662 research outputs found

    Executable system architecting using systems modeling language in conjunction with Colored Petri Nets - a demonstration using the GEOSS network centric system

    Get PDF
    Models and simulation furnish abstractions to manage complexities allowing engineers to visualize the proposed system and to analyze and validate system behavior before constructing it. Unified Modeling Language (UML) and its systems engineering extension, Systems Modeling Language (SysML), provide a rich set of diagrams for systems specification. However, the lack of executable semantics of such notations limits the capability of analyzing and verifying defined specifications. This research has developed an executable system architecting framework based on SysML-CPN transformation, which introduces dynamic model analysis into SysML modeling by mapping SysML notations to Colored Petri Net (CPN), a graphical language for system design, specification, simulation, and verification. A graphic user interface was also integrated into the CPN model to enhance the model-based simulation. A set of methodologies has been developed to achieve this framework. The aim is to investigate system wide properties of the proposed system, which in turn provides a basis for system reconfiguration --Abstract, page iii

    Profiling the publish/subscribe paradigm for automated analysis using colored Petri nets

    Get PDF
    UML sequence diagrams are used to graphically describe the message interactions between the objects participating in a certain scenario. Combined fragments extend the basic functionality of UML sequence diagrams with control structures, such as sequences, alternatives, iterations, or parallels. In this paper, we present a UML profile to annotate sequence diagrams with combined fragments to model timed Web services with distributed resources under the publish/subscribe paradigm. This profile is exploited to automatically obtain a representation of the system based on Colored Petri nets using a novel model-to-model (M2M) transformation. This M2M transformation has been specified using QVT and has been integrated in a new add-on extending a state-of-the-art UML modeling tool. Generated Petri nets can be immediately used in well-known Petri net software, such as CPN Tools, to analyze the system behavior. Hence, our model-to-model transformation tool allows for simulating the system and finding design errors in early stages of system development, which enables us to fix them at these early phases and thus potentially saving development costs

    An Executable System Architecture Approach to Discrete Events System Modeling Using SysML in Conjunction with Colored Petri Net

    Get PDF
    This paper proposes an executable system architecting paradigm for discrete event system modeling and analysis through integration of a set of architecting tools, executable modeling tools, analytical tools, and visualization tools. The essential step is translating SysML-based specifications into colored Petri nets (CPNs) which enables rigorous static and dynamic system analysis as well as formal verification of the behavior and functionality of the SysML-based design. A set of tools have been studied and integrated that enable a structured architecture design process. Some basic principles of executable system architecture for discrete event system modeling that guide the process of executable architecture specification and analysis are discussed. This paradigm is aimed at general system design. Its feasibility was demonstrated with a C4- type network centric system as an example. The simulation results was used to check the overall integrity and internal consistency of the architecture models, refine the architecture design, and, finally, verify the behavior and functionality of the system being modeled

    A Graph Transformation Approach for Modeling and Verification of UML 2.0 Sequence Diagrams

    Get PDF
    Unified Modeling Language (UML) 2.0 Sequence Diagrams (UML 2.0 SD) are used to describe interactions in software systems. These diagrams must be verified in the early stages of software development process to guarantee the production of a reliable system. However, UML 2.0 SD lack formal semantics as all UML specifications, which makes their verification difficult, especially if we are modeling a critical system where the automation of verification is necessary. Communicating Sequential Processes (CSP) is a formal specification language that is suited for analysis and has many automatic verification tools. Thus, UML and CSP have complementary aspects, which are modeling and analysis. Recently, a formalization of UML 2.0 SD using CSP has been proposed in the literature; however, no automation of that formalization exists. In this paper, we propose an approach on the basis of the above formalization and a visual modeling tool to model and automatically transform UML 2.0 SD to CSP ones; thus, the existing CSP model checker can verify them. This approach aims to use UML 2.0 SD for modeling and CSP and its tools for verification. This approach is based on graph transformation, which uses AToM3 tool and proposes a metamodel of UML 2.0 SD and a graph grammar to perform the mapping of the latter into CSP. Failures-Divergence Refinement (FDR) is the model checking tool used to verify the behavioral properties of the source model transformation such as deadlock, livelock and determinism. The proposed approach and tool are illustrated through a case study

    Workshop proceedings of the 1st workshop on quality in modeling

    Get PDF
    Quality assessment and assurance constitute an important part of software engineering. The issues of software quality management are widely researched and approached from multiple perspectives and viewpoints. The introduction of a new paradigm in software development ā€“ namely Model Driven Development (MDD) and its variations (e.g., MDA [Model Driven Architecture], MDE [Model Driven Engineering], MBD [Model Based Development], MIC [Model Integrated Computing]) ā€“ raises new challenges in software quality management, and as such should be given a special attention. In particular, the issues of early quality assessment, based on models at a high abstraction level, and building (or customizing the existing) prediction models for software quality based on model metrics are of central importance for the software engineering community. The workshop is continuation of a series of workshops on consistency that have taken place during the subsequent annual UML conferences and recently MDA-FA. The idea behind this workshop is to extend the scope of interests and address a wide spectrum of problems related to MDD. It is also in line with the overall initiative of the shift from UML to MoDELS. The goal of this workshop is to gather researchers and practitioners interested in the emerging issues of quality in the context of MDD. The workshop is intended to provide a premier forum for discussions related to software quality and MDD. And the aims of the workshop are: - Presenting ongoing research related to quality in modeling in the context of MDD, - Defining and organizing issues related to quality in the MDD. The format of the workshop consists of two parts: presentation and discussion. The presentation part is aimed at reporting research results related to quality aspects in modeling. Seven papers were selected for the presentation out of 16 submissions; the selected papers are included in these proceedings. The discussion part is intended to be a forum for exchange of ideas related to understanding of quality and approaching it in a systematic way

    Workshop proceedings of the 1st workshop on quality in modeling

    Get PDF
    Quality assessment and assurance constitute an important part of software engineering. The issues of software quality management are widely researched and approached from multiple perspectives and viewpoints. The introduction of a new paradigm in software development ā€“ namely Model Driven Development (MDD) and its variations (e.g., MDA [Model Driven Architecture], MDE [Model Driven Engineering], MBD [Model Based Development], MIC [Model Integrated Computing]) ā€“ raises new challenges in software quality management, and as such should be given a special attention. In particular, the issues of early quality assessment, based on models at a high abstraction level, and building (or customizing the existing) prediction models for software quality based on model metrics are of central importance for the software engineering community. The workshop is continuation of a series of workshops on consistency that have taken place during the subsequent annual UML conferences and recently MDA-FA. The idea behind this workshop is to extend the scope of interests and address a wide spectrum of problems related to MDD. It is also in line with the overall initiative of the shift from UML to MoDELS. The goal of this workshop is to gather researchers and practitioners interested in the emerging issues of quality in the context of MDD. The workshop is intended to provide a premier forum for discussions related to software quality and MDD. And the aims of the workshop are: - Presenting ongoing research related to quality in modeling in the context of MDD, - Defining and organizing issues related to quality in the MDD. The format of the workshop consists of two parts: presentation and discussion. The presentation part is aimed at reporting research results related to quality aspects in modeling. Seven papers were selected for the presentation out of 16 submissions; the selected papers are included in these proceedings. The discussion part is intended to be a forum for exchange of ideas related to understanding of quality and approaching it in a systematic way

    Colored model based testing for software product lines (CMBT-SWPL)

    Get PDF
    Over the last decade, the software product line domain has emerged as one of the mostpromising software development paradigms. The main beneļ¬ts of a software product lineapproach are improvements in productivity, time to market, product quality, and customersatisfaction.Therefore, one topic that needs greater emphasis is testing of software product lines toachieve the required software quality assurance. Our concern is how to test a softwareproduct line as early as possible in order to detect errors, because the cost of error detectedIn early phases is much less compared to the cost of errors when detected later.The method suggested in this thesis is a model-based, reuse-oriented test technique calledColored Model Based Testing for Software Product Lines (CMBT-SWPL). CMBT-SWPLis a requirements-based approach for eļ¬ƒciently generating tests for products in a soft-ware product line. This testing approach is used for validation and veriļ¬cation of productlines. It is a novel approach to test product lines using a Colored State Chart (CSC), whichconsiders variability early in the product line development process. More precisely, the vari-ability will be introduced in the main components of the CSC. Accordingly, the variabilityis preserved in test cases, as they are generated from colored test models automatically.During domain engineering, the CSC is derived from the feature model. By coloring theState Chart, the behavior of several product line variants can be modeled simultaneouslyin a single diagram and thus address product line variability early. The CSC representsthe test model, from which test cases using statistical testing are derived.During application engineering, these colored test models are customized for a speciļ¬capplication of the product line. At the end of this test process, the test cases are generatedagain using statistical testing, executed and the test results are ready for evaluation. Inxaddition, the CSC will be transformed to a Colored Petri Net (CPN) for veriļ¬cation andsimulation purposes.The main gains of applying the CMBT-SWPL method are early detection of defects inrequirements, such as ambiguities incompleteness and redundancy which is then reļ¬‚ectedin saving the test eļ¬€ort, time, development and maintenance costs

    A Framework for Executable Systems Modeling

    Get PDF
    Systems Modeling Language (SysML), like its parent language, the Unified Modeling Language (UML), consists of a number of independently derived model languages (i.e. state charts, activity models etc.) which have been co-opted into a single modeling framework. This, together with the lack of an overarching meta-model that supports uniform semantics across the various diagram types, has resulted in a large unwieldy and informal language schema. Additionally, SysML does not offer a built in framework for managing time and the scheduling of time based events in a simulation. In response to these challenges, a number of auxiliary standards have been offered by the Object Management Group (OMG); most pertinent here are the foundational UML subset (fUML), Action language for fUML (Alf), and the UML profile for Modeling and Analysis of Real Time and Embedded Systems (MARTE). However, there remains a lack of a similar treatment of SysML tailored towards precise and formal modeling in the systems engineering domain. This work addresses this gap by offering refined semantics for SysML akin to fUML and MARTE standards, aimed at primarily supporting the development of time based simulation models typically applied for model verification and validation in systems engineering. The result of this work offers an Executable Systems Modeling Language (ESysML) and a prototype modeling tool that serves as an implementation test bed for the ESysML language. Additionally a model development process is offered to guide user appropriation of the provided framework for model building
    • ā€¦
    corecore