilities requires all problems being solved in the same process

41

- Y

1 1 25 V 4-7 6 27 3

Figure 3.8: Venn diagrams for different paths and their ordering

and keeping the AMPL model constant. Keeping the AMPL model constant is achieved by
the transformation of a TCGActivity to an AMPL model, which allows specifying control
flow paths in the data.

Even if the solver is changed between two runs or the solver does not build internal

knowledge about the given problem AMPL will store the last answer computed. Many
algorithms need a starting point and they will use the last answer computed. In Figure 3.8
we show a path tree. Each leal node represents an abstract test case; each intermediate
node represents a sub—path from the initial node to some node in the activity test case
graph. At each node in the path tree there is a Venn diagram visualising the feasible set
of input data for that sub—path. Adding a constraint will never increase the feasible set.
Consequently, the feasible set of a path extending another path will always be smaller than
the feasible set of its predecessor. The feasible set of a sub—path will always be exactly the
union of the feasible set of its successors and the intersection of feasible sets of siblings in
the path tree will always be empty. If that were not the case there would be input data
for which the control flow is unspecified or non—deterministic. The number on the left of
each leaf node gives the order in which the leaf nodes are found by a depth first search
and the number on the right of each leaf node gives the order in which they are found by
a breadth first search.
Usually, it is easier to solve a constraint satisfaction problem if we know a starting point
that fulfils all constraints except one instead of a starting point violating the majority of the
constraints. If we have a solution for a sub—path it is already a feasible solution for one of
its successors. If we have a solution for a leaf node we can easily obtain the solution for one
of its siblings. Siblings in the path tree share all but one guard condition that means there
is only one condition violated if we use the solution from a sibling as starting point. For
optimisation problems we have a high chance to move into the feasible region of its sibling
by applying a simple local steepest descent search on the objective function augmented by
quadratic penalty terms. In the order produced by depth first search, abstract test cases
sharing a long common sub—path are next to each other and will, consequently, be solved
right after each other. In breadth first order we can see that the fourth abstract test case
will use a starting point not fulfilling any constraint for this path. Especially when we
solve the constraint satisfaction problems for the intermediate nodes in the path tree - as
it is done for the early infeasible path recognition explained in Section - we should
memorise the solutions found and set the starting points accordingly before we solve the
constraint satisfaction problem for a subsequent path tree node.

42

3.5.6 Boundary Value Analysis

As already motivated, a solution at the boundary of the feasible set for a certain abstract
test case is more valuable than other solutions within the feasible set. For linear problems
the simplex algorithm will automatically generate only boundary values since it is the
nature of the simplex algorithm to move along the exposed points of a polyeder. For all
other methods and generating a specific boundary value is a bit more complicated.

So far the solved constraint satisfaction problems do not contain an optimisation constraint.
Thus, all algorithms terminate as soon as they found any feasible point. In AMPL we can
interactively add an objective function before launching the solver for a certain problem.
We add an objective function in a way that the optimal point is somewhere at the boundary
of the feasible set. Any linear objective function will serve this purpose. After the addition
of a linear objective function three things can happen: either the solver returns a boundary
value in the next run, or the solver reports that the problem is unbounded, or the solving
time for the problem suddenly increases enormously. In the first case everything went
fine. If the feasible region is a convex set not containing infinity this will always be the
case. The second case indicates that the direction of the objective function points into a
direction, where the feasible set is open. In this case we can change the direction of the
objective function and try again to hit a boundary. The last case is especially a problem of
mixed integer non-linear programs and optimisation problems. It is not too hard to find
a feasible solution for one of these problems, when there are enough solutions. Finding an
optimal solution for a mixed integer or non—linear program is much harder. We actually
don’t require a global optimum; a local optimum is at the boundary of the feasible region
as well. In such a case we can first solve the problem without objective, and when a
feasible starting point is available, we apply a local search on the problem with objective
and we will not necessarily obtain the global maximum but a local maximum that is at
the boundary of the feasible set. We suggest using the last explained procedure to find as
many boundary values for each abstract test case as the user demands. The used objective
functions may also be provided by the user. We have successfully tested this procedure for
mixed integer non-linear programs with the solvers Couenne to find a feasible point and
Minos to perform the local search (Section[£.2.4). In Section [£.3.2]we will also demonstrate
in our case study that generating test data at a specific boundary of the feasible region
does not increase the overall runtime of our algorithm at all.

3.6 Unit Test Synthesis

From a unit test model and the corresponding activity test case graph model we are able
to write compilable unit test in any language, using any unit test framework we want. In
this Section we will explain an example MOFM2T template (Algorithm that generates
C-++ unit tests suitable to test C functions. We use the Boost test library as unit test
framework.

First, we need to include the Boost header and the headers for the system under test. For
each TestCase in the TestSuite we print one test case. What is printed for each TestCase
can be found in the lines[8H34l The central element of each test case is a call to the function
under test (lines . Every time data is needed either for initialisation or to verify the
results of the function call we will use a value stored inside a Value element of the unit test
model. Before the function call we initialise the fields of the system under test and create
local variables to pass as input arguments into the function. We also declare uninitialised
local variables to receive the output parameters and the return value from the function

43

—_

~N S U s W

10
11
12
13
14
15
16
17
18

19
20
21
22
23

24

25
26

27
28
29
30
31
32
33
34
35
3

(@]

Algorithm 12 MOFM2T template of a C++ unit test using Boost test library

[template public UnitTestToBoostUnitTest(ts : TestSuite) { int
count = —1; TCGVariable return = ""; }]
#define BOOST TEST MAIN MyTest
#include <boost/test/included /unit_test.hpp>
[for(sut : SUT | ts.sut)]
#include |sut.packageName/|/|sut.name/|.h
|/ for]

[for(tc : TestCase | ts.tests) { count = count + 1; TCGVariable

ret = tc.function.activity.variables—>select (v : v.usage
return parameter) }|

BOOST AUTO_TEST CASE(test [count /]){

//field initialisation

[for(v : Value | tc.initValues) |

[v.name /| = [v.value/|;
[/ for]
//input parameter declaration
[for(v : Value | tc.function.parameters)|
const |[v.type/] [v.name/| — [v.value/];
[/ for]

//output parameter declarations
[for(var : TCGVariable | tc.function.activity.variables—>

select (var : TCGVariable | var.usage = out parameter)) |
[var.type /] |[var.name/];
|/ for]

[ret.type/] [ret.name/];
//call function under test
[ret .name/] = [tc.function.name/|([for(var : TCGVariable |

tc.function.activity.variables—select (v : TCGVariable |
v.isParameter = true and not v.usage = return parameter))

separator (’,’)] &[var.name/| [/for])
//check fields , return parameter and output parameters for
correct values
[for(v : Value | tc.testForValue)|
[if(v.variable.variableType=boolean or v.variable.
variableType = integer) |
BOOST CHECK EQUAL([v.name/|,[v.value/]|);
[/if]
[if(v.variable.variableType=real) |
BOOST WARN EQUAL(|v.name /| ,[v.value/|);
BOOST CHECK CLOSE(|v.name/|,[v.value/], 0.001);
[/if]
[/ for|
}
|/ for]
[/ template |

44

call. After the function call every variable holding a value that needs to be checked will be
checked. For variables in a discrete domain we check for equalities and for floating point
variables we check for similarity. Thus, a test will not fail due to a small rounding error,
but we will generate a warning if a small rounding error occurred (line [30)).

45

4 Evaluation

We implemented the algorithm explained in Chapter [3| as Eclipse plug—in, successfully
tested it for a set of academic problems, and performed a case study with a real world model
from Airbus. We point out that the transparent interchangeability of solvers is indeed one
of the biggest advantages of the approach presented in this thesis. The limitations of
our approach will be discussed in Section as well as missing but easily implementable
features increasing the usability.

4.1 Experiment Description

With the test models presented in Sections @.2] and (4.3 we performed different experiments
such as measuring the overall runtime and how it depends on different parameters of the
algorithms described in Sections [3.4] and [3.5] For all academic models we ran the gener-
ated test cases against an implementation and for some of them we manually performed
systematic mutation tests. The details of the performed experiments are described in this
section. The results will be presented respectively for each test model in Sections and
4.3l

All experiments have been performed on a standard laptop with an Intel® core"i5 quad
core processor and Microsoft® Windows 32 bit operating system.

4.1.1 Runtime Measurement

The total runtime of our algorithm is mainly influenced by two factors: the time necessary
to solve one instance of the mathematical problem and the total count of problems to be
solved during unit test generation. The total count of problems being solved depends on
the model and the parameters used for the [Abstract Test Case Generation| explained in
Section For an acyclic activity diagram there are finitely many control flow paths and
abstract test cases. Assuming an activity diagram with a tree-like control flow graph of
depth 10 and a fanout of two in each node we get a total of 2!0 abstract test cases. With
normal breadth first or depth first path search we will have to solve one mathematical
program for each abstract test case in order to obtain test data, or find out that the
control flow path is infeasible. In general, we can say the number of control flow paths
in an activity diagram grows exponentially with the number of decisions in the activity
diagram; so does the number of problems being solved.

For the [Abstract Test Case Generation| we examine the influence of three parameters on
the overall runtime. That is the maximum path length, the maximum number of test
cases, and the number of unchecked steps. All three of those parameters directly influence
the amount of problems being solved in total and therefore influence the runtime. The
maximum path length bounds the path search in depth and ensures the termination of the
presented algorithm. The effect of this parameter has been explained in detail in Section
For an activity diagram containing at least two different cycles the number of
abstract test cases grows exponentially with the maximum path length. The total amount
of control flow paths in a graph consisting of two alternative cycles of length a can be

47

calculated with equation (4.1]) where ,,, denotes the maximum path length.

lim/a]

> o (4.1)
n=1

The number of abstract test cases that need to be checked whether valid test data can be
obtained for them grows linearly with the maximum number of test cases. The count of
mathematical problems to be solved is the maximum number of test cases divided by the
chance that any abstract test case found is an infeasible path. Consequently, the overall
runtime should depend linearly on the maximum number of test cases.

The parameter for unchecked steps plays a role when the early infeasible path recognition is
activated (Section . The early infeasible path elimination will cut off a huge amount
of abstract test cases when a sub—path is found to be infeasible, but it will also slightly
increase the count of problems to be solved in the worst case. We again consider the
tree—like control flow graph with a fanout of two and a depth of ten. We have to solve one
mathematical program for each abstract test case to obtain the test data and during the
path search we will solve a mathematical program for several sub-paths. Assuming all 2'°
abstract test cases are feasible paths the number of problems to be solved is symbolically
given in equation (4.2)). I, is the number of unchecked steps.

10

210 ¢ > " (4.2)

n=ly+1,An=1l,+1

When we determine already after the third decision one of the 23 control flow sub—paths
to be infeasible the total number of mathematical programs being solved will reduce by
%. The fewer unchecked steps we use, the more mathematical problems will be solved in
vain if all paths are feasible, but the earlier we get the chance to eliminate infeasible paths,
the larger is the fraction of the search space we can directly cut off when an infeasible
path is recognised. The optimal value for the unchecked steps parameter is a trade—off
between solving unnecessarily many mathematical problems and not being able to cut off
large portions of infeasible abstract test cases early enough.

The runtime of a single solver run for those test models that require decidable problems
with a tractable algorithm to be solved is usually below 0.1 seconds. For problems with
intractable algorithms the runtime also stays below one second. A slight advantage in
terms of solving speed has a large impact on the overall runtime since the solver consumes
more than 95% of the overall runtime. For undecidable problems there is the problem that
the heuristic might run forever and we need a good time limit for that. When the solver
time limit is set too low, we will interrupt the solver many times too early although it
would have found feasible test data for the current path. This will in total result in fewer
test cases than possible. When the time limit is too large we can waste hours waiting for
the solver and realizing that it will not return.

We measured the overall runtime of our algorithm transforming a UML Activity into a
compileable unit test for each of the models presented in the following section. For every
example model and the case study we varied some of the parameters such as the maximum
path length, the maximum number of test cases, the number of unchecked steps, the used
solver and its options. We plot the graphs and discuss the experimental results in Sections

M2 and 4.3

48

4.1.2 Mutation Testing

For a selection of the academic test models presented in Section [£.2] we manually performed
mutation tests. Therefore we selected a set of expressions from the implementation and
defined mutation operators and applied them systematically to the selected expressions.
For each manually generated mutant we ran the automatically generated test suite and
counted the failed tests.

A selected expression could be the predicate of a control flow statement or an assignment.
As mutation operators we used the replacement of a single operation within the set of
selected expressions. For example we replaced != by == or >= by <=. In every resulting
mutant exactly one operation has been replaced. Since we produced one test case for every
possible control flow path in the activity diagram we expect the generated test to find most
errors.

4.2 Academic Examples

In order to demonstrate the strength of our approach we built a set of test models. Each test
model requires a different instance of the mathematical programming problems presented
in the [Mathematical Foundationsg| to be solved in order to generate test data. Each solver
is suitable for a set of problems, and for several problems there are multiple solvers that
can be used. We explain of which problem the mathematical program generated for each
test model is an instance and justify which solvers are suitable to solve it.

For each test model we generated test cases with the depth first search explained in Section
3.4.2) using the early infeasible path elimination explained in Section [(3.4.3] With each
selected solver we generated test cases for the test model using different parameters for the
depth first search and early infeasible path recognition. We measured the total runtime
of our algorithm and plot the results of the performed runtime measurement experiments
that have been explained in detail in Section For the case study we also demonstrate
that it is no additional effort to generate boundary values as test data.

Finally, we built a C implementation of the function modelled by the test model and execute
the generated test suite against this implementation. We also manually introduced some
errors into the implementation and verified that the produced test suite contains test cases
that fail on those errors and that all test pass when the implementation is correct. The
manual mutation testing procedure is explained in more detail in Section {.1.2]

The rest of this section is organized as follows: we will start Section with a test model
that requires instances of an easy problem to be solved in order to obtain test data. By easy
we mean decidable problems with a tractable algorithm. Then we will explain in Sections
how we generated test data for problems that require NP-hard problems to be
solved. Finally, we will also present in Section a test model that require an instance
of an undecidable problem to be solved in order to obtain test data. That means we can
only generate test data with heuristic methods.

4.2.1 Triangle Classificator (LP)

We start with a model that contains only linear equations and inequalities and variables
in R. Figure shows the activity diagram of a function taking three floating point
values as input and returning a floating point value indicating whether the input variables
could possibly be the side lengths of an equilateral, isosceles, or scalene triangle. The
mathematical problem to solve for this model is a linear program and can be solved with
the simplex method as implemented in Cplex and LPsolve or an interior point method as

49

x+0.1<=y+7]

[z+0.1<=x+y] [y>=0+0.01] ‘

A R A é
AV

[y+0.1<=x+z] [x>=0+0.01] [z>=0+0.1]

[x+0.1<=y] [y>=z+0.1] [z>=x+0.1] m ,
/
scalane(Z ~7 /@
«LocalPostCon... Iﬁ «LocalPostCon...
{classification=-1}

{classification=1}
) isosceles(_ _ |
[x=7] «LocalPostCon... lﬁ «LocalPostCondtion» Iﬁ

{classification=2} {{OCL} classification=3}
1
eqgilateral t
_______________________________ J

Figure 4.1: Activity diagram of a triangle classificator using only linear arithmetic con-
straints (LP)

\

7
ly>=x+2] [z>=x+y] R4

[x>=z+y]

Bg LP
600 - AasMT
B
~ 400
£
200 |

I I I I \
Cplex LPsolve Couenne Minos Gurobi GeCoDE

solver

Figure 4.2: Runtime of unit test generation for the two triangle classificator models using
different solvers

50

[(x>=z+y) or (y>=x+2z) or (z>=x+y)or(x<=0)or(y<=0)or(z<=0)] >C)
invalid

~

«LocalPostCond...
classification=-1
«LocalPostCond...
classification=1

[(x<y+z) and (y<x+Z) and (z<x+y)and(x>0) and (y>0)and(z>0)]

unknown [not (x=y) or not (y=2)] [not(x=y) and not(y=2z) and not (x=z)] ’L' scalane l
[(x=y)and (y = 2)] [(x=y)or(x=2)or(y=2)] b
«LocalPostCondtion»

— — eqilateral isosceles
classification=3 « L0C§|P0§tC0nd. .
classification=2 %

~

Figure 4.3: Activity diagram of a triangle classificator using logical operations (SMT')

implemented by Couenne, Minos and Gurobi.

Generating test data for every feasible abstract test case takes for every tested solver less
than one second. There are in total 19 possible test cases resulting from this model.
Figure shows the average runtime consumed for test generation from this model using
the mentioned solvers. Couenne is actually targeted at the much more general problem
of mixed integer non-linear programming and, therefore, performs unnecessary overhead
when used for solving a linear program. Minos and Gurobi implement an interior point
method suitable to solve convex optimisation problems which is almost as fast as the
simplex implementations of LPsolve and Cplex that are specialized for linear programming
and mixed integer linear programming.

We manually performed the mutation testing as described in Section for this test
model. The following operator replacements have been made in the C code: &&— ||,
>—<=, +—-, | | =>&&, ==—1=. This resulted in 20 mutants of which 16 have been detected
by our automatically generated test cases. We have checked the remaining 4 undetected
mutants all resulting from the mutation operator &&— || and found them equivalent; they
therefore can not be detected. That means 100% of the detectable mutants have been
detected successfully.

4.2.2 Triangle Classificator with Logical Constraints (SMT)

Since the formulation of the constraints by means of non—strict inequalities only is cumber-
some we reformulated the model and used logical operations as well as strict inequalities
in the guards and local post—conditions and yield the much more intuitive model depicted
in Figure [£.3] The variables are now all in the domain of integers and we used logical op-
erations as well as equalities and inequalities, consequently, this model will be transformed
into an instance of a satisfiable modulo theories problem. Currently there are three solvers
available for AMPL that can handle logical constraints: IlogCP, GeCoDE, and JaCoP.
Since for TlogCP a license is needed we performed our experiments with GeCoDE and Ja-
CoP. In total there are 4 possible test cases to be found and our algorithm took 110ms to
generate all of them using GeCoDE. This time is also listed in the Figure JaCoP did
not succeed to solve the problem. We use +10000 and -10000 as upper and lower bounds
for any variable by default. JaCoP exited indicating that too many recursive method calls
have been made. After we reduced the bounds of the variables to 100 JaCoP was able to
solve the problem but took on average 24 seconds. We therefore do not recommend JaCoP
as constraint solver for SM'T problems.

o1

[(s0<>00) or (s1<>01) or (s2<>02) or (s3<>03)]

[sO or 51] [sO or s1 or s2]

toggle s2 toggle s
[not sO and not sl] [not sO and not s1 and not 52

«LocalPostC...
(s0<>50@pre} «LocalPostC... «LocalPostC... «LocalPostC...
{sl<>sl@pre} {s2<>s2@pre} {s3<>s3@pre}

@ [s0=00 and s1=01 and s2=02 and s3=03]

Figure 4.4: Activity diagram of a binary counter incrementing a 4 bit register

4.2.3 Binary Counter (SAT)

In Figure we list the activity diagram of a binary counter. The variables s0 to s3 hold
the current state of the counter. The activity models a function with four input arguments
00 to 03 denoting the target counter state. During execution the function will increment
the binary counter stepwise until the current state of the counter is the same as the target
counter state. Then the function returns. In contrast to the models presented so far this
activity diagram contains a cycle and, consequently, there are infinitely many abstract test
cases and we need to bound the [Abstract Test Case Generationl

All variables used are in B and we use logical operations in the formulation of constraints.
In addition to the basic logical operations we also used the equality and inequality relation
for boolean variables. The equality of two boolean variables x and y can be expressed as
x AyV —x A -y and the inequality as —x Ay V x A —y. We consider the problem to solve in
order to find test data for this activity an instance of the Boolean Satisfiability Problem
(SAT). The contained equalities and inequalities could also be considered as expressions
in a theory defining equality and inequality over boolean variables. Consequently, the
formulation could also be seen as SMT instance.

Experiments

We performed several experiments with this example. First, we transformed the UML
activity diagram into an activity test case graph and then into an AMPL model. We
verified by hand that the constraints in the AMPL model indeed express the same semantic
as the OCL guard conditions and OCL local post—conditions in the UML model, and that
every embedded OCL constraint contained in the test model shows up in the AMPL model.
We implemented the C function that is modelled by this activity diagram in order to run
the generated unit tests against it later. Then we generated test cases for the model using
GeCoDE and JaCoP. We used the depth first search algorithm with early infeasible path
recognition as explained in Section to find test cases for this activity diagram. We
generated all test cases up to a control flow path length of 80. In the right graph in Figure
we show the total number of test cases depending on the maximum path length.We
also measured the overall runtime of the unit—test generation process. On the left hand
side of Figure we see the total runtime needed by our algorithm to find all test cases up
to a given maximum path length using different configurations as explained in the following
paragraphs. —]and [- |show the runtime of of our algorithm using GeCoDE and JaCoP
for the model depicted in Figure

52

- JaCoP SAT GeCoDE SAT ----GeCoDE SMT
—— GeCoDE+pre—solve- - JaCoP+pre—solve

1014 L [I I I I i T 7\3
1013 | 18
1h -+ = & 60 5T
1012 g // = — = g 4;9
E E /,// ’_x’/ . 7 E LS 40 41
11 | L //' ’ | - X |
g 107 ¢ z 5> 33
g= i e T 1% x
100t e E= %
E 7 _ .;,}7‘) = E T@ 20 [1><7 N
109 =2 13 10
£ _/.;V E 4 x
10° E i i i i E oL]
20 40 60 80 10 20 30 40 50 60 70 80 90
maximum path length maximum path length

Figure 4.5: Runtime consumed by our implementation to generate all test cases for the
binary counter model depending on the maximum path length. We used depth
first search and different solvers as well as two alternative model formulations.

Alternative Formulation of Constraints As we have seen, the embedded OCL constraints
contain equalities and inequalities over boolean variables in addition to the basic boolean
operations. We replaced the equalities and inequalities with the equivalent boolean for-
mula. Not all embedded OCL constraints were given in conjunctive normal form. Moreover
the produced AMPL model will nevertheless still contain equalities, due to the continuity
constraints that will be added automatically as explained in Section We performed
the runtime test also for the slightly modified model. The result is shown in the left graph
in Figure []and [-]indicate the runtime of our algorithm using GeCoDE and
JaCoP as solvers for the activity diagram modified as explained above. [--]depicts the
runtime of our algorithm for the activity diagram as shown in Figure using GeCoDE
as solver. When comparing[-—]and [--]we see that for the solver it does not matter how
the logical constraints are formulated. Those two plots are almost identical.

Effect of AMPL's Pre-Solve Phase AMPL tries to tighten the bounds of variables,
eliminate some variables, and also eliminate some constraints that have no effect on the
feasible set before passing the problem to the solver. This step is called the pre—solve
phase and is activated by default. For the modified version of the original model we
experienced a serious memory leak in AMPL caused by AMPL’s pre—solve phase. Thus
we deactivated the pre—solve phase. The pre—solve phase caused AMPL to consume huge
amounts of memory; and AMPL crashed when trying to allocate more than two gigabyte.
By deactivating the pre-solve phase the runtime of our algorithm for the initial binary
counter model using equalities increases by a factor of at least 100. This is due to the
fact that most problem instances can already be identified as infeasible by the pre—solve
phase after a few microseconds while solving the problem with a solver at least takes the
time to start the solver in an external process. In Figure the [—] plot denotes the
runtime of the algorithm using GeCoDE as solver with the pre—solve phase enabled and
[--]plots the runtime with AMPL’s pre-solve phase disabled. Both plots are using the

53

initial model. The plots [[-=]and [--] show the runtime for the modified model with the
pre—solve phase deactivated, since it was not possible to generate test data for the modified

model otherwise. As we can see our algorithm is much faster with AMPL’s pre—solve phase
enabled.

Mutation Testing TFor this model we also performed manual mutation testing with the
resulting test suite. We generated the test suite for all paths up to a maximum length of 40
using GeCoDE as solver. The test suite contains 25 test cases. The C implementation of
the binary counter is straightforward consisting of a do while loop and the bit flipping is
done in the loop body. We applied the following mutations to the predicate of the do while
loop in our source code: | | —&&, !=—==, |=—<, '=—>. This results in 15 different mutants
out of which 10 have been detected by the generated test suite, 66.6% of the generated
mutants have been detected.

Discussion As already explained in Section the SAT problem is decidable but in
its general form there is no tractable algorithm for it. Still, our problem size will stay
below the threshold where the solver needs more than a second to solve it. The number
of solver invocations grows exponentially with the maximum path length when generating
one test case per feasible control flow path through the activity diagram. In order to find
the 49 possible test cases with a control flow path length of up to 70 our implementation
solved 421901 SAT instances. Thus any slight advantage of one solver over the other or
the way to formulate a constraint in terms of solving speed has an enormous impact on
the overall runtime of the algorithm. As we saw during the experiment, replacing equal-
ities and inequalities with boolean formulas has no impact on the runtime but disabling
AMPL’s pre—solve phase had a negative influence on the overall runtime of our algorithm.
Furthermore, the plots in Figure reveal a super—exponential growth of the runtime of
our implementation although we actually expected only exponential growth of runtime for
our algorithm.

4.2.4 Exploding Tyres (MINLP)

Figure shows an activity modelling the physical process of pumping air into a tyre.
The relations between volume, amount of air (n), pressure, and temperature are described
by the ideal gas equation. The equations for adiabatic compression of air during one
pump stroke states a non—convex relation between these physical measures. Additionally
we introduced the boolean variables tyreExploded and tyreMelted, which will be set when
the pressure or temperature inside the tyre raised above a certain threshold. Moreover
we introduce an integer loop counter that determines how many pump strokes will be
executed. This model requires mixed integer non-linear programs to be solved in order
to generate test data. The solver Couenne from the COIN-OR project is suitable for this
task. Couenne is the only mixed integer non-linear programming solver we tested.

Runtime Measurement

Mixed integer non-linear programs are in general undecidable. Consequently, it may hap-
pen that a solver trying to solve an instance of an MINLP runs infinitely long. It usually
uses less than one minute to generate a feasible solution for one problem instance. But it
also might run for a very long time or even infinitely long.

In Figure 4.7] we depict the overall runtime of the test generation for this model using

P

54

p
pumpExtended
pumps: Integer
volume: Real
pumpVolume: Real
tyreMelted: Boolean
tyreBursted: Boolean

[(pressure*volume)=0.287058*n*temp]
[pumpVolume>=0.001] [volume>=2]

increase air amount

[n>=0.5] [temp>=300]

«LocalPostCondtion»
adiabatic compression
{pressure@pre*((volume+pumpVolume)*(volume+pumpVolume))=pressure*volume*volume}

«LocalPostCondtion»

[temp<=399.9]

«LocalPostCondtion»
prad {counter=pumps}

«LocalPostCondtion»
{varBursted=false}

™ «LocalPostCondtion»
{varMelted=false}

_'/
T ftemp> =400
{n=n@pre+(pressure@pre*pumpVolume/(temp@pre*0.287058))} || temp>=400]
______________ _ [TyreMelted
™ Y

«LocalPostCondtion»
ideal gas

«LocalPostCondtion»

{(pressure*volume)=0.287058*n*temp}

«LocalPostCondtion» c pressure>=15]
{varMelted=true} LTyreBurst]

«LocalPostCondtion» AN «LocalPostCondtion»
ideal gas

Bursted=t
{(pressure*volume)=0.287058*n*temp} {varBursted=true}

[pressure<=14.9]

counter>=1]

{varBursted@pre=tyreBursted

]

«LocalPostCondtion»

{varMelted@pre=tyreMelted}
7/

]

T
7 «LocalPostCondtion»
/ there is no leak in tyre

«LocalPostCondtion»
reduce counter
{counter=counter@pre-1}

«LocalPostCondtion»
10% cooldown
{11*temp=10*temp@pre+300}

[counter<=0]

mTTTTTA

S o 7 {n=n@pre}
Figure 4.6: Activity diagram with mixed integer non-linear constraints
--—- bhsec — — 10sec 20sec- - 60sec----10min—2h
§ T T T T T T T § 300 j
3d = B !
10° £ Elke :
10% - = i
1h = 8 900!
. 1 2 200 -
2, - E © [~
@ H 1 % L
g 100 4 & 150
R 5 1 |
r 1 © I
10 = H =
& E ,q.é 100 |-
LE 12
= i 50
0.1 | =
£ f f f = C I I I I I I I

I S N A

|

L1

20 40 60
maximum path length

60

maximum path length

70

Figure 4.7: Runtime consumed and test cases found by our implementation for the tryre
pump model. We used depth first search and Couenne as solver. The maximum
path length and the solver time limit have been varied.

55

Couenne. For each plot, we used the solver time limit printed in the legend. On the right
hand side of Figure [£.7] we depict the amount of test cases found depending on the time
limit and the maximum path length. Up to a path length of 30 all problem instances had
been solved or found infeasible after less than 20 seconds, thus the set time limits did not
make a difference in the runtime as well as for the number of test cases found up to a
maximum path length of 30. Comparing the run time of our algorithm with different time
limits for the maximum path length of 60 we recognise that increasing the time limit from
20 seconds to 60 seconds increased the overall runtime by a factor of 2.78 and generated 17
more test cases; those are 9.2% more test cases. Increasing the time limit from 60 seconds
to 600 seconds increased the overall runtime by a factor of 7.67 and produced 11 additional
test cases, which amounts to only 5.4% more test cases. We see that increasing the lime
limit for the solver massively increases the overall runtime, but we gain only very little
more test cases for that. We therefore recommend using 10 to 20 seconds as time limit for
Couenne.

Running the Generated Test Cases

We have implemented the modelled function in C and successfully ran the generated test
cases against it. Although we did not do it systematically for this model we did a few
mutation tests for the test cases generated from this model. The error propagation of very
small errors in the floating point calculations is especially interesting. We see in the model
there is a loop and in every round the values for temperature, pressure, amount of air (n in
the model) are updated depending on the values of those measures before. Consequently,
when one of the calculations has a small error the error will be propagated to all three of
those measures and we see a lot of failed tests due to just one wrong statement. Also for
longer test cases taking the loop multiple times the introduced error is propagated super—
linearly. In an experiment an error of 0.1 % per loop iteration caused after 5 iterations
an error of more than 0.5%. Similarly, reordering of statements introduced huge errors
in all three measures. And finally, a sub—optimal calculation plans caused several test
cases to fail due to rounding errors. One might think that the new temperature after
the CoolALittle action could be computed either as temp = (10 * temp + 300) / 11 ;
orastemp = 10 * temp / 11 + 300 / 11 ;. But the automatically generated test cases
revealed that those two expressions do not produce the same results. The rounding errors
of the second version cause all generated test cases to fail.

4.3 Case Study PAX Model (MILP)

Additionally to the artificial test models demonstrating the use of our method for different
kinds of constraints we also performed a case study with a real world model. We tested our
implementation on a model modelling the PAX call system from Airbus. Out of the model
of the complete product we selected an activity diagram modelling the interaction of the
PAX call system with the In Flight Entertainment (IFE) system. The selected Activity
contains 21 Actions, 24 ControlNodes, and two LoopNodes. Furthermore, there are eight
DataStoreNodes representing function local variables. The model was originally created
with Atego® Artisan Studio, and used to generate a C implementation from it with a
proprietary code generator from Atego®. The branching conditions and the code body of
each Action is given in C syntax. All assignments and conditions consist of linear equations
and inequalities only. All variables are in the integer or boolean domain. Consequently,
the constraint satisfaction problem to be solved for test data generation is a mixed integer

56

linear program. The solvers Cplex and LPsolve are perfectly suitable for this kind of
problem. Couenne can also be used for this task.

The described algorithm has several parameters, which mainly influence the
[Case Generationl We use this case study to evaluate the influence of those parameters
on the runtime of the algorithm. The examined parameters are the maximum length of
control flow paths, the maximum amount of test cases to be generated, and the unchecked
steps before an early infeasible path check is performed during the depth first search.

4.3.1 Manual Adaptation

In order to generate C++ unit test code with our Eclipse plug-in from the described
model several pre—processing steps need to be performed manually. We need to convert
the model from Atego® Artisan Studio into Eclipse UML, add all guards and the local
post—conditions in OCL syntax, flatten the LoopNodes, and replace the DataStoreNodes by
Properties.

Atego® does not store models natively in XMI format but has an option for exporting
models in XMI format. The Eclipse Modelling Framework natively uses the XMI format
to store models. Each modelling tool uses its own implementation of the UML meta
model and there are slight differences in the implementations making the created models
incompatible with each other. In order to import the model from Artisan in Eclipse we
manually need to remove some objects not recognised by Eclipse and correct some typing
errors in the XMI file. Then we can load the XMI file and browse the model with the
Eclipse Modelling Framework.

Every Action is associated with a C code snippet that is used for code generation. There
are not yet Constraints specifying the pre and post—conditions of each Action in OCL.
Also the guards do not contain OCL queries. We make an educated guess to add guards
and localPostconditions reproducing the semantics of the C code snippets contained in
the original model. The original model used local C struct variables modelled by the
DataStoreNodes contained by the Activity. Our implementation can handle primitive data
type variables modelled by Properties, consequently we created one Property per field of
a struct variable. The original model also used arrays. We emulated the behaviour of an
indexed collection by allowing all variables depending on an index to change to an arbitrary
value whenever the index is changed. This may produce wrong behaviour but seemed fair
enough to evaluate our algorithm. The DataStoreNodes will be ignored by our algorithm.
The LoopNodes contain further model elements in their bodyPart reference. Those elements
from the bodyPart are directly included into the parent Activity. The InitialNode and
FinalNodes of the loop body are replaced by decision nodes and directly connected to every
element that was connected to the LoopNode. In order to preserve the loop semantics
additional ControlFlows, DecisionNodes, and counter incrementing Actions are added.

The function specifying which ControlFlow to take after each Action is well-defined and
defined over the complete domain. Well-defined means there is no possible state in which
more than one guard evaluates to true, and defined over the complete domain means that
there is no value assignment for which every guard of the outgoing ControlFlows evaluate
to false.

4.3.2 Runtime Measurement Results

We examine the influence of the used solver, the maximum path length, and the maximum
number of test cases on the runtime of our algorithm. The expected effects of those
parameters on the overall runtime have already been discussed in Section [4.1.1]

57

10°

F T T T T T T T T]
H- - Cplex , .
|| — — LPsolve /o
10 H---- Couenne // 4
1h s GeCoDE A]
C =7 / .| [~ f f
5| 7 1 10° 4
- ¥ — - .|
10 & v e r .
B // // i n 4 I |
= S IR
2 100 E S 4 O B §
£] SIS S-S 1
i N | S0k
s "/ = i
10 E g=d /// 5 ; | |
i 12102k .
T g s E 10 g §
R | &] |
L/ E .
NG 1 100E E
i | | | | | | L | | | | | |]
20 40 60 80 100 50 100
maximum path length maximum path length

Figure 4.8: Runtime of our algorithm applied to the case study. We measured the runtime
with different solvers and varied the maximum path length. The runtime as
well as the amount of test cases grow exponentially with the maximum path
length.

Different Solvers

We plotted the runtime depending on the maximum path length on the left hand side of
Figure 4.8 We performed this experiment with different solvers. For [Abstract Test Case]
the depth first search with early infeasible path elimination and two unchecked
steps has been used. As we see, LPsolve Cplex and GeCoDE are equally fast. Using
Couenne and a maximum path length of 60, our algorithm takes round about three times
the runtime consumed using LPsolve and twice the runtime consumed with Cplex. Keep in
mind that the plot is logarithmic. This might be because Couenne is actually suitable for
the much more general mathematical problem of mixed integer non-linear programming;
it is not perfectly specialized for mixed integer linear programming. To evaluate the slope
of the exponential growth we also plotted the function A -1.2%. The runtime grows almost
perfectly exponential with the maximum path length and the runtime doubles when the
maximum path length increases by 6-7. With a closer look at the graph, we can see that
it is slightly super—exponential. This might be caused by effects that are inherent to the
computing architecture executing the implementation of our algorithm.

The case study model contains only constraints that are instances of MILP and, therefore,
the solvers always succeed to find the solution when there is suitable test data for a certain
path. Consequently, our algorithm will produce all test cases up to the given path length
no matter which solver is used. The number of test cases grows equally exponential with
the maximum path length as the runtime. We plotted the number of test cases depending
on the maximum path length on the right of Figure [1.8] This plot is also logarithmically
scaled.

58

3d + — : maximum path length
10° - o[- 90
NiSSsan=aas |- =
10 % \‘\ / ‘/' % _—— 70
= h s 60
? 103 E \\\\/////~ ##### = |- - 50
-E o~ 17 1|l— 40
100 £ R i h E
i | | | | | | | | | | i

0 2 4 6 8§ 10 12 14
unchecked steps

Figure 4.9: Runtime of our implementation depending on the unchecked steps. The ex-
periment has been performed with depth first search and Cplex as solver for
different maximum path lengths

Unchecked Steps

In Figure .9 we plotted the overall runtime of our algorithm depending on the unchecked
steps of the early infeasible path elimination. We used Cplex as solver for this experiment
and repeated the experiment for different maximum path lengths. In the plots we see, up
to a maximum path length of 50 it is not beneficial to use early infeasible path elimination
when generating test cases for the case study model. With longer maximum path lengths
the impact of well configured early infeasible path elimination grows. For a maximum
path length of 90 our algorithm configured with the optimal value for the unchecked steps
parameter takes less than one hour to generate all test cases, while it takes several days
when unchecked steps is set to 5 or 6.

Maximum Amount of Test Cases

The runtime of our algorithm is not the only thing that grows exponentially with the
maximum path length. Also the number of control flow paths in the activity diagram
shorter than the maximum path length grows exponentially. We show this effect in Figure
The number of test cases grows exponentially with respect to almost the same basis
as the runtime and the quotient of runtime and generated test cases grows polynomial. To
illustrate that, we plotted the runtime of our algorithm against the number of test cases
in Figure For the plot on the left we used the same data as for the LPsolve plot in
Figure [£.8] The plot is logarithmic on both axis and we can see that the runtime grows
not linearly with the number of test cases, but it grows with an exponent of 1.45.

It would not produce useful test cases to use depth first search and no limit on the maximum
path length but a limit on the test cases to find. All generated test cases would over and
over share very long common sub-paths and other control flows would not be checked at
all. Since this would not be desired in practice, we used the breadth first search explained
in Section B.4.2to evaluate the effect of the maximum amount of test cases on the runtime.
In Figure we plot on the right the runtime of our algorithm with breadth first search,
early infeasible path elimination, and Cplex as solver. The dotted line shows a small section

59

e et B sttt e |
10° e E . |
i : 8-10° | s
104 B & . |
1h i i 6- 103 i 1
103 | = : |
= i = :]
g i | g i i
10 1 2103 -
1E 4 i |
i : 0t i

N A A A 11| B R AT | | | | | | | |

10t 102 103 10* 10° 2,000 4,000 6,000 8,000
number of test cases number of test cases

Figure 4.10: Runtime of our implementation depending on the number of test cases. Left:
depth first search. Right: breadth first search

of the first plot where the previous data has been reused. As we can see breadth first search
is considerably slower than depth first search. The reason for that is that breadth first
search can not make such a good use of the warm start capabilities of the solvers as depth
first search can. Details of the warm start capabilities have been explained in Section [3.5.5]
In depth first search between two subsequent solver invocations usually only a small amount
of the constraints change. For breadth first search it will happen several times during the
infeasible path elimination that all constraints have changed between two subsequent calls
to AMPL. Furthermore, we see that the generation of 9,000 test cases took only slightly
longer than the generation of 8,000 test cases. We currently can not explain this strange
effect.

Boundary Value Analysis

Finally, we also analysed the impact of the boundary value analysis on the runtime of
our implementation. As explained in Section [3.5.6] an additional objective in the AMPL
program has been added that enforces all initialisation values of the test case to be minimal
with respect to the path constraints in the control flow path. In Figure [f.11], we show the
runtime of our algorithm depending on the maximum path length. We use depth first
search and LPsolve as solver. The runtime with boundary value analysis and the runtime
without boundary value analysis are plotted. Obviously it does not make a difference at
all for the runtime whether we generate values at a specific boundary of the feasible region
or just any feasible points as test data.

This is plausible because the number of solver invocations where really a boundary value
analysis is performed is small compared to the number of total solver calls. For example,
for a maximum path length of 70 there are 1568 test cases. The solver performs the
optimisation only for them. On the other hand, there are 35044 solver invocations in total
including those for the infeasible path elimination and those that recognise an abstract test

60

10* H with =

1h -+~ without = i

10% - E

g = 1
=100 | g
© E P g
£ i =]
Tk e €
g o i
e E

i | | | | :

|
20 40 60 80 100
maximum path length

Figure 4.11: Comparison of runtime with boundary value analysis and without boundary
value analysis

case as infeasible. They are performed just in the same way as without boundary value
analysis. The simplex algorithm will first determine the feasibility and then optimise.
Consequently, only % of all solver invocations is actually performing some extra work. For
larger maximum path lengths this fraction is declining. For this particular instance of the
mixed—integer linear programming problem it is particularly easy for the simplex algorithm
to find the boundaries since there are no interdependencies between the variables. Each
variable in the objective function can just be set to its minimum and no branch—and-bound
steps need to be performed.

We definitely recommend to use this feature for mixed integer linear programs in practice
because it really comes at no cost, and one can use this feature to generate test data at
two or more different boundaries of the feasible set and generate multiple test cases for one
control flow path that check all path conditions for the control flow path.

4.4 Verification of the Implementation

We claim that the Eclipse plug—in built aside this thesis implements the algorithm explained
in [Generating Unit Tests from a UML Activityl This claim is validated manually by
checking each step separately. We use the academic example models presented in Section
M.2] as test cases to verify each transformation described in [Generating Unit Tests from]
[a UM Activityl From each test model we created manually the intermediate artefacts
that should have been created according to the specification and compared them to the
intermediate artefacts produced by the plug-in.

4.5 Limitations

We demonstrated that our algorithm is capable of generating ready—to—use C unit test from
the test models presented in this chapter. There are still more features to implement and
also limitations that are not easily fixed. We divided this section into three parts. First,
we will show which features will provably be never realizable due to theoretical constraints.

61

Those are the presented in[Theoretical Limitations] Then, we will name features that could
have easily been added to the presented method but are not described in this thesis. And
finally, we will show which features could be added if the used libraries and external tools
would provide better support in [Limitations of Tool Support]

4.5.1 Theoretical Limitations

The most important source of limitations is undecidability. Although we were able to
produce some valid test cases for a model using undecidable formulas in their local post—
conditions and guards there will never be an algorithm that is able to automatically produce
one test case for every possible abstract test case in the activity test case graph generated
from such an activity diagram. There will always be some special cases where any applied
heuristic will neither find a feasible solution nor can generate a proof that there is no
solution to the mathematical program to be solved in order to generate the test data.

If all constraints in the model are instances of a decidable problem it may still be the case
that the algorithm is intractable. In such a case we will have problems with the scalability
of our approach when using exact solvers. The only way out would then be to use a solver
implementing a tractable heuristic instead of an exact method to solve the mathematical
program, which in turn might report some paths to be infeasible although there exists a
solution that would have been found by the exact method.

Another limitation to scalability is the combinatorial explosion of possible control flow
paths through an activity test case graph with growing path length. Unless one decides
to use only a special subset of all possible control flow paths as abstract test cases the
algorithm will always suffer from exponential runtime and it will also produce a number
of test cases that grows exponentially with the maximum path length.

4.5.2 Limitations of the Implementation

Several features of the UML could have easily been supported by our approach. We con-
centrated on the core idea in this thesis and created a good software architecture allowing
later extensions of our initial concept.

Missing features are support of hierarchical modelling with ActivityCallActions or Struc-
turedActivityNodes. Furthermore, the input language currently does not support opera-
tions on variables with a type other than boolean, integer, or real. Support for arbitrary
datatypes such as enums or objects can be added by modifying the |Rigorous Mathematicall
step of our algorithm.

Currently as constraints only the ControlFlow’s guard conditions and the Action’s local-
PostConditions are considered. All possible ways to embed invariants and pre— and post—
conditions into an UML model are ignored. This could be fixed in the step
of the presented algorithm.

Finally, it might not be in the interest of the industrial user that for larger models the test
case generation with our algorithm may take several days and produce several thousand
test cases (for the case study we had produced 83,000 test cases in 13 hours). The genera-
tion of a moderate amount of test cases ensuring full code coverage of the implementation
or fulfilling some coverage criterion on the input model might be more desirable. To achieve
this a modification of the [Abstract Test Case Generation|is necessary.

62

4.5.3 Limitations of Tool Support

AMPL’s normal use case is mathematical optimisation and throughout the years several
additional features have been added to the language. Unfortunately we do not know about
a single solver capable of handling every constraint that can be expressed with AMPL.
Especially support for SMT formulations using convex optimisation and mixed integer
non-linear programming as background theory is missing. With the commercial solver
IogCP it is possible to delegate the solution of sentences in a background theory to Cplex,
which is capable of solving mixed integer linear programs and mixed integer quadratic
programs, yet another specialization of mixed integer non-linear programming.

The used Eclipse OCL parser by default supports a minimal set of arithmetic operations.
Consequently, it is not possible to support arbitrary arithmetic without modifying the
Eclipse OCL parser.

In theory, the XMI interchange format should enable the exchange of UML models between
different modelling tools. Unfortunately, the import of UML models into Eclipse exported
by Atego® Artisan Studio does not yet work flawlessly. Consequently, our implementation
is restricted to models generated by Papyrus, a modelling plug—in for Eclipse, unless one is
willing to spend some manual work to make the exported UML model of third party tools
compliant to Eclipse UML.

63

5 QOutlook and Summary

5.1 Outlook

The presented algorithm and its implementation have potential for improvement. Our ini-
tial concept for boundary value analysis can be extended and become a full grown support
for data based coverage criteria. Therefore we need to implement an algorithm that au-
tomatically generates objective functions from the model. Depending on the desired data
based coverage criterion for each path a suitable set of objective functions can be generated
and used to find all test data fulfilling the data—based coverage criterion.

In order to make an industrial-strength tool out of this prototypical implementation, one
should improve the scalability of the [Abstract Test Case Generation| step. Currently we
support an infeasible model structure-based coverage criterion. When the total number
of test cases to generate depends linearly on the number of edges or nodes in the activity
test case graph, the overall runtime of our algorithm will be reduced to depend polyno-
mially on the number of nodes or edges in the activity test case graph. For example one
can ensure that for each edge there is at least one test case traversing this edge. Or one
can use the test goal management implemented in ParTeG. This allows selecting multiple
coverage criteria that shall be fulfilled by the generated test suite and steers the test case
generation accordingly [31].

Another potential is buried in the mathematical modelling system. The modelling capabil-
ities of AMPL are currently not used to their full extent. AMPL natively supports arrays
with a fixed length. Our current algorithm interprets every Property or Parameter with a
basic data type as a single variable. We could also interpret the multiplicity of Parameters
or Properties and interpret them as arrays of fixed lengths. This could be done with almost
no implementation effort.

Besides arrays AMPL also natively supports more mathematical operations than those
that are predefined in basic OCL and via an external library support for a huge selection
of scientific arithmetic functions is available. By extending the OCL parser, functions like
sin, exp, and different probability distributions can easily be made available to the for-
mulation of constraints.

Another improvement which is also provisioned is the handling of object type variables.
This would need some modifications in the way how activity test case graphs are trans-
formed into AMPL models and also requires an extension of the OCL subset that is ac-
cepted as input language for constraints.

Finally, the transformation from UML into an activity test case graph could be extended
such that more modelling elements from the UML are supported. Support for Activi-
tyCallActions or LoopNodes can be added by inlining the referenced activity of an Ac-
tivityCallAction or the body of a StructuredActivityNode. We can also support arbitrary
DataTypes by allowing a user—defined mapping of data types to one of the basic data
types: boolean, integer, or real. For example, the user could use the DataTypes named
‘uint8’; ‘uint16’, and ‘uint32’; one can define in the model that they are integers with a
specified value range.

65

5.2 Summary

We presented an approach for automated generation of unit test from UML activity and
class models. The presented approach consists of five steps transforming an UML activity
diagram into a unit test through four intermediate artefacts. We also specified at least one
algorithm for each step and demonstrated the practicality of our approach by implement-
ing it as Eclipse plug-in and applying it to a set of academic test models and a model of
a real industrial software implementation from Airbus. With mutation testing we demon-
strated that the presented approach is useful and fully working. We examined in detail
the influence of different parameters of our algorithm on the total runtime and performed
a parameter tweaking.

We presented an efficient way to integrate state—of-the—art constraint solvers and provide
support for a wide variety of mathematical problems. Depending on the specific needs of
the modeller we can allow a wide variety of constraint expressions to be used in the test
model. All constraint solvers are accessed via a common interface, thus, making it easy to
exchange the constraint solver and selecting the one that is most suitable to generate test
data for one specific activity diagram. We presented several example models, each hold-
ing constraints that are instances of a different mathematical problem. We argued which
solver is suitable for which model and also measured the runtime of the implementation.
We clearly saw that the automatic test data generation is especially fast when constraints
are specified in terms of a decidable theory with a tractable algorithm, for example, linear
programming. On the other hand we also successfully demonstrated test data generation
for models whose constraints are formulated as instances of an undecidable problem, for
example, mixed integer non-linear programming. Although it is in general possible with
our approach to generate test data for models with undecidable constraints it can be much
more time consuming than generating test data for models with decidable constraints and
it is not guaranteed that an existing solution will be found. We recommend restricting one-
self to linear inequalities or another decidable constraint formulation, if that is possible.
One should use mixed integer non—linear constraints or SMT formulas with an undecidable
theory only for small models and if it is unavoidable.

We have presented a concept for early infeasible path elimination during generation of ab-
stract test cases and examined its impact on the overall runtime of our algorithm. We have
also examined the influence of several parameters on the runtime of our implementation.
Using early infeasible path elimination with two unchecked steps massively reduces the
runtime of our algorithm especially for larger models when one test case is generated for
every feasible path with a maximum path length of 60 control flows or more. Of course,
those results strongly depend on the activity diagrams used for this examination, but we
assume that our case study model is a good representative of actual models occurring in
practice.

Finally, we argued that with the presented approach it is possible to steer the generation
of test data in a way that boundary values are produced with no additional effort. It is
common knowledge that the use of boundary values as test data tends to trigger existing
bugs with a higher probability. Thus we improved the quality of the generated test cases
with a minimal additional effort.

66

Bibliography

1]

2]

3]

4]

[5]
[6]

7]

8]

19]

[10]

[11]

[12]

M. Utting, A. Pretschner, and B. Legeard, “A Taxonomy of Model-Based Testing
Approaches,” Software Testing, Verification and Reliability, vol. 22, no. 5, pp.
297-312, 2012. [Online|. Available: http://dx.doi.org/10.1002/stvr.456

H. Lackner, H. Schlingloff, and A. Berlin, “Modeling for Automated
Test Generation — A Comparison,” in Model-Based Development of Em-
bedded Systems (MBEES), wvol. 8, 2012, pp. 57-70. [Online]. Avail-
able: http://www.vldb.informatik.hu-berlin.de/ hs/Publikationen /2012 MBEES
Lackner-Schlingloff Modeling-for- Automated-Test-Generation-- A- Comparison.pdf
J. Offutt and A. Abdurazik, “Generating tests from UML specifications,” in «UML»’
99 — The Unified Modeling Language, ser. Lecture Notes in Computer Science,
R. France and B. Rumpe, Eds. Berlin, Heidelberg: Springer, 1999, vol. 1723, pp.
416-429. |Online|. Available: http://dx.doi.org/10.1007/3-540-46852-8 30

A. Abdurazik and J. Offutt, “Using UML Collaboration Diagrams for Static Checking
and Test Generation,” in «UML»’ 2000 - The Unified Modeling Language, ser.
Lecture Notes in Computer Science. Berlin, Heidelberg: Springer, 2000, vol. 1939,
pp. 383-395. |Online|. Available: http://dx.doi.org/10.1007/3-540-40011-7 28

S. Weikleder and D. Sokenou, “Automatic Test Case Generation from UML Models
and OCL Expressions,” in Software Engineering (Workshops), 2008, pp. 423-426.

W. Linzhang, Y. Jiesong, Y. Xiaofeng, H. Jun, L. Xuandong, and Z. Guoliang,
“Generating Test Cases from UML Activity Diagram based on Gray-Box
Method,” in Asia—Pacific Software Engineering Conference. Los Alamitos,
CA, USA: IEEE Computer Society, 2004, pp. 284-291. [Ounline|. Available:
http://doi.ieeecomputersociety.org/10.1109/ APSEC.2004.55

D. Kundu and D. Samanta, “A Novel Approach to Generate Test Cases from UML
Activity Diagrams,” Journal of Object Technology, vol. 8, no. 3, pp. 65-83, 2009.
|Online|. Available: http://dx.doi.org/10.5381/j0t.2009.8.3.al

A. D. Brucker and B. Wolff, “On theorem prover-based testing,” Formal
Aspects of Computing, vol. 25, no. 5, pp. 683-721, 2013. [Online|. Available:
http://dx.doi.org/10.1007/s00165-012-0222-y

P. Patel and N. Patil, “Test case formation using UML activity diagram,” World
Journal of Science and Technology, vol. 2, no. 3, pp. 57-62, 2012. [Online|. Available:
http://worldjournalofscience.com /index.php/wijst /article/view /13160

S. Weifsleder, “Test Models and Coverage Criteria for Automatic Model-Based Test
Generation with UML State Machines,” Ph.D. dissertation, Humboldt University
Berlin, 2010. [Online|. Available: http://model-based-testing.de/data/weissleder
phd thesis.pdf

C. Mingsong, Q. Xiaokang, and L. Xuandong, “Automatic Test Case Generation for
UML Activity Diagrams,” in International Workshop on Automation of Software Test.
ACM, 2006, pp. 2-8. [Online|. Available: http://dx.doi.org/10.1145/1138929.1138931
J. Peleska, E. Vorobev, and F. Lapschies, “Automated Test Case Generation with
SMT-Solving and Abstract Interpretation,” in NASA Formal Methods, ser. Lecture
Notes in Computer Science, M. Bobaru, K. Havelund, G. Holzmann, and R. Joshi,

67

http://dx.doi.org/10.1002/stvr.456
http://www.vldb.informatik.hu-berlin.de/~hs/Publikationen/2012_MBEES_Lackner-Schlingloff_Modeling-for-Automated-Test-Generation--A-Comparison.pdf
http://www.vldb.informatik.hu-berlin.de/~hs/Publikationen/2012_MBEES_Lackner-Schlingloff_Modeling-for-Automated-Test-Generation--A-Comparison.pdf
http://dx.doi.org/10.1007/3-540-46852-8_30
http://dx.doi.org/10.1007/3-540-40011-7_28
http://doi.ieeecomputersociety.org/10.1109/APSEC.2004.55
http://dx.doi.org/10.5381/jot.2009.8.3.a1
http://dx.doi.org/10.1007/s00165-012-0222-y
http://worldjournalofscience.com/index.php/wjst/article/view/13160
http://model-based-testing.de/data/weissleder_phd_thesis.pdf
http://model-based-testing.de/data/weissleder_phd_thesis.pdf
http://dx.doi.org/10.1145/1138929.1138931

[13]

[14]

[15]

[16]

[17]
[18]
[19]

[20]

[21]

[22]
[23]

[24]

[25]
[26]

[27]

[28]

68

Eds. Berlin, Heidelberg: Springer, 2011, vol. 6617, pp. 298-312. [Online|. Available:
http://dx.doi.org/10.1007/978-3-642-20398-5 22

S. Ali, M. Z. Igbal, A. Arcuri, and L. Briand, “A Search-based OCL
Constraint Solver for Model-based Test Data Generation,” in [International
Conference on Quality Software (QSIC), 2011, pp. 41-50. [Online|. Available:
http://dx.doi.org/10.1109/QSIC.2011.17

M. P. Krieger and A. Knapp, “Executing underspecified OCL operation contracts
with a SAT solver,” Electronic Communications of the EASST, vol. 15, 2008. [Online].
Available: http://journal.ub.tu-berlin.de/eceasst /article/view/176

J. Malburg and G. Fraser, “Combining Search-based and Constraint-based Testing,”
in International Conference on Automated Software Engineering. IEEE Computer
Society, 2011, pp. 436-439. [Online|. Available: http://dx.doi.org/10.1109/ASE.2011.
6100092

N. Tillmann and J. Halleux, “Pex-White Box Test Generation for .NET)” in Tests
and Proofs, ser. Lecture Notes in Computer Science, B. Beckert and R. Héahnle,
Eds. Berlin, Heidelberg: Springer, 2008, vol. 4966, pp. 134-153. [Online|. Available:
http://dx.doi.org/10.1007/978-3-540-79124-9 10

A. Eiben and Z. Ruttkay, “Constraint Satisfaction Problems,” in Handbook of Evolu-
tionary Computation, D. F. T. Biack and M. Michalewicz, Eds. TOP Publishing Ltd.
and Oxford University Press, 1997, pp. 1-8.

S. Boyd and L. Vandenberghe, Conver Optimization. New York, NY, USA: Cam-
bridge University Press, 2004.

G. Dantzig, Linear Programming and Fxtensions. Princeton University Press, 1963.
M. Davis, G. Logemann, and D. Loveland, “A Machine Program for Theorem—
Proving,” Communications of the ACM, vol. 5, no. 7, pp. 394-397, jul 1962. [Online].
Available: http://doi.acm.org/10.1145/368273.368557

C. Barrett, C. L. Conway, M. Deters, L. Hadarean, D. Jovanovi¢, T. King,
A. Reynolds, and C. Tinelli, “CVC4,” in Computer Aided Verification, ser.
Lecture Notes in Computer Science, G. Gopalakrishnan and S. Qadeer, Eds.
Berlin, Heidelberg: Springer, 2011, vol. 6806, pp. 171-177. |[Online|. Available:
http://dx.doi.org/10.1007/978-3-642-22110-1 14

C. Bessiere, “Constraint Propagation,” CNRS/University of Montpellier, Tech. Rep.,
2006.

J. Wielemaker, T. Schrijvers, M. Triska, and T. Lager, “SWI-Prolog,” Theory and
Practice of Logic Programming, vol. 12, no. 1-2, pp. 67-96, 2012.

R. Fourer, D. M. Gay, and B. W. Kernighan, AMPL: A Modeling Language for
Mathematical Programming, 2nd ed. Duxbury Press, 2002. [Online|]. Available:
http://www.ampl.com/BOOK /index.html

OMG Unified Modeling Language” (OMG UML), Superstructure, Object Management
Group Std., May 2010. [Online|. Available: http://www.omg.org/spec/UML/2.3/
OMG Object Constraint Language (OCL), Object Management Group Std., May
2012. [Online|. Available: http://www.omg.org/spec/OCL/2.3.1

P. Laborie, “IBM ILOG CP Optimizer for Detailed Scheduling Illustrated on Three
Problems,” in Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, ser. Lecture Notes in Computer Science,
W.-J. Hoeve and J. Hooker, Eds. Berlin, Heidelberg: Springer, 2009, vol. 5547, pp.
148-162. [Online|. Available: http://dx.doi.org/10.1007/978-3-642-01929-6 12
Gecode Team. (2006) Gecode: Generic Constraint Development Environment.

http://dx.doi.org/10.1007/978-3-642-20398-5_22
http://dx.doi.org/10.1109/QSIC.2011.17
http://journal.ub.tu-berlin.de/eceasst/article/view/176
http://dx.doi.org/10.1109/ASE.2011.6100092
http://dx.doi.org/10.1109/ASE.2011.6100092
http://dx.doi.org/10.1007/978-3-540-79124-9_10
http://doi.acm.org/10.1145/368273.368557
http://dx.doi.org/10.1007/978-3-642-22110-1_14
http://www.ampl.com/BOOK/index.html
http://www.omg.org/spec/UML/2.3/
http://www.omg.org/spec/OCL/2.3.1
http://dx.doi.org/10.1007/978-3-642-01929-6_12

[29]

[30]

[31]

[Online|. Available: http://www.gecode.org

P. Belotti, J. Lee, L. Liberti, F. Margot, and A. Wichter, “Branching
and Bounds Tightening Techniques for Non-Convex MINLP” Optimization
Methods and Software, vol. 24, no. 4-5, pp. 597-634, 2009. [Online|. Available:
http://dx.doi.org/10.1080/10556780903087124

M. Berkelaar, K. Eikland, and P. Notebaert. Ipsolve : Open source (Mixed-Integer)
Linear Programming system. [Online]. Available: http://Ipsolve.sourceforge.net/5.5/
S. Weilileder and D. Sokenou, “ParTeG-A Model-Based Testing Tool,”
Softwaretechnik—Trends, vol. 30, no. 2, 2010. [Online|. Available: http://pi.informatik.
uni-siegen.de/stt/30 2/01 Fachgruppenberichte/ TAV /TAV29P08Sokenou.pdf

69

http://www.gecode.org
http://dx.doi.org/10.1080/10556780903087124
http://lpsolve.sourceforge.net/5.5/
http://pi.informatik.uni-siegen.de/stt/30_2/01_Fachgruppenberichte/TAV/TAV29P08Sokenou.pdf
http://pi.informatik.uni-siegen.de/stt/30_2/01_Fachgruppenberichte/TAV/TAV29P08Sokenou.pdf

	Introduction
	A Real World Problem at Airbus
	Outline of this Thesis
	Model Transformations
	Symbolic Execution
	State–Of–The–Art Constraint Solver Implementations
	Results

	Organization

	Preliminaries
	Literature Review
	Test Models
	Test Generation
	Test Data Generation

	Mathematical Foundations
	Characteristics of Problems and Solver Methods
	Constraint Satisfaction Problem
	Optimisation Problem
	Convex Optimisation Problem
	Linear Programming
	Boolean Satisfiability Problems
	Satisfiability Modulo Theories
	Properties of the Search Space

	The AMPL Modelling System
	Command Language
	Modelling Language
	Entering Data

	Generating Unit Tests from a UML Activity
	General Overview of the Workflow
	Normalisation
	Design Rules for the Test Model
	A Meta Model Suitable for Automated Unit Test Generation
	Transforming an UML Activity Diagram to an Activity Test Case Graph
	Adding Continuity Constraints

	Rigorous Mathematical Programming
	Introductory Example
	Transforming a TCGActivity to an AMPL Model
	Transforming TCGVariables
	Transforming LocalPostConditions
	Transforming Guards
	Specifying Control Flow Paths in the AMPL Data

	Abstract Test Case Generation
	Path Tree
	Path Search
	Early Infeasible Path Elimination

	Specific Test Data Generation
	The Unit Test Meta Model
	Solving a Constraint Satisfaction Problem with AMPL
	Storing the Variable Values in a Unit Test Case Model
	Review of Available Solvers
	Warm Start Capabilities
	Boundary Value Analysis

	Unit Test Synthesis

	Evaluation
	Experiment Description
	Runtime Measurement
	Mutation Testing

	Academic Examples
	Triangle Classificator (LP)
	Triangle Classificator with Logical Constraints (SMT)
	Binary Counter (SAT)
	Exploding Tyres (MINLP)

	Case Study PAX Model (MILP)
	Manual Adaptation
	Runtime Measurement Results

	Verification of the Implementation
	Limitations
	Theoretical Limitations
	Limitations of the Implementation
	Limitations of Tool Support

	Outlook and Summary
	Outlook
	Summary

